Make delim_string_to_char_ptr_vec return an std::vector
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84 int readnever_symbol_files; /* Never read full symbols. */
85
86 /* Functions this file defines. */
87
88 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
89 objfile_flags flags);
90
91 static const struct sym_fns *find_sym_fns (bfd *);
92
93 static void overlay_invalidate_all (void);
94
95 static void simple_free_overlay_table (void);
96
97 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
99
100 static int simple_read_overlay_table (void);
101
102 static int simple_overlay_update_1 (struct obj_section *);
103
104 static void symfile_find_segment_sections (struct objfile *objfile);
105
106 /* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
108 prepared to read. */
109
110 struct registered_sym_fns
111 {
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
121 };
122
123 static std::vector<registered_sym_fns> symtab_fns;
124
125 /* Values for "set print symbol-loading". */
126
127 const char print_symbol_loading_off[] = "off";
128 const char print_symbol_loading_brief[] = "brief";
129 const char print_symbol_loading_full[] = "full";
130 static const char *print_symbol_loading_enums[] =
131 {
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136 };
137 static const char *print_symbol_loading = print_symbol_loading_full;
138
139 /* If non-zero, shared library symbols will be added automatically
140 when the inferior is created, new libraries are loaded, or when
141 attaching to the inferior. This is almost always what users will
142 want to have happen; but for very large programs, the startup time
143 will be excessive, and so if this is a problem, the user can clear
144 this flag and then add the shared library symbols as needed. Note
145 that there is a potential for confusion, since if the shared
146 library symbols are not loaded, commands like "info fun" will *not*
147 report all the functions that are actually present. */
148
149 int auto_solib_add = 1;
150 \f
151
152 /* Return non-zero if symbol-loading messages should be printed.
153 FROM_TTY is the standard from_tty argument to gdb commands.
154 If EXEC is non-zero the messages are for the executable.
155 Otherwise, messages are for shared libraries.
156 If FULL is non-zero then the caller is printing a detailed message.
157 E.g., the message includes the shared library name.
158 Otherwise, the caller is printing a brief "summary" message. */
159
160 int
161 print_symbol_loading_p (int from_tty, int exec, int full)
162 {
163 if (!from_tty && !info_verbose)
164 return 0;
165
166 if (exec)
167 {
168 /* We don't check FULL for executables, there are few such
169 messages, therefore brief == full. */
170 return print_symbol_loading != print_symbol_loading_off;
171 }
172 if (full)
173 return print_symbol_loading == print_symbol_loading_full;
174 return print_symbol_loading == print_symbol_loading_brief;
175 }
176
177 /* True if we are reading a symbol table. */
178
179 int currently_reading_symtab = 0;
180
181 /* Increment currently_reading_symtab and return a cleanup that can be
182 used to decrement it. */
183
184 scoped_restore_tmpl<int>
185 increment_reading_symtab (void)
186 {
187 gdb_assert (currently_reading_symtab >= 0);
188 return make_scoped_restore (&currently_reading_symtab,
189 currently_reading_symtab + 1);
190 }
191
192 /* Remember the lowest-addressed loadable section we've seen.
193 This function is called via bfd_map_over_sections.
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201 void
202 find_lowest_section (bfd *abfd, asection *sect, void *obj)
203 {
204 asection **lowest = (asection **) obj;
205
206 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
213 && (bfd_section_size (abfd, (*lowest))
214 <= bfd_section_size (abfd, sect)))
215 *lowest = sect;
216 }
217
218 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
219 new object's 'num_sections' field is set to 0; it must be updated
220 by the caller. */
221
222 struct section_addr_info *
223 alloc_section_addr_info (size_t num_sections)
224 {
225 struct section_addr_info *sap;
226 size_t size;
227
228 size = (sizeof (struct section_addr_info)
229 + sizeof (struct other_sections) * (num_sections - 1));
230 sap = (struct section_addr_info *) xmalloc (size);
231 memset (sap, 0, size);
232
233 return sap;
234 }
235
236 /* Build (allocate and populate) a section_addr_info struct from
237 an existing section table. */
238
239 extern struct section_addr_info *
240 build_section_addr_info_from_section_table (const struct target_section *start,
241 const struct target_section *end)
242 {
243 struct section_addr_info *sap;
244 const struct target_section *stp;
245 int oidx;
246
247 sap = alloc_section_addr_info (end - start);
248
249 for (stp = start, oidx = 0; stp != end; stp++)
250 {
251 struct bfd_section *asect = stp->the_bfd_section;
252 bfd *abfd = asect->owner;
253
254 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
255 && oidx < end - start)
256 {
257 sap->other[oidx].addr = stp->addr;
258 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
259 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
260 oidx++;
261 }
262 }
263
264 sap->num_sections = oidx;
265
266 return sap;
267 }
268
269 /* Create a section_addr_info from section offsets in ABFD. */
270
271 static struct section_addr_info *
272 build_section_addr_info_from_bfd (bfd *abfd)
273 {
274 struct section_addr_info *sap;
275 int i;
276 struct bfd_section *sec;
277
278 sap = alloc_section_addr_info (bfd_count_sections (abfd));
279 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
280 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
281 {
282 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
283 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
284 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
285 i++;
286 }
287
288 sap->num_sections = i;
289
290 return sap;
291 }
292
293 /* Create a section_addr_info from section offsets in OBJFILE. */
294
295 struct section_addr_info *
296 build_section_addr_info_from_objfile (const struct objfile *objfile)
297 {
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
305 for (i = 0; i < sap->num_sections; i++)
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312 }
313
314 /* Free all memory allocated by build_section_addr_info_from_section_table. */
315
316 extern void
317 free_section_addr_info (struct section_addr_info *sap)
318 {
319 int idx;
320
321 for (idx = 0; idx < sap->num_sections; idx++)
322 xfree (sap->other[idx].name);
323 xfree (sap);
324 }
325
326 /* Initialize OBJFILE's sect_index_* members. */
327
328 static void
329 init_objfile_sect_indices (struct objfile *objfile)
330 {
331 asection *sect;
332 int i;
333
334 sect = bfd_get_section_by_name (objfile->obfd, ".text");
335 if (sect)
336 objfile->sect_index_text = sect->index;
337
338 sect = bfd_get_section_by_name (objfile->obfd, ".data");
339 if (sect)
340 objfile->sect_index_data = sect->index;
341
342 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
343 if (sect)
344 objfile->sect_index_bss = sect->index;
345
346 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
347 if (sect)
348 objfile->sect_index_rodata = sect->index;
349
350 /* This is where things get really weird... We MUST have valid
351 indices for the various sect_index_* members or gdb will abort.
352 So if for example, there is no ".text" section, we have to
353 accomodate that. First, check for a file with the standard
354 one or two segments. */
355
356 symfile_find_segment_sections (objfile);
357
358 /* Except when explicitly adding symbol files at some address,
359 section_offsets contains nothing but zeros, so it doesn't matter
360 which slot in section_offsets the individual sect_index_* members
361 index into. So if they are all zero, it is safe to just point
362 all the currently uninitialized indices to the first slot. But
363 beware: if this is the main executable, it may be relocated
364 later, e.g. by the remote qOffsets packet, and then this will
365 be wrong! That's why we try segments first. */
366
367 for (i = 0; i < objfile->num_sections; i++)
368 {
369 if (ANOFFSET (objfile->section_offsets, i) != 0)
370 {
371 break;
372 }
373 }
374 if (i == objfile->num_sections)
375 {
376 if (objfile->sect_index_text == -1)
377 objfile->sect_index_text = 0;
378 if (objfile->sect_index_data == -1)
379 objfile->sect_index_data = 0;
380 if (objfile->sect_index_bss == -1)
381 objfile->sect_index_bss = 0;
382 if (objfile->sect_index_rodata == -1)
383 objfile->sect_index_rodata = 0;
384 }
385 }
386
387 /* The arguments to place_section. */
388
389 struct place_section_arg
390 {
391 struct section_offsets *offsets;
392 CORE_ADDR lowest;
393 };
394
395 /* Find a unique offset to use for loadable section SECT if
396 the user did not provide an offset. */
397
398 static void
399 place_section (bfd *abfd, asection *sect, void *obj)
400 {
401 struct place_section_arg *arg = (struct place_section_arg *) obj;
402 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
403 int done;
404 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
405
406 /* We are only interested in allocated sections. */
407 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
408 return;
409
410 /* If the user specified an offset, honor it. */
411 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
412 return;
413
414 /* Otherwise, let's try to find a place for the section. */
415 start_addr = (arg->lowest + align - 1) & -align;
416
417 do {
418 asection *cur_sec;
419
420 done = 1;
421
422 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
423 {
424 int indx = cur_sec->index;
425
426 /* We don't need to compare against ourself. */
427 if (cur_sec == sect)
428 continue;
429
430 /* We can only conflict with allocated sections. */
431 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
432 continue;
433
434 /* If the section offset is 0, either the section has not been placed
435 yet, or it was the lowest section placed (in which case LOWEST
436 will be past its end). */
437 if (offsets[indx] == 0)
438 continue;
439
440 /* If this section would overlap us, then we must move up. */
441 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
442 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
443 {
444 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
445 start_addr = (start_addr + align - 1) & -align;
446 done = 0;
447 break;
448 }
449
450 /* Otherwise, we appear to be OK. So far. */
451 }
452 }
453 while (!done);
454
455 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
456 arg->lowest = start_addr + bfd_get_section_size (sect);
457 }
458
459 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
460 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
461 entries. */
462
463 void
464 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
465 int num_sections,
466 const struct section_addr_info *addrs)
467 {
468 int i;
469
470 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
471
472 /* Now calculate offsets for section that were specified by the caller. */
473 for (i = 0; i < addrs->num_sections; i++)
474 {
475 const struct other_sections *osp;
476
477 osp = &addrs->other[i];
478 if (osp->sectindex == -1)
479 continue;
480
481 /* Record all sections in offsets. */
482 /* The section_offsets in the objfile are here filled in using
483 the BFD index. */
484 section_offsets->offsets[osp->sectindex] = osp->addr;
485 }
486 }
487
488 /* Transform section name S for a name comparison. prelink can split section
489 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
490 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
491 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
492 (`.sbss') section has invalid (increased) virtual address. */
493
494 static const char *
495 addr_section_name (const char *s)
496 {
497 if (strcmp (s, ".dynbss") == 0)
498 return ".bss";
499 if (strcmp (s, ".sdynbss") == 0)
500 return ".sbss";
501
502 return s;
503 }
504
505 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
506 their (name, sectindex) pair. sectindex makes the sort by name stable. */
507
508 static int
509 addrs_section_compar (const void *ap, const void *bp)
510 {
511 const struct other_sections *a = *((struct other_sections **) ap);
512 const struct other_sections *b = *((struct other_sections **) bp);
513 int retval;
514
515 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
516 if (retval)
517 return retval;
518
519 return a->sectindex - b->sectindex;
520 }
521
522 /* Provide sorted array of pointers to sections of ADDRS. The array is
523 terminated by NULL. Caller is responsible to call xfree for it. */
524
525 static struct other_sections **
526 addrs_section_sort (struct section_addr_info *addrs)
527 {
528 struct other_sections **array;
529 int i;
530
531 /* `+ 1' for the NULL terminator. */
532 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
533 for (i = 0; i < addrs->num_sections; i++)
534 array[i] = &addrs->other[i];
535 array[i] = NULL;
536
537 qsort (array, i, sizeof (*array), addrs_section_compar);
538
539 return array;
540 }
541
542 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
543 also SECTINDEXes specific to ABFD there. This function can be used to
544 rebase ADDRS to start referencing different BFD than before. */
545
546 void
547 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
548 {
549 asection *lower_sect;
550 CORE_ADDR lower_offset;
551 int i;
552 struct cleanup *my_cleanup;
553 struct section_addr_info *abfd_addrs;
554 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
555 struct other_sections **addrs_to_abfd_addrs;
556
557 /* Find lowest loadable section to be used as starting point for
558 continguous sections. */
559 lower_sect = NULL;
560 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
561 if (lower_sect == NULL)
562 {
563 warning (_("no loadable sections found in added symbol-file %s"),
564 bfd_get_filename (abfd));
565 lower_offset = 0;
566 }
567 else
568 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
569
570 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
571 in ABFD. Section names are not unique - there can be multiple sections of
572 the same name. Also the sections of the same name do not have to be
573 adjacent to each other. Some sections may be present only in one of the
574 files. Even sections present in both files do not have to be in the same
575 order.
576
577 Use stable sort by name for the sections in both files. Then linearly
578 scan both lists matching as most of the entries as possible. */
579
580 addrs_sorted = addrs_section_sort (addrs);
581 my_cleanup = make_cleanup (xfree, addrs_sorted);
582
583 abfd_addrs = build_section_addr_info_from_bfd (abfd);
584 make_cleanup_free_section_addr_info (abfd_addrs);
585 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
586 make_cleanup (xfree, abfd_addrs_sorted);
587
588 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
589 ABFD_ADDRS_SORTED. */
590
591 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
592 make_cleanup (xfree, addrs_to_abfd_addrs);
593
594 while (*addrs_sorted)
595 {
596 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
597
598 while (*abfd_addrs_sorted
599 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
600 sect_name) < 0)
601 abfd_addrs_sorted++;
602
603 if (*abfd_addrs_sorted
604 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
605 sect_name) == 0)
606 {
607 int index_in_addrs;
608
609 /* Make the found item directly addressable from ADDRS. */
610 index_in_addrs = *addrs_sorted - addrs->other;
611 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
612 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
613
614 /* Never use the same ABFD entry twice. */
615 abfd_addrs_sorted++;
616 }
617
618 addrs_sorted++;
619 }
620
621 /* Calculate offsets for the loadable sections.
622 FIXME! Sections must be in order of increasing loadable section
623 so that contiguous sections can use the lower-offset!!!
624
625 Adjust offsets if the segments are not contiguous.
626 If the section is contiguous, its offset should be set to
627 the offset of the highest loadable section lower than it
628 (the loadable section directly below it in memory).
629 this_offset = lower_offset = lower_addr - lower_orig_addr */
630
631 for (i = 0; i < addrs->num_sections; i++)
632 {
633 struct other_sections *sect = addrs_to_abfd_addrs[i];
634
635 if (sect)
636 {
637 /* This is the index used by BFD. */
638 addrs->other[i].sectindex = sect->sectindex;
639
640 if (addrs->other[i].addr != 0)
641 {
642 addrs->other[i].addr -= sect->addr;
643 lower_offset = addrs->other[i].addr;
644 }
645 else
646 addrs->other[i].addr = lower_offset;
647 }
648 else
649 {
650 /* addr_section_name transformation is not used for SECT_NAME. */
651 const char *sect_name = addrs->other[i].name;
652
653 /* This section does not exist in ABFD, which is normally
654 unexpected and we want to issue a warning.
655
656 However, the ELF prelinker does create a few sections which are
657 marked in the main executable as loadable (they are loaded in
658 memory from the DYNAMIC segment) and yet are not present in
659 separate debug info files. This is fine, and should not cause
660 a warning. Shared libraries contain just the section
661 ".gnu.liblist" but it is not marked as loadable there. There is
662 no other way to identify them than by their name as the sections
663 created by prelink have no special flags.
664
665 For the sections `.bss' and `.sbss' see addr_section_name. */
666
667 if (!(strcmp (sect_name, ".gnu.liblist") == 0
668 || strcmp (sect_name, ".gnu.conflict") == 0
669 || (strcmp (sect_name, ".bss") == 0
670 && i > 0
671 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
672 && addrs_to_abfd_addrs[i - 1] != NULL)
673 || (strcmp (sect_name, ".sbss") == 0
674 && i > 0
675 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
676 && addrs_to_abfd_addrs[i - 1] != NULL)))
677 warning (_("section %s not found in %s"), sect_name,
678 bfd_get_filename (abfd));
679
680 addrs->other[i].addr = 0;
681 addrs->other[i].sectindex = -1;
682 }
683 }
684
685 do_cleanups (my_cleanup);
686 }
687
688 /* Parse the user's idea of an offset for dynamic linking, into our idea
689 of how to represent it for fast symbol reading. This is the default
690 version of the sym_fns.sym_offsets function for symbol readers that
691 don't need to do anything special. It allocates a section_offsets table
692 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
693
694 void
695 default_symfile_offsets (struct objfile *objfile,
696 const struct section_addr_info *addrs)
697 {
698 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
699 objfile->section_offsets = (struct section_offsets *)
700 obstack_alloc (&objfile->objfile_obstack,
701 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702 relative_addr_info_to_section_offsets (objfile->section_offsets,
703 objfile->num_sections, addrs);
704
705 /* For relocatable files, all loadable sections will start at zero.
706 The zero is meaningless, so try to pick arbitrary addresses such
707 that no loadable sections overlap. This algorithm is quadratic,
708 but the number of sections in a single object file is generally
709 small. */
710 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
711 {
712 struct place_section_arg arg;
713 bfd *abfd = objfile->obfd;
714 asection *cur_sec;
715
716 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
717 /* We do not expect this to happen; just skip this step if the
718 relocatable file has a section with an assigned VMA. */
719 if (bfd_section_vma (abfd, cur_sec) != 0)
720 break;
721
722 if (cur_sec == NULL)
723 {
724 CORE_ADDR *offsets = objfile->section_offsets->offsets;
725
726 /* Pick non-overlapping offsets for sections the user did not
727 place explicitly. */
728 arg.offsets = objfile->section_offsets;
729 arg.lowest = 0;
730 bfd_map_over_sections (objfile->obfd, place_section, &arg);
731
732 /* Correctly filling in the section offsets is not quite
733 enough. Relocatable files have two properties that
734 (most) shared objects do not:
735
736 - Their debug information will contain relocations. Some
737 shared libraries do also, but many do not, so this can not
738 be assumed.
739
740 - If there are multiple code sections they will be loaded
741 at different relative addresses in memory than they are
742 in the objfile, since all sections in the file will start
743 at address zero.
744
745 Because GDB has very limited ability to map from an
746 address in debug info to the correct code section,
747 it relies on adding SECT_OFF_TEXT to things which might be
748 code. If we clear all the section offsets, and set the
749 section VMAs instead, then symfile_relocate_debug_section
750 will return meaningful debug information pointing at the
751 correct sections.
752
753 GDB has too many different data structures for section
754 addresses - a bfd, objfile, and so_list all have section
755 tables, as does exec_ops. Some of these could probably
756 be eliminated. */
757
758 for (cur_sec = abfd->sections; cur_sec != NULL;
759 cur_sec = cur_sec->next)
760 {
761 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
762 continue;
763
764 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
765 exec_set_section_address (bfd_get_filename (abfd),
766 cur_sec->index,
767 offsets[cur_sec->index]);
768 offsets[cur_sec->index] = 0;
769 }
770 }
771 }
772
773 /* Remember the bfd indexes for the .text, .data, .bss and
774 .rodata sections. */
775 init_objfile_sect_indices (objfile);
776 }
777
778 /* Divide the file into segments, which are individual relocatable units.
779 This is the default version of the sym_fns.sym_segments function for
780 symbol readers that do not have an explicit representation of segments.
781 It assumes that object files do not have segments, and fully linked
782 files have a single segment. */
783
784 struct symfile_segment_data *
785 default_symfile_segments (bfd *abfd)
786 {
787 int num_sections, i;
788 asection *sect;
789 struct symfile_segment_data *data;
790 CORE_ADDR low, high;
791
792 /* Relocatable files contain enough information to position each
793 loadable section independently; they should not be relocated
794 in segments. */
795 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
796 return NULL;
797
798 /* Make sure there is at least one loadable section in the file. */
799 for (sect = abfd->sections; sect != NULL; sect = sect->next)
800 {
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 break;
805 }
806 if (sect == NULL)
807 return NULL;
808
809 low = bfd_get_section_vma (abfd, sect);
810 high = low + bfd_get_section_size (sect);
811
812 data = XCNEW (struct symfile_segment_data);
813 data->num_segments = 1;
814 data->segment_bases = XCNEW (CORE_ADDR);
815 data->segment_sizes = XCNEW (CORE_ADDR);
816
817 num_sections = bfd_count_sections (abfd);
818 data->segment_info = XCNEWVEC (int, num_sections);
819
820 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
821 {
822 CORE_ADDR vma;
823
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 vma = bfd_get_section_vma (abfd, sect);
828 if (vma < low)
829 low = vma;
830 if (vma + bfd_get_section_size (sect) > high)
831 high = vma + bfd_get_section_size (sect);
832
833 data->segment_info[i] = 1;
834 }
835
836 data->segment_bases[0] = low;
837 data->segment_sizes[0] = high - low;
838
839 return data;
840 }
841
842 /* This is a convenience function to call sym_read for OBJFILE and
843 possibly force the partial symbols to be read. */
844
845 static void
846 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
847 {
848 (*objfile->sf->sym_read) (objfile, add_flags);
849 objfile->per_bfd->minsyms_read = true;
850
851 /* find_separate_debug_file_in_section should be called only if there is
852 single binary with no existing separate debug info file. */
853 if (!objfile_has_partial_symbols (objfile)
854 && objfile->separate_debug_objfile == NULL
855 && objfile->separate_debug_objfile_backlink == NULL)
856 {
857 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
858
859 if (abfd != NULL)
860 {
861 /* find_separate_debug_file_in_section uses the same filename for the
862 virtual section-as-bfd like the bfd filename containing the
863 section. Therefore use also non-canonical name form for the same
864 file containing the section. */
865 symbol_file_add_separate (abfd.get (), objfile->original_name,
866 add_flags, objfile);
867 }
868 }
869 if ((add_flags & SYMFILE_NO_READ) == 0)
870 require_partial_symbols (objfile, 0);
871 }
872
873 /* Initialize entry point information for this objfile. */
874
875 static void
876 init_entry_point_info (struct objfile *objfile)
877 {
878 struct entry_info *ei = &objfile->per_bfd->ei;
879
880 if (ei->initialized)
881 return;
882 ei->initialized = 1;
883
884 /* Save startup file's range of PC addresses to help blockframe.c
885 decide where the bottom of the stack is. */
886
887 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
888 {
889 /* Executable file -- record its entry point so we'll recognize
890 the startup file because it contains the entry point. */
891 ei->entry_point = bfd_get_start_address (objfile->obfd);
892 ei->entry_point_p = 1;
893 }
894 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
895 && bfd_get_start_address (objfile->obfd) != 0)
896 {
897 /* Some shared libraries may have entry points set and be
898 runnable. There's no clear way to indicate this, so just check
899 for values other than zero. */
900 ei->entry_point = bfd_get_start_address (objfile->obfd);
901 ei->entry_point_p = 1;
902 }
903 else
904 {
905 /* Examination of non-executable.o files. Short-circuit this stuff. */
906 ei->entry_point_p = 0;
907 }
908
909 if (ei->entry_point_p)
910 {
911 struct obj_section *osect;
912 CORE_ADDR entry_point = ei->entry_point;
913 int found;
914
915 /* Make certain that the address points at real code, and not a
916 function descriptor. */
917 entry_point
918 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
919 entry_point,
920 &current_target);
921
922 /* Remove any ISA markers, so that this matches entries in the
923 symbol table. */
924 ei->entry_point
925 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
926
927 found = 0;
928 ALL_OBJFILE_OSECTIONS (objfile, osect)
929 {
930 struct bfd_section *sect = osect->the_bfd_section;
931
932 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
933 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
934 + bfd_get_section_size (sect)))
935 {
936 ei->the_bfd_section_index
937 = gdb_bfd_section_index (objfile->obfd, sect);
938 found = 1;
939 break;
940 }
941 }
942
943 if (!found)
944 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
945 }
946 }
947
948 /* Process a symbol file, as either the main file or as a dynamically
949 loaded file.
950
951 This function does not set the OBJFILE's entry-point info.
952
953 OBJFILE is where the symbols are to be read from.
954
955 ADDRS is the list of section load addresses. If the user has given
956 an 'add-symbol-file' command, then this is the list of offsets and
957 addresses he or she provided as arguments to the command; or, if
958 we're handling a shared library, these are the actual addresses the
959 sections are loaded at, according to the inferior's dynamic linker
960 (as gleaned by GDB's shared library code). We convert each address
961 into an offset from the section VMA's as it appears in the object
962 file, and then call the file's sym_offsets function to convert this
963 into a format-specific offset table --- a `struct section_offsets'.
964
965 ADD_FLAGS encodes verbosity level, whether this is main symbol or
966 an extra symbol file such as dynamically loaded code, and wether
967 breakpoint reset should be deferred. */
968
969 static void
970 syms_from_objfile_1 (struct objfile *objfile,
971 struct section_addr_info *addrs,
972 symfile_add_flags add_flags)
973 {
974 struct section_addr_info *local_addr = NULL;
975 struct cleanup *old_chain;
976 const int mainline = add_flags & SYMFILE_MAINLINE;
977
978 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
979
980 if (objfile->sf == NULL)
981 {
982 /* No symbols to load, but we still need to make sure
983 that the section_offsets table is allocated. */
984 int num_sections = gdb_bfd_count_sections (objfile->obfd);
985 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
986
987 objfile->num_sections = num_sections;
988 objfile->section_offsets
989 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
990 size);
991 memset (objfile->section_offsets, 0, size);
992 return;
993 }
994
995 /* Make sure that partially constructed symbol tables will be cleaned up
996 if an error occurs during symbol reading. */
997 old_chain = make_cleanup (null_cleanup, NULL);
998 std::unique_ptr<struct objfile> objfile_holder (objfile);
999
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
1002 no load address was specified. */
1003 if (! addrs)
1004 {
1005 local_addr = alloc_section_addr_info (1);
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
1010 if (mainline)
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
1013 will be cleaned up if an error occurs during symbol reading. */
1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
1020 delete symfile_objfile;
1021 gdb_assert (symfile_objfile == NULL);
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
1028
1029 (*objfile->sf->sym_new_init) (objfile);
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
1034 and assume that <addr> is where that got loaded.
1035
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
1038 if (addrs->num_sections > 0)
1039 addr_info_make_relative (addrs, objfile->obfd);
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
1043 initial symbol reading for this file. */
1044
1045 (*objfile->sf->sym_init) (objfile);
1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1047
1048 (*objfile->sf->sym_offsets) (objfile, addrs);
1049
1050 read_symbols (objfile, add_flags);
1051
1052 /* Discard cleanups as symbol reading was successful. */
1053
1054 objfile_holder.release ();
1055 discard_cleanups (old_chain);
1056 xfree (local_addr);
1057 }
1058
1059 /* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
1062 static void
1063 syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
1065 symfile_add_flags add_flags)
1066 {
1067 syms_from_objfile_1 (objfile, addrs, add_flags);
1068 init_entry_point_info (objfile);
1069 }
1070
1071 /* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1074
1075 static void
1076 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1077 {
1078 /* If this is the main symbol file we have to clean up all users of the
1079 old main symbol file. Otherwise it is sufficient to fixup all the
1080 breakpoints that may have been redefined by this symbol file. */
1081 if (add_flags & SYMFILE_MAINLINE)
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
1086 clear_symtab_users (add_flags);
1087 }
1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1089 {
1090 breakpoint_re_set ();
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1095 }
1096
1097 /* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1101 A new reference is acquired by this function.
1102
1103 For NAME description see the objfile constructor.
1104
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
1107
1108 ADDRS is as described for syms_from_objfile_1, above.
1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1110
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
1114 Upon success, returns a pointer to the objfile that was added.
1115 Upon failure, jumps back to command level (never returns). */
1116
1117 static struct objfile *
1118 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
1120 struct section_addr_info *addrs,
1121 objfile_flags flags, struct objfile *parent)
1122 {
1123 struct objfile *objfile;
1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
1125 const int mainline = add_flags & SYMFILE_MAINLINE;
1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
1129
1130 if (readnow_symbol_files)
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
1135 else if (readnever_symbol_files
1136 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1137 {
1138 flags |= OBJF_READNEVER;
1139 add_flags |= SYMFILE_NO_READ;
1140 }
1141
1142 /* Give user a chance to burp if we'd be
1143 interactively wiping out any existing symbols. */
1144
1145 if ((have_full_symbols () || have_partial_symbols ())
1146 && mainline
1147 && from_tty
1148 && !query (_("Load new symbol table from \"%s\"? "), name))
1149 error (_("Not confirmed."));
1150
1151 if (mainline)
1152 flags |= OBJF_MAINLINE;
1153 objfile = new struct objfile (abfd, name, flags);
1154
1155 if (parent)
1156 add_separate_debug_objfile (objfile, parent);
1157
1158 /* We either created a new mapped symbol table, mapped an existing
1159 symbol table file which has not had initial symbol reading
1160 performed, or need to read an unmapped symbol table. */
1161 if (should_print)
1162 {
1163 if (deprecated_pre_add_symbol_hook)
1164 deprecated_pre_add_symbol_hook (name);
1165 else
1166 {
1167 printf_unfiltered (_("Reading symbols from %s..."), name);
1168 wrap_here ("");
1169 gdb_flush (gdb_stdout);
1170 }
1171 }
1172 syms_from_objfile (objfile, addrs, add_flags);
1173
1174 /* We now have at least a partial symbol table. Check to see if the
1175 user requested that all symbols be read on initial access via either
1176 the gdb startup command line or on a per symbol file basis. Expand
1177 all partial symbol tables for this objfile if so. */
1178
1179 if ((flags & OBJF_READNOW))
1180 {
1181 if (should_print)
1182 {
1183 printf_unfiltered (_("expanding to full symbols..."));
1184 wrap_here ("");
1185 gdb_flush (gdb_stdout);
1186 }
1187
1188 if (objfile->sf)
1189 objfile->sf->qf->expand_all_symtabs (objfile);
1190 }
1191
1192 if (should_print && !objfile_has_symbols (objfile))
1193 {
1194 wrap_here ("");
1195 printf_unfiltered (_("(no debugging symbols found)..."));
1196 wrap_here ("");
1197 }
1198
1199 if (should_print)
1200 {
1201 if (deprecated_post_add_symbol_hook)
1202 deprecated_post_add_symbol_hook ();
1203 else
1204 printf_unfiltered (_("done.\n"));
1205 }
1206
1207 /* We print some messages regardless of whether 'from_tty ||
1208 info_verbose' is true, so make sure they go out at the right
1209 time. */
1210 gdb_flush (gdb_stdout);
1211
1212 if (objfile->sf == NULL)
1213 {
1214 observer_notify_new_objfile (objfile);
1215 return objfile; /* No symbols. */
1216 }
1217
1218 finish_new_objfile (objfile, add_flags);
1219
1220 observer_notify_new_objfile (objfile);
1221
1222 bfd_cache_close_all ();
1223 return (objfile);
1224 }
1225
1226 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1227 see the objfile constructor. */
1228
1229 void
1230 symbol_file_add_separate (bfd *bfd, const char *name,
1231 symfile_add_flags symfile_flags,
1232 struct objfile *objfile)
1233 {
1234 struct section_addr_info *sap;
1235 struct cleanup *my_cleanup;
1236
1237 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1238 because sections of BFD may not match sections of OBJFILE and because
1239 vma may have been modified by tools such as prelink. */
1240 sap = build_section_addr_info_from_objfile (objfile);
1241 my_cleanup = make_cleanup_free_section_addr_info (sap);
1242
1243 symbol_file_add_with_addrs
1244 (bfd, name, symfile_flags, sap,
1245 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1246 | OBJF_USERLOADED),
1247 objfile);
1248
1249 do_cleanups (my_cleanup);
1250 }
1251
1252 /* Process the symbol file ABFD, as either the main file or as a
1253 dynamically loaded file.
1254 See symbol_file_add_with_addrs's comments for details. */
1255
1256 struct objfile *
1257 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1258 symfile_add_flags add_flags,
1259 struct section_addr_info *addrs,
1260 objfile_flags flags, struct objfile *parent)
1261 {
1262 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1263 parent);
1264 }
1265
1266 /* Process a symbol file, as either the main file or as a dynamically
1267 loaded file. See symbol_file_add_with_addrs's comments for details. */
1268
1269 struct objfile *
1270 symbol_file_add (const char *name, symfile_add_flags add_flags,
1271 struct section_addr_info *addrs, objfile_flags flags)
1272 {
1273 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1274
1275 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1276 flags, NULL);
1277 }
1278
1279 /* Call symbol_file_add() with default values and update whatever is
1280 affected by the loading of a new main().
1281 Used when the file is supplied in the gdb command line
1282 and by some targets with special loading requirements.
1283 The auxiliary function, symbol_file_add_main_1(), has the flags
1284 argument for the switches that can only be specified in the symbol_file
1285 command itself. */
1286
1287 void
1288 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1289 {
1290 symbol_file_add_main_1 (args, add_flags, 0);
1291 }
1292
1293 static void
1294 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1295 objfile_flags flags)
1296 {
1297 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1298
1299 symbol_file_add (args, add_flags, NULL, flags);
1300
1301 /* Getting new symbols may change our opinion about
1302 what is frameless. */
1303 reinit_frame_cache ();
1304
1305 if ((add_flags & SYMFILE_NO_READ) == 0)
1306 set_initial_language ();
1307 }
1308
1309 void
1310 symbol_file_clear (int from_tty)
1311 {
1312 if ((have_full_symbols () || have_partial_symbols ())
1313 && from_tty
1314 && (symfile_objfile
1315 ? !query (_("Discard symbol table from `%s'? "),
1316 objfile_name (symfile_objfile))
1317 : !query (_("Discard symbol table? "))))
1318 error (_("Not confirmed."));
1319
1320 /* solib descriptors may have handles to objfiles. Wipe them before their
1321 objfiles get stale by free_all_objfiles. */
1322 no_shared_libraries (NULL, from_tty);
1323
1324 free_all_objfiles ();
1325
1326 gdb_assert (symfile_objfile == NULL);
1327 if (from_tty)
1328 printf_unfiltered (_("No symbol file now.\n"));
1329 }
1330
1331 /* See symfile.h. */
1332
1333 int separate_debug_file_debug = 0;
1334
1335 static int
1336 separate_debug_file_exists (const char *name, unsigned long crc,
1337 struct objfile *parent_objfile)
1338 {
1339 unsigned long file_crc;
1340 int file_crc_p;
1341 struct stat parent_stat, abfd_stat;
1342 int verified_as_different;
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1348 the separate debug infos with the same basename can exist. */
1349
1350 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1351 return 0;
1352
1353 if (separate_debug_file_debug)
1354 printf_unfiltered (_(" Trying %s\n"), name);
1355
1356 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1357
1358 if (abfd == NULL)
1359 return 0;
1360
1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
1365 meaningful st_dev.) Files accessed from gdbservers that do not
1366 support the vFile:fstat packet will also have st_ino set to zero.
1367 Do not indicate a duplicate library in either case. While there
1368 is no guarantee that a system that provides meaningful inode
1369 numbers will never set st_ino to zero, this is merely an
1370 optimization, so we do not need to worry about false negatives. */
1371
1372 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1373 && abfd_stat.st_ino != 0
1374 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1375 {
1376 if (abfd_stat.st_dev == parent_stat.st_dev
1377 && abfd_stat.st_ino == parent_stat.st_ino)
1378 return 0;
1379 verified_as_different = 1;
1380 }
1381 else
1382 verified_as_different = 0;
1383
1384 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1385
1386 if (!file_crc_p)
1387 return 0;
1388
1389 if (crc != file_crc)
1390 {
1391 unsigned long parent_crc;
1392
1393 /* If the files could not be verified as different with
1394 bfd_stat then we need to calculate the parent's CRC
1395 to verify whether the files are different or not. */
1396
1397 if (!verified_as_different)
1398 {
1399 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1400 return 0;
1401 }
1402
1403 if (verified_as_different || parent_crc != file_crc)
1404 warning (_("the debug information found in \"%s\""
1405 " does not match \"%s\" (CRC mismatch).\n"),
1406 name, objfile_name (parent_objfile));
1407
1408 return 0;
1409 }
1410
1411 return 1;
1412 }
1413
1414 char *debug_file_directory = NULL;
1415 static void
1416 show_debug_file_directory (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c, const char *value)
1418 {
1419 fprintf_filtered (file,
1420 _("The directory where separate debug "
1421 "symbols are searched for is \"%s\".\n"),
1422 value);
1423 }
1424
1425 #if ! defined (DEBUG_SUBDIRECTORY)
1426 #define DEBUG_SUBDIRECTORY ".debug"
1427 #endif
1428
1429 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1430 where the original file resides (may not be the same as
1431 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1432 looking for. CANON_DIR is the "realpath" form of DIR.
1433 DIR must contain a trailing '/'.
1434 Returns the path of the file with separate debug info, of NULL. */
1435
1436 static char *
1437 find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
1441 {
1442 char *debugfile;
1443 int i;
1444
1445 if (separate_debug_file_debug)
1446 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1447 "%s\n"), objfile_name (objfile));
1448
1449 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1450 i = strlen (dir);
1451 if (canon_dir != NULL && strlen (canon_dir) > i)
1452 i = strlen (canon_dir);
1453
1454 debugfile
1455 = (char *) xmalloc (strlen (debug_file_directory) + 1
1456 + i
1457 + strlen (DEBUG_SUBDIRECTORY)
1458 + strlen ("/")
1459 + strlen (debuglink)
1460 + 1);
1461
1462 /* First try in the same directory as the original file. */
1463 strcpy (debugfile, dir);
1464 strcat (debugfile, debuglink);
1465
1466 if (separate_debug_file_exists (debugfile, crc32, objfile))
1467 return debugfile;
1468
1469 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1470 strcpy (debugfile, dir);
1471 strcat (debugfile, DEBUG_SUBDIRECTORY);
1472 strcat (debugfile, "/");
1473 strcat (debugfile, debuglink);
1474
1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1476 return debugfile;
1477
1478 /* Then try in the global debugfile directories.
1479
1480 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1481 cause "/..." lookups. */
1482
1483 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1484 = dirnames_to_char_ptr_vec (debug_file_directory);
1485
1486 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1487 {
1488 strcpy (debugfile, debugdir.get ());
1489 strcat (debugfile, "/");
1490 strcat (debugfile, dir);
1491 strcat (debugfile, debuglink);
1492
1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1494 return debugfile;
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
1500 strlen (gdb_sysroot)) == 0
1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1502 {
1503 strcpy (debugfile, debugdir.get ());
1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1505 strcat (debugfile, "/");
1506 strcat (debugfile, debuglink);
1507
1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
1509 return debugfile;
1510 }
1511 }
1512
1513 xfree (debugfile);
1514 return NULL;
1515 }
1516
1517 /* Modify PATH to contain only "[/]directory/" part of PATH.
1518 If there were no directory separators in PATH, PATH will be empty
1519 string on return. */
1520
1521 static void
1522 terminate_after_last_dir_separator (char *path)
1523 {
1524 int i;
1525
1526 /* Strip off the final filename part, leaving the directory name,
1527 followed by a slash. The directory can be relative or absolute. */
1528 for (i = strlen(path) - 1; i >= 0; i--)
1529 if (IS_DIR_SEPARATOR (path[i]))
1530 break;
1531
1532 /* If I is -1 then no directory is present there and DIR will be "". */
1533 path[i + 1] = '\0';
1534 }
1535
1536 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1537 Returns pathname, or NULL. */
1538
1539 char *
1540 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1541 {
1542 char *debugfile;
1543 unsigned long crc32;
1544
1545 gdb::unique_xmalloc_ptr<char> debuglink
1546 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1547
1548 if (debuglink == NULL)
1549 {
1550 /* There's no separate debug info, hence there's no way we could
1551 load it => no warning. */
1552 return NULL;
1553 }
1554
1555 std::string dir = objfile_name (objfile);
1556 terminate_after_last_dir_separator (&dir[0]);
1557 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1558
1559 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1560 debuglink.get (), crc32, objfile);
1561
1562 if (debugfile == NULL)
1563 {
1564 /* For PR gdb/9538, try again with realpath (if different from the
1565 original). */
1566
1567 struct stat st_buf;
1568
1569 if (lstat (objfile_name (objfile), &st_buf) == 0
1570 && S_ISLNK (st_buf.st_mode))
1571 {
1572 gdb::unique_xmalloc_ptr<char> symlink_dir
1573 (lrealpath (objfile_name (objfile)));
1574 if (symlink_dir != NULL)
1575 {
1576 terminate_after_last_dir_separator (symlink_dir.get ());
1577 if (dir != symlink_dir.get ())
1578 {
1579 /* Different directory, so try using it. */
1580 debugfile = find_separate_debug_file (symlink_dir.get (),
1581 symlink_dir.get (),
1582 debuglink.get (),
1583 crc32,
1584 objfile);
1585 }
1586 }
1587 }
1588 }
1589
1590 return debugfile;
1591 }
1592
1593 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1594 simultaneously. */
1595
1596 static void
1597 validate_readnow_readnever (objfile_flags flags)
1598 {
1599 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1600 error (_("-readnow and -readnever cannot be used simultaneously"));
1601 }
1602
1603 /* This is the symbol-file command. Read the file, analyze its
1604 symbols, and add a struct symtab to a symtab list. The syntax of
1605 the command is rather bizarre:
1606
1607 1. The function buildargv implements various quoting conventions
1608 which are undocumented and have little or nothing in common with
1609 the way things are quoted (or not quoted) elsewhere in GDB.
1610
1611 2. Options are used, which are not generally used in GDB (perhaps
1612 "set mapped on", "set readnow on" would be better)
1613
1614 3. The order of options matters, which is contrary to GNU
1615 conventions (because it is confusing and inconvenient). */
1616
1617 void
1618 symbol_file_command (const char *args, int from_tty)
1619 {
1620 dont_repeat ();
1621
1622 if (args == NULL)
1623 {
1624 symbol_file_clear (from_tty);
1625 }
1626 else
1627 {
1628 objfile_flags flags = OBJF_USERLOADED;
1629 symfile_add_flags add_flags = 0;
1630 char *name = NULL;
1631 bool stop_processing_options = false;
1632 int idx;
1633 char *arg;
1634
1635 if (from_tty)
1636 add_flags |= SYMFILE_VERBOSE;
1637
1638 gdb_argv built_argv (args);
1639 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1640 {
1641 if (stop_processing_options || *arg != '-')
1642 {
1643 if (name == NULL)
1644 name = arg;
1645 else
1646 error (_("Unrecognized argument \"%s\""), arg);
1647 }
1648 else if (strcmp (arg, "-readnow") == 0)
1649 flags |= OBJF_READNOW;
1650 else if (strcmp (arg, "-readnever") == 0)
1651 flags |= OBJF_READNEVER;
1652 else if (strcmp (arg, "--") == 0)
1653 stop_processing_options = true;
1654 else
1655 error (_("Unrecognized argument \"%s\""), arg);
1656 }
1657
1658 if (name == NULL)
1659 error (_("no symbol file name was specified"));
1660
1661 validate_readnow_readnever (flags);
1662
1663 symbol_file_add_main_1 (name, add_flags, flags);
1664 }
1665 }
1666
1667 /* Set the initial language.
1668
1669 FIXME: A better solution would be to record the language in the
1670 psymtab when reading partial symbols, and then use it (if known) to
1671 set the language. This would be a win for formats that encode the
1672 language in an easily discoverable place, such as DWARF. For
1673 stabs, we can jump through hoops looking for specially named
1674 symbols or try to intuit the language from the specific type of
1675 stabs we find, but we can't do that until later when we read in
1676 full symbols. */
1677
1678 void
1679 set_initial_language (void)
1680 {
1681 enum language lang = main_language ();
1682
1683 if (lang == language_unknown)
1684 {
1685 char *name = main_name ();
1686 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1687
1688 if (sym != NULL)
1689 lang = SYMBOL_LANGUAGE (sym);
1690 }
1691
1692 if (lang == language_unknown)
1693 {
1694 /* Make C the default language */
1695 lang = language_c;
1696 }
1697
1698 set_language (lang);
1699 expected_language = current_language; /* Don't warn the user. */
1700 }
1701
1702 /* Open the file specified by NAME and hand it off to BFD for
1703 preliminary analysis. Return a newly initialized bfd *, which
1704 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1705 absolute). In case of trouble, error() is called. */
1706
1707 gdb_bfd_ref_ptr
1708 symfile_bfd_open (const char *name)
1709 {
1710 int desc = -1;
1711
1712 gdb::unique_xmalloc_ptr<char> absolute_name;
1713 if (!is_target_filename (name))
1714 {
1715 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1716
1717 /* Look down path for it, allocate 2nd new malloc'd copy. */
1718 desc = openp (getenv ("PATH"),
1719 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1720 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1721 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1722 if (desc < 0)
1723 {
1724 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1725
1726 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1727 desc = openp (getenv ("PATH"),
1728 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1729 exename, O_RDONLY | O_BINARY, &absolute_name);
1730 }
1731 #endif
1732 if (desc < 0)
1733 perror_with_name (expanded_name.get ());
1734
1735 name = absolute_name.get ();
1736 }
1737
1738 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1739 if (sym_bfd == NULL)
1740 error (_("`%s': can't open to read symbols: %s."), name,
1741 bfd_errmsg (bfd_get_error ()));
1742
1743 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1744 bfd_set_cacheable (sym_bfd.get (), 1);
1745
1746 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1747 error (_("`%s': can't read symbols: %s."), name,
1748 bfd_errmsg (bfd_get_error ()));
1749
1750 return sym_bfd;
1751 }
1752
1753 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1754 the section was not found. */
1755
1756 int
1757 get_section_index (struct objfile *objfile, const char *section_name)
1758 {
1759 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1760
1761 if (sect)
1762 return sect->index;
1763 else
1764 return -1;
1765 }
1766
1767 /* Link SF into the global symtab_fns list.
1768 FLAVOUR is the file format that SF handles.
1769 Called on startup by the _initialize routine in each object file format
1770 reader, to register information about each format the reader is prepared
1771 to handle. */
1772
1773 void
1774 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1775 {
1776 symtab_fns.emplace_back (flavour, sf);
1777 }
1778
1779 /* Initialize OBJFILE to read symbols from its associated BFD. It
1780 either returns or calls error(). The result is an initialized
1781 struct sym_fns in the objfile structure, that contains cached
1782 information about the symbol file. */
1783
1784 static const struct sym_fns *
1785 find_sym_fns (bfd *abfd)
1786 {
1787 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1788
1789 if (our_flavour == bfd_target_srec_flavour
1790 || our_flavour == bfd_target_ihex_flavour
1791 || our_flavour == bfd_target_tekhex_flavour)
1792 return NULL; /* No symbols. */
1793
1794 for (const registered_sym_fns &rsf : symtab_fns)
1795 if (our_flavour == rsf.sym_flavour)
1796 return rsf.sym_fns;
1797
1798 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1799 bfd_get_target (abfd));
1800 }
1801 \f
1802
1803 /* This function runs the load command of our current target. */
1804
1805 static void
1806 load_command (const char *arg, int from_tty)
1807 {
1808 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1809
1810 dont_repeat ();
1811
1812 /* The user might be reloading because the binary has changed. Take
1813 this opportunity to check. */
1814 reopen_exec_file ();
1815 reread_symbols ();
1816
1817 if (arg == NULL)
1818 {
1819 const char *parg;
1820 int count = 0;
1821
1822 parg = arg = get_exec_file (1);
1823
1824 /* Count how many \ " ' tab space there are in the name. */
1825 while ((parg = strpbrk (parg, "\\\"'\t ")))
1826 {
1827 parg++;
1828 count++;
1829 }
1830
1831 if (count)
1832 {
1833 /* We need to quote this string so buildargv can pull it apart. */
1834 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1835 char *ptemp = temp;
1836 const char *prev;
1837
1838 make_cleanup (xfree, temp);
1839
1840 prev = parg = arg;
1841 while ((parg = strpbrk (parg, "\\\"'\t ")))
1842 {
1843 strncpy (ptemp, prev, parg - prev);
1844 ptemp += parg - prev;
1845 prev = parg++;
1846 *ptemp++ = '\\';
1847 }
1848 strcpy (ptemp, prev);
1849
1850 arg = temp;
1851 }
1852 }
1853
1854 target_load (arg, from_tty);
1855
1856 /* After re-loading the executable, we don't really know which
1857 overlays are mapped any more. */
1858 overlay_cache_invalid = 1;
1859
1860 do_cleanups (cleanup);
1861 }
1862
1863 /* This version of "load" should be usable for any target. Currently
1864 it is just used for remote targets, not inftarg.c or core files,
1865 on the theory that only in that case is it useful.
1866
1867 Avoiding xmodem and the like seems like a win (a) because we don't have
1868 to worry about finding it, and (b) On VMS, fork() is very slow and so
1869 we don't want to run a subprocess. On the other hand, I'm not sure how
1870 performance compares. */
1871
1872 static int validate_download = 0;
1873
1874 /* Callback service function for generic_load (bfd_map_over_sections). */
1875
1876 static void
1877 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1878 {
1879 bfd_size_type *sum = (bfd_size_type *) data;
1880
1881 *sum += bfd_get_section_size (asec);
1882 }
1883
1884 /* Opaque data for load_progress. */
1885 struct load_progress_data
1886 {
1887 /* Cumulative data. */
1888 unsigned long write_count = 0;
1889 unsigned long data_count = 0;
1890 bfd_size_type total_size = 0;
1891 };
1892
1893 /* Opaque data for load_progress for a single section. */
1894 struct load_progress_section_data
1895 {
1896 load_progress_section_data (load_progress_data *cumulative_,
1897 const char *section_name_, ULONGEST section_size_,
1898 CORE_ADDR lma_, gdb_byte *buffer_)
1899 : cumulative (cumulative_), section_name (section_name_),
1900 section_size (section_size_), lma (lma_), buffer (buffer_)
1901 {}
1902
1903 struct load_progress_data *cumulative;
1904
1905 /* Per-section data. */
1906 const char *section_name;
1907 ULONGEST section_sent = 0;
1908 ULONGEST section_size;
1909 CORE_ADDR lma;
1910 gdb_byte *buffer;
1911 };
1912
1913 /* Opaque data for load_section_callback. */
1914 struct load_section_data
1915 {
1916 load_section_data (load_progress_data *progress_data_)
1917 : progress_data (progress_data_)
1918 {}
1919
1920 ~load_section_data ()
1921 {
1922 for (auto &&request : requests)
1923 {
1924 xfree (request.data);
1925 delete ((load_progress_section_data *) request.baton);
1926 }
1927 }
1928
1929 CORE_ADDR load_offset = 0;
1930 struct load_progress_data *progress_data;
1931 std::vector<struct memory_write_request> requests;
1932 };
1933
1934 /* Target write callback routine for progress reporting. */
1935
1936 static void
1937 load_progress (ULONGEST bytes, void *untyped_arg)
1938 {
1939 struct load_progress_section_data *args
1940 = (struct load_progress_section_data *) untyped_arg;
1941 struct load_progress_data *totals;
1942
1943 if (args == NULL)
1944 /* Writing padding data. No easy way to get at the cumulative
1945 stats, so just ignore this. */
1946 return;
1947
1948 totals = args->cumulative;
1949
1950 if (bytes == 0 && args->section_sent == 0)
1951 {
1952 /* The write is just starting. Let the user know we've started
1953 this section. */
1954 current_uiout->message ("Loading section %s, size %s lma %s\n",
1955 args->section_name,
1956 hex_string (args->section_size),
1957 paddress (target_gdbarch (), args->lma));
1958 return;
1959 }
1960
1961 if (validate_download)
1962 {
1963 /* Broken memories and broken monitors manifest themselves here
1964 when bring new computers to life. This doubles already slow
1965 downloads. */
1966 /* NOTE: cagney/1999-10-18: A more efficient implementation
1967 might add a verify_memory() method to the target vector and
1968 then use that. remote.c could implement that method using
1969 the ``qCRC'' packet. */
1970 gdb::byte_vector check (bytes);
1971
1972 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1973 error (_("Download verify read failed at %s"),
1974 paddress (target_gdbarch (), args->lma));
1975 if (memcmp (args->buffer, check.data (), bytes) != 0)
1976 error (_("Download verify compare failed at %s"),
1977 paddress (target_gdbarch (), args->lma));
1978 }
1979 totals->data_count += bytes;
1980 args->lma += bytes;
1981 args->buffer += bytes;
1982 totals->write_count += 1;
1983 args->section_sent += bytes;
1984 if (check_quit_flag ()
1985 || (deprecated_ui_load_progress_hook != NULL
1986 && deprecated_ui_load_progress_hook (args->section_name,
1987 args->section_sent)))
1988 error (_("Canceled the download"));
1989
1990 if (deprecated_show_load_progress != NULL)
1991 deprecated_show_load_progress (args->section_name,
1992 args->section_sent,
1993 args->section_size,
1994 totals->data_count,
1995 totals->total_size);
1996 }
1997
1998 /* Callback service function for generic_load (bfd_map_over_sections). */
1999
2000 static void
2001 load_section_callback (bfd *abfd, asection *asec, void *data)
2002 {
2003 struct load_section_data *args = (struct load_section_data *) data;
2004 bfd_size_type size = bfd_get_section_size (asec);
2005 const char *sect_name = bfd_get_section_name (abfd, asec);
2006
2007 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2008 return;
2009
2010 if (size == 0)
2011 return;
2012
2013 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
2014 ULONGEST end = begin + size;
2015 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2016 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2017
2018 load_progress_section_data *section_data
2019 = new load_progress_section_data (args->progress_data, sect_name, size,
2020 begin, buffer);
2021
2022 args->requests.emplace_back (begin, end, buffer, section_data);
2023 }
2024
2025 static void print_transfer_performance (struct ui_file *stream,
2026 unsigned long data_count,
2027 unsigned long write_count,
2028 std::chrono::steady_clock::duration d);
2029
2030 void
2031 generic_load (const char *args, int from_tty)
2032 {
2033 struct load_progress_data total_progress;
2034 struct load_section_data cbdata (&total_progress);
2035 struct ui_out *uiout = current_uiout;
2036
2037 if (args == NULL)
2038 error_no_arg (_("file to load"));
2039
2040 gdb_argv argv (args);
2041
2042 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2043
2044 if (argv[1] != NULL)
2045 {
2046 const char *endptr;
2047
2048 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2049
2050 /* If the last word was not a valid number then
2051 treat it as a file name with spaces in. */
2052 if (argv[1] == endptr)
2053 error (_("Invalid download offset:%s."), argv[1]);
2054
2055 if (argv[2] != NULL)
2056 error (_("Too many parameters."));
2057 }
2058
2059 /* Open the file for loading. */
2060 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2061 if (loadfile_bfd == NULL)
2062 perror_with_name (filename.get ());
2063
2064 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2065 {
2066 error (_("\"%s\" is not an object file: %s"), filename.get (),
2067 bfd_errmsg (bfd_get_error ()));
2068 }
2069
2070 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2071 (void *) &total_progress.total_size);
2072
2073 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2074
2075 using namespace std::chrono;
2076
2077 steady_clock::time_point start_time = steady_clock::now ();
2078
2079 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2080 load_progress) != 0)
2081 error (_("Load failed"));
2082
2083 steady_clock::time_point end_time = steady_clock::now ();
2084
2085 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2086 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2087 uiout->text ("Start address ");
2088 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2089 uiout->text (", load size ");
2090 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2091 uiout->text ("\n");
2092 regcache_write_pc (get_current_regcache (), entry);
2093
2094 /* Reset breakpoints, now that we have changed the load image. For
2095 instance, breakpoints may have been set (or reset, by
2096 post_create_inferior) while connected to the target but before we
2097 loaded the program. In that case, the prologue analyzer could
2098 have read instructions from the target to find the right
2099 breakpoint locations. Loading has changed the contents of that
2100 memory. */
2101
2102 breakpoint_re_set ();
2103
2104 print_transfer_performance (gdb_stdout, total_progress.data_count,
2105 total_progress.write_count,
2106 end_time - start_time);
2107 }
2108
2109 /* Report on STREAM the performance of a memory transfer operation,
2110 such as 'load'. DATA_COUNT is the number of bytes transferred.
2111 WRITE_COUNT is the number of separate write operations, or 0, if
2112 that information is not available. TIME is how long the operation
2113 lasted. */
2114
2115 static void
2116 print_transfer_performance (struct ui_file *stream,
2117 unsigned long data_count,
2118 unsigned long write_count,
2119 std::chrono::steady_clock::duration time)
2120 {
2121 using namespace std::chrono;
2122 struct ui_out *uiout = current_uiout;
2123
2124 milliseconds ms = duration_cast<milliseconds> (time);
2125
2126 uiout->text ("Transfer rate: ");
2127 if (ms.count () > 0)
2128 {
2129 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2130
2131 if (uiout->is_mi_like_p ())
2132 {
2133 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2134 uiout->text (" bits/sec");
2135 }
2136 else if (rate < 1024)
2137 {
2138 uiout->field_fmt ("transfer-rate", "%lu", rate);
2139 uiout->text (" bytes/sec");
2140 }
2141 else
2142 {
2143 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2144 uiout->text (" KB/sec");
2145 }
2146 }
2147 else
2148 {
2149 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2150 uiout->text (" bits in <1 sec");
2151 }
2152 if (write_count > 0)
2153 {
2154 uiout->text (", ");
2155 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2156 uiout->text (" bytes/write");
2157 }
2158 uiout->text (".\n");
2159 }
2160
2161 /* This function allows the addition of incrementally linked object files.
2162 It does not modify any state in the target, only in the debugger. */
2163 /* Note: ezannoni 2000-04-13 This function/command used to have a
2164 special case syntax for the rombug target (Rombug is the boot
2165 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2166 rombug case, the user doesn't need to supply a text address,
2167 instead a call to target_link() (in target.c) would supply the
2168 value to use. We are now discontinuing this type of ad hoc syntax. */
2169
2170 static void
2171 add_symbol_file_command (const char *args, int from_tty)
2172 {
2173 struct gdbarch *gdbarch = get_current_arch ();
2174 gdb::unique_xmalloc_ptr<char> filename;
2175 char *arg;
2176 int argcnt = 0;
2177 int sec_num = 0;
2178 struct objfile *objf;
2179 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2180 symfile_add_flags add_flags = 0;
2181
2182 if (from_tty)
2183 add_flags |= SYMFILE_VERBOSE;
2184
2185 struct sect_opt
2186 {
2187 const char *name;
2188 const char *value;
2189 };
2190
2191 struct section_addr_info *section_addrs;
2192 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2193 bool stop_processing_options = false;
2194 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2195
2196 dont_repeat ();
2197
2198 if (args == NULL)
2199 error (_("add-symbol-file takes a file name and an address"));
2200
2201 bool seen_addr = false;
2202 gdb_argv argv (args);
2203
2204 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2205 {
2206 if (stop_processing_options || *arg != '-')
2207 {
2208 if (filename == NULL)
2209 {
2210 /* First non-option argument is always the filename. */
2211 filename.reset (tilde_expand (arg));
2212 }
2213 else if (!seen_addr)
2214 {
2215 /* The second non-option argument is always the text
2216 address at which to load the program. */
2217 sect_opts[0].value = arg;
2218 seen_addr = true;
2219 }
2220 else
2221 error (_("Unrecognized argument \"%s\""), arg);
2222 }
2223 else if (strcmp (arg, "-readnow") == 0)
2224 flags |= OBJF_READNOW;
2225 else if (strcmp (arg, "-readnever") == 0)
2226 flags |= OBJF_READNEVER;
2227 else if (strcmp (arg, "-s") == 0)
2228 {
2229 if (argv[argcnt + 1] == NULL)
2230 error (_("Missing section name after \"-s\""));
2231 else if (argv[argcnt + 2] == NULL)
2232 error (_("Missing section address after \"-s\""));
2233
2234 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2235
2236 sect_opts.push_back (sect);
2237 argcnt += 2;
2238 }
2239 else if (strcmp (arg, "--") == 0)
2240 stop_processing_options = true;
2241 else
2242 error (_("Unrecognized argument \"%s\""), arg);
2243 }
2244
2245 if (filename == NULL)
2246 error (_("You must provide a filename to be loaded."));
2247
2248 validate_readnow_readnever (flags);
2249
2250 /* This command takes at least two arguments. The first one is a
2251 filename, and the second is the address where this file has been
2252 loaded. Abort now if this address hasn't been provided by the
2253 user. */
2254 if (!seen_addr)
2255 error (_("The address where %s has been loaded is missing"),
2256 filename.get ());
2257
2258 /* Print the prompt for the query below. And save the arguments into
2259 a sect_addr_info structure to be passed around to other
2260 functions. We have to split this up into separate print
2261 statements because hex_string returns a local static
2262 string. */
2263
2264 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2265 filename.get ());
2266 section_addrs = alloc_section_addr_info (sect_opts.size ());
2267 make_cleanup (xfree, section_addrs);
2268 for (sect_opt &sect : sect_opts)
2269 {
2270 CORE_ADDR addr;
2271 const char *val = sect.value;
2272 const char *sec = sect.name;
2273
2274 addr = parse_and_eval_address (val);
2275
2276 /* Here we store the section offsets in the order they were
2277 entered on the command line. */
2278 section_addrs->other[sec_num].name = (char *) sec;
2279 section_addrs->other[sec_num].addr = addr;
2280 printf_unfiltered ("\t%s_addr = %s\n", sec,
2281 paddress (gdbarch, addr));
2282 sec_num++;
2283
2284 /* The object's sections are initialized when a
2285 call is made to build_objfile_section_table (objfile).
2286 This happens in reread_symbols.
2287 At this point, we don't know what file type this is,
2288 so we can't determine what section names are valid. */
2289 }
2290 section_addrs->num_sections = sec_num;
2291
2292 if (from_tty && (!query ("%s", "")))
2293 error (_("Not confirmed."));
2294
2295 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2296
2297 add_target_sections_of_objfile (objf);
2298
2299 /* Getting new symbols may change our opinion about what is
2300 frameless. */
2301 reinit_frame_cache ();
2302 do_cleanups (my_cleanups);
2303 }
2304 \f
2305
2306 /* This function removes a symbol file that was added via add-symbol-file. */
2307
2308 static void
2309 remove_symbol_file_command (const char *args, int from_tty)
2310 {
2311 struct objfile *objf = NULL;
2312 struct program_space *pspace = current_program_space;
2313
2314 dont_repeat ();
2315
2316 if (args == NULL)
2317 error (_("remove-symbol-file: no symbol file provided"));
2318
2319 gdb_argv argv (args);
2320
2321 if (strcmp (argv[0], "-a") == 0)
2322 {
2323 /* Interpret the next argument as an address. */
2324 CORE_ADDR addr;
2325
2326 if (argv[1] == NULL)
2327 error (_("Missing address argument"));
2328
2329 if (argv[2] != NULL)
2330 error (_("Junk after %s"), argv[1]);
2331
2332 addr = parse_and_eval_address (argv[1]);
2333
2334 ALL_OBJFILES (objf)
2335 {
2336 if ((objf->flags & OBJF_USERLOADED) != 0
2337 && (objf->flags & OBJF_SHARED) != 0
2338 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2339 break;
2340 }
2341 }
2342 else if (argv[0] != NULL)
2343 {
2344 /* Interpret the current argument as a file name. */
2345
2346 if (argv[1] != NULL)
2347 error (_("Junk after %s"), argv[0]);
2348
2349 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2350
2351 ALL_OBJFILES (objf)
2352 {
2353 if ((objf->flags & OBJF_USERLOADED) != 0
2354 && (objf->flags & OBJF_SHARED) != 0
2355 && objf->pspace == pspace
2356 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2357 break;
2358 }
2359 }
2360
2361 if (objf == NULL)
2362 error (_("No symbol file found"));
2363
2364 if (from_tty
2365 && !query (_("Remove symbol table from file \"%s\"? "),
2366 objfile_name (objf)))
2367 error (_("Not confirmed."));
2368
2369 delete objf;
2370 clear_symtab_users (0);
2371 }
2372
2373 /* Re-read symbols if a symbol-file has changed. */
2374
2375 void
2376 reread_symbols (void)
2377 {
2378 struct objfile *objfile;
2379 long new_modtime;
2380 struct stat new_statbuf;
2381 int res;
2382 std::vector<struct objfile *> new_objfiles;
2383
2384 /* With the addition of shared libraries, this should be modified,
2385 the load time should be saved in the partial symbol tables, since
2386 different tables may come from different source files. FIXME.
2387 This routine should then walk down each partial symbol table
2388 and see if the symbol table that it originates from has been changed. */
2389
2390 for (objfile = object_files; objfile; objfile = objfile->next)
2391 {
2392 if (objfile->obfd == NULL)
2393 continue;
2394
2395 /* Separate debug objfiles are handled in the main objfile. */
2396 if (objfile->separate_debug_objfile_backlink)
2397 continue;
2398
2399 /* If this object is from an archive (what you usually create with
2400 `ar', often called a `static library' on most systems, though
2401 a `shared library' on AIX is also an archive), then you should
2402 stat on the archive name, not member name. */
2403 if (objfile->obfd->my_archive)
2404 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2405 else
2406 res = stat (objfile_name (objfile), &new_statbuf);
2407 if (res != 0)
2408 {
2409 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2410 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2411 objfile_name (objfile));
2412 continue;
2413 }
2414 new_modtime = new_statbuf.st_mtime;
2415 if (new_modtime != objfile->mtime)
2416 {
2417 struct cleanup *old_cleanups;
2418 struct section_offsets *offsets;
2419 int num_offsets;
2420 char *original_name;
2421
2422 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2423 objfile_name (objfile));
2424
2425 /* There are various functions like symbol_file_add,
2426 symfile_bfd_open, syms_from_objfile, etc., which might
2427 appear to do what we want. But they have various other
2428 effects which we *don't* want. So we just do stuff
2429 ourselves. We don't worry about mapped files (for one thing,
2430 any mapped file will be out of date). */
2431
2432 /* If we get an error, blow away this objfile (not sure if
2433 that is the correct response for things like shared
2434 libraries). */
2435 std::unique_ptr<struct objfile> objfile_holder (objfile);
2436
2437 /* We need to do this whenever any symbols go away. */
2438 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2439
2440 if (exec_bfd != NULL
2441 && filename_cmp (bfd_get_filename (objfile->obfd),
2442 bfd_get_filename (exec_bfd)) == 0)
2443 {
2444 /* Reload EXEC_BFD without asking anything. */
2445
2446 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2447 }
2448
2449 /* Keep the calls order approx. the same as in free_objfile. */
2450
2451 /* Free the separate debug objfiles. It will be
2452 automatically recreated by sym_read. */
2453 free_objfile_separate_debug (objfile);
2454
2455 /* Remove any references to this objfile in the global
2456 value lists. */
2457 preserve_values (objfile);
2458
2459 /* Nuke all the state that we will re-read. Much of the following
2460 code which sets things to NULL really is necessary to tell
2461 other parts of GDB that there is nothing currently there.
2462
2463 Try to keep the freeing order compatible with free_objfile. */
2464
2465 if (objfile->sf != NULL)
2466 {
2467 (*objfile->sf->sym_finish) (objfile);
2468 }
2469
2470 clear_objfile_data (objfile);
2471
2472 /* Clean up any state BFD has sitting around. */
2473 {
2474 gdb_bfd_ref_ptr obfd (objfile->obfd);
2475 char *obfd_filename;
2476
2477 obfd_filename = bfd_get_filename (objfile->obfd);
2478 /* Open the new BFD before freeing the old one, so that
2479 the filename remains live. */
2480 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2481 objfile->obfd = temp.release ();
2482 if (objfile->obfd == NULL)
2483 error (_("Can't open %s to read symbols."), obfd_filename);
2484 }
2485
2486 original_name = xstrdup (objfile->original_name);
2487 make_cleanup (xfree, original_name);
2488
2489 /* bfd_openr sets cacheable to true, which is what we want. */
2490 if (!bfd_check_format (objfile->obfd, bfd_object))
2491 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2492 bfd_errmsg (bfd_get_error ()));
2493
2494 /* Save the offsets, we will nuke them with the rest of the
2495 objfile_obstack. */
2496 num_offsets = objfile->num_sections;
2497 offsets = ((struct section_offsets *)
2498 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2499 memcpy (offsets, objfile->section_offsets,
2500 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2501
2502 /* FIXME: Do we have to free a whole linked list, or is this
2503 enough? */
2504 objfile->global_psymbols.clear ();
2505 objfile->static_psymbols.clear ();
2506
2507 /* Free the obstacks for non-reusable objfiles. */
2508 psymbol_bcache_free (objfile->psymbol_cache);
2509 objfile->psymbol_cache = psymbol_bcache_init ();
2510
2511 /* NB: after this call to obstack_free, objfiles_changed
2512 will need to be called (see discussion below). */
2513 obstack_free (&objfile->objfile_obstack, 0);
2514 objfile->sections = NULL;
2515 objfile->compunit_symtabs = NULL;
2516 objfile->psymtabs = NULL;
2517 objfile->psymtabs_addrmap = NULL;
2518 objfile->free_psymtabs = NULL;
2519 objfile->template_symbols = NULL;
2520
2521 /* obstack_init also initializes the obstack so it is
2522 empty. We could use obstack_specify_allocation but
2523 gdb_obstack.h specifies the alloc/dealloc functions. */
2524 obstack_init (&objfile->objfile_obstack);
2525
2526 /* set_objfile_per_bfd potentially allocates the per-bfd
2527 data on the objfile's obstack (if sharing data across
2528 multiple users is not possible), so it's important to
2529 do it *after* the obstack has been initialized. */
2530 set_objfile_per_bfd (objfile);
2531
2532 objfile->original_name
2533 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2534 strlen (original_name));
2535
2536 /* Reset the sym_fns pointer. The ELF reader can change it
2537 based on whether .gdb_index is present, and we need it to
2538 start over. PR symtab/15885 */
2539 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2540
2541 build_objfile_section_table (objfile);
2542 terminate_minimal_symbol_table (objfile);
2543
2544 /* We use the same section offsets as from last time. I'm not
2545 sure whether that is always correct for shared libraries. */
2546 objfile->section_offsets = (struct section_offsets *)
2547 obstack_alloc (&objfile->objfile_obstack,
2548 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2549 memcpy (objfile->section_offsets, offsets,
2550 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2551 objfile->num_sections = num_offsets;
2552
2553 /* What the hell is sym_new_init for, anyway? The concept of
2554 distinguishing between the main file and additional files
2555 in this way seems rather dubious. */
2556 if (objfile == symfile_objfile)
2557 {
2558 (*objfile->sf->sym_new_init) (objfile);
2559 }
2560
2561 (*objfile->sf->sym_init) (objfile);
2562 clear_complaints (&symfile_complaints, 1, 1);
2563
2564 objfile->flags &= ~OBJF_PSYMTABS_READ;
2565
2566 /* We are about to read new symbols and potentially also
2567 DWARF information. Some targets may want to pass addresses
2568 read from DWARF DIE's through an adjustment function before
2569 saving them, like MIPS, which may call into
2570 "find_pc_section". When called, that function will make
2571 use of per-objfile program space data.
2572
2573 Since we discarded our section information above, we have
2574 dangling pointers in the per-objfile program space data
2575 structure. Force GDB to update the section mapping
2576 information by letting it know the objfile has changed,
2577 making the dangling pointers point to correct data
2578 again. */
2579
2580 objfiles_changed ();
2581
2582 read_symbols (objfile, 0);
2583
2584 if (!objfile_has_symbols (objfile))
2585 {
2586 wrap_here ("");
2587 printf_unfiltered (_("(no debugging symbols found)\n"));
2588 wrap_here ("");
2589 }
2590
2591 /* We're done reading the symbol file; finish off complaints. */
2592 clear_complaints (&symfile_complaints, 0, 1);
2593
2594 /* Getting new symbols may change our opinion about what is
2595 frameless. */
2596
2597 reinit_frame_cache ();
2598
2599 /* Discard cleanups as symbol reading was successful. */
2600 objfile_holder.release ();
2601 discard_cleanups (old_cleanups);
2602
2603 /* If the mtime has changed between the time we set new_modtime
2604 and now, we *want* this to be out of date, so don't call stat
2605 again now. */
2606 objfile->mtime = new_modtime;
2607 init_entry_point_info (objfile);
2608
2609 new_objfiles.push_back (objfile);
2610 }
2611 }
2612
2613 if (!new_objfiles.empty ())
2614 {
2615 clear_symtab_users (0);
2616
2617 /* clear_objfile_data for each objfile was called before freeing it and
2618 observer_notify_new_objfile (NULL) has been called by
2619 clear_symtab_users above. Notify the new files now. */
2620 for (auto iter : new_objfiles)
2621 observer_notify_new_objfile (iter);
2622
2623 /* At least one objfile has changed, so we can consider that
2624 the executable we're debugging has changed too. */
2625 observer_notify_executable_changed ();
2626 }
2627 }
2628 \f
2629
2630 struct filename_language
2631 {
2632 filename_language (const std::string &ext_, enum language lang_)
2633 : ext (ext_), lang (lang_)
2634 {}
2635
2636 std::string ext;
2637 enum language lang;
2638 };
2639
2640 static std::vector<filename_language> filename_language_table;
2641
2642 /* See symfile.h. */
2643
2644 void
2645 add_filename_language (const char *ext, enum language lang)
2646 {
2647 filename_language_table.emplace_back (ext, lang);
2648 }
2649
2650 static char *ext_args;
2651 static void
2652 show_ext_args (struct ui_file *file, int from_tty,
2653 struct cmd_list_element *c, const char *value)
2654 {
2655 fprintf_filtered (file,
2656 _("Mapping between filename extension "
2657 "and source language is \"%s\".\n"),
2658 value);
2659 }
2660
2661 static void
2662 set_ext_lang_command (const char *args,
2663 int from_tty, struct cmd_list_element *e)
2664 {
2665 char *cp = ext_args;
2666 enum language lang;
2667
2668 /* First arg is filename extension, starting with '.' */
2669 if (*cp != '.')
2670 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2671
2672 /* Find end of first arg. */
2673 while (*cp && !isspace (*cp))
2674 cp++;
2675
2676 if (*cp == '\0')
2677 error (_("'%s': two arguments required -- "
2678 "filename extension and language"),
2679 ext_args);
2680
2681 /* Null-terminate first arg. */
2682 *cp++ = '\0';
2683
2684 /* Find beginning of second arg, which should be a source language. */
2685 cp = skip_spaces (cp);
2686
2687 if (*cp == '\0')
2688 error (_("'%s': two arguments required -- "
2689 "filename extension and language"),
2690 ext_args);
2691
2692 /* Lookup the language from among those we know. */
2693 lang = language_enum (cp);
2694
2695 auto it = filename_language_table.begin ();
2696 /* Now lookup the filename extension: do we already know it? */
2697 for (; it != filename_language_table.end (); it++)
2698 {
2699 if (it->ext == ext_args)
2700 break;
2701 }
2702
2703 if (it == filename_language_table.end ())
2704 {
2705 /* New file extension. */
2706 add_filename_language (ext_args, lang);
2707 }
2708 else
2709 {
2710 /* Redefining a previously known filename extension. */
2711
2712 /* if (from_tty) */
2713 /* query ("Really make files of type %s '%s'?", */
2714 /* ext_args, language_str (lang)); */
2715
2716 it->lang = lang;
2717 }
2718 }
2719
2720 static void
2721 info_ext_lang_command (const char *args, int from_tty)
2722 {
2723 printf_filtered (_("Filename extensions and the languages they represent:"));
2724 printf_filtered ("\n\n");
2725 for (const filename_language &entry : filename_language_table)
2726 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2727 language_str (entry.lang));
2728 }
2729
2730 enum language
2731 deduce_language_from_filename (const char *filename)
2732 {
2733 const char *cp;
2734
2735 if (filename != NULL)
2736 if ((cp = strrchr (filename, '.')) != NULL)
2737 {
2738 for (const filename_language &entry : filename_language_table)
2739 if (entry.ext == cp)
2740 return entry.lang;
2741 }
2742
2743 return language_unknown;
2744 }
2745 \f
2746 /* Allocate and initialize a new symbol table.
2747 CUST is from the result of allocate_compunit_symtab. */
2748
2749 struct symtab *
2750 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2751 {
2752 struct objfile *objfile = cust->objfile;
2753 struct symtab *symtab
2754 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2755
2756 symtab->filename
2757 = (const char *) bcache (filename, strlen (filename) + 1,
2758 objfile->per_bfd->filename_cache);
2759 symtab->fullname = NULL;
2760 symtab->language = deduce_language_from_filename (filename);
2761
2762 /* This can be very verbose with lots of headers.
2763 Only print at higher debug levels. */
2764 if (symtab_create_debug >= 2)
2765 {
2766 /* Be a bit clever with debugging messages, and don't print objfile
2767 every time, only when it changes. */
2768 static char *last_objfile_name = NULL;
2769
2770 if (last_objfile_name == NULL
2771 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2772 {
2773 xfree (last_objfile_name);
2774 last_objfile_name = xstrdup (objfile_name (objfile));
2775 fprintf_unfiltered (gdb_stdlog,
2776 "Creating one or more symtabs for objfile %s ...\n",
2777 last_objfile_name);
2778 }
2779 fprintf_unfiltered (gdb_stdlog,
2780 "Created symtab %s for module %s.\n",
2781 host_address_to_string (symtab), filename);
2782 }
2783
2784 /* Add it to CUST's list of symtabs. */
2785 if (cust->filetabs == NULL)
2786 {
2787 cust->filetabs = symtab;
2788 cust->last_filetab = symtab;
2789 }
2790 else
2791 {
2792 cust->last_filetab->next = symtab;
2793 cust->last_filetab = symtab;
2794 }
2795
2796 /* Backlink to the containing compunit symtab. */
2797 symtab->compunit_symtab = cust;
2798
2799 return symtab;
2800 }
2801
2802 /* Allocate and initialize a new compunit.
2803 NAME is the name of the main source file, if there is one, or some
2804 descriptive text if there are no source files. */
2805
2806 struct compunit_symtab *
2807 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2808 {
2809 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct compunit_symtab);
2811 const char *saved_name;
2812
2813 cu->objfile = objfile;
2814
2815 /* The name we record here is only for display/debugging purposes.
2816 Just save the basename to avoid path issues (too long for display,
2817 relative vs absolute, etc.). */
2818 saved_name = lbasename (name);
2819 cu->name
2820 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2821 strlen (saved_name));
2822
2823 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2824
2825 if (symtab_create_debug)
2826 {
2827 fprintf_unfiltered (gdb_stdlog,
2828 "Created compunit symtab %s for %s.\n",
2829 host_address_to_string (cu),
2830 cu->name);
2831 }
2832
2833 return cu;
2834 }
2835
2836 /* Hook CU to the objfile it comes from. */
2837
2838 void
2839 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2840 {
2841 cu->next = cu->objfile->compunit_symtabs;
2842 cu->objfile->compunit_symtabs = cu;
2843 }
2844 \f
2845
2846 /* Reset all data structures in gdb which may contain references to
2847 symbol table data. */
2848
2849 void
2850 clear_symtab_users (symfile_add_flags add_flags)
2851 {
2852 /* Someday, we should do better than this, by only blowing away
2853 the things that really need to be blown. */
2854
2855 /* Clear the "current" symtab first, because it is no longer valid.
2856 breakpoint_re_set may try to access the current symtab. */
2857 clear_current_source_symtab_and_line ();
2858
2859 clear_displays ();
2860 clear_last_displayed_sal ();
2861 clear_pc_function_cache ();
2862 observer_notify_new_objfile (NULL);
2863
2864 /* Clear globals which might have pointed into a removed objfile.
2865 FIXME: It's not clear which of these are supposed to persist
2866 between expressions and which ought to be reset each time. */
2867 expression_context_block = NULL;
2868 innermost_block.reset ();
2869
2870 /* Varobj may refer to old symbols, perform a cleanup. */
2871 varobj_invalidate ();
2872
2873 /* Now that the various caches have been cleared, we can re_set
2874 our breakpoints without risking it using stale data. */
2875 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2876 breakpoint_re_set ();
2877 }
2878
2879 static void
2880 clear_symtab_users_cleanup (void *ignore)
2881 {
2882 clear_symtab_users (0);
2883 }
2884 \f
2885 /* OVERLAYS:
2886 The following code implements an abstraction for debugging overlay sections.
2887
2888 The target model is as follows:
2889 1) The gnu linker will permit multiple sections to be mapped into the
2890 same VMA, each with its own unique LMA (or load address).
2891 2) It is assumed that some runtime mechanism exists for mapping the
2892 sections, one by one, from the load address into the VMA address.
2893 3) This code provides a mechanism for gdb to keep track of which
2894 sections should be considered to be mapped from the VMA to the LMA.
2895 This information is used for symbol lookup, and memory read/write.
2896 For instance, if a section has been mapped then its contents
2897 should be read from the VMA, otherwise from the LMA.
2898
2899 Two levels of debugger support for overlays are available. One is
2900 "manual", in which the debugger relies on the user to tell it which
2901 overlays are currently mapped. This level of support is
2902 implemented entirely in the core debugger, and the information about
2903 whether a section is mapped is kept in the objfile->obj_section table.
2904
2905 The second level of support is "automatic", and is only available if
2906 the target-specific code provides functionality to read the target's
2907 overlay mapping table, and translate its contents for the debugger
2908 (by updating the mapped state information in the obj_section tables).
2909
2910 The interface is as follows:
2911 User commands:
2912 overlay map <name> -- tell gdb to consider this section mapped
2913 overlay unmap <name> -- tell gdb to consider this section unmapped
2914 overlay list -- list the sections that GDB thinks are mapped
2915 overlay read-target -- get the target's state of what's mapped
2916 overlay off/manual/auto -- set overlay debugging state
2917 Functional interface:
2918 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2919 section, return that section.
2920 find_pc_overlay(pc): find any overlay section that contains
2921 the pc, either in its VMA or its LMA
2922 section_is_mapped(sect): true if overlay is marked as mapped
2923 section_is_overlay(sect): true if section's VMA != LMA
2924 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2925 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2926 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2927 overlay_mapped_address(...): map an address from section's LMA to VMA
2928 overlay_unmapped_address(...): map an address from section's VMA to LMA
2929 symbol_overlayed_address(...): Return a "current" address for symbol:
2930 either in VMA or LMA depending on whether
2931 the symbol's section is currently mapped. */
2932
2933 /* Overlay debugging state: */
2934
2935 enum overlay_debugging_state overlay_debugging = ovly_off;
2936 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2937
2938 /* Function: section_is_overlay (SECTION)
2939 Returns true if SECTION has VMA not equal to LMA, ie.
2940 SECTION is loaded at an address different from where it will "run". */
2941
2942 int
2943 section_is_overlay (struct obj_section *section)
2944 {
2945 if (overlay_debugging && section)
2946 {
2947 asection *bfd_section = section->the_bfd_section;
2948
2949 if (bfd_section_lma (abfd, bfd_section) != 0
2950 && bfd_section_lma (abfd, bfd_section)
2951 != bfd_section_vma (abfd, bfd_section))
2952 return 1;
2953 }
2954
2955 return 0;
2956 }
2957
2958 /* Function: overlay_invalidate_all (void)
2959 Invalidate the mapped state of all overlay sections (mark it as stale). */
2960
2961 static void
2962 overlay_invalidate_all (void)
2963 {
2964 struct objfile *objfile;
2965 struct obj_section *sect;
2966
2967 ALL_OBJSECTIONS (objfile, sect)
2968 if (section_is_overlay (sect))
2969 sect->ovly_mapped = -1;
2970 }
2971
2972 /* Function: section_is_mapped (SECTION)
2973 Returns true if section is an overlay, and is currently mapped.
2974
2975 Access to the ovly_mapped flag is restricted to this function, so
2976 that we can do automatic update. If the global flag
2977 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2978 overlay_invalidate_all. If the mapped state of the particular
2979 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2980
2981 int
2982 section_is_mapped (struct obj_section *osect)
2983 {
2984 struct gdbarch *gdbarch;
2985
2986 if (osect == 0 || !section_is_overlay (osect))
2987 return 0;
2988
2989 switch (overlay_debugging)
2990 {
2991 default:
2992 case ovly_off:
2993 return 0; /* overlay debugging off */
2994 case ovly_auto: /* overlay debugging automatic */
2995 /* Unles there is a gdbarch_overlay_update function,
2996 there's really nothing useful to do here (can't really go auto). */
2997 gdbarch = get_objfile_arch (osect->objfile);
2998 if (gdbarch_overlay_update_p (gdbarch))
2999 {
3000 if (overlay_cache_invalid)
3001 {
3002 overlay_invalidate_all ();
3003 overlay_cache_invalid = 0;
3004 }
3005 if (osect->ovly_mapped == -1)
3006 gdbarch_overlay_update (gdbarch, osect);
3007 }
3008 /* fall thru to manual case */
3009 case ovly_on: /* overlay debugging manual */
3010 return osect->ovly_mapped == 1;
3011 }
3012 }
3013
3014 /* Function: pc_in_unmapped_range
3015 If PC falls into the lma range of SECTION, return true, else false. */
3016
3017 CORE_ADDR
3018 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3019 {
3020 if (section_is_overlay (section))
3021 {
3022 bfd *abfd = section->objfile->obfd;
3023 asection *bfd_section = section->the_bfd_section;
3024
3025 /* We assume the LMA is relocated by the same offset as the VMA. */
3026 bfd_vma size = bfd_get_section_size (bfd_section);
3027 CORE_ADDR offset = obj_section_offset (section);
3028
3029 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3030 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3031 return 1;
3032 }
3033
3034 return 0;
3035 }
3036
3037 /* Function: pc_in_mapped_range
3038 If PC falls into the vma range of SECTION, return true, else false. */
3039
3040 CORE_ADDR
3041 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3042 {
3043 if (section_is_overlay (section))
3044 {
3045 if (obj_section_addr (section) <= pc
3046 && pc < obj_section_endaddr (section))
3047 return 1;
3048 }
3049
3050 return 0;
3051 }
3052
3053 /* Return true if the mapped ranges of sections A and B overlap, false
3054 otherwise. */
3055
3056 static int
3057 sections_overlap (struct obj_section *a, struct obj_section *b)
3058 {
3059 CORE_ADDR a_start = obj_section_addr (a);
3060 CORE_ADDR a_end = obj_section_endaddr (a);
3061 CORE_ADDR b_start = obj_section_addr (b);
3062 CORE_ADDR b_end = obj_section_endaddr (b);
3063
3064 return (a_start < b_end && b_start < a_end);
3065 }
3066
3067 /* Function: overlay_unmapped_address (PC, SECTION)
3068 Returns the address corresponding to PC in the unmapped (load) range.
3069 May be the same as PC. */
3070
3071 CORE_ADDR
3072 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3073 {
3074 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3075 {
3076 asection *bfd_section = section->the_bfd_section;
3077
3078 return pc + bfd_section_lma (abfd, bfd_section)
3079 - bfd_section_vma (abfd, bfd_section);
3080 }
3081
3082 return pc;
3083 }
3084
3085 /* Function: overlay_mapped_address (PC, SECTION)
3086 Returns the address corresponding to PC in the mapped (runtime) range.
3087 May be the same as PC. */
3088
3089 CORE_ADDR
3090 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3091 {
3092 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3093 {
3094 asection *bfd_section = section->the_bfd_section;
3095
3096 return pc + bfd_section_vma (abfd, bfd_section)
3097 - bfd_section_lma (abfd, bfd_section);
3098 }
3099
3100 return pc;
3101 }
3102
3103 /* Function: symbol_overlayed_address
3104 Return one of two addresses (relative to the VMA or to the LMA),
3105 depending on whether the section is mapped or not. */
3106
3107 CORE_ADDR
3108 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3109 {
3110 if (overlay_debugging)
3111 {
3112 /* If the symbol has no section, just return its regular address. */
3113 if (section == 0)
3114 return address;
3115 /* If the symbol's section is not an overlay, just return its
3116 address. */
3117 if (!section_is_overlay (section))
3118 return address;
3119 /* If the symbol's section is mapped, just return its address. */
3120 if (section_is_mapped (section))
3121 return address;
3122 /*
3123 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3124 * then return its LOADED address rather than its vma address!!
3125 */
3126 return overlay_unmapped_address (address, section);
3127 }
3128 return address;
3129 }
3130
3131 /* Function: find_pc_overlay (PC)
3132 Return the best-match overlay section for PC:
3133 If PC matches a mapped overlay section's VMA, return that section.
3134 Else if PC matches an unmapped section's VMA, return that section.
3135 Else if PC matches an unmapped section's LMA, return that section. */
3136
3137 struct obj_section *
3138 find_pc_overlay (CORE_ADDR pc)
3139 {
3140 struct objfile *objfile;
3141 struct obj_section *osect, *best_match = NULL;
3142
3143 if (overlay_debugging)
3144 {
3145 ALL_OBJSECTIONS (objfile, osect)
3146 if (section_is_overlay (osect))
3147 {
3148 if (pc_in_mapped_range (pc, osect))
3149 {
3150 if (section_is_mapped (osect))
3151 return osect;
3152 else
3153 best_match = osect;
3154 }
3155 else if (pc_in_unmapped_range (pc, osect))
3156 best_match = osect;
3157 }
3158 }
3159 return best_match;
3160 }
3161
3162 /* Function: find_pc_mapped_section (PC)
3163 If PC falls into the VMA address range of an overlay section that is
3164 currently marked as MAPPED, return that section. Else return NULL. */
3165
3166 struct obj_section *
3167 find_pc_mapped_section (CORE_ADDR pc)
3168 {
3169 struct objfile *objfile;
3170 struct obj_section *osect;
3171
3172 if (overlay_debugging)
3173 {
3174 ALL_OBJSECTIONS (objfile, osect)
3175 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3176 return osect;
3177 }
3178
3179 return NULL;
3180 }
3181
3182 /* Function: list_overlays_command
3183 Print a list of mapped sections and their PC ranges. */
3184
3185 static void
3186 list_overlays_command (const char *args, int from_tty)
3187 {
3188 int nmapped = 0;
3189 struct objfile *objfile;
3190 struct obj_section *osect;
3191
3192 if (overlay_debugging)
3193 {
3194 ALL_OBJSECTIONS (objfile, osect)
3195 if (section_is_mapped (osect))
3196 {
3197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3198 const char *name;
3199 bfd_vma lma, vma;
3200 int size;
3201
3202 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3203 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3204 size = bfd_get_section_size (osect->the_bfd_section);
3205 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3206
3207 printf_filtered ("Section %s, loaded at ", name);
3208 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3209 puts_filtered (" - ");
3210 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3211 printf_filtered (", mapped at ");
3212 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3213 puts_filtered (" - ");
3214 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3215 puts_filtered ("\n");
3216
3217 nmapped++;
3218 }
3219 }
3220 if (nmapped == 0)
3221 printf_filtered (_("No sections are mapped.\n"));
3222 }
3223
3224 /* Function: map_overlay_command
3225 Mark the named section as mapped (ie. residing at its VMA address). */
3226
3227 static void
3228 map_overlay_command (const char *args, int from_tty)
3229 {
3230 struct objfile *objfile, *objfile2;
3231 struct obj_section *sec, *sec2;
3232
3233 if (!overlay_debugging)
3234 error (_("Overlay debugging not enabled. Use "
3235 "either the 'overlay auto' or\n"
3236 "the 'overlay manual' command."));
3237
3238 if (args == 0 || *args == 0)
3239 error (_("Argument required: name of an overlay section"));
3240
3241 /* First, find a section matching the user supplied argument. */
3242 ALL_OBJSECTIONS (objfile, sec)
3243 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3244 {
3245 /* Now, check to see if the section is an overlay. */
3246 if (!section_is_overlay (sec))
3247 continue; /* not an overlay section */
3248
3249 /* Mark the overlay as "mapped". */
3250 sec->ovly_mapped = 1;
3251
3252 /* Next, make a pass and unmap any sections that are
3253 overlapped by this new section: */
3254 ALL_OBJSECTIONS (objfile2, sec2)
3255 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3256 {
3257 if (info_verbose)
3258 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3259 bfd_section_name (objfile->obfd,
3260 sec2->the_bfd_section));
3261 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3262 }
3263 return;
3264 }
3265 error (_("No overlay section called %s"), args);
3266 }
3267
3268 /* Function: unmap_overlay_command
3269 Mark the overlay section as unmapped
3270 (ie. resident in its LMA address range, rather than the VMA range). */
3271
3272 static void
3273 unmap_overlay_command (const char *args, int from_tty)
3274 {
3275 struct objfile *objfile;
3276 struct obj_section *sec = NULL;
3277
3278 if (!overlay_debugging)
3279 error (_("Overlay debugging not enabled. "
3280 "Use either the 'overlay auto' or\n"
3281 "the 'overlay manual' command."));
3282
3283 if (args == 0 || *args == 0)
3284 error (_("Argument required: name of an overlay section"));
3285
3286 /* First, find a section matching the user supplied argument. */
3287 ALL_OBJSECTIONS (objfile, sec)
3288 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3289 {
3290 if (!sec->ovly_mapped)
3291 error (_("Section %s is not mapped"), args);
3292 sec->ovly_mapped = 0;
3293 return;
3294 }
3295 error (_("No overlay section called %s"), args);
3296 }
3297
3298 /* Function: overlay_auto_command
3299 A utility command to turn on overlay debugging.
3300 Possibly this should be done via a set/show command. */
3301
3302 static void
3303 overlay_auto_command (const char *args, int from_tty)
3304 {
3305 overlay_debugging = ovly_auto;
3306 enable_overlay_breakpoints ();
3307 if (info_verbose)
3308 printf_unfiltered (_("Automatic overlay debugging enabled."));
3309 }
3310
3311 /* Function: overlay_manual_command
3312 A utility command to turn on overlay debugging.
3313 Possibly this should be done via a set/show command. */
3314
3315 static void
3316 overlay_manual_command (const char *args, int from_tty)
3317 {
3318 overlay_debugging = ovly_on;
3319 disable_overlay_breakpoints ();
3320 if (info_verbose)
3321 printf_unfiltered (_("Overlay debugging enabled."));
3322 }
3323
3324 /* Function: overlay_off_command
3325 A utility command to turn on overlay debugging.
3326 Possibly this should be done via a set/show command. */
3327
3328 static void
3329 overlay_off_command (const char *args, int from_tty)
3330 {
3331 overlay_debugging = ovly_off;
3332 disable_overlay_breakpoints ();
3333 if (info_verbose)
3334 printf_unfiltered (_("Overlay debugging disabled."));
3335 }
3336
3337 static void
3338 overlay_load_command (const char *args, int from_tty)
3339 {
3340 struct gdbarch *gdbarch = get_current_arch ();
3341
3342 if (gdbarch_overlay_update_p (gdbarch))
3343 gdbarch_overlay_update (gdbarch, NULL);
3344 else
3345 error (_("This target does not know how to read its overlay state."));
3346 }
3347
3348 /* Function: overlay_command
3349 A place-holder for a mis-typed command. */
3350
3351 /* Command list chain containing all defined "overlay" subcommands. */
3352 static struct cmd_list_element *overlaylist;
3353
3354 static void
3355 overlay_command (const char *args, int from_tty)
3356 {
3357 printf_unfiltered
3358 ("\"overlay\" must be followed by the name of an overlay command.\n");
3359 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3360 }
3361
3362 /* Target Overlays for the "Simplest" overlay manager:
3363
3364 This is GDB's default target overlay layer. It works with the
3365 minimal overlay manager supplied as an example by Cygnus. The
3366 entry point is via a function pointer "gdbarch_overlay_update",
3367 so targets that use a different runtime overlay manager can
3368 substitute their own overlay_update function and take over the
3369 function pointer.
3370
3371 The overlay_update function pokes around in the target's data structures
3372 to see what overlays are mapped, and updates GDB's overlay mapping with
3373 this information.
3374
3375 In this simple implementation, the target data structures are as follows:
3376 unsigned _novlys; /# number of overlay sections #/
3377 unsigned _ovly_table[_novlys][4] = {
3378 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3379 {..., ..., ..., ...},
3380 }
3381 unsigned _novly_regions; /# number of overlay regions #/
3382 unsigned _ovly_region_table[_novly_regions][3] = {
3383 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3384 {..., ..., ...},
3385 }
3386 These functions will attempt to update GDB's mappedness state in the
3387 symbol section table, based on the target's mappedness state.
3388
3389 To do this, we keep a cached copy of the target's _ovly_table, and
3390 attempt to detect when the cached copy is invalidated. The main
3391 entry point is "simple_overlay_update(SECT), which looks up SECT in
3392 the cached table and re-reads only the entry for that section from
3393 the target (whenever possible). */
3394
3395 /* Cached, dynamically allocated copies of the target data structures: */
3396 static unsigned (*cache_ovly_table)[4] = 0;
3397 static unsigned cache_novlys = 0;
3398 static CORE_ADDR cache_ovly_table_base = 0;
3399 enum ovly_index
3400 {
3401 VMA, OSIZE, LMA, MAPPED
3402 };
3403
3404 /* Throw away the cached copy of _ovly_table. */
3405
3406 static void
3407 simple_free_overlay_table (void)
3408 {
3409 if (cache_ovly_table)
3410 xfree (cache_ovly_table);
3411 cache_novlys = 0;
3412 cache_ovly_table = NULL;
3413 cache_ovly_table_base = 0;
3414 }
3415
3416 /* Read an array of ints of size SIZE from the target into a local buffer.
3417 Convert to host order. int LEN is number of ints. */
3418
3419 static void
3420 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3421 int len, int size, enum bfd_endian byte_order)
3422 {
3423 /* FIXME (alloca): Not safe if array is very large. */
3424 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3425 int i;
3426
3427 read_memory (memaddr, buf, len * size);
3428 for (i = 0; i < len; i++)
3429 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3430 }
3431
3432 /* Find and grab a copy of the target _ovly_table
3433 (and _novlys, which is needed for the table's size). */
3434
3435 static int
3436 simple_read_overlay_table (void)
3437 {
3438 struct bound_minimal_symbol novlys_msym;
3439 struct bound_minimal_symbol ovly_table_msym;
3440 struct gdbarch *gdbarch;
3441 int word_size;
3442 enum bfd_endian byte_order;
3443
3444 simple_free_overlay_table ();
3445 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3446 if (! novlys_msym.minsym)
3447 {
3448 error (_("Error reading inferior's overlay table: "
3449 "couldn't find `_novlys' variable\n"
3450 "in inferior. Use `overlay manual' mode."));
3451 return 0;
3452 }
3453
3454 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3455 if (! ovly_table_msym.minsym)
3456 {
3457 error (_("Error reading inferior's overlay table: couldn't find "
3458 "`_ovly_table' array\n"
3459 "in inferior. Use `overlay manual' mode."));
3460 return 0;
3461 }
3462
3463 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3464 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3465 byte_order = gdbarch_byte_order (gdbarch);
3466
3467 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3468 4, byte_order);
3469 cache_ovly_table
3470 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3471 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3472 read_target_long_array (cache_ovly_table_base,
3473 (unsigned int *) cache_ovly_table,
3474 cache_novlys * 4, word_size, byte_order);
3475
3476 return 1; /* SUCCESS */
3477 }
3478
3479 /* Function: simple_overlay_update_1
3480 A helper function for simple_overlay_update. Assuming a cached copy
3481 of _ovly_table exists, look through it to find an entry whose vma,
3482 lma and size match those of OSECT. Re-read the entry and make sure
3483 it still matches OSECT (else the table may no longer be valid).
3484 Set OSECT's mapped state to match the entry. Return: 1 for
3485 success, 0 for failure. */
3486
3487 static int
3488 simple_overlay_update_1 (struct obj_section *osect)
3489 {
3490 int i;
3491 asection *bsect = osect->the_bfd_section;
3492 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3493 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3495
3496 for (i = 0; i < cache_novlys; i++)
3497 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3498 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3499 {
3500 read_target_long_array (cache_ovly_table_base + i * word_size,
3501 (unsigned int *) cache_ovly_table[i],
3502 4, word_size, byte_order);
3503 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3504 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3505 {
3506 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3507 return 1;
3508 }
3509 else /* Warning! Warning! Target's ovly table has changed! */
3510 return 0;
3511 }
3512 return 0;
3513 }
3514
3515 /* Function: simple_overlay_update
3516 If OSECT is NULL, then update all sections' mapped state
3517 (after re-reading the entire target _ovly_table).
3518 If OSECT is non-NULL, then try to find a matching entry in the
3519 cached ovly_table and update only OSECT's mapped state.
3520 If a cached entry can't be found or the cache isn't valid, then
3521 re-read the entire cache, and go ahead and update all sections. */
3522
3523 void
3524 simple_overlay_update (struct obj_section *osect)
3525 {
3526 struct objfile *objfile;
3527
3528 /* Were we given an osect to look up? NULL means do all of them. */
3529 if (osect)
3530 /* Have we got a cached copy of the target's overlay table? */
3531 if (cache_ovly_table != NULL)
3532 {
3533 /* Does its cached location match what's currently in the
3534 symtab? */
3535 struct bound_minimal_symbol minsym
3536 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3537
3538 if (minsym.minsym == NULL)
3539 error (_("Error reading inferior's overlay table: couldn't "
3540 "find `_ovly_table' array\n"
3541 "in inferior. Use `overlay manual' mode."));
3542
3543 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3544 /* Then go ahead and try to look up this single section in
3545 the cache. */
3546 if (simple_overlay_update_1 (osect))
3547 /* Found it! We're done. */
3548 return;
3549 }
3550
3551 /* Cached table no good: need to read the entire table anew.
3552 Or else we want all the sections, in which case it's actually
3553 more efficient to read the whole table in one block anyway. */
3554
3555 if (! simple_read_overlay_table ())
3556 return;
3557
3558 /* Now may as well update all sections, even if only one was requested. */
3559 ALL_OBJSECTIONS (objfile, osect)
3560 if (section_is_overlay (osect))
3561 {
3562 int i;
3563 asection *bsect = osect->the_bfd_section;
3564
3565 for (i = 0; i < cache_novlys; i++)
3566 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3567 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3568 { /* obj_section matches i'th entry in ovly_table. */
3569 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3570 break; /* finished with inner for loop: break out. */
3571 }
3572 }
3573 }
3574
3575 /* Set the output sections and output offsets for section SECTP in
3576 ABFD. The relocation code in BFD will read these offsets, so we
3577 need to be sure they're initialized. We map each section to itself,
3578 with no offset; this means that SECTP->vma will be honored. */
3579
3580 static void
3581 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3582 {
3583 sectp->output_section = sectp;
3584 sectp->output_offset = 0;
3585 }
3586
3587 /* Default implementation for sym_relocate. */
3588
3589 bfd_byte *
3590 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3591 bfd_byte *buf)
3592 {
3593 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3594 DWO file. */
3595 bfd *abfd = sectp->owner;
3596
3597 /* We're only interested in sections with relocation
3598 information. */
3599 if ((sectp->flags & SEC_RELOC) == 0)
3600 return NULL;
3601
3602 /* We will handle section offsets properly elsewhere, so relocate as if
3603 all sections begin at 0. */
3604 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3605
3606 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3607 }
3608
3609 /* Relocate the contents of a debug section SECTP in ABFD. The
3610 contents are stored in BUF if it is non-NULL, or returned in a
3611 malloc'd buffer otherwise.
3612
3613 For some platforms and debug info formats, shared libraries contain
3614 relocations against the debug sections (particularly for DWARF-2;
3615 one affected platform is PowerPC GNU/Linux, although it depends on
3616 the version of the linker in use). Also, ELF object files naturally
3617 have unresolved relocations for their debug sections. We need to apply
3618 the relocations in order to get the locations of symbols correct.
3619 Another example that may require relocation processing, is the
3620 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3621 debug section. */
3622
3623 bfd_byte *
3624 symfile_relocate_debug_section (struct objfile *objfile,
3625 asection *sectp, bfd_byte *buf)
3626 {
3627 gdb_assert (objfile->sf->sym_relocate);
3628
3629 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3630 }
3631
3632 struct symfile_segment_data *
3633 get_symfile_segment_data (bfd *abfd)
3634 {
3635 const struct sym_fns *sf = find_sym_fns (abfd);
3636
3637 if (sf == NULL)
3638 return NULL;
3639
3640 return sf->sym_segments (abfd);
3641 }
3642
3643 void
3644 free_symfile_segment_data (struct symfile_segment_data *data)
3645 {
3646 xfree (data->segment_bases);
3647 xfree (data->segment_sizes);
3648 xfree (data->segment_info);
3649 xfree (data);
3650 }
3651
3652 /* Given:
3653 - DATA, containing segment addresses from the object file ABFD, and
3654 the mapping from ABFD's sections onto the segments that own them,
3655 and
3656 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3657 segment addresses reported by the target,
3658 store the appropriate offsets for each section in OFFSETS.
3659
3660 If there are fewer entries in SEGMENT_BASES than there are segments
3661 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3662
3663 If there are more entries, then ignore the extra. The target may
3664 not be able to distinguish between an empty data segment and a
3665 missing data segment; a missing text segment is less plausible. */
3666
3667 int
3668 symfile_map_offsets_to_segments (bfd *abfd,
3669 const struct symfile_segment_data *data,
3670 struct section_offsets *offsets,
3671 int num_segment_bases,
3672 const CORE_ADDR *segment_bases)
3673 {
3674 int i;
3675 asection *sect;
3676
3677 /* It doesn't make sense to call this function unless you have some
3678 segment base addresses. */
3679 gdb_assert (num_segment_bases > 0);
3680
3681 /* If we do not have segment mappings for the object file, we
3682 can not relocate it by segments. */
3683 gdb_assert (data != NULL);
3684 gdb_assert (data->num_segments > 0);
3685
3686 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3687 {
3688 int which = data->segment_info[i];
3689
3690 gdb_assert (0 <= which && which <= data->num_segments);
3691
3692 /* Don't bother computing offsets for sections that aren't
3693 loaded as part of any segment. */
3694 if (! which)
3695 continue;
3696
3697 /* Use the last SEGMENT_BASES entry as the address of any extra
3698 segments mentioned in DATA->segment_info. */
3699 if (which > num_segment_bases)
3700 which = num_segment_bases;
3701
3702 offsets->offsets[i] = (segment_bases[which - 1]
3703 - data->segment_bases[which - 1]);
3704 }
3705
3706 return 1;
3707 }
3708
3709 static void
3710 symfile_find_segment_sections (struct objfile *objfile)
3711 {
3712 bfd *abfd = objfile->obfd;
3713 int i;
3714 asection *sect;
3715 struct symfile_segment_data *data;
3716
3717 data = get_symfile_segment_data (objfile->obfd);
3718 if (data == NULL)
3719 return;
3720
3721 if (data->num_segments != 1 && data->num_segments != 2)
3722 {
3723 free_symfile_segment_data (data);
3724 return;
3725 }
3726
3727 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3728 {
3729 int which = data->segment_info[i];
3730
3731 if (which == 1)
3732 {
3733 if (objfile->sect_index_text == -1)
3734 objfile->sect_index_text = sect->index;
3735
3736 if (objfile->sect_index_rodata == -1)
3737 objfile->sect_index_rodata = sect->index;
3738 }
3739 else if (which == 2)
3740 {
3741 if (objfile->sect_index_data == -1)
3742 objfile->sect_index_data = sect->index;
3743
3744 if (objfile->sect_index_bss == -1)
3745 objfile->sect_index_bss = sect->index;
3746 }
3747 }
3748
3749 free_symfile_segment_data (data);
3750 }
3751
3752 /* Listen for free_objfile events. */
3753
3754 static void
3755 symfile_free_objfile (struct objfile *objfile)
3756 {
3757 /* Remove the target sections owned by this objfile. */
3758 if (objfile != NULL)
3759 remove_target_sections ((void *) objfile);
3760 }
3761
3762 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3763 Expand all symtabs that match the specified criteria.
3764 See quick_symbol_functions.expand_symtabs_matching for details. */
3765
3766 void
3767 expand_symtabs_matching
3768 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3769 const lookup_name_info &lookup_name,
3770 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3771 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3772 enum search_domain kind)
3773 {
3774 struct objfile *objfile;
3775
3776 ALL_OBJFILES (objfile)
3777 {
3778 if (objfile->sf)
3779 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3780 lookup_name,
3781 symbol_matcher,
3782 expansion_notify, kind);
3783 }
3784 }
3785
3786 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3787 Map function FUN over every file.
3788 See quick_symbol_functions.map_symbol_filenames for details. */
3789
3790 void
3791 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3792 int need_fullname)
3793 {
3794 struct objfile *objfile;
3795
3796 ALL_OBJFILES (objfile)
3797 {
3798 if (objfile->sf)
3799 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3800 need_fullname);
3801 }
3802 }
3803
3804 #if GDB_SELF_TEST
3805
3806 namespace selftests {
3807 namespace filename_language {
3808
3809 static void test_filename_language ()
3810 {
3811 /* This test messes up the filename_language_table global. */
3812 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3813
3814 /* Test deducing an unknown extension. */
3815 language lang = deduce_language_from_filename ("myfile.blah");
3816 SELF_CHECK (lang == language_unknown);
3817
3818 /* Test deducing a known extension. */
3819 lang = deduce_language_from_filename ("myfile.c");
3820 SELF_CHECK (lang == language_c);
3821
3822 /* Test adding a new extension using the internal API. */
3823 add_filename_language (".blah", language_pascal);
3824 lang = deduce_language_from_filename ("myfile.blah");
3825 SELF_CHECK (lang == language_pascal);
3826 }
3827
3828 static void
3829 test_set_ext_lang_command ()
3830 {
3831 /* This test messes up the filename_language_table global. */
3832 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3833
3834 /* Confirm that the .hello extension is not known. */
3835 language lang = deduce_language_from_filename ("cake.hello");
3836 SELF_CHECK (lang == language_unknown);
3837
3838 /* Test adding a new extension using the CLI command. */
3839 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3840 ext_args = args_holder.get ();
3841 set_ext_lang_command (NULL, 1, NULL);
3842
3843 lang = deduce_language_from_filename ("cake.hello");
3844 SELF_CHECK (lang == language_rust);
3845
3846 /* Test overriding an existing extension using the CLI command. */
3847 int size_before = filename_language_table.size ();
3848 args_holder.reset (xstrdup (".hello pascal"));
3849 ext_args = args_holder.get ();
3850 set_ext_lang_command (NULL, 1, NULL);
3851 int size_after = filename_language_table.size ();
3852
3853 lang = deduce_language_from_filename ("cake.hello");
3854 SELF_CHECK (lang == language_pascal);
3855 SELF_CHECK (size_before == size_after);
3856 }
3857
3858 } /* namespace filename_language */
3859 } /* namespace selftests */
3860
3861 #endif /* GDB_SELF_TEST */
3862
3863 void
3864 _initialize_symfile (void)
3865 {
3866 struct cmd_list_element *c;
3867
3868 observer_attach_free_objfile (symfile_free_objfile);
3869
3870 #define READNOW_READNEVER_HELP \
3871 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3872 immediately. This makes the command slower, but may make future operations\n\
3873 faster.\n\
3874 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3875 symbolic debug information."
3876
3877 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3878 Load symbol table from executable file FILE.\n\
3879 Usage: symbol-file [-readnow | -readnever] FILE\n\
3880 The `file' command can also load symbol tables, as well as setting the file\n\
3881 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3882 set_cmd_completer (c, filename_completer);
3883
3884 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3885 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3886 Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3887 -s SECT-NAME SECT-ADDR]...\n\
3888 ADDR is the starting address of the file's text.\n\
3889 Each '-s' argument provides a section name and address, and\n\
3890 should be specified if the data and bss segments are not contiguous\n\
3891 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3892 READNOW_READNEVER_HELP),
3893 &cmdlist);
3894 set_cmd_completer (c, filename_completer);
3895
3896 c = add_cmd ("remove-symbol-file", class_files,
3897 remove_symbol_file_command, _("\
3898 Remove a symbol file added via the add-symbol-file command.\n\
3899 Usage: remove-symbol-file FILENAME\n\
3900 remove-symbol-file -a ADDRESS\n\
3901 The file to remove can be identified by its filename or by an address\n\
3902 that lies within the boundaries of this symbol file in memory."),
3903 &cmdlist);
3904
3905 c = add_cmd ("load", class_files, load_command, _("\
3906 Dynamically load FILE into the running program, and record its symbols\n\
3907 for access from GDB.\n\
3908 Usage: load [FILE] [OFFSET]\n\
3909 An optional load OFFSET may also be given as a literal address.\n\
3910 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3911 on its own."), &cmdlist);
3912 set_cmd_completer (c, filename_completer);
3913
3914 add_prefix_cmd ("overlay", class_support, overlay_command,
3915 _("Commands for debugging overlays."), &overlaylist,
3916 "overlay ", 0, &cmdlist);
3917
3918 add_com_alias ("ovly", "overlay", class_alias, 1);
3919 add_com_alias ("ov", "overlay", class_alias, 1);
3920
3921 add_cmd ("map-overlay", class_support, map_overlay_command,
3922 _("Assert that an overlay section is mapped."), &overlaylist);
3923
3924 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3925 _("Assert that an overlay section is unmapped."), &overlaylist);
3926
3927 add_cmd ("list-overlays", class_support, list_overlays_command,
3928 _("List mappings of overlay sections."), &overlaylist);
3929
3930 add_cmd ("manual", class_support, overlay_manual_command,
3931 _("Enable overlay debugging."), &overlaylist);
3932 add_cmd ("off", class_support, overlay_off_command,
3933 _("Disable overlay debugging."), &overlaylist);
3934 add_cmd ("auto", class_support, overlay_auto_command,
3935 _("Enable automatic overlay debugging."), &overlaylist);
3936 add_cmd ("load-target", class_support, overlay_load_command,
3937 _("Read the overlay mapping state from the target."), &overlaylist);
3938
3939 /* Filename extension to source language lookup table: */
3940 add_setshow_string_noescape_cmd ("extension-language", class_files,
3941 &ext_args, _("\
3942 Set mapping between filename extension and source language."), _("\
3943 Show mapping between filename extension and source language."), _("\
3944 Usage: set extension-language .foo bar"),
3945 set_ext_lang_command,
3946 show_ext_args,
3947 &setlist, &showlist);
3948
3949 add_info ("extensions", info_ext_lang_command,
3950 _("All filename extensions associated with a source language."));
3951
3952 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3953 &debug_file_directory, _("\
3954 Set the directories where separate debug symbols are searched for."), _("\
3955 Show the directories where separate debug symbols are searched for."), _("\
3956 Separate debug symbols are first searched for in the same\n\
3957 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3958 and lastly at the path of the directory of the binary with\n\
3959 each global debug-file-directory component prepended."),
3960 NULL,
3961 show_debug_file_directory,
3962 &setlist, &showlist);
3963
3964 add_setshow_enum_cmd ("symbol-loading", no_class,
3965 print_symbol_loading_enums, &print_symbol_loading,
3966 _("\
3967 Set printing of symbol loading messages."), _("\
3968 Show printing of symbol loading messages."), _("\
3969 off == turn all messages off\n\
3970 brief == print messages for the executable,\n\
3971 and brief messages for shared libraries\n\
3972 full == print messages for the executable,\n\
3973 and messages for each shared library."),
3974 NULL,
3975 NULL,
3976 &setprintlist, &showprintlist);
3977
3978 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3979 &separate_debug_file_debug, _("\
3980 Set printing of separate debug info file search debug."), _("\
3981 Show printing of separate debug info file search debug."), _("\
3982 When on, GDB prints the searched locations while looking for separate debug \
3983 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3984
3985 #if GDB_SELF_TEST
3986 selftests::register_test
3987 ("filename_language", selftests::filename_language::test_filename_language);
3988 selftests::register_test
3989 ("set_ext_lang_command",
3990 selftests::filename_language::test_set_ext_lang_command);
3991 #endif
3992 }
This page took 0.1082 seconds and 5 git commands to generate.