Make sure that sorting does not change section order
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67 #include <algorithm>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85 int readnever_symbol_files; /* Never read full symbols. */
86
87 /* Functions this file defines. */
88
89 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
90 objfile_flags flags, CORE_ADDR reloff);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void overlay_invalidate_all (void);
95
96 static void simple_free_overlay_table (void);
97
98 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
100
101 static int simple_read_overlay_table (void);
102
103 static int simple_overlay_update_1 (struct obj_section *);
104
105 static void symfile_find_segment_sections (struct objfile *objfile);
106
107 /* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
109 prepared to read. */
110
111 struct registered_sym_fns
112 {
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
122 };
123
124 static std::vector<registered_sym_fns> symtab_fns;
125
126 /* Values for "set print symbol-loading". */
127
128 const char print_symbol_loading_off[] = "off";
129 const char print_symbol_loading_brief[] = "brief";
130 const char print_symbol_loading_full[] = "full";
131 static const char *print_symbol_loading_enums[] =
132 {
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137 };
138 static const char *print_symbol_loading = print_symbol_loading_full;
139
140 /* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
147 library symbols are not loaded, commands like "info fun" will *not*
148 report all the functions that are actually present. */
149
150 int auto_solib_add = 1;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202 void
203 find_lowest_section (bfd *abfd, asection *sect, void *obj)
204 {
205 asection **lowest = (asection **) obj;
206
207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217 }
218
219 /* Build (allocate and populate) a section_addr_info struct from
220 an existing section table. */
221
222 section_addr_info
223 build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
225 {
226 const struct target_section *stp;
227
228 section_addr_info sap;
229
230 for (stp = start; stp != end; stp++)
231 {
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
240 }
241
242 return sap;
243 }
244
245 /* Create a section_addr_info from section offsets in ABFD. */
246
247 static section_addr_info
248 build_section_addr_info_from_bfd (bfd *abfd)
249 {
250 struct bfd_section *sec;
251
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
258
259 return sap;
260 }
261
262 /* Create a section_addr_info from section offsets in OBJFILE. */
263
264 section_addr_info
265 build_section_addr_info_from_objfile (const struct objfile *objfile)
266 {
267 int i;
268
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
271 */
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
274 {
275 int sectindex = sap[i].sectindex;
276
277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
278 }
279 return sap;
280 }
281
282 /* Initialize OBJFILE's sect_index_* members. */
283
284 static void
285 init_objfile_sect_indices (struct objfile *objfile)
286 {
287 asection *sect;
288 int i;
289
290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
291 if (sect)
292 objfile->sect_index_text = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
295 if (sect)
296 objfile->sect_index_data = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
299 if (sect)
300 objfile->sect_index_bss = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
303 if (sect)
304 objfile->sect_index_rodata = sect->index;
305
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
311
312 symfile_find_segment_sections (objfile);
313
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
322
323 for (i = 0; i < objfile->num_sections; i++)
324 {
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
326 {
327 break;
328 }
329 }
330 if (i == objfile->num_sections)
331 {
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
340 }
341 }
342
343 /* The arguments to place_section. */
344
345 struct place_section_arg
346 {
347 struct section_offsets *offsets;
348 CORE_ADDR lowest;
349 };
350
351 /* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
353
354 static void
355 place_section (bfd *abfd, asection *sect, void *obj)
356 {
357 struct place_section_arg *arg = (struct place_section_arg *) obj;
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
359 int done;
360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
361
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
364 return;
365
366 /* If the user specified an offset, honor it. */
367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
368 return;
369
370 /* Otherwise, let's try to find a place for the section. */
371 start_addr = (arg->lowest + align - 1) & -align;
372
373 do {
374 asection *cur_sec;
375
376 done = 1;
377
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
379 {
380 int indx = cur_sec->index;
381
382 /* We don't need to compare against ourself. */
383 if (cur_sec == sect)
384 continue;
385
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
388 continue;
389
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
394 continue;
395
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
399 {
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
402 done = 0;
403 break;
404 }
405
406 /* Otherwise, we appear to be OK. So far. */
407 }
408 }
409 while (!done);
410
411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
412 arg->lowest = start_addr + bfd_get_section_size (sect);
413 }
414
415 /* Store section_addr_info as prepared (made relative and with SECTINDEX
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
417 entries. */
418
419 void
420 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
421 int num_sections,
422 const section_addr_info &addrs)
423 {
424 int i;
425
426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
427
428 /* Now calculate offsets for section that were specified by the caller. */
429 for (i = 0; i < addrs.size (); i++)
430 {
431 const struct other_sections *osp;
432
433 osp = &addrs[i];
434 if (osp->sectindex == -1)
435 continue;
436
437 /* Record all sections in offsets. */
438 /* The section_offsets in the objfile are here filled in using
439 the BFD index. */
440 section_offsets->offsets[osp->sectindex] = osp->addr;
441 }
442 }
443
444 /* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
449
450 static const char *
451 addr_section_name (const char *s)
452 {
453 if (strcmp (s, ".dynbss") == 0)
454 return ".bss";
455 if (strcmp (s, ".sdynbss") == 0)
456 return ".sbss";
457
458 return s;
459 }
460
461 /* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
464
465 static bool
466 addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
468 {
469 int retval;
470
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
473 if (retval != 0)
474 return retval < 0;
475
476 return a->sectindex < b->sectindex;
477 }
478
479 /* Provide sorted array of pointers to sections of ADDRS. */
480
481 static std::vector<const struct other_sections *>
482 addrs_section_sort (const section_addr_info &addrs)
483 {
484 int i;
485
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
489
490 std::sort (array.begin (), array.end (), addrs_section_compar);
491
492 return array;
493 }
494
495 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
498
499 void
500 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
501 {
502 asection *lower_sect;
503 CORE_ADDR lower_offset;
504 int i;
505
506 /* Find lowest loadable section to be used as starting point for
507 continguous sections. */
508 lower_sect = NULL;
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
510 if (lower_sect == NULL)
511 {
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
514 lower_offset = 0;
515 }
516 else
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
518
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
524 order.
525
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
528
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
531
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
535
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
538
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
541
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
544 for (const other_sections *sect : addrs_sorted)
545 {
546 const char *sect_name = addr_section_name (sect->name.c_str ());
547
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
550 sect_name) < 0)
551 abfd_sorted_iter++;
552
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
555 sect_name) == 0)
556 {
557 int index_in_addrs;
558
559 /* Make the found item directly addressable from ADDRS. */
560 index_in_addrs = sect - addrs->data ();
561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
563
564 /* Never use the same ABFD entry twice. */
565 abfd_sorted_iter++;
566 }
567 }
568
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
572
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
578
579 for (i = 0; i < addrs->size (); i++)
580 {
581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
582
583 if (sect)
584 {
585 /* This is the index used by BFD. */
586 (*addrs)[i].sectindex = sect->sectindex;
587
588 if ((*addrs)[i].addr != 0)
589 {
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
592 }
593 else
594 (*addrs)[i].addr = lower_offset;
595 }
596 else
597 {
598 /* addr_section_name transformation is not used for SECT_NAME. */
599 const std::string &sect_name = (*addrs)[i].name;
600
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
603
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
611 created by prelink have no special flags.
612
613 For the sections `.bss' and `.sbss' see addr_section_name. */
614
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
618 && i > 0
619 && (*addrs)[i - 1].name == ".dynbss"
620 && addrs_to_abfd_addrs[i - 1] != NULL)
621 || (sect_name == ".sbss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".sdynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)))
625 warning (_("section %s not found in %s"), sect_name.c_str (),
626 bfd_get_filename (abfd));
627
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
630 }
631 }
632 }
633
634 /* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
639
640 void
641 default_symfile_offsets (struct objfile *objfile,
642 const section_addr_info &addrs)
643 {
644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
650
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
655 small. */
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
657 {
658 struct place_section_arg arg;
659 bfd *abfd = objfile->obfd;
660 asection *cur_sec;
661
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
666 break;
667
668 if (cur_sec == NULL)
669 {
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
671
672 /* Pick non-overlapping offsets for sections the user did not
673 place explicitly. */
674 arg.offsets = objfile->section_offsets;
675 arg.lowest = 0;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
677
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
681
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
684 be assumed.
685
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
689 at address zero.
690
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
697 correct sections.
698
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
702 be eliminated. */
703
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
706 {
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
708 continue;
709
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
711 exec_set_section_address (bfd_get_filename (abfd),
712 cur_sec->index,
713 offsets[cur_sec->index]);
714 offsets[cur_sec->index] = 0;
715 }
716 }
717 }
718
719 /* Remember the bfd indexes for the .text, .data, .bss and
720 .rodata sections. */
721 init_objfile_sect_indices (objfile);
722 }
723
724 /* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
729
730 struct symfile_segment_data *
731 default_symfile_segments (bfd *abfd)
732 {
733 int num_sections, i;
734 asection *sect;
735 struct symfile_segment_data *data;
736 CORE_ADDR low, high;
737
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
740 in segments. */
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
742 return NULL;
743
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
746 {
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
748 continue;
749
750 break;
751 }
752 if (sect == NULL)
753 return NULL;
754
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
757
758 data = XCNEW (struct symfile_segment_data);
759 data->num_segments = 1;
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
762
763 num_sections = bfd_count_sections (abfd);
764 data->segment_info = XCNEWVEC (int, num_sections);
765
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
767 {
768 CORE_ADDR vma;
769
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
771 continue;
772
773 vma = bfd_get_section_vma (abfd, sect);
774 if (vma < low)
775 low = vma;
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
778
779 data->segment_info[i] = 1;
780 }
781
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
784
785 return data;
786 }
787
788 /* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
790
791 static void
792 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
793 {
794 (*objfile->sf->sym_read) (objfile, add_flags);
795 objfile->per_bfd->minsyms_read = true;
796
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
802 {
803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
804
805 if (abfd != NULL)
806 {
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
814 }
815 }
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
818 }
819
820 /* Initialize entry point information for this objfile. */
821
822 static void
823 init_entry_point_info (struct objfile *objfile)
824 {
825 struct entry_info *ei = &objfile->per_bfd->ei;
826
827 if (ei->initialized)
828 return;
829 ei->initialized = 1;
830
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
833
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
835 {
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
840 }
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
843 {
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
849 }
850 else
851 {
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
853 ei->entry_point_p = 0;
854 }
855
856 if (ei->entry_point_p)
857 {
858 struct obj_section *osect;
859 CORE_ADDR entry_point = ei->entry_point;
860 int found;
861
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
864 entry_point
865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
866 entry_point,
867 current_top_target ());
868
869 /* Remove any ISA markers, so that this matches entries in the
870 symbol table. */
871 ei->entry_point
872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
873
874 found = 0;
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
876 {
877 struct bfd_section *sect = osect->the_bfd_section;
878
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
882 {
883 ei->the_bfd_section_index
884 = gdb_bfd_section_index (objfile->obfd, sect);
885 found = 1;
886 break;
887 }
888 }
889
890 if (!found)
891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
892 }
893 }
894
895 /* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
898 This function does not set the OBJFILE's entry-point info.
899
900 OBJFILE is where the symbols are to be read from.
901
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
911 The sectindex field is used to control the ordering of sections
912 with the same name. Upon return, it is updated to contain the
913 correspondig BFD section index, or -1 if the section was not found.
914
915 ADD_FLAGS encodes verbosity level, whether this is main symbol or
916 an extra symbol file such as dynamically loaded code, and wether
917 breakpoint reset should be deferred. */
918
919 static void
920 syms_from_objfile_1 (struct objfile *objfile,
921 section_addr_info *addrs,
922 symfile_add_flags add_flags)
923 {
924 section_addr_info local_addr;
925 struct cleanup *old_chain;
926 const int mainline = add_flags & SYMFILE_MAINLINE;
927
928 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
929
930 if (objfile->sf == NULL)
931 {
932 /* No symbols to load, but we still need to make sure
933 that the section_offsets table is allocated. */
934 int num_sections = gdb_bfd_count_sections (objfile->obfd);
935 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
936
937 objfile->num_sections = num_sections;
938 objfile->section_offsets
939 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
940 size);
941 memset (objfile->section_offsets, 0, size);
942 return;
943 }
944
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
947 old_chain = make_cleanup (null_cleanup, NULL);
948 std::unique_ptr<struct objfile> objfile_holder (objfile);
949
950 /* If ADDRS is NULL, put together a dummy address list.
951 We now establish the convention that an addr of zero means
952 no load address was specified. */
953 if (! addrs)
954 addrs = &local_addr;
955
956 if (mainline)
957 {
958 /* We will modify the main symbol table, make sure that all its users
959 will be cleaned up if an error occurs during symbol reading. */
960 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
961
962 /* Since no error yet, throw away the old symbol table. */
963
964 if (symfile_objfile != NULL)
965 {
966 delete symfile_objfile;
967 gdb_assert (symfile_objfile == NULL);
968 }
969
970 /* Currently we keep symbols from the add-symbol-file command.
971 If the user wants to get rid of them, they should do "symbol-file"
972 without arguments first. Not sure this is the best behavior
973 (PR 2207). */
974
975 (*objfile->sf->sym_new_init) (objfile);
976 }
977
978 /* Convert addr into an offset rather than an absolute address.
979 We find the lowest address of a loaded segment in the objfile,
980 and assume that <addr> is where that got loaded.
981
982 We no longer warn if the lowest section is not a text segment (as
983 happens for the PA64 port. */
984 if (addrs->size () > 0)
985 addr_info_make_relative (addrs, objfile->obfd);
986
987 /* Initialize symbol reading routines for this objfile, allow complaints to
988 appear for this new file, and record how verbose to be, then do the
989 initial symbol reading for this file. */
990
991 (*objfile->sf->sym_init) (objfile);
992 clear_complaints (1);
993
994 (*objfile->sf->sym_offsets) (objfile, *addrs);
995
996 read_symbols (objfile, add_flags);
997
998 /* Discard cleanups as symbol reading was successful. */
999
1000 objfile_holder.release ();
1001 discard_cleanups (old_chain);
1002 }
1003
1004 /* Same as syms_from_objfile_1, but also initializes the objfile
1005 entry-point info. */
1006
1007 static void
1008 syms_from_objfile (struct objfile *objfile,
1009 section_addr_info *addrs,
1010 symfile_add_flags add_flags)
1011 {
1012 syms_from_objfile_1 (objfile, addrs, add_flags);
1013 init_entry_point_info (objfile);
1014 }
1015
1016 /* Perform required actions after either reading in the initial
1017 symbols for a new objfile, or mapping in the symbols from a reusable
1018 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1019
1020 static void
1021 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1022 {
1023 /* If this is the main symbol file we have to clean up all users of the
1024 old main symbol file. Otherwise it is sufficient to fixup all the
1025 breakpoints that may have been redefined by this symbol file. */
1026 if (add_flags & SYMFILE_MAINLINE)
1027 {
1028 /* OK, make it the "real" symbol file. */
1029 symfile_objfile = objfile;
1030
1031 clear_symtab_users (add_flags);
1032 }
1033 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1034 {
1035 breakpoint_re_set ();
1036 }
1037
1038 /* We're done reading the symbol file; finish off complaints. */
1039 clear_complaints (0);
1040 }
1041
1042 /* Process a symbol file, as either the main file or as a dynamically
1043 loaded file.
1044
1045 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1046 A new reference is acquired by this function.
1047
1048 For NAME description see the objfile constructor.
1049
1050 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1051 extra, such as dynamically loaded code, and what to do with breakpoins.
1052
1053 ADDRS is as described for syms_from_objfile_1, above.
1054 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1055
1056 PARENT is the original objfile if ABFD is a separate debug info file.
1057 Otherwise PARENT is NULL.
1058
1059 Upon success, returns a pointer to the objfile that was added.
1060 Upon failure, jumps back to command level (never returns). */
1061
1062 static struct objfile *
1063 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1064 symfile_add_flags add_flags,
1065 section_addr_info *addrs,
1066 objfile_flags flags, struct objfile *parent)
1067 {
1068 struct objfile *objfile;
1069 const int from_tty = add_flags & SYMFILE_VERBOSE;
1070 const int mainline = add_flags & SYMFILE_MAINLINE;
1071 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1072 && (readnow_symbol_files
1073 || (add_flags & SYMFILE_NO_READ) == 0));
1074
1075 if (readnow_symbol_files)
1076 {
1077 flags |= OBJF_READNOW;
1078 add_flags &= ~SYMFILE_NO_READ;
1079 }
1080 else if (readnever_symbol_files
1081 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1082 {
1083 flags |= OBJF_READNEVER;
1084 add_flags |= SYMFILE_NO_READ;
1085 }
1086 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1087 flags |= OBJF_NOT_FILENAME;
1088
1089 /* Give user a chance to burp if we'd be
1090 interactively wiping out any existing symbols. */
1091
1092 if ((have_full_symbols () || have_partial_symbols ())
1093 && mainline
1094 && from_tty
1095 && !query (_("Load new symbol table from \"%s\"? "), name))
1096 error (_("Not confirmed."));
1097
1098 if (mainline)
1099 flags |= OBJF_MAINLINE;
1100 objfile = new struct objfile (abfd, name, flags);
1101
1102 if (parent)
1103 add_separate_debug_objfile (objfile, parent);
1104
1105 /* We either created a new mapped symbol table, mapped an existing
1106 symbol table file which has not had initial symbol reading
1107 performed, or need to read an unmapped symbol table. */
1108 if (should_print)
1109 {
1110 if (deprecated_pre_add_symbol_hook)
1111 deprecated_pre_add_symbol_hook (name);
1112 else
1113 {
1114 printf_unfiltered (_("Reading symbols from %s..."), name);
1115 wrap_here ("");
1116 gdb_flush (gdb_stdout);
1117 }
1118 }
1119 syms_from_objfile (objfile, addrs, add_flags);
1120
1121 /* We now have at least a partial symbol table. Check to see if the
1122 user requested that all symbols be read on initial access via either
1123 the gdb startup command line or on a per symbol file basis. Expand
1124 all partial symbol tables for this objfile if so. */
1125
1126 if ((flags & OBJF_READNOW))
1127 {
1128 if (should_print)
1129 {
1130 printf_unfiltered (_("expanding to full symbols..."));
1131 wrap_here ("");
1132 gdb_flush (gdb_stdout);
1133 }
1134
1135 if (objfile->sf)
1136 objfile->sf->qf->expand_all_symtabs (objfile);
1137 }
1138
1139 if (should_print && !objfile_has_symbols (objfile))
1140 {
1141 wrap_here ("");
1142 printf_unfiltered (_("(no debugging symbols found)..."));
1143 wrap_here ("");
1144 }
1145
1146 if (should_print)
1147 {
1148 if (deprecated_post_add_symbol_hook)
1149 deprecated_post_add_symbol_hook ();
1150 else
1151 printf_unfiltered (_("done.\n"));
1152 }
1153
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
1159 if (objfile->sf == NULL)
1160 {
1161 gdb::observers::new_objfile.notify (objfile);
1162 return objfile; /* No symbols. */
1163 }
1164
1165 finish_new_objfile (objfile, add_flags);
1166
1167 gdb::observers::new_objfile.notify (objfile);
1168
1169 bfd_cache_close_all ();
1170 return (objfile);
1171 }
1172
1173 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1174 see the objfile constructor. */
1175
1176 void
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
1179 struct objfile *objfile)
1180 {
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1185
1186 symbol_file_add_with_addrs
1187 (bfd, name, symfile_flags, &sap,
1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1189 | OBJF_USERLOADED),
1190 objfile);
1191 }
1192
1193 /* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
1195 See symbol_file_add_with_addrs's comments for details. */
1196
1197 struct objfile *
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
1200 section_addr_info *addrs,
1201 objfile_flags flags, struct objfile *parent)
1202 {
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
1205 }
1206
1207 /* Process a symbol file, as either the main file or as a dynamically
1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
1209
1210 struct objfile *
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 section_addr_info *addrs, objfile_flags flags)
1213 {
1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1215
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
1218 }
1219
1220 /* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
1227
1228 void
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1230 {
1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
1232 }
1233
1234 static void
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 objfile_flags flags, CORE_ADDR reloff)
1237 {
1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1239
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
1243
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
1248 if ((add_flags & SYMFILE_NO_READ) == 0)
1249 set_initial_language ();
1250 }
1251
1252 void
1253 symbol_file_clear (int from_tty)
1254 {
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 objfile_name (symfile_objfile))
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1262
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1266
1267 free_all_objfiles ();
1268
1269 gdb_assert (symfile_objfile == NULL);
1270 if (from_tty)
1271 printf_unfiltered (_("No symbol file now.\n"));
1272 }
1273
1274 /* See symfile.h. */
1275
1276 int separate_debug_file_debug = 0;
1277
1278 static int
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 struct objfile *parent_objfile)
1281 {
1282 unsigned long file_crc;
1283 int file_crc_p;
1284 struct stat parent_stat, abfd_stat;
1285 int verified_as_different;
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291 the separate debug infos with the same basename can exist. */
1292
1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1294 return 0;
1295
1296 if (separate_debug_file_debug)
1297 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
1298
1299 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1300
1301 if (abfd == NULL)
1302 return 0;
1303
1304 /* Verify symlinks were not the cause of filename_cmp name difference above.
1305
1306 Some operating systems, e.g. Windows, do not provide a meaningful
1307 st_ino; they always set it to zero. (Windows does provide a
1308 meaningful st_dev.) Files accessed from gdbservers that do not
1309 support the vFile:fstat packet will also have st_ino set to zero.
1310 Do not indicate a duplicate library in either case. While there
1311 is no guarantee that a system that provides meaningful inode
1312 numbers will never set st_ino to zero, this is merely an
1313 optimization, so we do not need to worry about false negatives. */
1314
1315 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1316 && abfd_stat.st_ino != 0
1317 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1318 {
1319 if (abfd_stat.st_dev == parent_stat.st_dev
1320 && abfd_stat.st_ino == parent_stat.st_ino)
1321 return 0;
1322 verified_as_different = 1;
1323 }
1324 else
1325 verified_as_different = 0;
1326
1327 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1328
1329 if (!file_crc_p)
1330 return 0;
1331
1332 if (crc != file_crc)
1333 {
1334 unsigned long parent_crc;
1335
1336 /* If the files could not be verified as different with
1337 bfd_stat then we need to calculate the parent's CRC
1338 to verify whether the files are different or not. */
1339
1340 if (!verified_as_different)
1341 {
1342 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1343 return 0;
1344 }
1345
1346 if (verified_as_different || parent_crc != file_crc)
1347 warning (_("the debug information found in \"%s\""
1348 " does not match \"%s\" (CRC mismatch).\n"),
1349 name.c_str (), objfile_name (parent_objfile));
1350
1351 return 0;
1352 }
1353
1354 return 1;
1355 }
1356
1357 char *debug_file_directory = NULL;
1358 static void
1359 show_debug_file_directory (struct ui_file *file, int from_tty,
1360 struct cmd_list_element *c, const char *value)
1361 {
1362 fprintf_filtered (file,
1363 _("The directory where separate debug "
1364 "symbols are searched for is \"%s\".\n"),
1365 value);
1366 }
1367
1368 #if ! defined (DEBUG_SUBDIRECTORY)
1369 #define DEBUG_SUBDIRECTORY ".debug"
1370 #endif
1371
1372 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1373 where the original file resides (may not be the same as
1374 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1375 looking for. CANON_DIR is the "realpath" form of DIR.
1376 DIR must contain a trailing '/'.
1377 Returns the path of the file with separate debug info, or an empty
1378 string. */
1379
1380 static std::string
1381 find_separate_debug_file (const char *dir,
1382 const char *canon_dir,
1383 const char *debuglink,
1384 unsigned long crc32, struct objfile *objfile)
1385 {
1386 if (separate_debug_file_debug)
1387 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1388 "%s\n"), objfile_name (objfile));
1389
1390 /* First try in the same directory as the original file. */
1391 std::string debugfile = dir;
1392 debugfile += debuglink;
1393
1394 if (separate_debug_file_exists (debugfile, crc32, objfile))
1395 return debugfile;
1396
1397 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1398 debugfile = dir;
1399 debugfile += DEBUG_SUBDIRECTORY;
1400 debugfile += "/";
1401 debugfile += debuglink;
1402
1403 if (separate_debug_file_exists (debugfile, crc32, objfile))
1404 return debugfile;
1405
1406 /* Then try in the global debugfile directories.
1407
1408 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1409 cause "/..." lookups. */
1410
1411 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1412 = dirnames_to_char_ptr_vec (debug_file_directory);
1413
1414 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1415 {
1416 debugfile = debugdir.get ();
1417 debugfile += "/";
1418 debugfile += dir;
1419 debugfile += debuglink;
1420
1421 if (separate_debug_file_exists (debugfile, crc32, objfile))
1422 return debugfile;
1423
1424 /* If the file is in the sysroot, try using its base path in the
1425 global debugfile directory. */
1426 if (canon_dir != NULL
1427 && filename_ncmp (canon_dir, gdb_sysroot,
1428 strlen (gdb_sysroot)) == 0
1429 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1430 {
1431 debugfile = debugdir.get ();
1432 debugfile += (canon_dir + strlen (gdb_sysroot));
1433 debugfile += "/";
1434 debugfile += debuglink;
1435
1436 if (separate_debug_file_exists (debugfile, crc32, objfile))
1437 return debugfile;
1438 }
1439 }
1440
1441 return std::string ();
1442 }
1443
1444 /* Modify PATH to contain only "[/]directory/" part of PATH.
1445 If there were no directory separators in PATH, PATH will be empty
1446 string on return. */
1447
1448 static void
1449 terminate_after_last_dir_separator (char *path)
1450 {
1451 int i;
1452
1453 /* Strip off the final filename part, leaving the directory name,
1454 followed by a slash. The directory can be relative or absolute. */
1455 for (i = strlen(path) - 1; i >= 0; i--)
1456 if (IS_DIR_SEPARATOR (path[i]))
1457 break;
1458
1459 /* If I is -1 then no directory is present there and DIR will be "". */
1460 path[i + 1] = '\0';
1461 }
1462
1463 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1464 Returns pathname, or an empty string. */
1465
1466 std::string
1467 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1468 {
1469 unsigned long crc32;
1470
1471 gdb::unique_xmalloc_ptr<char> debuglink
1472 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1473
1474 if (debuglink == NULL)
1475 {
1476 /* There's no separate debug info, hence there's no way we could
1477 load it => no warning. */
1478 return std::string ();
1479 }
1480
1481 std::string dir = objfile_name (objfile);
1482 terminate_after_last_dir_separator (&dir[0]);
1483 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1484
1485 std::string debugfile
1486 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1487 debuglink.get (), crc32, objfile);
1488
1489 if (debugfile.empty ())
1490 {
1491 /* For PR gdb/9538, try again with realpath (if different from the
1492 original). */
1493
1494 struct stat st_buf;
1495
1496 if (lstat (objfile_name (objfile), &st_buf) == 0
1497 && S_ISLNK (st_buf.st_mode))
1498 {
1499 gdb::unique_xmalloc_ptr<char> symlink_dir
1500 (lrealpath (objfile_name (objfile)));
1501 if (symlink_dir != NULL)
1502 {
1503 terminate_after_last_dir_separator (symlink_dir.get ());
1504 if (dir != symlink_dir.get ())
1505 {
1506 /* Different directory, so try using it. */
1507 debugfile = find_separate_debug_file (symlink_dir.get (),
1508 symlink_dir.get (),
1509 debuglink.get (),
1510 crc32,
1511 objfile);
1512 }
1513 }
1514 }
1515 }
1516
1517 return debugfile;
1518 }
1519
1520 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1521 simultaneously. */
1522
1523 static void
1524 validate_readnow_readnever (objfile_flags flags)
1525 {
1526 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1527 error (_("-readnow and -readnever cannot be used simultaneously"));
1528 }
1529
1530 /* This is the symbol-file command. Read the file, analyze its
1531 symbols, and add a struct symtab to a symtab list. The syntax of
1532 the command is rather bizarre:
1533
1534 1. The function buildargv implements various quoting conventions
1535 which are undocumented and have little or nothing in common with
1536 the way things are quoted (or not quoted) elsewhere in GDB.
1537
1538 2. Options are used, which are not generally used in GDB (perhaps
1539 "set mapped on", "set readnow on" would be better)
1540
1541 3. The order of options matters, which is contrary to GNU
1542 conventions (because it is confusing and inconvenient). */
1543
1544 void
1545 symbol_file_command (const char *args, int from_tty)
1546 {
1547 dont_repeat ();
1548
1549 if (args == NULL)
1550 {
1551 symbol_file_clear (from_tty);
1552 }
1553 else
1554 {
1555 objfile_flags flags = OBJF_USERLOADED;
1556 symfile_add_flags add_flags = 0;
1557 char *name = NULL;
1558 bool stop_processing_options = false;
1559 CORE_ADDR offset = 0;
1560 int idx;
1561 char *arg;
1562
1563 if (from_tty)
1564 add_flags |= SYMFILE_VERBOSE;
1565
1566 gdb_argv built_argv (args);
1567 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1568 {
1569 if (stop_processing_options || *arg != '-')
1570 {
1571 if (name == NULL)
1572 name = arg;
1573 else
1574 error (_("Unrecognized argument \"%s\""), arg);
1575 }
1576 else if (strcmp (arg, "-readnow") == 0)
1577 flags |= OBJF_READNOW;
1578 else if (strcmp (arg, "-readnever") == 0)
1579 flags |= OBJF_READNEVER;
1580 else if (strcmp (arg, "-o") == 0)
1581 {
1582 arg = built_argv[++idx];
1583 if (arg == NULL)
1584 error (_("Missing argument to -o"));
1585
1586 offset = parse_and_eval_address (arg);
1587 }
1588 else if (strcmp (arg, "--") == 0)
1589 stop_processing_options = true;
1590 else
1591 error (_("Unrecognized argument \"%s\""), arg);
1592 }
1593
1594 if (name == NULL)
1595 error (_("no symbol file name was specified"));
1596
1597 validate_readnow_readnever (flags);
1598
1599 symbol_file_add_main_1 (name, add_flags, flags, offset);
1600 }
1601 }
1602
1603 /* Set the initial language.
1604
1605 FIXME: A better solution would be to record the language in the
1606 psymtab when reading partial symbols, and then use it (if known) to
1607 set the language. This would be a win for formats that encode the
1608 language in an easily discoverable place, such as DWARF. For
1609 stabs, we can jump through hoops looking for specially named
1610 symbols or try to intuit the language from the specific type of
1611 stabs we find, but we can't do that until later when we read in
1612 full symbols. */
1613
1614 void
1615 set_initial_language (void)
1616 {
1617 enum language lang = main_language ();
1618
1619 if (lang == language_unknown)
1620 {
1621 char *name = main_name ();
1622 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1623
1624 if (sym != NULL)
1625 lang = SYMBOL_LANGUAGE (sym);
1626 }
1627
1628 if (lang == language_unknown)
1629 {
1630 /* Make C the default language */
1631 lang = language_c;
1632 }
1633
1634 set_language (lang);
1635 expected_language = current_language; /* Don't warn the user. */
1636 }
1637
1638 /* Open the file specified by NAME and hand it off to BFD for
1639 preliminary analysis. Return a newly initialized bfd *, which
1640 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1641 absolute). In case of trouble, error() is called. */
1642
1643 gdb_bfd_ref_ptr
1644 symfile_bfd_open (const char *name)
1645 {
1646 int desc = -1;
1647
1648 gdb::unique_xmalloc_ptr<char> absolute_name;
1649 if (!is_target_filename (name))
1650 {
1651 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1652
1653 /* Look down path for it, allocate 2nd new malloc'd copy. */
1654 desc = openp (getenv ("PATH"),
1655 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1656 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1657 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1658 if (desc < 0)
1659 {
1660 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1661
1662 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1663 desc = openp (getenv ("PATH"),
1664 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1665 exename, O_RDONLY | O_BINARY, &absolute_name);
1666 }
1667 #endif
1668 if (desc < 0)
1669 perror_with_name (expanded_name.get ());
1670
1671 name = absolute_name.get ();
1672 }
1673
1674 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1675 if (sym_bfd == NULL)
1676 error (_("`%s': can't open to read symbols: %s."), name,
1677 bfd_errmsg (bfd_get_error ()));
1678
1679 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1680 bfd_set_cacheable (sym_bfd.get (), 1);
1681
1682 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1683 error (_("`%s': can't read symbols: %s."), name,
1684 bfd_errmsg (bfd_get_error ()));
1685
1686 return sym_bfd;
1687 }
1688
1689 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1690 the section was not found. */
1691
1692 int
1693 get_section_index (struct objfile *objfile, const char *section_name)
1694 {
1695 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1696
1697 if (sect)
1698 return sect->index;
1699 else
1700 return -1;
1701 }
1702
1703 /* Link SF into the global symtab_fns list.
1704 FLAVOUR is the file format that SF handles.
1705 Called on startup by the _initialize routine in each object file format
1706 reader, to register information about each format the reader is prepared
1707 to handle. */
1708
1709 void
1710 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1711 {
1712 symtab_fns.emplace_back (flavour, sf);
1713 }
1714
1715 /* Initialize OBJFILE to read symbols from its associated BFD. It
1716 either returns or calls error(). The result is an initialized
1717 struct sym_fns in the objfile structure, that contains cached
1718 information about the symbol file. */
1719
1720 static const struct sym_fns *
1721 find_sym_fns (bfd *abfd)
1722 {
1723 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1724
1725 if (our_flavour == bfd_target_srec_flavour
1726 || our_flavour == bfd_target_ihex_flavour
1727 || our_flavour == bfd_target_tekhex_flavour)
1728 return NULL; /* No symbols. */
1729
1730 for (const registered_sym_fns &rsf : symtab_fns)
1731 if (our_flavour == rsf.sym_flavour)
1732 return rsf.sym_fns;
1733
1734 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1735 bfd_get_target (abfd));
1736 }
1737 \f
1738
1739 /* This function runs the load command of our current target. */
1740
1741 static void
1742 load_command (const char *arg, int from_tty)
1743 {
1744 dont_repeat ();
1745
1746 /* The user might be reloading because the binary has changed. Take
1747 this opportunity to check. */
1748 reopen_exec_file ();
1749 reread_symbols ();
1750
1751 std::string temp;
1752 if (arg == NULL)
1753 {
1754 const char *parg, *prev;
1755
1756 arg = get_exec_file (1);
1757
1758 /* We may need to quote this string so buildargv can pull it
1759 apart. */
1760 prev = parg = arg;
1761 while ((parg = strpbrk (parg, "\\\"'\t ")))
1762 {
1763 temp.append (prev, parg - prev);
1764 prev = parg++;
1765 temp.push_back ('\\');
1766 }
1767 /* If we have not copied anything yet, then we didn't see a
1768 character to quote, and we can just leave ARG unchanged. */
1769 if (!temp.empty ())
1770 {
1771 temp.append (prev);
1772 arg = temp.c_str ();
1773 }
1774 }
1775
1776 target_load (arg, from_tty);
1777
1778 /* After re-loading the executable, we don't really know which
1779 overlays are mapped any more. */
1780 overlay_cache_invalid = 1;
1781 }
1782
1783 /* This version of "load" should be usable for any target. Currently
1784 it is just used for remote targets, not inftarg.c or core files,
1785 on the theory that only in that case is it useful.
1786
1787 Avoiding xmodem and the like seems like a win (a) because we don't have
1788 to worry about finding it, and (b) On VMS, fork() is very slow and so
1789 we don't want to run a subprocess. On the other hand, I'm not sure how
1790 performance compares. */
1791
1792 static int validate_download = 0;
1793
1794 /* Callback service function for generic_load (bfd_map_over_sections). */
1795
1796 static void
1797 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1798 {
1799 bfd_size_type *sum = (bfd_size_type *) data;
1800
1801 *sum += bfd_get_section_size (asec);
1802 }
1803
1804 /* Opaque data for load_progress. */
1805 struct load_progress_data
1806 {
1807 /* Cumulative data. */
1808 unsigned long write_count = 0;
1809 unsigned long data_count = 0;
1810 bfd_size_type total_size = 0;
1811 };
1812
1813 /* Opaque data for load_progress for a single section. */
1814 struct load_progress_section_data
1815 {
1816 load_progress_section_data (load_progress_data *cumulative_,
1817 const char *section_name_, ULONGEST section_size_,
1818 CORE_ADDR lma_, gdb_byte *buffer_)
1819 : cumulative (cumulative_), section_name (section_name_),
1820 section_size (section_size_), lma (lma_), buffer (buffer_)
1821 {}
1822
1823 struct load_progress_data *cumulative;
1824
1825 /* Per-section data. */
1826 const char *section_name;
1827 ULONGEST section_sent = 0;
1828 ULONGEST section_size;
1829 CORE_ADDR lma;
1830 gdb_byte *buffer;
1831 };
1832
1833 /* Opaque data for load_section_callback. */
1834 struct load_section_data
1835 {
1836 load_section_data (load_progress_data *progress_data_)
1837 : progress_data (progress_data_)
1838 {}
1839
1840 ~load_section_data ()
1841 {
1842 for (auto &&request : requests)
1843 {
1844 xfree (request.data);
1845 delete ((load_progress_section_data *) request.baton);
1846 }
1847 }
1848
1849 CORE_ADDR load_offset = 0;
1850 struct load_progress_data *progress_data;
1851 std::vector<struct memory_write_request> requests;
1852 };
1853
1854 /* Target write callback routine for progress reporting. */
1855
1856 static void
1857 load_progress (ULONGEST bytes, void *untyped_arg)
1858 {
1859 struct load_progress_section_data *args
1860 = (struct load_progress_section_data *) untyped_arg;
1861 struct load_progress_data *totals;
1862
1863 if (args == NULL)
1864 /* Writing padding data. No easy way to get at the cumulative
1865 stats, so just ignore this. */
1866 return;
1867
1868 totals = args->cumulative;
1869
1870 if (bytes == 0 && args->section_sent == 0)
1871 {
1872 /* The write is just starting. Let the user know we've started
1873 this section. */
1874 current_uiout->message ("Loading section %s, size %s lma %s\n",
1875 args->section_name,
1876 hex_string (args->section_size),
1877 paddress (target_gdbarch (), args->lma));
1878 return;
1879 }
1880
1881 if (validate_download)
1882 {
1883 /* Broken memories and broken monitors manifest themselves here
1884 when bring new computers to life. This doubles already slow
1885 downloads. */
1886 /* NOTE: cagney/1999-10-18: A more efficient implementation
1887 might add a verify_memory() method to the target vector and
1888 then use that. remote.c could implement that method using
1889 the ``qCRC'' packet. */
1890 gdb::byte_vector check (bytes);
1891
1892 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1893 error (_("Download verify read failed at %s"),
1894 paddress (target_gdbarch (), args->lma));
1895 if (memcmp (args->buffer, check.data (), bytes) != 0)
1896 error (_("Download verify compare failed at %s"),
1897 paddress (target_gdbarch (), args->lma));
1898 }
1899 totals->data_count += bytes;
1900 args->lma += bytes;
1901 args->buffer += bytes;
1902 totals->write_count += 1;
1903 args->section_sent += bytes;
1904 if (check_quit_flag ()
1905 || (deprecated_ui_load_progress_hook != NULL
1906 && deprecated_ui_load_progress_hook (args->section_name,
1907 args->section_sent)))
1908 error (_("Canceled the download"));
1909
1910 if (deprecated_show_load_progress != NULL)
1911 deprecated_show_load_progress (args->section_name,
1912 args->section_sent,
1913 args->section_size,
1914 totals->data_count,
1915 totals->total_size);
1916 }
1917
1918 /* Callback service function for generic_load (bfd_map_over_sections). */
1919
1920 static void
1921 load_section_callback (bfd *abfd, asection *asec, void *data)
1922 {
1923 struct load_section_data *args = (struct load_section_data *) data;
1924 bfd_size_type size = bfd_get_section_size (asec);
1925 const char *sect_name = bfd_get_section_name (abfd, asec);
1926
1927 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1928 return;
1929
1930 if (size == 0)
1931 return;
1932
1933 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1934 ULONGEST end = begin + size;
1935 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1936 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1937
1938 load_progress_section_data *section_data
1939 = new load_progress_section_data (args->progress_data, sect_name, size,
1940 begin, buffer);
1941
1942 args->requests.emplace_back (begin, end, buffer, section_data);
1943 }
1944
1945 static void print_transfer_performance (struct ui_file *stream,
1946 unsigned long data_count,
1947 unsigned long write_count,
1948 std::chrono::steady_clock::duration d);
1949
1950 void
1951 generic_load (const char *args, int from_tty)
1952 {
1953 struct load_progress_data total_progress;
1954 struct load_section_data cbdata (&total_progress);
1955 struct ui_out *uiout = current_uiout;
1956
1957 if (args == NULL)
1958 error_no_arg (_("file to load"));
1959
1960 gdb_argv argv (args);
1961
1962 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1963
1964 if (argv[1] != NULL)
1965 {
1966 const char *endptr;
1967
1968 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1969
1970 /* If the last word was not a valid number then
1971 treat it as a file name with spaces in. */
1972 if (argv[1] == endptr)
1973 error (_("Invalid download offset:%s."), argv[1]);
1974
1975 if (argv[2] != NULL)
1976 error (_("Too many parameters."));
1977 }
1978
1979 /* Open the file for loading. */
1980 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
1981 if (loadfile_bfd == NULL)
1982 perror_with_name (filename.get ());
1983
1984 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
1985 {
1986 error (_("\"%s\" is not an object file: %s"), filename.get (),
1987 bfd_errmsg (bfd_get_error ()));
1988 }
1989
1990 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
1991 (void *) &total_progress.total_size);
1992
1993 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
1994
1995 using namespace std::chrono;
1996
1997 steady_clock::time_point start_time = steady_clock::now ();
1998
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
2002
2003 steady_clock::time_point end_time = steady_clock::now ();
2004
2005 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2006 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2007 uiout->text ("Start address ");
2008 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2009 uiout->text (", load size ");
2010 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2011 uiout->text ("\n");
2012 regcache_write_pc (get_current_regcache (), entry);
2013
2014 /* Reset breakpoints, now that we have changed the load image. For
2015 instance, breakpoints may have been set (or reset, by
2016 post_create_inferior) while connected to the target but before we
2017 loaded the program. In that case, the prologue analyzer could
2018 have read instructions from the target to find the right
2019 breakpoint locations. Loading has changed the contents of that
2020 memory. */
2021
2022 breakpoint_re_set ();
2023
2024 print_transfer_performance (gdb_stdout, total_progress.data_count,
2025 total_progress.write_count,
2026 end_time - start_time);
2027 }
2028
2029 /* Report on STREAM the performance of a memory transfer operation,
2030 such as 'load'. DATA_COUNT is the number of bytes transferred.
2031 WRITE_COUNT is the number of separate write operations, or 0, if
2032 that information is not available. TIME is how long the operation
2033 lasted. */
2034
2035 static void
2036 print_transfer_performance (struct ui_file *stream,
2037 unsigned long data_count,
2038 unsigned long write_count,
2039 std::chrono::steady_clock::duration time)
2040 {
2041 using namespace std::chrono;
2042 struct ui_out *uiout = current_uiout;
2043
2044 milliseconds ms = duration_cast<milliseconds> (time);
2045
2046 uiout->text ("Transfer rate: ");
2047 if (ms.count () > 0)
2048 {
2049 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2050
2051 if (uiout->is_mi_like_p ())
2052 {
2053 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2054 uiout->text (" bits/sec");
2055 }
2056 else if (rate < 1024)
2057 {
2058 uiout->field_fmt ("transfer-rate", "%lu", rate);
2059 uiout->text (" bytes/sec");
2060 }
2061 else
2062 {
2063 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2064 uiout->text (" KB/sec");
2065 }
2066 }
2067 else
2068 {
2069 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2070 uiout->text (" bits in <1 sec");
2071 }
2072 if (write_count > 0)
2073 {
2074 uiout->text (", ");
2075 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2076 uiout->text (" bytes/write");
2077 }
2078 uiout->text (".\n");
2079 }
2080
2081 /* This function allows the addition of incrementally linked object files.
2082 It does not modify any state in the target, only in the debugger. */
2083 /* Note: ezannoni 2000-04-13 This function/command used to have a
2084 special case syntax for the rombug target (Rombug is the boot
2085 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2086 rombug case, the user doesn't need to supply a text address,
2087 instead a call to target_link() (in target.c) would supply the
2088 value to use. We are now discontinuing this type of ad hoc syntax. */
2089
2090 static void
2091 add_symbol_file_command (const char *args, int from_tty)
2092 {
2093 struct gdbarch *gdbarch = get_current_arch ();
2094 gdb::unique_xmalloc_ptr<char> filename;
2095 char *arg;
2096 int argcnt = 0;
2097 struct objfile *objf;
2098 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2099 symfile_add_flags add_flags = 0;
2100
2101 if (from_tty)
2102 add_flags |= SYMFILE_VERBOSE;
2103
2104 struct sect_opt
2105 {
2106 const char *name;
2107 const char *value;
2108 };
2109
2110 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2111 bool stop_processing_options = false;
2112
2113 dont_repeat ();
2114
2115 if (args == NULL)
2116 error (_("add-symbol-file takes a file name and an address"));
2117
2118 bool seen_addr = false;
2119 gdb_argv argv (args);
2120
2121 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2122 {
2123 if (stop_processing_options || *arg != '-')
2124 {
2125 if (filename == NULL)
2126 {
2127 /* First non-option argument is always the filename. */
2128 filename.reset (tilde_expand (arg));
2129 }
2130 else if (!seen_addr)
2131 {
2132 /* The second non-option argument is always the text
2133 address at which to load the program. */
2134 sect_opts[0].value = arg;
2135 seen_addr = true;
2136 }
2137 else
2138 error (_("Unrecognized argument \"%s\""), arg);
2139 }
2140 else if (strcmp (arg, "-readnow") == 0)
2141 flags |= OBJF_READNOW;
2142 else if (strcmp (arg, "-readnever") == 0)
2143 flags |= OBJF_READNEVER;
2144 else if (strcmp (arg, "-s") == 0)
2145 {
2146 if (argv[argcnt + 1] == NULL)
2147 error (_("Missing section name after \"-s\""));
2148 else if (argv[argcnt + 2] == NULL)
2149 error (_("Missing section address after \"-s\""));
2150
2151 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2152
2153 sect_opts.push_back (sect);
2154 argcnt += 2;
2155 }
2156 else if (strcmp (arg, "--") == 0)
2157 stop_processing_options = true;
2158 else
2159 error (_("Unrecognized argument \"%s\""), arg);
2160 }
2161
2162 if (filename == NULL)
2163 error (_("You must provide a filename to be loaded."));
2164
2165 validate_readnow_readnever (flags);
2166
2167 /* Print the prompt for the query below. And save the arguments into
2168 a sect_addr_info structure to be passed around to other
2169 functions. We have to split this up into separate print
2170 statements because hex_string returns a local static
2171 string. */
2172
2173 printf_unfiltered (_("add symbol table from file \"%s\""),
2174 filename.get ());
2175 section_addr_info section_addrs;
2176 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2177 if (!seen_addr)
2178 ++it;
2179 for (; it != sect_opts.end (); ++it)
2180 {
2181 CORE_ADDR addr;
2182 const char *val = it->value;
2183 const char *sec = it->name;
2184
2185 if (section_addrs.empty ())
2186 printf_unfiltered (_(" at\n"));
2187 addr = parse_and_eval_address (val);
2188
2189 /* Here we store the section offsets in the order they were
2190 entered on the command line. Every array element is
2191 assigned an ascending section index to preserve the above
2192 order over an unstable sorting algorithm. This dummy
2193 index is not used for any other purpose.
2194 */
2195 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2196 printf_unfiltered ("\t%s_addr = %s\n", sec,
2197 paddress (gdbarch, addr));
2198
2199 /* The object's sections are initialized when a
2200 call is made to build_objfile_section_table (objfile).
2201 This happens in reread_symbols.
2202 At this point, we don't know what file type this is,
2203 so we can't determine what section names are valid. */
2204 }
2205 if (section_addrs.empty ())
2206 printf_unfiltered ("\n");
2207
2208 if (from_tty && (!query ("%s", "")))
2209 error (_("Not confirmed."));
2210
2211 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2212 flags);
2213
2214 add_target_sections_of_objfile (objf);
2215
2216 /* Getting new symbols may change our opinion about what is
2217 frameless. */
2218 reinit_frame_cache ();
2219 }
2220 \f
2221
2222 /* This function removes a symbol file that was added via add-symbol-file. */
2223
2224 static void
2225 remove_symbol_file_command (const char *args, int from_tty)
2226 {
2227 struct objfile *objf = NULL;
2228 struct program_space *pspace = current_program_space;
2229
2230 dont_repeat ();
2231
2232 if (args == NULL)
2233 error (_("remove-symbol-file: no symbol file provided"));
2234
2235 gdb_argv argv (args);
2236
2237 if (strcmp (argv[0], "-a") == 0)
2238 {
2239 /* Interpret the next argument as an address. */
2240 CORE_ADDR addr;
2241
2242 if (argv[1] == NULL)
2243 error (_("Missing address argument"));
2244
2245 if (argv[2] != NULL)
2246 error (_("Junk after %s"), argv[1]);
2247
2248 addr = parse_and_eval_address (argv[1]);
2249
2250 ALL_OBJFILES (objf)
2251 {
2252 if ((objf->flags & OBJF_USERLOADED) != 0
2253 && (objf->flags & OBJF_SHARED) != 0
2254 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2255 break;
2256 }
2257 }
2258 else if (argv[0] != NULL)
2259 {
2260 /* Interpret the current argument as a file name. */
2261
2262 if (argv[1] != NULL)
2263 error (_("Junk after %s"), argv[0]);
2264
2265 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2266
2267 ALL_OBJFILES (objf)
2268 {
2269 if ((objf->flags & OBJF_USERLOADED) != 0
2270 && (objf->flags & OBJF_SHARED) != 0
2271 && objf->pspace == pspace
2272 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2273 break;
2274 }
2275 }
2276
2277 if (objf == NULL)
2278 error (_("No symbol file found"));
2279
2280 if (from_tty
2281 && !query (_("Remove symbol table from file \"%s\"? "),
2282 objfile_name (objf)))
2283 error (_("Not confirmed."));
2284
2285 delete objf;
2286 clear_symtab_users (0);
2287 }
2288
2289 /* Re-read symbols if a symbol-file has changed. */
2290
2291 void
2292 reread_symbols (void)
2293 {
2294 struct objfile *objfile;
2295 long new_modtime;
2296 struct stat new_statbuf;
2297 int res;
2298 std::vector<struct objfile *> new_objfiles;
2299
2300 /* With the addition of shared libraries, this should be modified,
2301 the load time should be saved in the partial symbol tables, since
2302 different tables may come from different source files. FIXME.
2303 This routine should then walk down each partial symbol table
2304 and see if the symbol table that it originates from has been changed. */
2305
2306 for (objfile = object_files; objfile; objfile = objfile->next)
2307 {
2308 if (objfile->obfd == NULL)
2309 continue;
2310
2311 /* Separate debug objfiles are handled in the main objfile. */
2312 if (objfile->separate_debug_objfile_backlink)
2313 continue;
2314
2315 /* If this object is from an archive (what you usually create with
2316 `ar', often called a `static library' on most systems, though
2317 a `shared library' on AIX is also an archive), then you should
2318 stat on the archive name, not member name. */
2319 if (objfile->obfd->my_archive)
2320 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2321 else
2322 res = stat (objfile_name (objfile), &new_statbuf);
2323 if (res != 0)
2324 {
2325 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2326 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2327 objfile_name (objfile));
2328 continue;
2329 }
2330 new_modtime = new_statbuf.st_mtime;
2331 if (new_modtime != objfile->mtime)
2332 {
2333 struct cleanup *old_cleanups;
2334 struct section_offsets *offsets;
2335 int num_offsets;
2336
2337 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2338 objfile_name (objfile));
2339
2340 /* There are various functions like symbol_file_add,
2341 symfile_bfd_open, syms_from_objfile, etc., which might
2342 appear to do what we want. But they have various other
2343 effects which we *don't* want. So we just do stuff
2344 ourselves. We don't worry about mapped files (for one thing,
2345 any mapped file will be out of date). */
2346
2347 /* If we get an error, blow away this objfile (not sure if
2348 that is the correct response for things like shared
2349 libraries). */
2350 std::unique_ptr<struct objfile> objfile_holder (objfile);
2351
2352 /* We need to do this whenever any symbols go away. */
2353 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2354
2355 if (exec_bfd != NULL
2356 && filename_cmp (bfd_get_filename (objfile->obfd),
2357 bfd_get_filename (exec_bfd)) == 0)
2358 {
2359 /* Reload EXEC_BFD without asking anything. */
2360
2361 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2362 }
2363
2364 /* Keep the calls order approx. the same as in free_objfile. */
2365
2366 /* Free the separate debug objfiles. It will be
2367 automatically recreated by sym_read. */
2368 free_objfile_separate_debug (objfile);
2369
2370 /* Remove any references to this objfile in the global
2371 value lists. */
2372 preserve_values (objfile);
2373
2374 /* Nuke all the state that we will re-read. Much of the following
2375 code which sets things to NULL really is necessary to tell
2376 other parts of GDB that there is nothing currently there.
2377
2378 Try to keep the freeing order compatible with free_objfile. */
2379
2380 if (objfile->sf != NULL)
2381 {
2382 (*objfile->sf->sym_finish) (objfile);
2383 }
2384
2385 clear_objfile_data (objfile);
2386
2387 /* Clean up any state BFD has sitting around. */
2388 {
2389 gdb_bfd_ref_ptr obfd (objfile->obfd);
2390 char *obfd_filename;
2391
2392 obfd_filename = bfd_get_filename (objfile->obfd);
2393 /* Open the new BFD before freeing the old one, so that
2394 the filename remains live. */
2395 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2396 objfile->obfd = temp.release ();
2397 if (objfile->obfd == NULL)
2398 error (_("Can't open %s to read symbols."), obfd_filename);
2399 }
2400
2401 std::string original_name = objfile->original_name;
2402
2403 /* bfd_openr sets cacheable to true, which is what we want. */
2404 if (!bfd_check_format (objfile->obfd, bfd_object))
2405 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2406 bfd_errmsg (bfd_get_error ()));
2407
2408 /* Save the offsets, we will nuke them with the rest of the
2409 objfile_obstack. */
2410 num_offsets = objfile->num_sections;
2411 offsets = ((struct section_offsets *)
2412 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2413 memcpy (offsets, objfile->section_offsets,
2414 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2415
2416 /* FIXME: Do we have to free a whole linked list, or is this
2417 enough? */
2418 objfile->global_psymbols.clear ();
2419 objfile->static_psymbols.clear ();
2420
2421 /* Free the obstacks for non-reusable objfiles. */
2422 psymbol_bcache_free (objfile->psymbol_cache);
2423 objfile->psymbol_cache = psymbol_bcache_init ();
2424
2425 /* NB: after this call to obstack_free, objfiles_changed
2426 will need to be called (see discussion below). */
2427 obstack_free (&objfile->objfile_obstack, 0);
2428 objfile->sections = NULL;
2429 objfile->compunit_symtabs = NULL;
2430 objfile->psymtabs = NULL;
2431 objfile->psymtabs_addrmap = NULL;
2432 objfile->free_psymtabs = NULL;
2433 objfile->template_symbols = NULL;
2434
2435 /* obstack_init also initializes the obstack so it is
2436 empty. We could use obstack_specify_allocation but
2437 gdb_obstack.h specifies the alloc/dealloc functions. */
2438 obstack_init (&objfile->objfile_obstack);
2439
2440 /* set_objfile_per_bfd potentially allocates the per-bfd
2441 data on the objfile's obstack (if sharing data across
2442 multiple users is not possible), so it's important to
2443 do it *after* the obstack has been initialized. */
2444 set_objfile_per_bfd (objfile);
2445
2446 objfile->original_name
2447 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2448 original_name.c_str (),
2449 original_name.size ());
2450
2451 /* Reset the sym_fns pointer. The ELF reader can change it
2452 based on whether .gdb_index is present, and we need it to
2453 start over. PR symtab/15885 */
2454 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2455
2456 build_objfile_section_table (objfile);
2457 terminate_minimal_symbol_table (objfile);
2458
2459 /* We use the same section offsets as from last time. I'm not
2460 sure whether that is always correct for shared libraries. */
2461 objfile->section_offsets = (struct section_offsets *)
2462 obstack_alloc (&objfile->objfile_obstack,
2463 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2464 memcpy (objfile->section_offsets, offsets,
2465 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2466 objfile->num_sections = num_offsets;
2467
2468 /* What the hell is sym_new_init for, anyway? The concept of
2469 distinguishing between the main file and additional files
2470 in this way seems rather dubious. */
2471 if (objfile == symfile_objfile)
2472 {
2473 (*objfile->sf->sym_new_init) (objfile);
2474 }
2475
2476 (*objfile->sf->sym_init) (objfile);
2477 clear_complaints (1);
2478
2479 objfile->flags &= ~OBJF_PSYMTABS_READ;
2480
2481 /* We are about to read new symbols and potentially also
2482 DWARF information. Some targets may want to pass addresses
2483 read from DWARF DIE's through an adjustment function before
2484 saving them, like MIPS, which may call into
2485 "find_pc_section". When called, that function will make
2486 use of per-objfile program space data.
2487
2488 Since we discarded our section information above, we have
2489 dangling pointers in the per-objfile program space data
2490 structure. Force GDB to update the section mapping
2491 information by letting it know the objfile has changed,
2492 making the dangling pointers point to correct data
2493 again. */
2494
2495 objfiles_changed ();
2496
2497 read_symbols (objfile, 0);
2498
2499 if (!objfile_has_symbols (objfile))
2500 {
2501 wrap_here ("");
2502 printf_unfiltered (_("(no debugging symbols found)\n"));
2503 wrap_here ("");
2504 }
2505
2506 /* We're done reading the symbol file; finish off complaints. */
2507 clear_complaints (0);
2508
2509 /* Getting new symbols may change our opinion about what is
2510 frameless. */
2511
2512 reinit_frame_cache ();
2513
2514 /* Discard cleanups as symbol reading was successful. */
2515 objfile_holder.release ();
2516 discard_cleanups (old_cleanups);
2517
2518 /* If the mtime has changed between the time we set new_modtime
2519 and now, we *want* this to be out of date, so don't call stat
2520 again now. */
2521 objfile->mtime = new_modtime;
2522 init_entry_point_info (objfile);
2523
2524 new_objfiles.push_back (objfile);
2525 }
2526 }
2527
2528 if (!new_objfiles.empty ())
2529 {
2530 clear_symtab_users (0);
2531
2532 /* clear_objfile_data for each objfile was called before freeing it and
2533 gdb::observers::new_objfile.notify (NULL) has been called by
2534 clear_symtab_users above. Notify the new files now. */
2535 for (auto iter : new_objfiles)
2536 gdb::observers::new_objfile.notify (objfile);
2537
2538 /* At least one objfile has changed, so we can consider that
2539 the executable we're debugging has changed too. */
2540 gdb::observers::executable_changed.notify ();
2541 }
2542 }
2543 \f
2544
2545 struct filename_language
2546 {
2547 filename_language (const std::string &ext_, enum language lang_)
2548 : ext (ext_), lang (lang_)
2549 {}
2550
2551 std::string ext;
2552 enum language lang;
2553 };
2554
2555 static std::vector<filename_language> filename_language_table;
2556
2557 /* See symfile.h. */
2558
2559 void
2560 add_filename_language (const char *ext, enum language lang)
2561 {
2562 filename_language_table.emplace_back (ext, lang);
2563 }
2564
2565 static char *ext_args;
2566 static void
2567 show_ext_args (struct ui_file *file, int from_tty,
2568 struct cmd_list_element *c, const char *value)
2569 {
2570 fprintf_filtered (file,
2571 _("Mapping between filename extension "
2572 "and source language is \"%s\".\n"),
2573 value);
2574 }
2575
2576 static void
2577 set_ext_lang_command (const char *args,
2578 int from_tty, struct cmd_list_element *e)
2579 {
2580 char *cp = ext_args;
2581 enum language lang;
2582
2583 /* First arg is filename extension, starting with '.' */
2584 if (*cp != '.')
2585 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2586
2587 /* Find end of first arg. */
2588 while (*cp && !isspace (*cp))
2589 cp++;
2590
2591 if (*cp == '\0')
2592 error (_("'%s': two arguments required -- "
2593 "filename extension and language"),
2594 ext_args);
2595
2596 /* Null-terminate first arg. */
2597 *cp++ = '\0';
2598
2599 /* Find beginning of second arg, which should be a source language. */
2600 cp = skip_spaces (cp);
2601
2602 if (*cp == '\0')
2603 error (_("'%s': two arguments required -- "
2604 "filename extension and language"),
2605 ext_args);
2606
2607 /* Lookup the language from among those we know. */
2608 lang = language_enum (cp);
2609
2610 auto it = filename_language_table.begin ();
2611 /* Now lookup the filename extension: do we already know it? */
2612 for (; it != filename_language_table.end (); it++)
2613 {
2614 if (it->ext == ext_args)
2615 break;
2616 }
2617
2618 if (it == filename_language_table.end ())
2619 {
2620 /* New file extension. */
2621 add_filename_language (ext_args, lang);
2622 }
2623 else
2624 {
2625 /* Redefining a previously known filename extension. */
2626
2627 /* if (from_tty) */
2628 /* query ("Really make files of type %s '%s'?", */
2629 /* ext_args, language_str (lang)); */
2630
2631 it->lang = lang;
2632 }
2633 }
2634
2635 static void
2636 info_ext_lang_command (const char *args, int from_tty)
2637 {
2638 printf_filtered (_("Filename extensions and the languages they represent:"));
2639 printf_filtered ("\n\n");
2640 for (const filename_language &entry : filename_language_table)
2641 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2642 language_str (entry.lang));
2643 }
2644
2645 enum language
2646 deduce_language_from_filename (const char *filename)
2647 {
2648 const char *cp;
2649
2650 if (filename != NULL)
2651 if ((cp = strrchr (filename, '.')) != NULL)
2652 {
2653 for (const filename_language &entry : filename_language_table)
2654 if (entry.ext == cp)
2655 return entry.lang;
2656 }
2657
2658 return language_unknown;
2659 }
2660 \f
2661 /* Allocate and initialize a new symbol table.
2662 CUST is from the result of allocate_compunit_symtab. */
2663
2664 struct symtab *
2665 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2666 {
2667 struct objfile *objfile = cust->objfile;
2668 struct symtab *symtab
2669 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2670
2671 symtab->filename
2672 = (const char *) bcache (filename, strlen (filename) + 1,
2673 objfile->per_bfd->filename_cache);
2674 symtab->fullname = NULL;
2675 symtab->language = deduce_language_from_filename (filename);
2676
2677 /* This can be very verbose with lots of headers.
2678 Only print at higher debug levels. */
2679 if (symtab_create_debug >= 2)
2680 {
2681 /* Be a bit clever with debugging messages, and don't print objfile
2682 every time, only when it changes. */
2683 static char *last_objfile_name = NULL;
2684
2685 if (last_objfile_name == NULL
2686 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2687 {
2688 xfree (last_objfile_name);
2689 last_objfile_name = xstrdup (objfile_name (objfile));
2690 fprintf_unfiltered (gdb_stdlog,
2691 "Creating one or more symtabs for objfile %s ...\n",
2692 last_objfile_name);
2693 }
2694 fprintf_unfiltered (gdb_stdlog,
2695 "Created symtab %s for module %s.\n",
2696 host_address_to_string (symtab), filename);
2697 }
2698
2699 /* Add it to CUST's list of symtabs. */
2700 if (cust->filetabs == NULL)
2701 {
2702 cust->filetabs = symtab;
2703 cust->last_filetab = symtab;
2704 }
2705 else
2706 {
2707 cust->last_filetab->next = symtab;
2708 cust->last_filetab = symtab;
2709 }
2710
2711 /* Backlink to the containing compunit symtab. */
2712 symtab->compunit_symtab = cust;
2713
2714 return symtab;
2715 }
2716
2717 /* Allocate and initialize a new compunit.
2718 NAME is the name of the main source file, if there is one, or some
2719 descriptive text if there are no source files. */
2720
2721 struct compunit_symtab *
2722 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2723 {
2724 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2725 struct compunit_symtab);
2726 const char *saved_name;
2727
2728 cu->objfile = objfile;
2729
2730 /* The name we record here is only for display/debugging purposes.
2731 Just save the basename to avoid path issues (too long for display,
2732 relative vs absolute, etc.). */
2733 saved_name = lbasename (name);
2734 cu->name
2735 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2736 strlen (saved_name));
2737
2738 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2739
2740 if (symtab_create_debug)
2741 {
2742 fprintf_unfiltered (gdb_stdlog,
2743 "Created compunit symtab %s for %s.\n",
2744 host_address_to_string (cu),
2745 cu->name);
2746 }
2747
2748 return cu;
2749 }
2750
2751 /* Hook CU to the objfile it comes from. */
2752
2753 void
2754 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2755 {
2756 cu->next = cu->objfile->compunit_symtabs;
2757 cu->objfile->compunit_symtabs = cu;
2758 }
2759 \f
2760
2761 /* Reset all data structures in gdb which may contain references to
2762 symbol table data. */
2763
2764 void
2765 clear_symtab_users (symfile_add_flags add_flags)
2766 {
2767 /* Someday, we should do better than this, by only blowing away
2768 the things that really need to be blown. */
2769
2770 /* Clear the "current" symtab first, because it is no longer valid.
2771 breakpoint_re_set may try to access the current symtab. */
2772 clear_current_source_symtab_and_line ();
2773
2774 clear_displays ();
2775 clear_last_displayed_sal ();
2776 clear_pc_function_cache ();
2777 gdb::observers::new_objfile.notify (NULL);
2778
2779 /* Clear globals which might have pointed into a removed objfile.
2780 FIXME: It's not clear which of these are supposed to persist
2781 between expressions and which ought to be reset each time. */
2782 expression_context_block = NULL;
2783 innermost_block.reset ();
2784
2785 /* Varobj may refer to old symbols, perform a cleanup. */
2786 varobj_invalidate ();
2787
2788 /* Now that the various caches have been cleared, we can re_set
2789 our breakpoints without risking it using stale data. */
2790 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2791 breakpoint_re_set ();
2792 }
2793
2794 static void
2795 clear_symtab_users_cleanup (void *ignore)
2796 {
2797 clear_symtab_users (0);
2798 }
2799 \f
2800 /* OVERLAYS:
2801 The following code implements an abstraction for debugging overlay sections.
2802
2803 The target model is as follows:
2804 1) The gnu linker will permit multiple sections to be mapped into the
2805 same VMA, each with its own unique LMA (or load address).
2806 2) It is assumed that some runtime mechanism exists for mapping the
2807 sections, one by one, from the load address into the VMA address.
2808 3) This code provides a mechanism for gdb to keep track of which
2809 sections should be considered to be mapped from the VMA to the LMA.
2810 This information is used for symbol lookup, and memory read/write.
2811 For instance, if a section has been mapped then its contents
2812 should be read from the VMA, otherwise from the LMA.
2813
2814 Two levels of debugger support for overlays are available. One is
2815 "manual", in which the debugger relies on the user to tell it which
2816 overlays are currently mapped. This level of support is
2817 implemented entirely in the core debugger, and the information about
2818 whether a section is mapped is kept in the objfile->obj_section table.
2819
2820 The second level of support is "automatic", and is only available if
2821 the target-specific code provides functionality to read the target's
2822 overlay mapping table, and translate its contents for the debugger
2823 (by updating the mapped state information in the obj_section tables).
2824
2825 The interface is as follows:
2826 User commands:
2827 overlay map <name> -- tell gdb to consider this section mapped
2828 overlay unmap <name> -- tell gdb to consider this section unmapped
2829 overlay list -- list the sections that GDB thinks are mapped
2830 overlay read-target -- get the target's state of what's mapped
2831 overlay off/manual/auto -- set overlay debugging state
2832 Functional interface:
2833 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2834 section, return that section.
2835 find_pc_overlay(pc): find any overlay section that contains
2836 the pc, either in its VMA or its LMA
2837 section_is_mapped(sect): true if overlay is marked as mapped
2838 section_is_overlay(sect): true if section's VMA != LMA
2839 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2840 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2841 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2842 overlay_mapped_address(...): map an address from section's LMA to VMA
2843 overlay_unmapped_address(...): map an address from section's VMA to LMA
2844 symbol_overlayed_address(...): Return a "current" address for symbol:
2845 either in VMA or LMA depending on whether
2846 the symbol's section is currently mapped. */
2847
2848 /* Overlay debugging state: */
2849
2850 enum overlay_debugging_state overlay_debugging = ovly_off;
2851 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2852
2853 /* Function: section_is_overlay (SECTION)
2854 Returns true if SECTION has VMA not equal to LMA, ie.
2855 SECTION is loaded at an address different from where it will "run". */
2856
2857 int
2858 section_is_overlay (struct obj_section *section)
2859 {
2860 if (overlay_debugging && section)
2861 {
2862 asection *bfd_section = section->the_bfd_section;
2863
2864 if (bfd_section_lma (abfd, bfd_section) != 0
2865 && bfd_section_lma (abfd, bfd_section)
2866 != bfd_section_vma (abfd, bfd_section))
2867 return 1;
2868 }
2869
2870 return 0;
2871 }
2872
2873 /* Function: overlay_invalidate_all (void)
2874 Invalidate the mapped state of all overlay sections (mark it as stale). */
2875
2876 static void
2877 overlay_invalidate_all (void)
2878 {
2879 struct objfile *objfile;
2880 struct obj_section *sect;
2881
2882 ALL_OBJSECTIONS (objfile, sect)
2883 if (section_is_overlay (sect))
2884 sect->ovly_mapped = -1;
2885 }
2886
2887 /* Function: section_is_mapped (SECTION)
2888 Returns true if section is an overlay, and is currently mapped.
2889
2890 Access to the ovly_mapped flag is restricted to this function, so
2891 that we can do automatic update. If the global flag
2892 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2893 overlay_invalidate_all. If the mapped state of the particular
2894 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2895
2896 int
2897 section_is_mapped (struct obj_section *osect)
2898 {
2899 struct gdbarch *gdbarch;
2900
2901 if (osect == 0 || !section_is_overlay (osect))
2902 return 0;
2903
2904 switch (overlay_debugging)
2905 {
2906 default:
2907 case ovly_off:
2908 return 0; /* overlay debugging off */
2909 case ovly_auto: /* overlay debugging automatic */
2910 /* Unles there is a gdbarch_overlay_update function,
2911 there's really nothing useful to do here (can't really go auto). */
2912 gdbarch = get_objfile_arch (osect->objfile);
2913 if (gdbarch_overlay_update_p (gdbarch))
2914 {
2915 if (overlay_cache_invalid)
2916 {
2917 overlay_invalidate_all ();
2918 overlay_cache_invalid = 0;
2919 }
2920 if (osect->ovly_mapped == -1)
2921 gdbarch_overlay_update (gdbarch, osect);
2922 }
2923 /* fall thru */
2924 case ovly_on: /* overlay debugging manual */
2925 return osect->ovly_mapped == 1;
2926 }
2927 }
2928
2929 /* Function: pc_in_unmapped_range
2930 If PC falls into the lma range of SECTION, return true, else false. */
2931
2932 CORE_ADDR
2933 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2934 {
2935 if (section_is_overlay (section))
2936 {
2937 bfd *abfd = section->objfile->obfd;
2938 asection *bfd_section = section->the_bfd_section;
2939
2940 /* We assume the LMA is relocated by the same offset as the VMA. */
2941 bfd_vma size = bfd_get_section_size (bfd_section);
2942 CORE_ADDR offset = obj_section_offset (section);
2943
2944 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2945 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2946 return 1;
2947 }
2948
2949 return 0;
2950 }
2951
2952 /* Function: pc_in_mapped_range
2953 If PC falls into the vma range of SECTION, return true, else false. */
2954
2955 CORE_ADDR
2956 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2957 {
2958 if (section_is_overlay (section))
2959 {
2960 if (obj_section_addr (section) <= pc
2961 && pc < obj_section_endaddr (section))
2962 return 1;
2963 }
2964
2965 return 0;
2966 }
2967
2968 /* Return true if the mapped ranges of sections A and B overlap, false
2969 otherwise. */
2970
2971 static int
2972 sections_overlap (struct obj_section *a, struct obj_section *b)
2973 {
2974 CORE_ADDR a_start = obj_section_addr (a);
2975 CORE_ADDR a_end = obj_section_endaddr (a);
2976 CORE_ADDR b_start = obj_section_addr (b);
2977 CORE_ADDR b_end = obj_section_endaddr (b);
2978
2979 return (a_start < b_end && b_start < a_end);
2980 }
2981
2982 /* Function: overlay_unmapped_address (PC, SECTION)
2983 Returns the address corresponding to PC in the unmapped (load) range.
2984 May be the same as PC. */
2985
2986 CORE_ADDR
2987 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2988 {
2989 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2990 {
2991 asection *bfd_section = section->the_bfd_section;
2992
2993 return pc + bfd_section_lma (abfd, bfd_section)
2994 - bfd_section_vma (abfd, bfd_section);
2995 }
2996
2997 return pc;
2998 }
2999
3000 /* Function: overlay_mapped_address (PC, SECTION)
3001 Returns the address corresponding to PC in the mapped (runtime) range.
3002 May be the same as PC. */
3003
3004 CORE_ADDR
3005 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3006 {
3007 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3008 {
3009 asection *bfd_section = section->the_bfd_section;
3010
3011 return pc + bfd_section_vma (abfd, bfd_section)
3012 - bfd_section_lma (abfd, bfd_section);
3013 }
3014
3015 return pc;
3016 }
3017
3018 /* Function: symbol_overlayed_address
3019 Return one of two addresses (relative to the VMA or to the LMA),
3020 depending on whether the section is mapped or not. */
3021
3022 CORE_ADDR
3023 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3024 {
3025 if (overlay_debugging)
3026 {
3027 /* If the symbol has no section, just return its regular address. */
3028 if (section == 0)
3029 return address;
3030 /* If the symbol's section is not an overlay, just return its
3031 address. */
3032 if (!section_is_overlay (section))
3033 return address;
3034 /* If the symbol's section is mapped, just return its address. */
3035 if (section_is_mapped (section))
3036 return address;
3037 /*
3038 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3039 * then return its LOADED address rather than its vma address!!
3040 */
3041 return overlay_unmapped_address (address, section);
3042 }
3043 return address;
3044 }
3045
3046 /* Function: find_pc_overlay (PC)
3047 Return the best-match overlay section for PC:
3048 If PC matches a mapped overlay section's VMA, return that section.
3049 Else if PC matches an unmapped section's VMA, return that section.
3050 Else if PC matches an unmapped section's LMA, return that section. */
3051
3052 struct obj_section *
3053 find_pc_overlay (CORE_ADDR pc)
3054 {
3055 struct objfile *objfile;
3056 struct obj_section *osect, *best_match = NULL;
3057
3058 if (overlay_debugging)
3059 {
3060 ALL_OBJSECTIONS (objfile, osect)
3061 if (section_is_overlay (osect))
3062 {
3063 if (pc_in_mapped_range (pc, osect))
3064 {
3065 if (section_is_mapped (osect))
3066 return osect;
3067 else
3068 best_match = osect;
3069 }
3070 else if (pc_in_unmapped_range (pc, osect))
3071 best_match = osect;
3072 }
3073 }
3074 return best_match;
3075 }
3076
3077 /* Function: find_pc_mapped_section (PC)
3078 If PC falls into the VMA address range of an overlay section that is
3079 currently marked as MAPPED, return that section. Else return NULL. */
3080
3081 struct obj_section *
3082 find_pc_mapped_section (CORE_ADDR pc)
3083 {
3084 struct objfile *objfile;
3085 struct obj_section *osect;
3086
3087 if (overlay_debugging)
3088 {
3089 ALL_OBJSECTIONS (objfile, osect)
3090 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3091 return osect;
3092 }
3093
3094 return NULL;
3095 }
3096
3097 /* Function: list_overlays_command
3098 Print a list of mapped sections and their PC ranges. */
3099
3100 static void
3101 list_overlays_command (const char *args, int from_tty)
3102 {
3103 int nmapped = 0;
3104 struct objfile *objfile;
3105 struct obj_section *osect;
3106
3107 if (overlay_debugging)
3108 {
3109 ALL_OBJSECTIONS (objfile, osect)
3110 if (section_is_mapped (osect))
3111 {
3112 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3113 const char *name;
3114 bfd_vma lma, vma;
3115 int size;
3116
3117 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3118 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3119 size = bfd_get_section_size (osect->the_bfd_section);
3120 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3121
3122 printf_filtered ("Section %s, loaded at ", name);
3123 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3124 puts_filtered (" - ");
3125 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3126 printf_filtered (", mapped at ");
3127 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3128 puts_filtered (" - ");
3129 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3130 puts_filtered ("\n");
3131
3132 nmapped++;
3133 }
3134 }
3135 if (nmapped == 0)
3136 printf_filtered (_("No sections are mapped.\n"));
3137 }
3138
3139 /* Function: map_overlay_command
3140 Mark the named section as mapped (ie. residing at its VMA address). */
3141
3142 static void
3143 map_overlay_command (const char *args, int from_tty)
3144 {
3145 struct objfile *objfile, *objfile2;
3146 struct obj_section *sec, *sec2;
3147
3148 if (!overlay_debugging)
3149 error (_("Overlay debugging not enabled. Use "
3150 "either the 'overlay auto' or\n"
3151 "the 'overlay manual' command."));
3152
3153 if (args == 0 || *args == 0)
3154 error (_("Argument required: name of an overlay section"));
3155
3156 /* First, find a section matching the user supplied argument. */
3157 ALL_OBJSECTIONS (objfile, sec)
3158 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3159 {
3160 /* Now, check to see if the section is an overlay. */
3161 if (!section_is_overlay (sec))
3162 continue; /* not an overlay section */
3163
3164 /* Mark the overlay as "mapped". */
3165 sec->ovly_mapped = 1;
3166
3167 /* Next, make a pass and unmap any sections that are
3168 overlapped by this new section: */
3169 ALL_OBJSECTIONS (objfile2, sec2)
3170 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3171 {
3172 if (info_verbose)
3173 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3174 bfd_section_name (objfile->obfd,
3175 sec2->the_bfd_section));
3176 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3177 }
3178 return;
3179 }
3180 error (_("No overlay section called %s"), args);
3181 }
3182
3183 /* Function: unmap_overlay_command
3184 Mark the overlay section as unmapped
3185 (ie. resident in its LMA address range, rather than the VMA range). */
3186
3187 static void
3188 unmap_overlay_command (const char *args, int from_tty)
3189 {
3190 struct objfile *objfile;
3191 struct obj_section *sec = NULL;
3192
3193 if (!overlay_debugging)
3194 error (_("Overlay debugging not enabled. "
3195 "Use either the 'overlay auto' or\n"
3196 "the 'overlay manual' command."));
3197
3198 if (args == 0 || *args == 0)
3199 error (_("Argument required: name of an overlay section"));
3200
3201 /* First, find a section matching the user supplied argument. */
3202 ALL_OBJSECTIONS (objfile, sec)
3203 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3204 {
3205 if (!sec->ovly_mapped)
3206 error (_("Section %s is not mapped"), args);
3207 sec->ovly_mapped = 0;
3208 return;
3209 }
3210 error (_("No overlay section called %s"), args);
3211 }
3212
3213 /* Function: overlay_auto_command
3214 A utility command to turn on overlay debugging.
3215 Possibly this should be done via a set/show command. */
3216
3217 static void
3218 overlay_auto_command (const char *args, int from_tty)
3219 {
3220 overlay_debugging = ovly_auto;
3221 enable_overlay_breakpoints ();
3222 if (info_verbose)
3223 printf_unfiltered (_("Automatic overlay debugging enabled."));
3224 }
3225
3226 /* Function: overlay_manual_command
3227 A utility command to turn on overlay debugging.
3228 Possibly this should be done via a set/show command. */
3229
3230 static void
3231 overlay_manual_command (const char *args, int from_tty)
3232 {
3233 overlay_debugging = ovly_on;
3234 disable_overlay_breakpoints ();
3235 if (info_verbose)
3236 printf_unfiltered (_("Overlay debugging enabled."));
3237 }
3238
3239 /* Function: overlay_off_command
3240 A utility command to turn on overlay debugging.
3241 Possibly this should be done via a set/show command. */
3242
3243 static void
3244 overlay_off_command (const char *args, int from_tty)
3245 {
3246 overlay_debugging = ovly_off;
3247 disable_overlay_breakpoints ();
3248 if (info_verbose)
3249 printf_unfiltered (_("Overlay debugging disabled."));
3250 }
3251
3252 static void
3253 overlay_load_command (const char *args, int from_tty)
3254 {
3255 struct gdbarch *gdbarch = get_current_arch ();
3256
3257 if (gdbarch_overlay_update_p (gdbarch))
3258 gdbarch_overlay_update (gdbarch, NULL);
3259 else
3260 error (_("This target does not know how to read its overlay state."));
3261 }
3262
3263 /* Function: overlay_command
3264 A place-holder for a mis-typed command. */
3265
3266 /* Command list chain containing all defined "overlay" subcommands. */
3267 static struct cmd_list_element *overlaylist;
3268
3269 static void
3270 overlay_command (const char *args, int from_tty)
3271 {
3272 printf_unfiltered
3273 ("\"overlay\" must be followed by the name of an overlay command.\n");
3274 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3275 }
3276
3277 /* Target Overlays for the "Simplest" overlay manager:
3278
3279 This is GDB's default target overlay layer. It works with the
3280 minimal overlay manager supplied as an example by Cygnus. The
3281 entry point is via a function pointer "gdbarch_overlay_update",
3282 so targets that use a different runtime overlay manager can
3283 substitute their own overlay_update function and take over the
3284 function pointer.
3285
3286 The overlay_update function pokes around in the target's data structures
3287 to see what overlays are mapped, and updates GDB's overlay mapping with
3288 this information.
3289
3290 In this simple implementation, the target data structures are as follows:
3291 unsigned _novlys; /# number of overlay sections #/
3292 unsigned _ovly_table[_novlys][4] = {
3293 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3294 {..., ..., ..., ...},
3295 }
3296 unsigned _novly_regions; /# number of overlay regions #/
3297 unsigned _ovly_region_table[_novly_regions][3] = {
3298 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3299 {..., ..., ...},
3300 }
3301 These functions will attempt to update GDB's mappedness state in the
3302 symbol section table, based on the target's mappedness state.
3303
3304 To do this, we keep a cached copy of the target's _ovly_table, and
3305 attempt to detect when the cached copy is invalidated. The main
3306 entry point is "simple_overlay_update(SECT), which looks up SECT in
3307 the cached table and re-reads only the entry for that section from
3308 the target (whenever possible). */
3309
3310 /* Cached, dynamically allocated copies of the target data structures: */
3311 static unsigned (*cache_ovly_table)[4] = 0;
3312 static unsigned cache_novlys = 0;
3313 static CORE_ADDR cache_ovly_table_base = 0;
3314 enum ovly_index
3315 {
3316 VMA, OSIZE, LMA, MAPPED
3317 };
3318
3319 /* Throw away the cached copy of _ovly_table. */
3320
3321 static void
3322 simple_free_overlay_table (void)
3323 {
3324 if (cache_ovly_table)
3325 xfree (cache_ovly_table);
3326 cache_novlys = 0;
3327 cache_ovly_table = NULL;
3328 cache_ovly_table_base = 0;
3329 }
3330
3331 /* Read an array of ints of size SIZE from the target into a local buffer.
3332 Convert to host order. int LEN is number of ints. */
3333
3334 static void
3335 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3336 int len, int size, enum bfd_endian byte_order)
3337 {
3338 /* FIXME (alloca): Not safe if array is very large. */
3339 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3340 int i;
3341
3342 read_memory (memaddr, buf, len * size);
3343 for (i = 0; i < len; i++)
3344 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3345 }
3346
3347 /* Find and grab a copy of the target _ovly_table
3348 (and _novlys, which is needed for the table's size). */
3349
3350 static int
3351 simple_read_overlay_table (void)
3352 {
3353 struct bound_minimal_symbol novlys_msym;
3354 struct bound_minimal_symbol ovly_table_msym;
3355 struct gdbarch *gdbarch;
3356 int word_size;
3357 enum bfd_endian byte_order;
3358
3359 simple_free_overlay_table ();
3360 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3361 if (! novlys_msym.minsym)
3362 {
3363 error (_("Error reading inferior's overlay table: "
3364 "couldn't find `_novlys' variable\n"
3365 "in inferior. Use `overlay manual' mode."));
3366 return 0;
3367 }
3368
3369 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3370 if (! ovly_table_msym.minsym)
3371 {
3372 error (_("Error reading inferior's overlay table: couldn't find "
3373 "`_ovly_table' array\n"
3374 "in inferior. Use `overlay manual' mode."));
3375 return 0;
3376 }
3377
3378 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3379 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3380 byte_order = gdbarch_byte_order (gdbarch);
3381
3382 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3383 4, byte_order);
3384 cache_ovly_table
3385 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3386 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3387 read_target_long_array (cache_ovly_table_base,
3388 (unsigned int *) cache_ovly_table,
3389 cache_novlys * 4, word_size, byte_order);
3390
3391 return 1; /* SUCCESS */
3392 }
3393
3394 /* Function: simple_overlay_update_1
3395 A helper function for simple_overlay_update. Assuming a cached copy
3396 of _ovly_table exists, look through it to find an entry whose vma,
3397 lma and size match those of OSECT. Re-read the entry and make sure
3398 it still matches OSECT (else the table may no longer be valid).
3399 Set OSECT's mapped state to match the entry. Return: 1 for
3400 success, 0 for failure. */
3401
3402 static int
3403 simple_overlay_update_1 (struct obj_section *osect)
3404 {
3405 int i;
3406 asection *bsect = osect->the_bfd_section;
3407 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3408 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3410
3411 for (i = 0; i < cache_novlys; i++)
3412 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3413 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3414 {
3415 read_target_long_array (cache_ovly_table_base + i * word_size,
3416 (unsigned int *) cache_ovly_table[i],
3417 4, word_size, byte_order);
3418 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3419 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3420 {
3421 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3422 return 1;
3423 }
3424 else /* Warning! Warning! Target's ovly table has changed! */
3425 return 0;
3426 }
3427 return 0;
3428 }
3429
3430 /* Function: simple_overlay_update
3431 If OSECT is NULL, then update all sections' mapped state
3432 (after re-reading the entire target _ovly_table).
3433 If OSECT is non-NULL, then try to find a matching entry in the
3434 cached ovly_table and update only OSECT's mapped state.
3435 If a cached entry can't be found or the cache isn't valid, then
3436 re-read the entire cache, and go ahead and update all sections. */
3437
3438 void
3439 simple_overlay_update (struct obj_section *osect)
3440 {
3441 struct objfile *objfile;
3442
3443 /* Were we given an osect to look up? NULL means do all of them. */
3444 if (osect)
3445 /* Have we got a cached copy of the target's overlay table? */
3446 if (cache_ovly_table != NULL)
3447 {
3448 /* Does its cached location match what's currently in the
3449 symtab? */
3450 struct bound_minimal_symbol minsym
3451 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3452
3453 if (minsym.minsym == NULL)
3454 error (_("Error reading inferior's overlay table: couldn't "
3455 "find `_ovly_table' array\n"
3456 "in inferior. Use `overlay manual' mode."));
3457
3458 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3459 /* Then go ahead and try to look up this single section in
3460 the cache. */
3461 if (simple_overlay_update_1 (osect))
3462 /* Found it! We're done. */
3463 return;
3464 }
3465
3466 /* Cached table no good: need to read the entire table anew.
3467 Or else we want all the sections, in which case it's actually
3468 more efficient to read the whole table in one block anyway. */
3469
3470 if (! simple_read_overlay_table ())
3471 return;
3472
3473 /* Now may as well update all sections, even if only one was requested. */
3474 ALL_OBJSECTIONS (objfile, osect)
3475 if (section_is_overlay (osect))
3476 {
3477 int i;
3478 asection *bsect = osect->the_bfd_section;
3479
3480 for (i = 0; i < cache_novlys; i++)
3481 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3482 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3483 { /* obj_section matches i'th entry in ovly_table. */
3484 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3485 break; /* finished with inner for loop: break out. */
3486 }
3487 }
3488 }
3489
3490 /* Set the output sections and output offsets for section SECTP in
3491 ABFD. The relocation code in BFD will read these offsets, so we
3492 need to be sure they're initialized. We map each section to itself,
3493 with no offset; this means that SECTP->vma will be honored. */
3494
3495 static void
3496 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3497 {
3498 sectp->output_section = sectp;
3499 sectp->output_offset = 0;
3500 }
3501
3502 /* Default implementation for sym_relocate. */
3503
3504 bfd_byte *
3505 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3506 bfd_byte *buf)
3507 {
3508 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3509 DWO file. */
3510 bfd *abfd = sectp->owner;
3511
3512 /* We're only interested in sections with relocation
3513 information. */
3514 if ((sectp->flags & SEC_RELOC) == 0)
3515 return NULL;
3516
3517 /* We will handle section offsets properly elsewhere, so relocate as if
3518 all sections begin at 0. */
3519 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3520
3521 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3522 }
3523
3524 /* Relocate the contents of a debug section SECTP in ABFD. The
3525 contents are stored in BUF if it is non-NULL, or returned in a
3526 malloc'd buffer otherwise.
3527
3528 For some platforms and debug info formats, shared libraries contain
3529 relocations against the debug sections (particularly for DWARF-2;
3530 one affected platform is PowerPC GNU/Linux, although it depends on
3531 the version of the linker in use). Also, ELF object files naturally
3532 have unresolved relocations for their debug sections. We need to apply
3533 the relocations in order to get the locations of symbols correct.
3534 Another example that may require relocation processing, is the
3535 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3536 debug section. */
3537
3538 bfd_byte *
3539 symfile_relocate_debug_section (struct objfile *objfile,
3540 asection *sectp, bfd_byte *buf)
3541 {
3542 gdb_assert (objfile->sf->sym_relocate);
3543
3544 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3545 }
3546
3547 struct symfile_segment_data *
3548 get_symfile_segment_data (bfd *abfd)
3549 {
3550 const struct sym_fns *sf = find_sym_fns (abfd);
3551
3552 if (sf == NULL)
3553 return NULL;
3554
3555 return sf->sym_segments (abfd);
3556 }
3557
3558 void
3559 free_symfile_segment_data (struct symfile_segment_data *data)
3560 {
3561 xfree (data->segment_bases);
3562 xfree (data->segment_sizes);
3563 xfree (data->segment_info);
3564 xfree (data);
3565 }
3566
3567 /* Given:
3568 - DATA, containing segment addresses from the object file ABFD, and
3569 the mapping from ABFD's sections onto the segments that own them,
3570 and
3571 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3572 segment addresses reported by the target,
3573 store the appropriate offsets for each section in OFFSETS.
3574
3575 If there are fewer entries in SEGMENT_BASES than there are segments
3576 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3577
3578 If there are more entries, then ignore the extra. The target may
3579 not be able to distinguish between an empty data segment and a
3580 missing data segment; a missing text segment is less plausible. */
3581
3582 int
3583 symfile_map_offsets_to_segments (bfd *abfd,
3584 const struct symfile_segment_data *data,
3585 struct section_offsets *offsets,
3586 int num_segment_bases,
3587 const CORE_ADDR *segment_bases)
3588 {
3589 int i;
3590 asection *sect;
3591
3592 /* It doesn't make sense to call this function unless you have some
3593 segment base addresses. */
3594 gdb_assert (num_segment_bases > 0);
3595
3596 /* If we do not have segment mappings for the object file, we
3597 can not relocate it by segments. */
3598 gdb_assert (data != NULL);
3599 gdb_assert (data->num_segments > 0);
3600
3601 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3602 {
3603 int which = data->segment_info[i];
3604
3605 gdb_assert (0 <= which && which <= data->num_segments);
3606
3607 /* Don't bother computing offsets for sections that aren't
3608 loaded as part of any segment. */
3609 if (! which)
3610 continue;
3611
3612 /* Use the last SEGMENT_BASES entry as the address of any extra
3613 segments mentioned in DATA->segment_info. */
3614 if (which > num_segment_bases)
3615 which = num_segment_bases;
3616
3617 offsets->offsets[i] = (segment_bases[which - 1]
3618 - data->segment_bases[which - 1]);
3619 }
3620
3621 return 1;
3622 }
3623
3624 static void
3625 symfile_find_segment_sections (struct objfile *objfile)
3626 {
3627 bfd *abfd = objfile->obfd;
3628 int i;
3629 asection *sect;
3630 struct symfile_segment_data *data;
3631
3632 data = get_symfile_segment_data (objfile->obfd);
3633 if (data == NULL)
3634 return;
3635
3636 if (data->num_segments != 1 && data->num_segments != 2)
3637 {
3638 free_symfile_segment_data (data);
3639 return;
3640 }
3641
3642 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3643 {
3644 int which = data->segment_info[i];
3645
3646 if (which == 1)
3647 {
3648 if (objfile->sect_index_text == -1)
3649 objfile->sect_index_text = sect->index;
3650
3651 if (objfile->sect_index_rodata == -1)
3652 objfile->sect_index_rodata = sect->index;
3653 }
3654 else if (which == 2)
3655 {
3656 if (objfile->sect_index_data == -1)
3657 objfile->sect_index_data = sect->index;
3658
3659 if (objfile->sect_index_bss == -1)
3660 objfile->sect_index_bss = sect->index;
3661 }
3662 }
3663
3664 free_symfile_segment_data (data);
3665 }
3666
3667 /* Listen for free_objfile events. */
3668
3669 static void
3670 symfile_free_objfile (struct objfile *objfile)
3671 {
3672 /* Remove the target sections owned by this objfile. */
3673 if (objfile != NULL)
3674 remove_target_sections ((void *) objfile);
3675 }
3676
3677 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3678 Expand all symtabs that match the specified criteria.
3679 See quick_symbol_functions.expand_symtabs_matching for details. */
3680
3681 void
3682 expand_symtabs_matching
3683 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3684 const lookup_name_info &lookup_name,
3685 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3686 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3687 enum search_domain kind)
3688 {
3689 struct objfile *objfile;
3690
3691 ALL_OBJFILES (objfile)
3692 {
3693 if (objfile->sf)
3694 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3695 lookup_name,
3696 symbol_matcher,
3697 expansion_notify, kind);
3698 }
3699 }
3700
3701 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3702 Map function FUN over every file.
3703 See quick_symbol_functions.map_symbol_filenames for details. */
3704
3705 void
3706 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3707 int need_fullname)
3708 {
3709 struct objfile *objfile;
3710
3711 ALL_OBJFILES (objfile)
3712 {
3713 if (objfile->sf)
3714 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3715 need_fullname);
3716 }
3717 }
3718
3719 #if GDB_SELF_TEST
3720
3721 namespace selftests {
3722 namespace filename_language {
3723
3724 static void test_filename_language ()
3725 {
3726 /* This test messes up the filename_language_table global. */
3727 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3728
3729 /* Test deducing an unknown extension. */
3730 language lang = deduce_language_from_filename ("myfile.blah");
3731 SELF_CHECK (lang == language_unknown);
3732
3733 /* Test deducing a known extension. */
3734 lang = deduce_language_from_filename ("myfile.c");
3735 SELF_CHECK (lang == language_c);
3736
3737 /* Test adding a new extension using the internal API. */
3738 add_filename_language (".blah", language_pascal);
3739 lang = deduce_language_from_filename ("myfile.blah");
3740 SELF_CHECK (lang == language_pascal);
3741 }
3742
3743 static void
3744 test_set_ext_lang_command ()
3745 {
3746 /* This test messes up the filename_language_table global. */
3747 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3748
3749 /* Confirm that the .hello extension is not known. */
3750 language lang = deduce_language_from_filename ("cake.hello");
3751 SELF_CHECK (lang == language_unknown);
3752
3753 /* Test adding a new extension using the CLI command. */
3754 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3755 ext_args = args_holder.get ();
3756 set_ext_lang_command (NULL, 1, NULL);
3757
3758 lang = deduce_language_from_filename ("cake.hello");
3759 SELF_CHECK (lang == language_rust);
3760
3761 /* Test overriding an existing extension using the CLI command. */
3762 int size_before = filename_language_table.size ();
3763 args_holder.reset (xstrdup (".hello pascal"));
3764 ext_args = args_holder.get ();
3765 set_ext_lang_command (NULL, 1, NULL);
3766 int size_after = filename_language_table.size ();
3767
3768 lang = deduce_language_from_filename ("cake.hello");
3769 SELF_CHECK (lang == language_pascal);
3770 SELF_CHECK (size_before == size_after);
3771 }
3772
3773 } /* namespace filename_language */
3774 } /* namespace selftests */
3775
3776 #endif /* GDB_SELF_TEST */
3777
3778 void
3779 _initialize_symfile (void)
3780 {
3781 struct cmd_list_element *c;
3782
3783 gdb::observers::free_objfile.attach (symfile_free_objfile);
3784
3785 #define READNOW_READNEVER_HELP \
3786 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3787 immediately. This makes the command slower, but may make future operations\n\
3788 faster.\n\
3789 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3790 symbolic debug information."
3791
3792 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3793 Load symbol table from executable file FILE.\n\
3794 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3795 OFF is an optional offset which is added to each section address.\n\
3796 The `file' command can also load symbol tables, as well as setting the file\n\
3797 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3798 set_cmd_completer (c, filename_completer);
3799
3800 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3801 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3802 Usage: add-symbol-file FILE [-readnow | -readnever] [ADDR] \
3803 [-s SECT-NAME SECT-ADDR]...\n\
3804 ADDR is the starting address of the file's text.\n\
3805 Each '-s' argument provides a section name and address, and\n\
3806 should be specified if the data and bss segments are not contiguous\n\
3807 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3808 READNOW_READNEVER_HELP),
3809 &cmdlist);
3810 set_cmd_completer (c, filename_completer);
3811
3812 c = add_cmd ("remove-symbol-file", class_files,
3813 remove_symbol_file_command, _("\
3814 Remove a symbol file added via the add-symbol-file command.\n\
3815 Usage: remove-symbol-file FILENAME\n\
3816 remove-symbol-file -a ADDRESS\n\
3817 The file to remove can be identified by its filename or by an address\n\
3818 that lies within the boundaries of this symbol file in memory."),
3819 &cmdlist);
3820
3821 c = add_cmd ("load", class_files, load_command, _("\
3822 Dynamically load FILE into the running program, and record its symbols\n\
3823 for access from GDB.\n\
3824 Usage: load [FILE] [OFFSET]\n\
3825 An optional load OFFSET may also be given as a literal address.\n\
3826 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3827 on its own."), &cmdlist);
3828 set_cmd_completer (c, filename_completer);
3829
3830 add_prefix_cmd ("overlay", class_support, overlay_command,
3831 _("Commands for debugging overlays."), &overlaylist,
3832 "overlay ", 0, &cmdlist);
3833
3834 add_com_alias ("ovly", "overlay", class_alias, 1);
3835 add_com_alias ("ov", "overlay", class_alias, 1);
3836
3837 add_cmd ("map-overlay", class_support, map_overlay_command,
3838 _("Assert that an overlay section is mapped."), &overlaylist);
3839
3840 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3841 _("Assert that an overlay section is unmapped."), &overlaylist);
3842
3843 add_cmd ("list-overlays", class_support, list_overlays_command,
3844 _("List mappings of overlay sections."), &overlaylist);
3845
3846 add_cmd ("manual", class_support, overlay_manual_command,
3847 _("Enable overlay debugging."), &overlaylist);
3848 add_cmd ("off", class_support, overlay_off_command,
3849 _("Disable overlay debugging."), &overlaylist);
3850 add_cmd ("auto", class_support, overlay_auto_command,
3851 _("Enable automatic overlay debugging."), &overlaylist);
3852 add_cmd ("load-target", class_support, overlay_load_command,
3853 _("Read the overlay mapping state from the target."), &overlaylist);
3854
3855 /* Filename extension to source language lookup table: */
3856 add_setshow_string_noescape_cmd ("extension-language", class_files,
3857 &ext_args, _("\
3858 Set mapping between filename extension and source language."), _("\
3859 Show mapping between filename extension and source language."), _("\
3860 Usage: set extension-language .foo bar"),
3861 set_ext_lang_command,
3862 show_ext_args,
3863 &setlist, &showlist);
3864
3865 add_info ("extensions", info_ext_lang_command,
3866 _("All filename extensions associated with a source language."));
3867
3868 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3869 &debug_file_directory, _("\
3870 Set the directories where separate debug symbols are searched for."), _("\
3871 Show the directories where separate debug symbols are searched for."), _("\
3872 Separate debug symbols are first searched for in the same\n\
3873 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3874 and lastly at the path of the directory of the binary with\n\
3875 each global debug-file-directory component prepended."),
3876 NULL,
3877 show_debug_file_directory,
3878 &setlist, &showlist);
3879
3880 add_setshow_enum_cmd ("symbol-loading", no_class,
3881 print_symbol_loading_enums, &print_symbol_loading,
3882 _("\
3883 Set printing of symbol loading messages."), _("\
3884 Show printing of symbol loading messages."), _("\
3885 off == turn all messages off\n\
3886 brief == print messages for the executable,\n\
3887 and brief messages for shared libraries\n\
3888 full == print messages for the executable,\n\
3889 and messages for each shared library."),
3890 NULL,
3891 NULL,
3892 &setprintlist, &showprintlist);
3893
3894 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3895 &separate_debug_file_debug, _("\
3896 Set printing of separate debug info file search debug."), _("\
3897 Show printing of separate debug info file search debug."), _("\
3898 When on, GDB prints the searched locations while looking for separate debug \
3899 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3900
3901 #if GDB_SELF_TEST
3902 selftests::register_test
3903 ("filename_language", selftests::filename_language::test_filename_language);
3904 selftests::register_test
3905 ("set_ext_lang_command",
3906 selftests::filename_language::test_set_ext_lang_command);
3907 #endif
3908 }
This page took 0.105388 seconds and 5 git commands to generate.