* gdbarch.sh (make_corefile_notes): New architecture callback.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "linespec.h"
37 #include "source.h"
38 #include "filenames.h" /* for FILENAME_CMP */
39 #include "objc-lang.h"
40 #include "d-lang.h"
41 #include "ada-lang.h"
42 #include "p-lang.h"
43 #include "addrmap.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65
66 /* Prototypes for local functions */
67
68 static void completion_list_add_name (char *, char *, int, char *, char *);
69
70 static void rbreak_command (char *, int);
71
72 static void types_info (char *, int);
73
74 static void functions_info (char *, int);
75
76 static void variables_info (char *, int);
77
78 static void sources_info (char *, int);
79
80 static void output_source_filename (const char *, int *);
81
82 static int find_line_common (struct linetable *, int, int *, int);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 int *is_a_field_of_this);
89
90 static
91 struct symbol *lookup_symbol_aux_local (const char *name,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static
97 struct symbol *lookup_symbol_aux_symtabs (int block_index,
98 const char *name,
99 const domain_enum domain);
100
101 static
102 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
103 int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static void print_msymbol_info (struct minimal_symbol *);
108
109 void _initialize_symtab (void);
110
111 /* */
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). SEARCH_LEN is the length of
151 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
152 Returns true if they match, false otherwise. */
153
154 int
155 compare_filenames_for_search (const char *filename, const char *search_name,
156 int search_len)
157 {
158 int len = strlen (filename);
159 int offset;
160
161 if (len < search_len)
162 return 0;
163
164 /* The tail of FILENAME must match. */
165 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
166 return 0;
167
168 /* Either the names must completely match, or the character
169 preceding the trailing SEARCH_NAME segment of FILENAME must be a
170 directory separator. */
171 return (len == search_len
172 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
173 || (HAS_DRIVE_SPEC (filename)
174 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
175 }
176
177 /* Check for a symtab of a specific name by searching some symtabs.
178 This is a helper function for callbacks of iterate_over_symtabs.
179
180 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
181 are identical to the `map_symtabs_matching_filename' method of
182 quick_symbol_functions.
183
184 FIRST and AFTER_LAST indicate the range of symtabs to search.
185 AFTER_LAST is one past the last symtab to search; NULL means to
186 search until the end of the list. */
187
188 int
189 iterate_over_some_symtabs (const char *name,
190 const char *full_path,
191 const char *real_path,
192 int (*callback) (struct symtab *symtab,
193 void *data),
194 void *data,
195 struct symtab *first,
196 struct symtab *after_last)
197 {
198 struct symtab *s = NULL;
199 struct cleanup *cleanup;
200 const char* base_name = lbasename (name);
201 int name_len = strlen (name);
202 int is_abs = IS_ABSOLUTE_PATH (name);
203
204 for (s = first; s != NULL && s != after_last; s = s->next)
205 {
206 /* Exact match is always ok. */
207 if (FILENAME_CMP (name, s->filename) == 0)
208 {
209 if (callback (s, data))
210 return 1;
211 }
212
213 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
214 {
215 if (callback (s, data))
216 return 1;
217 }
218
219 /* Before we invoke realpath, which can get expensive when many
220 files are involved, do a quick comparison of the basenames. */
221 if (! basenames_may_differ
222 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
223 continue;
224
225 /* If the user gave us an absolute path, try to find the file in
226 this symtab and use its absolute path. */
227
228 if (full_path != NULL)
229 {
230 const char *fp = symtab_to_fullname (s);
231
232 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
233 {
234 if (callback (s, data))
235 return 1;
236 }
237
238 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
239 name_len))
240 {
241 if (callback (s, data))
242 return 1;
243 }
244 }
245
246 if (real_path != NULL)
247 {
248 char *fullname = symtab_to_fullname (s);
249
250 if (fullname != NULL)
251 {
252 char *rp = gdb_realpath (fullname);
253
254 make_cleanup (xfree, rp);
255 if (FILENAME_CMP (real_path, rp) == 0)
256 {
257 if (callback (s, data))
258 return 1;
259 }
260
261 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
262 {
263 if (callback (s, data))
264 return 1;
265 }
266 }
267 }
268 }
269
270 return 0;
271 }
272
273 /* Check for a symtab of a specific name; first in symtabs, then in
274 psymtabs. *If* there is no '/' in the name, a match after a '/'
275 in the symtab filename will also work.
276
277 Calls CALLBACK with each symtab that is found and with the supplied
278 DATA. If CALLBACK returns true, the search stops. */
279
280 void
281 iterate_over_symtabs (const char *name,
282 int (*callback) (struct symtab *symtab,
283 void *data),
284 void *data)
285 {
286 struct symtab *s = NULL;
287 struct objfile *objfile;
288 char *real_path = NULL;
289 char *full_path = NULL;
290 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
291
292 /* Here we are interested in canonicalizing an absolute path, not
293 absolutizing a relative path. */
294 if (IS_ABSOLUTE_PATH (name))
295 {
296 full_path = xfullpath (name);
297 make_cleanup (xfree, full_path);
298 real_path = gdb_realpath (name);
299 make_cleanup (xfree, real_path);
300 }
301
302 ALL_OBJFILES (objfile)
303 {
304 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
305 objfile->symtabs, NULL))
306 {
307 do_cleanups (cleanups);
308 return;
309 }
310 }
311
312 /* Same search rules as above apply here, but now we look thru the
313 psymtabs. */
314
315 ALL_OBJFILES (objfile)
316 {
317 if (objfile->sf
318 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
319 name,
320 full_path,
321 real_path,
322 callback,
323 data))
324 {
325 do_cleanups (cleanups);
326 return;
327 }
328 }
329
330 do_cleanups (cleanups);
331 }
332
333 /* The callback function used by lookup_symtab. */
334
335 static int
336 lookup_symtab_callback (struct symtab *symtab, void *data)
337 {
338 struct symtab **result_ptr = data;
339
340 *result_ptr = symtab;
341 return 1;
342 }
343
344 /* A wrapper for iterate_over_symtabs that returns the first matching
345 symtab, or NULL. */
346
347 struct symtab *
348 lookup_symtab (const char *name)
349 {
350 struct symtab *result = NULL;
351
352 iterate_over_symtabs (name, lookup_symtab_callback, &result);
353 return result;
354 }
355
356 \f
357 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
358 full method name, which consist of the class name (from T), the unadorned
359 method name from METHOD_ID, and the signature for the specific overload,
360 specified by SIGNATURE_ID. Note that this function is g++ specific. */
361
362 char *
363 gdb_mangle_name (struct type *type, int method_id, int signature_id)
364 {
365 int mangled_name_len;
366 char *mangled_name;
367 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
368 struct fn_field *method = &f[signature_id];
369 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
370 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
371 char *newname = type_name_no_tag (type);
372
373 /* Does the form of physname indicate that it is the full mangled name
374 of a constructor (not just the args)? */
375 int is_full_physname_constructor;
376
377 int is_constructor;
378 int is_destructor = is_destructor_name (physname);
379 /* Need a new type prefix. */
380 char *const_prefix = method->is_const ? "C" : "";
381 char *volatile_prefix = method->is_volatile ? "V" : "";
382 char buf[20];
383 int len = (newname == NULL ? 0 : strlen (newname));
384
385 /* Nothing to do if physname already contains a fully mangled v3 abi name
386 or an operator name. */
387 if ((physname[0] == '_' && physname[1] == 'Z')
388 || is_operator_name (field_name))
389 return xstrdup (physname);
390
391 is_full_physname_constructor = is_constructor_name (physname);
392
393 is_constructor = is_full_physname_constructor
394 || (newname && strcmp (field_name, newname) == 0);
395
396 if (!is_destructor)
397 is_destructor = (strncmp (physname, "__dt", 4) == 0);
398
399 if (is_destructor || is_full_physname_constructor)
400 {
401 mangled_name = (char *) xmalloc (strlen (physname) + 1);
402 strcpy (mangled_name, physname);
403 return mangled_name;
404 }
405
406 if (len == 0)
407 {
408 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
409 }
410 else if (physname[0] == 't' || physname[0] == 'Q')
411 {
412 /* The physname for template and qualified methods already includes
413 the class name. */
414 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
415 newname = NULL;
416 len = 0;
417 }
418 else
419 {
420 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
421 }
422 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
423 + strlen (buf) + len + strlen (physname) + 1);
424
425 mangled_name = (char *) xmalloc (mangled_name_len);
426 if (is_constructor)
427 mangled_name[0] = '\0';
428 else
429 strcpy (mangled_name, field_name);
430
431 strcat (mangled_name, buf);
432 /* If the class doesn't have a name, i.e. newname NULL, then we just
433 mangle it using 0 for the length of the class. Thus it gets mangled
434 as something starting with `::' rather than `classname::'. */
435 if (newname != NULL)
436 strcat (mangled_name, newname);
437
438 strcat (mangled_name, physname);
439 return (mangled_name);
440 }
441
442 /* Initialize the cplus_specific structure. 'cplus_specific' should
443 only be allocated for use with cplus symbols. */
444
445 static void
446 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
447 struct objfile *objfile)
448 {
449 /* A language_specific structure should not have been previously
450 initialized. */
451 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
452 gdb_assert (objfile != NULL);
453
454 gsymbol->language_specific.cplus_specific =
455 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
456 }
457
458 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
459 correctly allocated. For C++ symbols a cplus_specific struct is
460 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
461 OBJFILE can be NULL. */
462 void
463 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
464 char *name,
465 struct objfile *objfile)
466 {
467 if (gsymbol->language == language_cplus)
468 {
469 if (gsymbol->language_specific.cplus_specific == NULL)
470 symbol_init_cplus_specific (gsymbol, objfile);
471
472 gsymbol->language_specific.cplus_specific->demangled_name = name;
473 }
474 else
475 gsymbol->language_specific.mangled_lang.demangled_name = name;
476 }
477
478 /* Return the demangled name of GSYMBOL. */
479 char *
480 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
481 {
482 if (gsymbol->language == language_cplus)
483 {
484 if (gsymbol->language_specific.cplus_specific != NULL)
485 return gsymbol->language_specific.cplus_specific->demangled_name;
486 else
487 return NULL;
488 }
489 else
490 return gsymbol->language_specific.mangled_lang.demangled_name;
491 }
492
493 \f
494 /* Initialize the language dependent portion of a symbol
495 depending upon the language for the symbol. */
496 void
497 symbol_set_language (struct general_symbol_info *gsymbol,
498 enum language language)
499 {
500 gsymbol->language = language;
501 if (gsymbol->language == language_d
502 || gsymbol->language == language_java
503 || gsymbol->language == language_objc
504 || gsymbol->language == language_fortran)
505 {
506 symbol_set_demangled_name (gsymbol, NULL, NULL);
507 }
508 else if (gsymbol->language == language_cplus)
509 gsymbol->language_specific.cplus_specific = NULL;
510 else
511 {
512 memset (&gsymbol->language_specific, 0,
513 sizeof (gsymbol->language_specific));
514 }
515 }
516
517 /* Functions to initialize a symbol's mangled name. */
518
519 /* Objects of this type are stored in the demangled name hash table. */
520 struct demangled_name_entry
521 {
522 char *mangled;
523 char demangled[1];
524 };
525
526 /* Hash function for the demangled name hash. */
527 static hashval_t
528 hash_demangled_name_entry (const void *data)
529 {
530 const struct demangled_name_entry *e = data;
531
532 return htab_hash_string (e->mangled);
533 }
534
535 /* Equality function for the demangled name hash. */
536 static int
537 eq_demangled_name_entry (const void *a, const void *b)
538 {
539 const struct demangled_name_entry *da = a;
540 const struct demangled_name_entry *db = b;
541
542 return strcmp (da->mangled, db->mangled) == 0;
543 }
544
545 /* Create the hash table used for demangled names. Each hash entry is
546 a pair of strings; one for the mangled name and one for the demangled
547 name. The entry is hashed via just the mangled name. */
548
549 static void
550 create_demangled_names_hash (struct objfile *objfile)
551 {
552 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
553 The hash table code will round this up to the next prime number.
554 Choosing a much larger table size wastes memory, and saves only about
555 1% in symbol reading. */
556
557 objfile->demangled_names_hash = htab_create_alloc
558 (256, hash_demangled_name_entry, eq_demangled_name_entry,
559 NULL, xcalloc, xfree);
560 }
561
562 /* Try to determine the demangled name for a symbol, based on the
563 language of that symbol. If the language is set to language_auto,
564 it will attempt to find any demangling algorithm that works and
565 then set the language appropriately. The returned name is allocated
566 by the demangler and should be xfree'd. */
567
568 static char *
569 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
570 const char *mangled)
571 {
572 char *demangled = NULL;
573
574 if (gsymbol->language == language_unknown)
575 gsymbol->language = language_auto;
576
577 if (gsymbol->language == language_objc
578 || gsymbol->language == language_auto)
579 {
580 demangled =
581 objc_demangle (mangled, 0);
582 if (demangled != NULL)
583 {
584 gsymbol->language = language_objc;
585 return demangled;
586 }
587 }
588 if (gsymbol->language == language_cplus
589 || gsymbol->language == language_auto)
590 {
591 demangled =
592 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
593 if (demangled != NULL)
594 {
595 gsymbol->language = language_cplus;
596 return demangled;
597 }
598 }
599 if (gsymbol->language == language_java)
600 {
601 demangled =
602 cplus_demangle (mangled,
603 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
604 if (demangled != NULL)
605 {
606 gsymbol->language = language_java;
607 return demangled;
608 }
609 }
610 if (gsymbol->language == language_d
611 || gsymbol->language == language_auto)
612 {
613 demangled = d_demangle(mangled, 0);
614 if (demangled != NULL)
615 {
616 gsymbol->language = language_d;
617 return demangled;
618 }
619 }
620 /* We could support `gsymbol->language == language_fortran' here to provide
621 module namespaces also for inferiors with only minimal symbol table (ELF
622 symbols). Just the mangling standard is not standardized across compilers
623 and there is no DW_AT_producer available for inferiors with only the ELF
624 symbols to check the mangling kind. */
625 return NULL;
626 }
627
628 /* Set both the mangled and demangled (if any) names for GSYMBOL based
629 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
630 objfile's obstack; but if COPY_NAME is 0 and if NAME is
631 NUL-terminated, then this function assumes that NAME is already
632 correctly saved (either permanently or with a lifetime tied to the
633 objfile), and it will not be copied.
634
635 The hash table corresponding to OBJFILE is used, and the memory
636 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
637 so the pointer can be discarded after calling this function. */
638
639 /* We have to be careful when dealing with Java names: when we run
640 into a Java minimal symbol, we don't know it's a Java symbol, so it
641 gets demangled as a C++ name. This is unfortunate, but there's not
642 much we can do about it: but when demangling partial symbols and
643 regular symbols, we'd better not reuse the wrong demangled name.
644 (See PR gdb/1039.) We solve this by putting a distinctive prefix
645 on Java names when storing them in the hash table. */
646
647 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
648 don't mind the Java prefix so much: different languages have
649 different demangling requirements, so it's only natural that we
650 need to keep language data around in our demangling cache. But
651 it's not good that the minimal symbol has the wrong demangled name.
652 Unfortunately, I can't think of any easy solution to that
653 problem. */
654
655 #define JAVA_PREFIX "##JAVA$$"
656 #define JAVA_PREFIX_LEN 8
657
658 void
659 symbol_set_names (struct general_symbol_info *gsymbol,
660 const char *linkage_name, int len, int copy_name,
661 struct objfile *objfile)
662 {
663 struct demangled_name_entry **slot;
664 /* A 0-terminated copy of the linkage name. */
665 const char *linkage_name_copy;
666 /* A copy of the linkage name that might have a special Java prefix
667 added to it, for use when looking names up in the hash table. */
668 const char *lookup_name;
669 /* The length of lookup_name. */
670 int lookup_len;
671 struct demangled_name_entry entry;
672
673 if (gsymbol->language == language_ada)
674 {
675 /* In Ada, we do the symbol lookups using the mangled name, so
676 we can save some space by not storing the demangled name.
677
678 As a side note, we have also observed some overlap between
679 the C++ mangling and Ada mangling, similarly to what has
680 been observed with Java. Because we don't store the demangled
681 name with the symbol, we don't need to use the same trick
682 as Java. */
683 if (!copy_name)
684 gsymbol->name = (char *) linkage_name;
685 else
686 {
687 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
688 memcpy (gsymbol->name, linkage_name, len);
689 gsymbol->name[len] = '\0';
690 }
691 symbol_set_demangled_name (gsymbol, NULL, NULL);
692
693 return;
694 }
695
696 if (objfile->demangled_names_hash == NULL)
697 create_demangled_names_hash (objfile);
698
699 /* The stabs reader generally provides names that are not
700 NUL-terminated; most of the other readers don't do this, so we
701 can just use the given copy, unless we're in the Java case. */
702 if (gsymbol->language == language_java)
703 {
704 char *alloc_name;
705
706 lookup_len = len + JAVA_PREFIX_LEN;
707 alloc_name = alloca (lookup_len + 1);
708 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
709 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
710 alloc_name[lookup_len] = '\0';
711
712 lookup_name = alloc_name;
713 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
714 }
715 else if (linkage_name[len] != '\0')
716 {
717 char *alloc_name;
718
719 lookup_len = len;
720 alloc_name = alloca (lookup_len + 1);
721 memcpy (alloc_name, linkage_name, len);
722 alloc_name[lookup_len] = '\0';
723
724 lookup_name = alloc_name;
725 linkage_name_copy = alloc_name;
726 }
727 else
728 {
729 lookup_len = len;
730 lookup_name = linkage_name;
731 linkage_name_copy = linkage_name;
732 }
733
734 entry.mangled = (char *) lookup_name;
735 slot = ((struct demangled_name_entry **)
736 htab_find_slot (objfile->demangled_names_hash,
737 &entry, INSERT));
738
739 /* If this name is not in the hash table, add it. */
740 if (*slot == NULL)
741 {
742 char *demangled_name = symbol_find_demangled_name (gsymbol,
743 linkage_name_copy);
744 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
745
746 /* Suppose we have demangled_name==NULL, copy_name==0, and
747 lookup_name==linkage_name. In this case, we already have the
748 mangled name saved, and we don't have a demangled name. So,
749 you might think we could save a little space by not recording
750 this in the hash table at all.
751
752 It turns out that it is actually important to still save such
753 an entry in the hash table, because storing this name gives
754 us better bcache hit rates for partial symbols. */
755 if (!copy_name && lookup_name == linkage_name)
756 {
757 *slot = obstack_alloc (&objfile->objfile_obstack,
758 offsetof (struct demangled_name_entry,
759 demangled)
760 + demangled_len + 1);
761 (*slot)->mangled = (char *) lookup_name;
762 }
763 else
764 {
765 /* If we must copy the mangled name, put it directly after
766 the demangled name so we can have a single
767 allocation. */
768 *slot = obstack_alloc (&objfile->objfile_obstack,
769 offsetof (struct demangled_name_entry,
770 demangled)
771 + lookup_len + demangled_len + 2);
772 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
773 strcpy ((*slot)->mangled, lookup_name);
774 }
775
776 if (demangled_name != NULL)
777 {
778 strcpy ((*slot)->demangled, demangled_name);
779 xfree (demangled_name);
780 }
781 else
782 (*slot)->demangled[0] = '\0';
783 }
784
785 gsymbol->name = (*slot)->mangled + lookup_len - len;
786 if ((*slot)->demangled[0] != '\0')
787 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
788 else
789 symbol_set_demangled_name (gsymbol, NULL, objfile);
790 }
791
792 /* Return the source code name of a symbol. In languages where
793 demangling is necessary, this is the demangled name. */
794
795 char *
796 symbol_natural_name (const struct general_symbol_info *gsymbol)
797 {
798 switch (gsymbol->language)
799 {
800 case language_cplus:
801 case language_d:
802 case language_java:
803 case language_objc:
804 case language_fortran:
805 if (symbol_get_demangled_name (gsymbol) != NULL)
806 return symbol_get_demangled_name (gsymbol);
807 break;
808 case language_ada:
809 if (symbol_get_demangled_name (gsymbol) != NULL)
810 return symbol_get_demangled_name (gsymbol);
811 else
812 return ada_decode_symbol (gsymbol);
813 break;
814 default:
815 break;
816 }
817 return gsymbol->name;
818 }
819
820 /* Return the demangled name for a symbol based on the language for
821 that symbol. If no demangled name exists, return NULL. */
822 char *
823 symbol_demangled_name (const struct general_symbol_info *gsymbol)
824 {
825 switch (gsymbol->language)
826 {
827 case language_cplus:
828 case language_d:
829 case language_java:
830 case language_objc:
831 case language_fortran:
832 if (symbol_get_demangled_name (gsymbol) != NULL)
833 return symbol_get_demangled_name (gsymbol);
834 break;
835 case language_ada:
836 if (symbol_get_demangled_name (gsymbol) != NULL)
837 return symbol_get_demangled_name (gsymbol);
838 else
839 return ada_decode_symbol (gsymbol);
840 break;
841 default:
842 break;
843 }
844 return NULL;
845 }
846
847 /* Return the search name of a symbol---generally the demangled or
848 linkage name of the symbol, depending on how it will be searched for.
849 If there is no distinct demangled name, then returns the same value
850 (same pointer) as SYMBOL_LINKAGE_NAME. */
851 char *
852 symbol_search_name (const struct general_symbol_info *gsymbol)
853 {
854 if (gsymbol->language == language_ada)
855 return gsymbol->name;
856 else
857 return symbol_natural_name (gsymbol);
858 }
859
860 /* Initialize the structure fields to zero values. */
861 void
862 init_sal (struct symtab_and_line *sal)
863 {
864 sal->pspace = NULL;
865 sal->symtab = 0;
866 sal->section = 0;
867 sal->line = 0;
868 sal->pc = 0;
869 sal->end = 0;
870 sal->explicit_pc = 0;
871 sal->explicit_line = 0;
872 }
873 \f
874
875 /* Return 1 if the two sections are the same, or if they could
876 plausibly be copies of each other, one in an original object
877 file and another in a separated debug file. */
878
879 int
880 matching_obj_sections (struct obj_section *obj_first,
881 struct obj_section *obj_second)
882 {
883 asection *first = obj_first? obj_first->the_bfd_section : NULL;
884 asection *second = obj_second? obj_second->the_bfd_section : NULL;
885 struct objfile *obj;
886
887 /* If they're the same section, then they match. */
888 if (first == second)
889 return 1;
890
891 /* If either is NULL, give up. */
892 if (first == NULL || second == NULL)
893 return 0;
894
895 /* This doesn't apply to absolute symbols. */
896 if (first->owner == NULL || second->owner == NULL)
897 return 0;
898
899 /* If they're in the same object file, they must be different sections. */
900 if (first->owner == second->owner)
901 return 0;
902
903 /* Check whether the two sections are potentially corresponding. They must
904 have the same size, address, and name. We can't compare section indexes,
905 which would be more reliable, because some sections may have been
906 stripped. */
907 if (bfd_get_section_size (first) != bfd_get_section_size (second))
908 return 0;
909
910 /* In-memory addresses may start at a different offset, relativize them. */
911 if (bfd_get_section_vma (first->owner, first)
912 - bfd_get_start_address (first->owner)
913 != bfd_get_section_vma (second->owner, second)
914 - bfd_get_start_address (second->owner))
915 return 0;
916
917 if (bfd_get_section_name (first->owner, first) == NULL
918 || bfd_get_section_name (second->owner, second) == NULL
919 || strcmp (bfd_get_section_name (first->owner, first),
920 bfd_get_section_name (second->owner, second)) != 0)
921 return 0;
922
923 /* Otherwise check that they are in corresponding objfiles. */
924
925 ALL_OBJFILES (obj)
926 if (obj->obfd == first->owner)
927 break;
928 gdb_assert (obj != NULL);
929
930 if (obj->separate_debug_objfile != NULL
931 && obj->separate_debug_objfile->obfd == second->owner)
932 return 1;
933 if (obj->separate_debug_objfile_backlink != NULL
934 && obj->separate_debug_objfile_backlink->obfd == second->owner)
935 return 1;
936
937 return 0;
938 }
939
940 struct symtab *
941 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
942 {
943 struct objfile *objfile;
944 struct minimal_symbol *msymbol;
945
946 /* If we know that this is not a text address, return failure. This is
947 necessary because we loop based on texthigh and textlow, which do
948 not include the data ranges. */
949 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
950 if (msymbol
951 && (MSYMBOL_TYPE (msymbol) == mst_data
952 || MSYMBOL_TYPE (msymbol) == mst_bss
953 || MSYMBOL_TYPE (msymbol) == mst_abs
954 || MSYMBOL_TYPE (msymbol) == mst_file_data
955 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
956 return NULL;
957
958 ALL_OBJFILES (objfile)
959 {
960 struct symtab *result = NULL;
961
962 if (objfile->sf)
963 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
964 pc, section, 0);
965 if (result)
966 return result;
967 }
968
969 return NULL;
970 }
971 \f
972 /* Debug symbols usually don't have section information. We need to dig that
973 out of the minimal symbols and stash that in the debug symbol. */
974
975 void
976 fixup_section (struct general_symbol_info *ginfo,
977 CORE_ADDR addr, struct objfile *objfile)
978 {
979 struct minimal_symbol *msym;
980
981 /* First, check whether a minimal symbol with the same name exists
982 and points to the same address. The address check is required
983 e.g. on PowerPC64, where the minimal symbol for a function will
984 point to the function descriptor, while the debug symbol will
985 point to the actual function code. */
986 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
987 if (msym)
988 {
989 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
990 ginfo->section = SYMBOL_SECTION (msym);
991 }
992 else
993 {
994 /* Static, function-local variables do appear in the linker
995 (minimal) symbols, but are frequently given names that won't
996 be found via lookup_minimal_symbol(). E.g., it has been
997 observed in frv-uclinux (ELF) executables that a static,
998 function-local variable named "foo" might appear in the
999 linker symbols as "foo.6" or "foo.3". Thus, there is no
1000 point in attempting to extend the lookup-by-name mechanism to
1001 handle this case due to the fact that there can be multiple
1002 names.
1003
1004 So, instead, search the section table when lookup by name has
1005 failed. The ``addr'' and ``endaddr'' fields may have already
1006 been relocated. If so, the relocation offset (i.e. the
1007 ANOFFSET value) needs to be subtracted from these values when
1008 performing the comparison. We unconditionally subtract it,
1009 because, when no relocation has been performed, the ANOFFSET
1010 value will simply be zero.
1011
1012 The address of the symbol whose section we're fixing up HAS
1013 NOT BEEN adjusted (relocated) yet. It can't have been since
1014 the section isn't yet known and knowing the section is
1015 necessary in order to add the correct relocation value. In
1016 other words, we wouldn't even be in this function (attempting
1017 to compute the section) if it were already known.
1018
1019 Note that it is possible to search the minimal symbols
1020 (subtracting the relocation value if necessary) to find the
1021 matching minimal symbol, but this is overkill and much less
1022 efficient. It is not necessary to find the matching minimal
1023 symbol, only its section.
1024
1025 Note that this technique (of doing a section table search)
1026 can fail when unrelocated section addresses overlap. For
1027 this reason, we still attempt a lookup by name prior to doing
1028 a search of the section table. */
1029
1030 struct obj_section *s;
1031
1032 ALL_OBJFILE_OSECTIONS (objfile, s)
1033 {
1034 int idx = s->the_bfd_section->index;
1035 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1036
1037 if (obj_section_addr (s) - offset <= addr
1038 && addr < obj_section_endaddr (s) - offset)
1039 {
1040 ginfo->obj_section = s;
1041 ginfo->section = idx;
1042 return;
1043 }
1044 }
1045 }
1046 }
1047
1048 struct symbol *
1049 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1050 {
1051 CORE_ADDR addr;
1052
1053 if (!sym)
1054 return NULL;
1055
1056 if (SYMBOL_OBJ_SECTION (sym))
1057 return sym;
1058
1059 /* We either have an OBJFILE, or we can get at it from the sym's
1060 symtab. Anything else is a bug. */
1061 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1062
1063 if (objfile == NULL)
1064 objfile = SYMBOL_SYMTAB (sym)->objfile;
1065
1066 /* We should have an objfile by now. */
1067 gdb_assert (objfile);
1068
1069 switch (SYMBOL_CLASS (sym))
1070 {
1071 case LOC_STATIC:
1072 case LOC_LABEL:
1073 addr = SYMBOL_VALUE_ADDRESS (sym);
1074 break;
1075 case LOC_BLOCK:
1076 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1077 break;
1078
1079 default:
1080 /* Nothing else will be listed in the minsyms -- no use looking
1081 it up. */
1082 return sym;
1083 }
1084
1085 fixup_section (&sym->ginfo, addr, objfile);
1086
1087 return sym;
1088 }
1089
1090 /* Compute the demangled form of NAME as used by the various symbol
1091 lookup functions. The result is stored in *RESULT_NAME. Returns a
1092 cleanup which can be used to clean up the result.
1093
1094 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1095 Normally, Ada symbol lookups are performed using the encoded name
1096 rather than the demangled name, and so it might seem to make sense
1097 for this function to return an encoded version of NAME.
1098 Unfortunately, we cannot do this, because this function is used in
1099 circumstances where it is not appropriate to try to encode NAME.
1100 For instance, when displaying the frame info, we demangle the name
1101 of each parameter, and then perform a symbol lookup inside our
1102 function using that demangled name. In Ada, certain functions
1103 have internally-generated parameters whose name contain uppercase
1104 characters. Encoding those name would result in those uppercase
1105 characters to become lowercase, and thus cause the symbol lookup
1106 to fail. */
1107
1108 struct cleanup *
1109 demangle_for_lookup (const char *name, enum language lang,
1110 const char **result_name)
1111 {
1112 char *demangled_name = NULL;
1113 const char *modified_name = NULL;
1114 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1115
1116 modified_name = name;
1117
1118 /* If we are using C++, D, or Java, demangle the name before doing a
1119 lookup, so we can always binary search. */
1120 if (lang == language_cplus)
1121 {
1122 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1123 if (demangled_name)
1124 {
1125 modified_name = demangled_name;
1126 make_cleanup (xfree, demangled_name);
1127 }
1128 else
1129 {
1130 /* If we were given a non-mangled name, canonicalize it
1131 according to the language (so far only for C++). */
1132 demangled_name = cp_canonicalize_string (name);
1133 if (demangled_name)
1134 {
1135 modified_name = demangled_name;
1136 make_cleanup (xfree, demangled_name);
1137 }
1138 }
1139 }
1140 else if (lang == language_java)
1141 {
1142 demangled_name = cplus_demangle (name,
1143 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1144 if (demangled_name)
1145 {
1146 modified_name = demangled_name;
1147 make_cleanup (xfree, demangled_name);
1148 }
1149 }
1150 else if (lang == language_d)
1151 {
1152 demangled_name = d_demangle (name, 0);
1153 if (demangled_name)
1154 {
1155 modified_name = demangled_name;
1156 make_cleanup (xfree, demangled_name);
1157 }
1158 }
1159
1160 *result_name = modified_name;
1161 return cleanup;
1162 }
1163
1164 /* Find the definition for a specified symbol name NAME
1165 in domain DOMAIN, visible from lexical block BLOCK.
1166 Returns the struct symbol pointer, or zero if no symbol is found.
1167 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1168 NAME is a field of the current implied argument `this'. If so set
1169 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1170 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1171 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1172
1173 /* This function has a bunch of loops in it and it would seem to be
1174 attractive to put in some QUIT's (though I'm not really sure
1175 whether it can run long enough to be really important). But there
1176 are a few calls for which it would appear to be bad news to quit
1177 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1178 that there is C++ code below which can error(), but that probably
1179 doesn't affect these calls since they are looking for a known
1180 variable and thus can probably assume it will never hit the C++
1181 code). */
1182
1183 struct symbol *
1184 lookup_symbol_in_language (const char *name, const struct block *block,
1185 const domain_enum domain, enum language lang,
1186 int *is_a_field_of_this)
1187 {
1188 const char *modified_name;
1189 struct symbol *returnval;
1190 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1191
1192 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1193 is_a_field_of_this);
1194 do_cleanups (cleanup);
1195
1196 return returnval;
1197 }
1198
1199 /* Behave like lookup_symbol_in_language, but performed with the
1200 current language. */
1201
1202 struct symbol *
1203 lookup_symbol (const char *name, const struct block *block,
1204 domain_enum domain, int *is_a_field_of_this)
1205 {
1206 return lookup_symbol_in_language (name, block, domain,
1207 current_language->la_language,
1208 is_a_field_of_this);
1209 }
1210
1211 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1212 found, or NULL if not found. */
1213
1214 struct symbol *
1215 lookup_language_this (const struct language_defn *lang,
1216 const struct block *block)
1217 {
1218 if (lang->la_name_of_this == NULL || block == NULL)
1219 return NULL;
1220
1221 while (block)
1222 {
1223 struct symbol *sym;
1224
1225 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1226 if (sym != NULL)
1227 return sym;
1228 if (BLOCK_FUNCTION (block))
1229 break;
1230 block = BLOCK_SUPERBLOCK (block);
1231 }
1232
1233 return NULL;
1234 }
1235
1236 /* Behave like lookup_symbol except that NAME is the natural name
1237 of the symbol that we're looking for and, if LINKAGE_NAME is
1238 non-NULL, ensure that the symbol's linkage name matches as
1239 well. */
1240
1241 static struct symbol *
1242 lookup_symbol_aux (const char *name, const struct block *block,
1243 const domain_enum domain, enum language language,
1244 int *is_a_field_of_this)
1245 {
1246 struct symbol *sym;
1247 const struct language_defn *langdef;
1248
1249 /* Make sure we do something sensible with is_a_field_of_this, since
1250 the callers that set this parameter to some non-null value will
1251 certainly use it later and expect it to be either 0 or 1.
1252 If we don't set it, the contents of is_a_field_of_this are
1253 undefined. */
1254 if (is_a_field_of_this != NULL)
1255 *is_a_field_of_this = 0;
1256
1257 /* Search specified block and its superiors. Don't search
1258 STATIC_BLOCK or GLOBAL_BLOCK. */
1259
1260 sym = lookup_symbol_aux_local (name, block, domain, language);
1261 if (sym != NULL)
1262 return sym;
1263
1264 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1265 check to see if NAME is a field of `this'. */
1266
1267 langdef = language_def (language);
1268
1269 if (is_a_field_of_this != NULL)
1270 {
1271 struct symbol *sym = lookup_language_this (langdef, block);
1272
1273 if (sym)
1274 {
1275 struct type *t = sym->type;
1276
1277 /* I'm not really sure that type of this can ever
1278 be typedefed; just be safe. */
1279 CHECK_TYPEDEF (t);
1280 if (TYPE_CODE (t) == TYPE_CODE_PTR
1281 || TYPE_CODE (t) == TYPE_CODE_REF)
1282 t = TYPE_TARGET_TYPE (t);
1283
1284 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1285 && TYPE_CODE (t) != TYPE_CODE_UNION)
1286 error (_("Internal error: `%s' is not an aggregate"),
1287 langdef->la_name_of_this);
1288
1289 if (check_field (t, name))
1290 {
1291 *is_a_field_of_this = 1;
1292 return NULL;
1293 }
1294 }
1295 }
1296
1297 /* Now do whatever is appropriate for LANGUAGE to look
1298 up static and global variables. */
1299
1300 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1301 if (sym != NULL)
1302 return sym;
1303
1304 /* Now search all static file-level symbols. Not strictly correct,
1305 but more useful than an error. */
1306
1307 return lookup_static_symbol_aux (name, domain);
1308 }
1309
1310 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1311 first, then check the psymtabs. If a psymtab indicates the existence of the
1312 desired name as a file-level static, then do psymtab-to-symtab conversion on
1313 the fly and return the found symbol. */
1314
1315 struct symbol *
1316 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1317 {
1318 struct objfile *objfile;
1319 struct symbol *sym;
1320
1321 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1322 if (sym != NULL)
1323 return sym;
1324
1325 ALL_OBJFILES (objfile)
1326 {
1327 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1328 if (sym != NULL)
1329 return sym;
1330 }
1331
1332 return NULL;
1333 }
1334
1335 /* Check to see if the symbol is defined in BLOCK or its superiors.
1336 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1337
1338 static struct symbol *
1339 lookup_symbol_aux_local (const char *name, const struct block *block,
1340 const domain_enum domain,
1341 enum language language)
1342 {
1343 struct symbol *sym;
1344 const struct block *static_block = block_static_block (block);
1345 const char *scope = block_scope (block);
1346
1347 /* Check if either no block is specified or it's a global block. */
1348
1349 if (static_block == NULL)
1350 return NULL;
1351
1352 while (block != static_block)
1353 {
1354 sym = lookup_symbol_aux_block (name, block, domain);
1355 if (sym != NULL)
1356 return sym;
1357
1358 if (language == language_cplus || language == language_fortran)
1359 {
1360 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1361 domain);
1362 if (sym != NULL)
1363 return sym;
1364 }
1365
1366 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1367 break;
1368 block = BLOCK_SUPERBLOCK (block);
1369 }
1370
1371 /* We've reached the edge of the function without finding a result. */
1372
1373 return NULL;
1374 }
1375
1376 /* Look up OBJFILE to BLOCK. */
1377
1378 struct objfile *
1379 lookup_objfile_from_block (const struct block *block)
1380 {
1381 struct objfile *obj;
1382 struct symtab *s;
1383
1384 if (block == NULL)
1385 return NULL;
1386
1387 block = block_global_block (block);
1388 /* Go through SYMTABS. */
1389 ALL_SYMTABS (obj, s)
1390 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1391 {
1392 if (obj->separate_debug_objfile_backlink)
1393 obj = obj->separate_debug_objfile_backlink;
1394
1395 return obj;
1396 }
1397
1398 return NULL;
1399 }
1400
1401 /* Look up a symbol in a block; if found, fixup the symbol, and set
1402 block_found appropriately. */
1403
1404 struct symbol *
1405 lookup_symbol_aux_block (const char *name, const struct block *block,
1406 const domain_enum domain)
1407 {
1408 struct symbol *sym;
1409
1410 sym = lookup_block_symbol (block, name, domain);
1411 if (sym)
1412 {
1413 block_found = block;
1414 return fixup_symbol_section (sym, NULL);
1415 }
1416
1417 return NULL;
1418 }
1419
1420 /* Check all global symbols in OBJFILE in symtabs and
1421 psymtabs. */
1422
1423 struct symbol *
1424 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1425 const char *name,
1426 const domain_enum domain)
1427 {
1428 const struct objfile *objfile;
1429 struct symbol *sym;
1430 struct blockvector *bv;
1431 const struct block *block;
1432 struct symtab *s;
1433
1434 for (objfile = main_objfile;
1435 objfile;
1436 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1437 {
1438 /* Go through symtabs. */
1439 ALL_OBJFILE_SYMTABS (objfile, s)
1440 {
1441 bv = BLOCKVECTOR (s);
1442 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1443 sym = lookup_block_symbol (block, name, domain);
1444 if (sym)
1445 {
1446 block_found = block;
1447 return fixup_symbol_section (sym, (struct objfile *)objfile);
1448 }
1449 }
1450
1451 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1452 name, domain);
1453 if (sym)
1454 return sym;
1455 }
1456
1457 return NULL;
1458 }
1459
1460 /* Check to see if the symbol is defined in one of the symtabs.
1461 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1462 depending on whether or not we want to search global symbols or
1463 static symbols. */
1464
1465 static struct symbol *
1466 lookup_symbol_aux_symtabs (int block_index, const char *name,
1467 const domain_enum domain)
1468 {
1469 struct symbol *sym;
1470 struct objfile *objfile;
1471 struct blockvector *bv;
1472 const struct block *block;
1473 struct symtab *s;
1474
1475 ALL_OBJFILES (objfile)
1476 {
1477 if (objfile->sf)
1478 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1479 block_index,
1480 name, domain);
1481
1482 ALL_OBJFILE_SYMTABS (objfile, s)
1483 if (s->primary)
1484 {
1485 bv = BLOCKVECTOR (s);
1486 block = BLOCKVECTOR_BLOCK (bv, block_index);
1487 sym = lookup_block_symbol (block, name, domain);
1488 if (sym)
1489 {
1490 block_found = block;
1491 return fixup_symbol_section (sym, objfile);
1492 }
1493 }
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* A helper function for lookup_symbol_aux that interfaces with the
1500 "quick" symbol table functions. */
1501
1502 static struct symbol *
1503 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1504 const char *name, const domain_enum domain)
1505 {
1506 struct symtab *symtab;
1507 struct blockvector *bv;
1508 const struct block *block;
1509 struct symbol *sym;
1510
1511 if (!objfile->sf)
1512 return NULL;
1513 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1514 if (!symtab)
1515 return NULL;
1516
1517 bv = BLOCKVECTOR (symtab);
1518 block = BLOCKVECTOR_BLOCK (bv, kind);
1519 sym = lookup_block_symbol (block, name, domain);
1520 if (!sym)
1521 {
1522 /* This shouldn't be necessary, but as a last resort try
1523 looking in the statics even though the psymtab claimed
1524 the symbol was global, or vice-versa. It's possible
1525 that the psymtab gets it wrong in some cases. */
1526
1527 /* FIXME: carlton/2002-09-30: Should we really do that?
1528 If that happens, isn't it likely to be a GDB error, in
1529 which case we should fix the GDB error rather than
1530 silently dealing with it here? So I'd vote for
1531 removing the check for the symbol in the other
1532 block. */
1533 block = BLOCKVECTOR_BLOCK (bv,
1534 kind == GLOBAL_BLOCK ?
1535 STATIC_BLOCK : GLOBAL_BLOCK);
1536 sym = lookup_block_symbol (block, name, domain);
1537 if (!sym)
1538 error (_("\
1539 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1540 %s may be an inlined function, or may be a template function\n\
1541 (if a template, try specifying an instantiation: %s<type>)."),
1542 kind == GLOBAL_BLOCK ? "global" : "static",
1543 name, symtab->filename, name, name);
1544 }
1545 return fixup_symbol_section (sym, objfile);
1546 }
1547
1548 /* A default version of lookup_symbol_nonlocal for use by languages
1549 that can't think of anything better to do. This implements the C
1550 lookup rules. */
1551
1552 struct symbol *
1553 basic_lookup_symbol_nonlocal (const char *name,
1554 const struct block *block,
1555 const domain_enum domain)
1556 {
1557 struct symbol *sym;
1558
1559 /* NOTE: carlton/2003-05-19: The comments below were written when
1560 this (or what turned into this) was part of lookup_symbol_aux;
1561 I'm much less worried about these questions now, since these
1562 decisions have turned out well, but I leave these comments here
1563 for posterity. */
1564
1565 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1566 not it would be appropriate to search the current global block
1567 here as well. (That's what this code used to do before the
1568 is_a_field_of_this check was moved up.) On the one hand, it's
1569 redundant with the lookup_symbol_aux_symtabs search that happens
1570 next. On the other hand, if decode_line_1 is passed an argument
1571 like filename:var, then the user presumably wants 'var' to be
1572 searched for in filename. On the third hand, there shouldn't be
1573 multiple global variables all of which are named 'var', and it's
1574 not like decode_line_1 has ever restricted its search to only
1575 global variables in a single filename. All in all, only
1576 searching the static block here seems best: it's correct and it's
1577 cleanest. */
1578
1579 /* NOTE: carlton/2002-12-05: There's also a possible performance
1580 issue here: if you usually search for global symbols in the
1581 current file, then it would be slightly better to search the
1582 current global block before searching all the symtabs. But there
1583 are other factors that have a much greater effect on performance
1584 than that one, so I don't think we should worry about that for
1585 now. */
1586
1587 sym = lookup_symbol_static (name, block, domain);
1588 if (sym != NULL)
1589 return sym;
1590
1591 return lookup_symbol_global (name, block, domain);
1592 }
1593
1594 /* Lookup a symbol in the static block associated to BLOCK, if there
1595 is one; do nothing if BLOCK is NULL or a global block. */
1596
1597 struct symbol *
1598 lookup_symbol_static (const char *name,
1599 const struct block *block,
1600 const domain_enum domain)
1601 {
1602 const struct block *static_block = block_static_block (block);
1603
1604 if (static_block != NULL)
1605 return lookup_symbol_aux_block (name, static_block, domain);
1606 else
1607 return NULL;
1608 }
1609
1610 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1611 necessary). */
1612
1613 struct symbol *
1614 lookup_symbol_global (const char *name,
1615 const struct block *block,
1616 const domain_enum domain)
1617 {
1618 struct symbol *sym = NULL;
1619 struct objfile *objfile = NULL;
1620
1621 /* Call library-specific lookup procedure. */
1622 objfile = lookup_objfile_from_block (block);
1623 if (objfile != NULL)
1624 sym = solib_global_lookup (objfile, name, domain);
1625 if (sym != NULL)
1626 return sym;
1627
1628 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1629 if (sym != NULL)
1630 return sym;
1631
1632 ALL_OBJFILES (objfile)
1633 {
1634 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1635 if (sym)
1636 return sym;
1637 }
1638
1639 return NULL;
1640 }
1641
1642 int
1643 symbol_matches_domain (enum language symbol_language,
1644 domain_enum symbol_domain,
1645 domain_enum domain)
1646 {
1647 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1648 A Java class declaration also defines a typedef for the class.
1649 Similarly, any Ada type declaration implicitly defines a typedef. */
1650 if (symbol_language == language_cplus
1651 || symbol_language == language_d
1652 || symbol_language == language_java
1653 || symbol_language == language_ada)
1654 {
1655 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1656 && symbol_domain == STRUCT_DOMAIN)
1657 return 1;
1658 }
1659 /* For all other languages, strict match is required. */
1660 return (symbol_domain == domain);
1661 }
1662
1663 /* Look up a type named NAME in the struct_domain. The type returned
1664 must not be opaque -- i.e., must have at least one field
1665 defined. */
1666
1667 struct type *
1668 lookup_transparent_type (const char *name)
1669 {
1670 return current_language->la_lookup_transparent_type (name);
1671 }
1672
1673 /* A helper for basic_lookup_transparent_type that interfaces with the
1674 "quick" symbol table functions. */
1675
1676 static struct type *
1677 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1678 const char *name)
1679 {
1680 struct symtab *symtab;
1681 struct blockvector *bv;
1682 struct block *block;
1683 struct symbol *sym;
1684
1685 if (!objfile->sf)
1686 return NULL;
1687 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1688 if (!symtab)
1689 return NULL;
1690
1691 bv = BLOCKVECTOR (symtab);
1692 block = BLOCKVECTOR_BLOCK (bv, kind);
1693 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1694 if (!sym)
1695 {
1696 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1697
1698 /* This shouldn't be necessary, but as a last resort
1699 * try looking in the 'other kind' even though the psymtab
1700 * claimed the symbol was one thing. It's possible that
1701 * the psymtab gets it wrong in some cases.
1702 */
1703 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1704 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1705 if (!sym)
1706 /* FIXME; error is wrong in one case. */
1707 error (_("\
1708 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1709 %s may be an inlined function, or may be a template function\n\
1710 (if a template, try specifying an instantiation: %s<type>)."),
1711 name, symtab->filename, name, name);
1712 }
1713 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1714 return SYMBOL_TYPE (sym);
1715
1716 return NULL;
1717 }
1718
1719 /* The standard implementation of lookup_transparent_type. This code
1720 was modeled on lookup_symbol -- the parts not relevant to looking
1721 up types were just left out. In particular it's assumed here that
1722 types are available in struct_domain and only at file-static or
1723 global blocks. */
1724
1725 struct type *
1726 basic_lookup_transparent_type (const char *name)
1727 {
1728 struct symbol *sym;
1729 struct symtab *s = NULL;
1730 struct blockvector *bv;
1731 struct objfile *objfile;
1732 struct block *block;
1733 struct type *t;
1734
1735 /* Now search all the global symbols. Do the symtab's first, then
1736 check the psymtab's. If a psymtab indicates the existence
1737 of the desired name as a global, then do psymtab-to-symtab
1738 conversion on the fly and return the found symbol. */
1739
1740 ALL_OBJFILES (objfile)
1741 {
1742 if (objfile->sf)
1743 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1744 GLOBAL_BLOCK,
1745 name, STRUCT_DOMAIN);
1746
1747 ALL_OBJFILE_SYMTABS (objfile, s)
1748 if (s->primary)
1749 {
1750 bv = BLOCKVECTOR (s);
1751 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1752 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1753 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1754 {
1755 return SYMBOL_TYPE (sym);
1756 }
1757 }
1758 }
1759
1760 ALL_OBJFILES (objfile)
1761 {
1762 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1763 if (t)
1764 return t;
1765 }
1766
1767 /* Now search the static file-level symbols.
1768 Not strictly correct, but more useful than an error.
1769 Do the symtab's first, then
1770 check the psymtab's. If a psymtab indicates the existence
1771 of the desired name as a file-level static, then do psymtab-to-symtab
1772 conversion on the fly and return the found symbol. */
1773
1774 ALL_OBJFILES (objfile)
1775 {
1776 if (objfile->sf)
1777 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1778 name, STRUCT_DOMAIN);
1779
1780 ALL_OBJFILE_SYMTABS (objfile, s)
1781 {
1782 bv = BLOCKVECTOR (s);
1783 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1784 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1785 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1786 {
1787 return SYMBOL_TYPE (sym);
1788 }
1789 }
1790 }
1791
1792 ALL_OBJFILES (objfile)
1793 {
1794 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1795 if (t)
1796 return t;
1797 }
1798
1799 return (struct type *) 0;
1800 }
1801
1802
1803 /* Find the name of the file containing main(). */
1804 /* FIXME: What about languages without main() or specially linked
1805 executables that have no main() ? */
1806
1807 const char *
1808 find_main_filename (void)
1809 {
1810 struct objfile *objfile;
1811 char *name = main_name ();
1812
1813 ALL_OBJFILES (objfile)
1814 {
1815 const char *result;
1816
1817 if (!objfile->sf)
1818 continue;
1819 result = objfile->sf->qf->find_symbol_file (objfile, name);
1820 if (result)
1821 return result;
1822 }
1823 return (NULL);
1824 }
1825
1826 /* Search BLOCK for symbol NAME in DOMAIN.
1827
1828 Note that if NAME is the demangled form of a C++ symbol, we will fail
1829 to find a match during the binary search of the non-encoded names, but
1830 for now we don't worry about the slight inefficiency of looking for
1831 a match we'll never find, since it will go pretty quick. Once the
1832 binary search terminates, we drop through and do a straight linear
1833 search on the symbols. Each symbol which is marked as being a ObjC/C++
1834 symbol (language_cplus or language_objc set) has both the encoded and
1835 non-encoded names tested for a match. */
1836
1837 struct symbol *
1838 lookup_block_symbol (const struct block *block, const char *name,
1839 const domain_enum domain)
1840 {
1841 struct dict_iterator iter;
1842 struct symbol *sym;
1843
1844 if (!BLOCK_FUNCTION (block))
1845 {
1846 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1847 sym != NULL;
1848 sym = dict_iter_name_next (name, &iter))
1849 {
1850 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1851 SYMBOL_DOMAIN (sym), domain))
1852 return sym;
1853 }
1854 return NULL;
1855 }
1856 else
1857 {
1858 /* Note that parameter symbols do not always show up last in the
1859 list; this loop makes sure to take anything else other than
1860 parameter symbols first; it only uses parameter symbols as a
1861 last resort. Note that this only takes up extra computation
1862 time on a match. */
1863
1864 struct symbol *sym_found = NULL;
1865
1866 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1867 sym != NULL;
1868 sym = dict_iter_name_next (name, &iter))
1869 {
1870 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1871 SYMBOL_DOMAIN (sym), domain))
1872 {
1873 sym_found = sym;
1874 if (!SYMBOL_IS_ARGUMENT (sym))
1875 {
1876 break;
1877 }
1878 }
1879 }
1880 return (sym_found); /* Will be NULL if not found. */
1881 }
1882 }
1883
1884 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
1885 BLOCK.
1886
1887 For each symbol that matches, CALLBACK is called. The symbol and
1888 DATA are passed to the callback.
1889
1890 If CALLBACK returns zero, the iteration ends. Otherwise, the
1891 search continues. This function iterates upward through blocks.
1892 When the outermost block has been finished, the function
1893 returns. */
1894
1895 void
1896 iterate_over_symbols (const struct block *block, const char *name,
1897 const domain_enum domain,
1898 int (*callback) (struct symbol *, void *),
1899 void *data)
1900 {
1901 while (block)
1902 {
1903 struct dict_iterator iter;
1904 struct symbol *sym;
1905
1906 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1907 sym != NULL;
1908 sym = dict_iter_name_next (name, &iter))
1909 {
1910 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1911 SYMBOL_DOMAIN (sym), domain))
1912 {
1913 if (!callback (sym, data))
1914 return;
1915 }
1916 }
1917
1918 block = BLOCK_SUPERBLOCK (block);
1919 }
1920 }
1921
1922 /* Find the symtab associated with PC and SECTION. Look through the
1923 psymtabs and read in another symtab if necessary. */
1924
1925 struct symtab *
1926 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1927 {
1928 struct block *b;
1929 struct blockvector *bv;
1930 struct symtab *s = NULL;
1931 struct symtab *best_s = NULL;
1932 struct objfile *objfile;
1933 struct program_space *pspace;
1934 CORE_ADDR distance = 0;
1935 struct minimal_symbol *msymbol;
1936
1937 pspace = current_program_space;
1938
1939 /* If we know that this is not a text address, return failure. This is
1940 necessary because we loop based on the block's high and low code
1941 addresses, which do not include the data ranges, and because
1942 we call find_pc_sect_psymtab which has a similar restriction based
1943 on the partial_symtab's texthigh and textlow. */
1944 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1945 if (msymbol
1946 && (MSYMBOL_TYPE (msymbol) == mst_data
1947 || MSYMBOL_TYPE (msymbol) == mst_bss
1948 || MSYMBOL_TYPE (msymbol) == mst_abs
1949 || MSYMBOL_TYPE (msymbol) == mst_file_data
1950 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1951 return NULL;
1952
1953 /* Search all symtabs for the one whose file contains our address, and which
1954 is the smallest of all the ones containing the address. This is designed
1955 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1956 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1957 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1958
1959 This happens for native ecoff format, where code from included files
1960 gets its own symtab. The symtab for the included file should have
1961 been read in already via the dependency mechanism.
1962 It might be swifter to create several symtabs with the same name
1963 like xcoff does (I'm not sure).
1964
1965 It also happens for objfiles that have their functions reordered.
1966 For these, the symtab we are looking for is not necessarily read in. */
1967
1968 ALL_PRIMARY_SYMTABS (objfile, s)
1969 {
1970 bv = BLOCKVECTOR (s);
1971 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1972
1973 if (BLOCK_START (b) <= pc
1974 && BLOCK_END (b) > pc
1975 && (distance == 0
1976 || BLOCK_END (b) - BLOCK_START (b) < distance))
1977 {
1978 /* For an objfile that has its functions reordered,
1979 find_pc_psymtab will find the proper partial symbol table
1980 and we simply return its corresponding symtab. */
1981 /* In order to better support objfiles that contain both
1982 stabs and coff debugging info, we continue on if a psymtab
1983 can't be found. */
1984 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1985 {
1986 struct symtab *result;
1987
1988 result
1989 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1990 msymbol,
1991 pc, section,
1992 0);
1993 if (result)
1994 return result;
1995 }
1996 if (section != 0)
1997 {
1998 struct dict_iterator iter;
1999 struct symbol *sym = NULL;
2000
2001 ALL_BLOCK_SYMBOLS (b, iter, sym)
2002 {
2003 fixup_symbol_section (sym, objfile);
2004 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2005 break;
2006 }
2007 if (sym == NULL)
2008 continue; /* No symbol in this symtab matches
2009 section. */
2010 }
2011 distance = BLOCK_END (b) - BLOCK_START (b);
2012 best_s = s;
2013 }
2014 }
2015
2016 if (best_s != NULL)
2017 return (best_s);
2018
2019 ALL_OBJFILES (objfile)
2020 {
2021 struct symtab *result;
2022
2023 if (!objfile->sf)
2024 continue;
2025 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2026 msymbol,
2027 pc, section,
2028 1);
2029 if (result)
2030 return result;
2031 }
2032
2033 return NULL;
2034 }
2035
2036 /* Find the symtab associated with PC. Look through the psymtabs and read
2037 in another symtab if necessary. Backward compatibility, no section. */
2038
2039 struct symtab *
2040 find_pc_symtab (CORE_ADDR pc)
2041 {
2042 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2043 }
2044 \f
2045
2046 /* Find the source file and line number for a given PC value and SECTION.
2047 Return a structure containing a symtab pointer, a line number,
2048 and a pc range for the entire source line.
2049 The value's .pc field is NOT the specified pc.
2050 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2051 use the line that ends there. Otherwise, in that case, the line
2052 that begins there is used. */
2053
2054 /* The big complication here is that a line may start in one file, and end just
2055 before the start of another file. This usually occurs when you #include
2056 code in the middle of a subroutine. To properly find the end of a line's PC
2057 range, we must search all symtabs associated with this compilation unit, and
2058 find the one whose first PC is closer than that of the next line in this
2059 symtab. */
2060
2061 /* If it's worth the effort, we could be using a binary search. */
2062
2063 struct symtab_and_line
2064 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2065 {
2066 struct symtab *s;
2067 struct linetable *l;
2068 int len;
2069 int i;
2070 struct linetable_entry *item;
2071 struct symtab_and_line val;
2072 struct blockvector *bv;
2073 struct minimal_symbol *msymbol;
2074 struct minimal_symbol *mfunsym;
2075 struct objfile *objfile;
2076
2077 /* Info on best line seen so far, and where it starts, and its file. */
2078
2079 struct linetable_entry *best = NULL;
2080 CORE_ADDR best_end = 0;
2081 struct symtab *best_symtab = 0;
2082
2083 /* Store here the first line number
2084 of a file which contains the line at the smallest pc after PC.
2085 If we don't find a line whose range contains PC,
2086 we will use a line one less than this,
2087 with a range from the start of that file to the first line's pc. */
2088 struct linetable_entry *alt = NULL;
2089 struct symtab *alt_symtab = 0;
2090
2091 /* Info on best line seen in this file. */
2092
2093 struct linetable_entry *prev;
2094
2095 /* If this pc is not from the current frame,
2096 it is the address of the end of a call instruction.
2097 Quite likely that is the start of the following statement.
2098 But what we want is the statement containing the instruction.
2099 Fudge the pc to make sure we get that. */
2100
2101 init_sal (&val); /* initialize to zeroes */
2102
2103 val.pspace = current_program_space;
2104
2105 /* It's tempting to assume that, if we can't find debugging info for
2106 any function enclosing PC, that we shouldn't search for line
2107 number info, either. However, GAS can emit line number info for
2108 assembly files --- very helpful when debugging hand-written
2109 assembly code. In such a case, we'd have no debug info for the
2110 function, but we would have line info. */
2111
2112 if (notcurrent)
2113 pc -= 1;
2114
2115 /* elz: added this because this function returned the wrong
2116 information if the pc belongs to a stub (import/export)
2117 to call a shlib function. This stub would be anywhere between
2118 two functions in the target, and the line info was erroneously
2119 taken to be the one of the line before the pc. */
2120
2121 /* RT: Further explanation:
2122
2123 * We have stubs (trampolines) inserted between procedures.
2124 *
2125 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2126 * exists in the main image.
2127 *
2128 * In the minimal symbol table, we have a bunch of symbols
2129 * sorted by start address. The stubs are marked as "trampoline",
2130 * the others appear as text. E.g.:
2131 *
2132 * Minimal symbol table for main image
2133 * main: code for main (text symbol)
2134 * shr1: stub (trampoline symbol)
2135 * foo: code for foo (text symbol)
2136 * ...
2137 * Minimal symbol table for "shr1" image:
2138 * ...
2139 * shr1: code for shr1 (text symbol)
2140 * ...
2141 *
2142 * So the code below is trying to detect if we are in the stub
2143 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2144 * and if found, do the symbolization from the real-code address
2145 * rather than the stub address.
2146 *
2147 * Assumptions being made about the minimal symbol table:
2148 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2149 * if we're really in the trampoline.s If we're beyond it (say
2150 * we're in "foo" in the above example), it'll have a closer
2151 * symbol (the "foo" text symbol for example) and will not
2152 * return the trampoline.
2153 * 2. lookup_minimal_symbol_text() will find a real text symbol
2154 * corresponding to the trampoline, and whose address will
2155 * be different than the trampoline address. I put in a sanity
2156 * check for the address being the same, to avoid an
2157 * infinite recursion.
2158 */
2159 msymbol = lookup_minimal_symbol_by_pc (pc);
2160 if (msymbol != NULL)
2161 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2162 {
2163 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2164 NULL);
2165 if (mfunsym == NULL)
2166 /* I eliminated this warning since it is coming out
2167 * in the following situation:
2168 * gdb shmain // test program with shared libraries
2169 * (gdb) break shr1 // function in shared lib
2170 * Warning: In stub for ...
2171 * In the above situation, the shared lib is not loaded yet,
2172 * so of course we can't find the real func/line info,
2173 * but the "break" still works, and the warning is annoying.
2174 * So I commented out the warning. RT */
2175 /* warning ("In stub for %s; unable to find real function/line info",
2176 SYMBOL_LINKAGE_NAME (msymbol)); */
2177 ;
2178 /* fall through */
2179 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2180 == SYMBOL_VALUE_ADDRESS (msymbol))
2181 /* Avoid infinite recursion */
2182 /* See above comment about why warning is commented out. */
2183 /* warning ("In stub for %s; unable to find real function/line info",
2184 SYMBOL_LINKAGE_NAME (msymbol)); */
2185 ;
2186 /* fall through */
2187 else
2188 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2189 }
2190
2191
2192 s = find_pc_sect_symtab (pc, section);
2193 if (!s)
2194 {
2195 /* If no symbol information, return previous pc. */
2196 if (notcurrent)
2197 pc++;
2198 val.pc = pc;
2199 return val;
2200 }
2201
2202 bv = BLOCKVECTOR (s);
2203 objfile = s->objfile;
2204
2205 /* Look at all the symtabs that share this blockvector.
2206 They all have the same apriori range, that we found was right;
2207 but they have different line tables. */
2208
2209 ALL_OBJFILE_SYMTABS (objfile, s)
2210 {
2211 if (BLOCKVECTOR (s) != bv)
2212 continue;
2213
2214 /* Find the best line in this symtab. */
2215 l = LINETABLE (s);
2216 if (!l)
2217 continue;
2218 len = l->nitems;
2219 if (len <= 0)
2220 {
2221 /* I think len can be zero if the symtab lacks line numbers
2222 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2223 I'm not sure which, and maybe it depends on the symbol
2224 reader). */
2225 continue;
2226 }
2227
2228 prev = NULL;
2229 item = l->item; /* Get first line info. */
2230
2231 /* Is this file's first line closer than the first lines of other files?
2232 If so, record this file, and its first line, as best alternate. */
2233 if (item->pc > pc && (!alt || item->pc < alt->pc))
2234 {
2235 alt = item;
2236 alt_symtab = s;
2237 }
2238
2239 for (i = 0; i < len; i++, item++)
2240 {
2241 /* Leave prev pointing to the linetable entry for the last line
2242 that started at or before PC. */
2243 if (item->pc > pc)
2244 break;
2245
2246 prev = item;
2247 }
2248
2249 /* At this point, prev points at the line whose start addr is <= pc, and
2250 item points at the next line. If we ran off the end of the linetable
2251 (pc >= start of the last line), then prev == item. If pc < start of
2252 the first line, prev will not be set. */
2253
2254 /* Is this file's best line closer than the best in the other files?
2255 If so, record this file, and its best line, as best so far. Don't
2256 save prev if it represents the end of a function (i.e. line number
2257 0) instead of a real line. */
2258
2259 if (prev && prev->line && (!best || prev->pc > best->pc))
2260 {
2261 best = prev;
2262 best_symtab = s;
2263
2264 /* Discard BEST_END if it's before the PC of the current BEST. */
2265 if (best_end <= best->pc)
2266 best_end = 0;
2267 }
2268
2269 /* If another line (denoted by ITEM) is in the linetable and its
2270 PC is after BEST's PC, but before the current BEST_END, then
2271 use ITEM's PC as the new best_end. */
2272 if (best && i < len && item->pc > best->pc
2273 && (best_end == 0 || best_end > item->pc))
2274 best_end = item->pc;
2275 }
2276
2277 if (!best_symtab)
2278 {
2279 /* If we didn't find any line number info, just return zeros.
2280 We used to return alt->line - 1 here, but that could be
2281 anywhere; if we don't have line number info for this PC,
2282 don't make some up. */
2283 val.pc = pc;
2284 }
2285 else if (best->line == 0)
2286 {
2287 /* If our best fit is in a range of PC's for which no line
2288 number info is available (line number is zero) then we didn't
2289 find any valid line information. */
2290 val.pc = pc;
2291 }
2292 else
2293 {
2294 val.symtab = best_symtab;
2295 val.line = best->line;
2296 val.pc = best->pc;
2297 if (best_end && (!alt || best_end < alt->pc))
2298 val.end = best_end;
2299 else if (alt)
2300 val.end = alt->pc;
2301 else
2302 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2303 }
2304 val.section = section;
2305 return val;
2306 }
2307
2308 /* Backward compatibility (no section). */
2309
2310 struct symtab_and_line
2311 find_pc_line (CORE_ADDR pc, int notcurrent)
2312 {
2313 struct obj_section *section;
2314
2315 section = find_pc_overlay (pc);
2316 if (pc_in_unmapped_range (pc, section))
2317 pc = overlay_mapped_address (pc, section);
2318 return find_pc_sect_line (pc, section, notcurrent);
2319 }
2320 \f
2321 /* Find line number LINE in any symtab whose name is the same as
2322 SYMTAB.
2323
2324 If found, return the symtab that contains the linetable in which it was
2325 found, set *INDEX to the index in the linetable of the best entry
2326 found, and set *EXACT_MATCH nonzero if the value returned is an
2327 exact match.
2328
2329 If not found, return NULL. */
2330
2331 struct symtab *
2332 find_line_symtab (struct symtab *symtab, int line,
2333 int *index, int *exact_match)
2334 {
2335 int exact = 0; /* Initialized here to avoid a compiler warning. */
2336
2337 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2338 so far seen. */
2339
2340 int best_index;
2341 struct linetable *best_linetable;
2342 struct symtab *best_symtab;
2343
2344 /* First try looking it up in the given symtab. */
2345 best_linetable = LINETABLE (symtab);
2346 best_symtab = symtab;
2347 best_index = find_line_common (best_linetable, line, &exact, 0);
2348 if (best_index < 0 || !exact)
2349 {
2350 /* Didn't find an exact match. So we better keep looking for
2351 another symtab with the same name. In the case of xcoff,
2352 multiple csects for one source file (produced by IBM's FORTRAN
2353 compiler) produce multiple symtabs (this is unavoidable
2354 assuming csects can be at arbitrary places in memory and that
2355 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2356
2357 /* BEST is the smallest linenumber > LINE so far seen,
2358 or 0 if none has been seen so far.
2359 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2360 int best;
2361
2362 struct objfile *objfile;
2363 struct symtab *s;
2364
2365 if (best_index >= 0)
2366 best = best_linetable->item[best_index].line;
2367 else
2368 best = 0;
2369
2370 ALL_OBJFILES (objfile)
2371 {
2372 if (objfile->sf)
2373 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2374 symtab->filename);
2375 }
2376
2377 /* Get symbol full file name if possible. */
2378 symtab_to_fullname (symtab);
2379
2380 ALL_SYMTABS (objfile, s)
2381 {
2382 struct linetable *l;
2383 int ind;
2384
2385 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2386 continue;
2387 if (symtab->fullname != NULL
2388 && symtab_to_fullname (s) != NULL
2389 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2390 continue;
2391 l = LINETABLE (s);
2392 ind = find_line_common (l, line, &exact, 0);
2393 if (ind >= 0)
2394 {
2395 if (exact)
2396 {
2397 best_index = ind;
2398 best_linetable = l;
2399 best_symtab = s;
2400 goto done;
2401 }
2402 if (best == 0 || l->item[ind].line < best)
2403 {
2404 best = l->item[ind].line;
2405 best_index = ind;
2406 best_linetable = l;
2407 best_symtab = s;
2408 }
2409 }
2410 }
2411 }
2412 done:
2413 if (best_index < 0)
2414 return NULL;
2415
2416 if (index)
2417 *index = best_index;
2418 if (exact_match)
2419 *exact_match = exact;
2420
2421 return best_symtab;
2422 }
2423
2424 /* Given SYMTAB, returns all the PCs function in the symtab that
2425 exactly match LINE. Returns NULL if there are no exact matches,
2426 but updates BEST_ITEM in this case. */
2427
2428 VEC (CORE_ADDR) *
2429 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2430 struct linetable_entry **best_item)
2431 {
2432 int start = 0, ix;
2433 struct symbol *previous_function = NULL;
2434 VEC (CORE_ADDR) *result = NULL;
2435
2436 /* First, collect all the PCs that are at this line. */
2437 while (1)
2438 {
2439 int was_exact;
2440 int idx;
2441
2442 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2443 if (idx < 0)
2444 break;
2445
2446 if (!was_exact)
2447 {
2448 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2449
2450 if (*best_item == NULL || item->line < (*best_item)->line)
2451 *best_item = item;
2452
2453 break;
2454 }
2455
2456 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2457 start = idx + 1;
2458 }
2459
2460 return result;
2461 }
2462
2463 \f
2464 /* Set the PC value for a given source file and line number and return true.
2465 Returns zero for invalid line number (and sets the PC to 0).
2466 The source file is specified with a struct symtab. */
2467
2468 int
2469 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2470 {
2471 struct linetable *l;
2472 int ind;
2473
2474 *pc = 0;
2475 if (symtab == 0)
2476 return 0;
2477
2478 symtab = find_line_symtab (symtab, line, &ind, NULL);
2479 if (symtab != NULL)
2480 {
2481 l = LINETABLE (symtab);
2482 *pc = l->item[ind].pc;
2483 return 1;
2484 }
2485 else
2486 return 0;
2487 }
2488
2489 /* Find the range of pc values in a line.
2490 Store the starting pc of the line into *STARTPTR
2491 and the ending pc (start of next line) into *ENDPTR.
2492 Returns 1 to indicate success.
2493 Returns 0 if could not find the specified line. */
2494
2495 int
2496 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2497 CORE_ADDR *endptr)
2498 {
2499 CORE_ADDR startaddr;
2500 struct symtab_and_line found_sal;
2501
2502 startaddr = sal.pc;
2503 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2504 return 0;
2505
2506 /* This whole function is based on address. For example, if line 10 has
2507 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2508 "info line *0x123" should say the line goes from 0x100 to 0x200
2509 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2510 This also insures that we never give a range like "starts at 0x134
2511 and ends at 0x12c". */
2512
2513 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2514 if (found_sal.line != sal.line)
2515 {
2516 /* The specified line (sal) has zero bytes. */
2517 *startptr = found_sal.pc;
2518 *endptr = found_sal.pc;
2519 }
2520 else
2521 {
2522 *startptr = found_sal.pc;
2523 *endptr = found_sal.end;
2524 }
2525 return 1;
2526 }
2527
2528 /* Given a line table and a line number, return the index into the line
2529 table for the pc of the nearest line whose number is >= the specified one.
2530 Return -1 if none is found. The value is >= 0 if it is an index.
2531 START is the index at which to start searching the line table.
2532
2533 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2534
2535 static int
2536 find_line_common (struct linetable *l, int lineno,
2537 int *exact_match, int start)
2538 {
2539 int i;
2540 int len;
2541
2542 /* BEST is the smallest linenumber > LINENO so far seen,
2543 or 0 if none has been seen so far.
2544 BEST_INDEX identifies the item for it. */
2545
2546 int best_index = -1;
2547 int best = 0;
2548
2549 *exact_match = 0;
2550
2551 if (lineno <= 0)
2552 return -1;
2553 if (l == 0)
2554 return -1;
2555
2556 len = l->nitems;
2557 for (i = start; i < len; i++)
2558 {
2559 struct linetable_entry *item = &(l->item[i]);
2560
2561 if (item->line == lineno)
2562 {
2563 /* Return the first (lowest address) entry which matches. */
2564 *exact_match = 1;
2565 return i;
2566 }
2567
2568 if (item->line > lineno && (best == 0 || item->line < best))
2569 {
2570 best = item->line;
2571 best_index = i;
2572 }
2573 }
2574
2575 /* If we got here, we didn't get an exact match. */
2576 return best_index;
2577 }
2578
2579 int
2580 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2581 {
2582 struct symtab_and_line sal;
2583
2584 sal = find_pc_line (pc, 0);
2585 *startptr = sal.pc;
2586 *endptr = sal.end;
2587 return sal.symtab != 0;
2588 }
2589
2590 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2591 address for that function that has an entry in SYMTAB's line info
2592 table. If such an entry cannot be found, return FUNC_ADDR
2593 unaltered. */
2594 CORE_ADDR
2595 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2596 {
2597 CORE_ADDR func_start, func_end;
2598 struct linetable *l;
2599 int i;
2600
2601 /* Give up if this symbol has no lineinfo table. */
2602 l = LINETABLE (symtab);
2603 if (l == NULL)
2604 return func_addr;
2605
2606 /* Get the range for the function's PC values, or give up if we
2607 cannot, for some reason. */
2608 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2609 return func_addr;
2610
2611 /* Linetable entries are ordered by PC values, see the commentary in
2612 symtab.h where `struct linetable' is defined. Thus, the first
2613 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2614 address we are looking for. */
2615 for (i = 0; i < l->nitems; i++)
2616 {
2617 struct linetable_entry *item = &(l->item[i]);
2618
2619 /* Don't use line numbers of zero, they mark special entries in
2620 the table. See the commentary on symtab.h before the
2621 definition of struct linetable. */
2622 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2623 return item->pc;
2624 }
2625
2626 return func_addr;
2627 }
2628
2629 /* Given a function symbol SYM, find the symtab and line for the start
2630 of the function.
2631 If the argument FUNFIRSTLINE is nonzero, we want the first line
2632 of real code inside the function. */
2633
2634 struct symtab_and_line
2635 find_function_start_sal (struct symbol *sym, int funfirstline)
2636 {
2637 struct symtab_and_line sal;
2638
2639 fixup_symbol_section (sym, NULL);
2640 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2641 SYMBOL_OBJ_SECTION (sym), 0);
2642
2643 /* We always should have a line for the function start address.
2644 If we don't, something is odd. Create a plain SAL refering
2645 just the PC and hope that skip_prologue_sal (if requested)
2646 can find a line number for after the prologue. */
2647 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2648 {
2649 init_sal (&sal);
2650 sal.pspace = current_program_space;
2651 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2652 sal.section = SYMBOL_OBJ_SECTION (sym);
2653 }
2654
2655 if (funfirstline)
2656 skip_prologue_sal (&sal);
2657
2658 return sal;
2659 }
2660
2661 /* Adjust SAL to the first instruction past the function prologue.
2662 If the PC was explicitly specified, the SAL is not changed.
2663 If the line number was explicitly specified, at most the SAL's PC
2664 is updated. If SAL is already past the prologue, then do nothing. */
2665 void
2666 skip_prologue_sal (struct symtab_and_line *sal)
2667 {
2668 struct symbol *sym;
2669 struct symtab_and_line start_sal;
2670 struct cleanup *old_chain;
2671 CORE_ADDR pc, saved_pc;
2672 struct obj_section *section;
2673 const char *name;
2674 struct objfile *objfile;
2675 struct gdbarch *gdbarch;
2676 struct block *b, *function_block;
2677 int force_skip, skip;
2678
2679 /* Do not change the SAL is PC was specified explicitly. */
2680 if (sal->explicit_pc)
2681 return;
2682
2683 old_chain = save_current_space_and_thread ();
2684 switch_to_program_space_and_thread (sal->pspace);
2685
2686 sym = find_pc_sect_function (sal->pc, sal->section);
2687 if (sym != NULL)
2688 {
2689 fixup_symbol_section (sym, NULL);
2690
2691 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2692 section = SYMBOL_OBJ_SECTION (sym);
2693 name = SYMBOL_LINKAGE_NAME (sym);
2694 objfile = SYMBOL_SYMTAB (sym)->objfile;
2695 }
2696 else
2697 {
2698 struct minimal_symbol *msymbol
2699 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2700
2701 if (msymbol == NULL)
2702 {
2703 do_cleanups (old_chain);
2704 return;
2705 }
2706
2707 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2708 section = SYMBOL_OBJ_SECTION (msymbol);
2709 name = SYMBOL_LINKAGE_NAME (msymbol);
2710 objfile = msymbol_objfile (msymbol);
2711 }
2712
2713 gdbarch = get_objfile_arch (objfile);
2714
2715 /* Process the prologue in two passes. In the first pass try to skip the
2716 prologue (SKIP is true) and verify there is a real need for it (indicated
2717 by FORCE_SKIP). If no such reason was found run a second pass where the
2718 prologue is not skipped (SKIP is false). */
2719
2720 skip = 1;
2721 force_skip = 1;
2722
2723 /* Be conservative - allow direct PC (without skipping prologue) only if we
2724 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2725 have to be set by the caller so we use SYM instead. */
2726 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2727 force_skip = 0;
2728
2729 saved_pc = pc;
2730 do
2731 {
2732 pc = saved_pc;
2733
2734 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2735 so that gdbarch_skip_prologue has something unique to work on. */
2736 if (section_is_overlay (section) && !section_is_mapped (section))
2737 pc = overlay_unmapped_address (pc, section);
2738
2739 /* Skip "first line" of function (which is actually its prologue). */
2740 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2741 if (skip)
2742 pc = gdbarch_skip_prologue (gdbarch, pc);
2743
2744 /* For overlays, map pc back into its mapped VMA range. */
2745 pc = overlay_mapped_address (pc, section);
2746
2747 /* Calculate line number. */
2748 start_sal = find_pc_sect_line (pc, section, 0);
2749
2750 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2751 line is still part of the same function. */
2752 if (skip && start_sal.pc != pc
2753 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2754 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2755 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2756 == lookup_minimal_symbol_by_pc_section (pc, section))))
2757 {
2758 /* First pc of next line */
2759 pc = start_sal.end;
2760 /* Recalculate the line number (might not be N+1). */
2761 start_sal = find_pc_sect_line (pc, section, 0);
2762 }
2763
2764 /* On targets with executable formats that don't have a concept of
2765 constructors (ELF with .init has, PE doesn't), gcc emits a call
2766 to `__main' in `main' between the prologue and before user
2767 code. */
2768 if (gdbarch_skip_main_prologue_p (gdbarch)
2769 && name && strcmp (name, "main") == 0)
2770 {
2771 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2772 /* Recalculate the line number (might not be N+1). */
2773 start_sal = find_pc_sect_line (pc, section, 0);
2774 force_skip = 1;
2775 }
2776 }
2777 while (!force_skip && skip--);
2778
2779 /* If we still don't have a valid source line, try to find the first
2780 PC in the lineinfo table that belongs to the same function. This
2781 happens with COFF debug info, which does not seem to have an
2782 entry in lineinfo table for the code after the prologue which has
2783 no direct relation to source. For example, this was found to be
2784 the case with the DJGPP target using "gcc -gcoff" when the
2785 compiler inserted code after the prologue to make sure the stack
2786 is aligned. */
2787 if (!force_skip && sym && start_sal.symtab == NULL)
2788 {
2789 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2790 /* Recalculate the line number. */
2791 start_sal = find_pc_sect_line (pc, section, 0);
2792 }
2793
2794 do_cleanups (old_chain);
2795
2796 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2797 forward SAL to the end of the prologue. */
2798 if (sal->pc >= pc)
2799 return;
2800
2801 sal->pc = pc;
2802 sal->section = section;
2803
2804 /* Unless the explicit_line flag was set, update the SAL line
2805 and symtab to correspond to the modified PC location. */
2806 if (sal->explicit_line)
2807 return;
2808
2809 sal->symtab = start_sal.symtab;
2810 sal->line = start_sal.line;
2811 sal->end = start_sal.end;
2812
2813 /* Check if we are now inside an inlined function. If we can,
2814 use the call site of the function instead. */
2815 b = block_for_pc_sect (sal->pc, sal->section);
2816 function_block = NULL;
2817 while (b != NULL)
2818 {
2819 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2820 function_block = b;
2821 else if (BLOCK_FUNCTION (b) != NULL)
2822 break;
2823 b = BLOCK_SUPERBLOCK (b);
2824 }
2825 if (function_block != NULL
2826 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2827 {
2828 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2829 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2830 }
2831 }
2832
2833 /* If P is of the form "operator[ \t]+..." where `...' is
2834 some legitimate operator text, return a pointer to the
2835 beginning of the substring of the operator text.
2836 Otherwise, return "". */
2837 static char *
2838 operator_chars (char *p, char **end)
2839 {
2840 *end = "";
2841 if (strncmp (p, "operator", 8))
2842 return *end;
2843 p += 8;
2844
2845 /* Don't get faked out by `operator' being part of a longer
2846 identifier. */
2847 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2848 return *end;
2849
2850 /* Allow some whitespace between `operator' and the operator symbol. */
2851 while (*p == ' ' || *p == '\t')
2852 p++;
2853
2854 /* Recognize 'operator TYPENAME'. */
2855
2856 if (isalpha (*p) || *p == '_' || *p == '$')
2857 {
2858 char *q = p + 1;
2859
2860 while (isalnum (*q) || *q == '_' || *q == '$')
2861 q++;
2862 *end = q;
2863 return p;
2864 }
2865
2866 while (*p)
2867 switch (*p)
2868 {
2869 case '\\': /* regexp quoting */
2870 if (p[1] == '*')
2871 {
2872 if (p[2] == '=') /* 'operator\*=' */
2873 *end = p + 3;
2874 else /* 'operator\*' */
2875 *end = p + 2;
2876 return p;
2877 }
2878 else if (p[1] == '[')
2879 {
2880 if (p[2] == ']')
2881 error (_("mismatched quoting on brackets, "
2882 "try 'operator\\[\\]'"));
2883 else if (p[2] == '\\' && p[3] == ']')
2884 {
2885 *end = p + 4; /* 'operator\[\]' */
2886 return p;
2887 }
2888 else
2889 error (_("nothing is allowed between '[' and ']'"));
2890 }
2891 else
2892 {
2893 /* Gratuitous qoute: skip it and move on. */
2894 p++;
2895 continue;
2896 }
2897 break;
2898 case '!':
2899 case '=':
2900 case '*':
2901 case '/':
2902 case '%':
2903 case '^':
2904 if (p[1] == '=')
2905 *end = p + 2;
2906 else
2907 *end = p + 1;
2908 return p;
2909 case '<':
2910 case '>':
2911 case '+':
2912 case '-':
2913 case '&':
2914 case '|':
2915 if (p[0] == '-' && p[1] == '>')
2916 {
2917 /* Struct pointer member operator 'operator->'. */
2918 if (p[2] == '*')
2919 {
2920 *end = p + 3; /* 'operator->*' */
2921 return p;
2922 }
2923 else if (p[2] == '\\')
2924 {
2925 *end = p + 4; /* Hopefully 'operator->\*' */
2926 return p;
2927 }
2928 else
2929 {
2930 *end = p + 2; /* 'operator->' */
2931 return p;
2932 }
2933 }
2934 if (p[1] == '=' || p[1] == p[0])
2935 *end = p + 2;
2936 else
2937 *end = p + 1;
2938 return p;
2939 case '~':
2940 case ',':
2941 *end = p + 1;
2942 return p;
2943 case '(':
2944 if (p[1] != ')')
2945 error (_("`operator ()' must be specified "
2946 "without whitespace in `()'"));
2947 *end = p + 2;
2948 return p;
2949 case '?':
2950 if (p[1] != ':')
2951 error (_("`operator ?:' must be specified "
2952 "without whitespace in `?:'"));
2953 *end = p + 2;
2954 return p;
2955 case '[':
2956 if (p[1] != ']')
2957 error (_("`operator []' must be specified "
2958 "without whitespace in `[]'"));
2959 *end = p + 2;
2960 return p;
2961 default:
2962 error (_("`operator %s' not supported"), p);
2963 break;
2964 }
2965
2966 *end = "";
2967 return *end;
2968 }
2969 \f
2970
2971 /* If FILE is not already in the table of files, return zero;
2972 otherwise return non-zero. Optionally add FILE to the table if ADD
2973 is non-zero. If *FIRST is non-zero, forget the old table
2974 contents. */
2975 static int
2976 filename_seen (const char *file, int add, int *first)
2977 {
2978 /* Table of files seen so far. */
2979 static const char **tab = NULL;
2980 /* Allocated size of tab in elements.
2981 Start with one 256-byte block (when using GNU malloc.c).
2982 24 is the malloc overhead when range checking is in effect. */
2983 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2984 /* Current size of tab in elements. */
2985 static int tab_cur_size;
2986 const char **p;
2987
2988 if (*first)
2989 {
2990 if (tab == NULL)
2991 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2992 tab_cur_size = 0;
2993 }
2994
2995 /* Is FILE in tab? */
2996 for (p = tab; p < tab + tab_cur_size; p++)
2997 if (filename_cmp (*p, file) == 0)
2998 return 1;
2999
3000 /* No; maybe add it to tab. */
3001 if (add)
3002 {
3003 if (tab_cur_size == tab_alloc_size)
3004 {
3005 tab_alloc_size *= 2;
3006 tab = (const char **) xrealloc ((char *) tab,
3007 tab_alloc_size * sizeof (*tab));
3008 }
3009 tab[tab_cur_size++] = file;
3010 }
3011
3012 return 0;
3013 }
3014
3015 /* Slave routine for sources_info. Force line breaks at ,'s.
3016 NAME is the name to print and *FIRST is nonzero if this is the first
3017 name printed. Set *FIRST to zero. */
3018 static void
3019 output_source_filename (const char *name, int *first)
3020 {
3021 /* Since a single source file can result in several partial symbol
3022 tables, we need to avoid printing it more than once. Note: if
3023 some of the psymtabs are read in and some are not, it gets
3024 printed both under "Source files for which symbols have been
3025 read" and "Source files for which symbols will be read in on
3026 demand". I consider this a reasonable way to deal with the
3027 situation. I'm not sure whether this can also happen for
3028 symtabs; it doesn't hurt to check. */
3029
3030 /* Was NAME already seen? */
3031 if (filename_seen (name, 1, first))
3032 {
3033 /* Yes; don't print it again. */
3034 return;
3035 }
3036 /* No; print it and reset *FIRST. */
3037 if (*first)
3038 {
3039 *first = 0;
3040 }
3041 else
3042 {
3043 printf_filtered (", ");
3044 }
3045
3046 wrap_here ("");
3047 fputs_filtered (name, gdb_stdout);
3048 }
3049
3050 /* A callback for map_partial_symbol_filenames. */
3051 static void
3052 output_partial_symbol_filename (const char *filename, const char *fullname,
3053 void *data)
3054 {
3055 output_source_filename (fullname ? fullname : filename, data);
3056 }
3057
3058 static void
3059 sources_info (char *ignore, int from_tty)
3060 {
3061 struct symtab *s;
3062 struct objfile *objfile;
3063 int first;
3064
3065 if (!have_full_symbols () && !have_partial_symbols ())
3066 {
3067 error (_("No symbol table is loaded. Use the \"file\" command."));
3068 }
3069
3070 printf_filtered ("Source files for which symbols have been read in:\n\n");
3071
3072 first = 1;
3073 ALL_SYMTABS (objfile, s)
3074 {
3075 const char *fullname = symtab_to_fullname (s);
3076
3077 output_source_filename (fullname ? fullname : s->filename, &first);
3078 }
3079 printf_filtered ("\n\n");
3080
3081 printf_filtered ("Source files for which symbols "
3082 "will be read in on demand:\n\n");
3083
3084 first = 1;
3085 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3086 1 /*need_fullname*/);
3087 printf_filtered ("\n");
3088 }
3089
3090 static int
3091 file_matches (const char *file, char *files[], int nfiles)
3092 {
3093 int i;
3094
3095 if (file != NULL && nfiles != 0)
3096 {
3097 for (i = 0; i < nfiles; i++)
3098 {
3099 if (filename_cmp (files[i], lbasename (file)) == 0)
3100 return 1;
3101 }
3102 }
3103 else if (nfiles == 0)
3104 return 1;
3105 return 0;
3106 }
3107
3108 /* Free any memory associated with a search. */
3109 void
3110 free_search_symbols (struct symbol_search *symbols)
3111 {
3112 struct symbol_search *p;
3113 struct symbol_search *next;
3114
3115 for (p = symbols; p != NULL; p = next)
3116 {
3117 next = p->next;
3118 xfree (p);
3119 }
3120 }
3121
3122 static void
3123 do_free_search_symbols_cleanup (void *symbols)
3124 {
3125 free_search_symbols (symbols);
3126 }
3127
3128 struct cleanup *
3129 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3130 {
3131 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3132 }
3133
3134 /* Helper function for sort_search_symbols and qsort. Can only
3135 sort symbols, not minimal symbols. */
3136 static int
3137 compare_search_syms (const void *sa, const void *sb)
3138 {
3139 struct symbol_search **sym_a = (struct symbol_search **) sa;
3140 struct symbol_search **sym_b = (struct symbol_search **) sb;
3141
3142 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3143 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3144 }
3145
3146 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3147 prevtail where it is, but update its next pointer to point to
3148 the first of the sorted symbols. */
3149 static struct symbol_search *
3150 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3151 {
3152 struct symbol_search **symbols, *symp, *old_next;
3153 int i;
3154
3155 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3156 * nfound);
3157 symp = prevtail->next;
3158 for (i = 0; i < nfound; i++)
3159 {
3160 symbols[i] = symp;
3161 symp = symp->next;
3162 }
3163 /* Generally NULL. */
3164 old_next = symp;
3165
3166 qsort (symbols, nfound, sizeof (struct symbol_search *),
3167 compare_search_syms);
3168
3169 symp = prevtail;
3170 for (i = 0; i < nfound; i++)
3171 {
3172 symp->next = symbols[i];
3173 symp = symp->next;
3174 }
3175 symp->next = old_next;
3176
3177 xfree (symbols);
3178 return symp;
3179 }
3180
3181 /* An object of this type is passed as the user_data to the
3182 expand_symtabs_matching method. */
3183 struct search_symbols_data
3184 {
3185 int nfiles;
3186 char **files;
3187
3188 /* It is true if PREG contains valid data, false otherwise. */
3189 unsigned preg_p : 1;
3190 regex_t preg;
3191 };
3192
3193 /* A callback for expand_symtabs_matching. */
3194 static int
3195 search_symbols_file_matches (const char *filename, void *user_data)
3196 {
3197 struct search_symbols_data *data = user_data;
3198
3199 return file_matches (filename, data->files, data->nfiles);
3200 }
3201
3202 /* A callback for expand_symtabs_matching. */
3203 static int
3204 search_symbols_name_matches (const struct language_defn *language,
3205 const char *symname, void *user_data)
3206 {
3207 struct search_symbols_data *data = user_data;
3208
3209 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3210 }
3211
3212 /* Search the symbol table for matches to the regular expression REGEXP,
3213 returning the results in *MATCHES.
3214
3215 Only symbols of KIND are searched:
3216 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3217 and constants (enums)
3218 FUNCTIONS_DOMAIN - search all functions
3219 TYPES_DOMAIN - search all type names
3220 ALL_DOMAIN - an internal error for this function
3221
3222 free_search_symbols should be called when *MATCHES is no longer needed.
3223
3224 The results are sorted locally; each symtab's global and static blocks are
3225 separately alphabetized. */
3226
3227 void
3228 search_symbols (char *regexp, enum search_domain kind,
3229 int nfiles, char *files[],
3230 struct symbol_search **matches)
3231 {
3232 struct symtab *s;
3233 struct blockvector *bv;
3234 struct block *b;
3235 int i = 0;
3236 struct dict_iterator iter;
3237 struct symbol *sym;
3238 struct objfile *objfile;
3239 struct minimal_symbol *msymbol;
3240 char *val;
3241 int found_misc = 0;
3242 static const enum minimal_symbol_type types[]
3243 = {mst_data, mst_text, mst_abs};
3244 static const enum minimal_symbol_type types2[]
3245 = {mst_bss, mst_file_text, mst_abs};
3246 static const enum minimal_symbol_type types3[]
3247 = {mst_file_data, mst_solib_trampoline, mst_abs};
3248 static const enum minimal_symbol_type types4[]
3249 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3250 enum minimal_symbol_type ourtype;
3251 enum minimal_symbol_type ourtype2;
3252 enum minimal_symbol_type ourtype3;
3253 enum minimal_symbol_type ourtype4;
3254 struct symbol_search *sr;
3255 struct symbol_search *psr;
3256 struct symbol_search *tail;
3257 struct search_symbols_data datum;
3258
3259 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3260 CLEANUP_CHAIN is freed only in the case of an error. */
3261 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3262 struct cleanup *retval_chain;
3263
3264 gdb_assert (kind <= TYPES_DOMAIN);
3265
3266 ourtype = types[kind];
3267 ourtype2 = types2[kind];
3268 ourtype3 = types3[kind];
3269 ourtype4 = types4[kind];
3270
3271 sr = *matches = NULL;
3272 tail = NULL;
3273 datum.preg_p = 0;
3274
3275 if (regexp != NULL)
3276 {
3277 /* Make sure spacing is right for C++ operators.
3278 This is just a courtesy to make the matching less sensitive
3279 to how many spaces the user leaves between 'operator'
3280 and <TYPENAME> or <OPERATOR>. */
3281 char *opend;
3282 char *opname = operator_chars (regexp, &opend);
3283 int errcode;
3284
3285 if (*opname)
3286 {
3287 int fix = -1; /* -1 means ok; otherwise number of
3288 spaces needed. */
3289
3290 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3291 {
3292 /* There should 1 space between 'operator' and 'TYPENAME'. */
3293 if (opname[-1] != ' ' || opname[-2] == ' ')
3294 fix = 1;
3295 }
3296 else
3297 {
3298 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3299 if (opname[-1] == ' ')
3300 fix = 0;
3301 }
3302 /* If wrong number of spaces, fix it. */
3303 if (fix >= 0)
3304 {
3305 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3306
3307 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3308 regexp = tmp;
3309 }
3310 }
3311
3312 errcode = regcomp (&datum.preg, regexp,
3313 REG_NOSUB | (case_sensitivity == case_sensitive_off
3314 ? REG_ICASE : 0));
3315 if (errcode != 0)
3316 {
3317 char *err = get_regcomp_error (errcode, &datum.preg);
3318
3319 make_cleanup (xfree, err);
3320 error (_("Invalid regexp (%s): %s"), err, regexp);
3321 }
3322 datum.preg_p = 1;
3323 make_regfree_cleanup (&datum.preg);
3324 }
3325
3326 /* Search through the partial symtabs *first* for all symbols
3327 matching the regexp. That way we don't have to reproduce all of
3328 the machinery below. */
3329
3330 datum.nfiles = nfiles;
3331 datum.files = files;
3332 ALL_OBJFILES (objfile)
3333 {
3334 if (objfile->sf)
3335 objfile->sf->qf->expand_symtabs_matching (objfile,
3336 search_symbols_file_matches,
3337 search_symbols_name_matches,
3338 kind,
3339 &datum);
3340 }
3341
3342 retval_chain = old_chain;
3343
3344 /* Here, we search through the minimal symbol tables for functions
3345 and variables that match, and force their symbols to be read.
3346 This is in particular necessary for demangled variable names,
3347 which are no longer put into the partial symbol tables.
3348 The symbol will then be found during the scan of symtabs below.
3349
3350 For functions, find_pc_symtab should succeed if we have debug info
3351 for the function, for variables we have to call lookup_symbol
3352 to determine if the variable has debug info.
3353 If the lookup fails, set found_misc so that we will rescan to print
3354 any matching symbols without debug info. */
3355
3356 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3357 {
3358 ALL_MSYMBOLS (objfile, msymbol)
3359 {
3360 QUIT;
3361
3362 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3363 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3364 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3365 MSYMBOL_TYPE (msymbol) == ourtype4)
3366 {
3367 if (!datum.preg_p
3368 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3369 NULL, 0) == 0)
3370 {
3371 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3372 {
3373 /* FIXME: carlton/2003-02-04: Given that the
3374 semantics of lookup_symbol keeps on changing
3375 slightly, it would be a nice idea if we had a
3376 function lookup_symbol_minsym that found the
3377 symbol associated to a given minimal symbol (if
3378 any). */
3379 if (kind == FUNCTIONS_DOMAIN
3380 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3381 (struct block *) NULL,
3382 VAR_DOMAIN, 0)
3383 == NULL)
3384 found_misc = 1;
3385 }
3386 }
3387 }
3388 }
3389 }
3390
3391 ALL_PRIMARY_SYMTABS (objfile, s)
3392 {
3393 bv = BLOCKVECTOR (s);
3394 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3395 {
3396 struct symbol_search *prevtail = tail;
3397 int nfound = 0;
3398
3399 b = BLOCKVECTOR_BLOCK (bv, i);
3400 ALL_BLOCK_SYMBOLS (b, iter, sym)
3401 {
3402 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3403
3404 QUIT;
3405
3406 if (file_matches (real_symtab->filename, files, nfiles)
3407 && ((!datum.preg_p
3408 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3409 NULL, 0) == 0)
3410 && ((kind == VARIABLES_DOMAIN
3411 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3412 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3413 && SYMBOL_CLASS (sym) != LOC_BLOCK
3414 /* LOC_CONST can be used for more than just enums,
3415 e.g., c++ static const members.
3416 We only want to skip enums here. */
3417 && !(SYMBOL_CLASS (sym) == LOC_CONST
3418 && TYPE_CODE (SYMBOL_TYPE (sym))
3419 == TYPE_CODE_ENUM))
3420 || (kind == FUNCTIONS_DOMAIN
3421 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3422 || (kind == TYPES_DOMAIN
3423 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3424 {
3425 /* match */
3426 psr = (struct symbol_search *)
3427 xmalloc (sizeof (struct symbol_search));
3428 psr->block = i;
3429 psr->symtab = real_symtab;
3430 psr->symbol = sym;
3431 psr->msymbol = NULL;
3432 psr->next = NULL;
3433 if (tail == NULL)
3434 sr = psr;
3435 else
3436 tail->next = psr;
3437 tail = psr;
3438 nfound ++;
3439 }
3440 }
3441 if (nfound > 0)
3442 {
3443 if (prevtail == NULL)
3444 {
3445 struct symbol_search dummy;
3446
3447 dummy.next = sr;
3448 tail = sort_search_symbols (&dummy, nfound);
3449 sr = dummy.next;
3450
3451 make_cleanup_free_search_symbols (sr);
3452 }
3453 else
3454 tail = sort_search_symbols (prevtail, nfound);
3455 }
3456 }
3457 }
3458
3459 /* If there are no eyes, avoid all contact. I mean, if there are
3460 no debug symbols, then print directly from the msymbol_vector. */
3461
3462 if (found_misc || kind != FUNCTIONS_DOMAIN)
3463 {
3464 ALL_MSYMBOLS (objfile, msymbol)
3465 {
3466 QUIT;
3467
3468 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3469 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3470 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3471 MSYMBOL_TYPE (msymbol) == ourtype4)
3472 {
3473 if (!datum.preg_p
3474 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3475 NULL, 0) == 0)
3476 {
3477 /* Functions: Look up by address. */
3478 if (kind != FUNCTIONS_DOMAIN ||
3479 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3480 {
3481 /* Variables/Absolutes: Look up by name. */
3482 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3483 (struct block *) NULL, VAR_DOMAIN, 0)
3484 == NULL)
3485 {
3486 /* match */
3487 psr = (struct symbol_search *)
3488 xmalloc (sizeof (struct symbol_search));
3489 psr->block = i;
3490 psr->msymbol = msymbol;
3491 psr->symtab = NULL;
3492 psr->symbol = NULL;
3493 psr->next = NULL;
3494 if (tail == NULL)
3495 {
3496 sr = psr;
3497 make_cleanup_free_search_symbols (sr);
3498 }
3499 else
3500 tail->next = psr;
3501 tail = psr;
3502 }
3503 }
3504 }
3505 }
3506 }
3507 }
3508
3509 discard_cleanups (retval_chain);
3510 do_cleanups (old_chain);
3511 *matches = sr;
3512 }
3513
3514 /* Helper function for symtab_symbol_info, this function uses
3515 the data returned from search_symbols() to print information
3516 regarding the match to gdb_stdout. */
3517
3518 static void
3519 print_symbol_info (enum search_domain kind,
3520 struct symtab *s, struct symbol *sym,
3521 int block, char *last)
3522 {
3523 if (last == NULL || filename_cmp (last, s->filename) != 0)
3524 {
3525 fputs_filtered ("\nFile ", gdb_stdout);
3526 fputs_filtered (s->filename, gdb_stdout);
3527 fputs_filtered (":\n", gdb_stdout);
3528 }
3529
3530 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3531 printf_filtered ("static ");
3532
3533 /* Typedef that is not a C++ class. */
3534 if (kind == TYPES_DOMAIN
3535 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3536 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3537 /* variable, func, or typedef-that-is-c++-class. */
3538 else if (kind < TYPES_DOMAIN ||
3539 (kind == TYPES_DOMAIN &&
3540 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3541 {
3542 type_print (SYMBOL_TYPE (sym),
3543 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3544 ? "" : SYMBOL_PRINT_NAME (sym)),
3545 gdb_stdout, 0);
3546
3547 printf_filtered (";\n");
3548 }
3549 }
3550
3551 /* This help function for symtab_symbol_info() prints information
3552 for non-debugging symbols to gdb_stdout. */
3553
3554 static void
3555 print_msymbol_info (struct minimal_symbol *msymbol)
3556 {
3557 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3558 char *tmp;
3559
3560 if (gdbarch_addr_bit (gdbarch) <= 32)
3561 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3562 & (CORE_ADDR) 0xffffffff,
3563 8);
3564 else
3565 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3566 16);
3567 printf_filtered ("%s %s\n",
3568 tmp, SYMBOL_PRINT_NAME (msymbol));
3569 }
3570
3571 /* This is the guts of the commands "info functions", "info types", and
3572 "info variables". It calls search_symbols to find all matches and then
3573 print_[m]symbol_info to print out some useful information about the
3574 matches. */
3575
3576 static void
3577 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3578 {
3579 static const char * const classnames[] =
3580 {"variable", "function", "type"};
3581 struct symbol_search *symbols;
3582 struct symbol_search *p;
3583 struct cleanup *old_chain;
3584 char *last_filename = NULL;
3585 int first = 1;
3586
3587 gdb_assert (kind <= TYPES_DOMAIN);
3588
3589 /* Must make sure that if we're interrupted, symbols gets freed. */
3590 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3591 old_chain = make_cleanup_free_search_symbols (symbols);
3592
3593 printf_filtered (regexp
3594 ? "All %ss matching regular expression \"%s\":\n"
3595 : "All defined %ss:\n",
3596 classnames[kind], regexp);
3597
3598 for (p = symbols; p != NULL; p = p->next)
3599 {
3600 QUIT;
3601
3602 if (p->msymbol != NULL)
3603 {
3604 if (first)
3605 {
3606 printf_filtered ("\nNon-debugging symbols:\n");
3607 first = 0;
3608 }
3609 print_msymbol_info (p->msymbol);
3610 }
3611 else
3612 {
3613 print_symbol_info (kind,
3614 p->symtab,
3615 p->symbol,
3616 p->block,
3617 last_filename);
3618 last_filename = p->symtab->filename;
3619 }
3620 }
3621
3622 do_cleanups (old_chain);
3623 }
3624
3625 static void
3626 variables_info (char *regexp, int from_tty)
3627 {
3628 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3629 }
3630
3631 static void
3632 functions_info (char *regexp, int from_tty)
3633 {
3634 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3635 }
3636
3637
3638 static void
3639 types_info (char *regexp, int from_tty)
3640 {
3641 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3642 }
3643
3644 /* Breakpoint all functions matching regular expression. */
3645
3646 void
3647 rbreak_command_wrapper (char *regexp, int from_tty)
3648 {
3649 rbreak_command (regexp, from_tty);
3650 }
3651
3652 /* A cleanup function that calls end_rbreak_breakpoints. */
3653
3654 static void
3655 do_end_rbreak_breakpoints (void *ignore)
3656 {
3657 end_rbreak_breakpoints ();
3658 }
3659
3660 static void
3661 rbreak_command (char *regexp, int from_tty)
3662 {
3663 struct symbol_search *ss;
3664 struct symbol_search *p;
3665 struct cleanup *old_chain;
3666 char *string = NULL;
3667 int len = 0;
3668 char **files = NULL, *file_name;
3669 int nfiles = 0;
3670
3671 if (regexp)
3672 {
3673 char *colon = strchr (regexp, ':');
3674
3675 if (colon && *(colon + 1) != ':')
3676 {
3677 int colon_index;
3678
3679 colon_index = colon - regexp;
3680 file_name = alloca (colon_index + 1);
3681 memcpy (file_name, regexp, colon_index);
3682 file_name[colon_index--] = 0;
3683 while (isspace (file_name[colon_index]))
3684 file_name[colon_index--] = 0;
3685 files = &file_name;
3686 nfiles = 1;
3687 regexp = colon + 1;
3688 while (isspace (*regexp)) regexp++;
3689 }
3690 }
3691
3692 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3693 old_chain = make_cleanup_free_search_symbols (ss);
3694 make_cleanup (free_current_contents, &string);
3695
3696 start_rbreak_breakpoints ();
3697 make_cleanup (do_end_rbreak_breakpoints, NULL);
3698 for (p = ss; p != NULL; p = p->next)
3699 {
3700 if (p->msymbol == NULL)
3701 {
3702 int newlen = (strlen (p->symtab->filename)
3703 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3704 + 4);
3705
3706 if (newlen > len)
3707 {
3708 string = xrealloc (string, newlen);
3709 len = newlen;
3710 }
3711 strcpy (string, p->symtab->filename);
3712 strcat (string, ":'");
3713 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3714 strcat (string, "'");
3715 break_command (string, from_tty);
3716 print_symbol_info (FUNCTIONS_DOMAIN,
3717 p->symtab,
3718 p->symbol,
3719 p->block,
3720 p->symtab->filename);
3721 }
3722 else
3723 {
3724 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3725
3726 if (newlen > len)
3727 {
3728 string = xrealloc (string, newlen);
3729 len = newlen;
3730 }
3731 strcpy (string, "'");
3732 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3733 strcat (string, "'");
3734
3735 break_command (string, from_tty);
3736 printf_filtered ("<function, no debug info> %s;\n",
3737 SYMBOL_PRINT_NAME (p->msymbol));
3738 }
3739 }
3740
3741 do_cleanups (old_chain);
3742 }
3743 \f
3744
3745 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3746
3747 Either sym_text[sym_text_len] != '(' and then we search for any
3748 symbol starting with SYM_TEXT text.
3749
3750 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3751 be terminated at that point. Partial symbol tables do not have parameters
3752 information. */
3753
3754 static int
3755 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3756 {
3757 int (*ncmp) (const char *, const char *, size_t);
3758
3759 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3760
3761 if (ncmp (name, sym_text, sym_text_len) != 0)
3762 return 0;
3763
3764 if (sym_text[sym_text_len] == '(')
3765 {
3766 /* User searches for `name(someth...'. Require NAME to be terminated.
3767 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3768 present but accept even parameters presence. In this case this
3769 function is in fact strcmp_iw but whitespace skipping is not supported
3770 for tab completion. */
3771
3772 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3773 return 0;
3774 }
3775
3776 return 1;
3777 }
3778
3779 /* Free any memory associated with a completion list. */
3780
3781 static void
3782 free_completion_list (char ***list_ptr)
3783 {
3784 int i = 0;
3785 char **list = *list_ptr;
3786
3787 while (list[i] != NULL)
3788 {
3789 xfree (list[i]);
3790 i++;
3791 }
3792 xfree (list);
3793 }
3794
3795 /* Callback for make_cleanup. */
3796
3797 static void
3798 do_free_completion_list (void *list)
3799 {
3800 free_completion_list (list);
3801 }
3802
3803 /* Helper routine for make_symbol_completion_list. */
3804
3805 static int return_val_size;
3806 static int return_val_index;
3807 static char **return_val;
3808
3809 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3810 completion_list_add_name \
3811 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3812
3813 /* Test to see if the symbol specified by SYMNAME (which is already
3814 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3815 characters. If so, add it to the current completion list. */
3816
3817 static void
3818 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3819 char *text, char *word)
3820 {
3821 int newsize;
3822
3823 /* Clip symbols that cannot match. */
3824 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3825 return;
3826
3827 /* We have a match for a completion, so add SYMNAME to the current list
3828 of matches. Note that the name is moved to freshly malloc'd space. */
3829
3830 {
3831 char *new;
3832
3833 if (word == sym_text)
3834 {
3835 new = xmalloc (strlen (symname) + 5);
3836 strcpy (new, symname);
3837 }
3838 else if (word > sym_text)
3839 {
3840 /* Return some portion of symname. */
3841 new = xmalloc (strlen (symname) + 5);
3842 strcpy (new, symname + (word - sym_text));
3843 }
3844 else
3845 {
3846 /* Return some of SYM_TEXT plus symname. */
3847 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3848 strncpy (new, word, sym_text - word);
3849 new[sym_text - word] = '\0';
3850 strcat (new, symname);
3851 }
3852
3853 if (return_val_index + 3 > return_val_size)
3854 {
3855 newsize = (return_val_size *= 2) * sizeof (char *);
3856 return_val = (char **) xrealloc ((char *) return_val, newsize);
3857 }
3858 return_val[return_val_index++] = new;
3859 return_val[return_val_index] = NULL;
3860 }
3861 }
3862
3863 /* ObjC: In case we are completing on a selector, look as the msymbol
3864 again and feed all the selectors into the mill. */
3865
3866 static void
3867 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3868 int sym_text_len, char *text, char *word)
3869 {
3870 static char *tmp = NULL;
3871 static unsigned int tmplen = 0;
3872
3873 char *method, *category, *selector;
3874 char *tmp2 = NULL;
3875
3876 method = SYMBOL_NATURAL_NAME (msymbol);
3877
3878 /* Is it a method? */
3879 if ((method[0] != '-') && (method[0] != '+'))
3880 return;
3881
3882 if (sym_text[0] == '[')
3883 /* Complete on shortened method method. */
3884 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3885
3886 while ((strlen (method) + 1) >= tmplen)
3887 {
3888 if (tmplen == 0)
3889 tmplen = 1024;
3890 else
3891 tmplen *= 2;
3892 tmp = xrealloc (tmp, tmplen);
3893 }
3894 selector = strchr (method, ' ');
3895 if (selector != NULL)
3896 selector++;
3897
3898 category = strchr (method, '(');
3899
3900 if ((category != NULL) && (selector != NULL))
3901 {
3902 memcpy (tmp, method, (category - method));
3903 tmp[category - method] = ' ';
3904 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3905 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3906 if (sym_text[0] == '[')
3907 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3908 }
3909
3910 if (selector != NULL)
3911 {
3912 /* Complete on selector only. */
3913 strcpy (tmp, selector);
3914 tmp2 = strchr (tmp, ']');
3915 if (tmp2 != NULL)
3916 *tmp2 = '\0';
3917
3918 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3919 }
3920 }
3921
3922 /* Break the non-quoted text based on the characters which are in
3923 symbols. FIXME: This should probably be language-specific. */
3924
3925 static char *
3926 language_search_unquoted_string (char *text, char *p)
3927 {
3928 for (; p > text; --p)
3929 {
3930 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3931 continue;
3932 else
3933 {
3934 if ((current_language->la_language == language_objc))
3935 {
3936 if (p[-1] == ':') /* Might be part of a method name. */
3937 continue;
3938 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3939 p -= 2; /* Beginning of a method name. */
3940 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3941 { /* Might be part of a method name. */
3942 char *t = p;
3943
3944 /* Seeing a ' ' or a '(' is not conclusive evidence
3945 that we are in the middle of a method name. However,
3946 finding "-[" or "+[" should be pretty un-ambiguous.
3947 Unfortunately we have to find it now to decide. */
3948
3949 while (t > text)
3950 if (isalnum (t[-1]) || t[-1] == '_' ||
3951 t[-1] == ' ' || t[-1] == ':' ||
3952 t[-1] == '(' || t[-1] == ')')
3953 --t;
3954 else
3955 break;
3956
3957 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3958 p = t - 2; /* Method name detected. */
3959 /* Else we leave with p unchanged. */
3960 }
3961 }
3962 break;
3963 }
3964 }
3965 return p;
3966 }
3967
3968 static void
3969 completion_list_add_fields (struct symbol *sym, char *sym_text,
3970 int sym_text_len, char *text, char *word)
3971 {
3972 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3973 {
3974 struct type *t = SYMBOL_TYPE (sym);
3975 enum type_code c = TYPE_CODE (t);
3976 int j;
3977
3978 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3979 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3980 if (TYPE_FIELD_NAME (t, j))
3981 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3982 sym_text, sym_text_len, text, word);
3983 }
3984 }
3985
3986 /* Type of the user_data argument passed to add_macro_name or
3987 expand_partial_symbol_name. The contents are simply whatever is
3988 needed by completion_list_add_name. */
3989 struct add_name_data
3990 {
3991 char *sym_text;
3992 int sym_text_len;
3993 char *text;
3994 char *word;
3995 };
3996
3997 /* A callback used with macro_for_each and macro_for_each_in_scope.
3998 This adds a macro's name to the current completion list. */
3999 static void
4000 add_macro_name (const char *name, const struct macro_definition *ignore,
4001 struct macro_source_file *ignore2, int ignore3,
4002 void *user_data)
4003 {
4004 struct add_name_data *datum = (struct add_name_data *) user_data;
4005
4006 completion_list_add_name ((char *) name,
4007 datum->sym_text, datum->sym_text_len,
4008 datum->text, datum->word);
4009 }
4010
4011 /* A callback for expand_partial_symbol_names. */
4012 static int
4013 expand_partial_symbol_name (const struct language_defn *language,
4014 const char *name, void *user_data)
4015 {
4016 struct add_name_data *datum = (struct add_name_data *) user_data;
4017
4018 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4019 }
4020
4021 char **
4022 default_make_symbol_completion_list_break_on (char *text, char *word,
4023 const char *break_on)
4024 {
4025 /* Problem: All of the symbols have to be copied because readline
4026 frees them. I'm not going to worry about this; hopefully there
4027 won't be that many. */
4028
4029 struct symbol *sym;
4030 struct symtab *s;
4031 struct minimal_symbol *msymbol;
4032 struct objfile *objfile;
4033 struct block *b;
4034 const struct block *surrounding_static_block, *surrounding_global_block;
4035 struct dict_iterator iter;
4036 /* The symbol we are completing on. Points in same buffer as text. */
4037 char *sym_text;
4038 /* Length of sym_text. */
4039 int sym_text_len;
4040 struct add_name_data datum;
4041 struct cleanup *back_to;
4042
4043 /* Now look for the symbol we are supposed to complete on. */
4044 {
4045 char *p;
4046 char quote_found;
4047 char *quote_pos = NULL;
4048
4049 /* First see if this is a quoted string. */
4050 quote_found = '\0';
4051 for (p = text; *p != '\0'; ++p)
4052 {
4053 if (quote_found != '\0')
4054 {
4055 if (*p == quote_found)
4056 /* Found close quote. */
4057 quote_found = '\0';
4058 else if (*p == '\\' && p[1] == quote_found)
4059 /* A backslash followed by the quote character
4060 doesn't end the string. */
4061 ++p;
4062 }
4063 else if (*p == '\'' || *p == '"')
4064 {
4065 quote_found = *p;
4066 quote_pos = p;
4067 }
4068 }
4069 if (quote_found == '\'')
4070 /* A string within single quotes can be a symbol, so complete on it. */
4071 sym_text = quote_pos + 1;
4072 else if (quote_found == '"')
4073 /* A double-quoted string is never a symbol, nor does it make sense
4074 to complete it any other way. */
4075 {
4076 return_val = (char **) xmalloc (sizeof (char *));
4077 return_val[0] = NULL;
4078 return return_val;
4079 }
4080 else
4081 {
4082 /* It is not a quoted string. Break it based on the characters
4083 which are in symbols. */
4084 while (p > text)
4085 {
4086 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4087 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4088 --p;
4089 else
4090 break;
4091 }
4092 sym_text = p;
4093 }
4094 }
4095
4096 sym_text_len = strlen (sym_text);
4097
4098 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4099
4100 if (current_language->la_language == language_cplus
4101 || current_language->la_language == language_java
4102 || current_language->la_language == language_fortran)
4103 {
4104 /* These languages may have parameters entered by user but they are never
4105 present in the partial symbol tables. */
4106
4107 const char *cs = memchr (sym_text, '(', sym_text_len);
4108
4109 if (cs)
4110 sym_text_len = cs - sym_text;
4111 }
4112 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4113
4114 return_val_size = 100;
4115 return_val_index = 0;
4116 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4117 return_val[0] = NULL;
4118 back_to = make_cleanup (do_free_completion_list, &return_val);
4119
4120 datum.sym_text = sym_text;
4121 datum.sym_text_len = sym_text_len;
4122 datum.text = text;
4123 datum.word = word;
4124
4125 /* Look through the partial symtabs for all symbols which begin
4126 by matching SYM_TEXT. Expand all CUs that you find to the list.
4127 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4128 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4129
4130 /* At this point scan through the misc symbol vectors and add each
4131 symbol you find to the list. Eventually we want to ignore
4132 anything that isn't a text symbol (everything else will be
4133 handled by the psymtab code above). */
4134
4135 ALL_MSYMBOLS (objfile, msymbol)
4136 {
4137 QUIT;
4138 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4139
4140 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4141 }
4142
4143 /* Search upwards from currently selected frame (so that we can
4144 complete on local vars). Also catch fields of types defined in
4145 this places which match our text string. Only complete on types
4146 visible from current context. */
4147
4148 b = get_selected_block (0);
4149 surrounding_static_block = block_static_block (b);
4150 surrounding_global_block = block_global_block (b);
4151 if (surrounding_static_block != NULL)
4152 while (b != surrounding_static_block)
4153 {
4154 QUIT;
4155
4156 ALL_BLOCK_SYMBOLS (b, iter, sym)
4157 {
4158 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4159 word);
4160 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4161 word);
4162 }
4163
4164 /* Stop when we encounter an enclosing function. Do not stop for
4165 non-inlined functions - the locals of the enclosing function
4166 are in scope for a nested function. */
4167 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4168 break;
4169 b = BLOCK_SUPERBLOCK (b);
4170 }
4171
4172 /* Add fields from the file's types; symbols will be added below. */
4173
4174 if (surrounding_static_block != NULL)
4175 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4176 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4177
4178 if (surrounding_global_block != NULL)
4179 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4180 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4181
4182 /* Go through the symtabs and check the externs and statics for
4183 symbols which match. */
4184
4185 ALL_PRIMARY_SYMTABS (objfile, s)
4186 {
4187 QUIT;
4188 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4189 ALL_BLOCK_SYMBOLS (b, iter, sym)
4190 {
4191 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4192 }
4193 }
4194
4195 ALL_PRIMARY_SYMTABS (objfile, s)
4196 {
4197 QUIT;
4198 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4199 ALL_BLOCK_SYMBOLS (b, iter, sym)
4200 {
4201 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4202 }
4203 }
4204
4205 if (current_language->la_macro_expansion == macro_expansion_c)
4206 {
4207 struct macro_scope *scope;
4208
4209 /* Add any macros visible in the default scope. Note that this
4210 may yield the occasional wrong result, because an expression
4211 might be evaluated in a scope other than the default. For
4212 example, if the user types "break file:line if <TAB>", the
4213 resulting expression will be evaluated at "file:line" -- but
4214 at there does not seem to be a way to detect this at
4215 completion time. */
4216 scope = default_macro_scope ();
4217 if (scope)
4218 {
4219 macro_for_each_in_scope (scope->file, scope->line,
4220 add_macro_name, &datum);
4221 xfree (scope);
4222 }
4223
4224 /* User-defined macros are always visible. */
4225 macro_for_each (macro_user_macros, add_macro_name, &datum);
4226 }
4227
4228 discard_cleanups (back_to);
4229 return (return_val);
4230 }
4231
4232 char **
4233 default_make_symbol_completion_list (char *text, char *word)
4234 {
4235 return default_make_symbol_completion_list_break_on (text, word, "");
4236 }
4237
4238 /* Return a NULL terminated array of all symbols (regardless of class)
4239 which begin by matching TEXT. If the answer is no symbols, then
4240 the return value is an array which contains only a NULL pointer. */
4241
4242 char **
4243 make_symbol_completion_list (char *text, char *word)
4244 {
4245 return current_language->la_make_symbol_completion_list (text, word);
4246 }
4247
4248 /* Like make_symbol_completion_list, but suitable for use as a
4249 completion function. */
4250
4251 char **
4252 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4253 char *text, char *word)
4254 {
4255 return make_symbol_completion_list (text, word);
4256 }
4257
4258 /* Like make_symbol_completion_list, but returns a list of symbols
4259 defined in a source file FILE. */
4260
4261 char **
4262 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4263 {
4264 struct symbol *sym;
4265 struct symtab *s;
4266 struct block *b;
4267 struct dict_iterator iter;
4268 /* The symbol we are completing on. Points in same buffer as text. */
4269 char *sym_text;
4270 /* Length of sym_text. */
4271 int sym_text_len;
4272
4273 /* Now look for the symbol we are supposed to complete on.
4274 FIXME: This should be language-specific. */
4275 {
4276 char *p;
4277 char quote_found;
4278 char *quote_pos = NULL;
4279
4280 /* First see if this is a quoted string. */
4281 quote_found = '\0';
4282 for (p = text; *p != '\0'; ++p)
4283 {
4284 if (quote_found != '\0')
4285 {
4286 if (*p == quote_found)
4287 /* Found close quote. */
4288 quote_found = '\0';
4289 else if (*p == '\\' && p[1] == quote_found)
4290 /* A backslash followed by the quote character
4291 doesn't end the string. */
4292 ++p;
4293 }
4294 else if (*p == '\'' || *p == '"')
4295 {
4296 quote_found = *p;
4297 quote_pos = p;
4298 }
4299 }
4300 if (quote_found == '\'')
4301 /* A string within single quotes can be a symbol, so complete on it. */
4302 sym_text = quote_pos + 1;
4303 else if (quote_found == '"')
4304 /* A double-quoted string is never a symbol, nor does it make sense
4305 to complete it any other way. */
4306 {
4307 return_val = (char **) xmalloc (sizeof (char *));
4308 return_val[0] = NULL;
4309 return return_val;
4310 }
4311 else
4312 {
4313 /* Not a quoted string. */
4314 sym_text = language_search_unquoted_string (text, p);
4315 }
4316 }
4317
4318 sym_text_len = strlen (sym_text);
4319
4320 return_val_size = 10;
4321 return_val_index = 0;
4322 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4323 return_val[0] = NULL;
4324
4325 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4326 in). */
4327 s = lookup_symtab (srcfile);
4328 if (s == NULL)
4329 {
4330 /* Maybe they typed the file with leading directories, while the
4331 symbol tables record only its basename. */
4332 const char *tail = lbasename (srcfile);
4333
4334 if (tail > srcfile)
4335 s = lookup_symtab (tail);
4336 }
4337
4338 /* If we have no symtab for that file, return an empty list. */
4339 if (s == NULL)
4340 return (return_val);
4341
4342 /* Go through this symtab and check the externs and statics for
4343 symbols which match. */
4344
4345 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4346 ALL_BLOCK_SYMBOLS (b, iter, sym)
4347 {
4348 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4349 }
4350
4351 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4352 ALL_BLOCK_SYMBOLS (b, iter, sym)
4353 {
4354 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4355 }
4356
4357 return (return_val);
4358 }
4359
4360 /* A helper function for make_source_files_completion_list. It adds
4361 another file name to a list of possible completions, growing the
4362 list as necessary. */
4363
4364 static void
4365 add_filename_to_list (const char *fname, char *text, char *word,
4366 char ***list, int *list_used, int *list_alloced)
4367 {
4368 char *new;
4369 size_t fnlen = strlen (fname);
4370
4371 if (*list_used + 1 >= *list_alloced)
4372 {
4373 *list_alloced *= 2;
4374 *list = (char **) xrealloc ((char *) *list,
4375 *list_alloced * sizeof (char *));
4376 }
4377
4378 if (word == text)
4379 {
4380 /* Return exactly fname. */
4381 new = xmalloc (fnlen + 5);
4382 strcpy (new, fname);
4383 }
4384 else if (word > text)
4385 {
4386 /* Return some portion of fname. */
4387 new = xmalloc (fnlen + 5);
4388 strcpy (new, fname + (word - text));
4389 }
4390 else
4391 {
4392 /* Return some of TEXT plus fname. */
4393 new = xmalloc (fnlen + (text - word) + 5);
4394 strncpy (new, word, text - word);
4395 new[text - word] = '\0';
4396 strcat (new, fname);
4397 }
4398 (*list)[*list_used] = new;
4399 (*list)[++*list_used] = NULL;
4400 }
4401
4402 static int
4403 not_interesting_fname (const char *fname)
4404 {
4405 static const char *illegal_aliens[] = {
4406 "_globals_", /* inserted by coff_symtab_read */
4407 NULL
4408 };
4409 int i;
4410
4411 for (i = 0; illegal_aliens[i]; i++)
4412 {
4413 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4414 return 1;
4415 }
4416 return 0;
4417 }
4418
4419 /* An object of this type is passed as the user_data argument to
4420 map_partial_symbol_filenames. */
4421 struct add_partial_filename_data
4422 {
4423 int *first;
4424 char *text;
4425 char *word;
4426 int text_len;
4427 char ***list;
4428 int *list_used;
4429 int *list_alloced;
4430 };
4431
4432 /* A callback for map_partial_symbol_filenames. */
4433 static void
4434 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4435 void *user_data)
4436 {
4437 struct add_partial_filename_data *data = user_data;
4438
4439 if (not_interesting_fname (filename))
4440 return;
4441 if (!filename_seen (filename, 1, data->first)
4442 && filename_ncmp (filename, data->text, data->text_len) == 0)
4443 {
4444 /* This file matches for a completion; add it to the
4445 current list of matches. */
4446 add_filename_to_list (filename, data->text, data->word,
4447 data->list, data->list_used, data->list_alloced);
4448 }
4449 else
4450 {
4451 const char *base_name = lbasename (filename);
4452
4453 if (base_name != filename
4454 && !filename_seen (base_name, 1, data->first)
4455 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4456 add_filename_to_list (base_name, data->text, data->word,
4457 data->list, data->list_used, data->list_alloced);
4458 }
4459 }
4460
4461 /* Return a NULL terminated array of all source files whose names
4462 begin with matching TEXT. The file names are looked up in the
4463 symbol tables of this program. If the answer is no matchess, then
4464 the return value is an array which contains only a NULL pointer. */
4465
4466 char **
4467 make_source_files_completion_list (char *text, char *word)
4468 {
4469 struct symtab *s;
4470 struct objfile *objfile;
4471 int first = 1;
4472 int list_alloced = 1;
4473 int list_used = 0;
4474 size_t text_len = strlen (text);
4475 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4476 const char *base_name;
4477 struct add_partial_filename_data datum;
4478 struct cleanup *back_to;
4479
4480 list[0] = NULL;
4481
4482 if (!have_full_symbols () && !have_partial_symbols ())
4483 return list;
4484
4485 back_to = make_cleanup (do_free_completion_list, &list);
4486
4487 ALL_SYMTABS (objfile, s)
4488 {
4489 if (not_interesting_fname (s->filename))
4490 continue;
4491 if (!filename_seen (s->filename, 1, &first)
4492 && filename_ncmp (s->filename, text, text_len) == 0)
4493 {
4494 /* This file matches for a completion; add it to the current
4495 list of matches. */
4496 add_filename_to_list (s->filename, text, word,
4497 &list, &list_used, &list_alloced);
4498 }
4499 else
4500 {
4501 /* NOTE: We allow the user to type a base name when the
4502 debug info records leading directories, but not the other
4503 way around. This is what subroutines of breakpoint
4504 command do when they parse file names. */
4505 base_name = lbasename (s->filename);
4506 if (base_name != s->filename
4507 && !filename_seen (base_name, 1, &first)
4508 && filename_ncmp (base_name, text, text_len) == 0)
4509 add_filename_to_list (base_name, text, word,
4510 &list, &list_used, &list_alloced);
4511 }
4512 }
4513
4514 datum.first = &first;
4515 datum.text = text;
4516 datum.word = word;
4517 datum.text_len = text_len;
4518 datum.list = &list;
4519 datum.list_used = &list_used;
4520 datum.list_alloced = &list_alloced;
4521 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4522 0 /*need_fullname*/);
4523 discard_cleanups (back_to);
4524
4525 return list;
4526 }
4527
4528 /* Determine if PC is in the prologue of a function. The prologue is the area
4529 between the first instruction of a function, and the first executable line.
4530 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4531
4532 If non-zero, func_start is where we think the prologue starts, possibly
4533 by previous examination of symbol table information. */
4534
4535 int
4536 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4537 {
4538 struct symtab_and_line sal;
4539 CORE_ADDR func_addr, func_end;
4540
4541 /* We have several sources of information we can consult to figure
4542 this out.
4543 - Compilers usually emit line number info that marks the prologue
4544 as its own "source line". So the ending address of that "line"
4545 is the end of the prologue. If available, this is the most
4546 reliable method.
4547 - The minimal symbols and partial symbols, which can usually tell
4548 us the starting and ending addresses of a function.
4549 - If we know the function's start address, we can call the
4550 architecture-defined gdbarch_skip_prologue function to analyze the
4551 instruction stream and guess where the prologue ends.
4552 - Our `func_start' argument; if non-zero, this is the caller's
4553 best guess as to the function's entry point. At the time of
4554 this writing, handle_inferior_event doesn't get this right, so
4555 it should be our last resort. */
4556
4557 /* Consult the partial symbol table, to find which function
4558 the PC is in. */
4559 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4560 {
4561 CORE_ADDR prologue_end;
4562
4563 /* We don't even have minsym information, so fall back to using
4564 func_start, if given. */
4565 if (! func_start)
4566 return 1; /* We *might* be in a prologue. */
4567
4568 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4569
4570 return func_start <= pc && pc < prologue_end;
4571 }
4572
4573 /* If we have line number information for the function, that's
4574 usually pretty reliable. */
4575 sal = find_pc_line (func_addr, 0);
4576
4577 /* Now sal describes the source line at the function's entry point,
4578 which (by convention) is the prologue. The end of that "line",
4579 sal.end, is the end of the prologue.
4580
4581 Note that, for functions whose source code is all on a single
4582 line, the line number information doesn't always end up this way.
4583 So we must verify that our purported end-of-prologue address is
4584 *within* the function, not at its start or end. */
4585 if (sal.line == 0
4586 || sal.end <= func_addr
4587 || func_end <= sal.end)
4588 {
4589 /* We don't have any good line number info, so use the minsym
4590 information, together with the architecture-specific prologue
4591 scanning code. */
4592 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4593
4594 return func_addr <= pc && pc < prologue_end;
4595 }
4596
4597 /* We have line number info, and it looks good. */
4598 return func_addr <= pc && pc < sal.end;
4599 }
4600
4601 /* Given PC at the function's start address, attempt to find the
4602 prologue end using SAL information. Return zero if the skip fails.
4603
4604 A non-optimized prologue traditionally has one SAL for the function
4605 and a second for the function body. A single line function has
4606 them both pointing at the same line.
4607
4608 An optimized prologue is similar but the prologue may contain
4609 instructions (SALs) from the instruction body. Need to skip those
4610 while not getting into the function body.
4611
4612 The functions end point and an increasing SAL line are used as
4613 indicators of the prologue's endpoint.
4614
4615 This code is based on the function refine_prologue_limit
4616 (found in ia64). */
4617
4618 CORE_ADDR
4619 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4620 {
4621 struct symtab_and_line prologue_sal;
4622 CORE_ADDR start_pc;
4623 CORE_ADDR end_pc;
4624 struct block *bl;
4625
4626 /* Get an initial range for the function. */
4627 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4628 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4629
4630 prologue_sal = find_pc_line (start_pc, 0);
4631 if (prologue_sal.line != 0)
4632 {
4633 /* For languages other than assembly, treat two consecutive line
4634 entries at the same address as a zero-instruction prologue.
4635 The GNU assembler emits separate line notes for each instruction
4636 in a multi-instruction macro, but compilers generally will not
4637 do this. */
4638 if (prologue_sal.symtab->language != language_asm)
4639 {
4640 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4641 int idx = 0;
4642
4643 /* Skip any earlier lines, and any end-of-sequence marker
4644 from a previous function. */
4645 while (linetable->item[idx].pc != prologue_sal.pc
4646 || linetable->item[idx].line == 0)
4647 idx++;
4648
4649 if (idx+1 < linetable->nitems
4650 && linetable->item[idx+1].line != 0
4651 && linetable->item[idx+1].pc == start_pc)
4652 return start_pc;
4653 }
4654
4655 /* If there is only one sal that covers the entire function,
4656 then it is probably a single line function, like
4657 "foo(){}". */
4658 if (prologue_sal.end >= end_pc)
4659 return 0;
4660
4661 while (prologue_sal.end < end_pc)
4662 {
4663 struct symtab_and_line sal;
4664
4665 sal = find_pc_line (prologue_sal.end, 0);
4666 if (sal.line == 0)
4667 break;
4668 /* Assume that a consecutive SAL for the same (or larger)
4669 line mark the prologue -> body transition. */
4670 if (sal.line >= prologue_sal.line)
4671 break;
4672
4673 /* The line number is smaller. Check that it's from the
4674 same function, not something inlined. If it's inlined,
4675 then there is no point comparing the line numbers. */
4676 bl = block_for_pc (prologue_sal.end);
4677 while (bl)
4678 {
4679 if (block_inlined_p (bl))
4680 break;
4681 if (BLOCK_FUNCTION (bl))
4682 {
4683 bl = NULL;
4684 break;
4685 }
4686 bl = BLOCK_SUPERBLOCK (bl);
4687 }
4688 if (bl != NULL)
4689 break;
4690
4691 /* The case in which compiler's optimizer/scheduler has
4692 moved instructions into the prologue. We look ahead in
4693 the function looking for address ranges whose
4694 corresponding line number is less the first one that we
4695 found for the function. This is more conservative then
4696 refine_prologue_limit which scans a large number of SALs
4697 looking for any in the prologue. */
4698 prologue_sal = sal;
4699 }
4700 }
4701
4702 if (prologue_sal.end < end_pc)
4703 /* Return the end of this line, or zero if we could not find a
4704 line. */
4705 return prologue_sal.end;
4706 else
4707 /* Don't return END_PC, which is past the end of the function. */
4708 return prologue_sal.pc;
4709 }
4710 \f
4711 struct symtabs_and_lines
4712 decode_line_spec (char *string, int flags)
4713 {
4714 struct symtabs_and_lines sals;
4715 struct symtab_and_line cursal;
4716
4717 if (string == 0)
4718 error (_("Empty line specification."));
4719
4720 /* We use whatever is set as the current source line. We do not try
4721 and get a default or it will recursively call us! */
4722 cursal = get_current_source_symtab_and_line ();
4723
4724 sals = decode_line_1 (&string, flags,
4725 cursal.symtab, cursal.line);
4726
4727 if (*string)
4728 error (_("Junk at end of line specification: %s"), string);
4729 return sals;
4730 }
4731
4732 /* Track MAIN */
4733 static char *name_of_main;
4734 enum language language_of_main = language_unknown;
4735
4736 void
4737 set_main_name (const char *name)
4738 {
4739 if (name_of_main != NULL)
4740 {
4741 xfree (name_of_main);
4742 name_of_main = NULL;
4743 language_of_main = language_unknown;
4744 }
4745 if (name != NULL)
4746 {
4747 name_of_main = xstrdup (name);
4748 language_of_main = language_unknown;
4749 }
4750 }
4751
4752 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4753 accordingly. */
4754
4755 static void
4756 find_main_name (void)
4757 {
4758 const char *new_main_name;
4759
4760 /* Try to see if the main procedure is in Ada. */
4761 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4762 be to add a new method in the language vector, and call this
4763 method for each language until one of them returns a non-empty
4764 name. This would allow us to remove this hard-coded call to
4765 an Ada function. It is not clear that this is a better approach
4766 at this point, because all methods need to be written in a way
4767 such that false positives never be returned. For instance, it is
4768 important that a method does not return a wrong name for the main
4769 procedure if the main procedure is actually written in a different
4770 language. It is easy to guaranty this with Ada, since we use a
4771 special symbol generated only when the main in Ada to find the name
4772 of the main procedure. It is difficult however to see how this can
4773 be guarantied for languages such as C, for instance. This suggests
4774 that order of call for these methods becomes important, which means
4775 a more complicated approach. */
4776 new_main_name = ada_main_name ();
4777 if (new_main_name != NULL)
4778 {
4779 set_main_name (new_main_name);
4780 return;
4781 }
4782
4783 new_main_name = pascal_main_name ();
4784 if (new_main_name != NULL)
4785 {
4786 set_main_name (new_main_name);
4787 return;
4788 }
4789
4790 /* The languages above didn't identify the name of the main procedure.
4791 Fallback to "main". */
4792 set_main_name ("main");
4793 }
4794
4795 char *
4796 main_name (void)
4797 {
4798 if (name_of_main == NULL)
4799 find_main_name ();
4800
4801 return name_of_main;
4802 }
4803
4804 /* Handle ``executable_changed'' events for the symtab module. */
4805
4806 static void
4807 symtab_observer_executable_changed (void)
4808 {
4809 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4810 set_main_name (NULL);
4811 }
4812
4813 /* Return 1 if the supplied producer string matches the ARM RealView
4814 compiler (armcc). */
4815
4816 int
4817 producer_is_realview (const char *producer)
4818 {
4819 static const char *const arm_idents[] = {
4820 "ARM C Compiler, ADS",
4821 "Thumb C Compiler, ADS",
4822 "ARM C++ Compiler, ADS",
4823 "Thumb C++ Compiler, ADS",
4824 "ARM/Thumb C/C++ Compiler, RVCT",
4825 "ARM C/C++ Compiler, RVCT"
4826 };
4827 int i;
4828
4829 if (producer == NULL)
4830 return 0;
4831
4832 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4833 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4834 return 1;
4835
4836 return 0;
4837 }
4838
4839 void
4840 _initialize_symtab (void)
4841 {
4842 add_info ("variables", variables_info, _("\
4843 All global and static variable names, or those matching REGEXP."));
4844 if (dbx_commands)
4845 add_com ("whereis", class_info, variables_info, _("\
4846 All global and static variable names, or those matching REGEXP."));
4847
4848 add_info ("functions", functions_info,
4849 _("All function names, or those matching REGEXP."));
4850
4851 /* FIXME: This command has at least the following problems:
4852 1. It prints builtin types (in a very strange and confusing fashion).
4853 2. It doesn't print right, e.g. with
4854 typedef struct foo *FOO
4855 type_print prints "FOO" when we want to make it (in this situation)
4856 print "struct foo *".
4857 I also think "ptype" or "whatis" is more likely to be useful (but if
4858 there is much disagreement "info types" can be fixed). */
4859 add_info ("types", types_info,
4860 _("All type names, or those matching REGEXP."));
4861
4862 add_info ("sources", sources_info,
4863 _("Source files in the program."));
4864
4865 add_com ("rbreak", class_breakpoint, rbreak_command,
4866 _("Set a breakpoint for all functions matching REGEXP."));
4867
4868 if (xdb_commands)
4869 {
4870 add_com ("lf", class_info, sources_info,
4871 _("Source files in the program"));
4872 add_com ("lg", class_info, variables_info, _("\
4873 All global and static variable names, or those matching REGEXP."));
4874 }
4875
4876 add_setshow_enum_cmd ("multiple-symbols", no_class,
4877 multiple_symbols_modes, &multiple_symbols_mode,
4878 _("\
4879 Set the debugger behavior when more than one symbol are possible matches\n\
4880 in an expression."), _("\
4881 Show how the debugger handles ambiguities in expressions."), _("\
4882 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4883 NULL, NULL, &setlist, &showlist);
4884
4885 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4886 &basenames_may_differ, _("\
4887 Set whether a source file may have multiple base names."), _("\
4888 Show whether a source file may have multiple base names."), _("\
4889 (A \"base name\" is the name of a file with the directory part removed.\n\
4890 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4891 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4892 before comparing them. Canonicalization is an expensive operation,\n\
4893 but it allows the same file be known by more than one base name.\n\
4894 If not set (the default), all source files are assumed to have just\n\
4895 one base name, and gdb will do file name comparisons more efficiently."),
4896 NULL, NULL,
4897 &setlist, &showlist);
4898
4899 observer_attach_executable_changed (symtab_observer_executable_changed);
4900 }
This page took 0.160171 seconds and 4 git commands to generate.