Remove most uses of ALL_OBJFILES
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46 #include "typeprint.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observable.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "parser-defs.h"
64 #include "completer.h"
65 #include "progspace-and-thread.h"
66 #include "common/gdb_optional.h"
67 #include "filename-seen-cache.h"
68 #include "arch-utils.h"
69 #include <algorithm>
70 #include "common/pathstuff.h"
71
72 /* Forward declarations for local functions. */
73
74 static void rbreak_command (const char *, int);
75
76 static int find_line_common (struct linetable *, int, int *, int);
77
78 static struct block_symbol
79 lookup_symbol_aux (const char *name,
80 symbol_name_match_type match_type,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *);
85
86 static
87 struct block_symbol lookup_local_symbol (const char *name,
88 symbol_name_match_type match_type,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static struct block_symbol
94 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
95 const char *name, const domain_enum domain);
96
97 /* See symtab.h. */
98 const struct block_symbol null_block_symbol = { NULL, NULL };
99
100 /* Program space key for finding name and language of "main". */
101
102 static const struct program_space_data *main_progspace_key;
103
104 /* Type of the data stored on the program space. */
105
106 struct main_info
107 {
108 /* Name of "main". */
109
110 char *name_of_main;
111
112 /* Language of "main". */
113
114 enum language language_of_main;
115 };
116
117 /* Program space key for finding its symbol cache. */
118
119 static const struct program_space_data *symbol_cache_key;
120
121 /* The default symbol cache size.
122 There is no extra cpu cost for large N (except when flushing the cache,
123 which is rare). The value here is just a first attempt. A better default
124 value may be higher or lower. A prime number can make up for a bad hash
125 computation, so that's why the number is what it is. */
126 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
127
128 /* The maximum symbol cache size.
129 There's no method to the decision of what value to use here, other than
130 there's no point in allowing a user typo to make gdb consume all memory. */
131 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
132
133 /* symbol_cache_lookup returns this if a previous lookup failed to find the
134 symbol in any objfile. */
135 #define SYMBOL_LOOKUP_FAILED \
136 ((struct block_symbol) {(struct symbol *) 1, NULL})
137 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
138
139 /* Recording lookups that don't find the symbol is just as important, if not
140 more so, than recording found symbols. */
141
142 enum symbol_cache_slot_state
143 {
144 SYMBOL_SLOT_UNUSED,
145 SYMBOL_SLOT_NOT_FOUND,
146 SYMBOL_SLOT_FOUND
147 };
148
149 struct symbol_cache_slot
150 {
151 enum symbol_cache_slot_state state;
152
153 /* The objfile that was current when the symbol was looked up.
154 This is only needed for global blocks, but for simplicity's sake
155 we allocate the space for both. If data shows the extra space used
156 for static blocks is a problem, we can split things up then.
157
158 Global blocks need cache lookup to include the objfile context because
159 we need to account for gdbarch_iterate_over_objfiles_in_search_order
160 which can traverse objfiles in, effectively, any order, depending on
161 the current objfile, thus affecting which symbol is found. Normally,
162 only the current objfile is searched first, and then the rest are
163 searched in recorded order; but putting cache lookup inside
164 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
165 Instead we just make the current objfile part of the context of
166 cache lookup. This means we can record the same symbol multiple times,
167 each with a different "current objfile" that was in effect when the
168 lookup was saved in the cache, but cache space is pretty cheap. */
169 const struct objfile *objfile_context;
170
171 union
172 {
173 struct block_symbol found;
174 struct
175 {
176 char *name;
177 domain_enum domain;
178 } not_found;
179 } value;
180 };
181
182 /* Symbols don't specify global vs static block.
183 So keep them in separate caches. */
184
185 struct block_symbol_cache
186 {
187 unsigned int hits;
188 unsigned int misses;
189 unsigned int collisions;
190
191 /* SYMBOLS is a variable length array of this size.
192 One can imagine that in general one cache (global/static) should be a
193 fraction of the size of the other, but there's no data at the moment
194 on which to decide. */
195 unsigned int size;
196
197 struct symbol_cache_slot symbols[1];
198 };
199
200 /* The symbol cache.
201
202 Searching for symbols in the static and global blocks over multiple objfiles
203 again and again can be slow, as can searching very big objfiles. This is a
204 simple cache to improve symbol lookup performance, which is critical to
205 overall gdb performance.
206
207 Symbols are hashed on the name, its domain, and block.
208 They are also hashed on their objfile for objfile-specific lookups. */
209
210 struct symbol_cache
211 {
212 struct block_symbol_cache *global_symbols;
213 struct block_symbol_cache *static_symbols;
214 };
215
216 /* When non-zero, print debugging messages related to symtab creation. */
217 unsigned int symtab_create_debug = 0;
218
219 /* When non-zero, print debugging messages related to symbol lookup. */
220 unsigned int symbol_lookup_debug = 0;
221
222 /* The size of the cache is staged here. */
223 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
224
225 /* The current value of the symbol cache size.
226 This is saved so that if the user enters a value too big we can restore
227 the original value from here. */
228 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
229
230 /* Non-zero if a file may be known by two different basenames.
231 This is the uncommon case, and significantly slows down gdb.
232 Default set to "off" to not slow down the common case. */
233 int basenames_may_differ = 0;
234
235 /* Allow the user to configure the debugger behavior with respect
236 to multiple-choice menus when more than one symbol matches during
237 a symbol lookup. */
238
239 const char multiple_symbols_ask[] = "ask";
240 const char multiple_symbols_all[] = "all";
241 const char multiple_symbols_cancel[] = "cancel";
242 static const char *const multiple_symbols_modes[] =
243 {
244 multiple_symbols_ask,
245 multiple_symbols_all,
246 multiple_symbols_cancel,
247 NULL
248 };
249 static const char *multiple_symbols_mode = multiple_symbols_all;
250
251 /* Read-only accessor to AUTO_SELECT_MODE. */
252
253 const char *
254 multiple_symbols_select_mode (void)
255 {
256 return multiple_symbols_mode;
257 }
258
259 /* Return the name of a domain_enum. */
260
261 const char *
262 domain_name (domain_enum e)
263 {
264 switch (e)
265 {
266 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
267 case VAR_DOMAIN: return "VAR_DOMAIN";
268 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
269 case MODULE_DOMAIN: return "MODULE_DOMAIN";
270 case LABEL_DOMAIN: return "LABEL_DOMAIN";
271 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
272 default: gdb_assert_not_reached ("bad domain_enum");
273 }
274 }
275
276 /* Return the name of a search_domain . */
277
278 const char *
279 search_domain_name (enum search_domain e)
280 {
281 switch (e)
282 {
283 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
284 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
285 case TYPES_DOMAIN: return "TYPES_DOMAIN";
286 case ALL_DOMAIN: return "ALL_DOMAIN";
287 default: gdb_assert_not_reached ("bad search_domain");
288 }
289 }
290
291 /* See symtab.h. */
292
293 struct symtab *
294 compunit_primary_filetab (const struct compunit_symtab *cust)
295 {
296 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
297
298 /* The primary file symtab is the first one in the list. */
299 return COMPUNIT_FILETABS (cust);
300 }
301
302 /* See symtab.h. */
303
304 enum language
305 compunit_language (const struct compunit_symtab *cust)
306 {
307 struct symtab *symtab = compunit_primary_filetab (cust);
308
309 /* The language of the compunit symtab is the language of its primary
310 source file. */
311 return SYMTAB_LANGUAGE (symtab);
312 }
313
314 /* See whether FILENAME matches SEARCH_NAME using the rule that we
315 advertise to the user. (The manual's description of linespecs
316 describes what we advertise). Returns true if they match, false
317 otherwise. */
318
319 int
320 compare_filenames_for_search (const char *filename, const char *search_name)
321 {
322 int len = strlen (filename);
323 size_t search_len = strlen (search_name);
324
325 if (len < search_len)
326 return 0;
327
328 /* The tail of FILENAME must match. */
329 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
330 return 0;
331
332 /* Either the names must completely match, or the character
333 preceding the trailing SEARCH_NAME segment of FILENAME must be a
334 directory separator.
335
336 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
337 cannot match FILENAME "/path//dir/file.c" - as user has requested
338 absolute path. The sama applies for "c:\file.c" possibly
339 incorrectly hypothetically matching "d:\dir\c:\file.c".
340
341 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
342 compatible with SEARCH_NAME "file.c". In such case a compiler had
343 to put the "c:file.c" name into debug info. Such compatibility
344 works only on GDB built for DOS host. */
345 return (len == search_len
346 || (!IS_ABSOLUTE_PATH (search_name)
347 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
348 || (HAS_DRIVE_SPEC (filename)
349 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
350 }
351
352 /* Same as compare_filenames_for_search, but for glob-style patterns.
353 Heads up on the order of the arguments. They match the order of
354 compare_filenames_for_search, but it's the opposite of the order of
355 arguments to gdb_filename_fnmatch. */
356
357 int
358 compare_glob_filenames_for_search (const char *filename,
359 const char *search_name)
360 {
361 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
362 all /s have to be explicitly specified. */
363 int file_path_elements = count_path_elements (filename);
364 int search_path_elements = count_path_elements (search_name);
365
366 if (search_path_elements > file_path_elements)
367 return 0;
368
369 if (IS_ABSOLUTE_PATH (search_name))
370 {
371 return (search_path_elements == file_path_elements
372 && gdb_filename_fnmatch (search_name, filename,
373 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
374 }
375
376 {
377 const char *file_to_compare
378 = strip_leading_path_elements (filename,
379 file_path_elements - search_path_elements);
380
381 return gdb_filename_fnmatch (search_name, file_to_compare,
382 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
383 }
384 }
385
386 /* Check for a symtab of a specific name by searching some symtabs.
387 This is a helper function for callbacks of iterate_over_symtabs.
388
389 If NAME is not absolute, then REAL_PATH is NULL
390 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
391
392 The return value, NAME, REAL_PATH and CALLBACK are identical to the
393 `map_symtabs_matching_filename' method of quick_symbol_functions.
394
395 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
396 Each symtab within the specified compunit symtab is also searched.
397 AFTER_LAST is one past the last compunit symtab to search; NULL means to
398 search until the end of the list. */
399
400 bool
401 iterate_over_some_symtabs (const char *name,
402 const char *real_path,
403 struct compunit_symtab *first,
404 struct compunit_symtab *after_last,
405 gdb::function_view<bool (symtab *)> callback)
406 {
407 struct compunit_symtab *cust;
408 struct symtab *s;
409 const char* base_name = lbasename (name);
410
411 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
412 {
413 ALL_COMPUNIT_FILETABS (cust, s)
414 {
415 if (compare_filenames_for_search (s->filename, name))
416 {
417 if (callback (s))
418 return true;
419 continue;
420 }
421
422 /* Before we invoke realpath, which can get expensive when many
423 files are involved, do a quick comparison of the basenames. */
424 if (! basenames_may_differ
425 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
426 continue;
427
428 if (compare_filenames_for_search (symtab_to_fullname (s), name))
429 {
430 if (callback (s))
431 return true;
432 continue;
433 }
434
435 /* If the user gave us an absolute path, try to find the file in
436 this symtab and use its absolute path. */
437 if (real_path != NULL)
438 {
439 const char *fullname = symtab_to_fullname (s);
440
441 gdb_assert (IS_ABSOLUTE_PATH (real_path));
442 gdb_assert (IS_ABSOLUTE_PATH (name));
443 if (FILENAME_CMP (real_path, fullname) == 0)
444 {
445 if (callback (s))
446 return true;
447 continue;
448 }
449 }
450 }
451 }
452
453 return false;
454 }
455
456 /* Check for a symtab of a specific name; first in symtabs, then in
457 psymtabs. *If* there is no '/' in the name, a match after a '/'
458 in the symtab filename will also work.
459
460 Calls CALLBACK with each symtab that is found. If CALLBACK returns
461 true, the search stops. */
462
463 void
464 iterate_over_symtabs (const char *name,
465 gdb::function_view<bool (symtab *)> callback)
466 {
467 gdb::unique_xmalloc_ptr<char> real_path;
468
469 /* Here we are interested in canonicalizing an absolute path, not
470 absolutizing a relative path. */
471 if (IS_ABSOLUTE_PATH (name))
472 {
473 real_path = gdb_realpath (name);
474 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
475 }
476
477 for (objfile *objfile : all_objfiles (current_program_space))
478 {
479 if (iterate_over_some_symtabs (name, real_path.get (),
480 objfile->compunit_symtabs, NULL,
481 callback))
482 return;
483 }
484
485 /* Same search rules as above apply here, but now we look thru the
486 psymtabs. */
487
488 for (objfile *objfile : all_objfiles (current_program_space))
489 {
490 if (objfile->sf
491 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
492 name,
493 real_path.get (),
494 callback))
495 return;
496 }
497 }
498
499 /* A wrapper for iterate_over_symtabs that returns the first matching
500 symtab, or NULL. */
501
502 struct symtab *
503 lookup_symtab (const char *name)
504 {
505 struct symtab *result = NULL;
506
507 iterate_over_symtabs (name, [&] (symtab *symtab)
508 {
509 result = symtab;
510 return true;
511 });
512
513 return result;
514 }
515
516 \f
517 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
518 full method name, which consist of the class name (from T), the unadorned
519 method name from METHOD_ID, and the signature for the specific overload,
520 specified by SIGNATURE_ID. Note that this function is g++ specific. */
521
522 char *
523 gdb_mangle_name (struct type *type, int method_id, int signature_id)
524 {
525 int mangled_name_len;
526 char *mangled_name;
527 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
528 struct fn_field *method = &f[signature_id];
529 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
530 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
531 const char *newname = TYPE_NAME (type);
532
533 /* Does the form of physname indicate that it is the full mangled name
534 of a constructor (not just the args)? */
535 int is_full_physname_constructor;
536
537 int is_constructor;
538 int is_destructor = is_destructor_name (physname);
539 /* Need a new type prefix. */
540 const char *const_prefix = method->is_const ? "C" : "";
541 const char *volatile_prefix = method->is_volatile ? "V" : "";
542 char buf[20];
543 int len = (newname == NULL ? 0 : strlen (newname));
544
545 /* Nothing to do if physname already contains a fully mangled v3 abi name
546 or an operator name. */
547 if ((physname[0] == '_' && physname[1] == 'Z')
548 || is_operator_name (field_name))
549 return xstrdup (physname);
550
551 is_full_physname_constructor = is_constructor_name (physname);
552
553 is_constructor = is_full_physname_constructor
554 || (newname && strcmp (field_name, newname) == 0);
555
556 if (!is_destructor)
557 is_destructor = (startswith (physname, "__dt"));
558
559 if (is_destructor || is_full_physname_constructor)
560 {
561 mangled_name = (char *) xmalloc (strlen (physname) + 1);
562 strcpy (mangled_name, physname);
563 return mangled_name;
564 }
565
566 if (len == 0)
567 {
568 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
569 }
570 else if (physname[0] == 't' || physname[0] == 'Q')
571 {
572 /* The physname for template and qualified methods already includes
573 the class name. */
574 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
575 newname = NULL;
576 len = 0;
577 }
578 else
579 {
580 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
581 volatile_prefix, len);
582 }
583 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
584 + strlen (buf) + len + strlen (physname) + 1);
585
586 mangled_name = (char *) xmalloc (mangled_name_len);
587 if (is_constructor)
588 mangled_name[0] = '\0';
589 else
590 strcpy (mangled_name, field_name);
591
592 strcat (mangled_name, buf);
593 /* If the class doesn't have a name, i.e. newname NULL, then we just
594 mangle it using 0 for the length of the class. Thus it gets mangled
595 as something starting with `::' rather than `classname::'. */
596 if (newname != NULL)
597 strcat (mangled_name, newname);
598
599 strcat (mangled_name, physname);
600 return (mangled_name);
601 }
602
603 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
604 correctly allocated. */
605
606 void
607 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
608 const char *name,
609 struct obstack *obstack)
610 {
611 if (gsymbol->language == language_ada)
612 {
613 if (name == NULL)
614 {
615 gsymbol->ada_mangled = 0;
616 gsymbol->language_specific.obstack = obstack;
617 }
618 else
619 {
620 gsymbol->ada_mangled = 1;
621 gsymbol->language_specific.demangled_name = name;
622 }
623 }
624 else
625 gsymbol->language_specific.demangled_name = name;
626 }
627
628 /* Return the demangled name of GSYMBOL. */
629
630 const char *
631 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
632 {
633 if (gsymbol->language == language_ada)
634 {
635 if (!gsymbol->ada_mangled)
636 return NULL;
637 /* Fall through. */
638 }
639
640 return gsymbol->language_specific.demangled_name;
641 }
642
643 \f
644 /* Initialize the language dependent portion of a symbol
645 depending upon the language for the symbol. */
646
647 void
648 symbol_set_language (struct general_symbol_info *gsymbol,
649 enum language language,
650 struct obstack *obstack)
651 {
652 gsymbol->language = language;
653 if (gsymbol->language == language_cplus
654 || gsymbol->language == language_d
655 || gsymbol->language == language_go
656 || gsymbol->language == language_objc
657 || gsymbol->language == language_fortran)
658 {
659 symbol_set_demangled_name (gsymbol, NULL, obstack);
660 }
661 else if (gsymbol->language == language_ada)
662 {
663 gdb_assert (gsymbol->ada_mangled == 0);
664 gsymbol->language_specific.obstack = obstack;
665 }
666 else
667 {
668 memset (&gsymbol->language_specific, 0,
669 sizeof (gsymbol->language_specific));
670 }
671 }
672
673 /* Functions to initialize a symbol's mangled name. */
674
675 /* Objects of this type are stored in the demangled name hash table. */
676 struct demangled_name_entry
677 {
678 const char *mangled;
679 char demangled[1];
680 };
681
682 /* Hash function for the demangled name hash. */
683
684 static hashval_t
685 hash_demangled_name_entry (const void *data)
686 {
687 const struct demangled_name_entry *e
688 = (const struct demangled_name_entry *) data;
689
690 return htab_hash_string (e->mangled);
691 }
692
693 /* Equality function for the demangled name hash. */
694
695 static int
696 eq_demangled_name_entry (const void *a, const void *b)
697 {
698 const struct demangled_name_entry *da
699 = (const struct demangled_name_entry *) a;
700 const struct demangled_name_entry *db
701 = (const struct demangled_name_entry *) b;
702
703 return strcmp (da->mangled, db->mangled) == 0;
704 }
705
706 /* Create the hash table used for demangled names. Each hash entry is
707 a pair of strings; one for the mangled name and one for the demangled
708 name. The entry is hashed via just the mangled name. */
709
710 static void
711 create_demangled_names_hash (struct objfile *objfile)
712 {
713 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
714 The hash table code will round this up to the next prime number.
715 Choosing a much larger table size wastes memory, and saves only about
716 1% in symbol reading. */
717
718 objfile->per_bfd->demangled_names_hash = htab_create_alloc
719 (256, hash_demangled_name_entry, eq_demangled_name_entry,
720 NULL, xcalloc, xfree);
721 }
722
723 /* Try to determine the demangled name for a symbol, based on the
724 language of that symbol. If the language is set to language_auto,
725 it will attempt to find any demangling algorithm that works and
726 then set the language appropriately. The returned name is allocated
727 by the demangler and should be xfree'd. */
728
729 static char *
730 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
731 const char *mangled)
732 {
733 char *demangled = NULL;
734 int i;
735
736 if (gsymbol->language == language_unknown)
737 gsymbol->language = language_auto;
738
739 if (gsymbol->language != language_auto)
740 {
741 const struct language_defn *lang = language_def (gsymbol->language);
742
743 language_sniff_from_mangled_name (lang, mangled, &demangled);
744 return demangled;
745 }
746
747 for (i = language_unknown; i < nr_languages; ++i)
748 {
749 enum language l = (enum language) i;
750 const struct language_defn *lang = language_def (l);
751
752 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
753 {
754 gsymbol->language = l;
755 return demangled;
756 }
757 }
758
759 return NULL;
760 }
761
762 /* Set both the mangled and demangled (if any) names for GSYMBOL based
763 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
764 objfile's obstack; but if COPY_NAME is 0 and if NAME is
765 NUL-terminated, then this function assumes that NAME is already
766 correctly saved (either permanently or with a lifetime tied to the
767 objfile), and it will not be copied.
768
769 The hash table corresponding to OBJFILE is used, and the memory
770 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
771 so the pointer can be discarded after calling this function. */
772
773 void
774 symbol_set_names (struct general_symbol_info *gsymbol,
775 const char *linkage_name, int len, int copy_name,
776 struct objfile *objfile)
777 {
778 struct demangled_name_entry **slot;
779 /* A 0-terminated copy of the linkage name. */
780 const char *linkage_name_copy;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name. */
788 if (!copy_name)
789 gsymbol->name = linkage_name;
790 else
791 {
792 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
793 len + 1);
794
795 memcpy (name, linkage_name, len);
796 name[len] = '\0';
797 gsymbol->name = name;
798 }
799 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
800
801 return;
802 }
803
804 if (per_bfd->demangled_names_hash == NULL)
805 create_demangled_names_hash (objfile);
806
807 if (linkage_name[len] != '\0')
808 {
809 char *alloc_name;
810
811 alloc_name = (char *) alloca (len + 1);
812 memcpy (alloc_name, linkage_name, len);
813 alloc_name[len] = '\0';
814
815 linkage_name_copy = alloc_name;
816 }
817 else
818 linkage_name_copy = linkage_name;
819
820 /* Set the symbol language. */
821 char *demangled_name_ptr
822 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
823 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
824
825 entry.mangled = linkage_name_copy;
826 slot = ((struct demangled_name_entry **)
827 htab_find_slot (per_bfd->demangled_names_hash,
828 &entry, INSERT));
829
830 /* If this name is not in the hash table, add it. */
831 if (*slot == NULL
832 /* A C version of the symbol may have already snuck into the table.
833 This happens to, e.g., main.init (__go_init_main). Cope. */
834 || (gsymbol->language == language_go
835 && (*slot)->demangled[0] == '\0'))
836 {
837 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
838
839 /* Suppose we have demangled_name==NULL, copy_name==0, and
840 linkage_name_copy==linkage_name. In this case, we already have the
841 mangled name saved, and we don't have a demangled name. So,
842 you might think we could save a little space by not recording
843 this in the hash table at all.
844
845 It turns out that it is actually important to still save such
846 an entry in the hash table, because storing this name gives
847 us better bcache hit rates for partial symbols. */
848 if (!copy_name && linkage_name_copy == linkage_name)
849 {
850 *slot
851 = ((struct demangled_name_entry *)
852 obstack_alloc (&per_bfd->storage_obstack,
853 offsetof (struct demangled_name_entry, demangled)
854 + demangled_len + 1));
855 (*slot)->mangled = linkage_name;
856 }
857 else
858 {
859 char *mangled_ptr;
860
861 /* If we must copy the mangled name, put it directly after
862 the demangled name so we can have a single
863 allocation. */
864 *slot
865 = ((struct demangled_name_entry *)
866 obstack_alloc (&per_bfd->storage_obstack,
867 offsetof (struct demangled_name_entry, demangled)
868 + len + demangled_len + 2));
869 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
870 strcpy (mangled_ptr, linkage_name_copy);
871 (*slot)->mangled = mangled_ptr;
872 }
873
874 if (demangled_name != NULL)
875 strcpy ((*slot)->demangled, demangled_name.get());
876 else
877 (*slot)->demangled[0] = '\0';
878 }
879
880 gsymbol->name = (*slot)->mangled;
881 if ((*slot)->demangled[0] != '\0')
882 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
883 &per_bfd->storage_obstack);
884 else
885 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
886 }
887
888 /* Return the source code name of a symbol. In languages where
889 demangling is necessary, this is the demangled name. */
890
891 const char *
892 symbol_natural_name (const struct general_symbol_info *gsymbol)
893 {
894 switch (gsymbol->language)
895 {
896 case language_cplus:
897 case language_d:
898 case language_go:
899 case language_objc:
900 case language_fortran:
901 if (symbol_get_demangled_name (gsymbol) != NULL)
902 return symbol_get_demangled_name (gsymbol);
903 break;
904 case language_ada:
905 return ada_decode_symbol (gsymbol);
906 default:
907 break;
908 }
909 return gsymbol->name;
910 }
911
912 /* Return the demangled name for a symbol based on the language for
913 that symbol. If no demangled name exists, return NULL. */
914
915 const char *
916 symbol_demangled_name (const struct general_symbol_info *gsymbol)
917 {
918 const char *dem_name = NULL;
919
920 switch (gsymbol->language)
921 {
922 case language_cplus:
923 case language_d:
924 case language_go:
925 case language_objc:
926 case language_fortran:
927 dem_name = symbol_get_demangled_name (gsymbol);
928 break;
929 case language_ada:
930 dem_name = ada_decode_symbol (gsymbol);
931 break;
932 default:
933 break;
934 }
935 return dem_name;
936 }
937
938 /* Return the search name of a symbol---generally the demangled or
939 linkage name of the symbol, depending on how it will be searched for.
940 If there is no distinct demangled name, then returns the same value
941 (same pointer) as SYMBOL_LINKAGE_NAME. */
942
943 const char *
944 symbol_search_name (const struct general_symbol_info *gsymbol)
945 {
946 if (gsymbol->language == language_ada)
947 return gsymbol->name;
948 else
949 return symbol_natural_name (gsymbol);
950 }
951
952 /* See symtab.h. */
953
954 bool
955 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
956 const lookup_name_info &name)
957 {
958 symbol_name_matcher_ftype *name_match
959 = get_symbol_name_matcher (language_def (gsymbol->language), name);
960 return name_match (symbol_search_name (gsymbol), name, NULL);
961 }
962
963 \f
964
965 /* Return 1 if the two sections are the same, or if they could
966 plausibly be copies of each other, one in an original object
967 file and another in a separated debug file. */
968
969 int
970 matching_obj_sections (struct obj_section *obj_first,
971 struct obj_section *obj_second)
972 {
973 asection *first = obj_first? obj_first->the_bfd_section : NULL;
974 asection *second = obj_second? obj_second->the_bfd_section : NULL;
975 struct objfile *obj;
976
977 /* If they're the same section, then they match. */
978 if (first == second)
979 return 1;
980
981 /* If either is NULL, give up. */
982 if (first == NULL || second == NULL)
983 return 0;
984
985 /* This doesn't apply to absolute symbols. */
986 if (first->owner == NULL || second->owner == NULL)
987 return 0;
988
989 /* If they're in the same object file, they must be different sections. */
990 if (first->owner == second->owner)
991 return 0;
992
993 /* Check whether the two sections are potentially corresponding. They must
994 have the same size, address, and name. We can't compare section indexes,
995 which would be more reliable, because some sections may have been
996 stripped. */
997 if (bfd_get_section_size (first) != bfd_get_section_size (second))
998 return 0;
999
1000 /* In-memory addresses may start at a different offset, relativize them. */
1001 if (bfd_get_section_vma (first->owner, first)
1002 - bfd_get_start_address (first->owner)
1003 != bfd_get_section_vma (second->owner, second)
1004 - bfd_get_start_address (second->owner))
1005 return 0;
1006
1007 if (bfd_get_section_name (first->owner, first) == NULL
1008 || bfd_get_section_name (second->owner, second) == NULL
1009 || strcmp (bfd_get_section_name (first->owner, first),
1010 bfd_get_section_name (second->owner, second)) != 0)
1011 return 0;
1012
1013 /* Otherwise check that they are in corresponding objfiles. */
1014
1015 for (objfile *objfile : all_objfiles (current_program_space))
1016 if (objfile->obfd == first->owner)
1017 {
1018 obj = objfile;
1019 break;
1020 }
1021 gdb_assert (obj != NULL);
1022
1023 if (obj->separate_debug_objfile != NULL
1024 && obj->separate_debug_objfile->obfd == second->owner)
1025 return 1;
1026 if (obj->separate_debug_objfile_backlink != NULL
1027 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1028 return 1;
1029
1030 return 0;
1031 }
1032
1033 /* See symtab.h. */
1034
1035 void
1036 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1037 {
1038 struct bound_minimal_symbol msymbol;
1039
1040 /* If we know that this is not a text address, return failure. This is
1041 necessary because we loop based on texthigh and textlow, which do
1042 not include the data ranges. */
1043 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1044 if (msymbol.minsym
1045 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1047 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1048 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1049 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1050 return;
1051
1052 for (objfile *objfile : all_objfiles (current_program_space))
1053 {
1054 struct compunit_symtab *cust = NULL;
1055
1056 if (objfile->sf)
1057 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1058 pc, section, 0);
1059 if (cust)
1060 return;
1061 }
1062 }
1063 \f
1064 /* Hash function for the symbol cache. */
1065
1066 static unsigned int
1067 hash_symbol_entry (const struct objfile *objfile_context,
1068 const char *name, domain_enum domain)
1069 {
1070 unsigned int hash = (uintptr_t) objfile_context;
1071
1072 if (name != NULL)
1073 hash += htab_hash_string (name);
1074
1075 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1076 to map to the same slot. */
1077 if (domain == STRUCT_DOMAIN)
1078 hash += VAR_DOMAIN * 7;
1079 else
1080 hash += domain * 7;
1081
1082 return hash;
1083 }
1084
1085 /* Equality function for the symbol cache. */
1086
1087 static int
1088 eq_symbol_entry (const struct symbol_cache_slot *slot,
1089 const struct objfile *objfile_context,
1090 const char *name, domain_enum domain)
1091 {
1092 const char *slot_name;
1093 domain_enum slot_domain;
1094
1095 if (slot->state == SYMBOL_SLOT_UNUSED)
1096 return 0;
1097
1098 if (slot->objfile_context != objfile_context)
1099 return 0;
1100
1101 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1102 {
1103 slot_name = slot->value.not_found.name;
1104 slot_domain = slot->value.not_found.domain;
1105 }
1106 else
1107 {
1108 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1109 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1110 }
1111
1112 /* NULL names match. */
1113 if (slot_name == NULL && name == NULL)
1114 {
1115 /* But there's no point in calling symbol_matches_domain in the
1116 SYMBOL_SLOT_FOUND case. */
1117 if (slot_domain != domain)
1118 return 0;
1119 }
1120 else if (slot_name != NULL && name != NULL)
1121 {
1122 /* It's important that we use the same comparison that was done
1123 the first time through. If the slot records a found symbol,
1124 then this means using the symbol name comparison function of
1125 the symbol's language with SYMBOL_SEARCH_NAME. See
1126 dictionary.c. It also means using symbol_matches_domain for
1127 found symbols. See block.c.
1128
1129 If the slot records a not-found symbol, then require a precise match.
1130 We could still be lax with whitespace like strcmp_iw though. */
1131
1132 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1133 {
1134 if (strcmp (slot_name, name) != 0)
1135 return 0;
1136 if (slot_domain != domain)
1137 return 0;
1138 }
1139 else
1140 {
1141 struct symbol *sym = slot->value.found.symbol;
1142 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1143
1144 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1145 return 0;
1146
1147 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1148 slot_domain, domain))
1149 return 0;
1150 }
1151 }
1152 else
1153 {
1154 /* Only one name is NULL. */
1155 return 0;
1156 }
1157
1158 return 1;
1159 }
1160
1161 /* Given a cache of size SIZE, return the size of the struct (with variable
1162 length array) in bytes. */
1163
1164 static size_t
1165 symbol_cache_byte_size (unsigned int size)
1166 {
1167 return (sizeof (struct block_symbol_cache)
1168 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1169 }
1170
1171 /* Resize CACHE. */
1172
1173 static void
1174 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1175 {
1176 /* If there's no change in size, don't do anything.
1177 All caches have the same size, so we can just compare with the size
1178 of the global symbols cache. */
1179 if ((cache->global_symbols != NULL
1180 && cache->global_symbols->size == new_size)
1181 || (cache->global_symbols == NULL
1182 && new_size == 0))
1183 return;
1184
1185 xfree (cache->global_symbols);
1186 xfree (cache->static_symbols);
1187
1188 if (new_size == 0)
1189 {
1190 cache->global_symbols = NULL;
1191 cache->static_symbols = NULL;
1192 }
1193 else
1194 {
1195 size_t total_size = symbol_cache_byte_size (new_size);
1196
1197 cache->global_symbols
1198 = (struct block_symbol_cache *) xcalloc (1, total_size);
1199 cache->static_symbols
1200 = (struct block_symbol_cache *) xcalloc (1, total_size);
1201 cache->global_symbols->size = new_size;
1202 cache->static_symbols->size = new_size;
1203 }
1204 }
1205
1206 /* Make a symbol cache of size SIZE. */
1207
1208 static struct symbol_cache *
1209 make_symbol_cache (unsigned int size)
1210 {
1211 struct symbol_cache *cache;
1212
1213 cache = XCNEW (struct symbol_cache);
1214 resize_symbol_cache (cache, symbol_cache_size);
1215 return cache;
1216 }
1217
1218 /* Free the space used by CACHE. */
1219
1220 static void
1221 free_symbol_cache (struct symbol_cache *cache)
1222 {
1223 xfree (cache->global_symbols);
1224 xfree (cache->static_symbols);
1225 xfree (cache);
1226 }
1227
1228 /* Return the symbol cache of PSPACE.
1229 Create one if it doesn't exist yet. */
1230
1231 static struct symbol_cache *
1232 get_symbol_cache (struct program_space *pspace)
1233 {
1234 struct symbol_cache *cache
1235 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1236
1237 if (cache == NULL)
1238 {
1239 cache = make_symbol_cache (symbol_cache_size);
1240 set_program_space_data (pspace, symbol_cache_key, cache);
1241 }
1242
1243 return cache;
1244 }
1245
1246 /* Delete the symbol cache of PSPACE.
1247 Called when PSPACE is destroyed. */
1248
1249 static void
1250 symbol_cache_cleanup (struct program_space *pspace, void *data)
1251 {
1252 struct symbol_cache *cache = (struct symbol_cache *) data;
1253
1254 free_symbol_cache (cache);
1255 }
1256
1257 /* Set the size of the symbol cache in all program spaces. */
1258
1259 static void
1260 set_symbol_cache_size (unsigned int new_size)
1261 {
1262 struct program_space *pspace;
1263
1264 ALL_PSPACES (pspace)
1265 {
1266 struct symbol_cache *cache
1267 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1268
1269 /* The pspace could have been created but not have a cache yet. */
1270 if (cache != NULL)
1271 resize_symbol_cache (cache, new_size);
1272 }
1273 }
1274
1275 /* Called when symbol-cache-size is set. */
1276
1277 static void
1278 set_symbol_cache_size_handler (const char *args, int from_tty,
1279 struct cmd_list_element *c)
1280 {
1281 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1282 {
1283 /* Restore the previous value.
1284 This is the value the "show" command prints. */
1285 new_symbol_cache_size = symbol_cache_size;
1286
1287 error (_("Symbol cache size is too large, max is %u."),
1288 MAX_SYMBOL_CACHE_SIZE);
1289 }
1290 symbol_cache_size = new_symbol_cache_size;
1291
1292 set_symbol_cache_size (symbol_cache_size);
1293 }
1294
1295 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1296 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1297 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1298 failed (and thus this one will too), or NULL if the symbol is not present
1299 in the cache.
1300 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1301 set to the cache and slot of the symbol to save the result of a full lookup
1302 attempt. */
1303
1304 static struct block_symbol
1305 symbol_cache_lookup (struct symbol_cache *cache,
1306 struct objfile *objfile_context, int block,
1307 const char *name, domain_enum domain,
1308 struct block_symbol_cache **bsc_ptr,
1309 struct symbol_cache_slot **slot_ptr)
1310 {
1311 struct block_symbol_cache *bsc;
1312 unsigned int hash;
1313 struct symbol_cache_slot *slot;
1314
1315 if (block == GLOBAL_BLOCK)
1316 bsc = cache->global_symbols;
1317 else
1318 bsc = cache->static_symbols;
1319 if (bsc == NULL)
1320 {
1321 *bsc_ptr = NULL;
1322 *slot_ptr = NULL;
1323 return (struct block_symbol) {NULL, NULL};
1324 }
1325
1326 hash = hash_symbol_entry (objfile_context, name, domain);
1327 slot = bsc->symbols + hash % bsc->size;
1328
1329 if (eq_symbol_entry (slot, objfile_context, name, domain))
1330 {
1331 if (symbol_lookup_debug)
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s block symbol cache hit%s for %s, %s\n",
1334 block == GLOBAL_BLOCK ? "Global" : "Static",
1335 slot->state == SYMBOL_SLOT_NOT_FOUND
1336 ? " (not found)" : "",
1337 name, domain_name (domain));
1338 ++bsc->hits;
1339 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1340 return SYMBOL_LOOKUP_FAILED;
1341 return slot->value.found;
1342 }
1343
1344 /* Symbol is not present in the cache. */
1345
1346 *bsc_ptr = bsc;
1347 *slot_ptr = slot;
1348
1349 if (symbol_lookup_debug)
1350 {
1351 fprintf_unfiltered (gdb_stdlog,
1352 "%s block symbol cache miss for %s, %s\n",
1353 block == GLOBAL_BLOCK ? "Global" : "Static",
1354 name, domain_name (domain));
1355 }
1356 ++bsc->misses;
1357 return (struct block_symbol) {NULL, NULL};
1358 }
1359
1360 /* Clear out SLOT. */
1361
1362 static void
1363 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1364 {
1365 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1366 xfree (slot->value.not_found.name);
1367 slot->state = SYMBOL_SLOT_UNUSED;
1368 }
1369
1370 /* Mark SYMBOL as found in SLOT.
1371 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1372 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1373 necessarily the objfile the symbol was found in. */
1374
1375 static void
1376 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1377 struct symbol_cache_slot *slot,
1378 struct objfile *objfile_context,
1379 struct symbol *symbol,
1380 const struct block *block)
1381 {
1382 if (bsc == NULL)
1383 return;
1384 if (slot->state != SYMBOL_SLOT_UNUSED)
1385 {
1386 ++bsc->collisions;
1387 symbol_cache_clear_slot (slot);
1388 }
1389 slot->state = SYMBOL_SLOT_FOUND;
1390 slot->objfile_context = objfile_context;
1391 slot->value.found.symbol = symbol;
1392 slot->value.found.block = block;
1393 }
1394
1395 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1396 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1397 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1398
1399 static void
1400 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1401 struct symbol_cache_slot *slot,
1402 struct objfile *objfile_context,
1403 const char *name, domain_enum domain)
1404 {
1405 if (bsc == NULL)
1406 return;
1407 if (slot->state != SYMBOL_SLOT_UNUSED)
1408 {
1409 ++bsc->collisions;
1410 symbol_cache_clear_slot (slot);
1411 }
1412 slot->state = SYMBOL_SLOT_NOT_FOUND;
1413 slot->objfile_context = objfile_context;
1414 slot->value.not_found.name = xstrdup (name);
1415 slot->value.not_found.domain = domain;
1416 }
1417
1418 /* Flush the symbol cache of PSPACE. */
1419
1420 static void
1421 symbol_cache_flush (struct program_space *pspace)
1422 {
1423 struct symbol_cache *cache
1424 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1425 int pass;
1426
1427 if (cache == NULL)
1428 return;
1429 if (cache->global_symbols == NULL)
1430 {
1431 gdb_assert (symbol_cache_size == 0);
1432 gdb_assert (cache->static_symbols == NULL);
1433 return;
1434 }
1435
1436 /* If the cache is untouched since the last flush, early exit.
1437 This is important for performance during the startup of a program linked
1438 with 100s (or 1000s) of shared libraries. */
1439 if (cache->global_symbols->misses == 0
1440 && cache->static_symbols->misses == 0)
1441 return;
1442
1443 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1444 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1445
1446 for (pass = 0; pass < 2; ++pass)
1447 {
1448 struct block_symbol_cache *bsc
1449 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1450 unsigned int i;
1451
1452 for (i = 0; i < bsc->size; ++i)
1453 symbol_cache_clear_slot (&bsc->symbols[i]);
1454 }
1455
1456 cache->global_symbols->hits = 0;
1457 cache->global_symbols->misses = 0;
1458 cache->global_symbols->collisions = 0;
1459 cache->static_symbols->hits = 0;
1460 cache->static_symbols->misses = 0;
1461 cache->static_symbols->collisions = 0;
1462 }
1463
1464 /* Dump CACHE. */
1465
1466 static void
1467 symbol_cache_dump (const struct symbol_cache *cache)
1468 {
1469 int pass;
1470
1471 if (cache->global_symbols == NULL)
1472 {
1473 printf_filtered (" <disabled>\n");
1474 return;
1475 }
1476
1477 for (pass = 0; pass < 2; ++pass)
1478 {
1479 const struct block_symbol_cache *bsc
1480 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1481 unsigned int i;
1482
1483 if (pass == 0)
1484 printf_filtered ("Global symbols:\n");
1485 else
1486 printf_filtered ("Static symbols:\n");
1487
1488 for (i = 0; i < bsc->size; ++i)
1489 {
1490 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1491
1492 QUIT;
1493
1494 switch (slot->state)
1495 {
1496 case SYMBOL_SLOT_UNUSED:
1497 break;
1498 case SYMBOL_SLOT_NOT_FOUND:
1499 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1500 host_address_to_string (slot->objfile_context),
1501 slot->value.not_found.name,
1502 domain_name (slot->value.not_found.domain));
1503 break;
1504 case SYMBOL_SLOT_FOUND:
1505 {
1506 struct symbol *found = slot->value.found.symbol;
1507 const struct objfile *context = slot->objfile_context;
1508
1509 printf_filtered (" [%4u] = %s, %s %s\n", i,
1510 host_address_to_string (context),
1511 SYMBOL_PRINT_NAME (found),
1512 domain_name (SYMBOL_DOMAIN (found)));
1513 break;
1514 }
1515 }
1516 }
1517 }
1518 }
1519
1520 /* The "mt print symbol-cache" command. */
1521
1522 static void
1523 maintenance_print_symbol_cache (const char *args, int from_tty)
1524 {
1525 struct program_space *pspace;
1526
1527 ALL_PSPACES (pspace)
1528 {
1529 struct symbol_cache *cache;
1530
1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->num,
1533 pspace->symfile_object_file != NULL
1534 ? objfile_name (pspace->symfile_object_file)
1535 : "(no object file)");
1536
1537 /* If the cache hasn't been created yet, avoid creating one. */
1538 cache
1539 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1540 if (cache == NULL)
1541 printf_filtered (" <empty>\n");
1542 else
1543 symbol_cache_dump (cache);
1544 }
1545 }
1546
1547 /* The "mt flush-symbol-cache" command. */
1548
1549 static void
1550 maintenance_flush_symbol_cache (const char *args, int from_tty)
1551 {
1552 struct program_space *pspace;
1553
1554 ALL_PSPACES (pspace)
1555 {
1556 symbol_cache_flush (pspace);
1557 }
1558 }
1559
1560 /* Print usage statistics of CACHE. */
1561
1562 static void
1563 symbol_cache_stats (struct symbol_cache *cache)
1564 {
1565 int pass;
1566
1567 if (cache->global_symbols == NULL)
1568 {
1569 printf_filtered (" <disabled>\n");
1570 return;
1571 }
1572
1573 for (pass = 0; pass < 2; ++pass)
1574 {
1575 const struct block_symbol_cache *bsc
1576 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1577
1578 QUIT;
1579
1580 if (pass == 0)
1581 printf_filtered ("Global block cache stats:\n");
1582 else
1583 printf_filtered ("Static block cache stats:\n");
1584
1585 printf_filtered (" size: %u\n", bsc->size);
1586 printf_filtered (" hits: %u\n", bsc->hits);
1587 printf_filtered (" misses: %u\n", bsc->misses);
1588 printf_filtered (" collisions: %u\n", bsc->collisions);
1589 }
1590 }
1591
1592 /* The "mt print symbol-cache-statistics" command. */
1593
1594 static void
1595 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1596 {
1597 struct program_space *pspace;
1598
1599 ALL_PSPACES (pspace)
1600 {
1601 struct symbol_cache *cache;
1602
1603 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1604 pspace->num,
1605 pspace->symfile_object_file != NULL
1606 ? objfile_name (pspace->symfile_object_file)
1607 : "(no object file)");
1608
1609 /* If the cache hasn't been created yet, avoid creating one. */
1610 cache
1611 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1612 if (cache == NULL)
1613 printf_filtered (" empty, no stats available\n");
1614 else
1615 symbol_cache_stats (cache);
1616 }
1617 }
1618
1619 /* This module's 'new_objfile' observer. */
1620
1621 static void
1622 symtab_new_objfile_observer (struct objfile *objfile)
1623 {
1624 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1625 symbol_cache_flush (current_program_space);
1626 }
1627
1628 /* This module's 'free_objfile' observer. */
1629
1630 static void
1631 symtab_free_objfile_observer (struct objfile *objfile)
1632 {
1633 symbol_cache_flush (objfile->pspace);
1634 }
1635 \f
1636 /* Debug symbols usually don't have section information. We need to dig that
1637 out of the minimal symbols and stash that in the debug symbol. */
1638
1639 void
1640 fixup_section (struct general_symbol_info *ginfo,
1641 CORE_ADDR addr, struct objfile *objfile)
1642 {
1643 struct minimal_symbol *msym;
1644
1645 /* First, check whether a minimal symbol with the same name exists
1646 and points to the same address. The address check is required
1647 e.g. on PowerPC64, where the minimal symbol for a function will
1648 point to the function descriptor, while the debug symbol will
1649 point to the actual function code. */
1650 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1651 if (msym)
1652 ginfo->section = MSYMBOL_SECTION (msym);
1653 else
1654 {
1655 /* Static, function-local variables do appear in the linker
1656 (minimal) symbols, but are frequently given names that won't
1657 be found via lookup_minimal_symbol(). E.g., it has been
1658 observed in frv-uclinux (ELF) executables that a static,
1659 function-local variable named "foo" might appear in the
1660 linker symbols as "foo.6" or "foo.3". Thus, there is no
1661 point in attempting to extend the lookup-by-name mechanism to
1662 handle this case due to the fact that there can be multiple
1663 names.
1664
1665 So, instead, search the section table when lookup by name has
1666 failed. The ``addr'' and ``endaddr'' fields may have already
1667 been relocated. If so, the relocation offset (i.e. the
1668 ANOFFSET value) needs to be subtracted from these values when
1669 performing the comparison. We unconditionally subtract it,
1670 because, when no relocation has been performed, the ANOFFSET
1671 value will simply be zero.
1672
1673 The address of the symbol whose section we're fixing up HAS
1674 NOT BEEN adjusted (relocated) yet. It can't have been since
1675 the section isn't yet known and knowing the section is
1676 necessary in order to add the correct relocation value. In
1677 other words, we wouldn't even be in this function (attempting
1678 to compute the section) if it were already known.
1679
1680 Note that it is possible to search the minimal symbols
1681 (subtracting the relocation value if necessary) to find the
1682 matching minimal symbol, but this is overkill and much less
1683 efficient. It is not necessary to find the matching minimal
1684 symbol, only its section.
1685
1686 Note that this technique (of doing a section table search)
1687 can fail when unrelocated section addresses overlap. For
1688 this reason, we still attempt a lookup by name prior to doing
1689 a search of the section table. */
1690
1691 struct obj_section *s;
1692 int fallback = -1;
1693
1694 ALL_OBJFILE_OSECTIONS (objfile, s)
1695 {
1696 int idx = s - objfile->sections;
1697 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1698
1699 if (fallback == -1)
1700 fallback = idx;
1701
1702 if (obj_section_addr (s) - offset <= addr
1703 && addr < obj_section_endaddr (s) - offset)
1704 {
1705 ginfo->section = idx;
1706 return;
1707 }
1708 }
1709
1710 /* If we didn't find the section, assume it is in the first
1711 section. If there is no allocated section, then it hardly
1712 matters what we pick, so just pick zero. */
1713 if (fallback == -1)
1714 ginfo->section = 0;
1715 else
1716 ginfo->section = fallback;
1717 }
1718 }
1719
1720 struct symbol *
1721 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1722 {
1723 CORE_ADDR addr;
1724
1725 if (!sym)
1726 return NULL;
1727
1728 if (!SYMBOL_OBJFILE_OWNED (sym))
1729 return sym;
1730
1731 /* We either have an OBJFILE, or we can get at it from the sym's
1732 symtab. Anything else is a bug. */
1733 gdb_assert (objfile || symbol_symtab (sym));
1734
1735 if (objfile == NULL)
1736 objfile = symbol_objfile (sym);
1737
1738 if (SYMBOL_OBJ_SECTION (objfile, sym))
1739 return sym;
1740
1741 /* We should have an objfile by now. */
1742 gdb_assert (objfile);
1743
1744 switch (SYMBOL_CLASS (sym))
1745 {
1746 case LOC_STATIC:
1747 case LOC_LABEL:
1748 addr = SYMBOL_VALUE_ADDRESS (sym);
1749 break;
1750 case LOC_BLOCK:
1751 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1752 break;
1753
1754 default:
1755 /* Nothing else will be listed in the minsyms -- no use looking
1756 it up. */
1757 return sym;
1758 }
1759
1760 fixup_section (&sym->ginfo, addr, objfile);
1761
1762 return sym;
1763 }
1764
1765 /* See symtab.h. */
1766
1767 demangle_for_lookup_info::demangle_for_lookup_info
1768 (const lookup_name_info &lookup_name, language lang)
1769 {
1770 demangle_result_storage storage;
1771
1772 if (lookup_name.ignore_parameters () && lang == language_cplus)
1773 {
1774 gdb::unique_xmalloc_ptr<char> without_params
1775 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1776 lookup_name.completion_mode ());
1777
1778 if (without_params != NULL)
1779 {
1780 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1781 m_demangled_name = demangle_for_lookup (without_params.get (),
1782 lang, storage);
1783 return;
1784 }
1785 }
1786
1787 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1788 m_demangled_name = lookup_name.name ();
1789 else
1790 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1791 lang, storage);
1792 }
1793
1794 /* See symtab.h. */
1795
1796 const lookup_name_info &
1797 lookup_name_info::match_any ()
1798 {
1799 /* Lookup any symbol that "" would complete. I.e., this matches all
1800 symbol names. */
1801 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1802 true);
1803
1804 return lookup_name;
1805 }
1806
1807 /* Compute the demangled form of NAME as used by the various symbol
1808 lookup functions. The result can either be the input NAME
1809 directly, or a pointer to a buffer owned by the STORAGE object.
1810
1811 For Ada, this function just returns NAME, unmodified.
1812 Normally, Ada symbol lookups are performed using the encoded name
1813 rather than the demangled name, and so it might seem to make sense
1814 for this function to return an encoded version of NAME.
1815 Unfortunately, we cannot do this, because this function is used in
1816 circumstances where it is not appropriate to try to encode NAME.
1817 For instance, when displaying the frame info, we demangle the name
1818 of each parameter, and then perform a symbol lookup inside our
1819 function using that demangled name. In Ada, certain functions
1820 have internally-generated parameters whose name contain uppercase
1821 characters. Encoding those name would result in those uppercase
1822 characters to become lowercase, and thus cause the symbol lookup
1823 to fail. */
1824
1825 const char *
1826 demangle_for_lookup (const char *name, enum language lang,
1827 demangle_result_storage &storage)
1828 {
1829 /* If we are using C++, D, or Go, demangle the name before doing a
1830 lookup, so we can always binary search. */
1831 if (lang == language_cplus)
1832 {
1833 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1834 if (demangled_name != NULL)
1835 return storage.set_malloc_ptr (demangled_name);
1836
1837 /* If we were given a non-mangled name, canonicalize it
1838 according to the language (so far only for C++). */
1839 std::string canon = cp_canonicalize_string (name);
1840 if (!canon.empty ())
1841 return storage.swap_string (canon);
1842 }
1843 else if (lang == language_d)
1844 {
1845 char *demangled_name = d_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849 else if (lang == language_go)
1850 {
1851 char *demangled_name = go_demangle (name, 0);
1852 if (demangled_name != NULL)
1853 return storage.set_malloc_ptr (demangled_name);
1854 }
1855
1856 return name;
1857 }
1858
1859 /* See symtab.h. */
1860
1861 unsigned int
1862 search_name_hash (enum language language, const char *search_name)
1863 {
1864 return language_def (language)->la_search_name_hash (search_name);
1865 }
1866
1867 /* See symtab.h.
1868
1869 This function (or rather its subordinates) have a bunch of loops and
1870 it would seem to be attractive to put in some QUIT's (though I'm not really
1871 sure whether it can run long enough to be really important). But there
1872 are a few calls for which it would appear to be bad news to quit
1873 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1874 that there is C++ code below which can error(), but that probably
1875 doesn't affect these calls since they are looking for a known
1876 variable and thus can probably assume it will never hit the C++
1877 code). */
1878
1879 struct block_symbol
1880 lookup_symbol_in_language (const char *name, const struct block *block,
1881 const domain_enum domain, enum language lang,
1882 struct field_of_this_result *is_a_field_of_this)
1883 {
1884 demangle_result_storage storage;
1885 const char *modified_name = demangle_for_lookup (name, lang, storage);
1886
1887 return lookup_symbol_aux (modified_name,
1888 symbol_name_match_type::FULL,
1889 block, domain, lang,
1890 is_a_field_of_this);
1891 }
1892
1893 /* See symtab.h. */
1894
1895 struct block_symbol
1896 lookup_symbol (const char *name, const struct block *block,
1897 domain_enum domain,
1898 struct field_of_this_result *is_a_field_of_this)
1899 {
1900 return lookup_symbol_in_language (name, block, domain,
1901 current_language->la_language,
1902 is_a_field_of_this);
1903 }
1904
1905 /* See symtab.h. */
1906
1907 struct block_symbol
1908 lookup_symbol_search_name (const char *search_name, const struct block *block,
1909 domain_enum domain)
1910 {
1911 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1912 block, domain, language_asm, NULL);
1913 }
1914
1915 /* See symtab.h. */
1916
1917 struct block_symbol
1918 lookup_language_this (const struct language_defn *lang,
1919 const struct block *block)
1920 {
1921 if (lang->la_name_of_this == NULL || block == NULL)
1922 return (struct block_symbol) {NULL, NULL};
1923
1924 if (symbol_lookup_debug > 1)
1925 {
1926 struct objfile *objfile = lookup_objfile_from_block (block);
1927
1928 fprintf_unfiltered (gdb_stdlog,
1929 "lookup_language_this (%s, %s (objfile %s))",
1930 lang->la_name, host_address_to_string (block),
1931 objfile_debug_name (objfile));
1932 }
1933
1934 while (block)
1935 {
1936 struct symbol *sym;
1937
1938 sym = block_lookup_symbol (block, lang->la_name_of_this,
1939 symbol_name_match_type::SEARCH_NAME,
1940 VAR_DOMAIN);
1941 if (sym != NULL)
1942 {
1943 if (symbol_lookup_debug > 1)
1944 {
1945 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1946 SYMBOL_PRINT_NAME (sym),
1947 host_address_to_string (sym),
1948 host_address_to_string (block));
1949 }
1950 return (struct block_symbol) {sym, block};
1951 }
1952 if (BLOCK_FUNCTION (block))
1953 break;
1954 block = BLOCK_SUPERBLOCK (block);
1955 }
1956
1957 if (symbol_lookup_debug > 1)
1958 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1959 return (struct block_symbol) {NULL, NULL};
1960 }
1961
1962 /* Given TYPE, a structure/union,
1963 return 1 if the component named NAME from the ultimate target
1964 structure/union is defined, otherwise, return 0. */
1965
1966 static int
1967 check_field (struct type *type, const char *name,
1968 struct field_of_this_result *is_a_field_of_this)
1969 {
1970 int i;
1971
1972 /* The type may be a stub. */
1973 type = check_typedef (type);
1974
1975 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1976 {
1977 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1978
1979 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1980 {
1981 is_a_field_of_this->type = type;
1982 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1983 return 1;
1984 }
1985 }
1986
1987 /* C++: If it was not found as a data field, then try to return it
1988 as a pointer to a method. */
1989
1990 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1991 {
1992 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1993 {
1994 is_a_field_of_this->type = type;
1995 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1996 return 1;
1997 }
1998 }
1999
2000 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2001 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2002 return 1;
2003
2004 return 0;
2005 }
2006
2007 /* Behave like lookup_symbol except that NAME is the natural name
2008 (e.g., demangled name) of the symbol that we're looking for. */
2009
2010 static struct block_symbol
2011 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2012 const struct block *block,
2013 const domain_enum domain, enum language language,
2014 struct field_of_this_result *is_a_field_of_this)
2015 {
2016 struct block_symbol result;
2017 const struct language_defn *langdef;
2018
2019 if (symbol_lookup_debug)
2020 {
2021 struct objfile *objfile = lookup_objfile_from_block (block);
2022
2023 fprintf_unfiltered (gdb_stdlog,
2024 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2025 name, host_address_to_string (block),
2026 objfile != NULL
2027 ? objfile_debug_name (objfile) : "NULL",
2028 domain_name (domain), language_str (language));
2029 }
2030
2031 /* Make sure we do something sensible with is_a_field_of_this, since
2032 the callers that set this parameter to some non-null value will
2033 certainly use it later. If we don't set it, the contents of
2034 is_a_field_of_this are undefined. */
2035 if (is_a_field_of_this != NULL)
2036 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2037
2038 /* Search specified block and its superiors. Don't search
2039 STATIC_BLOCK or GLOBAL_BLOCK. */
2040
2041 result = lookup_local_symbol (name, match_type, block, domain, language);
2042 if (result.symbol != NULL)
2043 {
2044 if (symbol_lookup_debug)
2045 {
2046 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2047 host_address_to_string (result.symbol));
2048 }
2049 return result;
2050 }
2051
2052 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2053 check to see if NAME is a field of `this'. */
2054
2055 langdef = language_def (language);
2056
2057 /* Don't do this check if we are searching for a struct. It will
2058 not be found by check_field, but will be found by other
2059 means. */
2060 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2061 {
2062 result = lookup_language_this (langdef, block);
2063
2064 if (result.symbol)
2065 {
2066 struct type *t = result.symbol->type;
2067
2068 /* I'm not really sure that type of this can ever
2069 be typedefed; just be safe. */
2070 t = check_typedef (t);
2071 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2072 t = TYPE_TARGET_TYPE (t);
2073
2074 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2075 && TYPE_CODE (t) != TYPE_CODE_UNION)
2076 error (_("Internal error: `%s' is not an aggregate"),
2077 langdef->la_name_of_this);
2078
2079 if (check_field (t, name, is_a_field_of_this))
2080 {
2081 if (symbol_lookup_debug)
2082 {
2083 fprintf_unfiltered (gdb_stdlog,
2084 "lookup_symbol_aux (...) = NULL\n");
2085 }
2086 return (struct block_symbol) {NULL, NULL};
2087 }
2088 }
2089 }
2090
2091 /* Now do whatever is appropriate for LANGUAGE to look
2092 up static and global variables. */
2093
2094 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2095 if (result.symbol != NULL)
2096 {
2097 if (symbol_lookup_debug)
2098 {
2099 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2100 host_address_to_string (result.symbol));
2101 }
2102 return result;
2103 }
2104
2105 /* Now search all static file-level symbols. Not strictly correct,
2106 but more useful than an error. */
2107
2108 result = lookup_static_symbol (name, domain);
2109 if (symbol_lookup_debug)
2110 {
2111 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2112 result.symbol != NULL
2113 ? host_address_to_string (result.symbol)
2114 : "NULL");
2115 }
2116 return result;
2117 }
2118
2119 /* Check to see if the symbol is defined in BLOCK or its superiors.
2120 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2121
2122 static struct block_symbol
2123 lookup_local_symbol (const char *name,
2124 symbol_name_match_type match_type,
2125 const struct block *block,
2126 const domain_enum domain,
2127 enum language language)
2128 {
2129 struct symbol *sym;
2130 const struct block *static_block = block_static_block (block);
2131 const char *scope = block_scope (block);
2132
2133 /* Check if either no block is specified or it's a global block. */
2134
2135 if (static_block == NULL)
2136 return (struct block_symbol) {NULL, NULL};
2137
2138 while (block != static_block)
2139 {
2140 sym = lookup_symbol_in_block (name, match_type, block, domain);
2141 if (sym != NULL)
2142 return (struct block_symbol) {sym, block};
2143
2144 if (language == language_cplus || language == language_fortran)
2145 {
2146 struct block_symbol blocksym
2147 = cp_lookup_symbol_imports_or_template (scope, name, block,
2148 domain);
2149
2150 if (blocksym.symbol != NULL)
2151 return blocksym;
2152 }
2153
2154 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2155 break;
2156 block = BLOCK_SUPERBLOCK (block);
2157 }
2158
2159 /* We've reached the end of the function without finding a result. */
2160
2161 return (struct block_symbol) {NULL, NULL};
2162 }
2163
2164 /* See symtab.h. */
2165
2166 struct objfile *
2167 lookup_objfile_from_block (const struct block *block)
2168 {
2169 struct objfile *obj;
2170 struct compunit_symtab *cust;
2171
2172 if (block == NULL)
2173 return NULL;
2174
2175 block = block_global_block (block);
2176 /* Look through all blockvectors. */
2177 ALL_COMPUNITS (obj, cust)
2178 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2179 GLOBAL_BLOCK))
2180 {
2181 if (obj->separate_debug_objfile_backlink)
2182 obj = obj->separate_debug_objfile_backlink;
2183
2184 return obj;
2185 }
2186
2187 return NULL;
2188 }
2189
2190 /* See symtab.h. */
2191
2192 struct symbol *
2193 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2194 const struct block *block,
2195 const domain_enum domain)
2196 {
2197 struct symbol *sym;
2198
2199 if (symbol_lookup_debug > 1)
2200 {
2201 struct objfile *objfile = lookup_objfile_from_block (block);
2202
2203 fprintf_unfiltered (gdb_stdlog,
2204 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2205 name, host_address_to_string (block),
2206 objfile_debug_name (objfile),
2207 domain_name (domain));
2208 }
2209
2210 sym = block_lookup_symbol (block, name, match_type, domain);
2211 if (sym)
2212 {
2213 if (symbol_lookup_debug > 1)
2214 {
2215 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2216 host_address_to_string (sym));
2217 }
2218 return fixup_symbol_section (sym, NULL);
2219 }
2220
2221 if (symbol_lookup_debug > 1)
2222 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2223 return NULL;
2224 }
2225
2226 /* See symtab.h. */
2227
2228 struct block_symbol
2229 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2230 const char *name,
2231 const domain_enum domain)
2232 {
2233 struct objfile *objfile;
2234
2235 for (objfile = main_objfile;
2236 objfile;
2237 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2238 {
2239 struct block_symbol result
2240 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2241
2242 if (result.symbol != NULL)
2243 return result;
2244 }
2245
2246 return (struct block_symbol) {NULL, NULL};
2247 }
2248
2249 /* Check to see if the symbol is defined in one of the OBJFILE's
2250 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2251 depending on whether or not we want to search global symbols or
2252 static symbols. */
2253
2254 static struct block_symbol
2255 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2256 const char *name, const domain_enum domain)
2257 {
2258 struct compunit_symtab *cust;
2259
2260 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2261
2262 if (symbol_lookup_debug > 1)
2263 {
2264 fprintf_unfiltered (gdb_stdlog,
2265 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2266 objfile_debug_name (objfile),
2267 block_index == GLOBAL_BLOCK
2268 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2269 name, domain_name (domain));
2270 }
2271
2272 ALL_OBJFILE_COMPUNITS (objfile, cust)
2273 {
2274 const struct blockvector *bv;
2275 const struct block *block;
2276 struct block_symbol result;
2277
2278 bv = COMPUNIT_BLOCKVECTOR (cust);
2279 block = BLOCKVECTOR_BLOCK (bv, block_index);
2280 result.symbol = block_lookup_symbol_primary (block, name, domain);
2281 result.block = block;
2282 if (result.symbol != NULL)
2283 {
2284 if (symbol_lookup_debug > 1)
2285 {
2286 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2287 host_address_to_string (result.symbol),
2288 host_address_to_string (block));
2289 }
2290 result.symbol = fixup_symbol_section (result.symbol, objfile);
2291 return result;
2292
2293 }
2294 }
2295
2296 if (symbol_lookup_debug > 1)
2297 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2298 return (struct block_symbol) {NULL, NULL};
2299 }
2300
2301 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2302 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2303 and all associated separate debug objfiles.
2304
2305 Normally we only look in OBJFILE, and not any separate debug objfiles
2306 because the outer loop will cause them to be searched too. This case is
2307 different. Here we're called from search_symbols where it will only
2308 call us for the the objfile that contains a matching minsym. */
2309
2310 static struct block_symbol
2311 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2312 const char *linkage_name,
2313 domain_enum domain)
2314 {
2315 enum language lang = current_language->la_language;
2316 struct objfile *main_objfile, *cur_objfile;
2317
2318 demangle_result_storage storage;
2319 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2320
2321 if (objfile->separate_debug_objfile_backlink)
2322 main_objfile = objfile->separate_debug_objfile_backlink;
2323 else
2324 main_objfile = objfile;
2325
2326 for (cur_objfile = main_objfile;
2327 cur_objfile;
2328 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2329 {
2330 struct block_symbol result;
2331
2332 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2333 modified_name, domain);
2334 if (result.symbol == NULL)
2335 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2336 modified_name, domain);
2337 if (result.symbol != NULL)
2338 return result;
2339 }
2340
2341 return (struct block_symbol) {NULL, NULL};
2342 }
2343
2344 /* A helper function that throws an exception when a symbol was found
2345 in a psymtab but not in a symtab. */
2346
2347 static void ATTRIBUTE_NORETURN
2348 error_in_psymtab_expansion (int block_index, const char *name,
2349 struct compunit_symtab *cust)
2350 {
2351 error (_("\
2352 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2353 %s may be an inlined function, or may be a template function\n \
2354 (if a template, try specifying an instantiation: %s<type>)."),
2355 block_index == GLOBAL_BLOCK ? "global" : "static",
2356 name,
2357 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2358 name, name);
2359 }
2360
2361 /* A helper function for various lookup routines that interfaces with
2362 the "quick" symbol table functions. */
2363
2364 static struct block_symbol
2365 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2366 const char *name, const domain_enum domain)
2367 {
2368 struct compunit_symtab *cust;
2369 const struct blockvector *bv;
2370 const struct block *block;
2371 struct block_symbol result;
2372
2373 if (!objfile->sf)
2374 return (struct block_symbol) {NULL, NULL};
2375
2376 if (symbol_lookup_debug > 1)
2377 {
2378 fprintf_unfiltered (gdb_stdlog,
2379 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2380 objfile_debug_name (objfile),
2381 block_index == GLOBAL_BLOCK
2382 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2383 name, domain_name (domain));
2384 }
2385
2386 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2387 if (cust == NULL)
2388 {
2389 if (symbol_lookup_debug > 1)
2390 {
2391 fprintf_unfiltered (gdb_stdlog,
2392 "lookup_symbol_via_quick_fns (...) = NULL\n");
2393 }
2394 return (struct block_symbol) {NULL, NULL};
2395 }
2396
2397 bv = COMPUNIT_BLOCKVECTOR (cust);
2398 block = BLOCKVECTOR_BLOCK (bv, block_index);
2399 result.symbol = block_lookup_symbol (block, name,
2400 symbol_name_match_type::FULL, domain);
2401 if (result.symbol == NULL)
2402 error_in_psymtab_expansion (block_index, name, cust);
2403
2404 if (symbol_lookup_debug > 1)
2405 {
2406 fprintf_unfiltered (gdb_stdlog,
2407 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2408 host_address_to_string (result.symbol),
2409 host_address_to_string (block));
2410 }
2411
2412 result.symbol = fixup_symbol_section (result.symbol, objfile);
2413 result.block = block;
2414 return result;
2415 }
2416
2417 /* See symtab.h. */
2418
2419 struct block_symbol
2420 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2421 const char *name,
2422 const struct block *block,
2423 const domain_enum domain)
2424 {
2425 struct block_symbol result;
2426
2427 /* NOTE: carlton/2003-05-19: The comments below were written when
2428 this (or what turned into this) was part of lookup_symbol_aux;
2429 I'm much less worried about these questions now, since these
2430 decisions have turned out well, but I leave these comments here
2431 for posterity. */
2432
2433 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2434 not it would be appropriate to search the current global block
2435 here as well. (That's what this code used to do before the
2436 is_a_field_of_this check was moved up.) On the one hand, it's
2437 redundant with the lookup in all objfiles search that happens
2438 next. On the other hand, if decode_line_1 is passed an argument
2439 like filename:var, then the user presumably wants 'var' to be
2440 searched for in filename. On the third hand, there shouldn't be
2441 multiple global variables all of which are named 'var', and it's
2442 not like decode_line_1 has ever restricted its search to only
2443 global variables in a single filename. All in all, only
2444 searching the static block here seems best: it's correct and it's
2445 cleanest. */
2446
2447 /* NOTE: carlton/2002-12-05: There's also a possible performance
2448 issue here: if you usually search for global symbols in the
2449 current file, then it would be slightly better to search the
2450 current global block before searching all the symtabs. But there
2451 are other factors that have a much greater effect on performance
2452 than that one, so I don't think we should worry about that for
2453 now. */
2454
2455 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2456 the current objfile. Searching the current objfile first is useful
2457 for both matching user expectations as well as performance. */
2458
2459 result = lookup_symbol_in_static_block (name, block, domain);
2460 if (result.symbol != NULL)
2461 return result;
2462
2463 /* If we didn't find a definition for a builtin type in the static block,
2464 search for it now. This is actually the right thing to do and can be
2465 a massive performance win. E.g., when debugging a program with lots of
2466 shared libraries we could search all of them only to find out the
2467 builtin type isn't defined in any of them. This is common for types
2468 like "void". */
2469 if (domain == VAR_DOMAIN)
2470 {
2471 struct gdbarch *gdbarch;
2472
2473 if (block == NULL)
2474 gdbarch = target_gdbarch ();
2475 else
2476 gdbarch = block_gdbarch (block);
2477 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2478 gdbarch, name);
2479 result.block = NULL;
2480 if (result.symbol != NULL)
2481 return result;
2482 }
2483
2484 return lookup_global_symbol (name, block, domain);
2485 }
2486
2487 /* See symtab.h. */
2488
2489 struct block_symbol
2490 lookup_symbol_in_static_block (const char *name,
2491 const struct block *block,
2492 const domain_enum domain)
2493 {
2494 const struct block *static_block = block_static_block (block);
2495 struct symbol *sym;
2496
2497 if (static_block == NULL)
2498 return (struct block_symbol) {NULL, NULL};
2499
2500 if (symbol_lookup_debug)
2501 {
2502 struct objfile *objfile = lookup_objfile_from_block (static_block);
2503
2504 fprintf_unfiltered (gdb_stdlog,
2505 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2506 " %s)\n",
2507 name,
2508 host_address_to_string (block),
2509 objfile_debug_name (objfile),
2510 domain_name (domain));
2511 }
2512
2513 sym = lookup_symbol_in_block (name,
2514 symbol_name_match_type::FULL,
2515 static_block, domain);
2516 if (symbol_lookup_debug)
2517 {
2518 fprintf_unfiltered (gdb_stdlog,
2519 "lookup_symbol_in_static_block (...) = %s\n",
2520 sym != NULL ? host_address_to_string (sym) : "NULL");
2521 }
2522 return (struct block_symbol) {sym, static_block};
2523 }
2524
2525 /* Perform the standard symbol lookup of NAME in OBJFILE:
2526 1) First search expanded symtabs, and if not found
2527 2) Search the "quick" symtabs (partial or .gdb_index).
2528 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2529
2530 static struct block_symbol
2531 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2532 const char *name, const domain_enum domain)
2533 {
2534 struct block_symbol result;
2535
2536 if (symbol_lookup_debug)
2537 {
2538 fprintf_unfiltered (gdb_stdlog,
2539 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2540 objfile_debug_name (objfile),
2541 block_index == GLOBAL_BLOCK
2542 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2543 name, domain_name (domain));
2544 }
2545
2546 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2547 name, domain);
2548 if (result.symbol != NULL)
2549 {
2550 if (symbol_lookup_debug)
2551 {
2552 fprintf_unfiltered (gdb_stdlog,
2553 "lookup_symbol_in_objfile (...) = %s"
2554 " (in symtabs)\n",
2555 host_address_to_string (result.symbol));
2556 }
2557 return result;
2558 }
2559
2560 result = lookup_symbol_via_quick_fns (objfile, block_index,
2561 name, domain);
2562 if (symbol_lookup_debug)
2563 {
2564 fprintf_unfiltered (gdb_stdlog,
2565 "lookup_symbol_in_objfile (...) = %s%s\n",
2566 result.symbol != NULL
2567 ? host_address_to_string (result.symbol)
2568 : "NULL",
2569 result.symbol != NULL ? " (via quick fns)" : "");
2570 }
2571 return result;
2572 }
2573
2574 /* See symtab.h. */
2575
2576 struct block_symbol
2577 lookup_static_symbol (const char *name, const domain_enum domain)
2578 {
2579 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2580 struct block_symbol result;
2581 struct block_symbol_cache *bsc;
2582 struct symbol_cache_slot *slot;
2583
2584 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2585 NULL for OBJFILE_CONTEXT. */
2586 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2587 &bsc, &slot);
2588 if (result.symbol != NULL)
2589 {
2590 if (SYMBOL_LOOKUP_FAILED_P (result))
2591 return (struct block_symbol) {NULL, NULL};
2592 return result;
2593 }
2594
2595 for (objfile *objfile : all_objfiles (current_program_space))
2596 {
2597 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2598 if (result.symbol != NULL)
2599 {
2600 /* Still pass NULL for OBJFILE_CONTEXT here. */
2601 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2602 result.block);
2603 return result;
2604 }
2605 }
2606
2607 /* Still pass NULL for OBJFILE_CONTEXT here. */
2608 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2609 return (struct block_symbol) {NULL, NULL};
2610 }
2611
2612 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2613
2614 struct global_sym_lookup_data
2615 {
2616 /* The name of the symbol we are searching for. */
2617 const char *name;
2618
2619 /* The domain to use for our search. */
2620 domain_enum domain;
2621
2622 /* The field where the callback should store the symbol if found.
2623 It should be initialized to {NULL, NULL} before the search is started. */
2624 struct block_symbol result;
2625 };
2626
2627 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2628 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2629 OBJFILE. The arguments for the search are passed via CB_DATA,
2630 which in reality is a pointer to struct global_sym_lookup_data. */
2631
2632 static int
2633 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2634 void *cb_data)
2635 {
2636 struct global_sym_lookup_data *data =
2637 (struct global_sym_lookup_data *) cb_data;
2638
2639 gdb_assert (data->result.symbol == NULL
2640 && data->result.block == NULL);
2641
2642 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2643 data->name, data->domain);
2644
2645 /* If we found a match, tell the iterator to stop. Otherwise,
2646 keep going. */
2647 return (data->result.symbol != NULL);
2648 }
2649
2650 /* See symtab.h. */
2651
2652 struct block_symbol
2653 lookup_global_symbol (const char *name,
2654 const struct block *block,
2655 const domain_enum domain)
2656 {
2657 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2658 struct block_symbol result;
2659 struct objfile *objfile;
2660 struct global_sym_lookup_data lookup_data;
2661 struct block_symbol_cache *bsc;
2662 struct symbol_cache_slot *slot;
2663
2664 objfile = lookup_objfile_from_block (block);
2665
2666 /* First see if we can find the symbol in the cache.
2667 This works because we use the current objfile to qualify the lookup. */
2668 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2669 &bsc, &slot);
2670 if (result.symbol != NULL)
2671 {
2672 if (SYMBOL_LOOKUP_FAILED_P (result))
2673 return (struct block_symbol) {NULL, NULL};
2674 return result;
2675 }
2676
2677 /* Call library-specific lookup procedure. */
2678 if (objfile != NULL)
2679 result = solib_global_lookup (objfile, name, domain);
2680
2681 /* If that didn't work go a global search (of global blocks, heh). */
2682 if (result.symbol == NULL)
2683 {
2684 memset (&lookup_data, 0, sizeof (lookup_data));
2685 lookup_data.name = name;
2686 lookup_data.domain = domain;
2687 gdbarch_iterate_over_objfiles_in_search_order
2688 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2689 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2690 result = lookup_data.result;
2691 }
2692
2693 if (result.symbol != NULL)
2694 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2695 else
2696 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2697
2698 return result;
2699 }
2700
2701 int
2702 symbol_matches_domain (enum language symbol_language,
2703 domain_enum symbol_domain,
2704 domain_enum domain)
2705 {
2706 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2707 Similarly, any Ada type declaration implicitly defines a typedef. */
2708 if (symbol_language == language_cplus
2709 || symbol_language == language_d
2710 || symbol_language == language_ada
2711 || symbol_language == language_rust)
2712 {
2713 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2714 && symbol_domain == STRUCT_DOMAIN)
2715 return 1;
2716 }
2717 /* For all other languages, strict match is required. */
2718 return (symbol_domain == domain);
2719 }
2720
2721 /* See symtab.h. */
2722
2723 struct type *
2724 lookup_transparent_type (const char *name)
2725 {
2726 return current_language->la_lookup_transparent_type (name);
2727 }
2728
2729 /* A helper for basic_lookup_transparent_type that interfaces with the
2730 "quick" symbol table functions. */
2731
2732 static struct type *
2733 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2734 const char *name)
2735 {
2736 struct compunit_symtab *cust;
2737 const struct blockvector *bv;
2738 struct block *block;
2739 struct symbol *sym;
2740
2741 if (!objfile->sf)
2742 return NULL;
2743 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2744 STRUCT_DOMAIN);
2745 if (cust == NULL)
2746 return NULL;
2747
2748 bv = COMPUNIT_BLOCKVECTOR (cust);
2749 block = BLOCKVECTOR_BLOCK (bv, block_index);
2750 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2751 block_find_non_opaque_type, NULL);
2752 if (sym == NULL)
2753 error_in_psymtab_expansion (block_index, name, cust);
2754 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2755 return SYMBOL_TYPE (sym);
2756 }
2757
2758 /* Subroutine of basic_lookup_transparent_type to simplify it.
2759 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2760 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2761
2762 static struct type *
2763 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2764 const char *name)
2765 {
2766 const struct compunit_symtab *cust;
2767 const struct blockvector *bv;
2768 const struct block *block;
2769 const struct symbol *sym;
2770
2771 ALL_OBJFILE_COMPUNITS (objfile, cust)
2772 {
2773 bv = COMPUNIT_BLOCKVECTOR (cust);
2774 block = BLOCKVECTOR_BLOCK (bv, block_index);
2775 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2776 block_find_non_opaque_type, NULL);
2777 if (sym != NULL)
2778 {
2779 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2780 return SYMBOL_TYPE (sym);
2781 }
2782 }
2783
2784 return NULL;
2785 }
2786
2787 /* The standard implementation of lookup_transparent_type. This code
2788 was modeled on lookup_symbol -- the parts not relevant to looking
2789 up types were just left out. In particular it's assumed here that
2790 types are available in STRUCT_DOMAIN and only in file-static or
2791 global blocks. */
2792
2793 struct type *
2794 basic_lookup_transparent_type (const char *name)
2795 {
2796 struct type *t;
2797
2798 /* Now search all the global symbols. Do the symtab's first, then
2799 check the psymtab's. If a psymtab indicates the existence
2800 of the desired name as a global, then do psymtab-to-symtab
2801 conversion on the fly and return the found symbol. */
2802
2803 for (objfile *objfile : all_objfiles (current_program_space))
2804 {
2805 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2806 if (t)
2807 return t;
2808 }
2809
2810 for (objfile *objfile : all_objfiles (current_program_space))
2811 {
2812 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2813 if (t)
2814 return t;
2815 }
2816
2817 /* Now search the static file-level symbols.
2818 Not strictly correct, but more useful than an error.
2819 Do the symtab's first, then
2820 check the psymtab's. If a psymtab indicates the existence
2821 of the desired name as a file-level static, then do psymtab-to-symtab
2822 conversion on the fly and return the found symbol. */
2823
2824 for (objfile *objfile : all_objfiles (current_program_space))
2825 {
2826 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2827 if (t)
2828 return t;
2829 }
2830
2831 for (objfile *objfile : all_objfiles (current_program_space))
2832 {
2833 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2834 if (t)
2835 return t;
2836 }
2837
2838 return (struct type *) 0;
2839 }
2840
2841 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2842
2843 For each symbol that matches, CALLBACK is called. The symbol is
2844 passed to the callback.
2845
2846 If CALLBACK returns false, the iteration ends. Otherwise, the
2847 search continues. */
2848
2849 void
2850 iterate_over_symbols (const struct block *block,
2851 const lookup_name_info &name,
2852 const domain_enum domain,
2853 gdb::function_view<symbol_found_callback_ftype> callback)
2854 {
2855 struct block_iterator iter;
2856 struct symbol *sym;
2857
2858 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2859 {
2860 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2861 SYMBOL_DOMAIN (sym), domain))
2862 {
2863 struct block_symbol block_sym = {sym, block};
2864
2865 if (!callback (&block_sym))
2866 return;
2867 }
2868 }
2869 }
2870
2871 /* Find the compunit symtab associated with PC and SECTION.
2872 This will read in debug info as necessary. */
2873
2874 struct compunit_symtab *
2875 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2876 {
2877 struct compunit_symtab *cust;
2878 struct compunit_symtab *best_cust = NULL;
2879 struct objfile *obj_file;
2880 CORE_ADDR distance = 0;
2881 struct bound_minimal_symbol msymbol;
2882
2883 /* If we know that this is not a text address, return failure. This is
2884 necessary because we loop based on the block's high and low code
2885 addresses, which do not include the data ranges, and because
2886 we call find_pc_sect_psymtab which has a similar restriction based
2887 on the partial_symtab's texthigh and textlow. */
2888 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2889 if (msymbol.minsym
2890 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2891 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2892 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2893 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2894 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2895 return NULL;
2896
2897 /* Search all symtabs for the one whose file contains our address, and which
2898 is the smallest of all the ones containing the address. This is designed
2899 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2900 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2901 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2902
2903 This happens for native ecoff format, where code from included files
2904 gets its own symtab. The symtab for the included file should have
2905 been read in already via the dependency mechanism.
2906 It might be swifter to create several symtabs with the same name
2907 like xcoff does (I'm not sure).
2908
2909 It also happens for objfiles that have their functions reordered.
2910 For these, the symtab we are looking for is not necessarily read in. */
2911
2912 ALL_COMPUNITS (obj_file, cust)
2913 {
2914 struct block *b;
2915 const struct blockvector *bv;
2916
2917 bv = COMPUNIT_BLOCKVECTOR (cust);
2918 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2919
2920 if (BLOCK_START (b) <= pc
2921 && BLOCK_END (b) > pc
2922 && (distance == 0
2923 || BLOCK_END (b) - BLOCK_START (b) < distance))
2924 {
2925 /* For an objfile that has its functions reordered,
2926 find_pc_psymtab will find the proper partial symbol table
2927 and we simply return its corresponding symtab. */
2928 /* In order to better support objfiles that contain both
2929 stabs and coff debugging info, we continue on if a psymtab
2930 can't be found. */
2931 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2932 {
2933 struct compunit_symtab *result;
2934
2935 result
2936 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2937 msymbol,
2938 pc, section,
2939 0);
2940 if (result != NULL)
2941 return result;
2942 }
2943 if (section != 0)
2944 {
2945 struct block_iterator iter;
2946 struct symbol *sym = NULL;
2947
2948 ALL_BLOCK_SYMBOLS (b, iter, sym)
2949 {
2950 fixup_symbol_section (sym, obj_file);
2951 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file, sym),
2952 section))
2953 break;
2954 }
2955 if (sym == NULL)
2956 continue; /* No symbol in this symtab matches
2957 section. */
2958 }
2959 distance = BLOCK_END (b) - BLOCK_START (b);
2960 best_cust = cust;
2961 }
2962 }
2963
2964 if (best_cust != NULL)
2965 return best_cust;
2966
2967 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2968
2969 for (objfile *objf : all_objfiles (current_program_space))
2970 {
2971 struct compunit_symtab *result;
2972
2973 if (!objf->sf)
2974 continue;
2975 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2976 msymbol,
2977 pc, section,
2978 1);
2979 if (result != NULL)
2980 return result;
2981 }
2982
2983 return NULL;
2984 }
2985
2986 /* Find the compunit symtab associated with PC.
2987 This will read in debug info as necessary.
2988 Backward compatibility, no section. */
2989
2990 struct compunit_symtab *
2991 find_pc_compunit_symtab (CORE_ADDR pc)
2992 {
2993 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2994 }
2995
2996 /* See symtab.h. */
2997
2998 struct symbol *
2999 find_symbol_at_address (CORE_ADDR address)
3000 {
3001 for (objfile *objfile : all_objfiles (current_program_space))
3002 {
3003 if (objfile->sf == NULL
3004 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3005 continue;
3006
3007 struct compunit_symtab *symtab
3008 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3009 if (symtab != NULL)
3010 {
3011 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3012
3013 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3014 {
3015 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3016 struct block_iterator iter;
3017 struct symbol *sym;
3018
3019 ALL_BLOCK_SYMBOLS (b, iter, sym)
3020 {
3021 if (SYMBOL_CLASS (sym) == LOC_STATIC
3022 && SYMBOL_VALUE_ADDRESS (sym) == address)
3023 return sym;
3024 }
3025 }
3026 }
3027 }
3028
3029 return NULL;
3030 }
3031
3032 \f
3033
3034 /* Find the source file and line number for a given PC value and SECTION.
3035 Return a structure containing a symtab pointer, a line number,
3036 and a pc range for the entire source line.
3037 The value's .pc field is NOT the specified pc.
3038 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3039 use the line that ends there. Otherwise, in that case, the line
3040 that begins there is used. */
3041
3042 /* The big complication here is that a line may start in one file, and end just
3043 before the start of another file. This usually occurs when you #include
3044 code in the middle of a subroutine. To properly find the end of a line's PC
3045 range, we must search all symtabs associated with this compilation unit, and
3046 find the one whose first PC is closer than that of the next line in this
3047 symtab. */
3048
3049 struct symtab_and_line
3050 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3051 {
3052 struct compunit_symtab *cust;
3053 struct symtab *iter_s;
3054 struct linetable *l;
3055 int len;
3056 struct linetable_entry *item;
3057 const struct blockvector *bv;
3058 struct bound_minimal_symbol msymbol;
3059
3060 /* Info on best line seen so far, and where it starts, and its file. */
3061
3062 struct linetable_entry *best = NULL;
3063 CORE_ADDR best_end = 0;
3064 struct symtab *best_symtab = 0;
3065
3066 /* Store here the first line number
3067 of a file which contains the line at the smallest pc after PC.
3068 If we don't find a line whose range contains PC,
3069 we will use a line one less than this,
3070 with a range from the start of that file to the first line's pc. */
3071 struct linetable_entry *alt = NULL;
3072
3073 /* Info on best line seen in this file. */
3074
3075 struct linetable_entry *prev;
3076
3077 /* If this pc is not from the current frame,
3078 it is the address of the end of a call instruction.
3079 Quite likely that is the start of the following statement.
3080 But what we want is the statement containing the instruction.
3081 Fudge the pc to make sure we get that. */
3082
3083 /* It's tempting to assume that, if we can't find debugging info for
3084 any function enclosing PC, that we shouldn't search for line
3085 number info, either. However, GAS can emit line number info for
3086 assembly files --- very helpful when debugging hand-written
3087 assembly code. In such a case, we'd have no debug info for the
3088 function, but we would have line info. */
3089
3090 if (notcurrent)
3091 pc -= 1;
3092
3093 /* elz: added this because this function returned the wrong
3094 information if the pc belongs to a stub (import/export)
3095 to call a shlib function. This stub would be anywhere between
3096 two functions in the target, and the line info was erroneously
3097 taken to be the one of the line before the pc. */
3098
3099 /* RT: Further explanation:
3100
3101 * We have stubs (trampolines) inserted between procedures.
3102 *
3103 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3104 * exists in the main image.
3105 *
3106 * In the minimal symbol table, we have a bunch of symbols
3107 * sorted by start address. The stubs are marked as "trampoline",
3108 * the others appear as text. E.g.:
3109 *
3110 * Minimal symbol table for main image
3111 * main: code for main (text symbol)
3112 * shr1: stub (trampoline symbol)
3113 * foo: code for foo (text symbol)
3114 * ...
3115 * Minimal symbol table for "shr1" image:
3116 * ...
3117 * shr1: code for shr1 (text symbol)
3118 * ...
3119 *
3120 * So the code below is trying to detect if we are in the stub
3121 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3122 * and if found, do the symbolization from the real-code address
3123 * rather than the stub address.
3124 *
3125 * Assumptions being made about the minimal symbol table:
3126 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3127 * if we're really in the trampoline.s If we're beyond it (say
3128 * we're in "foo" in the above example), it'll have a closer
3129 * symbol (the "foo" text symbol for example) and will not
3130 * return the trampoline.
3131 * 2. lookup_minimal_symbol_text() will find a real text symbol
3132 * corresponding to the trampoline, and whose address will
3133 * be different than the trampoline address. I put in a sanity
3134 * check for the address being the same, to avoid an
3135 * infinite recursion.
3136 */
3137 msymbol = lookup_minimal_symbol_by_pc (pc);
3138 if (msymbol.minsym != NULL)
3139 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3140 {
3141 struct bound_minimal_symbol mfunsym
3142 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3143 NULL);
3144
3145 if (mfunsym.minsym == NULL)
3146 /* I eliminated this warning since it is coming out
3147 * in the following situation:
3148 * gdb shmain // test program with shared libraries
3149 * (gdb) break shr1 // function in shared lib
3150 * Warning: In stub for ...
3151 * In the above situation, the shared lib is not loaded yet,
3152 * so of course we can't find the real func/line info,
3153 * but the "break" still works, and the warning is annoying.
3154 * So I commented out the warning. RT */
3155 /* warning ("In stub for %s; unable to find real function/line info",
3156 SYMBOL_LINKAGE_NAME (msymbol)); */
3157 ;
3158 /* fall through */
3159 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3160 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3161 /* Avoid infinite recursion */
3162 /* See above comment about why warning is commented out. */
3163 /* warning ("In stub for %s; unable to find real function/line info",
3164 SYMBOL_LINKAGE_NAME (msymbol)); */
3165 ;
3166 /* fall through */
3167 else
3168 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3169 }
3170
3171 symtab_and_line val;
3172 val.pspace = current_program_space;
3173
3174 cust = find_pc_sect_compunit_symtab (pc, section);
3175 if (cust == NULL)
3176 {
3177 /* If no symbol information, return previous pc. */
3178 if (notcurrent)
3179 pc++;
3180 val.pc = pc;
3181 return val;
3182 }
3183
3184 bv = COMPUNIT_BLOCKVECTOR (cust);
3185
3186 /* Look at all the symtabs that share this blockvector.
3187 They all have the same apriori range, that we found was right;
3188 but they have different line tables. */
3189
3190 ALL_COMPUNIT_FILETABS (cust, iter_s)
3191 {
3192 /* Find the best line in this symtab. */
3193 l = SYMTAB_LINETABLE (iter_s);
3194 if (!l)
3195 continue;
3196 len = l->nitems;
3197 if (len <= 0)
3198 {
3199 /* I think len can be zero if the symtab lacks line numbers
3200 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3201 I'm not sure which, and maybe it depends on the symbol
3202 reader). */
3203 continue;
3204 }
3205
3206 prev = NULL;
3207 item = l->item; /* Get first line info. */
3208
3209 /* Is this file's first line closer than the first lines of other files?
3210 If so, record this file, and its first line, as best alternate. */
3211 if (item->pc > pc && (!alt || item->pc < alt->pc))
3212 alt = item;
3213
3214 auto pc_compare = [](const CORE_ADDR & comp_pc,
3215 const struct linetable_entry & lhs)->bool
3216 {
3217 return comp_pc < lhs.pc;
3218 };
3219
3220 struct linetable_entry *first = item;
3221 struct linetable_entry *last = item + len;
3222 item = std::upper_bound (first, last, pc, pc_compare);
3223 if (item != first)
3224 prev = item - 1; /* Found a matching item. */
3225
3226 /* At this point, prev points at the line whose start addr is <= pc, and
3227 item points at the next line. If we ran off the end of the linetable
3228 (pc >= start of the last line), then prev == item. If pc < start of
3229 the first line, prev will not be set. */
3230
3231 /* Is this file's best line closer than the best in the other files?
3232 If so, record this file, and its best line, as best so far. Don't
3233 save prev if it represents the end of a function (i.e. line number
3234 0) instead of a real line. */
3235
3236 if (prev && prev->line && (!best || prev->pc > best->pc))
3237 {
3238 best = prev;
3239 best_symtab = iter_s;
3240
3241 /* Discard BEST_END if it's before the PC of the current BEST. */
3242 if (best_end <= best->pc)
3243 best_end = 0;
3244 }
3245
3246 /* If another line (denoted by ITEM) is in the linetable and its
3247 PC is after BEST's PC, but before the current BEST_END, then
3248 use ITEM's PC as the new best_end. */
3249 if (best && item < last && item->pc > best->pc
3250 && (best_end == 0 || best_end > item->pc))
3251 best_end = item->pc;
3252 }
3253
3254 if (!best_symtab)
3255 {
3256 /* If we didn't find any line number info, just return zeros.
3257 We used to return alt->line - 1 here, but that could be
3258 anywhere; if we don't have line number info for this PC,
3259 don't make some up. */
3260 val.pc = pc;
3261 }
3262 else if (best->line == 0)
3263 {
3264 /* If our best fit is in a range of PC's for which no line
3265 number info is available (line number is zero) then we didn't
3266 find any valid line information. */
3267 val.pc = pc;
3268 }
3269 else
3270 {
3271 val.symtab = best_symtab;
3272 val.line = best->line;
3273 val.pc = best->pc;
3274 if (best_end && (!alt || best_end < alt->pc))
3275 val.end = best_end;
3276 else if (alt)
3277 val.end = alt->pc;
3278 else
3279 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3280 }
3281 val.section = section;
3282 return val;
3283 }
3284
3285 /* Backward compatibility (no section). */
3286
3287 struct symtab_and_line
3288 find_pc_line (CORE_ADDR pc, int notcurrent)
3289 {
3290 struct obj_section *section;
3291
3292 section = find_pc_overlay (pc);
3293 if (pc_in_unmapped_range (pc, section))
3294 pc = overlay_mapped_address (pc, section);
3295 return find_pc_sect_line (pc, section, notcurrent);
3296 }
3297
3298 /* See symtab.h. */
3299
3300 struct symtab *
3301 find_pc_line_symtab (CORE_ADDR pc)
3302 {
3303 struct symtab_and_line sal;
3304
3305 /* This always passes zero for NOTCURRENT to find_pc_line.
3306 There are currently no callers that ever pass non-zero. */
3307 sal = find_pc_line (pc, 0);
3308 return sal.symtab;
3309 }
3310 \f
3311 /* Find line number LINE in any symtab whose name is the same as
3312 SYMTAB.
3313
3314 If found, return the symtab that contains the linetable in which it was
3315 found, set *INDEX to the index in the linetable of the best entry
3316 found, and set *EXACT_MATCH nonzero if the value returned is an
3317 exact match.
3318
3319 If not found, return NULL. */
3320
3321 struct symtab *
3322 find_line_symtab (struct symtab *symtab, int line,
3323 int *index, int *exact_match)
3324 {
3325 int exact = 0; /* Initialized here to avoid a compiler warning. */
3326
3327 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3328 so far seen. */
3329
3330 int best_index;
3331 struct linetable *best_linetable;
3332 struct symtab *best_symtab;
3333
3334 /* First try looking it up in the given symtab. */
3335 best_linetable = SYMTAB_LINETABLE (symtab);
3336 best_symtab = symtab;
3337 best_index = find_line_common (best_linetable, line, &exact, 0);
3338 if (best_index < 0 || !exact)
3339 {
3340 /* Didn't find an exact match. So we better keep looking for
3341 another symtab with the same name. In the case of xcoff,
3342 multiple csects for one source file (produced by IBM's FORTRAN
3343 compiler) produce multiple symtabs (this is unavoidable
3344 assuming csects can be at arbitrary places in memory and that
3345 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3346
3347 /* BEST is the smallest linenumber > LINE so far seen,
3348 or 0 if none has been seen so far.
3349 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3350 int best;
3351
3352 struct compunit_symtab *cu;
3353 struct symtab *s;
3354
3355 if (best_index >= 0)
3356 best = best_linetable->item[best_index].line;
3357 else
3358 best = 0;
3359
3360 for (objfile *objfile : all_objfiles (current_program_space))
3361 {
3362 if (objfile->sf)
3363 objfile->sf->qf->expand_symtabs_with_fullname
3364 (objfile, symtab_to_fullname (symtab));
3365 }
3366
3367 struct objfile *objfile;
3368 ALL_FILETABS (objfile, cu, s)
3369 {
3370 struct linetable *l;
3371 int ind;
3372
3373 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3374 continue;
3375 if (FILENAME_CMP (symtab_to_fullname (symtab),
3376 symtab_to_fullname (s)) != 0)
3377 continue;
3378 l = SYMTAB_LINETABLE (s);
3379 ind = find_line_common (l, line, &exact, 0);
3380 if (ind >= 0)
3381 {
3382 if (exact)
3383 {
3384 best_index = ind;
3385 best_linetable = l;
3386 best_symtab = s;
3387 goto done;
3388 }
3389 if (best == 0 || l->item[ind].line < best)
3390 {
3391 best = l->item[ind].line;
3392 best_index = ind;
3393 best_linetable = l;
3394 best_symtab = s;
3395 }
3396 }
3397 }
3398 }
3399 done:
3400 if (best_index < 0)
3401 return NULL;
3402
3403 if (index)
3404 *index = best_index;
3405 if (exact_match)
3406 *exact_match = exact;
3407
3408 return best_symtab;
3409 }
3410
3411 /* Given SYMTAB, returns all the PCs function in the symtab that
3412 exactly match LINE. Returns an empty vector if there are no exact
3413 matches, but updates BEST_ITEM in this case. */
3414
3415 std::vector<CORE_ADDR>
3416 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3417 struct linetable_entry **best_item)
3418 {
3419 int start = 0;
3420 std::vector<CORE_ADDR> result;
3421
3422 /* First, collect all the PCs that are at this line. */
3423 while (1)
3424 {
3425 int was_exact;
3426 int idx;
3427
3428 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3429 start);
3430 if (idx < 0)
3431 break;
3432
3433 if (!was_exact)
3434 {
3435 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3436
3437 if (*best_item == NULL || item->line < (*best_item)->line)
3438 *best_item = item;
3439
3440 break;
3441 }
3442
3443 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3444 start = idx + 1;
3445 }
3446
3447 return result;
3448 }
3449
3450 \f
3451 /* Set the PC value for a given source file and line number and return true.
3452 Returns zero for invalid line number (and sets the PC to 0).
3453 The source file is specified with a struct symtab. */
3454
3455 int
3456 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3457 {
3458 struct linetable *l;
3459 int ind;
3460
3461 *pc = 0;
3462 if (symtab == 0)
3463 return 0;
3464
3465 symtab = find_line_symtab (symtab, line, &ind, NULL);
3466 if (symtab != NULL)
3467 {
3468 l = SYMTAB_LINETABLE (symtab);
3469 *pc = l->item[ind].pc;
3470 return 1;
3471 }
3472 else
3473 return 0;
3474 }
3475
3476 /* Find the range of pc values in a line.
3477 Store the starting pc of the line into *STARTPTR
3478 and the ending pc (start of next line) into *ENDPTR.
3479 Returns 1 to indicate success.
3480 Returns 0 if could not find the specified line. */
3481
3482 int
3483 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3484 CORE_ADDR *endptr)
3485 {
3486 CORE_ADDR startaddr;
3487 struct symtab_and_line found_sal;
3488
3489 startaddr = sal.pc;
3490 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3491 return 0;
3492
3493 /* This whole function is based on address. For example, if line 10 has
3494 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3495 "info line *0x123" should say the line goes from 0x100 to 0x200
3496 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3497 This also insures that we never give a range like "starts at 0x134
3498 and ends at 0x12c". */
3499
3500 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3501 if (found_sal.line != sal.line)
3502 {
3503 /* The specified line (sal) has zero bytes. */
3504 *startptr = found_sal.pc;
3505 *endptr = found_sal.pc;
3506 }
3507 else
3508 {
3509 *startptr = found_sal.pc;
3510 *endptr = found_sal.end;
3511 }
3512 return 1;
3513 }
3514
3515 /* Given a line table and a line number, return the index into the line
3516 table for the pc of the nearest line whose number is >= the specified one.
3517 Return -1 if none is found. The value is >= 0 if it is an index.
3518 START is the index at which to start searching the line table.
3519
3520 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3521
3522 static int
3523 find_line_common (struct linetable *l, int lineno,
3524 int *exact_match, int start)
3525 {
3526 int i;
3527 int len;
3528
3529 /* BEST is the smallest linenumber > LINENO so far seen,
3530 or 0 if none has been seen so far.
3531 BEST_INDEX identifies the item for it. */
3532
3533 int best_index = -1;
3534 int best = 0;
3535
3536 *exact_match = 0;
3537
3538 if (lineno <= 0)
3539 return -1;
3540 if (l == 0)
3541 return -1;
3542
3543 len = l->nitems;
3544 for (i = start; i < len; i++)
3545 {
3546 struct linetable_entry *item = &(l->item[i]);
3547
3548 if (item->line == lineno)
3549 {
3550 /* Return the first (lowest address) entry which matches. */
3551 *exact_match = 1;
3552 return i;
3553 }
3554
3555 if (item->line > lineno && (best == 0 || item->line < best))
3556 {
3557 best = item->line;
3558 best_index = i;
3559 }
3560 }
3561
3562 /* If we got here, we didn't get an exact match. */
3563 return best_index;
3564 }
3565
3566 int
3567 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3568 {
3569 struct symtab_and_line sal;
3570
3571 sal = find_pc_line (pc, 0);
3572 *startptr = sal.pc;
3573 *endptr = sal.end;
3574 return sal.symtab != 0;
3575 }
3576
3577 /* Helper for find_function_start_sal. Does most of the work, except
3578 setting the sal's symbol. */
3579
3580 static symtab_and_line
3581 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3582 bool funfirstline)
3583 {
3584 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3585
3586 if (funfirstline && sal.symtab != NULL
3587 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3588 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3589 {
3590 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3591
3592 sal.pc = func_addr;
3593 if (gdbarch_skip_entrypoint_p (gdbarch))
3594 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3595 return sal;
3596 }
3597
3598 /* We always should have a line for the function start address.
3599 If we don't, something is odd. Create a plain SAL referring
3600 just the PC and hope that skip_prologue_sal (if requested)
3601 can find a line number for after the prologue. */
3602 if (sal.pc < func_addr)
3603 {
3604 sal = {};
3605 sal.pspace = current_program_space;
3606 sal.pc = func_addr;
3607 sal.section = section;
3608 }
3609
3610 if (funfirstline)
3611 skip_prologue_sal (&sal);
3612
3613 return sal;
3614 }
3615
3616 /* See symtab.h. */
3617
3618 symtab_and_line
3619 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3620 bool funfirstline)
3621 {
3622 symtab_and_line sal
3623 = find_function_start_sal_1 (func_addr, section, funfirstline);
3624
3625 /* find_function_start_sal_1 does a linetable search, so it finds
3626 the symtab and linenumber, but not a symbol. Fill in the
3627 function symbol too. */
3628 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3629
3630 return sal;
3631 }
3632
3633 /* See symtab.h. */
3634
3635 symtab_and_line
3636 find_function_start_sal (symbol *sym, bool funfirstline)
3637 {
3638 fixup_symbol_section (sym, NULL);
3639 symtab_and_line sal
3640 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3641 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3642 funfirstline);
3643 sal.symbol = sym;
3644 return sal;
3645 }
3646
3647
3648 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3649 address for that function that has an entry in SYMTAB's line info
3650 table. If such an entry cannot be found, return FUNC_ADDR
3651 unaltered. */
3652
3653 static CORE_ADDR
3654 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3655 {
3656 CORE_ADDR func_start, func_end;
3657 struct linetable *l;
3658 int i;
3659
3660 /* Give up if this symbol has no lineinfo table. */
3661 l = SYMTAB_LINETABLE (symtab);
3662 if (l == NULL)
3663 return func_addr;
3664
3665 /* Get the range for the function's PC values, or give up if we
3666 cannot, for some reason. */
3667 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3668 return func_addr;
3669
3670 /* Linetable entries are ordered by PC values, see the commentary in
3671 symtab.h where `struct linetable' is defined. Thus, the first
3672 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3673 address we are looking for. */
3674 for (i = 0; i < l->nitems; i++)
3675 {
3676 struct linetable_entry *item = &(l->item[i]);
3677
3678 /* Don't use line numbers of zero, they mark special entries in
3679 the table. See the commentary on symtab.h before the
3680 definition of struct linetable. */
3681 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3682 return item->pc;
3683 }
3684
3685 return func_addr;
3686 }
3687
3688 /* Adjust SAL to the first instruction past the function prologue.
3689 If the PC was explicitly specified, the SAL is not changed.
3690 If the line number was explicitly specified, at most the SAL's PC
3691 is updated. If SAL is already past the prologue, then do nothing. */
3692
3693 void
3694 skip_prologue_sal (struct symtab_and_line *sal)
3695 {
3696 struct symbol *sym;
3697 struct symtab_and_line start_sal;
3698 CORE_ADDR pc, saved_pc;
3699 struct obj_section *section;
3700 const char *name;
3701 struct objfile *objfile;
3702 struct gdbarch *gdbarch;
3703 const struct block *b, *function_block;
3704 int force_skip, skip;
3705
3706 /* Do not change the SAL if PC was specified explicitly. */
3707 if (sal->explicit_pc)
3708 return;
3709
3710 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3711
3712 switch_to_program_space_and_thread (sal->pspace);
3713
3714 sym = find_pc_sect_function (sal->pc, sal->section);
3715 if (sym != NULL)
3716 {
3717 fixup_symbol_section (sym, NULL);
3718
3719 objfile = symbol_objfile (sym);
3720 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3721 section = SYMBOL_OBJ_SECTION (objfile, sym);
3722 name = SYMBOL_LINKAGE_NAME (sym);
3723 }
3724 else
3725 {
3726 struct bound_minimal_symbol msymbol
3727 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3728
3729 if (msymbol.minsym == NULL)
3730 return;
3731
3732 objfile = msymbol.objfile;
3733 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3734 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3735 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3736 }
3737
3738 gdbarch = get_objfile_arch (objfile);
3739
3740 /* Process the prologue in two passes. In the first pass try to skip the
3741 prologue (SKIP is true) and verify there is a real need for it (indicated
3742 by FORCE_SKIP). If no such reason was found run a second pass where the
3743 prologue is not skipped (SKIP is false). */
3744
3745 skip = 1;
3746 force_skip = 1;
3747
3748 /* Be conservative - allow direct PC (without skipping prologue) only if we
3749 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3750 have to be set by the caller so we use SYM instead. */
3751 if (sym != NULL
3752 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3753 force_skip = 0;
3754
3755 saved_pc = pc;
3756 do
3757 {
3758 pc = saved_pc;
3759
3760 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3761 so that gdbarch_skip_prologue has something unique to work on. */
3762 if (section_is_overlay (section) && !section_is_mapped (section))
3763 pc = overlay_unmapped_address (pc, section);
3764
3765 /* Skip "first line" of function (which is actually its prologue). */
3766 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3767 if (gdbarch_skip_entrypoint_p (gdbarch))
3768 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3769 if (skip)
3770 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3771
3772 /* For overlays, map pc back into its mapped VMA range. */
3773 pc = overlay_mapped_address (pc, section);
3774
3775 /* Calculate line number. */
3776 start_sal = find_pc_sect_line (pc, section, 0);
3777
3778 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3779 line is still part of the same function. */
3780 if (skip && start_sal.pc != pc
3781 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3782 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3783 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3784 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3785 {
3786 /* First pc of next line */
3787 pc = start_sal.end;
3788 /* Recalculate the line number (might not be N+1). */
3789 start_sal = find_pc_sect_line (pc, section, 0);
3790 }
3791
3792 /* On targets with executable formats that don't have a concept of
3793 constructors (ELF with .init has, PE doesn't), gcc emits a call
3794 to `__main' in `main' between the prologue and before user
3795 code. */
3796 if (gdbarch_skip_main_prologue_p (gdbarch)
3797 && name && strcmp_iw (name, "main") == 0)
3798 {
3799 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3800 /* Recalculate the line number (might not be N+1). */
3801 start_sal = find_pc_sect_line (pc, section, 0);
3802 force_skip = 1;
3803 }
3804 }
3805 while (!force_skip && skip--);
3806
3807 /* If we still don't have a valid source line, try to find the first
3808 PC in the lineinfo table that belongs to the same function. This
3809 happens with COFF debug info, which does not seem to have an
3810 entry in lineinfo table for the code after the prologue which has
3811 no direct relation to source. For example, this was found to be
3812 the case with the DJGPP target using "gcc -gcoff" when the
3813 compiler inserted code after the prologue to make sure the stack
3814 is aligned. */
3815 if (!force_skip && sym && start_sal.symtab == NULL)
3816 {
3817 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3818 /* Recalculate the line number. */
3819 start_sal = find_pc_sect_line (pc, section, 0);
3820 }
3821
3822 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3823 forward SAL to the end of the prologue. */
3824 if (sal->pc >= pc)
3825 return;
3826
3827 sal->pc = pc;
3828 sal->section = section;
3829
3830 /* Unless the explicit_line flag was set, update the SAL line
3831 and symtab to correspond to the modified PC location. */
3832 if (sal->explicit_line)
3833 return;
3834
3835 sal->symtab = start_sal.symtab;
3836 sal->line = start_sal.line;
3837 sal->end = start_sal.end;
3838
3839 /* Check if we are now inside an inlined function. If we can,
3840 use the call site of the function instead. */
3841 b = block_for_pc_sect (sal->pc, sal->section);
3842 function_block = NULL;
3843 while (b != NULL)
3844 {
3845 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3846 function_block = b;
3847 else if (BLOCK_FUNCTION (b) != NULL)
3848 break;
3849 b = BLOCK_SUPERBLOCK (b);
3850 }
3851 if (function_block != NULL
3852 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3853 {
3854 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3855 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3856 }
3857 }
3858
3859 /* Given PC at the function's start address, attempt to find the
3860 prologue end using SAL information. Return zero if the skip fails.
3861
3862 A non-optimized prologue traditionally has one SAL for the function
3863 and a second for the function body. A single line function has
3864 them both pointing at the same line.
3865
3866 An optimized prologue is similar but the prologue may contain
3867 instructions (SALs) from the instruction body. Need to skip those
3868 while not getting into the function body.
3869
3870 The functions end point and an increasing SAL line are used as
3871 indicators of the prologue's endpoint.
3872
3873 This code is based on the function refine_prologue_limit
3874 (found in ia64). */
3875
3876 CORE_ADDR
3877 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3878 {
3879 struct symtab_and_line prologue_sal;
3880 CORE_ADDR start_pc;
3881 CORE_ADDR end_pc;
3882 const struct block *bl;
3883
3884 /* Get an initial range for the function. */
3885 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3886 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3887
3888 prologue_sal = find_pc_line (start_pc, 0);
3889 if (prologue_sal.line != 0)
3890 {
3891 /* For languages other than assembly, treat two consecutive line
3892 entries at the same address as a zero-instruction prologue.
3893 The GNU assembler emits separate line notes for each instruction
3894 in a multi-instruction macro, but compilers generally will not
3895 do this. */
3896 if (prologue_sal.symtab->language != language_asm)
3897 {
3898 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3899 int idx = 0;
3900
3901 /* Skip any earlier lines, and any end-of-sequence marker
3902 from a previous function. */
3903 while (linetable->item[idx].pc != prologue_sal.pc
3904 || linetable->item[idx].line == 0)
3905 idx++;
3906
3907 if (idx+1 < linetable->nitems
3908 && linetable->item[idx+1].line != 0
3909 && linetable->item[idx+1].pc == start_pc)
3910 return start_pc;
3911 }
3912
3913 /* If there is only one sal that covers the entire function,
3914 then it is probably a single line function, like
3915 "foo(){}". */
3916 if (prologue_sal.end >= end_pc)
3917 return 0;
3918
3919 while (prologue_sal.end < end_pc)
3920 {
3921 struct symtab_and_line sal;
3922
3923 sal = find_pc_line (prologue_sal.end, 0);
3924 if (sal.line == 0)
3925 break;
3926 /* Assume that a consecutive SAL for the same (or larger)
3927 line mark the prologue -> body transition. */
3928 if (sal.line >= prologue_sal.line)
3929 break;
3930 /* Likewise if we are in a different symtab altogether
3931 (e.g. within a file included via #include).  */
3932 if (sal.symtab != prologue_sal.symtab)
3933 break;
3934
3935 /* The line number is smaller. Check that it's from the
3936 same function, not something inlined. If it's inlined,
3937 then there is no point comparing the line numbers. */
3938 bl = block_for_pc (prologue_sal.end);
3939 while (bl)
3940 {
3941 if (block_inlined_p (bl))
3942 break;
3943 if (BLOCK_FUNCTION (bl))
3944 {
3945 bl = NULL;
3946 break;
3947 }
3948 bl = BLOCK_SUPERBLOCK (bl);
3949 }
3950 if (bl != NULL)
3951 break;
3952
3953 /* The case in which compiler's optimizer/scheduler has
3954 moved instructions into the prologue. We look ahead in
3955 the function looking for address ranges whose
3956 corresponding line number is less the first one that we
3957 found for the function. This is more conservative then
3958 refine_prologue_limit which scans a large number of SALs
3959 looking for any in the prologue. */
3960 prologue_sal = sal;
3961 }
3962 }
3963
3964 if (prologue_sal.end < end_pc)
3965 /* Return the end of this line, or zero if we could not find a
3966 line. */
3967 return prologue_sal.end;
3968 else
3969 /* Don't return END_PC, which is past the end of the function. */
3970 return prologue_sal.pc;
3971 }
3972
3973 /* See symtab.h. */
3974
3975 symbol *
3976 find_function_alias_target (bound_minimal_symbol msymbol)
3977 {
3978 CORE_ADDR func_addr;
3979 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3980 return NULL;
3981
3982 symbol *sym = find_pc_function (func_addr);
3983 if (sym != NULL
3984 && SYMBOL_CLASS (sym) == LOC_BLOCK
3985 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3986 return sym;
3987
3988 return NULL;
3989 }
3990
3991 \f
3992 /* If P is of the form "operator[ \t]+..." where `...' is
3993 some legitimate operator text, return a pointer to the
3994 beginning of the substring of the operator text.
3995 Otherwise, return "". */
3996
3997 static const char *
3998 operator_chars (const char *p, const char **end)
3999 {
4000 *end = "";
4001 if (!startswith (p, CP_OPERATOR_STR))
4002 return *end;
4003 p += CP_OPERATOR_LEN;
4004
4005 /* Don't get faked out by `operator' being part of a longer
4006 identifier. */
4007 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4008 return *end;
4009
4010 /* Allow some whitespace between `operator' and the operator symbol. */
4011 while (*p == ' ' || *p == '\t')
4012 p++;
4013
4014 /* Recognize 'operator TYPENAME'. */
4015
4016 if (isalpha (*p) || *p == '_' || *p == '$')
4017 {
4018 const char *q = p + 1;
4019
4020 while (isalnum (*q) || *q == '_' || *q == '$')
4021 q++;
4022 *end = q;
4023 return p;
4024 }
4025
4026 while (*p)
4027 switch (*p)
4028 {
4029 case '\\': /* regexp quoting */
4030 if (p[1] == '*')
4031 {
4032 if (p[2] == '=') /* 'operator\*=' */
4033 *end = p + 3;
4034 else /* 'operator\*' */
4035 *end = p + 2;
4036 return p;
4037 }
4038 else if (p[1] == '[')
4039 {
4040 if (p[2] == ']')
4041 error (_("mismatched quoting on brackets, "
4042 "try 'operator\\[\\]'"));
4043 else if (p[2] == '\\' && p[3] == ']')
4044 {
4045 *end = p + 4; /* 'operator\[\]' */
4046 return p;
4047 }
4048 else
4049 error (_("nothing is allowed between '[' and ']'"));
4050 }
4051 else
4052 {
4053 /* Gratuitous qoute: skip it and move on. */
4054 p++;
4055 continue;
4056 }
4057 break;
4058 case '!':
4059 case '=':
4060 case '*':
4061 case '/':
4062 case '%':
4063 case '^':
4064 if (p[1] == '=')
4065 *end = p + 2;
4066 else
4067 *end = p + 1;
4068 return p;
4069 case '<':
4070 case '>':
4071 case '+':
4072 case '-':
4073 case '&':
4074 case '|':
4075 if (p[0] == '-' && p[1] == '>')
4076 {
4077 /* Struct pointer member operator 'operator->'. */
4078 if (p[2] == '*')
4079 {
4080 *end = p + 3; /* 'operator->*' */
4081 return p;
4082 }
4083 else if (p[2] == '\\')
4084 {
4085 *end = p + 4; /* Hopefully 'operator->\*' */
4086 return p;
4087 }
4088 else
4089 {
4090 *end = p + 2; /* 'operator->' */
4091 return p;
4092 }
4093 }
4094 if (p[1] == '=' || p[1] == p[0])
4095 *end = p + 2;
4096 else
4097 *end = p + 1;
4098 return p;
4099 case '~':
4100 case ',':
4101 *end = p + 1;
4102 return p;
4103 case '(':
4104 if (p[1] != ')')
4105 error (_("`operator ()' must be specified "
4106 "without whitespace in `()'"));
4107 *end = p + 2;
4108 return p;
4109 case '?':
4110 if (p[1] != ':')
4111 error (_("`operator ?:' must be specified "
4112 "without whitespace in `?:'"));
4113 *end = p + 2;
4114 return p;
4115 case '[':
4116 if (p[1] != ']')
4117 error (_("`operator []' must be specified "
4118 "without whitespace in `[]'"));
4119 *end = p + 2;
4120 return p;
4121 default:
4122 error (_("`operator %s' not supported"), p);
4123 break;
4124 }
4125
4126 *end = "";
4127 return *end;
4128 }
4129 \f
4130
4131 /* Data structure to maintain printing state for output_source_filename. */
4132
4133 struct output_source_filename_data
4134 {
4135 /* Cache of what we've seen so far. */
4136 struct filename_seen_cache *filename_seen_cache;
4137
4138 /* Flag of whether we're printing the first one. */
4139 int first;
4140 };
4141
4142 /* Slave routine for sources_info. Force line breaks at ,'s.
4143 NAME is the name to print.
4144 DATA contains the state for printing and watching for duplicates. */
4145
4146 static void
4147 output_source_filename (const char *name,
4148 struct output_source_filename_data *data)
4149 {
4150 /* Since a single source file can result in several partial symbol
4151 tables, we need to avoid printing it more than once. Note: if
4152 some of the psymtabs are read in and some are not, it gets
4153 printed both under "Source files for which symbols have been
4154 read" and "Source files for which symbols will be read in on
4155 demand". I consider this a reasonable way to deal with the
4156 situation. I'm not sure whether this can also happen for
4157 symtabs; it doesn't hurt to check. */
4158
4159 /* Was NAME already seen? */
4160 if (data->filename_seen_cache->seen (name))
4161 {
4162 /* Yes; don't print it again. */
4163 return;
4164 }
4165
4166 /* No; print it and reset *FIRST. */
4167 if (! data->first)
4168 printf_filtered (", ");
4169 data->first = 0;
4170
4171 wrap_here ("");
4172 fputs_filtered (name, gdb_stdout);
4173 }
4174
4175 /* A callback for map_partial_symbol_filenames. */
4176
4177 static void
4178 output_partial_symbol_filename (const char *filename, const char *fullname,
4179 void *data)
4180 {
4181 output_source_filename (fullname ? fullname : filename,
4182 (struct output_source_filename_data *) data);
4183 }
4184
4185 static void
4186 info_sources_command (const char *ignore, int from_tty)
4187 {
4188 struct compunit_symtab *cu;
4189 struct symtab *s;
4190 struct objfile *objfile;
4191 struct output_source_filename_data data;
4192
4193 if (!have_full_symbols () && !have_partial_symbols ())
4194 {
4195 error (_("No symbol table is loaded. Use the \"file\" command."));
4196 }
4197
4198 filename_seen_cache filenames_seen;
4199
4200 data.filename_seen_cache = &filenames_seen;
4201
4202 printf_filtered ("Source files for which symbols have been read in:\n\n");
4203
4204 data.first = 1;
4205 ALL_FILETABS (objfile, cu, s)
4206 {
4207 const char *fullname = symtab_to_fullname (s);
4208
4209 output_source_filename (fullname, &data);
4210 }
4211 printf_filtered ("\n\n");
4212
4213 printf_filtered ("Source files for which symbols "
4214 "will be read in on demand:\n\n");
4215
4216 filenames_seen.clear ();
4217 data.first = 1;
4218 map_symbol_filenames (output_partial_symbol_filename, &data,
4219 1 /*need_fullname*/);
4220 printf_filtered ("\n");
4221 }
4222
4223 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4224 non-zero compare only lbasename of FILES. */
4225
4226 static int
4227 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4228 {
4229 int i;
4230
4231 if (file != NULL && nfiles != 0)
4232 {
4233 for (i = 0; i < nfiles; i++)
4234 {
4235 if (compare_filenames_for_search (file, (basenames
4236 ? lbasename (files[i])
4237 : files[i])))
4238 return 1;
4239 }
4240 }
4241 else if (nfiles == 0)
4242 return 1;
4243 return 0;
4244 }
4245
4246 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4247 sort symbols, not minimal symbols. */
4248
4249 int
4250 symbol_search::compare_search_syms (const symbol_search &sym_a,
4251 const symbol_search &sym_b)
4252 {
4253 int c;
4254
4255 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4256 symbol_symtab (sym_b.symbol)->filename);
4257 if (c != 0)
4258 return c;
4259
4260 if (sym_a.block != sym_b.block)
4261 return sym_a.block - sym_b.block;
4262
4263 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4264 SYMBOL_PRINT_NAME (sym_b.symbol));
4265 }
4266
4267 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4268 If SYM has no symbol_type or symbol_name, returns false. */
4269
4270 bool
4271 treg_matches_sym_type_name (const compiled_regex &treg,
4272 const struct symbol *sym)
4273 {
4274 struct type *sym_type;
4275 std::string printed_sym_type_name;
4276
4277 if (symbol_lookup_debug > 1)
4278 {
4279 fprintf_unfiltered (gdb_stdlog,
4280 "treg_matches_sym_type_name\n sym %s\n",
4281 SYMBOL_NATURAL_NAME (sym));
4282 }
4283
4284 sym_type = SYMBOL_TYPE (sym);
4285 if (sym_type == NULL)
4286 return false;
4287
4288 {
4289 scoped_switch_to_sym_language_if_auto l (sym);
4290
4291 printed_sym_type_name = type_to_string (sym_type);
4292 }
4293
4294
4295 if (symbol_lookup_debug > 1)
4296 {
4297 fprintf_unfiltered (gdb_stdlog,
4298 " sym_type_name %s\n",
4299 printed_sym_type_name.c_str ());
4300 }
4301
4302
4303 if (printed_sym_type_name.empty ())
4304 return false;
4305
4306 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4307 }
4308
4309
4310 /* Sort the symbols in RESULT and remove duplicates. */
4311
4312 static void
4313 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4314 {
4315 std::sort (result->begin (), result->end ());
4316 result->erase (std::unique (result->begin (), result->end ()),
4317 result->end ());
4318 }
4319
4320 /* Search the symbol table for matches to the regular expression REGEXP,
4321 returning the results.
4322
4323 Only symbols of KIND are searched:
4324 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4325 and constants (enums).
4326 if T_REGEXP is not NULL, only returns var that have
4327 a type matching regular expression T_REGEXP.
4328 FUNCTIONS_DOMAIN - search all functions
4329 TYPES_DOMAIN - search all type names
4330 ALL_DOMAIN - an internal error for this function
4331
4332 Within each file the results are sorted locally; each symtab's global and
4333 static blocks are separately alphabetized.
4334 Duplicate entries are removed. */
4335
4336 std::vector<symbol_search>
4337 search_symbols (const char *regexp, enum search_domain kind,
4338 const char *t_regexp,
4339 int nfiles, const char *files[])
4340 {
4341 struct compunit_symtab *cust;
4342 const struct blockvector *bv;
4343 struct block *b;
4344 int i = 0;
4345 struct block_iterator iter;
4346 struct symbol *sym;
4347 struct objfile *objfile;
4348 struct minimal_symbol *msymbol;
4349 int found_misc = 0;
4350 static const enum minimal_symbol_type types[]
4351 = {mst_data, mst_text, mst_abs};
4352 static const enum minimal_symbol_type types2[]
4353 = {mst_bss, mst_file_text, mst_abs};
4354 static const enum minimal_symbol_type types3[]
4355 = {mst_file_data, mst_solib_trampoline, mst_abs};
4356 static const enum minimal_symbol_type types4[]
4357 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4358 enum minimal_symbol_type ourtype;
4359 enum minimal_symbol_type ourtype2;
4360 enum minimal_symbol_type ourtype3;
4361 enum minimal_symbol_type ourtype4;
4362 std::vector<symbol_search> result;
4363 gdb::optional<compiled_regex> preg;
4364 gdb::optional<compiled_regex> treg;
4365
4366 gdb_assert (kind <= TYPES_DOMAIN);
4367
4368 ourtype = types[kind];
4369 ourtype2 = types2[kind];
4370 ourtype3 = types3[kind];
4371 ourtype4 = types4[kind];
4372
4373 if (regexp != NULL)
4374 {
4375 /* Make sure spacing is right for C++ operators.
4376 This is just a courtesy to make the matching less sensitive
4377 to how many spaces the user leaves between 'operator'
4378 and <TYPENAME> or <OPERATOR>. */
4379 const char *opend;
4380 const char *opname = operator_chars (regexp, &opend);
4381
4382 if (*opname)
4383 {
4384 int fix = -1; /* -1 means ok; otherwise number of
4385 spaces needed. */
4386
4387 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4388 {
4389 /* There should 1 space between 'operator' and 'TYPENAME'. */
4390 if (opname[-1] != ' ' || opname[-2] == ' ')
4391 fix = 1;
4392 }
4393 else
4394 {
4395 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4396 if (opname[-1] == ' ')
4397 fix = 0;
4398 }
4399 /* If wrong number of spaces, fix it. */
4400 if (fix >= 0)
4401 {
4402 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4403
4404 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4405 regexp = tmp;
4406 }
4407 }
4408
4409 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4410 ? REG_ICASE : 0);
4411 preg.emplace (regexp, cflags, _("Invalid regexp"));
4412 }
4413
4414 if (t_regexp != NULL)
4415 {
4416 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4417 ? REG_ICASE : 0);
4418 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4419 }
4420
4421 /* Search through the partial symtabs *first* for all symbols
4422 matching the regexp. That way we don't have to reproduce all of
4423 the machinery below. */
4424 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4425 {
4426 return file_matches (filename, files, nfiles,
4427 basenames);
4428 },
4429 lookup_name_info::match_any (),
4430 [&] (const char *symname)
4431 {
4432 return (!preg.has_value ()
4433 || preg->exec (symname,
4434 0, NULL, 0) == 0);
4435 },
4436 NULL,
4437 kind);
4438
4439 /* Here, we search through the minimal symbol tables for functions
4440 and variables that match, and force their symbols to be read.
4441 This is in particular necessary for demangled variable names,
4442 which are no longer put into the partial symbol tables.
4443 The symbol will then be found during the scan of symtabs below.
4444
4445 For functions, find_pc_symtab should succeed if we have debug info
4446 for the function, for variables we have to call
4447 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4448 has debug info.
4449 If the lookup fails, set found_misc so that we will rescan to print
4450 any matching symbols without debug info.
4451 We only search the objfile the msymbol came from, we no longer search
4452 all objfiles. In large programs (1000s of shared libs) searching all
4453 objfiles is not worth the pain. */
4454
4455 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4456 {
4457 ALL_MSYMBOLS (objfile, msymbol)
4458 {
4459 QUIT;
4460
4461 if (msymbol->created_by_gdb)
4462 continue;
4463
4464 if (MSYMBOL_TYPE (msymbol) == ourtype
4465 || MSYMBOL_TYPE (msymbol) == ourtype2
4466 || MSYMBOL_TYPE (msymbol) == ourtype3
4467 || MSYMBOL_TYPE (msymbol) == ourtype4)
4468 {
4469 if (!preg.has_value ()
4470 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4471 NULL, 0) == 0)
4472 {
4473 /* Note: An important side-effect of these lookup functions
4474 is to expand the symbol table if msymbol is found, for the
4475 benefit of the next loop on ALL_COMPUNITS. */
4476 if (kind == FUNCTIONS_DOMAIN
4477 ? (find_pc_compunit_symtab
4478 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4479 : (lookup_symbol_in_objfile_from_linkage_name
4480 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4481 .symbol == NULL))
4482 found_misc = 1;
4483 }
4484 }
4485 }
4486 }
4487
4488 ALL_COMPUNITS (objfile, cust)
4489 {
4490 bv = COMPUNIT_BLOCKVECTOR (cust);
4491 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4492 {
4493 b = BLOCKVECTOR_BLOCK (bv, i);
4494 ALL_BLOCK_SYMBOLS (b, iter, sym)
4495 {
4496 struct symtab *real_symtab = symbol_symtab (sym);
4497
4498 QUIT;
4499
4500 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4501 a substring of symtab_to_fullname as it may contain "./" etc. */
4502 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4503 || ((basenames_may_differ
4504 || file_matches (lbasename (real_symtab->filename),
4505 files, nfiles, 1))
4506 && file_matches (symtab_to_fullname (real_symtab),
4507 files, nfiles, 0)))
4508 && ((!preg.has_value ()
4509 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4510 NULL, 0) == 0)
4511 && ((kind == VARIABLES_DOMAIN
4512 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4513 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4514 && SYMBOL_CLASS (sym) != LOC_BLOCK
4515 /* LOC_CONST can be used for more than just enums,
4516 e.g., c++ static const members.
4517 We only want to skip enums here. */
4518 && !(SYMBOL_CLASS (sym) == LOC_CONST
4519 && (TYPE_CODE (SYMBOL_TYPE (sym))
4520 == TYPE_CODE_ENUM))
4521 && (!treg.has_value ()
4522 || treg_matches_sym_type_name (*treg, sym)))
4523 || (kind == FUNCTIONS_DOMAIN
4524 && SYMBOL_CLASS (sym) == LOC_BLOCK
4525 && (!treg.has_value ()
4526 || treg_matches_sym_type_name (*treg, sym)))
4527 || (kind == TYPES_DOMAIN
4528 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4529 {
4530 /* match */
4531 result.emplace_back (i, sym);
4532 }
4533 }
4534 }
4535 }
4536
4537 if (!result.empty ())
4538 sort_search_symbols_remove_dups (&result);
4539
4540 /* If there are no eyes, avoid all contact. I mean, if there are
4541 no debug symbols, then add matching minsyms. But if the user wants
4542 to see symbols matching a type regexp, then never give a minimal symbol,
4543 as we assume that a minimal symbol does not have a type. */
4544
4545 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4546 && !treg.has_value ())
4547 {
4548 ALL_MSYMBOLS (objfile, msymbol)
4549 {
4550 QUIT;
4551
4552 if (msymbol->created_by_gdb)
4553 continue;
4554
4555 if (MSYMBOL_TYPE (msymbol) == ourtype
4556 || MSYMBOL_TYPE (msymbol) == ourtype2
4557 || MSYMBOL_TYPE (msymbol) == ourtype3
4558 || MSYMBOL_TYPE (msymbol) == ourtype4)
4559 {
4560 if (!preg.has_value ()
4561 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4562 NULL, 0) == 0)
4563 {
4564 /* For functions we can do a quick check of whether the
4565 symbol might be found via find_pc_symtab. */
4566 if (kind != FUNCTIONS_DOMAIN
4567 || (find_pc_compunit_symtab
4568 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4569 {
4570 if (lookup_symbol_in_objfile_from_linkage_name
4571 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4572 .symbol == NULL)
4573 {
4574 /* match */
4575 result.emplace_back (i, msymbol, objfile);
4576 }
4577 }
4578 }
4579 }
4580 }
4581 }
4582
4583 return result;
4584 }
4585
4586 /* Helper function for symtab_symbol_info, this function uses
4587 the data returned from search_symbols() to print information
4588 regarding the match to gdb_stdout. If LAST is not NULL,
4589 print file and line number information for the symbol as
4590 well. Skip printing the filename if it matches LAST. */
4591
4592 static void
4593 print_symbol_info (enum search_domain kind,
4594 struct symbol *sym,
4595 int block, const char *last)
4596 {
4597 scoped_switch_to_sym_language_if_auto l (sym);
4598 struct symtab *s = symbol_symtab (sym);
4599
4600 if (last != NULL)
4601 {
4602 const char *s_filename = symtab_to_filename_for_display (s);
4603
4604 if (filename_cmp (last, s_filename) != 0)
4605 {
4606 fputs_filtered ("\nFile ", gdb_stdout);
4607 fputs_filtered (s_filename, gdb_stdout);
4608 fputs_filtered (":\n", gdb_stdout);
4609 }
4610
4611 if (SYMBOL_LINE (sym) != 0)
4612 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4613 else
4614 puts_filtered ("\t");
4615 }
4616
4617 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4618 printf_filtered ("static ");
4619
4620 /* Typedef that is not a C++ class. */
4621 if (kind == TYPES_DOMAIN
4622 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4623 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4624 /* variable, func, or typedef-that-is-c++-class. */
4625 else if (kind < TYPES_DOMAIN
4626 || (kind == TYPES_DOMAIN
4627 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4628 {
4629 type_print (SYMBOL_TYPE (sym),
4630 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4631 ? "" : SYMBOL_PRINT_NAME (sym)),
4632 gdb_stdout, 0);
4633
4634 printf_filtered (";\n");
4635 }
4636 }
4637
4638 /* This help function for symtab_symbol_info() prints information
4639 for non-debugging symbols to gdb_stdout. */
4640
4641 static void
4642 print_msymbol_info (struct bound_minimal_symbol msymbol)
4643 {
4644 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4645 char *tmp;
4646
4647 if (gdbarch_addr_bit (gdbarch) <= 32)
4648 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4649 & (CORE_ADDR) 0xffffffff,
4650 8);
4651 else
4652 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4653 16);
4654 printf_filtered ("%s %s\n",
4655 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4656 }
4657
4658 /* This is the guts of the commands "info functions", "info types", and
4659 "info variables". It calls search_symbols to find all matches and then
4660 print_[m]symbol_info to print out some useful information about the
4661 matches. */
4662
4663 static void
4664 symtab_symbol_info (bool quiet,
4665 const char *regexp, enum search_domain kind,
4666 const char *t_regexp, int from_tty)
4667 {
4668 static const char * const classnames[] =
4669 {"variable", "function", "type"};
4670 const char *last_filename = "";
4671 int first = 1;
4672
4673 gdb_assert (kind <= TYPES_DOMAIN);
4674
4675 /* Must make sure that if we're interrupted, symbols gets freed. */
4676 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4677 t_regexp, 0, NULL);
4678
4679 if (!quiet)
4680 {
4681 if (regexp != NULL)
4682 {
4683 if (t_regexp != NULL)
4684 printf_filtered
4685 (_("All %ss matching regular expression \"%s\""
4686 " with type matching regulation expression \"%s\":\n"),
4687 classnames[kind], regexp, t_regexp);
4688 else
4689 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4690 classnames[kind], regexp);
4691 }
4692 else
4693 {
4694 if (t_regexp != NULL)
4695 printf_filtered
4696 (_("All defined %ss"
4697 " with type matching regulation expression \"%s\" :\n"),
4698 classnames[kind], t_regexp);
4699 else
4700 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4701 }
4702 }
4703
4704 for (const symbol_search &p : symbols)
4705 {
4706 QUIT;
4707
4708 if (p.msymbol.minsym != NULL)
4709 {
4710 if (first)
4711 {
4712 if (!quiet)
4713 printf_filtered (_("\nNon-debugging symbols:\n"));
4714 first = 0;
4715 }
4716 print_msymbol_info (p.msymbol);
4717 }
4718 else
4719 {
4720 print_symbol_info (kind,
4721 p.symbol,
4722 p.block,
4723 last_filename);
4724 last_filename
4725 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4726 }
4727 }
4728 }
4729
4730 static void
4731 info_variables_command (const char *args, int from_tty)
4732 {
4733 std::string regexp;
4734 std::string t_regexp;
4735 bool quiet = false;
4736
4737 while (args != NULL
4738 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4739 ;
4740
4741 if (args != NULL)
4742 report_unrecognized_option_error ("info variables", args);
4743
4744 symtab_symbol_info (quiet,
4745 regexp.empty () ? NULL : regexp.c_str (),
4746 VARIABLES_DOMAIN,
4747 t_regexp.empty () ? NULL : t_regexp.c_str (),
4748 from_tty);
4749 }
4750
4751
4752 static void
4753 info_functions_command (const char *args, int from_tty)
4754 {
4755 std::string regexp;
4756 std::string t_regexp;
4757 bool quiet = false;
4758
4759 while (args != NULL
4760 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4761 ;
4762
4763 if (args != NULL)
4764 report_unrecognized_option_error ("info functions", args);
4765
4766 symtab_symbol_info (quiet,
4767 regexp.empty () ? NULL : regexp.c_str (),
4768 FUNCTIONS_DOMAIN,
4769 t_regexp.empty () ? NULL : t_regexp.c_str (),
4770 from_tty);
4771 }
4772
4773
4774 static void
4775 info_types_command (const char *regexp, int from_tty)
4776 {
4777 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4778 }
4779
4780 /* Breakpoint all functions matching regular expression. */
4781
4782 void
4783 rbreak_command_wrapper (char *regexp, int from_tty)
4784 {
4785 rbreak_command (regexp, from_tty);
4786 }
4787
4788 static void
4789 rbreak_command (const char *regexp, int from_tty)
4790 {
4791 std::string string;
4792 const char **files = NULL;
4793 const char *file_name;
4794 int nfiles = 0;
4795
4796 if (regexp)
4797 {
4798 const char *colon = strchr (regexp, ':');
4799
4800 if (colon && *(colon + 1) != ':')
4801 {
4802 int colon_index;
4803 char *local_name;
4804
4805 colon_index = colon - regexp;
4806 local_name = (char *) alloca (colon_index + 1);
4807 memcpy (local_name, regexp, colon_index);
4808 local_name[colon_index--] = 0;
4809 while (isspace (local_name[colon_index]))
4810 local_name[colon_index--] = 0;
4811 file_name = local_name;
4812 files = &file_name;
4813 nfiles = 1;
4814 regexp = skip_spaces (colon + 1);
4815 }
4816 }
4817
4818 std::vector<symbol_search> symbols = search_symbols (regexp,
4819 FUNCTIONS_DOMAIN,
4820 NULL,
4821 nfiles, files);
4822
4823 scoped_rbreak_breakpoints finalize;
4824 for (const symbol_search &p : symbols)
4825 {
4826 if (p.msymbol.minsym == NULL)
4827 {
4828 struct symtab *symtab = symbol_symtab (p.symbol);
4829 const char *fullname = symtab_to_fullname (symtab);
4830
4831 string = string_printf ("%s:'%s'", fullname,
4832 SYMBOL_LINKAGE_NAME (p.symbol));
4833 break_command (&string[0], from_tty);
4834 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4835 }
4836 else
4837 {
4838 string = string_printf ("'%s'",
4839 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4840
4841 break_command (&string[0], from_tty);
4842 printf_filtered ("<function, no debug info> %s;\n",
4843 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4844 }
4845 }
4846 }
4847 \f
4848
4849 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4850
4851 static int
4852 compare_symbol_name (const char *symbol_name, language symbol_language,
4853 const lookup_name_info &lookup_name,
4854 completion_match_result &match_res)
4855 {
4856 const language_defn *lang = language_def (symbol_language);
4857
4858 symbol_name_matcher_ftype *name_match
4859 = get_symbol_name_matcher (lang, lookup_name);
4860
4861 return name_match (symbol_name, lookup_name, &match_res);
4862 }
4863
4864 /* See symtab.h. */
4865
4866 void
4867 completion_list_add_name (completion_tracker &tracker,
4868 language symbol_language,
4869 const char *symname,
4870 const lookup_name_info &lookup_name,
4871 const char *text, const char *word)
4872 {
4873 completion_match_result &match_res
4874 = tracker.reset_completion_match_result ();
4875
4876 /* Clip symbols that cannot match. */
4877 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4878 return;
4879
4880 /* Refresh SYMNAME from the match string. It's potentially
4881 different depending on language. (E.g., on Ada, the match may be
4882 the encoded symbol name wrapped in "<>"). */
4883 symname = match_res.match.match ();
4884 gdb_assert (symname != NULL);
4885
4886 /* We have a match for a completion, so add SYMNAME to the current list
4887 of matches. Note that the name is moved to freshly malloc'd space. */
4888
4889 {
4890 gdb::unique_xmalloc_ptr<char> completion
4891 = make_completion_match_str (symname, text, word);
4892
4893 /* Here we pass the match-for-lcd object to add_completion. Some
4894 languages match the user text against substrings of symbol
4895 names in some cases. E.g., in C++, "b push_ba" completes to
4896 "std::vector::push_back", "std::string::push_back", etc., and
4897 in this case we want the completion lowest common denominator
4898 to be "push_back" instead of "std::". */
4899 tracker.add_completion (std::move (completion),
4900 &match_res.match_for_lcd, text, word);
4901 }
4902 }
4903
4904 /* completion_list_add_name wrapper for struct symbol. */
4905
4906 static void
4907 completion_list_add_symbol (completion_tracker &tracker,
4908 symbol *sym,
4909 const lookup_name_info &lookup_name,
4910 const char *text, const char *word)
4911 {
4912 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4913 SYMBOL_NATURAL_NAME (sym),
4914 lookup_name, text, word);
4915 }
4916
4917 /* completion_list_add_name wrapper for struct minimal_symbol. */
4918
4919 static void
4920 completion_list_add_msymbol (completion_tracker &tracker,
4921 minimal_symbol *sym,
4922 const lookup_name_info &lookup_name,
4923 const char *text, const char *word)
4924 {
4925 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4926 MSYMBOL_NATURAL_NAME (sym),
4927 lookup_name, text, word);
4928 }
4929
4930
4931 /* ObjC: In case we are completing on a selector, look as the msymbol
4932 again and feed all the selectors into the mill. */
4933
4934 static void
4935 completion_list_objc_symbol (completion_tracker &tracker,
4936 struct minimal_symbol *msymbol,
4937 const lookup_name_info &lookup_name,
4938 const char *text, const char *word)
4939 {
4940 static char *tmp = NULL;
4941 static unsigned int tmplen = 0;
4942
4943 const char *method, *category, *selector;
4944 char *tmp2 = NULL;
4945
4946 method = MSYMBOL_NATURAL_NAME (msymbol);
4947
4948 /* Is it a method? */
4949 if ((method[0] != '-') && (method[0] != '+'))
4950 return;
4951
4952 if (text[0] == '[')
4953 /* Complete on shortened method method. */
4954 completion_list_add_name (tracker, language_objc,
4955 method + 1,
4956 lookup_name,
4957 text, word);
4958
4959 while ((strlen (method) + 1) >= tmplen)
4960 {
4961 if (tmplen == 0)
4962 tmplen = 1024;
4963 else
4964 tmplen *= 2;
4965 tmp = (char *) xrealloc (tmp, tmplen);
4966 }
4967 selector = strchr (method, ' ');
4968 if (selector != NULL)
4969 selector++;
4970
4971 category = strchr (method, '(');
4972
4973 if ((category != NULL) && (selector != NULL))
4974 {
4975 memcpy (tmp, method, (category - method));
4976 tmp[category - method] = ' ';
4977 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4978 completion_list_add_name (tracker, language_objc, tmp,
4979 lookup_name, text, word);
4980 if (text[0] == '[')
4981 completion_list_add_name (tracker, language_objc, tmp + 1,
4982 lookup_name, text, word);
4983 }
4984
4985 if (selector != NULL)
4986 {
4987 /* Complete on selector only. */
4988 strcpy (tmp, selector);
4989 tmp2 = strchr (tmp, ']');
4990 if (tmp2 != NULL)
4991 *tmp2 = '\0';
4992
4993 completion_list_add_name (tracker, language_objc, tmp,
4994 lookup_name, text, word);
4995 }
4996 }
4997
4998 /* Break the non-quoted text based on the characters which are in
4999 symbols. FIXME: This should probably be language-specific. */
5000
5001 static const char *
5002 language_search_unquoted_string (const char *text, const char *p)
5003 {
5004 for (; p > text; --p)
5005 {
5006 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5007 continue;
5008 else
5009 {
5010 if ((current_language->la_language == language_objc))
5011 {
5012 if (p[-1] == ':') /* Might be part of a method name. */
5013 continue;
5014 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5015 p -= 2; /* Beginning of a method name. */
5016 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5017 { /* Might be part of a method name. */
5018 const char *t = p;
5019
5020 /* Seeing a ' ' or a '(' is not conclusive evidence
5021 that we are in the middle of a method name. However,
5022 finding "-[" or "+[" should be pretty un-ambiguous.
5023 Unfortunately we have to find it now to decide. */
5024
5025 while (t > text)
5026 if (isalnum (t[-1]) || t[-1] == '_' ||
5027 t[-1] == ' ' || t[-1] == ':' ||
5028 t[-1] == '(' || t[-1] == ')')
5029 --t;
5030 else
5031 break;
5032
5033 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5034 p = t - 2; /* Method name detected. */
5035 /* Else we leave with p unchanged. */
5036 }
5037 }
5038 break;
5039 }
5040 }
5041 return p;
5042 }
5043
5044 static void
5045 completion_list_add_fields (completion_tracker &tracker,
5046 struct symbol *sym,
5047 const lookup_name_info &lookup_name,
5048 const char *text, const char *word)
5049 {
5050 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5051 {
5052 struct type *t = SYMBOL_TYPE (sym);
5053 enum type_code c = TYPE_CODE (t);
5054 int j;
5055
5056 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5057 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5058 if (TYPE_FIELD_NAME (t, j))
5059 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5060 TYPE_FIELD_NAME (t, j),
5061 lookup_name, text, word);
5062 }
5063 }
5064
5065 /* See symtab.h. */
5066
5067 bool
5068 symbol_is_function_or_method (symbol *sym)
5069 {
5070 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5071 {
5072 case TYPE_CODE_FUNC:
5073 case TYPE_CODE_METHOD:
5074 return true;
5075 default:
5076 return false;
5077 }
5078 }
5079
5080 /* See symtab.h. */
5081
5082 bool
5083 symbol_is_function_or_method (minimal_symbol *msymbol)
5084 {
5085 switch (MSYMBOL_TYPE (msymbol))
5086 {
5087 case mst_text:
5088 case mst_text_gnu_ifunc:
5089 case mst_solib_trampoline:
5090 case mst_file_text:
5091 return true;
5092 default:
5093 return false;
5094 }
5095 }
5096
5097 /* See symtab.h. */
5098
5099 bound_minimal_symbol
5100 find_gnu_ifunc (const symbol *sym)
5101 {
5102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5103 return {};
5104
5105 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5106 symbol_name_match_type::SEARCH_NAME);
5107 struct objfile *objfile = symbol_objfile (sym);
5108
5109 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5110 minimal_symbol *ifunc = NULL;
5111
5112 iterate_over_minimal_symbols (objfile, lookup_name,
5113 [&] (minimal_symbol *minsym)
5114 {
5115 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5116 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5117 {
5118 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5119 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5120 {
5121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5122 msym_addr
5123 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5124 msym_addr,
5125 current_top_target ());
5126 }
5127 if (msym_addr == address)
5128 {
5129 ifunc = minsym;
5130 return true;
5131 }
5132 }
5133 return false;
5134 });
5135
5136 if (ifunc != NULL)
5137 return {ifunc, objfile};
5138 return {};
5139 }
5140
5141 /* Add matching symbols from SYMTAB to the current completion list. */
5142
5143 static void
5144 add_symtab_completions (struct compunit_symtab *cust,
5145 completion_tracker &tracker,
5146 complete_symbol_mode mode,
5147 const lookup_name_info &lookup_name,
5148 const char *text, const char *word,
5149 enum type_code code)
5150 {
5151 struct symbol *sym;
5152 const struct block *b;
5153 struct block_iterator iter;
5154 int i;
5155
5156 if (cust == NULL)
5157 return;
5158
5159 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5160 {
5161 QUIT;
5162 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5163 ALL_BLOCK_SYMBOLS (b, iter, sym)
5164 {
5165 if (completion_skip_symbol (mode, sym))
5166 continue;
5167
5168 if (code == TYPE_CODE_UNDEF
5169 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5170 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5171 completion_list_add_symbol (tracker, sym,
5172 lookup_name,
5173 text, word);
5174 }
5175 }
5176 }
5177
5178 void
5179 default_collect_symbol_completion_matches_break_on
5180 (completion_tracker &tracker, complete_symbol_mode mode,
5181 symbol_name_match_type name_match_type,
5182 const char *text, const char *word,
5183 const char *break_on, enum type_code code)
5184 {
5185 /* Problem: All of the symbols have to be copied because readline
5186 frees them. I'm not going to worry about this; hopefully there
5187 won't be that many. */
5188
5189 struct symbol *sym;
5190 struct compunit_symtab *cust;
5191 struct minimal_symbol *msymbol;
5192 struct objfile *objfile;
5193 const struct block *b;
5194 const struct block *surrounding_static_block, *surrounding_global_block;
5195 struct block_iterator iter;
5196 /* The symbol we are completing on. Points in same buffer as text. */
5197 const char *sym_text;
5198
5199 /* Now look for the symbol we are supposed to complete on. */
5200 if (mode == complete_symbol_mode::LINESPEC)
5201 sym_text = text;
5202 else
5203 {
5204 const char *p;
5205 char quote_found;
5206 const char *quote_pos = NULL;
5207
5208 /* First see if this is a quoted string. */
5209 quote_found = '\0';
5210 for (p = text; *p != '\0'; ++p)
5211 {
5212 if (quote_found != '\0')
5213 {
5214 if (*p == quote_found)
5215 /* Found close quote. */
5216 quote_found = '\0';
5217 else if (*p == '\\' && p[1] == quote_found)
5218 /* A backslash followed by the quote character
5219 doesn't end the string. */
5220 ++p;
5221 }
5222 else if (*p == '\'' || *p == '"')
5223 {
5224 quote_found = *p;
5225 quote_pos = p;
5226 }
5227 }
5228 if (quote_found == '\'')
5229 /* A string within single quotes can be a symbol, so complete on it. */
5230 sym_text = quote_pos + 1;
5231 else if (quote_found == '"')
5232 /* A double-quoted string is never a symbol, nor does it make sense
5233 to complete it any other way. */
5234 {
5235 return;
5236 }
5237 else
5238 {
5239 /* It is not a quoted string. Break it based on the characters
5240 which are in symbols. */
5241 while (p > text)
5242 {
5243 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5244 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5245 --p;
5246 else
5247 break;
5248 }
5249 sym_text = p;
5250 }
5251 }
5252
5253 lookup_name_info lookup_name (sym_text, name_match_type, true);
5254
5255 /* At this point scan through the misc symbol vectors and add each
5256 symbol you find to the list. Eventually we want to ignore
5257 anything that isn't a text symbol (everything else will be
5258 handled by the psymtab code below). */
5259
5260 if (code == TYPE_CODE_UNDEF)
5261 {
5262 ALL_MSYMBOLS (objfile, msymbol)
5263 {
5264 QUIT;
5265
5266 if (completion_skip_symbol (mode, msymbol))
5267 continue;
5268
5269 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5270 sym_text, word);
5271
5272 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5273 sym_text, word);
5274 }
5275 }
5276
5277 /* Add completions for all currently loaded symbol tables. */
5278 ALL_COMPUNITS (objfile, cust)
5279 add_symtab_completions (cust, tracker, mode, lookup_name,
5280 sym_text, word, code);
5281
5282 /* Look through the partial symtabs for all symbols which begin by
5283 matching SYM_TEXT. Expand all CUs that you find to the list. */
5284 expand_symtabs_matching (NULL,
5285 lookup_name,
5286 NULL,
5287 [&] (compunit_symtab *symtab) /* expansion notify */
5288 {
5289 add_symtab_completions (symtab,
5290 tracker, mode, lookup_name,
5291 sym_text, word, code);
5292 },
5293 ALL_DOMAIN);
5294
5295 /* Search upwards from currently selected frame (so that we can
5296 complete on local vars). Also catch fields of types defined in
5297 this places which match our text string. Only complete on types
5298 visible from current context. */
5299
5300 b = get_selected_block (0);
5301 surrounding_static_block = block_static_block (b);
5302 surrounding_global_block = block_global_block (b);
5303 if (surrounding_static_block != NULL)
5304 while (b != surrounding_static_block)
5305 {
5306 QUIT;
5307
5308 ALL_BLOCK_SYMBOLS (b, iter, sym)
5309 {
5310 if (code == TYPE_CODE_UNDEF)
5311 {
5312 completion_list_add_symbol (tracker, sym, lookup_name,
5313 sym_text, word);
5314 completion_list_add_fields (tracker, sym, lookup_name,
5315 sym_text, word);
5316 }
5317 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5318 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5319 completion_list_add_symbol (tracker, sym, lookup_name,
5320 sym_text, word);
5321 }
5322
5323 /* Stop when we encounter an enclosing function. Do not stop for
5324 non-inlined functions - the locals of the enclosing function
5325 are in scope for a nested function. */
5326 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5327 break;
5328 b = BLOCK_SUPERBLOCK (b);
5329 }
5330
5331 /* Add fields from the file's types; symbols will be added below. */
5332
5333 if (code == TYPE_CODE_UNDEF)
5334 {
5335 if (surrounding_static_block != NULL)
5336 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5337 completion_list_add_fields (tracker, sym, lookup_name,
5338 sym_text, word);
5339
5340 if (surrounding_global_block != NULL)
5341 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5342 completion_list_add_fields (tracker, sym, lookup_name,
5343 sym_text, word);
5344 }
5345
5346 /* Skip macros if we are completing a struct tag -- arguable but
5347 usually what is expected. */
5348 if (current_language->la_macro_expansion == macro_expansion_c
5349 && code == TYPE_CODE_UNDEF)
5350 {
5351 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5352
5353 /* This adds a macro's name to the current completion list. */
5354 auto add_macro_name = [&] (const char *macro_name,
5355 const macro_definition *,
5356 macro_source_file *,
5357 int)
5358 {
5359 completion_list_add_name (tracker, language_c, macro_name,
5360 lookup_name, sym_text, word);
5361 };
5362
5363 /* Add any macros visible in the default scope. Note that this
5364 may yield the occasional wrong result, because an expression
5365 might be evaluated in a scope other than the default. For
5366 example, if the user types "break file:line if <TAB>", the
5367 resulting expression will be evaluated at "file:line" -- but
5368 at there does not seem to be a way to detect this at
5369 completion time. */
5370 scope = default_macro_scope ();
5371 if (scope)
5372 macro_for_each_in_scope (scope->file, scope->line,
5373 add_macro_name);
5374
5375 /* User-defined macros are always visible. */
5376 macro_for_each (macro_user_macros, add_macro_name);
5377 }
5378 }
5379
5380 void
5381 default_collect_symbol_completion_matches (completion_tracker &tracker,
5382 complete_symbol_mode mode,
5383 symbol_name_match_type name_match_type,
5384 const char *text, const char *word,
5385 enum type_code code)
5386 {
5387 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5388 name_match_type,
5389 text, word, "",
5390 code);
5391 }
5392
5393 /* Collect all symbols (regardless of class) which begin by matching
5394 TEXT. */
5395
5396 void
5397 collect_symbol_completion_matches (completion_tracker &tracker,
5398 complete_symbol_mode mode,
5399 symbol_name_match_type name_match_type,
5400 const char *text, const char *word)
5401 {
5402 current_language->la_collect_symbol_completion_matches (tracker, mode,
5403 name_match_type,
5404 text, word,
5405 TYPE_CODE_UNDEF);
5406 }
5407
5408 /* Like collect_symbol_completion_matches, but only collect
5409 STRUCT_DOMAIN symbols whose type code is CODE. */
5410
5411 void
5412 collect_symbol_completion_matches_type (completion_tracker &tracker,
5413 const char *text, const char *word,
5414 enum type_code code)
5415 {
5416 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5417 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5418
5419 gdb_assert (code == TYPE_CODE_UNION
5420 || code == TYPE_CODE_STRUCT
5421 || code == TYPE_CODE_ENUM);
5422 current_language->la_collect_symbol_completion_matches (tracker, mode,
5423 name_match_type,
5424 text, word, code);
5425 }
5426
5427 /* Like collect_symbol_completion_matches, but collects a list of
5428 symbols defined in all source files named SRCFILE. */
5429
5430 void
5431 collect_file_symbol_completion_matches (completion_tracker &tracker,
5432 complete_symbol_mode mode,
5433 symbol_name_match_type name_match_type,
5434 const char *text, const char *word,
5435 const char *srcfile)
5436 {
5437 /* The symbol we are completing on. Points in same buffer as text. */
5438 const char *sym_text;
5439
5440 /* Now look for the symbol we are supposed to complete on.
5441 FIXME: This should be language-specific. */
5442 if (mode == complete_symbol_mode::LINESPEC)
5443 sym_text = text;
5444 else
5445 {
5446 const char *p;
5447 char quote_found;
5448 const char *quote_pos = NULL;
5449
5450 /* First see if this is a quoted string. */
5451 quote_found = '\0';
5452 for (p = text; *p != '\0'; ++p)
5453 {
5454 if (quote_found != '\0')
5455 {
5456 if (*p == quote_found)
5457 /* Found close quote. */
5458 quote_found = '\0';
5459 else if (*p == '\\' && p[1] == quote_found)
5460 /* A backslash followed by the quote character
5461 doesn't end the string. */
5462 ++p;
5463 }
5464 else if (*p == '\'' || *p == '"')
5465 {
5466 quote_found = *p;
5467 quote_pos = p;
5468 }
5469 }
5470 if (quote_found == '\'')
5471 /* A string within single quotes can be a symbol, so complete on it. */
5472 sym_text = quote_pos + 1;
5473 else if (quote_found == '"')
5474 /* A double-quoted string is never a symbol, nor does it make sense
5475 to complete it any other way. */
5476 {
5477 return;
5478 }
5479 else
5480 {
5481 /* Not a quoted string. */
5482 sym_text = language_search_unquoted_string (text, p);
5483 }
5484 }
5485
5486 lookup_name_info lookup_name (sym_text, name_match_type, true);
5487
5488 /* Go through symtabs for SRCFILE and check the externs and statics
5489 for symbols which match. */
5490 iterate_over_symtabs (srcfile, [&] (symtab *s)
5491 {
5492 add_symtab_completions (SYMTAB_COMPUNIT (s),
5493 tracker, mode, lookup_name,
5494 sym_text, word, TYPE_CODE_UNDEF);
5495 return false;
5496 });
5497 }
5498
5499 /* A helper function for make_source_files_completion_list. It adds
5500 another file name to a list of possible completions, growing the
5501 list as necessary. */
5502
5503 static void
5504 add_filename_to_list (const char *fname, const char *text, const char *word,
5505 completion_list *list)
5506 {
5507 list->emplace_back (make_completion_match_str (fname, text, word));
5508 }
5509
5510 static int
5511 not_interesting_fname (const char *fname)
5512 {
5513 static const char *illegal_aliens[] = {
5514 "_globals_", /* inserted by coff_symtab_read */
5515 NULL
5516 };
5517 int i;
5518
5519 for (i = 0; illegal_aliens[i]; i++)
5520 {
5521 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5522 return 1;
5523 }
5524 return 0;
5525 }
5526
5527 /* An object of this type is passed as the user_data argument to
5528 map_partial_symbol_filenames. */
5529 struct add_partial_filename_data
5530 {
5531 struct filename_seen_cache *filename_seen_cache;
5532 const char *text;
5533 const char *word;
5534 int text_len;
5535 completion_list *list;
5536 };
5537
5538 /* A callback for map_partial_symbol_filenames. */
5539
5540 static void
5541 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5542 void *user_data)
5543 {
5544 struct add_partial_filename_data *data
5545 = (struct add_partial_filename_data *) user_data;
5546
5547 if (not_interesting_fname (filename))
5548 return;
5549 if (!data->filename_seen_cache->seen (filename)
5550 && filename_ncmp (filename, data->text, data->text_len) == 0)
5551 {
5552 /* This file matches for a completion; add it to the
5553 current list of matches. */
5554 add_filename_to_list (filename, data->text, data->word, data->list);
5555 }
5556 else
5557 {
5558 const char *base_name = lbasename (filename);
5559
5560 if (base_name != filename
5561 && !data->filename_seen_cache->seen (base_name)
5562 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5563 add_filename_to_list (base_name, data->text, data->word, data->list);
5564 }
5565 }
5566
5567 /* Return a list of all source files whose names begin with matching
5568 TEXT. The file names are looked up in the symbol tables of this
5569 program. */
5570
5571 completion_list
5572 make_source_files_completion_list (const char *text, const char *word)
5573 {
5574 struct compunit_symtab *cu;
5575 struct symtab *s;
5576 struct objfile *objfile;
5577 size_t text_len = strlen (text);
5578 completion_list list;
5579 const char *base_name;
5580 struct add_partial_filename_data datum;
5581
5582 if (!have_full_symbols () && !have_partial_symbols ())
5583 return list;
5584
5585 filename_seen_cache filenames_seen;
5586
5587 ALL_FILETABS (objfile, cu, s)
5588 {
5589 if (not_interesting_fname (s->filename))
5590 continue;
5591 if (!filenames_seen.seen (s->filename)
5592 && filename_ncmp (s->filename, text, text_len) == 0)
5593 {
5594 /* This file matches for a completion; add it to the current
5595 list of matches. */
5596 add_filename_to_list (s->filename, text, word, &list);
5597 }
5598 else
5599 {
5600 /* NOTE: We allow the user to type a base name when the
5601 debug info records leading directories, but not the other
5602 way around. This is what subroutines of breakpoint
5603 command do when they parse file names. */
5604 base_name = lbasename (s->filename);
5605 if (base_name != s->filename
5606 && !filenames_seen.seen (base_name)
5607 && filename_ncmp (base_name, text, text_len) == 0)
5608 add_filename_to_list (base_name, text, word, &list);
5609 }
5610 }
5611
5612 datum.filename_seen_cache = &filenames_seen;
5613 datum.text = text;
5614 datum.word = word;
5615 datum.text_len = text_len;
5616 datum.list = &list;
5617 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5618 0 /*need_fullname*/);
5619
5620 return list;
5621 }
5622 \f
5623 /* Track MAIN */
5624
5625 /* Return the "main_info" object for the current program space. If
5626 the object has not yet been created, create it and fill in some
5627 default values. */
5628
5629 static struct main_info *
5630 get_main_info (void)
5631 {
5632 struct main_info *info
5633 = (struct main_info *) program_space_data (current_program_space,
5634 main_progspace_key);
5635
5636 if (info == NULL)
5637 {
5638 /* It may seem strange to store the main name in the progspace
5639 and also in whatever objfile happens to see a main name in
5640 its debug info. The reason for this is mainly historical:
5641 gdb returned "main" as the name even if no function named
5642 "main" was defined the program; and this approach lets us
5643 keep compatibility. */
5644 info = XCNEW (struct main_info);
5645 info->language_of_main = language_unknown;
5646 set_program_space_data (current_program_space, main_progspace_key,
5647 info);
5648 }
5649
5650 return info;
5651 }
5652
5653 /* A cleanup to destroy a struct main_info when a progspace is
5654 destroyed. */
5655
5656 static void
5657 main_info_cleanup (struct program_space *pspace, void *data)
5658 {
5659 struct main_info *info = (struct main_info *) data;
5660
5661 if (info != NULL)
5662 xfree (info->name_of_main);
5663 xfree (info);
5664 }
5665
5666 static void
5667 set_main_name (const char *name, enum language lang)
5668 {
5669 struct main_info *info = get_main_info ();
5670
5671 if (info->name_of_main != NULL)
5672 {
5673 xfree (info->name_of_main);
5674 info->name_of_main = NULL;
5675 info->language_of_main = language_unknown;
5676 }
5677 if (name != NULL)
5678 {
5679 info->name_of_main = xstrdup (name);
5680 info->language_of_main = lang;
5681 }
5682 }
5683
5684 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5685 accordingly. */
5686
5687 static void
5688 find_main_name (void)
5689 {
5690 const char *new_main_name;
5691
5692 /* First check the objfiles to see whether a debuginfo reader has
5693 picked up the appropriate main name. Historically the main name
5694 was found in a more or less random way; this approach instead
5695 relies on the order of objfile creation -- which still isn't
5696 guaranteed to get the correct answer, but is just probably more
5697 accurate. */
5698 for (objfile *objfile : all_objfiles (current_program_space))
5699 {
5700 if (objfile->per_bfd->name_of_main != NULL)
5701 {
5702 set_main_name (objfile->per_bfd->name_of_main,
5703 objfile->per_bfd->language_of_main);
5704 return;
5705 }
5706 }
5707
5708 /* Try to see if the main procedure is in Ada. */
5709 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5710 be to add a new method in the language vector, and call this
5711 method for each language until one of them returns a non-empty
5712 name. This would allow us to remove this hard-coded call to
5713 an Ada function. It is not clear that this is a better approach
5714 at this point, because all methods need to be written in a way
5715 such that false positives never be returned. For instance, it is
5716 important that a method does not return a wrong name for the main
5717 procedure if the main procedure is actually written in a different
5718 language. It is easy to guaranty this with Ada, since we use a
5719 special symbol generated only when the main in Ada to find the name
5720 of the main procedure. It is difficult however to see how this can
5721 be guarantied for languages such as C, for instance. This suggests
5722 that order of call for these methods becomes important, which means
5723 a more complicated approach. */
5724 new_main_name = ada_main_name ();
5725 if (new_main_name != NULL)
5726 {
5727 set_main_name (new_main_name, language_ada);
5728 return;
5729 }
5730
5731 new_main_name = d_main_name ();
5732 if (new_main_name != NULL)
5733 {
5734 set_main_name (new_main_name, language_d);
5735 return;
5736 }
5737
5738 new_main_name = go_main_name ();
5739 if (new_main_name != NULL)
5740 {
5741 set_main_name (new_main_name, language_go);
5742 return;
5743 }
5744
5745 new_main_name = pascal_main_name ();
5746 if (new_main_name != NULL)
5747 {
5748 set_main_name (new_main_name, language_pascal);
5749 return;
5750 }
5751
5752 /* The languages above didn't identify the name of the main procedure.
5753 Fallback to "main". */
5754 set_main_name ("main", language_unknown);
5755 }
5756
5757 char *
5758 main_name (void)
5759 {
5760 struct main_info *info = get_main_info ();
5761
5762 if (info->name_of_main == NULL)
5763 find_main_name ();
5764
5765 return info->name_of_main;
5766 }
5767
5768 /* Return the language of the main function. If it is not known,
5769 return language_unknown. */
5770
5771 enum language
5772 main_language (void)
5773 {
5774 struct main_info *info = get_main_info ();
5775
5776 if (info->name_of_main == NULL)
5777 find_main_name ();
5778
5779 return info->language_of_main;
5780 }
5781
5782 /* Handle ``executable_changed'' events for the symtab module. */
5783
5784 static void
5785 symtab_observer_executable_changed (void)
5786 {
5787 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5788 set_main_name (NULL, language_unknown);
5789 }
5790
5791 /* Return 1 if the supplied producer string matches the ARM RealView
5792 compiler (armcc). */
5793
5794 int
5795 producer_is_realview (const char *producer)
5796 {
5797 static const char *const arm_idents[] = {
5798 "ARM C Compiler, ADS",
5799 "Thumb C Compiler, ADS",
5800 "ARM C++ Compiler, ADS",
5801 "Thumb C++ Compiler, ADS",
5802 "ARM/Thumb C/C++ Compiler, RVCT",
5803 "ARM C/C++ Compiler, RVCT"
5804 };
5805 int i;
5806
5807 if (producer == NULL)
5808 return 0;
5809
5810 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5811 if (startswith (producer, arm_idents[i]))
5812 return 1;
5813
5814 return 0;
5815 }
5816
5817 \f
5818
5819 /* The next index to hand out in response to a registration request. */
5820
5821 static int next_aclass_value = LOC_FINAL_VALUE;
5822
5823 /* The maximum number of "aclass" registrations we support. This is
5824 constant for convenience. */
5825 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5826
5827 /* The objects representing the various "aclass" values. The elements
5828 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5829 elements are those registered at gdb initialization time. */
5830
5831 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5832
5833 /* The globally visible pointer. This is separate from 'symbol_impl'
5834 so that it can be const. */
5835
5836 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5837
5838 /* Make sure we saved enough room in struct symbol. */
5839
5840 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5841
5842 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5843 is the ops vector associated with this index. This returns the new
5844 index, which should be used as the aclass_index field for symbols
5845 of this type. */
5846
5847 int
5848 register_symbol_computed_impl (enum address_class aclass,
5849 const struct symbol_computed_ops *ops)
5850 {
5851 int result = next_aclass_value++;
5852
5853 gdb_assert (aclass == LOC_COMPUTED);
5854 gdb_assert (result < MAX_SYMBOL_IMPLS);
5855 symbol_impl[result].aclass = aclass;
5856 symbol_impl[result].ops_computed = ops;
5857
5858 /* Sanity check OPS. */
5859 gdb_assert (ops != NULL);
5860 gdb_assert (ops->tracepoint_var_ref != NULL);
5861 gdb_assert (ops->describe_location != NULL);
5862 gdb_assert (ops->get_symbol_read_needs != NULL);
5863 gdb_assert (ops->read_variable != NULL);
5864
5865 return result;
5866 }
5867
5868 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5869 OPS is the ops vector associated with this index. This returns the
5870 new index, which should be used as the aclass_index field for symbols
5871 of this type. */
5872
5873 int
5874 register_symbol_block_impl (enum address_class aclass,
5875 const struct symbol_block_ops *ops)
5876 {
5877 int result = next_aclass_value++;
5878
5879 gdb_assert (aclass == LOC_BLOCK);
5880 gdb_assert (result < MAX_SYMBOL_IMPLS);
5881 symbol_impl[result].aclass = aclass;
5882 symbol_impl[result].ops_block = ops;
5883
5884 /* Sanity check OPS. */
5885 gdb_assert (ops != NULL);
5886 gdb_assert (ops->find_frame_base_location != NULL);
5887
5888 return result;
5889 }
5890
5891 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5892 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5893 this index. This returns the new index, which should be used as
5894 the aclass_index field for symbols of this type. */
5895
5896 int
5897 register_symbol_register_impl (enum address_class aclass,
5898 const struct symbol_register_ops *ops)
5899 {
5900 int result = next_aclass_value++;
5901
5902 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5903 gdb_assert (result < MAX_SYMBOL_IMPLS);
5904 symbol_impl[result].aclass = aclass;
5905 symbol_impl[result].ops_register = ops;
5906
5907 return result;
5908 }
5909
5910 /* Initialize elements of 'symbol_impl' for the constants in enum
5911 address_class. */
5912
5913 static void
5914 initialize_ordinary_address_classes (void)
5915 {
5916 int i;
5917
5918 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5919 symbol_impl[i].aclass = (enum address_class) i;
5920 }
5921
5922 \f
5923
5924 /* Helper function to initialize the fields of an objfile-owned symbol.
5925 It assumed that *SYM is already all zeroes. */
5926
5927 static void
5928 initialize_objfile_symbol_1 (struct symbol *sym)
5929 {
5930 SYMBOL_OBJFILE_OWNED (sym) = 1;
5931 SYMBOL_SECTION (sym) = -1;
5932 }
5933
5934 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5935
5936 void
5937 initialize_objfile_symbol (struct symbol *sym)
5938 {
5939 memset (sym, 0, sizeof (*sym));
5940 initialize_objfile_symbol_1 (sym);
5941 }
5942
5943 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5944 obstack. */
5945
5946 struct symbol *
5947 allocate_symbol (struct objfile *objfile)
5948 {
5949 struct symbol *result;
5950
5951 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5952 initialize_objfile_symbol_1 (result);
5953
5954 return result;
5955 }
5956
5957 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5958 obstack. */
5959
5960 struct template_symbol *
5961 allocate_template_symbol (struct objfile *objfile)
5962 {
5963 struct template_symbol *result;
5964
5965 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5966 initialize_objfile_symbol_1 (result);
5967
5968 return result;
5969 }
5970
5971 /* See symtab.h. */
5972
5973 struct objfile *
5974 symbol_objfile (const struct symbol *symbol)
5975 {
5976 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5977 return SYMTAB_OBJFILE (symbol->owner.symtab);
5978 }
5979
5980 /* See symtab.h. */
5981
5982 struct gdbarch *
5983 symbol_arch (const struct symbol *symbol)
5984 {
5985 if (!SYMBOL_OBJFILE_OWNED (symbol))
5986 return symbol->owner.arch;
5987 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5988 }
5989
5990 /* See symtab.h. */
5991
5992 struct symtab *
5993 symbol_symtab (const struct symbol *symbol)
5994 {
5995 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5996 return symbol->owner.symtab;
5997 }
5998
5999 /* See symtab.h. */
6000
6001 void
6002 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6003 {
6004 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6005 symbol->owner.symtab = symtab;
6006 }
6007
6008 \f
6009
6010 void
6011 _initialize_symtab (void)
6012 {
6013 initialize_ordinary_address_classes ();
6014
6015 main_progspace_key
6016 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6017
6018 symbol_cache_key
6019 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6020
6021 add_info ("variables", info_variables_command,
6022 info_print_args_help (_("\
6023 All global and static variable names or those matching REGEXPs.\n\
6024 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6025 Prints the global and static variables.\n"),
6026 _("global and static variables")));
6027 if (dbx_commands)
6028 add_com ("whereis", class_info, info_variables_command,
6029 info_print_args_help (_("\
6030 All global and static variable names, or those matching REGEXPs.\n\
6031 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6032 Prints the global and static variables.\n"),
6033 _("global and static variables")));
6034
6035 add_info ("functions", info_functions_command,
6036 info_print_args_help (_("\
6037 All function names or those matching REGEXPs.\n\
6038 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6039 Prints the functions.\n"),
6040 _("functions")));
6041
6042 /* FIXME: This command has at least the following problems:
6043 1. It prints builtin types (in a very strange and confusing fashion).
6044 2. It doesn't print right, e.g. with
6045 typedef struct foo *FOO
6046 type_print prints "FOO" when we want to make it (in this situation)
6047 print "struct foo *".
6048 I also think "ptype" or "whatis" is more likely to be useful (but if
6049 there is much disagreement "info types" can be fixed). */
6050 add_info ("types", info_types_command,
6051 _("All type names, or those matching REGEXP."));
6052
6053 add_info ("sources", info_sources_command,
6054 _("Source files in the program."));
6055
6056 add_com ("rbreak", class_breakpoint, rbreak_command,
6057 _("Set a breakpoint for all functions matching REGEXP."));
6058
6059 add_setshow_enum_cmd ("multiple-symbols", no_class,
6060 multiple_symbols_modes, &multiple_symbols_mode,
6061 _("\
6062 Set the debugger behavior when more than one symbol are possible matches\n\
6063 in an expression."), _("\
6064 Show how the debugger handles ambiguities in expressions."), _("\
6065 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6066 NULL, NULL, &setlist, &showlist);
6067
6068 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6069 &basenames_may_differ, _("\
6070 Set whether a source file may have multiple base names."), _("\
6071 Show whether a source file may have multiple base names."), _("\
6072 (A \"base name\" is the name of a file with the directory part removed.\n\
6073 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6074 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6075 before comparing them. Canonicalization is an expensive operation,\n\
6076 but it allows the same file be known by more than one base name.\n\
6077 If not set (the default), all source files are assumed to have just\n\
6078 one base name, and gdb will do file name comparisons more efficiently."),
6079 NULL, NULL,
6080 &setlist, &showlist);
6081
6082 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6083 _("Set debugging of symbol table creation."),
6084 _("Show debugging of symbol table creation."), _("\
6085 When enabled (non-zero), debugging messages are printed when building\n\
6086 symbol tables. A value of 1 (one) normally provides enough information.\n\
6087 A value greater than 1 provides more verbose information."),
6088 NULL,
6089 NULL,
6090 &setdebuglist, &showdebuglist);
6091
6092 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6093 _("\
6094 Set debugging of symbol lookup."), _("\
6095 Show debugging of symbol lookup."), _("\
6096 When enabled (non-zero), symbol lookups are logged."),
6097 NULL, NULL,
6098 &setdebuglist, &showdebuglist);
6099
6100 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6101 &new_symbol_cache_size,
6102 _("Set the size of the symbol cache."),
6103 _("Show the size of the symbol cache."), _("\
6104 The size of the symbol cache.\n\
6105 If zero then the symbol cache is disabled."),
6106 set_symbol_cache_size_handler, NULL,
6107 &maintenance_set_cmdlist,
6108 &maintenance_show_cmdlist);
6109
6110 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6111 _("Dump the symbol cache for each program space."),
6112 &maintenanceprintlist);
6113
6114 add_cmd ("symbol-cache-statistics", class_maintenance,
6115 maintenance_print_symbol_cache_statistics,
6116 _("Print symbol cache statistics for each program space."),
6117 &maintenanceprintlist);
6118
6119 add_cmd ("flush-symbol-cache", class_maintenance,
6120 maintenance_flush_symbol_cache,
6121 _("Flush the symbol cache for each program space."),
6122 &maintenancelist);
6123
6124 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6125 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6126 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6127 }
This page took 0.179362 seconds and 4 git commands to generate.