* gdbtypes.h (builtin_type_void): Remove macro, add declaration.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57
58 #include <sys/types.h>
59 #include <fcntl.h>
60 #include "gdb_string.h"
61 #include "gdb_stat.h"
62 #include <ctype.h>
63 #include <time.h>
64 #include <sys/time.h>
65
66
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 /* External variables and functions referenced. */
82
83 extern void report_transfer_performance (unsigned long, time_t, time_t);
84
85 /* Functions this file defines */
86
87 #if 0
88 static int simple_read_overlay_region_table (void);
89 static void simple_free_overlay_region_table (void);
90 #endif
91
92 static void load_command (char *, int);
93
94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96 static void add_symbol_file_command (char *, int);
97
98 static void add_shared_symbol_files_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
133
134 static int simple_read_overlay_table (void);
135
136 static int simple_overlay_update_1 (struct obj_section *);
137
138 static void add_filename_language (char *ext, enum language lang);
139
140 static void info_ext_lang_command (char *args, int from_tty);
141
142 static char *find_separate_debug_file (struct objfile *objfile);
143
144 static void init_filename_language_table (void);
145
146 static void symfile_find_segment_sections (struct objfile *objfile);
147
148 void _initialize_symfile (void);
149
150 /* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154 static struct sym_fns *symtab_fns = NULL;
155
156 /* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159 #ifdef SYMBOL_RELOADING_DEFAULT
160 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161 #else
162 int symbol_reloading = 0;
163 #endif
164 static void
165 show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171 }
172
173 /* If non-zero, gdb will notify the user when it is loading symbols
174 from a file. This is almost always what users will want to have happen;
175 but for programs with lots of dynamically linked libraries, the output
176 can be more noise than signal. */
177
178 int print_symbol_loading = 1;
179
180 /* If non-zero, shared library symbols will be added automatically
181 when the inferior is created, new libraries are loaded, or when
182 attaching to the inferior. This is almost always what users will
183 want to have happen; but for very large programs, the startup time
184 will be excessive, and so if this is a problem, the user can clear
185 this flag and then add the shared library symbols as needed. Note
186 that there is a potential for confusion, since if the shared
187 library symbols are not loaded, commands like "info fun" will *not*
188 report all the functions that are actually present. */
189
190 int auto_solib_add = 1;
191
192 /* For systems that support it, a threshold size in megabytes. If
193 automatically adding a new library's symbol table to those already
194 known to the debugger would cause the total shared library symbol
195 size to exceed this threshhold, then the shlib's symbols are not
196 added. The threshold is ignored if the user explicitly asks for a
197 shlib to be added, such as when using the "sharedlibrary"
198 command. */
199
200 int auto_solib_limit;
201 \f
202
203 /* This compares two partial symbols by names, using strcmp_iw_ordered
204 for the comparison. */
205
206 static int
207 compare_psymbols (const void *s1p, const void *s2p)
208 {
209 struct partial_symbol *const *s1 = s1p;
210 struct partial_symbol *const *s2 = s2p;
211
212 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
213 SYMBOL_SEARCH_NAME (*s2));
214 }
215
216 void
217 sort_pst_symbols (struct partial_symtab *pst)
218 {
219 /* Sort the global list; don't sort the static list */
220
221 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
222 pst->n_global_syms, sizeof (struct partial_symbol *),
223 compare_psymbols);
224 }
225
226 /* Make a null terminated copy of the string at PTR with SIZE characters in
227 the obstack pointed to by OBSTACKP . Returns the address of the copy.
228 Note that the string at PTR does not have to be null terminated, I.E. it
229 may be part of a larger string and we are only saving a substring. */
230
231 char *
232 obsavestring (const char *ptr, int size, struct obstack *obstackp)
233 {
234 char *p = (char *) obstack_alloc (obstackp, size + 1);
235 /* Open-coded memcpy--saves function call time. These strings are usually
236 short. FIXME: Is this really still true with a compiler that can
237 inline memcpy? */
238 {
239 const char *p1 = ptr;
240 char *p2 = p;
241 const char *end = ptr + size;
242 while (p1 != end)
243 *p2++ = *p1++;
244 }
245 p[size] = 0;
246 return p;
247 }
248
249 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
250 in the obstack pointed to by OBSTACKP. */
251
252 char *
253 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
254 const char *s3)
255 {
256 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
257 char *val = (char *) obstack_alloc (obstackp, len);
258 strcpy (val, s1);
259 strcat (val, s2);
260 strcat (val, s3);
261 return val;
262 }
263
264 /* True if we are nested inside psymtab_to_symtab. */
265
266 int currently_reading_symtab = 0;
267
268 static void
269 decrement_reading_symtab (void *dummy)
270 {
271 currently_reading_symtab--;
272 }
273
274 /* Get the symbol table that corresponds to a partial_symtab.
275 This is fast after the first time you do it. In fact, there
276 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
277 case inline. */
278
279 struct symtab *
280 psymtab_to_symtab (struct partial_symtab *pst)
281 {
282 /* If it's been looked up before, return it. */
283 if (pst->symtab)
284 return pst->symtab;
285
286 /* If it has not yet been read in, read it. */
287 if (!pst->readin)
288 {
289 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
290 currently_reading_symtab++;
291 (*pst->read_symtab) (pst);
292 do_cleanups (back_to);
293 }
294
295 return pst->symtab;
296 }
297
298 /* Remember the lowest-addressed loadable section we've seen.
299 This function is called via bfd_map_over_sections.
300
301 In case of equal vmas, the section with the largest size becomes the
302 lowest-addressed loadable section.
303
304 If the vmas and sizes are equal, the last section is considered the
305 lowest-addressed loadable section. */
306
307 void
308 find_lowest_section (bfd *abfd, asection *sect, void *obj)
309 {
310 asection **lowest = (asection **) obj;
311
312 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
313 return;
314 if (!*lowest)
315 *lowest = sect; /* First loadable section */
316 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
317 *lowest = sect; /* A lower loadable section */
318 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
319 && (bfd_section_size (abfd, (*lowest))
320 <= bfd_section_size (abfd, sect)))
321 *lowest = sect;
322 }
323
324 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
325
326 struct section_addr_info *
327 alloc_section_addr_info (size_t num_sections)
328 {
329 struct section_addr_info *sap;
330 size_t size;
331
332 size = (sizeof (struct section_addr_info)
333 + sizeof (struct other_sections) * (num_sections - 1));
334 sap = (struct section_addr_info *) xmalloc (size);
335 memset (sap, 0, size);
336 sap->num_sections = num_sections;
337
338 return sap;
339 }
340
341
342 /* Return a freshly allocated copy of ADDRS. The section names, if
343 any, are also freshly allocated copies of those in ADDRS. */
344 struct section_addr_info *
345 copy_section_addr_info (struct section_addr_info *addrs)
346 {
347 struct section_addr_info *copy
348 = alloc_section_addr_info (addrs->num_sections);
349 int i;
350
351 copy->num_sections = addrs->num_sections;
352 for (i = 0; i < addrs->num_sections; i++)
353 {
354 copy->other[i].addr = addrs->other[i].addr;
355 if (addrs->other[i].name)
356 copy->other[i].name = xstrdup (addrs->other[i].name);
357 else
358 copy->other[i].name = NULL;
359 copy->other[i].sectindex = addrs->other[i].sectindex;
360 }
361
362 return copy;
363 }
364
365
366
367 /* Build (allocate and populate) a section_addr_info struct from
368 an existing section table. */
369
370 extern struct section_addr_info *
371 build_section_addr_info_from_section_table (const struct section_table *start,
372 const struct section_table *end)
373 {
374 struct section_addr_info *sap;
375 const struct section_table *stp;
376 int oidx;
377
378 sap = alloc_section_addr_info (end - start);
379
380 for (stp = start, oidx = 0; stp != end; stp++)
381 {
382 if (bfd_get_section_flags (stp->bfd,
383 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
384 && oidx < end - start)
385 {
386 sap->other[oidx].addr = stp->addr;
387 sap->other[oidx].name
388 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
389 sap->other[oidx].sectindex = stp->the_bfd_section->index;
390 oidx++;
391 }
392 }
393
394 return sap;
395 }
396
397
398 /* Free all memory allocated by build_section_addr_info_from_section_table. */
399
400 extern void
401 free_section_addr_info (struct section_addr_info *sap)
402 {
403 int idx;
404
405 for (idx = 0; idx < sap->num_sections; idx++)
406 if (sap->other[idx].name)
407 xfree (sap->other[idx].name);
408 xfree (sap);
409 }
410
411
412 /* Initialize OBJFILE's sect_index_* members. */
413 static void
414 init_objfile_sect_indices (struct objfile *objfile)
415 {
416 asection *sect;
417 int i;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".text");
420 if (sect)
421 objfile->sect_index_text = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".data");
424 if (sect)
425 objfile->sect_index_data = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
428 if (sect)
429 objfile->sect_index_bss = sect->index;
430
431 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
432 if (sect)
433 objfile->sect_index_rodata = sect->index;
434
435 /* This is where things get really weird... We MUST have valid
436 indices for the various sect_index_* members or gdb will abort.
437 So if for example, there is no ".text" section, we have to
438 accomodate that. First, check for a file with the standard
439 one or two segments. */
440
441 symfile_find_segment_sections (objfile);
442
443 /* Except when explicitly adding symbol files at some address,
444 section_offsets contains nothing but zeros, so it doesn't matter
445 which slot in section_offsets the individual sect_index_* members
446 index into. So if they are all zero, it is safe to just point
447 all the currently uninitialized indices to the first slot. But
448 beware: if this is the main executable, it may be relocated
449 later, e.g. by the remote qOffsets packet, and then this will
450 be wrong! That's why we try segments first. */
451
452 for (i = 0; i < objfile->num_sections; i++)
453 {
454 if (ANOFFSET (objfile->section_offsets, i) != 0)
455 {
456 break;
457 }
458 }
459 if (i == objfile->num_sections)
460 {
461 if (objfile->sect_index_text == -1)
462 objfile->sect_index_text = 0;
463 if (objfile->sect_index_data == -1)
464 objfile->sect_index_data = 0;
465 if (objfile->sect_index_bss == -1)
466 objfile->sect_index_bss = 0;
467 if (objfile->sect_index_rodata == -1)
468 objfile->sect_index_rodata = 0;
469 }
470 }
471
472 /* The arguments to place_section. */
473
474 struct place_section_arg
475 {
476 struct section_offsets *offsets;
477 CORE_ADDR lowest;
478 };
479
480 /* Find a unique offset to use for loadable section SECT if
481 the user did not provide an offset. */
482
483 void
484 place_section (bfd *abfd, asection *sect, void *obj)
485 {
486 struct place_section_arg *arg = obj;
487 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
488 int done;
489 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
490
491 /* We are only interested in allocated sections. */
492 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
493 return;
494
495 /* If the user specified an offset, honor it. */
496 if (offsets[sect->index] != 0)
497 return;
498
499 /* Otherwise, let's try to find a place for the section. */
500 start_addr = (arg->lowest + align - 1) & -align;
501
502 do {
503 asection *cur_sec;
504
505 done = 1;
506
507 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
508 {
509 int indx = cur_sec->index;
510 CORE_ADDR cur_offset;
511
512 /* We don't need to compare against ourself. */
513 if (cur_sec == sect)
514 continue;
515
516 /* We can only conflict with allocated sections. */
517 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
518 continue;
519
520 /* If the section offset is 0, either the section has not been placed
521 yet, or it was the lowest section placed (in which case LOWEST
522 will be past its end). */
523 if (offsets[indx] == 0)
524 continue;
525
526 /* If this section would overlap us, then we must move up. */
527 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
528 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
529 {
530 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
531 start_addr = (start_addr + align - 1) & -align;
532 done = 0;
533 break;
534 }
535
536 /* Otherwise, we appear to be OK. So far. */
537 }
538 }
539 while (!done);
540
541 offsets[sect->index] = start_addr;
542 arg->lowest = start_addr + bfd_get_section_size (sect);
543 }
544
545 /* Parse the user's idea of an offset for dynamic linking, into our idea
546 of how to represent it for fast symbol reading. This is the default
547 version of the sym_fns.sym_offsets function for symbol readers that
548 don't need to do anything special. It allocates a section_offsets table
549 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
550
551 void
552 default_symfile_offsets (struct objfile *objfile,
553 struct section_addr_info *addrs)
554 {
555 int i;
556
557 objfile->num_sections = bfd_count_sections (objfile->obfd);
558 objfile->section_offsets = (struct section_offsets *)
559 obstack_alloc (&objfile->objfile_obstack,
560 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
561 memset (objfile->section_offsets, 0,
562 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
563
564 /* Now calculate offsets for section that were specified by the
565 caller. */
566 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
567 {
568 struct other_sections *osp ;
569
570 osp = &addrs->other[i] ;
571 if (osp->addr == 0)
572 continue;
573
574 /* Record all sections in offsets */
575 /* The section_offsets in the objfile are here filled in using
576 the BFD index. */
577 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
578 }
579
580 /* For relocatable files, all loadable sections will start at zero.
581 The zero is meaningless, so try to pick arbitrary addresses such
582 that no loadable sections overlap. This algorithm is quadratic,
583 but the number of sections in a single object file is generally
584 small. */
585 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
586 {
587 struct place_section_arg arg;
588 bfd *abfd = objfile->obfd;
589 asection *cur_sec;
590 CORE_ADDR lowest = 0;
591
592 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
593 /* We do not expect this to happen; just skip this step if the
594 relocatable file has a section with an assigned VMA. */
595 if (bfd_section_vma (abfd, cur_sec) != 0)
596 break;
597
598 if (cur_sec == NULL)
599 {
600 CORE_ADDR *offsets = objfile->section_offsets->offsets;
601
602 /* Pick non-overlapping offsets for sections the user did not
603 place explicitly. */
604 arg.offsets = objfile->section_offsets;
605 arg.lowest = 0;
606 bfd_map_over_sections (objfile->obfd, place_section, &arg);
607
608 /* Correctly filling in the section offsets is not quite
609 enough. Relocatable files have two properties that
610 (most) shared objects do not:
611
612 - Their debug information will contain relocations. Some
613 shared libraries do also, but many do not, so this can not
614 be assumed.
615
616 - If there are multiple code sections they will be loaded
617 at different relative addresses in memory than they are
618 in the objfile, since all sections in the file will start
619 at address zero.
620
621 Because GDB has very limited ability to map from an
622 address in debug info to the correct code section,
623 it relies on adding SECT_OFF_TEXT to things which might be
624 code. If we clear all the section offsets, and set the
625 section VMAs instead, then symfile_relocate_debug_section
626 will return meaningful debug information pointing at the
627 correct sections.
628
629 GDB has too many different data structures for section
630 addresses - a bfd, objfile, and so_list all have section
631 tables, as does exec_ops. Some of these could probably
632 be eliminated. */
633
634 for (cur_sec = abfd->sections; cur_sec != NULL;
635 cur_sec = cur_sec->next)
636 {
637 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
638 continue;
639
640 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
641 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
642 offsets[cur_sec->index]);
643 offsets[cur_sec->index] = 0;
644 }
645 }
646 }
647
648 /* Remember the bfd indexes for the .text, .data, .bss and
649 .rodata sections. */
650 init_objfile_sect_indices (objfile);
651 }
652
653
654 /* Divide the file into segments, which are individual relocatable units.
655 This is the default version of the sym_fns.sym_segments function for
656 symbol readers that do not have an explicit representation of segments.
657 It assumes that object files do not have segments, and fully linked
658 files have a single segment. */
659
660 struct symfile_segment_data *
661 default_symfile_segments (bfd *abfd)
662 {
663 int num_sections, i;
664 asection *sect;
665 struct symfile_segment_data *data;
666 CORE_ADDR low, high;
667
668 /* Relocatable files contain enough information to position each
669 loadable section independently; they should not be relocated
670 in segments. */
671 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
672 return NULL;
673
674 /* Make sure there is at least one loadable section in the file. */
675 for (sect = abfd->sections; sect != NULL; sect = sect->next)
676 {
677 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
678 continue;
679
680 break;
681 }
682 if (sect == NULL)
683 return NULL;
684
685 low = bfd_get_section_vma (abfd, sect);
686 high = low + bfd_get_section_size (sect);
687
688 data = XZALLOC (struct symfile_segment_data);
689 data->num_segments = 1;
690 data->segment_bases = XCALLOC (1, CORE_ADDR);
691 data->segment_sizes = XCALLOC (1, CORE_ADDR);
692
693 num_sections = bfd_count_sections (abfd);
694 data->segment_info = XCALLOC (num_sections, int);
695
696 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
697 {
698 CORE_ADDR vma;
699
700 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
701 continue;
702
703 vma = bfd_get_section_vma (abfd, sect);
704 if (vma < low)
705 low = vma;
706 if (vma + bfd_get_section_size (sect) > high)
707 high = vma + bfd_get_section_size (sect);
708
709 data->segment_info[i] = 1;
710 }
711
712 data->segment_bases[0] = low;
713 data->segment_sizes[0] = high - low;
714
715 return data;
716 }
717
718 /* Process a symbol file, as either the main file or as a dynamically
719 loaded file.
720
721 OBJFILE is where the symbols are to be read from.
722
723 ADDRS is the list of section load addresses. If the user has given
724 an 'add-symbol-file' command, then this is the list of offsets and
725 addresses he or she provided as arguments to the command; or, if
726 we're handling a shared library, these are the actual addresses the
727 sections are loaded at, according to the inferior's dynamic linker
728 (as gleaned by GDB's shared library code). We convert each address
729 into an offset from the section VMA's as it appears in the object
730 file, and then call the file's sym_offsets function to convert this
731 into a format-specific offset table --- a `struct section_offsets'.
732 If ADDRS is non-zero, OFFSETS must be zero.
733
734 OFFSETS is a table of section offsets already in the right
735 format-specific representation. NUM_OFFSETS is the number of
736 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
737 assume this is the proper table the call to sym_offsets described
738 above would produce. Instead of calling sym_offsets, we just dump
739 it right into objfile->section_offsets. (When we're re-reading
740 symbols from an objfile, we don't have the original load address
741 list any more; all we have is the section offset table.) If
742 OFFSETS is non-zero, ADDRS must be zero.
743
744 MAINLINE is nonzero if this is the main symbol file, or zero if
745 it's an extra symbol file such as dynamically loaded code.
746
747 VERBO is nonzero if the caller has printed a verbose message about
748 the symbol reading (and complaints can be more terse about it). */
749
750 void
751 syms_from_objfile (struct objfile *objfile,
752 struct section_addr_info *addrs,
753 struct section_offsets *offsets,
754 int num_offsets,
755 int mainline,
756 int verbo)
757 {
758 struct section_addr_info *local_addr = NULL;
759 struct cleanup *old_chain;
760
761 gdb_assert (! (addrs && offsets));
762
763 init_entry_point_info (objfile);
764 objfile->sf = find_sym_fns (objfile->obfd);
765
766 if (objfile->sf == NULL)
767 return; /* No symbols. */
768
769 /* Make sure that partially constructed symbol tables will be cleaned up
770 if an error occurs during symbol reading. */
771 old_chain = make_cleanup_free_objfile (objfile);
772
773 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
774 list. We now establish the convention that an addr of zero means
775 no load address was specified. */
776 if (! addrs && ! offsets)
777 {
778 local_addr
779 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
780 make_cleanup (xfree, local_addr);
781 addrs = local_addr;
782 }
783
784 /* Now either addrs or offsets is non-zero. */
785
786 if (mainline)
787 {
788 /* We will modify the main symbol table, make sure that all its users
789 will be cleaned up if an error occurs during symbol reading. */
790 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
791
792 /* Since no error yet, throw away the old symbol table. */
793
794 if (symfile_objfile != NULL)
795 {
796 free_objfile (symfile_objfile);
797 symfile_objfile = NULL;
798 }
799
800 /* Currently we keep symbols from the add-symbol-file command.
801 If the user wants to get rid of them, they should do "symbol-file"
802 without arguments first. Not sure this is the best behavior
803 (PR 2207). */
804
805 (*objfile->sf->sym_new_init) (objfile);
806 }
807
808 /* Convert addr into an offset rather than an absolute address.
809 We find the lowest address of a loaded segment in the objfile,
810 and assume that <addr> is where that got loaded.
811
812 We no longer warn if the lowest section is not a text segment (as
813 happens for the PA64 port. */
814 if (!mainline && addrs && addrs->other[0].name)
815 {
816 asection *lower_sect;
817 asection *sect;
818 CORE_ADDR lower_offset;
819 int i;
820
821 /* Find lowest loadable section to be used as starting point for
822 continguous sections. FIXME!! won't work without call to find
823 .text first, but this assumes text is lowest section. */
824 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
825 if (lower_sect == NULL)
826 bfd_map_over_sections (objfile->obfd, find_lowest_section,
827 &lower_sect);
828 if (lower_sect == NULL)
829 {
830 warning (_("no loadable sections found in added symbol-file %s"),
831 objfile->name);
832 lower_offset = 0;
833 }
834 else
835 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
836
837 /* Calculate offsets for the loadable sections.
838 FIXME! Sections must be in order of increasing loadable section
839 so that contiguous sections can use the lower-offset!!!
840
841 Adjust offsets if the segments are not contiguous.
842 If the section is contiguous, its offset should be set to
843 the offset of the highest loadable section lower than it
844 (the loadable section directly below it in memory).
845 this_offset = lower_offset = lower_addr - lower_orig_addr */
846
847 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
848 {
849 if (addrs->other[i].addr != 0)
850 {
851 sect = bfd_get_section_by_name (objfile->obfd,
852 addrs->other[i].name);
853 if (sect)
854 {
855 addrs->other[i].addr
856 -= bfd_section_vma (objfile->obfd, sect);
857 lower_offset = addrs->other[i].addr;
858 /* This is the index used by BFD. */
859 addrs->other[i].sectindex = sect->index ;
860 }
861 else
862 {
863 warning (_("section %s not found in %s"),
864 addrs->other[i].name,
865 objfile->name);
866 addrs->other[i].addr = 0;
867 }
868 }
869 else
870 addrs->other[i].addr = lower_offset;
871 }
872 }
873
874 /* Initialize symbol reading routines for this objfile, allow complaints to
875 appear for this new file, and record how verbose to be, then do the
876 initial symbol reading for this file. */
877
878 (*objfile->sf->sym_init) (objfile);
879 clear_complaints (&symfile_complaints, 1, verbo);
880
881 if (addrs)
882 (*objfile->sf->sym_offsets) (objfile, addrs);
883 else
884 {
885 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
886
887 /* Just copy in the offset table directly as given to us. */
888 objfile->num_sections = num_offsets;
889 objfile->section_offsets
890 = ((struct section_offsets *)
891 obstack_alloc (&objfile->objfile_obstack, size));
892 memcpy (objfile->section_offsets, offsets, size);
893
894 init_objfile_sect_indices (objfile);
895 }
896
897 (*objfile->sf->sym_read) (objfile, mainline);
898
899 /* Mark the objfile has having had initial symbol read attempted. Note
900 that this does not mean we found any symbols... */
901
902 objfile->flags |= OBJF_SYMS;
903
904 /* Discard cleanups as symbol reading was successful. */
905
906 discard_cleanups (old_chain);
907 }
908
909 /* Perform required actions after either reading in the initial
910 symbols for a new objfile, or mapping in the symbols from a reusable
911 objfile. */
912
913 void
914 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
915 {
916
917 /* If this is the main symbol file we have to clean up all users of the
918 old main symbol file. Otherwise it is sufficient to fixup all the
919 breakpoints that may have been redefined by this symbol file. */
920 if (mainline)
921 {
922 /* OK, make it the "real" symbol file. */
923 symfile_objfile = objfile;
924
925 clear_symtab_users ();
926 }
927 else
928 {
929 breakpoint_re_set ();
930 }
931
932 /* We're done reading the symbol file; finish off complaints. */
933 clear_complaints (&symfile_complaints, 0, verbo);
934 }
935
936 /* Process a symbol file, as either the main file or as a dynamically
937 loaded file.
938
939 ABFD is a BFD already open on the file, as from symfile_bfd_open.
940 This BFD will be closed on error, and is always consumed by this function.
941
942 FROM_TTY says how verbose to be.
943
944 MAINLINE specifies whether this is the main symbol file, or whether
945 it's an extra symbol file such as dynamically loaded code.
946
947 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
948 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
949 non-zero.
950
951 Upon success, returns a pointer to the objfile that was added.
952 Upon failure, jumps back to command level (never returns). */
953 static struct objfile *
954 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
955 struct section_addr_info *addrs,
956 struct section_offsets *offsets,
957 int num_offsets,
958 int mainline, int flags)
959 {
960 struct objfile *objfile;
961 struct partial_symtab *psymtab;
962 char *debugfile = NULL;
963 struct section_addr_info *orig_addrs = NULL;
964 struct cleanup *my_cleanups;
965 const char *name = bfd_get_filename (abfd);
966
967 my_cleanups = make_cleanup_bfd_close (abfd);
968
969 /* Give user a chance to burp if we'd be
970 interactively wiping out any existing symbols. */
971
972 if ((have_full_symbols () || have_partial_symbols ())
973 && mainline
974 && from_tty
975 && !query ("Load new symbol table from \"%s\"? ", name))
976 error (_("Not confirmed."));
977
978 objfile = allocate_objfile (abfd, flags);
979 discard_cleanups (my_cleanups);
980
981 if (addrs)
982 {
983 orig_addrs = copy_section_addr_info (addrs);
984 make_cleanup_free_section_addr_info (orig_addrs);
985 }
986
987 /* We either created a new mapped symbol table, mapped an existing
988 symbol table file which has not had initial symbol reading
989 performed, or need to read an unmapped symbol table. */
990 if (from_tty || info_verbose)
991 {
992 if (deprecated_pre_add_symbol_hook)
993 deprecated_pre_add_symbol_hook (name);
994 else
995 {
996 if (print_symbol_loading)
997 {
998 printf_unfiltered (_("Reading symbols from %s..."), name);
999 wrap_here ("");
1000 gdb_flush (gdb_stdout);
1001 }
1002 }
1003 }
1004 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1005 mainline, from_tty);
1006
1007 /* We now have at least a partial symbol table. Check to see if the
1008 user requested that all symbols be read on initial access via either
1009 the gdb startup command line or on a per symbol file basis. Expand
1010 all partial symbol tables for this objfile if so. */
1011
1012 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1013 {
1014 if ((from_tty || info_verbose) && print_symbol_loading)
1015 {
1016 printf_unfiltered (_("expanding to full symbols..."));
1017 wrap_here ("");
1018 gdb_flush (gdb_stdout);
1019 }
1020
1021 for (psymtab = objfile->psymtabs;
1022 psymtab != NULL;
1023 psymtab = psymtab->next)
1024 {
1025 psymtab_to_symtab (psymtab);
1026 }
1027 }
1028
1029 /* If the file has its own symbol tables it has no separate debug info.
1030 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1031 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1032 if (objfile->psymtabs == NULL)
1033 debugfile = find_separate_debug_file (objfile);
1034 if (debugfile)
1035 {
1036 if (addrs != NULL)
1037 {
1038 objfile->separate_debug_objfile
1039 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1040 }
1041 else
1042 {
1043 objfile->separate_debug_objfile
1044 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1045 }
1046 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1047 = objfile;
1048
1049 /* Put the separate debug object before the normal one, this is so that
1050 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1051 put_objfile_before (objfile->separate_debug_objfile, objfile);
1052
1053 xfree (debugfile);
1054 }
1055
1056 if (!have_partial_symbols () && !have_full_symbols ()
1057 && print_symbol_loading)
1058 {
1059 wrap_here ("");
1060 printf_filtered (_("(no debugging symbols found)"));
1061 if (from_tty || info_verbose)
1062 printf_filtered ("...");
1063 else
1064 printf_filtered ("\n");
1065 wrap_here ("");
1066 }
1067
1068 if (from_tty || info_verbose)
1069 {
1070 if (deprecated_post_add_symbol_hook)
1071 deprecated_post_add_symbol_hook ();
1072 else
1073 {
1074 if (print_symbol_loading)
1075 printf_unfiltered (_("done.\n"));
1076 }
1077 }
1078
1079 /* We print some messages regardless of whether 'from_tty ||
1080 info_verbose' is true, so make sure they go out at the right
1081 time. */
1082 gdb_flush (gdb_stdout);
1083
1084 do_cleanups (my_cleanups);
1085
1086 if (objfile->sf == NULL)
1087 return objfile; /* No symbols. */
1088
1089 new_symfile_objfile (objfile, mainline, from_tty);
1090
1091 observer_notify_new_objfile (objfile);
1092
1093 bfd_cache_close_all ();
1094 return (objfile);
1095 }
1096
1097
1098 /* Process the symbol file ABFD, as either the main file or as a
1099 dynamically loaded file.
1100
1101 See symbol_file_add_with_addrs_or_offsets's comments for
1102 details. */
1103 struct objfile *
1104 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1105 struct section_addr_info *addrs,
1106 int mainline, int flags)
1107 {
1108 return symbol_file_add_with_addrs_or_offsets (abfd,
1109 from_tty, addrs, 0, 0,
1110 mainline, flags);
1111 }
1112
1113
1114 /* Process a symbol file, as either the main file or as a dynamically
1115 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1116 for details. */
1117 struct objfile *
1118 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1119 int mainline, int flags)
1120 {
1121 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1122 addrs, mainline, flags);
1123 }
1124
1125
1126 /* Call symbol_file_add() with default values and update whatever is
1127 affected by the loading of a new main().
1128 Used when the file is supplied in the gdb command line
1129 and by some targets with special loading requirements.
1130 The auxiliary function, symbol_file_add_main_1(), has the flags
1131 argument for the switches that can only be specified in the symbol_file
1132 command itself. */
1133
1134 void
1135 symbol_file_add_main (char *args, int from_tty)
1136 {
1137 symbol_file_add_main_1 (args, from_tty, 0);
1138 }
1139
1140 static void
1141 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1142 {
1143 symbol_file_add (args, from_tty, NULL, 1, flags);
1144
1145 /* Getting new symbols may change our opinion about
1146 what is frameless. */
1147 reinit_frame_cache ();
1148
1149 set_initial_language ();
1150 }
1151
1152 void
1153 symbol_file_clear (int from_tty)
1154 {
1155 if ((have_full_symbols () || have_partial_symbols ())
1156 && from_tty
1157 && (symfile_objfile
1158 ? !query (_("Discard symbol table from `%s'? "),
1159 symfile_objfile->name)
1160 : !query (_("Discard symbol table? "))))
1161 error (_("Not confirmed."));
1162 free_all_objfiles ();
1163
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well.
1167 */
1168 no_shared_libraries (NULL, from_tty);
1169
1170 symfile_objfile = NULL;
1171 if (from_tty)
1172 printf_unfiltered (_("No symbol file now.\n"));
1173 }
1174
1175 struct build_id
1176 {
1177 size_t size;
1178 gdb_byte data[1];
1179 };
1180
1181 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1182
1183 static struct build_id *
1184 build_id_bfd_get (bfd *abfd)
1185 {
1186 struct build_id *retval;
1187
1188 if (!bfd_check_format (abfd, bfd_object)
1189 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1190 || elf_tdata (abfd)->build_id == NULL)
1191 return NULL;
1192
1193 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1194 retval->size = elf_tdata (abfd)->build_id_size;
1195 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1196
1197 return retval;
1198 }
1199
1200 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1201
1202 static int
1203 build_id_verify (const char *filename, struct build_id *check)
1204 {
1205 bfd *abfd;
1206 struct build_id *found = NULL;
1207 int retval = 0;
1208
1209 /* We expect to be silent on the non-existing files. */
1210 if (remote_filename_p (filename))
1211 abfd = remote_bfd_open (filename, gnutarget);
1212 else
1213 abfd = bfd_openr (filename, gnutarget);
1214 if (abfd == NULL)
1215 return 0;
1216
1217 found = build_id_bfd_get (abfd);
1218
1219 if (found == NULL)
1220 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1221 else if (found->size != check->size
1222 || memcmp (found->data, check->data, found->size) != 0)
1223 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1224 else
1225 retval = 1;
1226
1227 if (!bfd_close (abfd))
1228 warning (_("cannot close \"%s\": %s"), filename,
1229 bfd_errmsg (bfd_get_error ()));
1230 return retval;
1231 }
1232
1233 static char *
1234 build_id_to_debug_filename (struct build_id *build_id)
1235 {
1236 char *link, *s, *retval = NULL;
1237 gdb_byte *data = build_id->data;
1238 size_t size = build_id->size;
1239
1240 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1241 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1242 + 2 * size + (sizeof ".debug" - 1) + 1);
1243 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1244 if (size > 0)
1245 {
1246 size--;
1247 s += sprintf (s, "%02x", (unsigned) *data++);
1248 }
1249 if (size > 0)
1250 *s++ = '/';
1251 while (size-- > 0)
1252 s += sprintf (s, "%02x", (unsigned) *data++);
1253 strcpy (s, ".debug");
1254
1255 /* lrealpath() is expensive even for the usually non-existent files. */
1256 if (access (link, F_OK) == 0)
1257 retval = lrealpath (link);
1258 xfree (link);
1259
1260 if (retval != NULL && !build_id_verify (retval, build_id))
1261 {
1262 xfree (retval);
1263 retval = NULL;
1264 }
1265
1266 return retval;
1267 }
1268
1269 static char *
1270 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1271 {
1272 asection *sect;
1273 bfd_size_type debuglink_size;
1274 unsigned long crc32;
1275 char *contents;
1276 int crc_offset;
1277 unsigned char *p;
1278
1279 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1280
1281 if (sect == NULL)
1282 return NULL;
1283
1284 debuglink_size = bfd_section_size (objfile->obfd, sect);
1285
1286 contents = xmalloc (debuglink_size);
1287 bfd_get_section_contents (objfile->obfd, sect, contents,
1288 (file_ptr)0, (bfd_size_type)debuglink_size);
1289
1290 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1291 crc_offset = strlen (contents) + 1;
1292 crc_offset = (crc_offset + 3) & ~3;
1293
1294 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1295
1296 *crc32_out = crc32;
1297 return contents;
1298 }
1299
1300 static int
1301 separate_debug_file_exists (const char *name, unsigned long crc)
1302 {
1303 unsigned long file_crc = 0;
1304 bfd *abfd;
1305 gdb_byte buffer[8*1024];
1306 int count;
1307
1308 if (remote_filename_p (name))
1309 abfd = remote_bfd_open (name, gnutarget);
1310 else
1311 abfd = bfd_openr (name, gnutarget);
1312
1313 if (!abfd)
1314 return 0;
1315
1316 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1317 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1318
1319 bfd_close (abfd);
1320
1321 return crc == file_crc;
1322 }
1323
1324 char *debug_file_directory = NULL;
1325 static void
1326 show_debug_file_directory (struct ui_file *file, int from_tty,
1327 struct cmd_list_element *c, const char *value)
1328 {
1329 fprintf_filtered (file, _("\
1330 The directory where separate debug symbols are searched for is \"%s\".\n"),
1331 value);
1332 }
1333
1334 #if ! defined (DEBUG_SUBDIRECTORY)
1335 #define DEBUG_SUBDIRECTORY ".debug"
1336 #endif
1337
1338 static char *
1339 find_separate_debug_file (struct objfile *objfile)
1340 {
1341 asection *sect;
1342 char *basename;
1343 char *dir;
1344 char *debugfile;
1345 char *name_copy;
1346 char *canon_name;
1347 bfd_size_type debuglink_size;
1348 unsigned long crc32;
1349 int i;
1350 struct build_id *build_id;
1351
1352 build_id = build_id_bfd_get (objfile->obfd);
1353 if (build_id != NULL)
1354 {
1355 char *build_id_name;
1356
1357 build_id_name = build_id_to_debug_filename (build_id);
1358 free (build_id);
1359 /* Prevent looping on a stripped .debug file. */
1360 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1361 {
1362 warning (_("\"%s\": separate debug info file has no debug info"),
1363 build_id_name);
1364 xfree (build_id_name);
1365 }
1366 else if (build_id_name != NULL)
1367 return build_id_name;
1368 }
1369
1370 basename = get_debug_link_info (objfile, &crc32);
1371
1372 if (basename == NULL)
1373 return NULL;
1374
1375 dir = xstrdup (objfile->name);
1376
1377 /* Strip off the final filename part, leaving the directory name,
1378 followed by a slash. Objfile names should always be absolute and
1379 tilde-expanded, so there should always be a slash in there
1380 somewhere. */
1381 for (i = strlen(dir) - 1; i >= 0; i--)
1382 {
1383 if (IS_DIR_SEPARATOR (dir[i]))
1384 break;
1385 }
1386 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1387 dir[i+1] = '\0';
1388
1389 debugfile = alloca (strlen (debug_file_directory) + 1
1390 + strlen (dir)
1391 + strlen (DEBUG_SUBDIRECTORY)
1392 + strlen ("/")
1393 + strlen (basename)
1394 + 1);
1395
1396 /* First try in the same directory as the original file. */
1397 strcpy (debugfile, dir);
1398 strcat (debugfile, basename);
1399
1400 if (separate_debug_file_exists (debugfile, crc32))
1401 {
1402 xfree (basename);
1403 xfree (dir);
1404 return xstrdup (debugfile);
1405 }
1406
1407 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1408 strcpy (debugfile, dir);
1409 strcat (debugfile, DEBUG_SUBDIRECTORY);
1410 strcat (debugfile, "/");
1411 strcat (debugfile, basename);
1412
1413 if (separate_debug_file_exists (debugfile, crc32))
1414 {
1415 xfree (basename);
1416 xfree (dir);
1417 return xstrdup (debugfile);
1418 }
1419
1420 /* Then try in the global debugfile directory. */
1421 strcpy (debugfile, debug_file_directory);
1422 strcat (debugfile, "/");
1423 strcat (debugfile, dir);
1424 strcat (debugfile, basename);
1425
1426 if (separate_debug_file_exists (debugfile, crc32))
1427 {
1428 xfree (basename);
1429 xfree (dir);
1430 return xstrdup (debugfile);
1431 }
1432
1433 /* If the file is in the sysroot, try using its base path in the
1434 global debugfile directory. */
1435 canon_name = lrealpath (dir);
1436 if (canon_name
1437 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1438 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1439 {
1440 strcpy (debugfile, debug_file_directory);
1441 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1442 strcat (debugfile, "/");
1443 strcat (debugfile, basename);
1444
1445 if (separate_debug_file_exists (debugfile, crc32))
1446 {
1447 xfree (canon_name);
1448 xfree (basename);
1449 xfree (dir);
1450 return xstrdup (debugfile);
1451 }
1452 }
1453
1454 if (canon_name)
1455 xfree (canon_name);
1456
1457 xfree (basename);
1458 xfree (dir);
1459 return NULL;
1460 }
1461
1462
1463 /* This is the symbol-file command. Read the file, analyze its
1464 symbols, and add a struct symtab to a symtab list. The syntax of
1465 the command is rather bizarre:
1466
1467 1. The function buildargv implements various quoting conventions
1468 which are undocumented and have little or nothing in common with
1469 the way things are quoted (or not quoted) elsewhere in GDB.
1470
1471 2. Options are used, which are not generally used in GDB (perhaps
1472 "set mapped on", "set readnow on" would be better)
1473
1474 3. The order of options matters, which is contrary to GNU
1475 conventions (because it is confusing and inconvenient). */
1476
1477 void
1478 symbol_file_command (char *args, int from_tty)
1479 {
1480 dont_repeat ();
1481
1482 if (args == NULL)
1483 {
1484 symbol_file_clear (from_tty);
1485 }
1486 else
1487 {
1488 char **argv = buildargv (args);
1489 int flags = OBJF_USERLOADED;
1490 struct cleanup *cleanups;
1491 char *name = NULL;
1492
1493 if (argv == NULL)
1494 nomem (0);
1495
1496 cleanups = make_cleanup_freeargv (argv);
1497 while (*argv != NULL)
1498 {
1499 if (strcmp (*argv, "-readnow") == 0)
1500 flags |= OBJF_READNOW;
1501 else if (**argv == '-')
1502 error (_("unknown option `%s'"), *argv);
1503 else
1504 {
1505 symbol_file_add_main_1 (*argv, from_tty, flags);
1506 name = *argv;
1507 }
1508
1509 argv++;
1510 }
1511
1512 if (name == NULL)
1513 error (_("no symbol file name was specified"));
1514
1515 do_cleanups (cleanups);
1516 }
1517 }
1518
1519 /* Set the initial language.
1520
1521 FIXME: A better solution would be to record the language in the
1522 psymtab when reading partial symbols, and then use it (if known) to
1523 set the language. This would be a win for formats that encode the
1524 language in an easily discoverable place, such as DWARF. For
1525 stabs, we can jump through hoops looking for specially named
1526 symbols or try to intuit the language from the specific type of
1527 stabs we find, but we can't do that until later when we read in
1528 full symbols. */
1529
1530 void
1531 set_initial_language (void)
1532 {
1533 struct partial_symtab *pst;
1534 enum language lang = language_unknown;
1535
1536 pst = find_main_psymtab ();
1537 if (pst != NULL)
1538 {
1539 if (pst->filename != NULL)
1540 lang = deduce_language_from_filename (pst->filename);
1541
1542 if (lang == language_unknown)
1543 {
1544 /* Make C the default language */
1545 lang = language_c;
1546 }
1547
1548 set_language (lang);
1549 expected_language = current_language; /* Don't warn the user. */
1550 }
1551 }
1552
1553 /* Open the file specified by NAME and hand it off to BFD for
1554 preliminary analysis. Return a newly initialized bfd *, which
1555 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1556 absolute). In case of trouble, error() is called. */
1557
1558 bfd *
1559 symfile_bfd_open (char *name)
1560 {
1561 bfd *sym_bfd;
1562 int desc;
1563 char *absolute_name;
1564
1565 if (remote_filename_p (name))
1566 {
1567 name = xstrdup (name);
1568 sym_bfd = remote_bfd_open (name, gnutarget);
1569 if (!sym_bfd)
1570 {
1571 make_cleanup (xfree, name);
1572 error (_("`%s': can't open to read symbols: %s."), name,
1573 bfd_errmsg (bfd_get_error ()));
1574 }
1575
1576 if (!bfd_check_format (sym_bfd, bfd_object))
1577 {
1578 bfd_close (sym_bfd);
1579 make_cleanup (xfree, name);
1580 error (_("`%s': can't read symbols: %s."), name,
1581 bfd_errmsg (bfd_get_error ()));
1582 }
1583
1584 return sym_bfd;
1585 }
1586
1587 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1588
1589 /* Look down path for it, allocate 2nd new malloc'd copy. */
1590 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1591 O_RDONLY | O_BINARY, 0, &absolute_name);
1592 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1593 if (desc < 0)
1594 {
1595 char *exename = alloca (strlen (name) + 5);
1596 strcat (strcpy (exename, name), ".exe");
1597 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1598 O_RDONLY | O_BINARY, 0, &absolute_name);
1599 }
1600 #endif
1601 if (desc < 0)
1602 {
1603 make_cleanup (xfree, name);
1604 perror_with_name (name);
1605 }
1606
1607 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1608 bfd. It'll be freed in free_objfile(). */
1609 xfree (name);
1610 name = absolute_name;
1611
1612 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1613 if (!sym_bfd)
1614 {
1615 close (desc);
1616 make_cleanup (xfree, name);
1617 error (_("`%s': can't open to read symbols: %s."), name,
1618 bfd_errmsg (bfd_get_error ()));
1619 }
1620 bfd_set_cacheable (sym_bfd, 1);
1621
1622 if (!bfd_check_format (sym_bfd, bfd_object))
1623 {
1624 /* FIXME: should be checking for errors from bfd_close (for one
1625 thing, on error it does not free all the storage associated
1626 with the bfd). */
1627 bfd_close (sym_bfd); /* This also closes desc. */
1628 make_cleanup (xfree, name);
1629 error (_("`%s': can't read symbols: %s."), name,
1630 bfd_errmsg (bfd_get_error ()));
1631 }
1632
1633 return sym_bfd;
1634 }
1635
1636 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1637 the section was not found. */
1638
1639 int
1640 get_section_index (struct objfile *objfile, char *section_name)
1641 {
1642 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1643
1644 if (sect)
1645 return sect->index;
1646 else
1647 return -1;
1648 }
1649
1650 /* Link SF into the global symtab_fns list. Called on startup by the
1651 _initialize routine in each object file format reader, to register
1652 information about each format the the reader is prepared to
1653 handle. */
1654
1655 void
1656 add_symtab_fns (struct sym_fns *sf)
1657 {
1658 sf->next = symtab_fns;
1659 symtab_fns = sf;
1660 }
1661
1662 /* Initialize OBJFILE to read symbols from its associated BFD. It
1663 either returns or calls error(). The result is an initialized
1664 struct sym_fns in the objfile structure, that contains cached
1665 information about the symbol file. */
1666
1667 static struct sym_fns *
1668 find_sym_fns (bfd *abfd)
1669 {
1670 struct sym_fns *sf;
1671 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1672
1673 if (our_flavour == bfd_target_srec_flavour
1674 || our_flavour == bfd_target_ihex_flavour
1675 || our_flavour == bfd_target_tekhex_flavour)
1676 return NULL; /* No symbols. */
1677
1678 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1679 if (our_flavour == sf->sym_flavour)
1680 return sf;
1681
1682 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1683 bfd_get_target (abfd));
1684 }
1685 \f
1686
1687 /* This function runs the load command of our current target. */
1688
1689 static void
1690 load_command (char *arg, int from_tty)
1691 {
1692 /* The user might be reloading because the binary has changed. Take
1693 this opportunity to check. */
1694 reopen_exec_file ();
1695 reread_symbols ();
1696
1697 if (arg == NULL)
1698 {
1699 char *parg;
1700 int count = 0;
1701
1702 parg = arg = get_exec_file (1);
1703
1704 /* Count how many \ " ' tab space there are in the name. */
1705 while ((parg = strpbrk (parg, "\\\"'\t ")))
1706 {
1707 parg++;
1708 count++;
1709 }
1710
1711 if (count)
1712 {
1713 /* We need to quote this string so buildargv can pull it apart. */
1714 char *temp = xmalloc (strlen (arg) + count + 1 );
1715 char *ptemp = temp;
1716 char *prev;
1717
1718 make_cleanup (xfree, temp);
1719
1720 prev = parg = arg;
1721 while ((parg = strpbrk (parg, "\\\"'\t ")))
1722 {
1723 strncpy (ptemp, prev, parg - prev);
1724 ptemp += parg - prev;
1725 prev = parg++;
1726 *ptemp++ = '\\';
1727 }
1728 strcpy (ptemp, prev);
1729
1730 arg = temp;
1731 }
1732 }
1733
1734 target_load (arg, from_tty);
1735
1736 /* After re-loading the executable, we don't really know which
1737 overlays are mapped any more. */
1738 overlay_cache_invalid = 1;
1739 }
1740
1741 /* This version of "load" should be usable for any target. Currently
1742 it is just used for remote targets, not inftarg.c or core files,
1743 on the theory that only in that case is it useful.
1744
1745 Avoiding xmodem and the like seems like a win (a) because we don't have
1746 to worry about finding it, and (b) On VMS, fork() is very slow and so
1747 we don't want to run a subprocess. On the other hand, I'm not sure how
1748 performance compares. */
1749
1750 static int validate_download = 0;
1751
1752 /* Callback service function for generic_load (bfd_map_over_sections). */
1753
1754 static void
1755 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1756 {
1757 bfd_size_type *sum = data;
1758
1759 *sum += bfd_get_section_size (asec);
1760 }
1761
1762 /* Opaque data for load_section_callback. */
1763 struct load_section_data {
1764 unsigned long load_offset;
1765 struct load_progress_data *progress_data;
1766 VEC(memory_write_request_s) *requests;
1767 };
1768
1769 /* Opaque data for load_progress. */
1770 struct load_progress_data {
1771 /* Cumulative data. */
1772 unsigned long write_count;
1773 unsigned long data_count;
1774 bfd_size_type total_size;
1775 };
1776
1777 /* Opaque data for load_progress for a single section. */
1778 struct load_progress_section_data {
1779 struct load_progress_data *cumulative;
1780
1781 /* Per-section data. */
1782 const char *section_name;
1783 ULONGEST section_sent;
1784 ULONGEST section_size;
1785 CORE_ADDR lma;
1786 gdb_byte *buffer;
1787 };
1788
1789 /* Target write callback routine for progress reporting. */
1790
1791 static void
1792 load_progress (ULONGEST bytes, void *untyped_arg)
1793 {
1794 struct load_progress_section_data *args = untyped_arg;
1795 struct load_progress_data *totals;
1796
1797 if (args == NULL)
1798 /* Writing padding data. No easy way to get at the cumulative
1799 stats, so just ignore this. */
1800 return;
1801
1802 totals = args->cumulative;
1803
1804 if (bytes == 0 && args->section_sent == 0)
1805 {
1806 /* The write is just starting. Let the user know we've started
1807 this section. */
1808 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1809 args->section_name, paddr_nz (args->section_size),
1810 paddr_nz (args->lma));
1811 return;
1812 }
1813
1814 if (validate_download)
1815 {
1816 /* Broken memories and broken monitors manifest themselves here
1817 when bring new computers to life. This doubles already slow
1818 downloads. */
1819 /* NOTE: cagney/1999-10-18: A more efficient implementation
1820 might add a verify_memory() method to the target vector and
1821 then use that. remote.c could implement that method using
1822 the ``qCRC'' packet. */
1823 gdb_byte *check = xmalloc (bytes);
1824 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1825
1826 if (target_read_memory (args->lma, check, bytes) != 0)
1827 error (_("Download verify read failed at 0x%s"),
1828 paddr (args->lma));
1829 if (memcmp (args->buffer, check, bytes) != 0)
1830 error (_("Download verify compare failed at 0x%s"),
1831 paddr (args->lma));
1832 do_cleanups (verify_cleanups);
1833 }
1834 totals->data_count += bytes;
1835 args->lma += bytes;
1836 args->buffer += bytes;
1837 totals->write_count += 1;
1838 args->section_sent += bytes;
1839 if (quit_flag
1840 || (deprecated_ui_load_progress_hook != NULL
1841 && deprecated_ui_load_progress_hook (args->section_name,
1842 args->section_sent)))
1843 error (_("Canceled the download"));
1844
1845 if (deprecated_show_load_progress != NULL)
1846 deprecated_show_load_progress (args->section_name,
1847 args->section_sent,
1848 args->section_size,
1849 totals->data_count,
1850 totals->total_size);
1851 }
1852
1853 /* Callback service function for generic_load (bfd_map_over_sections). */
1854
1855 static void
1856 load_section_callback (bfd *abfd, asection *asec, void *data)
1857 {
1858 struct memory_write_request *new_request;
1859 struct load_section_data *args = data;
1860 struct load_progress_section_data *section_data;
1861 bfd_size_type size = bfd_get_section_size (asec);
1862 gdb_byte *buffer;
1863 const char *sect_name = bfd_get_section_name (abfd, asec);
1864
1865 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1866 return;
1867
1868 if (size == 0)
1869 return;
1870
1871 new_request = VEC_safe_push (memory_write_request_s,
1872 args->requests, NULL);
1873 memset (new_request, 0, sizeof (struct memory_write_request));
1874 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1875 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1876 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1877 new_request->data = xmalloc (size);
1878 new_request->baton = section_data;
1879
1880 buffer = new_request->data;
1881
1882 section_data->cumulative = args->progress_data;
1883 section_data->section_name = sect_name;
1884 section_data->section_size = size;
1885 section_data->lma = new_request->begin;
1886 section_data->buffer = buffer;
1887
1888 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1889 }
1890
1891 /* Clean up an entire memory request vector, including load
1892 data and progress records. */
1893
1894 static void
1895 clear_memory_write_data (void *arg)
1896 {
1897 VEC(memory_write_request_s) **vec_p = arg;
1898 VEC(memory_write_request_s) *vec = *vec_p;
1899 int i;
1900 struct memory_write_request *mr;
1901
1902 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1903 {
1904 xfree (mr->data);
1905 xfree (mr->baton);
1906 }
1907 VEC_free (memory_write_request_s, vec);
1908 }
1909
1910 void
1911 generic_load (char *args, int from_tty)
1912 {
1913 bfd *loadfile_bfd;
1914 struct timeval start_time, end_time;
1915 char *filename;
1916 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1917 struct load_section_data cbdata;
1918 struct load_progress_data total_progress;
1919
1920 CORE_ADDR entry;
1921 char **argv;
1922
1923 memset (&cbdata, 0, sizeof (cbdata));
1924 memset (&total_progress, 0, sizeof (total_progress));
1925 cbdata.progress_data = &total_progress;
1926
1927 make_cleanup (clear_memory_write_data, &cbdata.requests);
1928
1929 argv = buildargv (args);
1930
1931 if (argv == NULL)
1932 nomem(0);
1933
1934 make_cleanup_freeargv (argv);
1935
1936 filename = tilde_expand (argv[0]);
1937 make_cleanup (xfree, filename);
1938
1939 if (argv[1] != NULL)
1940 {
1941 char *endptr;
1942
1943 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1944
1945 /* If the last word was not a valid number then
1946 treat it as a file name with spaces in. */
1947 if (argv[1] == endptr)
1948 error (_("Invalid download offset:%s."), argv[1]);
1949
1950 if (argv[2] != NULL)
1951 error (_("Too many parameters."));
1952 }
1953
1954 /* Open the file for loading. */
1955 loadfile_bfd = bfd_openr (filename, gnutarget);
1956 if (loadfile_bfd == NULL)
1957 {
1958 perror_with_name (filename);
1959 return;
1960 }
1961
1962 /* FIXME: should be checking for errors from bfd_close (for one thing,
1963 on error it does not free all the storage associated with the
1964 bfd). */
1965 make_cleanup_bfd_close (loadfile_bfd);
1966
1967 if (!bfd_check_format (loadfile_bfd, bfd_object))
1968 {
1969 error (_("\"%s\" is not an object file: %s"), filename,
1970 bfd_errmsg (bfd_get_error ()));
1971 }
1972
1973 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1974 (void *) &total_progress.total_size);
1975
1976 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1977
1978 gettimeofday (&start_time, NULL);
1979
1980 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1981 load_progress) != 0)
1982 error (_("Load failed"));
1983
1984 gettimeofday (&end_time, NULL);
1985
1986 entry = bfd_get_start_address (loadfile_bfd);
1987 ui_out_text (uiout, "Start address ");
1988 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1989 ui_out_text (uiout, ", load size ");
1990 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1991 ui_out_text (uiout, "\n");
1992 /* We were doing this in remote-mips.c, I suspect it is right
1993 for other targets too. */
1994 write_pc (entry);
1995
1996 /* FIXME: are we supposed to call symbol_file_add or not? According
1997 to a comment from remote-mips.c (where a call to symbol_file_add
1998 was commented out), making the call confuses GDB if more than one
1999 file is loaded in. Some targets do (e.g., remote-vx.c) but
2000 others don't (or didn't - perhaps they have all been deleted). */
2001
2002 print_transfer_performance (gdb_stdout, total_progress.data_count,
2003 total_progress.write_count,
2004 &start_time, &end_time);
2005
2006 do_cleanups (old_cleanups);
2007 }
2008
2009 /* Report how fast the transfer went. */
2010
2011 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2012 replaced by print_transfer_performance (with a very different
2013 function signature). */
2014
2015 void
2016 report_transfer_performance (unsigned long data_count, time_t start_time,
2017 time_t end_time)
2018 {
2019 struct timeval start, end;
2020
2021 start.tv_sec = start_time;
2022 start.tv_usec = 0;
2023 end.tv_sec = end_time;
2024 end.tv_usec = 0;
2025
2026 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2027 }
2028
2029 void
2030 print_transfer_performance (struct ui_file *stream,
2031 unsigned long data_count,
2032 unsigned long write_count,
2033 const struct timeval *start_time,
2034 const struct timeval *end_time)
2035 {
2036 ULONGEST time_count;
2037
2038 /* Compute the elapsed time in milliseconds, as a tradeoff between
2039 accuracy and overflow. */
2040 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2041 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2042
2043 ui_out_text (uiout, "Transfer rate: ");
2044 if (time_count > 0)
2045 {
2046 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2047
2048 if (ui_out_is_mi_like_p (uiout))
2049 {
2050 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2051 ui_out_text (uiout, " bits/sec");
2052 }
2053 else if (rate < 1024)
2054 {
2055 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2056 ui_out_text (uiout, " bytes/sec");
2057 }
2058 else
2059 {
2060 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2061 ui_out_text (uiout, " KB/sec");
2062 }
2063 }
2064 else
2065 {
2066 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2067 ui_out_text (uiout, " bits in <1 sec");
2068 }
2069 if (write_count > 0)
2070 {
2071 ui_out_text (uiout, ", ");
2072 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2073 ui_out_text (uiout, " bytes/write");
2074 }
2075 ui_out_text (uiout, ".\n");
2076 }
2077
2078 /* This function allows the addition of incrementally linked object files.
2079 It does not modify any state in the target, only in the debugger. */
2080 /* Note: ezannoni 2000-04-13 This function/command used to have a
2081 special case syntax for the rombug target (Rombug is the boot
2082 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2083 rombug case, the user doesn't need to supply a text address,
2084 instead a call to target_link() (in target.c) would supply the
2085 value to use. We are now discontinuing this type of ad hoc syntax. */
2086
2087 static void
2088 add_symbol_file_command (char *args, int from_tty)
2089 {
2090 char *filename = NULL;
2091 int flags = OBJF_USERLOADED;
2092 char *arg;
2093 int expecting_option = 0;
2094 int section_index = 0;
2095 int argcnt = 0;
2096 int sec_num = 0;
2097 int i;
2098 int expecting_sec_name = 0;
2099 int expecting_sec_addr = 0;
2100 char **argv;
2101
2102 struct sect_opt
2103 {
2104 char *name;
2105 char *value;
2106 };
2107
2108 struct section_addr_info *section_addrs;
2109 struct sect_opt *sect_opts = NULL;
2110 size_t num_sect_opts = 0;
2111 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2112
2113 num_sect_opts = 16;
2114 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2115 * sizeof (struct sect_opt));
2116
2117 dont_repeat ();
2118
2119 if (args == NULL)
2120 error (_("add-symbol-file takes a file name and an address"));
2121
2122 argv = buildargv (args);
2123 make_cleanup_freeargv (argv);
2124
2125 if (argv == NULL)
2126 nomem (0);
2127
2128 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2129 {
2130 /* Process the argument. */
2131 if (argcnt == 0)
2132 {
2133 /* The first argument is the file name. */
2134 filename = tilde_expand (arg);
2135 make_cleanup (xfree, filename);
2136 }
2137 else
2138 if (argcnt == 1)
2139 {
2140 /* The second argument is always the text address at which
2141 to load the program. */
2142 sect_opts[section_index].name = ".text";
2143 sect_opts[section_index].value = arg;
2144 if (++section_index >= num_sect_opts)
2145 {
2146 num_sect_opts *= 2;
2147 sect_opts = ((struct sect_opt *)
2148 xrealloc (sect_opts,
2149 num_sect_opts
2150 * sizeof (struct sect_opt)));
2151 }
2152 }
2153 else
2154 {
2155 /* It's an option (starting with '-') or it's an argument
2156 to an option */
2157
2158 if (*arg == '-')
2159 {
2160 if (strcmp (arg, "-readnow") == 0)
2161 flags |= OBJF_READNOW;
2162 else if (strcmp (arg, "-s") == 0)
2163 {
2164 expecting_sec_name = 1;
2165 expecting_sec_addr = 1;
2166 }
2167 }
2168 else
2169 {
2170 if (expecting_sec_name)
2171 {
2172 sect_opts[section_index].name = arg;
2173 expecting_sec_name = 0;
2174 }
2175 else
2176 if (expecting_sec_addr)
2177 {
2178 sect_opts[section_index].value = arg;
2179 expecting_sec_addr = 0;
2180 if (++section_index >= num_sect_opts)
2181 {
2182 num_sect_opts *= 2;
2183 sect_opts = ((struct sect_opt *)
2184 xrealloc (sect_opts,
2185 num_sect_opts
2186 * sizeof (struct sect_opt)));
2187 }
2188 }
2189 else
2190 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2191 }
2192 }
2193 }
2194
2195 /* This command takes at least two arguments. The first one is a
2196 filename, and the second is the address where this file has been
2197 loaded. Abort now if this address hasn't been provided by the
2198 user. */
2199 if (section_index < 1)
2200 error (_("The address where %s has been loaded is missing"), filename);
2201
2202 /* Print the prompt for the query below. And save the arguments into
2203 a sect_addr_info structure to be passed around to other
2204 functions. We have to split this up into separate print
2205 statements because hex_string returns a local static
2206 string. */
2207
2208 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2209 section_addrs = alloc_section_addr_info (section_index);
2210 make_cleanup (xfree, section_addrs);
2211 for (i = 0; i < section_index; i++)
2212 {
2213 CORE_ADDR addr;
2214 char *val = sect_opts[i].value;
2215 char *sec = sect_opts[i].name;
2216
2217 addr = parse_and_eval_address (val);
2218
2219 /* Here we store the section offsets in the order they were
2220 entered on the command line. */
2221 section_addrs->other[sec_num].name = sec;
2222 section_addrs->other[sec_num].addr = addr;
2223 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2224 sec_num++;
2225
2226 /* The object's sections are initialized when a
2227 call is made to build_objfile_section_table (objfile).
2228 This happens in reread_symbols.
2229 At this point, we don't know what file type this is,
2230 so we can't determine what section names are valid. */
2231 }
2232
2233 if (from_tty && (!query ("%s", "")))
2234 error (_("Not confirmed."));
2235
2236 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2237
2238 /* Getting new symbols may change our opinion about what is
2239 frameless. */
2240 reinit_frame_cache ();
2241 do_cleanups (my_cleanups);
2242 }
2243 \f
2244 static void
2245 add_shared_symbol_files_command (char *args, int from_tty)
2246 {
2247 #ifdef ADD_SHARED_SYMBOL_FILES
2248 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2249 #else
2250 error (_("This command is not available in this configuration of GDB."));
2251 #endif
2252 }
2253 \f
2254 /* Re-read symbols if a symbol-file has changed. */
2255 void
2256 reread_symbols (void)
2257 {
2258 struct objfile *objfile;
2259 long new_modtime;
2260 int reread_one = 0;
2261 struct stat new_statbuf;
2262 int res;
2263
2264 /* With the addition of shared libraries, this should be modified,
2265 the load time should be saved in the partial symbol tables, since
2266 different tables may come from different source files. FIXME.
2267 This routine should then walk down each partial symbol table
2268 and see if the symbol table that it originates from has been changed */
2269
2270 for (objfile = object_files; objfile; objfile = objfile->next)
2271 {
2272 if (objfile->obfd)
2273 {
2274 #ifdef DEPRECATED_IBM6000_TARGET
2275 /* If this object is from a shared library, then you should
2276 stat on the library name, not member name. */
2277
2278 if (objfile->obfd->my_archive)
2279 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2280 else
2281 #endif
2282 res = stat (objfile->name, &new_statbuf);
2283 if (res != 0)
2284 {
2285 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2286 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2287 objfile->name);
2288 continue;
2289 }
2290 new_modtime = new_statbuf.st_mtime;
2291 if (new_modtime != objfile->mtime)
2292 {
2293 struct cleanup *old_cleanups;
2294 struct section_offsets *offsets;
2295 int num_offsets;
2296 char *obfd_filename;
2297
2298 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2299 objfile->name);
2300
2301 /* There are various functions like symbol_file_add,
2302 symfile_bfd_open, syms_from_objfile, etc., which might
2303 appear to do what we want. But they have various other
2304 effects which we *don't* want. So we just do stuff
2305 ourselves. We don't worry about mapped files (for one thing,
2306 any mapped file will be out of date). */
2307
2308 /* If we get an error, blow away this objfile (not sure if
2309 that is the correct response for things like shared
2310 libraries). */
2311 old_cleanups = make_cleanup_free_objfile (objfile);
2312 /* We need to do this whenever any symbols go away. */
2313 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2314
2315 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2316 bfd_get_filename (exec_bfd)) == 0)
2317 {
2318 /* Reload EXEC_BFD without asking anything. */
2319
2320 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2321 }
2322
2323 /* Clean up any state BFD has sitting around. We don't need
2324 to close the descriptor but BFD lacks a way of closing the
2325 BFD without closing the descriptor. */
2326 obfd_filename = bfd_get_filename (objfile->obfd);
2327 if (!bfd_close (objfile->obfd))
2328 error (_("Can't close BFD for %s: %s"), objfile->name,
2329 bfd_errmsg (bfd_get_error ()));
2330 if (remote_filename_p (obfd_filename))
2331 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2332 else
2333 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2334 if (objfile->obfd == NULL)
2335 error (_("Can't open %s to read symbols."), objfile->name);
2336 /* bfd_openr sets cacheable to true, which is what we want. */
2337 if (!bfd_check_format (objfile->obfd, bfd_object))
2338 error (_("Can't read symbols from %s: %s."), objfile->name,
2339 bfd_errmsg (bfd_get_error ()));
2340
2341 /* Save the offsets, we will nuke them with the rest of the
2342 objfile_obstack. */
2343 num_offsets = objfile->num_sections;
2344 offsets = ((struct section_offsets *)
2345 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2346 memcpy (offsets, objfile->section_offsets,
2347 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2348
2349 /* Remove any references to this objfile in the global
2350 value lists. */
2351 preserve_values (objfile);
2352
2353 /* Nuke all the state that we will re-read. Much of the following
2354 code which sets things to NULL really is necessary to tell
2355 other parts of GDB that there is nothing currently there. */
2356
2357 /* FIXME: Do we have to free a whole linked list, or is this
2358 enough? */
2359 if (objfile->global_psymbols.list)
2360 xfree (objfile->global_psymbols.list);
2361 memset (&objfile->global_psymbols, 0,
2362 sizeof (objfile->global_psymbols));
2363 if (objfile->static_psymbols.list)
2364 xfree (objfile->static_psymbols.list);
2365 memset (&objfile->static_psymbols, 0,
2366 sizeof (objfile->static_psymbols));
2367
2368 /* Free the obstacks for non-reusable objfiles */
2369 bcache_xfree (objfile->psymbol_cache);
2370 objfile->psymbol_cache = bcache_xmalloc ();
2371 bcache_xfree (objfile->macro_cache);
2372 objfile->macro_cache = bcache_xmalloc ();
2373 if (objfile->demangled_names_hash != NULL)
2374 {
2375 htab_delete (objfile->demangled_names_hash);
2376 objfile->demangled_names_hash = NULL;
2377 }
2378 obstack_free (&objfile->objfile_obstack, 0);
2379 objfile->sections = NULL;
2380 objfile->symtabs = NULL;
2381 objfile->psymtabs = NULL;
2382 objfile->free_psymtabs = NULL;
2383 objfile->cp_namespace_symtab = NULL;
2384 objfile->msymbols = NULL;
2385 objfile->deprecated_sym_private = NULL;
2386 objfile->minimal_symbol_count = 0;
2387 memset (&objfile->msymbol_hash, 0,
2388 sizeof (objfile->msymbol_hash));
2389 memset (&objfile->msymbol_demangled_hash, 0,
2390 sizeof (objfile->msymbol_demangled_hash));
2391 clear_objfile_data (objfile);
2392 if (objfile->sf != NULL)
2393 {
2394 (*objfile->sf->sym_finish) (objfile);
2395 }
2396
2397 objfile->psymbol_cache = bcache_xmalloc ();
2398 objfile->macro_cache = bcache_xmalloc ();
2399 /* obstack_init also initializes the obstack so it is
2400 empty. We could use obstack_specify_allocation but
2401 gdb_obstack.h specifies the alloc/dealloc
2402 functions. */
2403 obstack_init (&objfile->objfile_obstack);
2404 if (build_objfile_section_table (objfile))
2405 {
2406 error (_("Can't find the file sections in `%s': %s"),
2407 objfile->name, bfd_errmsg (bfd_get_error ()));
2408 }
2409 terminate_minimal_symbol_table (objfile);
2410
2411 /* We use the same section offsets as from last time. I'm not
2412 sure whether that is always correct for shared libraries. */
2413 objfile->section_offsets = (struct section_offsets *)
2414 obstack_alloc (&objfile->objfile_obstack,
2415 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2416 memcpy (objfile->section_offsets, offsets,
2417 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2418 objfile->num_sections = num_offsets;
2419
2420 /* What the hell is sym_new_init for, anyway? The concept of
2421 distinguishing between the main file and additional files
2422 in this way seems rather dubious. */
2423 if (objfile == symfile_objfile)
2424 {
2425 (*objfile->sf->sym_new_init) (objfile);
2426 }
2427
2428 (*objfile->sf->sym_init) (objfile);
2429 clear_complaints (&symfile_complaints, 1, 1);
2430 /* The "mainline" parameter is a hideous hack; I think leaving it
2431 zero is OK since dbxread.c also does what it needs to do if
2432 objfile->global_psymbols.size is 0. */
2433 (*objfile->sf->sym_read) (objfile, 0);
2434 if (!have_partial_symbols () && !have_full_symbols ())
2435 {
2436 wrap_here ("");
2437 printf_unfiltered (_("(no debugging symbols found)\n"));
2438 wrap_here ("");
2439 }
2440 objfile->flags |= OBJF_SYMS;
2441
2442 /* We're done reading the symbol file; finish off complaints. */
2443 clear_complaints (&symfile_complaints, 0, 1);
2444
2445 /* Getting new symbols may change our opinion about what is
2446 frameless. */
2447
2448 reinit_frame_cache ();
2449
2450 /* Discard cleanups as symbol reading was successful. */
2451 discard_cleanups (old_cleanups);
2452
2453 /* If the mtime has changed between the time we set new_modtime
2454 and now, we *want* this to be out of date, so don't call stat
2455 again now. */
2456 objfile->mtime = new_modtime;
2457 reread_one = 1;
2458 reread_separate_symbols (objfile);
2459 init_entry_point_info (objfile);
2460 }
2461 }
2462 }
2463
2464 if (reread_one)
2465 {
2466 clear_symtab_users ();
2467 /* At least one objfile has changed, so we can consider that
2468 the executable we're debugging has changed too. */
2469 observer_notify_executable_changed ();
2470 }
2471
2472 }
2473
2474
2475 /* Handle separate debug info for OBJFILE, which has just been
2476 re-read:
2477 - If we had separate debug info before, but now we don't, get rid
2478 of the separated objfile.
2479 - If we didn't have separated debug info before, but now we do,
2480 read in the new separated debug info file.
2481 - If the debug link points to a different file, toss the old one
2482 and read the new one.
2483 This function does *not* handle the case where objfile is still
2484 using the same separate debug info file, but that file's timestamp
2485 has changed. That case should be handled by the loop in
2486 reread_symbols already. */
2487 static void
2488 reread_separate_symbols (struct objfile *objfile)
2489 {
2490 char *debug_file;
2491 unsigned long crc32;
2492
2493 /* Does the updated objfile's debug info live in a
2494 separate file? */
2495 debug_file = find_separate_debug_file (objfile);
2496
2497 if (objfile->separate_debug_objfile)
2498 {
2499 /* There are two cases where we need to get rid of
2500 the old separated debug info objfile:
2501 - if the new primary objfile doesn't have
2502 separated debug info, or
2503 - if the new primary objfile has separate debug
2504 info, but it's under a different filename.
2505
2506 If the old and new objfiles both have separate
2507 debug info, under the same filename, then we're
2508 okay --- if the separated file's contents have
2509 changed, we will have caught that when we
2510 visited it in this function's outermost
2511 loop. */
2512 if (! debug_file
2513 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2514 free_objfile (objfile->separate_debug_objfile);
2515 }
2516
2517 /* If the new objfile has separate debug info, and we
2518 haven't loaded it already, do so now. */
2519 if (debug_file
2520 && ! objfile->separate_debug_objfile)
2521 {
2522 /* Use the same section offset table as objfile itself.
2523 Preserve the flags from objfile that make sense. */
2524 objfile->separate_debug_objfile
2525 = (symbol_file_add_with_addrs_or_offsets
2526 (symfile_bfd_open (debug_file),
2527 info_verbose, /* from_tty: Don't override the default. */
2528 0, /* No addr table. */
2529 objfile->section_offsets, objfile->num_sections,
2530 0, /* Not mainline. See comments about this above. */
2531 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2532 | OBJF_USERLOADED)));
2533 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2534 = objfile;
2535 }
2536 if (debug_file)
2537 xfree (debug_file);
2538 }
2539
2540
2541 \f
2542
2543
2544 typedef struct
2545 {
2546 char *ext;
2547 enum language lang;
2548 }
2549 filename_language;
2550
2551 static filename_language *filename_language_table;
2552 static int fl_table_size, fl_table_next;
2553
2554 static void
2555 add_filename_language (char *ext, enum language lang)
2556 {
2557 if (fl_table_next >= fl_table_size)
2558 {
2559 fl_table_size += 10;
2560 filename_language_table =
2561 xrealloc (filename_language_table,
2562 fl_table_size * sizeof (*filename_language_table));
2563 }
2564
2565 filename_language_table[fl_table_next].ext = xstrdup (ext);
2566 filename_language_table[fl_table_next].lang = lang;
2567 fl_table_next++;
2568 }
2569
2570 static char *ext_args;
2571 static void
2572 show_ext_args (struct ui_file *file, int from_tty,
2573 struct cmd_list_element *c, const char *value)
2574 {
2575 fprintf_filtered (file, _("\
2576 Mapping between filename extension and source language is \"%s\".\n"),
2577 value);
2578 }
2579
2580 static void
2581 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2582 {
2583 int i;
2584 char *cp = ext_args;
2585 enum language lang;
2586
2587 /* First arg is filename extension, starting with '.' */
2588 if (*cp != '.')
2589 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2590
2591 /* Find end of first arg. */
2592 while (*cp && !isspace (*cp))
2593 cp++;
2594
2595 if (*cp == '\0')
2596 error (_("'%s': two arguments required -- filename extension and language"),
2597 ext_args);
2598
2599 /* Null-terminate first arg */
2600 *cp++ = '\0';
2601
2602 /* Find beginning of second arg, which should be a source language. */
2603 while (*cp && isspace (*cp))
2604 cp++;
2605
2606 if (*cp == '\0')
2607 error (_("'%s': two arguments required -- filename extension and language"),
2608 ext_args);
2609
2610 /* Lookup the language from among those we know. */
2611 lang = language_enum (cp);
2612
2613 /* Now lookup the filename extension: do we already know it? */
2614 for (i = 0; i < fl_table_next; i++)
2615 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2616 break;
2617
2618 if (i >= fl_table_next)
2619 {
2620 /* new file extension */
2621 add_filename_language (ext_args, lang);
2622 }
2623 else
2624 {
2625 /* redefining a previously known filename extension */
2626
2627 /* if (from_tty) */
2628 /* query ("Really make files of type %s '%s'?", */
2629 /* ext_args, language_str (lang)); */
2630
2631 xfree (filename_language_table[i].ext);
2632 filename_language_table[i].ext = xstrdup (ext_args);
2633 filename_language_table[i].lang = lang;
2634 }
2635 }
2636
2637 static void
2638 info_ext_lang_command (char *args, int from_tty)
2639 {
2640 int i;
2641
2642 printf_filtered (_("Filename extensions and the languages they represent:"));
2643 printf_filtered ("\n\n");
2644 for (i = 0; i < fl_table_next; i++)
2645 printf_filtered ("\t%s\t- %s\n",
2646 filename_language_table[i].ext,
2647 language_str (filename_language_table[i].lang));
2648 }
2649
2650 static void
2651 init_filename_language_table (void)
2652 {
2653 if (fl_table_size == 0) /* protect against repetition */
2654 {
2655 fl_table_size = 20;
2656 fl_table_next = 0;
2657 filename_language_table =
2658 xmalloc (fl_table_size * sizeof (*filename_language_table));
2659 add_filename_language (".c", language_c);
2660 add_filename_language (".C", language_cplus);
2661 add_filename_language (".cc", language_cplus);
2662 add_filename_language (".cp", language_cplus);
2663 add_filename_language (".cpp", language_cplus);
2664 add_filename_language (".cxx", language_cplus);
2665 add_filename_language (".c++", language_cplus);
2666 add_filename_language (".java", language_java);
2667 add_filename_language (".class", language_java);
2668 add_filename_language (".m", language_objc);
2669 add_filename_language (".f", language_fortran);
2670 add_filename_language (".F", language_fortran);
2671 add_filename_language (".s", language_asm);
2672 add_filename_language (".sx", language_asm);
2673 add_filename_language (".S", language_asm);
2674 add_filename_language (".pas", language_pascal);
2675 add_filename_language (".p", language_pascal);
2676 add_filename_language (".pp", language_pascal);
2677 add_filename_language (".adb", language_ada);
2678 add_filename_language (".ads", language_ada);
2679 add_filename_language (".a", language_ada);
2680 add_filename_language (".ada", language_ada);
2681 }
2682 }
2683
2684 enum language
2685 deduce_language_from_filename (char *filename)
2686 {
2687 int i;
2688 char *cp;
2689
2690 if (filename != NULL)
2691 if ((cp = strrchr (filename, '.')) != NULL)
2692 for (i = 0; i < fl_table_next; i++)
2693 if (strcmp (cp, filename_language_table[i].ext) == 0)
2694 return filename_language_table[i].lang;
2695
2696 return language_unknown;
2697 }
2698 \f
2699 /* allocate_symtab:
2700
2701 Allocate and partly initialize a new symbol table. Return a pointer
2702 to it. error() if no space.
2703
2704 Caller must set these fields:
2705 LINETABLE(symtab)
2706 symtab->blockvector
2707 symtab->dirname
2708 symtab->free_code
2709 symtab->free_ptr
2710 possibly free_named_symtabs (symtab->filename);
2711 */
2712
2713 struct symtab *
2714 allocate_symtab (char *filename, struct objfile *objfile)
2715 {
2716 struct symtab *symtab;
2717
2718 symtab = (struct symtab *)
2719 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2720 memset (symtab, 0, sizeof (*symtab));
2721 symtab->filename = obsavestring (filename, strlen (filename),
2722 &objfile->objfile_obstack);
2723 symtab->fullname = NULL;
2724 symtab->language = deduce_language_from_filename (filename);
2725 symtab->debugformat = obsavestring ("unknown", 7,
2726 &objfile->objfile_obstack);
2727
2728 /* Hook it to the objfile it comes from */
2729
2730 symtab->objfile = objfile;
2731 symtab->next = objfile->symtabs;
2732 objfile->symtabs = symtab;
2733
2734 return (symtab);
2735 }
2736
2737 struct partial_symtab *
2738 allocate_psymtab (char *filename, struct objfile *objfile)
2739 {
2740 struct partial_symtab *psymtab;
2741
2742 if (objfile->free_psymtabs)
2743 {
2744 psymtab = objfile->free_psymtabs;
2745 objfile->free_psymtabs = psymtab->next;
2746 }
2747 else
2748 psymtab = (struct partial_symtab *)
2749 obstack_alloc (&objfile->objfile_obstack,
2750 sizeof (struct partial_symtab));
2751
2752 memset (psymtab, 0, sizeof (struct partial_symtab));
2753 psymtab->filename = obsavestring (filename, strlen (filename),
2754 &objfile->objfile_obstack);
2755 psymtab->symtab = NULL;
2756
2757 /* Prepend it to the psymtab list for the objfile it belongs to.
2758 Psymtabs are searched in most recent inserted -> least recent
2759 inserted order. */
2760
2761 psymtab->objfile = objfile;
2762 psymtab->next = objfile->psymtabs;
2763 objfile->psymtabs = psymtab;
2764 #if 0
2765 {
2766 struct partial_symtab **prev_pst;
2767 psymtab->objfile = objfile;
2768 psymtab->next = NULL;
2769 prev_pst = &(objfile->psymtabs);
2770 while ((*prev_pst) != NULL)
2771 prev_pst = &((*prev_pst)->next);
2772 (*prev_pst) = psymtab;
2773 }
2774 #endif
2775
2776 return (psymtab);
2777 }
2778
2779 void
2780 discard_psymtab (struct partial_symtab *pst)
2781 {
2782 struct partial_symtab **prev_pst;
2783
2784 /* From dbxread.c:
2785 Empty psymtabs happen as a result of header files which don't
2786 have any symbols in them. There can be a lot of them. But this
2787 check is wrong, in that a psymtab with N_SLINE entries but
2788 nothing else is not empty, but we don't realize that. Fixing
2789 that without slowing things down might be tricky. */
2790
2791 /* First, snip it out of the psymtab chain */
2792
2793 prev_pst = &(pst->objfile->psymtabs);
2794 while ((*prev_pst) != pst)
2795 prev_pst = &((*prev_pst)->next);
2796 (*prev_pst) = pst->next;
2797
2798 /* Next, put it on a free list for recycling */
2799
2800 pst->next = pst->objfile->free_psymtabs;
2801 pst->objfile->free_psymtabs = pst;
2802 }
2803 \f
2804
2805 /* Reset all data structures in gdb which may contain references to symbol
2806 table data. */
2807
2808 void
2809 clear_symtab_users (void)
2810 {
2811 /* Someday, we should do better than this, by only blowing away
2812 the things that really need to be blown. */
2813
2814 /* Clear the "current" symtab first, because it is no longer valid.
2815 breakpoint_re_set may try to access the current symtab. */
2816 clear_current_source_symtab_and_line ();
2817
2818 clear_displays ();
2819 breakpoint_re_set ();
2820 set_default_breakpoint (0, 0, 0, 0);
2821 clear_pc_function_cache ();
2822 observer_notify_new_objfile (NULL);
2823
2824 /* Clear globals which might have pointed into a removed objfile.
2825 FIXME: It's not clear which of these are supposed to persist
2826 between expressions and which ought to be reset each time. */
2827 expression_context_block = NULL;
2828 innermost_block = NULL;
2829
2830 /* Varobj may refer to old symbols, perform a cleanup. */
2831 varobj_invalidate ();
2832
2833 }
2834
2835 static void
2836 clear_symtab_users_cleanup (void *ignore)
2837 {
2838 clear_symtab_users ();
2839 }
2840
2841 /* clear_symtab_users_once:
2842
2843 This function is run after symbol reading, or from a cleanup.
2844 If an old symbol table was obsoleted, the old symbol table
2845 has been blown away, but the other GDB data structures that may
2846 reference it have not yet been cleared or re-directed. (The old
2847 symtab was zapped, and the cleanup queued, in free_named_symtab()
2848 below.)
2849
2850 This function can be queued N times as a cleanup, or called
2851 directly; it will do all the work the first time, and then will be a
2852 no-op until the next time it is queued. This works by bumping a
2853 counter at queueing time. Much later when the cleanup is run, or at
2854 the end of symbol processing (in case the cleanup is discarded), if
2855 the queued count is greater than the "done-count", we do the work
2856 and set the done-count to the queued count. If the queued count is
2857 less than or equal to the done-count, we just ignore the call. This
2858 is needed because reading a single .o file will often replace many
2859 symtabs (one per .h file, for example), and we don't want to reset
2860 the breakpoints N times in the user's face.
2861
2862 The reason we both queue a cleanup, and call it directly after symbol
2863 reading, is because the cleanup protects us in case of errors, but is
2864 discarded if symbol reading is successful. */
2865
2866 #if 0
2867 /* FIXME: As free_named_symtabs is currently a big noop this function
2868 is no longer needed. */
2869 static void clear_symtab_users_once (void);
2870
2871 static int clear_symtab_users_queued;
2872 static int clear_symtab_users_done;
2873
2874 static void
2875 clear_symtab_users_once (void)
2876 {
2877 /* Enforce once-per-`do_cleanups'-semantics */
2878 if (clear_symtab_users_queued <= clear_symtab_users_done)
2879 return;
2880 clear_symtab_users_done = clear_symtab_users_queued;
2881
2882 clear_symtab_users ();
2883 }
2884 #endif
2885
2886 /* Delete the specified psymtab, and any others that reference it. */
2887
2888 static void
2889 cashier_psymtab (struct partial_symtab *pst)
2890 {
2891 struct partial_symtab *ps, *pprev = NULL;
2892 int i;
2893
2894 /* Find its previous psymtab in the chain */
2895 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2896 {
2897 if (ps == pst)
2898 break;
2899 pprev = ps;
2900 }
2901
2902 if (ps)
2903 {
2904 /* Unhook it from the chain. */
2905 if (ps == pst->objfile->psymtabs)
2906 pst->objfile->psymtabs = ps->next;
2907 else
2908 pprev->next = ps->next;
2909
2910 /* FIXME, we can't conveniently deallocate the entries in the
2911 partial_symbol lists (global_psymbols/static_psymbols) that
2912 this psymtab points to. These just take up space until all
2913 the psymtabs are reclaimed. Ditto the dependencies list and
2914 filename, which are all in the objfile_obstack. */
2915
2916 /* We need to cashier any psymtab that has this one as a dependency... */
2917 again:
2918 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2919 {
2920 for (i = 0; i < ps->number_of_dependencies; i++)
2921 {
2922 if (ps->dependencies[i] == pst)
2923 {
2924 cashier_psymtab (ps);
2925 goto again; /* Must restart, chain has been munged. */
2926 }
2927 }
2928 }
2929 }
2930 }
2931
2932 /* If a symtab or psymtab for filename NAME is found, free it along
2933 with any dependent breakpoints, displays, etc.
2934 Used when loading new versions of object modules with the "add-file"
2935 command. This is only called on the top-level symtab or psymtab's name;
2936 it is not called for subsidiary files such as .h files.
2937
2938 Return value is 1 if we blew away the environment, 0 if not.
2939 FIXME. The return value appears to never be used.
2940
2941 FIXME. I think this is not the best way to do this. We should
2942 work on being gentler to the environment while still cleaning up
2943 all stray pointers into the freed symtab. */
2944
2945 int
2946 free_named_symtabs (char *name)
2947 {
2948 #if 0
2949 /* FIXME: With the new method of each objfile having it's own
2950 psymtab list, this function needs serious rethinking. In particular,
2951 why was it ever necessary to toss psymtabs with specific compilation
2952 unit filenames, as opposed to all psymtabs from a particular symbol
2953 file? -- fnf
2954 Well, the answer is that some systems permit reloading of particular
2955 compilation units. We want to blow away any old info about these
2956 compilation units, regardless of which objfiles they arrived in. --gnu. */
2957
2958 struct symtab *s;
2959 struct symtab *prev;
2960 struct partial_symtab *ps;
2961 struct blockvector *bv;
2962 int blewit = 0;
2963
2964 /* We only wack things if the symbol-reload switch is set. */
2965 if (!symbol_reloading)
2966 return 0;
2967
2968 /* Some symbol formats have trouble providing file names... */
2969 if (name == 0 || *name == '\0')
2970 return 0;
2971
2972 /* Look for a psymtab with the specified name. */
2973
2974 again2:
2975 for (ps = partial_symtab_list; ps; ps = ps->next)
2976 {
2977 if (strcmp (name, ps->filename) == 0)
2978 {
2979 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2980 goto again2; /* Must restart, chain has been munged */
2981 }
2982 }
2983
2984 /* Look for a symtab with the specified name. */
2985
2986 for (s = symtab_list; s; s = s->next)
2987 {
2988 if (strcmp (name, s->filename) == 0)
2989 break;
2990 prev = s;
2991 }
2992
2993 if (s)
2994 {
2995 if (s == symtab_list)
2996 symtab_list = s->next;
2997 else
2998 prev->next = s->next;
2999
3000 /* For now, queue a delete for all breakpoints, displays, etc., whether
3001 or not they depend on the symtab being freed. This should be
3002 changed so that only those data structures affected are deleted. */
3003
3004 /* But don't delete anything if the symtab is empty.
3005 This test is necessary due to a bug in "dbxread.c" that
3006 causes empty symtabs to be created for N_SO symbols that
3007 contain the pathname of the object file. (This problem
3008 has been fixed in GDB 3.9x). */
3009
3010 bv = BLOCKVECTOR (s);
3011 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3012 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3013 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3014 {
3015 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3016 name);
3017 clear_symtab_users_queued++;
3018 make_cleanup (clear_symtab_users_once, 0);
3019 blewit = 1;
3020 }
3021 else
3022 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3023 name);
3024
3025 free_symtab (s);
3026 }
3027 else
3028 {
3029 /* It is still possible that some breakpoints will be affected
3030 even though no symtab was found, since the file might have
3031 been compiled without debugging, and hence not be associated
3032 with a symtab. In order to handle this correctly, we would need
3033 to keep a list of text address ranges for undebuggable files.
3034 For now, we do nothing, since this is a fairly obscure case. */
3035 ;
3036 }
3037
3038 /* FIXME, what about the minimal symbol table? */
3039 return blewit;
3040 #else
3041 return (0);
3042 #endif
3043 }
3044 \f
3045 /* Allocate and partially fill a partial symtab. It will be
3046 completely filled at the end of the symbol list.
3047
3048 FILENAME is the name of the symbol-file we are reading from. */
3049
3050 struct partial_symtab *
3051 start_psymtab_common (struct objfile *objfile,
3052 struct section_offsets *section_offsets, char *filename,
3053 CORE_ADDR textlow, struct partial_symbol **global_syms,
3054 struct partial_symbol **static_syms)
3055 {
3056 struct partial_symtab *psymtab;
3057
3058 psymtab = allocate_psymtab (filename, objfile);
3059 psymtab->section_offsets = section_offsets;
3060 psymtab->textlow = textlow;
3061 psymtab->texthigh = psymtab->textlow; /* default */
3062 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3063 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3064 return (psymtab);
3065 }
3066 \f
3067 /* Helper function, initialises partial symbol structure and stashes
3068 it into objfile's bcache. Note that our caching mechanism will
3069 use all fields of struct partial_symbol to determine hash value of the
3070 structure. In other words, having two symbols with the same name but
3071 different domain (or address) is possible and correct. */
3072
3073 static const struct partial_symbol *
3074 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3075 enum address_class class,
3076 long val, /* Value as a long */
3077 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3078 enum language language, struct objfile *objfile,
3079 int *added)
3080 {
3081 char *buf = name;
3082 /* psymbol is static so that there will be no uninitialized gaps in the
3083 structure which might contain random data, causing cache misses in
3084 bcache. */
3085 static struct partial_symbol psymbol;
3086
3087 if (name[namelength] != '\0')
3088 {
3089 buf = alloca (namelength + 1);
3090 /* Create local copy of the partial symbol */
3091 memcpy (buf, name, namelength);
3092 buf[namelength] = '\0';
3093 }
3094 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3095 if (val != 0)
3096 {
3097 SYMBOL_VALUE (&psymbol) = val;
3098 }
3099 else
3100 {
3101 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3102 }
3103 SYMBOL_SECTION (&psymbol) = 0;
3104 SYMBOL_LANGUAGE (&psymbol) = language;
3105 PSYMBOL_DOMAIN (&psymbol) = domain;
3106 PSYMBOL_CLASS (&psymbol) = class;
3107
3108 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3109
3110 /* Stash the partial symbol away in the cache */
3111 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3112 objfile->psymbol_cache, added);
3113 }
3114
3115 /* Helper function, adds partial symbol to the given partial symbol
3116 list. */
3117
3118 static void
3119 append_psymbol_to_list (struct psymbol_allocation_list *list,
3120 const struct partial_symbol *psym,
3121 struct objfile *objfile)
3122 {
3123 if (list->next >= list->list + list->size)
3124 extend_psymbol_list (list, objfile);
3125 *list->next++ = (struct partial_symbol *) psym;
3126 OBJSTAT (objfile, n_psyms++);
3127 }
3128
3129 /* Add a symbol with a long value to a psymtab.
3130 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3131 Return the partial symbol that has been added. */
3132
3133 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3134 symbol is so that callers can get access to the symbol's demangled
3135 name, which they don't have any cheap way to determine otherwise.
3136 (Currenly, dwarf2read.c is the only file who uses that information,
3137 though it's possible that other readers might in the future.)
3138 Elena wasn't thrilled about that, and I don't blame her, but we
3139 couldn't come up with a better way to get that information. If
3140 it's needed in other situations, we could consider breaking up
3141 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3142 cache. */
3143
3144 const struct partial_symbol *
3145 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3146 enum address_class class,
3147 struct psymbol_allocation_list *list,
3148 long val, /* Value as a long */
3149 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3150 enum language language, struct objfile *objfile)
3151 {
3152 const struct partial_symbol *psym;
3153
3154 int added;
3155
3156 /* Stash the partial symbol away in the cache */
3157 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3158 val, coreaddr, language, objfile, &added);
3159
3160 /* Do not duplicate global partial symbols. */
3161 if (list == &objfile->global_psymbols
3162 && !added)
3163 return psym;
3164
3165 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3166 append_psymbol_to_list (list, psym, objfile);
3167 return psym;
3168 }
3169
3170 /* Initialize storage for partial symbols. */
3171
3172 void
3173 init_psymbol_list (struct objfile *objfile, int total_symbols)
3174 {
3175 /* Free any previously allocated psymbol lists. */
3176
3177 if (objfile->global_psymbols.list)
3178 {
3179 xfree (objfile->global_psymbols.list);
3180 }
3181 if (objfile->static_psymbols.list)
3182 {
3183 xfree (objfile->static_psymbols.list);
3184 }
3185
3186 /* Current best guess is that approximately a twentieth
3187 of the total symbols (in a debugging file) are global or static
3188 oriented symbols */
3189
3190 objfile->global_psymbols.size = total_symbols / 10;
3191 objfile->static_psymbols.size = total_symbols / 10;
3192
3193 if (objfile->global_psymbols.size > 0)
3194 {
3195 objfile->global_psymbols.next =
3196 objfile->global_psymbols.list = (struct partial_symbol **)
3197 xmalloc ((objfile->global_psymbols.size
3198 * sizeof (struct partial_symbol *)));
3199 }
3200 if (objfile->static_psymbols.size > 0)
3201 {
3202 objfile->static_psymbols.next =
3203 objfile->static_psymbols.list = (struct partial_symbol **)
3204 xmalloc ((objfile->static_psymbols.size
3205 * sizeof (struct partial_symbol *)));
3206 }
3207 }
3208
3209 /* OVERLAYS:
3210 The following code implements an abstraction for debugging overlay sections.
3211
3212 The target model is as follows:
3213 1) The gnu linker will permit multiple sections to be mapped into the
3214 same VMA, each with its own unique LMA (or load address).
3215 2) It is assumed that some runtime mechanism exists for mapping the
3216 sections, one by one, from the load address into the VMA address.
3217 3) This code provides a mechanism for gdb to keep track of which
3218 sections should be considered to be mapped from the VMA to the LMA.
3219 This information is used for symbol lookup, and memory read/write.
3220 For instance, if a section has been mapped then its contents
3221 should be read from the VMA, otherwise from the LMA.
3222
3223 Two levels of debugger support for overlays are available. One is
3224 "manual", in which the debugger relies on the user to tell it which
3225 overlays are currently mapped. This level of support is
3226 implemented entirely in the core debugger, and the information about
3227 whether a section is mapped is kept in the objfile->obj_section table.
3228
3229 The second level of support is "automatic", and is only available if
3230 the target-specific code provides functionality to read the target's
3231 overlay mapping table, and translate its contents for the debugger
3232 (by updating the mapped state information in the obj_section tables).
3233
3234 The interface is as follows:
3235 User commands:
3236 overlay map <name> -- tell gdb to consider this section mapped
3237 overlay unmap <name> -- tell gdb to consider this section unmapped
3238 overlay list -- list the sections that GDB thinks are mapped
3239 overlay read-target -- get the target's state of what's mapped
3240 overlay off/manual/auto -- set overlay debugging state
3241 Functional interface:
3242 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3243 section, return that section.
3244 find_pc_overlay(pc): find any overlay section that contains
3245 the pc, either in its VMA or its LMA
3246 section_is_mapped(sect): true if overlay is marked as mapped
3247 section_is_overlay(sect): true if section's VMA != LMA
3248 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3249 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3250 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3251 overlay_mapped_address(...): map an address from section's LMA to VMA
3252 overlay_unmapped_address(...): map an address from section's VMA to LMA
3253 symbol_overlayed_address(...): Return a "current" address for symbol:
3254 either in VMA or LMA depending on whether
3255 the symbol's section is currently mapped
3256 */
3257
3258 /* Overlay debugging state: */
3259
3260 enum overlay_debugging_state overlay_debugging = ovly_off;
3261 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3262
3263 /* Function: section_is_overlay (SECTION)
3264 Returns true if SECTION has VMA not equal to LMA, ie.
3265 SECTION is loaded at an address different from where it will "run". */
3266
3267 int
3268 section_is_overlay (struct obj_section *section)
3269 {
3270 if (overlay_debugging && section)
3271 {
3272 bfd *abfd = section->objfile->obfd;
3273 asection *bfd_section = section->the_bfd_section;
3274
3275 if (bfd_section_lma (abfd, bfd_section) != 0
3276 && bfd_section_lma (abfd, bfd_section)
3277 != bfd_section_vma (abfd, bfd_section))
3278 return 1;
3279 }
3280
3281 return 0;
3282 }
3283
3284 /* Function: overlay_invalidate_all (void)
3285 Invalidate the mapped state of all overlay sections (mark it as stale). */
3286
3287 static void
3288 overlay_invalidate_all (void)
3289 {
3290 struct objfile *objfile;
3291 struct obj_section *sect;
3292
3293 ALL_OBJSECTIONS (objfile, sect)
3294 if (section_is_overlay (sect))
3295 sect->ovly_mapped = -1;
3296 }
3297
3298 /* Function: section_is_mapped (SECTION)
3299 Returns true if section is an overlay, and is currently mapped.
3300
3301 Access to the ovly_mapped flag is restricted to this function, so
3302 that we can do automatic update. If the global flag
3303 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3304 overlay_invalidate_all. If the mapped state of the particular
3305 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3306
3307 int
3308 section_is_mapped (struct obj_section *osect)
3309 {
3310 if (osect == 0 || !section_is_overlay (osect))
3311 return 0;
3312
3313 switch (overlay_debugging)
3314 {
3315 default:
3316 case ovly_off:
3317 return 0; /* overlay debugging off */
3318 case ovly_auto: /* overlay debugging automatic */
3319 /* Unles there is a gdbarch_overlay_update function,
3320 there's really nothing useful to do here (can't really go auto) */
3321 if (gdbarch_overlay_update_p (current_gdbarch))
3322 {
3323 if (overlay_cache_invalid)
3324 {
3325 overlay_invalidate_all ();
3326 overlay_cache_invalid = 0;
3327 }
3328 if (osect->ovly_mapped == -1)
3329 gdbarch_overlay_update (current_gdbarch, osect);
3330 }
3331 /* fall thru to manual case */
3332 case ovly_on: /* overlay debugging manual */
3333 return osect->ovly_mapped == 1;
3334 }
3335 }
3336
3337 /* Function: pc_in_unmapped_range
3338 If PC falls into the lma range of SECTION, return true, else false. */
3339
3340 CORE_ADDR
3341 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3342 {
3343 if (section_is_overlay (section))
3344 {
3345 bfd *abfd = section->objfile->obfd;
3346 asection *bfd_section = section->the_bfd_section;
3347
3348 /* We assume the LMA is relocated by the same offset as the VMA. */
3349 bfd_vma size = bfd_get_section_size (bfd_section);
3350 CORE_ADDR offset = obj_section_offset (section);
3351
3352 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3353 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3354 return 1;
3355 }
3356
3357 return 0;
3358 }
3359
3360 /* Function: pc_in_mapped_range
3361 If PC falls into the vma range of SECTION, return true, else false. */
3362
3363 CORE_ADDR
3364 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3365 {
3366 if (section_is_overlay (section))
3367 {
3368 if (obj_section_addr (section) <= pc
3369 && pc < obj_section_endaddr (section))
3370 return 1;
3371 }
3372
3373 return 0;
3374 }
3375
3376
3377 /* Return true if the mapped ranges of sections A and B overlap, false
3378 otherwise. */
3379 static int
3380 sections_overlap (struct obj_section *a, struct obj_section *b)
3381 {
3382 CORE_ADDR a_start = obj_section_addr (a);
3383 CORE_ADDR a_end = obj_section_endaddr (a);
3384 CORE_ADDR b_start = obj_section_addr (b);
3385 CORE_ADDR b_end = obj_section_endaddr (b);
3386
3387 return (a_start < b_end && b_start < a_end);
3388 }
3389
3390 /* Function: overlay_unmapped_address (PC, SECTION)
3391 Returns the address corresponding to PC in the unmapped (load) range.
3392 May be the same as PC. */
3393
3394 CORE_ADDR
3395 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3396 {
3397 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3398 {
3399 bfd *abfd = section->objfile->obfd;
3400 asection *bfd_section = section->the_bfd_section;
3401
3402 return pc + bfd_section_lma (abfd, bfd_section)
3403 - bfd_section_vma (abfd, bfd_section);
3404 }
3405
3406 return pc;
3407 }
3408
3409 /* Function: overlay_mapped_address (PC, SECTION)
3410 Returns the address corresponding to PC in the mapped (runtime) range.
3411 May be the same as PC. */
3412
3413 CORE_ADDR
3414 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3415 {
3416 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3417 {
3418 bfd *abfd = section->objfile->obfd;
3419 asection *bfd_section = section->the_bfd_section;
3420
3421 return pc + bfd_section_vma (abfd, bfd_section)
3422 - bfd_section_lma (abfd, bfd_section);
3423 }
3424
3425 return pc;
3426 }
3427
3428
3429 /* Function: symbol_overlayed_address
3430 Return one of two addresses (relative to the VMA or to the LMA),
3431 depending on whether the section is mapped or not. */
3432
3433 CORE_ADDR
3434 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3435 {
3436 if (overlay_debugging)
3437 {
3438 /* If the symbol has no section, just return its regular address. */
3439 if (section == 0)
3440 return address;
3441 /* If the symbol's section is not an overlay, just return its address */
3442 if (!section_is_overlay (section))
3443 return address;
3444 /* If the symbol's section is mapped, just return its address */
3445 if (section_is_mapped (section))
3446 return address;
3447 /*
3448 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3449 * then return its LOADED address rather than its vma address!!
3450 */
3451 return overlay_unmapped_address (address, section);
3452 }
3453 return address;
3454 }
3455
3456 /* Function: find_pc_overlay (PC)
3457 Return the best-match overlay section for PC:
3458 If PC matches a mapped overlay section's VMA, return that section.
3459 Else if PC matches an unmapped section's VMA, return that section.
3460 Else if PC matches an unmapped section's LMA, return that section. */
3461
3462 struct obj_section *
3463 find_pc_overlay (CORE_ADDR pc)
3464 {
3465 struct objfile *objfile;
3466 struct obj_section *osect, *best_match = NULL;
3467
3468 if (overlay_debugging)
3469 ALL_OBJSECTIONS (objfile, osect)
3470 if (section_is_overlay (osect))
3471 {
3472 if (pc_in_mapped_range (pc, osect))
3473 {
3474 if (section_is_mapped (osect))
3475 return osect;
3476 else
3477 best_match = osect;
3478 }
3479 else if (pc_in_unmapped_range (pc, osect))
3480 best_match = osect;
3481 }
3482 return best_match;
3483 }
3484
3485 /* Function: find_pc_mapped_section (PC)
3486 If PC falls into the VMA address range of an overlay section that is
3487 currently marked as MAPPED, return that section. Else return NULL. */
3488
3489 struct obj_section *
3490 find_pc_mapped_section (CORE_ADDR pc)
3491 {
3492 struct objfile *objfile;
3493 struct obj_section *osect;
3494
3495 if (overlay_debugging)
3496 ALL_OBJSECTIONS (objfile, osect)
3497 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3498 return osect;
3499
3500 return NULL;
3501 }
3502
3503 /* Function: list_overlays_command
3504 Print a list of mapped sections and their PC ranges */
3505
3506 void
3507 list_overlays_command (char *args, int from_tty)
3508 {
3509 int nmapped = 0;
3510 struct objfile *objfile;
3511 struct obj_section *osect;
3512
3513 if (overlay_debugging)
3514 ALL_OBJSECTIONS (objfile, osect)
3515 if (section_is_mapped (osect))
3516 {
3517 const char *name;
3518 bfd_vma lma, vma;
3519 int size;
3520
3521 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3522 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3523 size = bfd_get_section_size (osect->the_bfd_section);
3524 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3525
3526 printf_filtered ("Section %s, loaded at ", name);
3527 fputs_filtered (paddress (lma), gdb_stdout);
3528 puts_filtered (" - ");
3529 fputs_filtered (paddress (lma + size), gdb_stdout);
3530 printf_filtered (", mapped at ");
3531 fputs_filtered (paddress (vma), gdb_stdout);
3532 puts_filtered (" - ");
3533 fputs_filtered (paddress (vma + size), gdb_stdout);
3534 puts_filtered ("\n");
3535
3536 nmapped++;
3537 }
3538 if (nmapped == 0)
3539 printf_filtered (_("No sections are mapped.\n"));
3540 }
3541
3542 /* Function: map_overlay_command
3543 Mark the named section as mapped (ie. residing at its VMA address). */
3544
3545 void
3546 map_overlay_command (char *args, int from_tty)
3547 {
3548 struct objfile *objfile, *objfile2;
3549 struct obj_section *sec, *sec2;
3550
3551 if (!overlay_debugging)
3552 error (_("\
3553 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3554 the 'overlay manual' command."));
3555
3556 if (args == 0 || *args == 0)
3557 error (_("Argument required: name of an overlay section"));
3558
3559 /* First, find a section matching the user supplied argument */
3560 ALL_OBJSECTIONS (objfile, sec)
3561 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3562 {
3563 /* Now, check to see if the section is an overlay. */
3564 if (!section_is_overlay (sec))
3565 continue; /* not an overlay section */
3566
3567 /* Mark the overlay as "mapped" */
3568 sec->ovly_mapped = 1;
3569
3570 /* Next, make a pass and unmap any sections that are
3571 overlapped by this new section: */
3572 ALL_OBJSECTIONS (objfile2, sec2)
3573 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3574 {
3575 if (info_verbose)
3576 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3577 bfd_section_name (objfile->obfd,
3578 sec2->the_bfd_section));
3579 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3580 }
3581 return;
3582 }
3583 error (_("No overlay section called %s"), args);
3584 }
3585
3586 /* Function: unmap_overlay_command
3587 Mark the overlay section as unmapped
3588 (ie. resident in its LMA address range, rather than the VMA range). */
3589
3590 void
3591 unmap_overlay_command (char *args, int from_tty)
3592 {
3593 struct objfile *objfile;
3594 struct obj_section *sec;
3595
3596 if (!overlay_debugging)
3597 error (_("\
3598 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3599 the 'overlay manual' command."));
3600
3601 if (args == 0 || *args == 0)
3602 error (_("Argument required: name of an overlay section"));
3603
3604 /* First, find a section matching the user supplied argument */
3605 ALL_OBJSECTIONS (objfile, sec)
3606 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3607 {
3608 if (!sec->ovly_mapped)
3609 error (_("Section %s is not mapped"), args);
3610 sec->ovly_mapped = 0;
3611 return;
3612 }
3613 error (_("No overlay section called %s"), args);
3614 }
3615
3616 /* Function: overlay_auto_command
3617 A utility command to turn on overlay debugging.
3618 Possibly this should be done via a set/show command. */
3619
3620 static void
3621 overlay_auto_command (char *args, int from_tty)
3622 {
3623 overlay_debugging = ovly_auto;
3624 enable_overlay_breakpoints ();
3625 if (info_verbose)
3626 printf_unfiltered (_("Automatic overlay debugging enabled."));
3627 }
3628
3629 /* Function: overlay_manual_command
3630 A utility command to turn on overlay debugging.
3631 Possibly this should be done via a set/show command. */
3632
3633 static void
3634 overlay_manual_command (char *args, int from_tty)
3635 {
3636 overlay_debugging = ovly_on;
3637 disable_overlay_breakpoints ();
3638 if (info_verbose)
3639 printf_unfiltered (_("Overlay debugging enabled."));
3640 }
3641
3642 /* Function: overlay_off_command
3643 A utility command to turn on overlay debugging.
3644 Possibly this should be done via a set/show command. */
3645
3646 static void
3647 overlay_off_command (char *args, int from_tty)
3648 {
3649 overlay_debugging = ovly_off;
3650 disable_overlay_breakpoints ();
3651 if (info_verbose)
3652 printf_unfiltered (_("Overlay debugging disabled."));
3653 }
3654
3655 static void
3656 overlay_load_command (char *args, int from_tty)
3657 {
3658 if (gdbarch_overlay_update_p (current_gdbarch))
3659 gdbarch_overlay_update (current_gdbarch, NULL);
3660 else
3661 error (_("This target does not know how to read its overlay state."));
3662 }
3663
3664 /* Function: overlay_command
3665 A place-holder for a mis-typed command */
3666
3667 /* Command list chain containing all defined "overlay" subcommands. */
3668 struct cmd_list_element *overlaylist;
3669
3670 static void
3671 overlay_command (char *args, int from_tty)
3672 {
3673 printf_unfiltered
3674 ("\"overlay\" must be followed by the name of an overlay command.\n");
3675 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3676 }
3677
3678
3679 /* Target Overlays for the "Simplest" overlay manager:
3680
3681 This is GDB's default target overlay layer. It works with the
3682 minimal overlay manager supplied as an example by Cygnus. The
3683 entry point is via a function pointer "gdbarch_overlay_update",
3684 so targets that use a different runtime overlay manager can
3685 substitute their own overlay_update function and take over the
3686 function pointer.
3687
3688 The overlay_update function pokes around in the target's data structures
3689 to see what overlays are mapped, and updates GDB's overlay mapping with
3690 this information.
3691
3692 In this simple implementation, the target data structures are as follows:
3693 unsigned _novlys; /# number of overlay sections #/
3694 unsigned _ovly_table[_novlys][4] = {
3695 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3696 {..., ..., ..., ...},
3697 }
3698 unsigned _novly_regions; /# number of overlay regions #/
3699 unsigned _ovly_region_table[_novly_regions][3] = {
3700 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3701 {..., ..., ...},
3702 }
3703 These functions will attempt to update GDB's mappedness state in the
3704 symbol section table, based on the target's mappedness state.
3705
3706 To do this, we keep a cached copy of the target's _ovly_table, and
3707 attempt to detect when the cached copy is invalidated. The main
3708 entry point is "simple_overlay_update(SECT), which looks up SECT in
3709 the cached table and re-reads only the entry for that section from
3710 the target (whenever possible).
3711 */
3712
3713 /* Cached, dynamically allocated copies of the target data structures: */
3714 static unsigned (*cache_ovly_table)[4] = 0;
3715 #if 0
3716 static unsigned (*cache_ovly_region_table)[3] = 0;
3717 #endif
3718 static unsigned cache_novlys = 0;
3719 #if 0
3720 static unsigned cache_novly_regions = 0;
3721 #endif
3722 static CORE_ADDR cache_ovly_table_base = 0;
3723 #if 0
3724 static CORE_ADDR cache_ovly_region_table_base = 0;
3725 #endif
3726 enum ovly_index
3727 {
3728 VMA, SIZE, LMA, MAPPED
3729 };
3730 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3731 / TARGET_CHAR_BIT)
3732
3733 /* Throw away the cached copy of _ovly_table */
3734 static void
3735 simple_free_overlay_table (void)
3736 {
3737 if (cache_ovly_table)
3738 xfree (cache_ovly_table);
3739 cache_novlys = 0;
3740 cache_ovly_table = NULL;
3741 cache_ovly_table_base = 0;
3742 }
3743
3744 #if 0
3745 /* Throw away the cached copy of _ovly_region_table */
3746 static void
3747 simple_free_overlay_region_table (void)
3748 {
3749 if (cache_ovly_region_table)
3750 xfree (cache_ovly_region_table);
3751 cache_novly_regions = 0;
3752 cache_ovly_region_table = NULL;
3753 cache_ovly_region_table_base = 0;
3754 }
3755 #endif
3756
3757 /* Read an array of ints from the target into a local buffer.
3758 Convert to host order. int LEN is number of ints */
3759 static void
3760 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3761 {
3762 /* FIXME (alloca): Not safe if array is very large. */
3763 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3764 int i;
3765
3766 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3767 for (i = 0; i < len; i++)
3768 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3769 TARGET_LONG_BYTES);
3770 }
3771
3772 /* Find and grab a copy of the target _ovly_table
3773 (and _novlys, which is needed for the table's size) */
3774 static int
3775 simple_read_overlay_table (void)
3776 {
3777 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3778
3779 simple_free_overlay_table ();
3780 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3781 if (! novlys_msym)
3782 {
3783 error (_("Error reading inferior's overlay table: "
3784 "couldn't find `_novlys' variable\n"
3785 "in inferior. Use `overlay manual' mode."));
3786 return 0;
3787 }
3788
3789 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3790 if (! ovly_table_msym)
3791 {
3792 error (_("Error reading inferior's overlay table: couldn't find "
3793 "`_ovly_table' array\n"
3794 "in inferior. Use `overlay manual' mode."));
3795 return 0;
3796 }
3797
3798 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3799 cache_ovly_table
3800 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3801 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3802 read_target_long_array (cache_ovly_table_base,
3803 (unsigned int *) cache_ovly_table,
3804 cache_novlys * 4);
3805
3806 return 1; /* SUCCESS */
3807 }
3808
3809 #if 0
3810 /* Find and grab a copy of the target _ovly_region_table
3811 (and _novly_regions, which is needed for the table's size) */
3812 static int
3813 simple_read_overlay_region_table (void)
3814 {
3815 struct minimal_symbol *msym;
3816
3817 simple_free_overlay_region_table ();
3818 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3819 if (msym != NULL)
3820 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3821 else
3822 return 0; /* failure */
3823 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3824 if (cache_ovly_region_table != NULL)
3825 {
3826 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3827 if (msym != NULL)
3828 {
3829 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3830 read_target_long_array (cache_ovly_region_table_base,
3831 (unsigned int *) cache_ovly_region_table,
3832 cache_novly_regions * 3);
3833 }
3834 else
3835 return 0; /* failure */
3836 }
3837 else
3838 return 0; /* failure */
3839 return 1; /* SUCCESS */
3840 }
3841 #endif
3842
3843 /* Function: simple_overlay_update_1
3844 A helper function for simple_overlay_update. Assuming a cached copy
3845 of _ovly_table exists, look through it to find an entry whose vma,
3846 lma and size match those of OSECT. Re-read the entry and make sure
3847 it still matches OSECT (else the table may no longer be valid).
3848 Set OSECT's mapped state to match the entry. Return: 1 for
3849 success, 0 for failure. */
3850
3851 static int
3852 simple_overlay_update_1 (struct obj_section *osect)
3853 {
3854 int i, size;
3855 bfd *obfd = osect->objfile->obfd;
3856 asection *bsect = osect->the_bfd_section;
3857
3858 size = bfd_get_section_size (osect->the_bfd_section);
3859 for (i = 0; i < cache_novlys; i++)
3860 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3861 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3862 /* && cache_ovly_table[i][SIZE] == size */ )
3863 {
3864 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3865 (unsigned int *) cache_ovly_table[i], 4);
3866 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3867 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3868 /* && cache_ovly_table[i][SIZE] == size */ )
3869 {
3870 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3871 return 1;
3872 }
3873 else /* Warning! Warning! Target's ovly table has changed! */
3874 return 0;
3875 }
3876 return 0;
3877 }
3878
3879 /* Function: simple_overlay_update
3880 If OSECT is NULL, then update all sections' mapped state
3881 (after re-reading the entire target _ovly_table).
3882 If OSECT is non-NULL, then try to find a matching entry in the
3883 cached ovly_table and update only OSECT's mapped state.
3884 If a cached entry can't be found or the cache isn't valid, then
3885 re-read the entire cache, and go ahead and update all sections. */
3886
3887 void
3888 simple_overlay_update (struct obj_section *osect)
3889 {
3890 struct objfile *objfile;
3891
3892 /* Were we given an osect to look up? NULL means do all of them. */
3893 if (osect)
3894 /* Have we got a cached copy of the target's overlay table? */
3895 if (cache_ovly_table != NULL)
3896 /* Does its cached location match what's currently in the symtab? */
3897 if (cache_ovly_table_base ==
3898 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3899 /* Then go ahead and try to look up this single section in the cache */
3900 if (simple_overlay_update_1 (osect))
3901 /* Found it! We're done. */
3902 return;
3903
3904 /* Cached table no good: need to read the entire table anew.
3905 Or else we want all the sections, in which case it's actually
3906 more efficient to read the whole table in one block anyway. */
3907
3908 if (! simple_read_overlay_table ())
3909 return;
3910
3911 /* Now may as well update all sections, even if only one was requested. */
3912 ALL_OBJSECTIONS (objfile, osect)
3913 if (section_is_overlay (osect))
3914 {
3915 int i, size;
3916 bfd *obfd = osect->objfile->obfd;
3917 asection *bsect = osect->the_bfd_section;
3918
3919 size = bfd_get_section_size (bsect);
3920 for (i = 0; i < cache_novlys; i++)
3921 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3922 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3923 /* && cache_ovly_table[i][SIZE] == size */ )
3924 { /* obj_section matches i'th entry in ovly_table */
3925 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3926 break; /* finished with inner for loop: break out */
3927 }
3928 }
3929 }
3930
3931 /* Set the output sections and output offsets for section SECTP in
3932 ABFD. The relocation code in BFD will read these offsets, so we
3933 need to be sure they're initialized. We map each section to itself,
3934 with no offset; this means that SECTP->vma will be honored. */
3935
3936 static void
3937 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3938 {
3939 sectp->output_section = sectp;
3940 sectp->output_offset = 0;
3941 }
3942
3943 /* Relocate the contents of a debug section SECTP in ABFD. The
3944 contents are stored in BUF if it is non-NULL, or returned in a
3945 malloc'd buffer otherwise.
3946
3947 For some platforms and debug info formats, shared libraries contain
3948 relocations against the debug sections (particularly for DWARF-2;
3949 one affected platform is PowerPC GNU/Linux, although it depends on
3950 the version of the linker in use). Also, ELF object files naturally
3951 have unresolved relocations for their debug sections. We need to apply
3952 the relocations in order to get the locations of symbols correct. */
3953
3954 bfd_byte *
3955 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3956 {
3957 /* We're only interested in debugging sections with relocation
3958 information. */
3959 if ((sectp->flags & SEC_RELOC) == 0)
3960 return NULL;
3961 if ((sectp->flags & SEC_DEBUGGING) == 0)
3962 return NULL;
3963
3964 /* We will handle section offsets properly elsewhere, so relocate as if
3965 all sections begin at 0. */
3966 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3967
3968 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3969 }
3970
3971 struct symfile_segment_data *
3972 get_symfile_segment_data (bfd *abfd)
3973 {
3974 struct sym_fns *sf = find_sym_fns (abfd);
3975
3976 if (sf == NULL)
3977 return NULL;
3978
3979 return sf->sym_segments (abfd);
3980 }
3981
3982 void
3983 free_symfile_segment_data (struct symfile_segment_data *data)
3984 {
3985 xfree (data->segment_bases);
3986 xfree (data->segment_sizes);
3987 xfree (data->segment_info);
3988 xfree (data);
3989 }
3990
3991
3992 /* Given:
3993 - DATA, containing segment addresses from the object file ABFD, and
3994 the mapping from ABFD's sections onto the segments that own them,
3995 and
3996 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3997 segment addresses reported by the target,
3998 store the appropriate offsets for each section in OFFSETS.
3999
4000 If there are fewer entries in SEGMENT_BASES than there are segments
4001 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4002
4003 If there are more entries, then ignore the extra. The target may
4004 not be able to distinguish between an empty data segment and a
4005 missing data segment; a missing text segment is less plausible. */
4006 int
4007 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4008 struct section_offsets *offsets,
4009 int num_segment_bases,
4010 const CORE_ADDR *segment_bases)
4011 {
4012 int i;
4013 asection *sect;
4014
4015 /* It doesn't make sense to call this function unless you have some
4016 segment base addresses. */
4017 gdb_assert (segment_bases > 0);
4018
4019 /* If we do not have segment mappings for the object file, we
4020 can not relocate it by segments. */
4021 gdb_assert (data != NULL);
4022 gdb_assert (data->num_segments > 0);
4023
4024 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4025 {
4026 int which = data->segment_info[i];
4027
4028 gdb_assert (0 <= which && which <= data->num_segments);
4029
4030 /* Don't bother computing offsets for sections that aren't
4031 loaded as part of any segment. */
4032 if (! which)
4033 continue;
4034
4035 /* Use the last SEGMENT_BASES entry as the address of any extra
4036 segments mentioned in DATA->segment_info. */
4037 if (which > num_segment_bases)
4038 which = num_segment_bases;
4039
4040 offsets->offsets[i] = (segment_bases[which - 1]
4041 - data->segment_bases[which - 1]);
4042 }
4043
4044 return 1;
4045 }
4046
4047 static void
4048 symfile_find_segment_sections (struct objfile *objfile)
4049 {
4050 bfd *abfd = objfile->obfd;
4051 int i;
4052 asection *sect;
4053 struct symfile_segment_data *data;
4054
4055 data = get_symfile_segment_data (objfile->obfd);
4056 if (data == NULL)
4057 return;
4058
4059 if (data->num_segments != 1 && data->num_segments != 2)
4060 {
4061 free_symfile_segment_data (data);
4062 return;
4063 }
4064
4065 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4066 {
4067 CORE_ADDR vma;
4068 int which = data->segment_info[i];
4069
4070 if (which == 1)
4071 {
4072 if (objfile->sect_index_text == -1)
4073 objfile->sect_index_text = sect->index;
4074
4075 if (objfile->sect_index_rodata == -1)
4076 objfile->sect_index_rodata = sect->index;
4077 }
4078 else if (which == 2)
4079 {
4080 if (objfile->sect_index_data == -1)
4081 objfile->sect_index_data = sect->index;
4082
4083 if (objfile->sect_index_bss == -1)
4084 objfile->sect_index_bss = sect->index;
4085 }
4086 }
4087
4088 free_symfile_segment_data (data);
4089 }
4090
4091 void
4092 _initialize_symfile (void)
4093 {
4094 struct cmd_list_element *c;
4095
4096 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4097 Load symbol table from executable file FILE.\n\
4098 The `file' command can also load symbol tables, as well as setting the file\n\
4099 to execute."), &cmdlist);
4100 set_cmd_completer (c, filename_completer);
4101
4102 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4103 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4104 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4105 ADDR is the starting address of the file's text.\n\
4106 The optional arguments are section-name section-address pairs and\n\
4107 should be specified if the data and bss segments are not contiguous\n\
4108 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4109 &cmdlist);
4110 set_cmd_completer (c, filename_completer);
4111
4112 c = add_cmd ("add-shared-symbol-files", class_files,
4113 add_shared_symbol_files_command, _("\
4114 Load the symbols from shared objects in the dynamic linker's link map."),
4115 &cmdlist);
4116 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4117 &cmdlist);
4118
4119 c = add_cmd ("load", class_files, load_command, _("\
4120 Dynamically load FILE into the running program, and record its symbols\n\
4121 for access from GDB.\n\
4122 A load OFFSET may also be given."), &cmdlist);
4123 set_cmd_completer (c, filename_completer);
4124
4125 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4126 &symbol_reloading, _("\
4127 Set dynamic symbol table reloading multiple times in one run."), _("\
4128 Show dynamic symbol table reloading multiple times in one run."), NULL,
4129 NULL,
4130 show_symbol_reloading,
4131 &setlist, &showlist);
4132
4133 add_prefix_cmd ("overlay", class_support, overlay_command,
4134 _("Commands for debugging overlays."), &overlaylist,
4135 "overlay ", 0, &cmdlist);
4136
4137 add_com_alias ("ovly", "overlay", class_alias, 1);
4138 add_com_alias ("ov", "overlay", class_alias, 1);
4139
4140 add_cmd ("map-overlay", class_support, map_overlay_command,
4141 _("Assert that an overlay section is mapped."), &overlaylist);
4142
4143 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4144 _("Assert that an overlay section is unmapped."), &overlaylist);
4145
4146 add_cmd ("list-overlays", class_support, list_overlays_command,
4147 _("List mappings of overlay sections."), &overlaylist);
4148
4149 add_cmd ("manual", class_support, overlay_manual_command,
4150 _("Enable overlay debugging."), &overlaylist);
4151 add_cmd ("off", class_support, overlay_off_command,
4152 _("Disable overlay debugging."), &overlaylist);
4153 add_cmd ("auto", class_support, overlay_auto_command,
4154 _("Enable automatic overlay debugging."), &overlaylist);
4155 add_cmd ("load-target", class_support, overlay_load_command,
4156 _("Read the overlay mapping state from the target."), &overlaylist);
4157
4158 /* Filename extension to source language lookup table: */
4159 init_filename_language_table ();
4160 add_setshow_string_noescape_cmd ("extension-language", class_files,
4161 &ext_args, _("\
4162 Set mapping between filename extension and source language."), _("\
4163 Show mapping between filename extension and source language."), _("\
4164 Usage: set extension-language .foo bar"),
4165 set_ext_lang_command,
4166 show_ext_args,
4167 &setlist, &showlist);
4168
4169 add_info ("extensions", info_ext_lang_command,
4170 _("All filename extensions associated with a source language."));
4171
4172 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4173 &debug_file_directory, _("\
4174 Set the directory where separate debug symbols are searched for."), _("\
4175 Show the directory where separate debug symbols are searched for."), _("\
4176 Separate debug symbols are first searched for in the same\n\
4177 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4178 and lastly at the path of the directory of the binary with\n\
4179 the global debug-file directory prepended."),
4180 NULL,
4181 show_debug_file_directory,
4182 &setlist, &showlist);
4183
4184 add_setshow_boolean_cmd ("symbol-loading", no_class,
4185 &print_symbol_loading, _("\
4186 Set printing of symbol loading messages."), _("\
4187 Show printing of symbol loading messages."), NULL,
4188 NULL,
4189 NULL,
4190 &setprintlist, &showprintlist);
4191 }
This page took 0.134105 seconds and 5 git commands to generate.