1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
47 #include "typeprint.h"
49 #include "gdb_obstack.h"
51 #include "dictionary.h"
53 #include <sys/types.h>
58 #include "cp-support.h"
59 #include "observable.h"
62 #include "macroscope.h"
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
75 /* Forward declarations for local functions. */
77 static void rbreak_command (const char *, int);
79 static int find_line_common (struct linetable
*, int, int *, int);
81 static struct block_symbol
82 lookup_symbol_aux (const char *name
,
83 symbol_name_match_type match_type
,
84 const struct block
*block
,
85 const domain_enum domain
,
86 enum language language
,
87 struct field_of_this_result
*);
90 struct block_symbol
lookup_local_symbol (const char *name
,
91 symbol_name_match_type match_type
,
92 const struct block
*block
,
93 const domain_enum domain
,
94 enum language language
);
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile
*objfile
,
98 enum block_enum block_index
,
99 const char *name
, const domain_enum domain
);
101 /* Type of the data stored on the program space. */
105 main_info () = default;
109 xfree (name_of_main
);
112 /* Name of "main". */
114 char *name_of_main
= nullptr;
116 /* Language of "main". */
118 enum language language_of_main
= language_unknown
;
121 /* Program space key for finding name and language of "main". */
123 static const program_space_key
<main_info
> main_progspace_key
;
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
146 enum symbol_cache_slot_state
149 SYMBOL_SLOT_NOT_FOUND
,
153 struct symbol_cache_slot
155 enum symbol_cache_slot_state state
;
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile
*objfile_context
;
177 struct block_symbol found
;
186 /* Clear out SLOT. */
189 symbol_cache_clear_slot (struct symbol_cache_slot
*slot
)
191 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
192 xfree (slot
->value
.not_found
.name
);
193 slot
->state
= SYMBOL_SLOT_UNUSED
;
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
199 struct block_symbol_cache
203 unsigned int collisions
;
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
211 struct symbol_cache_slot symbols
[1];
214 /* Clear all slots of BSC and free BSC. */
217 destroy_block_symbol_cache (struct block_symbol_cache
*bsc
)
221 for (unsigned int i
= 0; i
< bsc
->size
; i
++)
222 symbol_cache_clear_slot (&bsc
->symbols
[i
]);
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
239 symbol_cache () = default;
243 destroy_block_symbol_cache (global_symbols
);
244 destroy_block_symbol_cache (static_symbols
);
247 struct block_symbol_cache
*global_symbols
= nullptr;
248 struct block_symbol_cache
*static_symbols
= nullptr;
251 /* Program space key for finding its symbol cache. */
253 static const program_space_key
<symbol_cache
> symbol_cache_key
;
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug
= 0;
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug
= 0;
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size
= DEFAULT_SYMBOL_CACHE_SIZE
;
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size
= DEFAULT_SYMBOL_CACHE_SIZE
;
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ
= false;
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
278 const char multiple_symbols_ask
[] = "ask";
279 const char multiple_symbols_all
[] = "all";
280 const char multiple_symbols_cancel
[] = "cancel";
281 static const char *const multiple_symbols_modes
[] =
283 multiple_symbols_ask
,
284 multiple_symbols_all
,
285 multiple_symbols_cancel
,
288 static const char *multiple_symbols_mode
= multiple_symbols_all
;
290 /* Read-only accessor to AUTO_SELECT_MODE. */
293 multiple_symbols_select_mode (void)
295 return multiple_symbols_mode
;
298 /* Return the name of a domain_enum. */
301 domain_name (domain_enum e
)
305 case UNDEF_DOMAIN
: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN
: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN
: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN
: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN
: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN
: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
315 /* Return the name of a search_domain . */
318 search_domain_name (enum search_domain e
)
322 case VARIABLES_DOMAIN
: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN
: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN
: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN
: return "MODULES_DOMAIN";
326 case ALL_DOMAIN
: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
334 compunit_primary_filetab (const struct compunit_symtab
*cust
)
336 gdb_assert (COMPUNIT_FILETABS (cust
) != NULL
);
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust
);
345 compunit_language (const struct compunit_symtab
*cust
)
347 struct symtab
*symtab
= compunit_primary_filetab (cust
);
349 /* The language of the compunit symtab is the language of its primary
351 return SYMTAB_LANGUAGE (symtab
);
357 minimal_symbol::data_p () const
359 return type
== mst_data
362 || type
== mst_file_data
363 || type
== mst_file_bss
;
369 minimal_symbol::text_p () const
371 return type
== mst_text
372 || type
== mst_text_gnu_ifunc
373 || type
== mst_data_gnu_ifunc
374 || type
== mst_slot_got_plt
375 || type
== mst_solib_trampoline
376 || type
== mst_file_text
;
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
385 compare_filenames_for_search (const char *filename
, const char *search_name
)
387 int len
= strlen (filename
);
388 size_t search_len
= strlen (search_name
);
390 if (len
< search_len
)
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename
+ len
- search_len
, search_name
) != 0)
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len
== search_len
411 || (!IS_ABSOLUTE_PATH (search_name
)
412 && IS_DIR_SEPARATOR (filename
[len
- search_len
- 1]))
413 || (HAS_DRIVE_SPEC (filename
)
414 && STRIP_DRIVE_SPEC (filename
) == &filename
[len
- search_len
]));
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
423 compare_glob_filenames_for_search (const char *filename
,
424 const char *search_name
)
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements
= count_path_elements (filename
);
429 int search_path_elements
= count_path_elements (search_name
);
431 if (search_path_elements
> file_path_elements
)
434 if (IS_ABSOLUTE_PATH (search_name
))
436 return (search_path_elements
== file_path_elements
437 && gdb_filename_fnmatch (search_name
, filename
,
438 FNM_FILE_NAME
| FNM_NOESCAPE
) == 0);
442 const char *file_to_compare
443 = strip_leading_path_elements (filename
,
444 file_path_elements
- search_path_elements
);
446 return gdb_filename_fnmatch (search_name
, file_to_compare
,
447 FNM_FILE_NAME
| FNM_NOESCAPE
) == 0;
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
466 iterate_over_some_symtabs (const char *name
,
467 const char *real_path
,
468 struct compunit_symtab
*first
,
469 struct compunit_symtab
*after_last
,
470 gdb::function_view
<bool (symtab
*)> callback
)
472 struct compunit_symtab
*cust
;
473 const char* base_name
= lbasename (name
);
475 for (cust
= first
; cust
!= NULL
&& cust
!= after_last
; cust
= cust
->next
)
477 for (symtab
*s
: compunit_filetabs (cust
))
479 if (compare_filenames_for_search (s
->filename
, name
))
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name
, lbasename (s
->filename
)) != 0)
492 if (compare_filenames_for_search (symtab_to_fullname (s
), name
))
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path
!= NULL
)
503 const char *fullname
= symtab_to_fullname (s
);
505 gdb_assert (IS_ABSOLUTE_PATH (real_path
));
506 gdb_assert (IS_ABSOLUTE_PATH (name
));
507 gdb::unique_xmalloc_ptr
<char> fullname_real_path
508 = gdb_realpath (fullname
);
509 fullname
= fullname_real_path
.get ();
510 if (FILENAME_CMP (real_path
, fullname
) == 0)
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
531 iterate_over_symtabs (const char *name
,
532 gdb::function_view
<bool (symtab
*)> callback
)
534 gdb::unique_xmalloc_ptr
<char> real_path
;
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name
))
540 real_path
= gdb_realpath (name
);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path
.get ()));
544 for (objfile
*objfile
: current_program_space
->objfiles ())
546 if (iterate_over_some_symtabs (name
, real_path
.get (),
547 objfile
->compunit_symtabs
, NULL
,
552 /* Same search rules as above apply here, but now we look thru the
555 for (objfile
*objfile
: current_program_space
->objfiles ())
558 && objfile
->sf
->qf
->map_symtabs_matching_filename (objfile
,
566 /* A wrapper for iterate_over_symtabs that returns the first matching
570 lookup_symtab (const char *name
)
572 struct symtab
*result
= NULL
;
574 iterate_over_symtabs (name
, [&] (symtab
*symtab
)
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
590 gdb_mangle_name (struct type
*type
, int method_id
, int signature_id
)
592 int mangled_name_len
;
594 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, method_id
);
595 struct fn_field
*method
= &f
[signature_id
];
596 const char *field_name
= TYPE_FN_FIELDLIST_NAME (type
, method_id
);
597 const char *physname
= TYPE_FN_FIELD_PHYSNAME (f
, signature_id
);
598 const char *newname
= TYPE_NAME (type
);
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor
;
605 int is_destructor
= is_destructor_name (physname
);
606 /* Need a new type prefix. */
607 const char *const_prefix
= method
->is_const
? "C" : "";
608 const char *volatile_prefix
= method
->is_volatile
? "V" : "";
610 int len
= (newname
== NULL
? 0 : strlen (newname
));
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname
[0] == '_' && physname
[1] == 'Z')
615 || is_operator_name (field_name
))
616 return xstrdup (physname
);
618 is_full_physname_constructor
= is_constructor_name (physname
);
620 is_constructor
= is_full_physname_constructor
621 || (newname
&& strcmp (field_name
, newname
) == 0);
624 is_destructor
= (startswith (physname
, "__dt"));
626 if (is_destructor
|| is_full_physname_constructor
)
628 mangled_name
= (char *) xmalloc (strlen (physname
) + 1);
629 strcpy (mangled_name
, physname
);
635 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
637 else if (physname
[0] == 't' || physname
[0] == 'Q')
639 /* The physname for template and qualified methods already includes
641 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
647 xsnprintf (buf
, sizeof (buf
), "__%s%s%d", const_prefix
,
648 volatile_prefix
, len
);
650 mangled_name_len
= ((is_constructor
? 0 : strlen (field_name
))
651 + strlen (buf
) + len
+ strlen (physname
) + 1);
653 mangled_name
= (char *) xmalloc (mangled_name_len
);
655 mangled_name
[0] = '\0';
657 strcpy (mangled_name
, field_name
);
659 strcat (mangled_name
, buf
);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
664 strcat (mangled_name
, newname
);
666 strcat (mangled_name
, physname
);
667 return (mangled_name
);
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
674 symbol_set_demangled_name (struct general_symbol_info
*gsymbol
,
676 struct obstack
*obstack
)
678 if (gsymbol
->language () == language_ada
)
682 gsymbol
->ada_mangled
= 0;
683 gsymbol
->language_specific
.obstack
= obstack
;
687 gsymbol
->ada_mangled
= 1;
688 gsymbol
->language_specific
.demangled_name
= name
;
692 gsymbol
->language_specific
.demangled_name
= name
;
695 /* Return the demangled name of GSYMBOL. */
698 symbol_get_demangled_name (const struct general_symbol_info
*gsymbol
)
700 if (gsymbol
->language () == language_ada
)
702 if (!gsymbol
->ada_mangled
)
707 return gsymbol
->language_specific
.demangled_name
;
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
715 general_symbol_info::set_language (enum language language
,
716 struct obstack
*obstack
)
718 m_language
= language
;
719 if (language
== language_cplus
720 || language
== language_d
721 || language
== language_go
722 || language
== language_objc
723 || language
== language_fortran
)
725 symbol_set_demangled_name (this, NULL
, obstack
);
727 else if (language
== language_ada
)
729 gdb_assert (ada_mangled
== 0);
730 language_specific
.obstack
= obstack
;
734 memset (&language_specific
, 0, sizeof (language_specific
));
738 /* Functions to initialize a symbol's mangled name. */
740 /* Objects of this type are stored in the demangled name hash table. */
741 struct demangled_name_entry
743 demangled_name_entry (gdb::string_view mangled_name
)
744 : mangled (mangled_name
) {}
746 gdb::string_view mangled
;
747 enum language language
;
748 gdb::unique_xmalloc_ptr
<char> demangled
;
751 /* Hash function for the demangled name hash. */
754 hash_demangled_name_entry (const void *data
)
756 const struct demangled_name_entry
*e
757 = (const struct demangled_name_entry
*) data
;
759 return fast_hash (e
->mangled
.data (), e
->mangled
.length ());
762 /* Equality function for the demangled name hash. */
765 eq_demangled_name_entry (const void *a
, const void *b
)
767 const struct demangled_name_entry
*da
768 = (const struct demangled_name_entry
*) a
;
769 const struct demangled_name_entry
*db
770 = (const struct demangled_name_entry
*) b
;
772 return da
->mangled
== db
->mangled
;
776 free_demangled_name_entry (void *data
)
778 struct demangled_name_entry
*e
779 = (struct demangled_name_entry
*) data
;
781 e
->~demangled_name_entry();
784 /* Create the hash table used for demangled names. Each hash entry is
785 a pair of strings; one for the mangled name and one for the demangled
786 name. The entry is hashed via just the mangled name. */
789 create_demangled_names_hash (struct objfile_per_bfd_storage
*per_bfd
)
791 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
792 The hash table code will round this up to the next prime number.
793 Choosing a much larger table size wastes memory, and saves only about
794 1% in symbol reading. However, if the minsym count is already
795 initialized (e.g. because symbol name setting was deferred to
796 a background thread) we can initialize the hashtable with a count
797 based on that, because we will almost certainly have at least that
798 many entries. If we have a nonzero number but less than 256,
799 we still stay with 256 to have some space for psymbols, etc. */
801 /* htab will expand the table when it is 3/4th full, so we account for that
802 here. +2 to round up. */
803 int minsym_based_count
= (per_bfd
->minimal_symbol_count
+ 2) / 3 * 4;
804 int count
= std::max (per_bfd
->minimal_symbol_count
, minsym_based_count
);
806 per_bfd
->demangled_names_hash
.reset (htab_create_alloc
807 (count
, hash_demangled_name_entry
, eq_demangled_name_entry
,
808 free_demangled_name_entry
, xcalloc
, xfree
));
814 symbol_find_demangled_name (struct general_symbol_info
*gsymbol
,
817 char *demangled
= NULL
;
820 if (gsymbol
->language () == language_unknown
)
821 gsymbol
->m_language
= language_auto
;
823 if (gsymbol
->language () != language_auto
)
825 const struct language_defn
*lang
= language_def (gsymbol
->language ());
827 language_sniff_from_mangled_name (lang
, mangled
, &demangled
);
831 for (i
= language_unknown
; i
< nr_languages
; ++i
)
833 enum language l
= (enum language
) i
;
834 const struct language_defn
*lang
= language_def (l
);
836 if (language_sniff_from_mangled_name (lang
, mangled
, &demangled
))
838 gsymbol
->m_language
= l
;
846 /* Set both the mangled and demangled (if any) names for GSYMBOL based
847 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
848 objfile's obstack; but if COPY_NAME is 0 and if NAME is
849 NUL-terminated, then this function assumes that NAME is already
850 correctly saved (either permanently or with a lifetime tied to the
851 objfile), and it will not be copied.
853 The hash table corresponding to OBJFILE is used, and the memory
854 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
855 so the pointer can be discarded after calling this function. */
858 symbol_set_names (struct general_symbol_info
*gsymbol
,
859 gdb::string_view linkage_name
, bool copy_name
,
860 struct objfile_per_bfd_storage
*per_bfd
,
861 gdb::optional
<hashval_t
> hash
)
863 struct demangled_name_entry
**slot
;
865 if (gsymbol
->language () == language_ada
)
867 /* In Ada, we do the symbol lookups using the mangled name, so
868 we can save some space by not storing the demangled name. */
870 gsymbol
->name
= linkage_name
.data ();
873 char *name
= (char *) obstack_alloc (&per_bfd
->storage_obstack
,
874 linkage_name
.length () + 1);
876 memcpy (name
, linkage_name
.data (), linkage_name
.length ());
877 name
[linkage_name
.length ()] = '\0';
878 gsymbol
->name
= name
;
880 symbol_set_demangled_name (gsymbol
, NULL
, &per_bfd
->storage_obstack
);
885 if (per_bfd
->demangled_names_hash
== NULL
)
886 create_demangled_names_hash (per_bfd
);
888 struct demangled_name_entry
entry (linkage_name
);
889 if (!hash
.has_value ())
890 hash
= hash_demangled_name_entry (&entry
);
891 slot
= ((struct demangled_name_entry
**)
892 htab_find_slot_with_hash (per_bfd
->demangled_names_hash
.get (),
893 &entry
, *hash
, INSERT
));
895 /* If this name is not in the hash table, add it. */
897 /* A C version of the symbol may have already snuck into the table.
898 This happens to, e.g., main.init (__go_init_main). Cope. */
899 || (gsymbol
->language () == language_go
&& (*slot
)->demangled
== nullptr))
901 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
902 to true if the string might not be nullterminated. We have to make
903 this copy because demangling needs a nullterminated string. */
904 gdb::string_view linkage_name_copy
;
907 char *alloc_name
= (char *) alloca (linkage_name
.length () + 1);
908 memcpy (alloc_name
, linkage_name
.data (), linkage_name
.length ());
909 alloc_name
[linkage_name
.length ()] = '\0';
911 linkage_name_copy
= gdb::string_view (alloc_name
,
912 linkage_name
.length ());
915 linkage_name_copy
= linkage_name
;
917 /* The const_cast is safe because the only reason it is already
918 initialized is if we purposefully set it from a background
919 thread to avoid doing the work here. However, it is still
920 allocated from the heap and needs to be freed by us, just
921 like if we called symbol_find_demangled_name here. */
922 gdb::unique_xmalloc_ptr
<char> demangled_name
923 (gsymbol
->language_specific
.demangled_name
924 ? const_cast<char *> (gsymbol
->language_specific
.demangled_name
)
925 : symbol_find_demangled_name (gsymbol
, linkage_name_copy
.data ()));
927 /* Suppose we have demangled_name==NULL, copy_name==0, and
928 linkage_name_copy==linkage_name. In this case, we already have the
929 mangled name saved, and we don't have a demangled name. So,
930 you might think we could save a little space by not recording
931 this in the hash table at all.
933 It turns out that it is actually important to still save such
934 an entry in the hash table, because storing this name gives
935 us better bcache hit rates for partial symbols. */
939 = ((struct demangled_name_entry
*)
940 obstack_alloc (&per_bfd
->storage_obstack
,
941 sizeof (demangled_name_entry
)));
942 new (*slot
) demangled_name_entry (linkage_name
);
946 /* If we must copy the mangled name, put it directly after
947 the struct so we can have a single allocation. */
949 = ((struct demangled_name_entry
*)
950 obstack_alloc (&per_bfd
->storage_obstack
,
951 sizeof (demangled_name_entry
)
952 + linkage_name
.length () + 1));
953 char *mangled_ptr
= reinterpret_cast<char *> (*slot
+ 1);
954 memcpy (mangled_ptr
, linkage_name
.data (), linkage_name
.length ());
955 mangled_ptr
[linkage_name
.length ()] = '\0';
956 new (*slot
) demangled_name_entry
957 (gdb::string_view (mangled_ptr
, linkage_name
.length ()));
959 (*slot
)->demangled
= std::move (demangled_name
);
960 (*slot
)->language
= gsymbol
->language ();
962 else if (gsymbol
->language () == language_unknown
963 || gsymbol
->language () == language_auto
)
964 gsymbol
->m_language
= (*slot
)->language
;
966 gsymbol
->name
= (*slot
)->mangled
.data ();
967 if ((*slot
)->demangled
!= nullptr)
968 symbol_set_demangled_name (gsymbol
, (*slot
)->demangled
.get (),
969 &per_bfd
->storage_obstack
);
971 symbol_set_demangled_name (gsymbol
, NULL
, &per_bfd
->storage_obstack
);
977 general_symbol_info::natural_name () const
985 case language_fortran
:
986 if (symbol_get_demangled_name (this) != NULL
)
987 return symbol_get_demangled_name (this);
990 return ada_decode_symbol (this);
1000 general_symbol_info::demangled_name () const
1002 const char *dem_name
= NULL
;
1004 switch (language ())
1006 case language_cplus
:
1010 case language_fortran
:
1011 dem_name
= symbol_get_demangled_name (this);
1014 dem_name
= ada_decode_symbol (this);
1025 general_symbol_info::search_name () const
1027 if (language () == language_ada
)
1030 return natural_name ();
1036 symbol_matches_search_name (const struct general_symbol_info
*gsymbol
,
1037 const lookup_name_info
&name
)
1039 symbol_name_matcher_ftype
*name_match
1040 = get_symbol_name_matcher (language_def (gsymbol
->language ()), name
);
1041 return name_match (gsymbol
->search_name (), name
, NULL
);
1046 /* Return true if the two sections are the same, or if they could
1047 plausibly be copies of each other, one in an original object
1048 file and another in a separated debug file. */
1051 matching_obj_sections (struct obj_section
*obj_first
,
1052 struct obj_section
*obj_second
)
1054 asection
*first
= obj_first
? obj_first
->the_bfd_section
: NULL
;
1055 asection
*second
= obj_second
? obj_second
->the_bfd_section
: NULL
;
1057 /* If they're the same section, then they match. */
1058 if (first
== second
)
1061 /* If either is NULL, give up. */
1062 if (first
== NULL
|| second
== NULL
)
1065 /* This doesn't apply to absolute symbols. */
1066 if (first
->owner
== NULL
|| second
->owner
== NULL
)
1069 /* If they're in the same object file, they must be different sections. */
1070 if (first
->owner
== second
->owner
)
1073 /* Check whether the two sections are potentially corresponding. They must
1074 have the same size, address, and name. We can't compare section indexes,
1075 which would be more reliable, because some sections may have been
1077 if (bfd_section_size (first
) != bfd_section_size (second
))
1080 /* In-memory addresses may start at a different offset, relativize them. */
1081 if (bfd_section_vma (first
) - bfd_get_start_address (first
->owner
)
1082 != bfd_section_vma (second
) - bfd_get_start_address (second
->owner
))
1085 if (bfd_section_name (first
) == NULL
1086 || bfd_section_name (second
) == NULL
1087 || strcmp (bfd_section_name (first
), bfd_section_name (second
)) != 0)
1090 /* Otherwise check that they are in corresponding objfiles. */
1092 struct objfile
*obj
= NULL
;
1093 for (objfile
*objfile
: current_program_space
->objfiles ())
1094 if (objfile
->obfd
== first
->owner
)
1099 gdb_assert (obj
!= NULL
);
1101 if (obj
->separate_debug_objfile
!= NULL
1102 && obj
->separate_debug_objfile
->obfd
== second
->owner
)
1104 if (obj
->separate_debug_objfile_backlink
!= NULL
1105 && obj
->separate_debug_objfile_backlink
->obfd
== second
->owner
)
1114 expand_symtab_containing_pc (CORE_ADDR pc
, struct obj_section
*section
)
1116 struct bound_minimal_symbol msymbol
;
1118 /* If we know that this is not a text address, return failure. This is
1119 necessary because we loop based on texthigh and textlow, which do
1120 not include the data ranges. */
1121 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
);
1122 if (msymbol
.minsym
&& msymbol
.minsym
->data_p ())
1125 for (objfile
*objfile
: current_program_space
->objfiles ())
1127 struct compunit_symtab
*cust
= NULL
;
1130 cust
= objfile
->sf
->qf
->find_pc_sect_compunit_symtab (objfile
, msymbol
,
1137 /* Hash function for the symbol cache. */
1140 hash_symbol_entry (const struct objfile
*objfile_context
,
1141 const char *name
, domain_enum domain
)
1143 unsigned int hash
= (uintptr_t) objfile_context
;
1146 hash
+= htab_hash_string (name
);
1148 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1149 to map to the same slot. */
1150 if (domain
== STRUCT_DOMAIN
)
1151 hash
+= VAR_DOMAIN
* 7;
1158 /* Equality function for the symbol cache. */
1161 eq_symbol_entry (const struct symbol_cache_slot
*slot
,
1162 const struct objfile
*objfile_context
,
1163 const char *name
, domain_enum domain
)
1165 const char *slot_name
;
1166 domain_enum slot_domain
;
1168 if (slot
->state
== SYMBOL_SLOT_UNUSED
)
1171 if (slot
->objfile_context
!= objfile_context
)
1174 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1176 slot_name
= slot
->value
.not_found
.name
;
1177 slot_domain
= slot
->value
.not_found
.domain
;
1181 slot_name
= slot
->value
.found
.symbol
->search_name ();
1182 slot_domain
= SYMBOL_DOMAIN (slot
->value
.found
.symbol
);
1185 /* NULL names match. */
1186 if (slot_name
== NULL
&& name
== NULL
)
1188 /* But there's no point in calling symbol_matches_domain in the
1189 SYMBOL_SLOT_FOUND case. */
1190 if (slot_domain
!= domain
)
1193 else if (slot_name
!= NULL
&& name
!= NULL
)
1195 /* It's important that we use the same comparison that was done
1196 the first time through. If the slot records a found symbol,
1197 then this means using the symbol name comparison function of
1198 the symbol's language with symbol->search_name (). See
1199 dictionary.c. It also means using symbol_matches_domain for
1200 found symbols. See block.c.
1202 If the slot records a not-found symbol, then require a precise match.
1203 We could still be lax with whitespace like strcmp_iw though. */
1205 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1207 if (strcmp (slot_name
, name
) != 0)
1209 if (slot_domain
!= domain
)
1214 struct symbol
*sym
= slot
->value
.found
.symbol
;
1215 lookup_name_info
lookup_name (name
, symbol_name_match_type::FULL
);
1217 if (!SYMBOL_MATCHES_SEARCH_NAME (sym
, lookup_name
))
1220 if (!symbol_matches_domain (sym
->language (), slot_domain
, domain
))
1226 /* Only one name is NULL. */
1233 /* Given a cache of size SIZE, return the size of the struct (with variable
1234 length array) in bytes. */
1237 symbol_cache_byte_size (unsigned int size
)
1239 return (sizeof (struct block_symbol_cache
)
1240 + ((size
- 1) * sizeof (struct symbol_cache_slot
)));
1246 resize_symbol_cache (struct symbol_cache
*cache
, unsigned int new_size
)
1248 /* If there's no change in size, don't do anything.
1249 All caches have the same size, so we can just compare with the size
1250 of the global symbols cache. */
1251 if ((cache
->global_symbols
!= NULL
1252 && cache
->global_symbols
->size
== new_size
)
1253 || (cache
->global_symbols
== NULL
1257 destroy_block_symbol_cache (cache
->global_symbols
);
1258 destroy_block_symbol_cache (cache
->static_symbols
);
1262 cache
->global_symbols
= NULL
;
1263 cache
->static_symbols
= NULL
;
1267 size_t total_size
= symbol_cache_byte_size (new_size
);
1269 cache
->global_symbols
1270 = (struct block_symbol_cache
*) xcalloc (1, total_size
);
1271 cache
->static_symbols
1272 = (struct block_symbol_cache
*) xcalloc (1, total_size
);
1273 cache
->global_symbols
->size
= new_size
;
1274 cache
->static_symbols
->size
= new_size
;
1278 /* Return the symbol cache of PSPACE.
1279 Create one if it doesn't exist yet. */
1281 static struct symbol_cache
*
1282 get_symbol_cache (struct program_space
*pspace
)
1284 struct symbol_cache
*cache
= symbol_cache_key
.get (pspace
);
1288 cache
= symbol_cache_key
.emplace (pspace
);
1289 resize_symbol_cache (cache
, symbol_cache_size
);
1295 /* Set the size of the symbol cache in all program spaces. */
1298 set_symbol_cache_size (unsigned int new_size
)
1300 struct program_space
*pspace
;
1302 ALL_PSPACES (pspace
)
1304 struct symbol_cache
*cache
= symbol_cache_key
.get (pspace
);
1306 /* The pspace could have been created but not have a cache yet. */
1308 resize_symbol_cache (cache
, new_size
);
1312 /* Called when symbol-cache-size is set. */
1315 set_symbol_cache_size_handler (const char *args
, int from_tty
,
1316 struct cmd_list_element
*c
)
1318 if (new_symbol_cache_size
> MAX_SYMBOL_CACHE_SIZE
)
1320 /* Restore the previous value.
1321 This is the value the "show" command prints. */
1322 new_symbol_cache_size
= symbol_cache_size
;
1324 error (_("Symbol cache size is too large, max is %u."),
1325 MAX_SYMBOL_CACHE_SIZE
);
1327 symbol_cache_size
= new_symbol_cache_size
;
1329 set_symbol_cache_size (symbol_cache_size
);
1332 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1333 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1334 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1335 failed (and thus this one will too), or NULL if the symbol is not present
1337 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1338 can be used to save the result of a full lookup attempt. */
1340 static struct block_symbol
1341 symbol_cache_lookup (struct symbol_cache
*cache
,
1342 struct objfile
*objfile_context
, enum block_enum block
,
1343 const char *name
, domain_enum domain
,
1344 struct block_symbol_cache
**bsc_ptr
,
1345 struct symbol_cache_slot
**slot_ptr
)
1347 struct block_symbol_cache
*bsc
;
1349 struct symbol_cache_slot
*slot
;
1351 if (block
== GLOBAL_BLOCK
)
1352 bsc
= cache
->global_symbols
;
1354 bsc
= cache
->static_symbols
;
1362 hash
= hash_symbol_entry (objfile_context
, name
, domain
);
1363 slot
= bsc
->symbols
+ hash
% bsc
->size
;
1368 if (eq_symbol_entry (slot
, objfile_context
, name
, domain
))
1370 if (symbol_lookup_debug
)
1371 fprintf_unfiltered (gdb_stdlog
,
1372 "%s block symbol cache hit%s for %s, %s\n",
1373 block
== GLOBAL_BLOCK
? "Global" : "Static",
1374 slot
->state
== SYMBOL_SLOT_NOT_FOUND
1375 ? " (not found)" : "",
1376 name
, domain_name (domain
));
1378 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1379 return SYMBOL_LOOKUP_FAILED
;
1380 return slot
->value
.found
;
1383 /* Symbol is not present in the cache. */
1385 if (symbol_lookup_debug
)
1387 fprintf_unfiltered (gdb_stdlog
,
1388 "%s block symbol cache miss for %s, %s\n",
1389 block
== GLOBAL_BLOCK
? "Global" : "Static",
1390 name
, domain_name (domain
));
1396 /* Mark SYMBOL as found in SLOT.
1397 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1398 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1399 necessarily the objfile the symbol was found in. */
1402 symbol_cache_mark_found (struct block_symbol_cache
*bsc
,
1403 struct symbol_cache_slot
*slot
,
1404 struct objfile
*objfile_context
,
1405 struct symbol
*symbol
,
1406 const struct block
*block
)
1410 if (slot
->state
!= SYMBOL_SLOT_UNUSED
)
1413 symbol_cache_clear_slot (slot
);
1415 slot
->state
= SYMBOL_SLOT_FOUND
;
1416 slot
->objfile_context
= objfile_context
;
1417 slot
->value
.found
.symbol
= symbol
;
1418 slot
->value
.found
.block
= block
;
1421 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1422 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1423 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1426 symbol_cache_mark_not_found (struct block_symbol_cache
*bsc
,
1427 struct symbol_cache_slot
*slot
,
1428 struct objfile
*objfile_context
,
1429 const char *name
, domain_enum domain
)
1433 if (slot
->state
!= SYMBOL_SLOT_UNUSED
)
1436 symbol_cache_clear_slot (slot
);
1438 slot
->state
= SYMBOL_SLOT_NOT_FOUND
;
1439 slot
->objfile_context
= objfile_context
;
1440 slot
->value
.not_found
.name
= xstrdup (name
);
1441 slot
->value
.not_found
.domain
= domain
;
1444 /* Flush the symbol cache of PSPACE. */
1447 symbol_cache_flush (struct program_space
*pspace
)
1449 struct symbol_cache
*cache
= symbol_cache_key
.get (pspace
);
1454 if (cache
->global_symbols
== NULL
)
1456 gdb_assert (symbol_cache_size
== 0);
1457 gdb_assert (cache
->static_symbols
== NULL
);
1461 /* If the cache is untouched since the last flush, early exit.
1462 This is important for performance during the startup of a program linked
1463 with 100s (or 1000s) of shared libraries. */
1464 if (cache
->global_symbols
->misses
== 0
1465 && cache
->static_symbols
->misses
== 0)
1468 gdb_assert (cache
->global_symbols
->size
== symbol_cache_size
);
1469 gdb_assert (cache
->static_symbols
->size
== symbol_cache_size
);
1471 for (pass
= 0; pass
< 2; ++pass
)
1473 struct block_symbol_cache
*bsc
1474 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1477 for (i
= 0; i
< bsc
->size
; ++i
)
1478 symbol_cache_clear_slot (&bsc
->symbols
[i
]);
1481 cache
->global_symbols
->hits
= 0;
1482 cache
->global_symbols
->misses
= 0;
1483 cache
->global_symbols
->collisions
= 0;
1484 cache
->static_symbols
->hits
= 0;
1485 cache
->static_symbols
->misses
= 0;
1486 cache
->static_symbols
->collisions
= 0;
1492 symbol_cache_dump (const struct symbol_cache
*cache
)
1496 if (cache
->global_symbols
== NULL
)
1498 printf_filtered (" <disabled>\n");
1502 for (pass
= 0; pass
< 2; ++pass
)
1504 const struct block_symbol_cache
*bsc
1505 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1509 printf_filtered ("Global symbols:\n");
1511 printf_filtered ("Static symbols:\n");
1513 for (i
= 0; i
< bsc
->size
; ++i
)
1515 const struct symbol_cache_slot
*slot
= &bsc
->symbols
[i
];
1519 switch (slot
->state
)
1521 case SYMBOL_SLOT_UNUSED
:
1523 case SYMBOL_SLOT_NOT_FOUND
:
1524 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i
,
1525 host_address_to_string (slot
->objfile_context
),
1526 slot
->value
.not_found
.name
,
1527 domain_name (slot
->value
.not_found
.domain
));
1529 case SYMBOL_SLOT_FOUND
:
1531 struct symbol
*found
= slot
->value
.found
.symbol
;
1532 const struct objfile
*context
= slot
->objfile_context
;
1534 printf_filtered (" [%4u] = %s, %s %s\n", i
,
1535 host_address_to_string (context
),
1536 found
->print_name (),
1537 domain_name (SYMBOL_DOMAIN (found
)));
1545 /* The "mt print symbol-cache" command. */
1548 maintenance_print_symbol_cache (const char *args
, int from_tty
)
1550 struct program_space
*pspace
;
1552 ALL_PSPACES (pspace
)
1554 struct symbol_cache
*cache
;
1556 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1558 pspace
->symfile_object_file
!= NULL
1559 ? objfile_name (pspace
->symfile_object_file
)
1560 : "(no object file)");
1562 /* If the cache hasn't been created yet, avoid creating one. */
1563 cache
= symbol_cache_key
.get (pspace
);
1565 printf_filtered (" <empty>\n");
1567 symbol_cache_dump (cache
);
1571 /* The "mt flush-symbol-cache" command. */
1574 maintenance_flush_symbol_cache (const char *args
, int from_tty
)
1576 struct program_space
*pspace
;
1578 ALL_PSPACES (pspace
)
1580 symbol_cache_flush (pspace
);
1584 /* Print usage statistics of CACHE. */
1587 symbol_cache_stats (struct symbol_cache
*cache
)
1591 if (cache
->global_symbols
== NULL
)
1593 printf_filtered (" <disabled>\n");
1597 for (pass
= 0; pass
< 2; ++pass
)
1599 const struct block_symbol_cache
*bsc
1600 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1605 printf_filtered ("Global block cache stats:\n");
1607 printf_filtered ("Static block cache stats:\n");
1609 printf_filtered (" size: %u\n", bsc
->size
);
1610 printf_filtered (" hits: %u\n", bsc
->hits
);
1611 printf_filtered (" misses: %u\n", bsc
->misses
);
1612 printf_filtered (" collisions: %u\n", bsc
->collisions
);
1616 /* The "mt print symbol-cache-statistics" command. */
1619 maintenance_print_symbol_cache_statistics (const char *args
, int from_tty
)
1621 struct program_space
*pspace
;
1623 ALL_PSPACES (pspace
)
1625 struct symbol_cache
*cache
;
1627 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1629 pspace
->symfile_object_file
!= NULL
1630 ? objfile_name (pspace
->symfile_object_file
)
1631 : "(no object file)");
1633 /* If the cache hasn't been created yet, avoid creating one. */
1634 cache
= symbol_cache_key
.get (pspace
);
1636 printf_filtered (" empty, no stats available\n");
1638 symbol_cache_stats (cache
);
1642 /* This module's 'new_objfile' observer. */
1645 symtab_new_objfile_observer (struct objfile
*objfile
)
1647 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1648 symbol_cache_flush (current_program_space
);
1651 /* This module's 'free_objfile' observer. */
1654 symtab_free_objfile_observer (struct objfile
*objfile
)
1656 symbol_cache_flush (objfile
->pspace
);
1659 /* Debug symbols usually don't have section information. We need to dig that
1660 out of the minimal symbols and stash that in the debug symbol. */
1663 fixup_section (struct general_symbol_info
*ginfo
,
1664 CORE_ADDR addr
, struct objfile
*objfile
)
1666 struct minimal_symbol
*msym
;
1668 /* First, check whether a minimal symbol with the same name exists
1669 and points to the same address. The address check is required
1670 e.g. on PowerPC64, where the minimal symbol for a function will
1671 point to the function descriptor, while the debug symbol will
1672 point to the actual function code. */
1673 msym
= lookup_minimal_symbol_by_pc_name (addr
, ginfo
->name
, objfile
);
1675 ginfo
->section
= MSYMBOL_SECTION (msym
);
1678 /* Static, function-local variables do appear in the linker
1679 (minimal) symbols, but are frequently given names that won't
1680 be found via lookup_minimal_symbol(). E.g., it has been
1681 observed in frv-uclinux (ELF) executables that a static,
1682 function-local variable named "foo" might appear in the
1683 linker symbols as "foo.6" or "foo.3". Thus, there is no
1684 point in attempting to extend the lookup-by-name mechanism to
1685 handle this case due to the fact that there can be multiple
1688 So, instead, search the section table when lookup by name has
1689 failed. The ``addr'' and ``endaddr'' fields may have already
1690 been relocated. If so, the relocation offset (i.e. the
1691 ANOFFSET value) needs to be subtracted from these values when
1692 performing the comparison. We unconditionally subtract it,
1693 because, when no relocation has been performed, the ANOFFSET
1694 value will simply be zero.
1696 The address of the symbol whose section we're fixing up HAS
1697 NOT BEEN adjusted (relocated) yet. It can't have been since
1698 the section isn't yet known and knowing the section is
1699 necessary in order to add the correct relocation value. In
1700 other words, we wouldn't even be in this function (attempting
1701 to compute the section) if it were already known.
1703 Note that it is possible to search the minimal symbols
1704 (subtracting the relocation value if necessary) to find the
1705 matching minimal symbol, but this is overkill and much less
1706 efficient. It is not necessary to find the matching minimal
1707 symbol, only its section.
1709 Note that this technique (of doing a section table search)
1710 can fail when unrelocated section addresses overlap. For
1711 this reason, we still attempt a lookup by name prior to doing
1712 a search of the section table. */
1714 struct obj_section
*s
;
1717 ALL_OBJFILE_OSECTIONS (objfile
, s
)
1719 int idx
= s
- objfile
->sections
;
1720 CORE_ADDR offset
= ANOFFSET (objfile
->section_offsets
, idx
);
1725 if (obj_section_addr (s
) - offset
<= addr
1726 && addr
< obj_section_endaddr (s
) - offset
)
1728 ginfo
->section
= idx
;
1733 /* If we didn't find the section, assume it is in the first
1734 section. If there is no allocated section, then it hardly
1735 matters what we pick, so just pick zero. */
1739 ginfo
->section
= fallback
;
1744 fixup_symbol_section (struct symbol
*sym
, struct objfile
*objfile
)
1751 if (!SYMBOL_OBJFILE_OWNED (sym
))
1754 /* We either have an OBJFILE, or we can get at it from the sym's
1755 symtab. Anything else is a bug. */
1756 gdb_assert (objfile
|| symbol_symtab (sym
));
1758 if (objfile
== NULL
)
1759 objfile
= symbol_objfile (sym
);
1761 if (SYMBOL_OBJ_SECTION (objfile
, sym
))
1764 /* We should have an objfile by now. */
1765 gdb_assert (objfile
);
1767 switch (SYMBOL_CLASS (sym
))
1771 addr
= SYMBOL_VALUE_ADDRESS (sym
);
1774 addr
= BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
));
1778 /* Nothing else will be listed in the minsyms -- no use looking
1783 fixup_section (sym
, addr
, objfile
);
1790 demangle_for_lookup_info::demangle_for_lookup_info
1791 (const lookup_name_info
&lookup_name
, language lang
)
1793 demangle_result_storage storage
;
1795 if (lookup_name
.ignore_parameters () && lang
== language_cplus
)
1797 gdb::unique_xmalloc_ptr
<char> without_params
1798 = cp_remove_params_if_any (lookup_name
.name ().c_str (),
1799 lookup_name
.completion_mode ());
1801 if (without_params
!= NULL
)
1803 if (lookup_name
.match_type () != symbol_name_match_type::SEARCH_NAME
)
1804 m_demangled_name
= demangle_for_lookup (without_params
.get (),
1810 if (lookup_name
.match_type () == symbol_name_match_type::SEARCH_NAME
)
1811 m_demangled_name
= lookup_name
.name ();
1813 m_demangled_name
= demangle_for_lookup (lookup_name
.name ().c_str (),
1819 const lookup_name_info
&
1820 lookup_name_info::match_any ()
1822 /* Lookup any symbol that "" would complete. I.e., this matches all
1824 static const lookup_name_info
lookup_name ({}, symbol_name_match_type::FULL
,
1830 /* Compute the demangled form of NAME as used by the various symbol
1831 lookup functions. The result can either be the input NAME
1832 directly, or a pointer to a buffer owned by the STORAGE object.
1834 For Ada, this function just returns NAME, unmodified.
1835 Normally, Ada symbol lookups are performed using the encoded name
1836 rather than the demangled name, and so it might seem to make sense
1837 for this function to return an encoded version of NAME.
1838 Unfortunately, we cannot do this, because this function is used in
1839 circumstances where it is not appropriate to try to encode NAME.
1840 For instance, when displaying the frame info, we demangle the name
1841 of each parameter, and then perform a symbol lookup inside our
1842 function using that demangled name. In Ada, certain functions
1843 have internally-generated parameters whose name contain uppercase
1844 characters. Encoding those name would result in those uppercase
1845 characters to become lowercase, and thus cause the symbol lookup
1849 demangle_for_lookup (const char *name
, enum language lang
,
1850 demangle_result_storage
&storage
)
1852 /* If we are using C++, D, or Go, demangle the name before doing a
1853 lookup, so we can always binary search. */
1854 if (lang
== language_cplus
)
1856 char *demangled_name
= gdb_demangle (name
, DMGL_ANSI
| DMGL_PARAMS
);
1857 if (demangled_name
!= NULL
)
1858 return storage
.set_malloc_ptr (demangled_name
);
1860 /* If we were given a non-mangled name, canonicalize it
1861 according to the language (so far only for C++). */
1862 std::string canon
= cp_canonicalize_string (name
);
1863 if (!canon
.empty ())
1864 return storage
.swap_string (canon
);
1866 else if (lang
== language_d
)
1868 char *demangled_name
= d_demangle (name
, 0);
1869 if (demangled_name
!= NULL
)
1870 return storage
.set_malloc_ptr (demangled_name
);
1872 else if (lang
== language_go
)
1874 char *demangled_name
= go_demangle (name
, 0);
1875 if (demangled_name
!= NULL
)
1876 return storage
.set_malloc_ptr (demangled_name
);
1885 search_name_hash (enum language language
, const char *search_name
)
1887 return language_def (language
)->la_search_name_hash (search_name
);
1892 This function (or rather its subordinates) have a bunch of loops and
1893 it would seem to be attractive to put in some QUIT's (though I'm not really
1894 sure whether it can run long enough to be really important). But there
1895 are a few calls for which it would appear to be bad news to quit
1896 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1897 that there is C++ code below which can error(), but that probably
1898 doesn't affect these calls since they are looking for a known
1899 variable and thus can probably assume it will never hit the C++
1903 lookup_symbol_in_language (const char *name
, const struct block
*block
,
1904 const domain_enum domain
, enum language lang
,
1905 struct field_of_this_result
*is_a_field_of_this
)
1907 demangle_result_storage storage
;
1908 const char *modified_name
= demangle_for_lookup (name
, lang
, storage
);
1910 return lookup_symbol_aux (modified_name
,
1911 symbol_name_match_type::FULL
,
1912 block
, domain
, lang
,
1913 is_a_field_of_this
);
1919 lookup_symbol (const char *name
, const struct block
*block
,
1921 struct field_of_this_result
*is_a_field_of_this
)
1923 return lookup_symbol_in_language (name
, block
, domain
,
1924 current_language
->la_language
,
1925 is_a_field_of_this
);
1931 lookup_symbol_search_name (const char *search_name
, const struct block
*block
,
1934 return lookup_symbol_aux (search_name
, symbol_name_match_type::SEARCH_NAME
,
1935 block
, domain
, language_asm
, NULL
);
1941 lookup_language_this (const struct language_defn
*lang
,
1942 const struct block
*block
)
1944 if (lang
->la_name_of_this
== NULL
|| block
== NULL
)
1947 if (symbol_lookup_debug
> 1)
1949 struct objfile
*objfile
= lookup_objfile_from_block (block
);
1951 fprintf_unfiltered (gdb_stdlog
,
1952 "lookup_language_this (%s, %s (objfile %s))",
1953 lang
->la_name
, host_address_to_string (block
),
1954 objfile_debug_name (objfile
));
1961 sym
= block_lookup_symbol (block
, lang
->la_name_of_this
,
1962 symbol_name_match_type::SEARCH_NAME
,
1966 if (symbol_lookup_debug
> 1)
1968 fprintf_unfiltered (gdb_stdlog
, " = %s (%s, block %s)\n",
1970 host_address_to_string (sym
),
1971 host_address_to_string (block
));
1973 return (struct block_symbol
) {sym
, block
};
1975 if (BLOCK_FUNCTION (block
))
1977 block
= BLOCK_SUPERBLOCK (block
);
1980 if (symbol_lookup_debug
> 1)
1981 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
1985 /* Given TYPE, a structure/union,
1986 return 1 if the component named NAME from the ultimate target
1987 structure/union is defined, otherwise, return 0. */
1990 check_field (struct type
*type
, const char *name
,
1991 struct field_of_this_result
*is_a_field_of_this
)
1995 /* The type may be a stub. */
1996 type
= check_typedef (type
);
1998 for (i
= TYPE_NFIELDS (type
) - 1; i
>= TYPE_N_BASECLASSES (type
); i
--)
2000 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
2002 if (t_field_name
&& (strcmp_iw (t_field_name
, name
) == 0))
2004 is_a_field_of_this
->type
= type
;
2005 is_a_field_of_this
->field
= &TYPE_FIELD (type
, i
);
2010 /* C++: If it was not found as a data field, then try to return it
2011 as a pointer to a method. */
2013 for (i
= TYPE_NFN_FIELDS (type
) - 1; i
>= 0; --i
)
2015 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type
, i
), name
) == 0)
2017 is_a_field_of_this
->type
= type
;
2018 is_a_field_of_this
->fn_field
= &TYPE_FN_FIELDLIST (type
, i
);
2023 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
2024 if (check_field (TYPE_BASECLASS (type
, i
), name
, is_a_field_of_this
))
2030 /* Behave like lookup_symbol except that NAME is the natural name
2031 (e.g., demangled name) of the symbol that we're looking for. */
2033 static struct block_symbol
2034 lookup_symbol_aux (const char *name
, symbol_name_match_type match_type
,
2035 const struct block
*block
,
2036 const domain_enum domain
, enum language language
,
2037 struct field_of_this_result
*is_a_field_of_this
)
2039 struct block_symbol result
;
2040 const struct language_defn
*langdef
;
2042 if (symbol_lookup_debug
)
2044 struct objfile
*objfile
= lookup_objfile_from_block (block
);
2046 fprintf_unfiltered (gdb_stdlog
,
2047 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2048 name
, host_address_to_string (block
),
2050 ? objfile_debug_name (objfile
) : "NULL",
2051 domain_name (domain
), language_str (language
));
2054 /* Make sure we do something sensible with is_a_field_of_this, since
2055 the callers that set this parameter to some non-null value will
2056 certainly use it later. If we don't set it, the contents of
2057 is_a_field_of_this are undefined. */
2058 if (is_a_field_of_this
!= NULL
)
2059 memset (is_a_field_of_this
, 0, sizeof (*is_a_field_of_this
));
2061 /* Search specified block and its superiors. Don't search
2062 STATIC_BLOCK or GLOBAL_BLOCK. */
2064 result
= lookup_local_symbol (name
, match_type
, block
, domain
, language
);
2065 if (result
.symbol
!= NULL
)
2067 if (symbol_lookup_debug
)
2069 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2070 host_address_to_string (result
.symbol
));
2075 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2076 check to see if NAME is a field of `this'. */
2078 langdef
= language_def (language
);
2080 /* Don't do this check if we are searching for a struct. It will
2081 not be found by check_field, but will be found by other
2083 if (is_a_field_of_this
!= NULL
&& domain
!= STRUCT_DOMAIN
)
2085 result
= lookup_language_this (langdef
, block
);
2089 struct type
*t
= result
.symbol
->type
;
2091 /* I'm not really sure that type of this can ever
2092 be typedefed; just be safe. */
2093 t
= check_typedef (t
);
2094 if (TYPE_CODE (t
) == TYPE_CODE_PTR
|| TYPE_IS_REFERENCE (t
))
2095 t
= TYPE_TARGET_TYPE (t
);
2097 if (TYPE_CODE (t
) != TYPE_CODE_STRUCT
2098 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
2099 error (_("Internal error: `%s' is not an aggregate"),
2100 langdef
->la_name_of_this
);
2102 if (check_field (t
, name
, is_a_field_of_this
))
2104 if (symbol_lookup_debug
)
2106 fprintf_unfiltered (gdb_stdlog
,
2107 "lookup_symbol_aux (...) = NULL\n");
2114 /* Now do whatever is appropriate for LANGUAGE to look
2115 up static and global variables. */
2117 result
= langdef
->la_lookup_symbol_nonlocal (langdef
, name
, block
, domain
);
2118 if (result
.symbol
!= NULL
)
2120 if (symbol_lookup_debug
)
2122 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2123 host_address_to_string (result
.symbol
));
2128 /* Now search all static file-level symbols. Not strictly correct,
2129 but more useful than an error. */
2131 result
= lookup_static_symbol (name
, domain
);
2132 if (symbol_lookup_debug
)
2134 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2135 result
.symbol
!= NULL
2136 ? host_address_to_string (result
.symbol
)
2142 /* Check to see if the symbol is defined in BLOCK or its superiors.
2143 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2145 static struct block_symbol
2146 lookup_local_symbol (const char *name
,
2147 symbol_name_match_type match_type
,
2148 const struct block
*block
,
2149 const domain_enum domain
,
2150 enum language language
)
2153 const struct block
*static_block
= block_static_block (block
);
2154 const char *scope
= block_scope (block
);
2156 /* Check if either no block is specified or it's a global block. */
2158 if (static_block
== NULL
)
2161 while (block
!= static_block
)
2163 sym
= lookup_symbol_in_block (name
, match_type
, block
, domain
);
2165 return (struct block_symbol
) {sym
, block
};
2167 if (language
== language_cplus
|| language
== language_fortran
)
2169 struct block_symbol blocksym
2170 = cp_lookup_symbol_imports_or_template (scope
, name
, block
,
2173 if (blocksym
.symbol
!= NULL
)
2177 if (BLOCK_FUNCTION (block
) != NULL
&& block_inlined_p (block
))
2179 block
= BLOCK_SUPERBLOCK (block
);
2182 /* We've reached the end of the function without finding a result. */
2190 lookup_objfile_from_block (const struct block
*block
)
2195 block
= block_global_block (block
);
2196 /* Look through all blockvectors. */
2197 for (objfile
*obj
: current_program_space
->objfiles ())
2199 for (compunit_symtab
*cust
: obj
->compunits ())
2200 if (block
== BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust
),
2203 if (obj
->separate_debug_objfile_backlink
)
2204 obj
= obj
->separate_debug_objfile_backlink
;
2216 lookup_symbol_in_block (const char *name
, symbol_name_match_type match_type
,
2217 const struct block
*block
,
2218 const domain_enum domain
)
2222 if (symbol_lookup_debug
> 1)
2224 struct objfile
*objfile
= lookup_objfile_from_block (block
);
2226 fprintf_unfiltered (gdb_stdlog
,
2227 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2228 name
, host_address_to_string (block
),
2229 objfile_debug_name (objfile
),
2230 domain_name (domain
));
2233 sym
= block_lookup_symbol (block
, name
, match_type
, domain
);
2236 if (symbol_lookup_debug
> 1)
2238 fprintf_unfiltered (gdb_stdlog
, " = %s\n",
2239 host_address_to_string (sym
));
2241 return fixup_symbol_section (sym
, NULL
);
2244 if (symbol_lookup_debug
> 1)
2245 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
2252 lookup_global_symbol_from_objfile (struct objfile
*main_objfile
,
2253 enum block_enum block_index
,
2255 const domain_enum domain
)
2257 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2259 for (objfile
*objfile
: main_objfile
->separate_debug_objfiles ())
2261 struct block_symbol result
2262 = lookup_symbol_in_objfile (objfile
, block_index
, name
, domain
);
2264 if (result
.symbol
!= nullptr)
2271 /* Check to see if the symbol is defined in one of the OBJFILE's
2272 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2273 depending on whether or not we want to search global symbols or
2276 static struct block_symbol
2277 lookup_symbol_in_objfile_symtabs (struct objfile
*objfile
,
2278 enum block_enum block_index
, const char *name
,
2279 const domain_enum domain
)
2281 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2283 if (symbol_lookup_debug
> 1)
2285 fprintf_unfiltered (gdb_stdlog
,
2286 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2287 objfile_debug_name (objfile
),
2288 block_index
== GLOBAL_BLOCK
2289 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2290 name
, domain_name (domain
));
2293 for (compunit_symtab
*cust
: objfile
->compunits ())
2295 const struct blockvector
*bv
;
2296 const struct block
*block
;
2297 struct block_symbol result
;
2299 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2300 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2301 result
.symbol
= block_lookup_symbol_primary (block
, name
, domain
);
2302 result
.block
= block
;
2303 if (result
.symbol
!= NULL
)
2305 if (symbol_lookup_debug
> 1)
2307 fprintf_unfiltered (gdb_stdlog
, " = %s (block %s)\n",
2308 host_address_to_string (result
.symbol
),
2309 host_address_to_string (block
));
2311 result
.symbol
= fixup_symbol_section (result
.symbol
, objfile
);
2317 if (symbol_lookup_debug
> 1)
2318 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
2322 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2323 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2324 and all associated separate debug objfiles.
2326 Normally we only look in OBJFILE, and not any separate debug objfiles
2327 because the outer loop will cause them to be searched too. This case is
2328 different. Here we're called from search_symbols where it will only
2329 call us for the objfile that contains a matching minsym. */
2331 static struct block_symbol
2332 lookup_symbol_in_objfile_from_linkage_name (struct objfile
*objfile
,
2333 const char *linkage_name
,
2336 enum language lang
= current_language
->la_language
;
2337 struct objfile
*main_objfile
;
2339 demangle_result_storage storage
;
2340 const char *modified_name
= demangle_for_lookup (linkage_name
, lang
, storage
);
2342 if (objfile
->separate_debug_objfile_backlink
)
2343 main_objfile
= objfile
->separate_debug_objfile_backlink
;
2345 main_objfile
= objfile
;
2347 for (::objfile
*cur_objfile
: main_objfile
->separate_debug_objfiles ())
2349 struct block_symbol result
;
2351 result
= lookup_symbol_in_objfile_symtabs (cur_objfile
, GLOBAL_BLOCK
,
2352 modified_name
, domain
);
2353 if (result
.symbol
== NULL
)
2354 result
= lookup_symbol_in_objfile_symtabs (cur_objfile
, STATIC_BLOCK
,
2355 modified_name
, domain
);
2356 if (result
.symbol
!= NULL
)
2363 /* A helper function that throws an exception when a symbol was found
2364 in a psymtab but not in a symtab. */
2366 static void ATTRIBUTE_NORETURN
2367 error_in_psymtab_expansion (enum block_enum block_index
, const char *name
,
2368 struct compunit_symtab
*cust
)
2371 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2372 %s may be an inlined function, or may be a template function\n \
2373 (if a template, try specifying an instantiation: %s<type>)."),
2374 block_index
== GLOBAL_BLOCK
? "global" : "static",
2376 symtab_to_filename_for_display (compunit_primary_filetab (cust
)),
2380 /* A helper function for various lookup routines that interfaces with
2381 the "quick" symbol table functions. */
2383 static struct block_symbol
2384 lookup_symbol_via_quick_fns (struct objfile
*objfile
,
2385 enum block_enum block_index
, const char *name
,
2386 const domain_enum domain
)
2388 struct compunit_symtab
*cust
;
2389 const struct blockvector
*bv
;
2390 const struct block
*block
;
2391 struct block_symbol result
;
2396 if (symbol_lookup_debug
> 1)
2398 fprintf_unfiltered (gdb_stdlog
,
2399 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2400 objfile_debug_name (objfile
),
2401 block_index
== GLOBAL_BLOCK
2402 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2403 name
, domain_name (domain
));
2406 cust
= objfile
->sf
->qf
->lookup_symbol (objfile
, block_index
, name
, domain
);
2409 if (symbol_lookup_debug
> 1)
2411 fprintf_unfiltered (gdb_stdlog
,
2412 "lookup_symbol_via_quick_fns (...) = NULL\n");
2417 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2418 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2419 result
.symbol
= block_lookup_symbol (block
, name
,
2420 symbol_name_match_type::FULL
, domain
);
2421 if (result
.symbol
== NULL
)
2422 error_in_psymtab_expansion (block_index
, name
, cust
);
2424 if (symbol_lookup_debug
> 1)
2426 fprintf_unfiltered (gdb_stdlog
,
2427 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2428 host_address_to_string (result
.symbol
),
2429 host_address_to_string (block
));
2432 result
.symbol
= fixup_symbol_section (result
.symbol
, objfile
);
2433 result
.block
= block
;
2440 basic_lookup_symbol_nonlocal (const struct language_defn
*langdef
,
2442 const struct block
*block
,
2443 const domain_enum domain
)
2445 struct block_symbol result
;
2447 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2448 the current objfile. Searching the current objfile first is useful
2449 for both matching user expectations as well as performance. */
2451 result
= lookup_symbol_in_static_block (name
, block
, domain
);
2452 if (result
.symbol
!= NULL
)
2455 /* If we didn't find a definition for a builtin type in the static block,
2456 search for it now. This is actually the right thing to do and can be
2457 a massive performance win. E.g., when debugging a program with lots of
2458 shared libraries we could search all of them only to find out the
2459 builtin type isn't defined in any of them. This is common for types
2461 if (domain
== VAR_DOMAIN
)
2463 struct gdbarch
*gdbarch
;
2466 gdbarch
= target_gdbarch ();
2468 gdbarch
= block_gdbarch (block
);
2469 result
.symbol
= language_lookup_primitive_type_as_symbol (langdef
,
2471 result
.block
= NULL
;
2472 if (result
.symbol
!= NULL
)
2476 return lookup_global_symbol (name
, block
, domain
);
2482 lookup_symbol_in_static_block (const char *name
,
2483 const struct block
*block
,
2484 const domain_enum domain
)
2486 const struct block
*static_block
= block_static_block (block
);
2489 if (static_block
== NULL
)
2492 if (symbol_lookup_debug
)
2494 struct objfile
*objfile
= lookup_objfile_from_block (static_block
);
2496 fprintf_unfiltered (gdb_stdlog
,
2497 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2500 host_address_to_string (block
),
2501 objfile_debug_name (objfile
),
2502 domain_name (domain
));
2505 sym
= lookup_symbol_in_block (name
,
2506 symbol_name_match_type::FULL
,
2507 static_block
, domain
);
2508 if (symbol_lookup_debug
)
2510 fprintf_unfiltered (gdb_stdlog
,
2511 "lookup_symbol_in_static_block (...) = %s\n",
2512 sym
!= NULL
? host_address_to_string (sym
) : "NULL");
2514 return (struct block_symbol
) {sym
, static_block
};
2517 /* Perform the standard symbol lookup of NAME in OBJFILE:
2518 1) First search expanded symtabs, and if not found
2519 2) Search the "quick" symtabs (partial or .gdb_index).
2520 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2522 static struct block_symbol
2523 lookup_symbol_in_objfile (struct objfile
*objfile
, enum block_enum block_index
,
2524 const char *name
, const domain_enum domain
)
2526 struct block_symbol result
;
2528 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2530 if (symbol_lookup_debug
)
2532 fprintf_unfiltered (gdb_stdlog
,
2533 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2534 objfile_debug_name (objfile
),
2535 block_index
== GLOBAL_BLOCK
2536 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2537 name
, domain_name (domain
));
2540 result
= lookup_symbol_in_objfile_symtabs (objfile
, block_index
,
2542 if (result
.symbol
!= NULL
)
2544 if (symbol_lookup_debug
)
2546 fprintf_unfiltered (gdb_stdlog
,
2547 "lookup_symbol_in_objfile (...) = %s"
2549 host_address_to_string (result
.symbol
));
2554 result
= lookup_symbol_via_quick_fns (objfile
, block_index
,
2556 if (symbol_lookup_debug
)
2558 fprintf_unfiltered (gdb_stdlog
,
2559 "lookup_symbol_in_objfile (...) = %s%s\n",
2560 result
.symbol
!= NULL
2561 ? host_address_to_string (result
.symbol
)
2563 result
.symbol
!= NULL
? " (via quick fns)" : "");
2568 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2570 struct global_or_static_sym_lookup_data
2572 /* The name of the symbol we are searching for. */
2575 /* The domain to use for our search. */
2578 /* The block index in which to search. */
2579 enum block_enum block_index
;
2581 /* The field where the callback should store the symbol if found.
2582 It should be initialized to {NULL, NULL} before the search is started. */
2583 struct block_symbol result
;
2586 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2587 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2588 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2589 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2592 lookup_symbol_global_or_static_iterator_cb (struct objfile
*objfile
,
2595 struct global_or_static_sym_lookup_data
*data
=
2596 (struct global_or_static_sym_lookup_data
*) cb_data
;
2598 gdb_assert (data
->result
.symbol
== NULL
2599 && data
->result
.block
== NULL
);
2601 data
->result
= lookup_symbol_in_objfile (objfile
, data
->block_index
,
2602 data
->name
, data
->domain
);
2604 /* If we found a match, tell the iterator to stop. Otherwise,
2606 return (data
->result
.symbol
!= NULL
);
2609 /* This function contains the common code of lookup_{global,static}_symbol.
2610 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2611 the objfile to start the lookup in. */
2613 static struct block_symbol
2614 lookup_global_or_static_symbol (const char *name
,
2615 enum block_enum block_index
,
2616 struct objfile
*objfile
,
2617 const domain_enum domain
)
2619 struct symbol_cache
*cache
= get_symbol_cache (current_program_space
);
2620 struct block_symbol result
;
2621 struct global_or_static_sym_lookup_data lookup_data
;
2622 struct block_symbol_cache
*bsc
;
2623 struct symbol_cache_slot
*slot
;
2625 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2626 gdb_assert (objfile
== nullptr || block_index
== GLOBAL_BLOCK
);
2628 /* First see if we can find the symbol in the cache.
2629 This works because we use the current objfile to qualify the lookup. */
2630 result
= symbol_cache_lookup (cache
, objfile
, block_index
, name
, domain
,
2632 if (result
.symbol
!= NULL
)
2634 if (SYMBOL_LOOKUP_FAILED_P (result
))
2639 /* Do a global search (of global blocks, heh). */
2640 if (result
.symbol
== NULL
)
2642 memset (&lookup_data
, 0, sizeof (lookup_data
));
2643 lookup_data
.name
= name
;
2644 lookup_data
.block_index
= block_index
;
2645 lookup_data
.domain
= domain
;
2646 gdbarch_iterate_over_objfiles_in_search_order
2647 (objfile
!= NULL
? get_objfile_arch (objfile
) : target_gdbarch (),
2648 lookup_symbol_global_or_static_iterator_cb
, &lookup_data
, objfile
);
2649 result
= lookup_data
.result
;
2652 if (result
.symbol
!= NULL
)
2653 symbol_cache_mark_found (bsc
, slot
, objfile
, result
.symbol
, result
.block
);
2655 symbol_cache_mark_not_found (bsc
, slot
, objfile
, name
, domain
);
2663 lookup_static_symbol (const char *name
, const domain_enum domain
)
2665 return lookup_global_or_static_symbol (name
, STATIC_BLOCK
, nullptr, domain
);
2671 lookup_global_symbol (const char *name
,
2672 const struct block
*block
,
2673 const domain_enum domain
)
2675 /* If a block was passed in, we want to search the corresponding
2676 global block first. This yields "more expected" behavior, and is
2677 needed to support 'FILENAME'::VARIABLE lookups. */
2678 const struct block
*global_block
= block_global_block (block
);
2679 if (global_block
!= nullptr)
2681 symbol
*sym
= lookup_symbol_in_block (name
,
2682 symbol_name_match_type::FULL
,
2683 global_block
, domain
);
2685 return { sym
, global_block
};
2688 struct objfile
*objfile
= lookup_objfile_from_block (block
);
2689 return lookup_global_or_static_symbol (name
, GLOBAL_BLOCK
, objfile
, domain
);
2693 symbol_matches_domain (enum language symbol_language
,
2694 domain_enum symbol_domain
,
2697 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2698 Similarly, any Ada type declaration implicitly defines a typedef. */
2699 if (symbol_language
== language_cplus
2700 || symbol_language
== language_d
2701 || symbol_language
== language_ada
2702 || symbol_language
== language_rust
)
2704 if ((domain
== VAR_DOMAIN
|| domain
== STRUCT_DOMAIN
)
2705 && symbol_domain
== STRUCT_DOMAIN
)
2708 /* For all other languages, strict match is required. */
2709 return (symbol_domain
== domain
);
2715 lookup_transparent_type (const char *name
)
2717 return current_language
->la_lookup_transparent_type (name
);
2720 /* A helper for basic_lookup_transparent_type that interfaces with the
2721 "quick" symbol table functions. */
2723 static struct type
*
2724 basic_lookup_transparent_type_quick (struct objfile
*objfile
,
2725 enum block_enum block_index
,
2728 struct compunit_symtab
*cust
;
2729 const struct blockvector
*bv
;
2730 const struct block
*block
;
2735 cust
= objfile
->sf
->qf
->lookup_symbol (objfile
, block_index
, name
,
2740 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2741 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2742 sym
= block_find_symbol (block
, name
, STRUCT_DOMAIN
,
2743 block_find_non_opaque_type
, NULL
);
2745 error_in_psymtab_expansion (block_index
, name
, cust
);
2746 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)));
2747 return SYMBOL_TYPE (sym
);
2750 /* Subroutine of basic_lookup_transparent_type to simplify it.
2751 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2752 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2754 static struct type
*
2755 basic_lookup_transparent_type_1 (struct objfile
*objfile
,
2756 enum block_enum block_index
,
2759 const struct blockvector
*bv
;
2760 const struct block
*block
;
2761 const struct symbol
*sym
;
2763 for (compunit_symtab
*cust
: objfile
->compunits ())
2765 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2766 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2767 sym
= block_find_symbol (block
, name
, STRUCT_DOMAIN
,
2768 block_find_non_opaque_type
, NULL
);
2771 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)));
2772 return SYMBOL_TYPE (sym
);
2779 /* The standard implementation of lookup_transparent_type. This code
2780 was modeled on lookup_symbol -- the parts not relevant to looking
2781 up types were just left out. In particular it's assumed here that
2782 types are available in STRUCT_DOMAIN and only in file-static or
2786 basic_lookup_transparent_type (const char *name
)
2790 /* Now search all the global symbols. Do the symtab's first, then
2791 check the psymtab's. If a psymtab indicates the existence
2792 of the desired name as a global, then do psymtab-to-symtab
2793 conversion on the fly and return the found symbol. */
2795 for (objfile
*objfile
: current_program_space
->objfiles ())
2797 t
= basic_lookup_transparent_type_1 (objfile
, GLOBAL_BLOCK
, name
);
2802 for (objfile
*objfile
: current_program_space
->objfiles ())
2804 t
= basic_lookup_transparent_type_quick (objfile
, GLOBAL_BLOCK
, name
);
2809 /* Now search the static file-level symbols.
2810 Not strictly correct, but more useful than an error.
2811 Do the symtab's first, then
2812 check the psymtab's. If a psymtab indicates the existence
2813 of the desired name as a file-level static, then do psymtab-to-symtab
2814 conversion on the fly and return the found symbol. */
2816 for (objfile
*objfile
: current_program_space
->objfiles ())
2818 t
= basic_lookup_transparent_type_1 (objfile
, STATIC_BLOCK
, name
);
2823 for (objfile
*objfile
: current_program_space
->objfiles ())
2825 t
= basic_lookup_transparent_type_quick (objfile
, STATIC_BLOCK
, name
);
2830 return (struct type
*) 0;
2836 iterate_over_symbols (const struct block
*block
,
2837 const lookup_name_info
&name
,
2838 const domain_enum domain
,
2839 gdb::function_view
<symbol_found_callback_ftype
> callback
)
2841 struct block_iterator iter
;
2844 ALL_BLOCK_SYMBOLS_WITH_NAME (block
, name
, iter
, sym
)
2846 if (symbol_matches_domain (sym
->language (), SYMBOL_DOMAIN (sym
), domain
))
2848 struct block_symbol block_sym
= {sym
, block
};
2850 if (!callback (&block_sym
))
2860 iterate_over_symbols_terminated
2861 (const struct block
*block
,
2862 const lookup_name_info
&name
,
2863 const domain_enum domain
,
2864 gdb::function_view
<symbol_found_callback_ftype
> callback
)
2866 if (!iterate_over_symbols (block
, name
, domain
, callback
))
2868 struct block_symbol block_sym
= {nullptr, block
};
2869 return callback (&block_sym
);
2872 /* Find the compunit symtab associated with PC and SECTION.
2873 This will read in debug info as necessary. */
2875 struct compunit_symtab
*
2876 find_pc_sect_compunit_symtab (CORE_ADDR pc
, struct obj_section
*section
)
2878 struct compunit_symtab
*best_cust
= NULL
;
2879 CORE_ADDR distance
= 0;
2880 struct bound_minimal_symbol msymbol
;
2882 /* If we know that this is not a text address, return failure. This is
2883 necessary because we loop based on the block's high and low code
2884 addresses, which do not include the data ranges, and because
2885 we call find_pc_sect_psymtab which has a similar restriction based
2886 on the partial_symtab's texthigh and textlow. */
2887 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
);
2888 if (msymbol
.minsym
&& msymbol
.minsym
->data_p ())
2891 /* Search all symtabs for the one whose file contains our address, and which
2892 is the smallest of all the ones containing the address. This is designed
2893 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2894 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2895 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2897 This happens for native ecoff format, where code from included files
2898 gets its own symtab. The symtab for the included file should have
2899 been read in already via the dependency mechanism.
2900 It might be swifter to create several symtabs with the same name
2901 like xcoff does (I'm not sure).
2903 It also happens for objfiles that have their functions reordered.
2904 For these, the symtab we are looking for is not necessarily read in. */
2906 for (objfile
*obj_file
: current_program_space
->objfiles ())
2908 for (compunit_symtab
*cust
: obj_file
->compunits ())
2910 const struct block
*b
;
2911 const struct blockvector
*bv
;
2913 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2914 b
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
2916 if (BLOCK_START (b
) <= pc
2917 && BLOCK_END (b
) > pc
2919 || BLOCK_END (b
) - BLOCK_START (b
) < distance
))
2921 /* For an objfile that has its functions reordered,
2922 find_pc_psymtab will find the proper partial symbol table
2923 and we simply return its corresponding symtab. */
2924 /* In order to better support objfiles that contain both
2925 stabs and coff debugging info, we continue on if a psymtab
2927 if ((obj_file
->flags
& OBJF_REORDERED
) && obj_file
->sf
)
2929 struct compunit_symtab
*result
;
2932 = obj_file
->sf
->qf
->find_pc_sect_compunit_symtab (obj_file
,
2942 struct block_iterator iter
;
2943 struct symbol
*sym
= NULL
;
2945 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
2947 fixup_symbol_section (sym
, obj_file
);
2948 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file
,
2954 continue; /* No symbol in this symtab matches
2957 distance
= BLOCK_END (b
) - BLOCK_START (b
);
2963 if (best_cust
!= NULL
)
2966 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2968 for (objfile
*objf
: current_program_space
->objfiles ())
2970 struct compunit_symtab
*result
;
2974 result
= objf
->sf
->qf
->find_pc_sect_compunit_symtab (objf
,
2985 /* Find the compunit symtab associated with PC.
2986 This will read in debug info as necessary.
2987 Backward compatibility, no section. */
2989 struct compunit_symtab
*
2990 find_pc_compunit_symtab (CORE_ADDR pc
)
2992 return find_pc_sect_compunit_symtab (pc
, find_pc_mapped_section (pc
));
2998 find_symbol_at_address (CORE_ADDR address
)
3000 for (objfile
*objfile
: current_program_space
->objfiles ())
3002 if (objfile
->sf
== NULL
3003 || objfile
->sf
->qf
->find_compunit_symtab_by_address
== NULL
)
3006 struct compunit_symtab
*symtab
3007 = objfile
->sf
->qf
->find_compunit_symtab_by_address (objfile
, address
);
3010 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (symtab
);
3012 for (int i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; ++i
)
3014 const struct block
*b
= BLOCKVECTOR_BLOCK (bv
, i
);
3015 struct block_iterator iter
;
3018 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
3020 if (SYMBOL_CLASS (sym
) == LOC_STATIC
3021 && SYMBOL_VALUE_ADDRESS (sym
) == address
)
3033 /* Find the source file and line number for a given PC value and SECTION.
3034 Return a structure containing a symtab pointer, a line number,
3035 and a pc range for the entire source line.
3036 The value's .pc field is NOT the specified pc.
3037 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3038 use the line that ends there. Otherwise, in that case, the line
3039 that begins there is used. */
3041 /* The big complication here is that a line may start in one file, and end just
3042 before the start of another file. This usually occurs when you #include
3043 code in the middle of a subroutine. To properly find the end of a line's PC
3044 range, we must search all symtabs associated with this compilation unit, and
3045 find the one whose first PC is closer than that of the next line in this
3048 struct symtab_and_line
3049 find_pc_sect_line (CORE_ADDR pc
, struct obj_section
*section
, int notcurrent
)
3051 struct compunit_symtab
*cust
;
3052 struct linetable
*l
;
3054 struct linetable_entry
*item
;
3055 const struct blockvector
*bv
;
3056 struct bound_minimal_symbol msymbol
;
3058 /* Info on best line seen so far, and where it starts, and its file. */
3060 struct linetable_entry
*best
= NULL
;
3061 CORE_ADDR best_end
= 0;
3062 struct symtab
*best_symtab
= 0;
3064 /* Store here the first line number
3065 of a file which contains the line at the smallest pc after PC.
3066 If we don't find a line whose range contains PC,
3067 we will use a line one less than this,
3068 with a range from the start of that file to the first line's pc. */
3069 struct linetable_entry
*alt
= NULL
;
3071 /* Info on best line seen in this file. */
3073 struct linetable_entry
*prev
;
3075 /* If this pc is not from the current frame,
3076 it is the address of the end of a call instruction.
3077 Quite likely that is the start of the following statement.
3078 But what we want is the statement containing the instruction.
3079 Fudge the pc to make sure we get that. */
3081 /* It's tempting to assume that, if we can't find debugging info for
3082 any function enclosing PC, that we shouldn't search for line
3083 number info, either. However, GAS can emit line number info for
3084 assembly files --- very helpful when debugging hand-written
3085 assembly code. In such a case, we'd have no debug info for the
3086 function, but we would have line info. */
3091 /* elz: added this because this function returned the wrong
3092 information if the pc belongs to a stub (import/export)
3093 to call a shlib function. This stub would be anywhere between
3094 two functions in the target, and the line info was erroneously
3095 taken to be the one of the line before the pc. */
3097 /* RT: Further explanation:
3099 * We have stubs (trampolines) inserted between procedures.
3101 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3102 * exists in the main image.
3104 * In the minimal symbol table, we have a bunch of symbols
3105 * sorted by start address. The stubs are marked as "trampoline",
3106 * the others appear as text. E.g.:
3108 * Minimal symbol table for main image
3109 * main: code for main (text symbol)
3110 * shr1: stub (trampoline symbol)
3111 * foo: code for foo (text symbol)
3113 * Minimal symbol table for "shr1" image:
3115 * shr1: code for shr1 (text symbol)
3118 * So the code below is trying to detect if we are in the stub
3119 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3120 * and if found, do the symbolization from the real-code address
3121 * rather than the stub address.
3123 * Assumptions being made about the minimal symbol table:
3124 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3125 * if we're really in the trampoline.s If we're beyond it (say
3126 * we're in "foo" in the above example), it'll have a closer
3127 * symbol (the "foo" text symbol for example) and will not
3128 * return the trampoline.
3129 * 2. lookup_minimal_symbol_text() will find a real text symbol
3130 * corresponding to the trampoline, and whose address will
3131 * be different than the trampoline address. I put in a sanity
3132 * check for the address being the same, to avoid an
3133 * infinite recursion.
3135 msymbol
= lookup_minimal_symbol_by_pc (pc
);
3136 if (msymbol
.minsym
!= NULL
)
3137 if (MSYMBOL_TYPE (msymbol
.minsym
) == mst_solib_trampoline
)
3139 struct bound_minimal_symbol mfunsym
3140 = lookup_minimal_symbol_text (msymbol
.minsym
->linkage_name (),
3143 if (mfunsym
.minsym
== NULL
)
3144 /* I eliminated this warning since it is coming out
3145 * in the following situation:
3146 * gdb shmain // test program with shared libraries
3147 * (gdb) break shr1 // function in shared lib
3148 * Warning: In stub for ...
3149 * In the above situation, the shared lib is not loaded yet,
3150 * so of course we can't find the real func/line info,
3151 * but the "break" still works, and the warning is annoying.
3152 * So I commented out the warning. RT */
3153 /* warning ("In stub for %s; unable to find real function/line info",
3154 msymbol->linkage_name ()); */
3157 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym
)
3158 == BMSYMBOL_VALUE_ADDRESS (msymbol
))
3159 /* Avoid infinite recursion */
3160 /* See above comment about why warning is commented out. */
3161 /* warning ("In stub for %s; unable to find real function/line info",
3162 msymbol->linkage_name ()); */
3166 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym
), 0);
3169 symtab_and_line val
;
3170 val
.pspace
= current_program_space
;
3172 cust
= find_pc_sect_compunit_symtab (pc
, section
);
3175 /* If no symbol information, return previous pc. */
3182 bv
= COMPUNIT_BLOCKVECTOR (cust
);
3184 /* Look at all the symtabs that share this blockvector.
3185 They all have the same apriori range, that we found was right;
3186 but they have different line tables. */
3188 for (symtab
*iter_s
: compunit_filetabs (cust
))
3190 /* Find the best line in this symtab. */
3191 l
= SYMTAB_LINETABLE (iter_s
);
3197 /* I think len can be zero if the symtab lacks line numbers
3198 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3199 I'm not sure which, and maybe it depends on the symbol
3205 item
= l
->item
; /* Get first line info. */
3207 /* Is this file's first line closer than the first lines of other files?
3208 If so, record this file, and its first line, as best alternate. */
3209 if (item
->pc
> pc
&& (!alt
|| item
->pc
< alt
->pc
))
3212 auto pc_compare
= [](const CORE_ADDR
& comp_pc
,
3213 const struct linetable_entry
& lhs
)->bool
3215 return comp_pc
< lhs
.pc
;
3218 struct linetable_entry
*first
= item
;
3219 struct linetable_entry
*last
= item
+ len
;
3220 item
= std::upper_bound (first
, last
, pc
, pc_compare
);
3222 prev
= item
- 1; /* Found a matching item. */
3224 /* At this point, prev points at the line whose start addr is <= pc, and
3225 item points at the next line. If we ran off the end of the linetable
3226 (pc >= start of the last line), then prev == item. If pc < start of
3227 the first line, prev will not be set. */
3229 /* Is this file's best line closer than the best in the other files?
3230 If so, record this file, and its best line, as best so far. Don't
3231 save prev if it represents the end of a function (i.e. line number
3232 0) instead of a real line. */
3234 if (prev
&& prev
->line
&& (!best
|| prev
->pc
> best
->pc
))
3237 best_symtab
= iter_s
;
3239 /* Discard BEST_END if it's before the PC of the current BEST. */
3240 if (best_end
<= best
->pc
)
3244 /* If another line (denoted by ITEM) is in the linetable and its
3245 PC is after BEST's PC, but before the current BEST_END, then
3246 use ITEM's PC as the new best_end. */
3247 if (best
&& item
< last
&& item
->pc
> best
->pc
3248 && (best_end
== 0 || best_end
> item
->pc
))
3249 best_end
= item
->pc
;
3254 /* If we didn't find any line number info, just return zeros.
3255 We used to return alt->line - 1 here, but that could be
3256 anywhere; if we don't have line number info for this PC,
3257 don't make some up. */
3260 else if (best
->line
== 0)
3262 /* If our best fit is in a range of PC's for which no line
3263 number info is available (line number is zero) then we didn't
3264 find any valid line information. */
3269 val
.symtab
= best_symtab
;
3270 val
.line
= best
->line
;
3272 if (best_end
&& (!alt
|| best_end
< alt
->pc
))
3277 val
.end
= BLOCK_END (BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
));
3279 val
.section
= section
;
3283 /* Backward compatibility (no section). */
3285 struct symtab_and_line
3286 find_pc_line (CORE_ADDR pc
, int notcurrent
)
3288 struct obj_section
*section
;
3290 section
= find_pc_overlay (pc
);
3291 if (pc_in_unmapped_range (pc
, section
))
3292 pc
= overlay_mapped_address (pc
, section
);
3293 return find_pc_sect_line (pc
, section
, notcurrent
);
3299 find_pc_line_symtab (CORE_ADDR pc
)
3301 struct symtab_and_line sal
;
3303 /* This always passes zero for NOTCURRENT to find_pc_line.
3304 There are currently no callers that ever pass non-zero. */
3305 sal
= find_pc_line (pc
, 0);
3309 /* Find line number LINE in any symtab whose name is the same as
3312 If found, return the symtab that contains the linetable in which it was
3313 found, set *INDEX to the index in the linetable of the best entry
3314 found, and set *EXACT_MATCH to true if the value returned is an
3317 If not found, return NULL. */
3320 find_line_symtab (struct symtab
*sym_tab
, int line
,
3321 int *index
, bool *exact_match
)
3323 int exact
= 0; /* Initialized here to avoid a compiler warning. */
3325 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3329 struct linetable
*best_linetable
;
3330 struct symtab
*best_symtab
;
3332 /* First try looking it up in the given symtab. */
3333 best_linetable
= SYMTAB_LINETABLE (sym_tab
);
3334 best_symtab
= sym_tab
;
3335 best_index
= find_line_common (best_linetable
, line
, &exact
, 0);
3336 if (best_index
< 0 || !exact
)
3338 /* Didn't find an exact match. So we better keep looking for
3339 another symtab with the same name. In the case of xcoff,
3340 multiple csects for one source file (produced by IBM's FORTRAN
3341 compiler) produce multiple symtabs (this is unavoidable
3342 assuming csects can be at arbitrary places in memory and that
3343 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3345 /* BEST is the smallest linenumber > LINE so far seen,
3346 or 0 if none has been seen so far.
3347 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3350 if (best_index
>= 0)
3351 best
= best_linetable
->item
[best_index
].line
;
3355 for (objfile
*objfile
: current_program_space
->objfiles ())
3358 objfile
->sf
->qf
->expand_symtabs_with_fullname
3359 (objfile
, symtab_to_fullname (sym_tab
));
3362 for (objfile
*objfile
: current_program_space
->objfiles ())
3364 for (compunit_symtab
*cu
: objfile
->compunits ())
3366 for (symtab
*s
: compunit_filetabs (cu
))
3368 struct linetable
*l
;
3371 if (FILENAME_CMP (sym_tab
->filename
, s
->filename
) != 0)
3373 if (FILENAME_CMP (symtab_to_fullname (sym_tab
),
3374 symtab_to_fullname (s
)) != 0)
3376 l
= SYMTAB_LINETABLE (s
);
3377 ind
= find_line_common (l
, line
, &exact
, 0);
3387 if (best
== 0 || l
->item
[ind
].line
< best
)
3389 best
= l
->item
[ind
].line
;
3404 *index
= best_index
;
3406 *exact_match
= (exact
!= 0);
3411 /* Given SYMTAB, returns all the PCs function in the symtab that
3412 exactly match LINE. Returns an empty vector if there are no exact
3413 matches, but updates BEST_ITEM in this case. */
3415 std::vector
<CORE_ADDR
>
3416 find_pcs_for_symtab_line (struct symtab
*symtab
, int line
,
3417 struct linetable_entry
**best_item
)
3420 std::vector
<CORE_ADDR
> result
;
3422 /* First, collect all the PCs that are at this line. */
3428 idx
= find_line_common (SYMTAB_LINETABLE (symtab
), line
, &was_exact
,
3435 struct linetable_entry
*item
= &SYMTAB_LINETABLE (symtab
)->item
[idx
];
3437 if (*best_item
== NULL
|| item
->line
< (*best_item
)->line
)
3443 result
.push_back (SYMTAB_LINETABLE (symtab
)->item
[idx
].pc
);
3451 /* Set the PC value for a given source file and line number and return true.
3452 Returns false for invalid line number (and sets the PC to 0).
3453 The source file is specified with a struct symtab. */
3456 find_line_pc (struct symtab
*symtab
, int line
, CORE_ADDR
*pc
)
3458 struct linetable
*l
;
3465 symtab
= find_line_symtab (symtab
, line
, &ind
, NULL
);
3468 l
= SYMTAB_LINETABLE (symtab
);
3469 *pc
= l
->item
[ind
].pc
;
3476 /* Find the range of pc values in a line.
3477 Store the starting pc of the line into *STARTPTR
3478 and the ending pc (start of next line) into *ENDPTR.
3479 Returns true to indicate success.
3480 Returns false if could not find the specified line. */
3483 find_line_pc_range (struct symtab_and_line sal
, CORE_ADDR
*startptr
,
3486 CORE_ADDR startaddr
;
3487 struct symtab_and_line found_sal
;
3490 if (startaddr
== 0 && !find_line_pc (sal
.symtab
, sal
.line
, &startaddr
))
3493 /* This whole function is based on address. For example, if line 10 has
3494 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3495 "info line *0x123" should say the line goes from 0x100 to 0x200
3496 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3497 This also insures that we never give a range like "starts at 0x134
3498 and ends at 0x12c". */
3500 found_sal
= find_pc_sect_line (startaddr
, sal
.section
, 0);
3501 if (found_sal
.line
!= sal
.line
)
3503 /* The specified line (sal) has zero bytes. */
3504 *startptr
= found_sal
.pc
;
3505 *endptr
= found_sal
.pc
;
3509 *startptr
= found_sal
.pc
;
3510 *endptr
= found_sal
.end
;
3515 /* Given a line table and a line number, return the index into the line
3516 table for the pc of the nearest line whose number is >= the specified one.
3517 Return -1 if none is found. The value is >= 0 if it is an index.
3518 START is the index at which to start searching the line table.
3520 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3523 find_line_common (struct linetable
*l
, int lineno
,
3524 int *exact_match
, int start
)
3529 /* BEST is the smallest linenumber > LINENO so far seen,
3530 or 0 if none has been seen so far.
3531 BEST_INDEX identifies the item for it. */
3533 int best_index
= -1;
3544 for (i
= start
; i
< len
; i
++)
3546 struct linetable_entry
*item
= &(l
->item
[i
]);
3548 if (item
->line
== lineno
)
3550 /* Return the first (lowest address) entry which matches. */
3555 if (item
->line
> lineno
&& (best
== 0 || item
->line
< best
))
3562 /* If we got here, we didn't get an exact match. */
3567 find_pc_line_pc_range (CORE_ADDR pc
, CORE_ADDR
*startptr
, CORE_ADDR
*endptr
)
3569 struct symtab_and_line sal
;
3571 sal
= find_pc_line (pc
, 0);
3574 return sal
.symtab
!= 0;
3577 /* Helper for find_function_start_sal. Does most of the work, except
3578 setting the sal's symbol. */
3580 static symtab_and_line
3581 find_function_start_sal_1 (CORE_ADDR func_addr
, obj_section
*section
,
3584 symtab_and_line sal
= find_pc_sect_line (func_addr
, section
, 0);
3586 if (funfirstline
&& sal
.symtab
!= NULL
3587 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal
.symtab
))
3588 || SYMTAB_LANGUAGE (sal
.symtab
) == language_asm
))
3590 struct gdbarch
*gdbarch
= get_objfile_arch (SYMTAB_OBJFILE (sal
.symtab
));
3593 if (gdbarch_skip_entrypoint_p (gdbarch
))
3594 sal
.pc
= gdbarch_skip_entrypoint (gdbarch
, sal
.pc
);
3598 /* We always should have a line for the function start address.
3599 If we don't, something is odd. Create a plain SAL referring
3600 just the PC and hope that skip_prologue_sal (if requested)
3601 can find a line number for after the prologue. */
3602 if (sal
.pc
< func_addr
)
3605 sal
.pspace
= current_program_space
;
3607 sal
.section
= section
;
3611 skip_prologue_sal (&sal
);
3619 find_function_start_sal (CORE_ADDR func_addr
, obj_section
*section
,
3623 = find_function_start_sal_1 (func_addr
, section
, funfirstline
);
3625 /* find_function_start_sal_1 does a linetable search, so it finds
3626 the symtab and linenumber, but not a symbol. Fill in the
3627 function symbol too. */
3628 sal
.symbol
= find_pc_sect_containing_function (sal
.pc
, sal
.section
);
3636 find_function_start_sal (symbol
*sym
, bool funfirstline
)
3638 fixup_symbol_section (sym
, NULL
);
3640 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
)),
3641 SYMBOL_OBJ_SECTION (symbol_objfile (sym
), sym
),
3648 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3649 address for that function that has an entry in SYMTAB's line info
3650 table. If such an entry cannot be found, return FUNC_ADDR
3654 skip_prologue_using_lineinfo (CORE_ADDR func_addr
, struct symtab
*symtab
)
3656 CORE_ADDR func_start
, func_end
;
3657 struct linetable
*l
;
3660 /* Give up if this symbol has no lineinfo table. */
3661 l
= SYMTAB_LINETABLE (symtab
);
3665 /* Get the range for the function's PC values, or give up if we
3666 cannot, for some reason. */
3667 if (!find_pc_partial_function (func_addr
, NULL
, &func_start
, &func_end
))
3670 /* Linetable entries are ordered by PC values, see the commentary in
3671 symtab.h where `struct linetable' is defined. Thus, the first
3672 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3673 address we are looking for. */
3674 for (i
= 0; i
< l
->nitems
; i
++)
3676 struct linetable_entry
*item
= &(l
->item
[i
]);
3678 /* Don't use line numbers of zero, they mark special entries in
3679 the table. See the commentary on symtab.h before the
3680 definition of struct linetable. */
3681 if (item
->line
> 0 && func_start
<= item
->pc
&& item
->pc
< func_end
)
3688 /* Adjust SAL to the first instruction past the function prologue.
3689 If the PC was explicitly specified, the SAL is not changed.
3690 If the line number was explicitly specified then the SAL can still be
3691 updated, unless the language for SAL is assembler, in which case the SAL
3692 will be left unchanged.
3693 If SAL is already past the prologue, then do nothing. */
3696 skip_prologue_sal (struct symtab_and_line
*sal
)
3699 struct symtab_and_line start_sal
;
3700 CORE_ADDR pc
, saved_pc
;
3701 struct obj_section
*section
;
3703 struct objfile
*objfile
;
3704 struct gdbarch
*gdbarch
;
3705 const struct block
*b
, *function_block
;
3706 int force_skip
, skip
;
3708 /* Do not change the SAL if PC was specified explicitly. */
3709 if (sal
->explicit_pc
)
3712 /* In assembly code, if the user asks for a specific line then we should
3713 not adjust the SAL. The user already has instruction level
3714 visibility in this case, so selecting a line other than one requested
3715 is likely to be the wrong choice. */
3716 if (sal
->symtab
!= nullptr
3717 && sal
->explicit_line
3718 && SYMTAB_LANGUAGE (sal
->symtab
) == language_asm
)
3721 scoped_restore_current_pspace_and_thread restore_pspace_thread
;
3723 switch_to_program_space_and_thread (sal
->pspace
);
3725 sym
= find_pc_sect_function (sal
->pc
, sal
->section
);
3728 fixup_symbol_section (sym
, NULL
);
3730 objfile
= symbol_objfile (sym
);
3731 pc
= BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
));
3732 section
= SYMBOL_OBJ_SECTION (objfile
, sym
);
3733 name
= sym
->linkage_name ();
3737 struct bound_minimal_symbol msymbol
3738 = lookup_minimal_symbol_by_pc_section (sal
->pc
, sal
->section
);
3740 if (msymbol
.minsym
== NULL
)
3743 objfile
= msymbol
.objfile
;
3744 pc
= BMSYMBOL_VALUE_ADDRESS (msymbol
);
3745 section
= MSYMBOL_OBJ_SECTION (objfile
, msymbol
.minsym
);
3746 name
= msymbol
.minsym
->linkage_name ();
3749 gdbarch
= get_objfile_arch (objfile
);
3751 /* Process the prologue in two passes. In the first pass try to skip the
3752 prologue (SKIP is true) and verify there is a real need for it (indicated
3753 by FORCE_SKIP). If no such reason was found run a second pass where the
3754 prologue is not skipped (SKIP is false). */
3759 /* Be conservative - allow direct PC (without skipping prologue) only if we
3760 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3761 have to be set by the caller so we use SYM instead. */
3763 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym
))))
3771 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3772 so that gdbarch_skip_prologue has something unique to work on. */
3773 if (section_is_overlay (section
) && !section_is_mapped (section
))
3774 pc
= overlay_unmapped_address (pc
, section
);
3776 /* Skip "first line" of function (which is actually its prologue). */
3777 pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
3778 if (gdbarch_skip_entrypoint_p (gdbarch
))
3779 pc
= gdbarch_skip_entrypoint (gdbarch
, pc
);
3781 pc
= gdbarch_skip_prologue_noexcept (gdbarch
, pc
);
3783 /* For overlays, map pc back into its mapped VMA range. */
3784 pc
= overlay_mapped_address (pc
, section
);
3786 /* Calculate line number. */
3787 start_sal
= find_pc_sect_line (pc
, section
, 0);
3789 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3790 line is still part of the same function. */
3791 if (skip
&& start_sal
.pc
!= pc
3792 && (sym
? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
)) <= start_sal
.end
3793 && start_sal
.end
< BLOCK_END (SYMBOL_BLOCK_VALUE (sym
)))
3794 : (lookup_minimal_symbol_by_pc_section (start_sal
.end
, section
).minsym
3795 == lookup_minimal_symbol_by_pc_section (pc
, section
).minsym
)))
3797 /* First pc of next line */
3799 /* Recalculate the line number (might not be N+1). */
3800 start_sal
= find_pc_sect_line (pc
, section
, 0);
3803 /* On targets with executable formats that don't have a concept of
3804 constructors (ELF with .init has, PE doesn't), gcc emits a call
3805 to `__main' in `main' between the prologue and before user
3807 if (gdbarch_skip_main_prologue_p (gdbarch
)
3808 && name
&& strcmp_iw (name
, "main") == 0)
3810 pc
= gdbarch_skip_main_prologue (gdbarch
, pc
);
3811 /* Recalculate the line number (might not be N+1). */
3812 start_sal
= find_pc_sect_line (pc
, section
, 0);
3816 while (!force_skip
&& skip
--);
3818 /* If we still don't have a valid source line, try to find the first
3819 PC in the lineinfo table that belongs to the same function. This
3820 happens with COFF debug info, which does not seem to have an
3821 entry in lineinfo table for the code after the prologue which has
3822 no direct relation to source. For example, this was found to be
3823 the case with the DJGPP target using "gcc -gcoff" when the
3824 compiler inserted code after the prologue to make sure the stack
3826 if (!force_skip
&& sym
&& start_sal
.symtab
== NULL
)
3828 pc
= skip_prologue_using_lineinfo (pc
, symbol_symtab (sym
));
3829 /* Recalculate the line number. */
3830 start_sal
= find_pc_sect_line (pc
, section
, 0);
3833 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3834 forward SAL to the end of the prologue. */
3839 sal
->section
= section
;
3840 sal
->symtab
= start_sal
.symtab
;
3841 sal
->line
= start_sal
.line
;
3842 sal
->end
= start_sal
.end
;
3844 /* Check if we are now inside an inlined function. If we can,
3845 use the call site of the function instead. */
3846 b
= block_for_pc_sect (sal
->pc
, sal
->section
);
3847 function_block
= NULL
;
3850 if (BLOCK_FUNCTION (b
) != NULL
&& block_inlined_p (b
))
3852 else if (BLOCK_FUNCTION (b
) != NULL
)
3854 b
= BLOCK_SUPERBLOCK (b
);
3856 if (function_block
!= NULL
3857 && SYMBOL_LINE (BLOCK_FUNCTION (function_block
)) != 0)
3859 sal
->line
= SYMBOL_LINE (BLOCK_FUNCTION (function_block
));
3860 sal
->symtab
= symbol_symtab (BLOCK_FUNCTION (function_block
));
3864 /* Given PC at the function's start address, attempt to find the
3865 prologue end using SAL information. Return zero if the skip fails.
3867 A non-optimized prologue traditionally has one SAL for the function
3868 and a second for the function body. A single line function has
3869 them both pointing at the same line.
3871 An optimized prologue is similar but the prologue may contain
3872 instructions (SALs) from the instruction body. Need to skip those
3873 while not getting into the function body.
3875 The functions end point and an increasing SAL line are used as
3876 indicators of the prologue's endpoint.
3878 This code is based on the function refine_prologue_limit
3882 skip_prologue_using_sal (struct gdbarch
*gdbarch
, CORE_ADDR func_addr
)
3884 struct symtab_and_line prologue_sal
;
3887 const struct block
*bl
;
3889 /* Get an initial range for the function. */
3890 find_pc_partial_function (func_addr
, NULL
, &start_pc
, &end_pc
);
3891 start_pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
3893 prologue_sal
= find_pc_line (start_pc
, 0);
3894 if (prologue_sal
.line
!= 0)
3896 /* For languages other than assembly, treat two consecutive line
3897 entries at the same address as a zero-instruction prologue.
3898 The GNU assembler emits separate line notes for each instruction
3899 in a multi-instruction macro, but compilers generally will not
3901 if (prologue_sal
.symtab
->language
!= language_asm
)
3903 struct linetable
*linetable
= SYMTAB_LINETABLE (prologue_sal
.symtab
);
3906 /* Skip any earlier lines, and any end-of-sequence marker
3907 from a previous function. */
3908 while (linetable
->item
[idx
].pc
!= prologue_sal
.pc
3909 || linetable
->item
[idx
].line
== 0)
3912 if (idx
+1 < linetable
->nitems
3913 && linetable
->item
[idx
+1].line
!= 0
3914 && linetable
->item
[idx
+1].pc
== start_pc
)
3918 /* If there is only one sal that covers the entire function,
3919 then it is probably a single line function, like
3921 if (prologue_sal
.end
>= end_pc
)
3924 while (prologue_sal
.end
< end_pc
)
3926 struct symtab_and_line sal
;
3928 sal
= find_pc_line (prologue_sal
.end
, 0);
3931 /* Assume that a consecutive SAL for the same (or larger)
3932 line mark the prologue -> body transition. */
3933 if (sal
.line
>= prologue_sal
.line
)
3935 /* Likewise if we are in a different symtab altogether
3936 (e.g. within a file included via #include). */
3937 if (sal
.symtab
!= prologue_sal
.symtab
)
3940 /* The line number is smaller. Check that it's from the
3941 same function, not something inlined. If it's inlined,
3942 then there is no point comparing the line numbers. */
3943 bl
= block_for_pc (prologue_sal
.end
);
3946 if (block_inlined_p (bl
))
3948 if (BLOCK_FUNCTION (bl
))
3953 bl
= BLOCK_SUPERBLOCK (bl
);
3958 /* The case in which compiler's optimizer/scheduler has
3959 moved instructions into the prologue. We look ahead in
3960 the function looking for address ranges whose
3961 corresponding line number is less the first one that we
3962 found for the function. This is more conservative then
3963 refine_prologue_limit which scans a large number of SALs
3964 looking for any in the prologue. */
3969 if (prologue_sal
.end
< end_pc
)
3970 /* Return the end of this line, or zero if we could not find a
3972 return prologue_sal
.end
;
3974 /* Don't return END_PC, which is past the end of the function. */
3975 return prologue_sal
.pc
;
3981 find_function_alias_target (bound_minimal_symbol msymbol
)
3983 CORE_ADDR func_addr
;
3984 if (!msymbol_is_function (msymbol
.objfile
, msymbol
.minsym
, &func_addr
))
3987 symbol
*sym
= find_pc_function (func_addr
);
3989 && SYMBOL_CLASS (sym
) == LOC_BLOCK
3990 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
)) == func_addr
)
3997 /* If P is of the form "operator[ \t]+..." where `...' is
3998 some legitimate operator text, return a pointer to the
3999 beginning of the substring of the operator text.
4000 Otherwise, return "". */
4003 operator_chars (const char *p
, const char **end
)
4006 if (!startswith (p
, CP_OPERATOR_STR
))
4008 p
+= CP_OPERATOR_LEN
;
4010 /* Don't get faked out by `operator' being part of a longer
4012 if (isalpha (*p
) || *p
== '_' || *p
== '$' || *p
== '\0')
4015 /* Allow some whitespace between `operator' and the operator symbol. */
4016 while (*p
== ' ' || *p
== '\t')
4019 /* Recognize 'operator TYPENAME'. */
4021 if (isalpha (*p
) || *p
== '_' || *p
== '$')
4023 const char *q
= p
+ 1;
4025 while (isalnum (*q
) || *q
== '_' || *q
== '$')
4034 case '\\': /* regexp quoting */
4037 if (p
[2] == '=') /* 'operator\*=' */
4039 else /* 'operator\*' */
4043 else if (p
[1] == '[')
4046 error (_("mismatched quoting on brackets, "
4047 "try 'operator\\[\\]'"));
4048 else if (p
[2] == '\\' && p
[3] == ']')
4050 *end
= p
+ 4; /* 'operator\[\]' */
4054 error (_("nothing is allowed between '[' and ']'"));
4058 /* Gratuitous quote: skip it and move on. */
4080 if (p
[0] == '-' && p
[1] == '>')
4082 /* Struct pointer member operator 'operator->'. */
4085 *end
= p
+ 3; /* 'operator->*' */
4088 else if (p
[2] == '\\')
4090 *end
= p
+ 4; /* Hopefully 'operator->\*' */
4095 *end
= p
+ 2; /* 'operator->' */
4099 if (p
[1] == '=' || p
[1] == p
[0])
4110 error (_("`operator ()' must be specified "
4111 "without whitespace in `()'"));
4116 error (_("`operator ?:' must be specified "
4117 "without whitespace in `?:'"));
4122 error (_("`operator []' must be specified "
4123 "without whitespace in `[]'"));
4127 error (_("`operator %s' not supported"), p
);
4136 /* What part to match in a file name. */
4138 struct filename_partial_match_opts
4140 /* Only match the directory name part. */
4141 bool dirname
= false;
4143 /* Only match the basename part. */
4144 bool basename
= false;
4147 /* Data structure to maintain printing state for output_source_filename. */
4149 struct output_source_filename_data
4151 /* Output only filenames matching REGEXP. */
4153 gdb::optional
<compiled_regex
> c_regexp
;
4154 /* Possibly only match a part of the filename. */
4155 filename_partial_match_opts partial_match
;
4158 /* Cache of what we've seen so far. */
4159 struct filename_seen_cache
*filename_seen_cache
;
4161 /* Flag of whether we're printing the first one. */
4165 /* Slave routine for sources_info. Force line breaks at ,'s.
4166 NAME is the name to print.
4167 DATA contains the state for printing and watching for duplicates. */
4170 output_source_filename (const char *name
,
4171 struct output_source_filename_data
*data
)
4173 /* Since a single source file can result in several partial symbol
4174 tables, we need to avoid printing it more than once. Note: if
4175 some of the psymtabs are read in and some are not, it gets
4176 printed both under "Source files for which symbols have been
4177 read" and "Source files for which symbols will be read in on
4178 demand". I consider this a reasonable way to deal with the
4179 situation. I'm not sure whether this can also happen for
4180 symtabs; it doesn't hurt to check. */
4182 /* Was NAME already seen? */
4183 if (data
->filename_seen_cache
->seen (name
))
4185 /* Yes; don't print it again. */
4189 /* Does it match data->regexp? */
4190 if (data
->c_regexp
.has_value ())
4192 const char *to_match
;
4193 std::string dirname
;
4195 if (data
->partial_match
.dirname
)
4197 dirname
= ldirname (name
);
4198 to_match
= dirname
.c_str ();
4200 else if (data
->partial_match
.basename
)
4201 to_match
= lbasename (name
);
4205 if (data
->c_regexp
->exec (to_match
, 0, NULL
, 0) != 0)
4209 /* Print it and reset *FIRST. */
4211 printf_filtered (", ");
4215 fputs_styled (name
, file_name_style
.style (), gdb_stdout
);
4218 /* A callback for map_partial_symbol_filenames. */
4221 output_partial_symbol_filename (const char *filename
, const char *fullname
,
4224 output_source_filename (fullname
? fullname
: filename
,
4225 (struct output_source_filename_data
*) data
);
4228 using isrc_flag_option_def
4229 = gdb::option::flag_option_def
<filename_partial_match_opts
>;
4231 static const gdb::option::option_def info_sources_option_defs
[] = {
4233 isrc_flag_option_def
{
4235 [] (filename_partial_match_opts
*opts
) { return &opts
->dirname
; },
4236 N_("Show only the files having a dirname matching REGEXP."),
4239 isrc_flag_option_def
{
4241 [] (filename_partial_match_opts
*opts
) { return &opts
->basename
; },
4242 N_("Show only the files having a basename matching REGEXP."),
4247 /* Create an option_def_group for the "info sources" options, with
4248 ISRC_OPTS as context. */
4250 static inline gdb::option::option_def_group
4251 make_info_sources_options_def_group (filename_partial_match_opts
*isrc_opts
)
4253 return {{info_sources_option_defs
}, isrc_opts
};
4256 /* Prints the header message for the source files that will be printed
4257 with the matching info present in DATA. SYMBOL_MSG is a message
4258 that tells what will or has been done with the symbols of the
4259 matching source files. */
4262 print_info_sources_header (const char *symbol_msg
,
4263 const struct output_source_filename_data
*data
)
4265 puts_filtered (symbol_msg
);
4266 if (!data
->regexp
.empty ())
4268 if (data
->partial_match
.dirname
)
4269 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4270 data
->regexp
.c_str ());
4271 else if (data
->partial_match
.basename
)
4272 printf_filtered (_("(basename matching regular expression \"%s\")"),
4273 data
->regexp
.c_str ());
4275 printf_filtered (_("(filename matching regular expression \"%s\")"),
4276 data
->regexp
.c_str ());
4278 puts_filtered ("\n");
4281 /* Completer for "info sources". */
4284 info_sources_command_completer (cmd_list_element
*ignore
,
4285 completion_tracker
&tracker
,
4286 const char *text
, const char *word
)
4288 const auto group
= make_info_sources_options_def_group (nullptr);
4289 if (gdb::option::complete_options
4290 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
4295 info_sources_command (const char *args
, int from_tty
)
4297 struct output_source_filename_data data
;
4299 if (!have_full_symbols () && !have_partial_symbols ())
4301 error (_("No symbol table is loaded. Use the \"file\" command."));
4304 filename_seen_cache filenames_seen
;
4306 auto group
= make_info_sources_options_def_group (&data
.partial_match
);
4308 gdb::option::process_options
4309 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR
, group
);
4311 if (args
!= NULL
&& *args
!= '\000')
4314 data
.filename_seen_cache
= &filenames_seen
;
4317 if (data
.partial_match
.dirname
&& data
.partial_match
.basename
)
4318 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4319 if ((data
.partial_match
.dirname
|| data
.partial_match
.basename
)
4320 && data
.regexp
.empty ())
4321 error (_("Missing REGEXP for 'info sources'."));
4323 if (data
.regexp
.empty ())
4324 data
.c_regexp
.reset ();
4327 int cflags
= REG_NOSUB
;
4328 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4329 cflags
|= REG_ICASE
;
4331 data
.c_regexp
.emplace (data
.regexp
.c_str (), cflags
,
4332 _("Invalid regexp"));
4335 print_info_sources_header
4336 (_("Source files for which symbols have been read in:\n"), &data
);
4338 for (objfile
*objfile
: current_program_space
->objfiles ())
4340 for (compunit_symtab
*cu
: objfile
->compunits ())
4342 for (symtab
*s
: compunit_filetabs (cu
))
4344 const char *fullname
= symtab_to_fullname (s
);
4346 output_source_filename (fullname
, &data
);
4350 printf_filtered ("\n\n");
4352 print_info_sources_header
4353 (_("Source files for which symbols will be read in on demand:\n"), &data
);
4355 filenames_seen
.clear ();
4357 map_symbol_filenames (output_partial_symbol_filename
, &data
,
4358 1 /*need_fullname*/);
4359 printf_filtered ("\n");
4362 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4363 true compare only lbasename of FILENAMES. */
4366 file_matches (const char *file
, const std::vector
<const char *> &filenames
,
4369 if (filenames
.empty ())
4372 for (const char *name
: filenames
)
4374 name
= (basenames
? lbasename (name
) : name
);
4375 if (compare_filenames_for_search (file
, name
))
4382 /* Helper function for std::sort on symbol_search objects. Can only sort
4383 symbols, not minimal symbols. */
4386 symbol_search::compare_search_syms (const symbol_search
&sym_a
,
4387 const symbol_search
&sym_b
)
4391 c
= FILENAME_CMP (symbol_symtab (sym_a
.symbol
)->filename
,
4392 symbol_symtab (sym_b
.symbol
)->filename
);
4396 if (sym_a
.block
!= sym_b
.block
)
4397 return sym_a
.block
- sym_b
.block
;
4399 return strcmp (sym_a
.symbol
->print_name (), sym_b
.symbol
->print_name ());
4402 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4403 If SYM has no symbol_type or symbol_name, returns false. */
4406 treg_matches_sym_type_name (const compiled_regex
&treg
,
4407 const struct symbol
*sym
)
4409 struct type
*sym_type
;
4410 std::string printed_sym_type_name
;
4412 if (symbol_lookup_debug
> 1)
4414 fprintf_unfiltered (gdb_stdlog
,
4415 "treg_matches_sym_type_name\n sym %s\n",
4416 sym
->natural_name ());
4419 sym_type
= SYMBOL_TYPE (sym
);
4420 if (sym_type
== NULL
)
4424 scoped_switch_to_sym_language_if_auto
l (sym
);
4426 printed_sym_type_name
= type_to_string (sym_type
);
4430 if (symbol_lookup_debug
> 1)
4432 fprintf_unfiltered (gdb_stdlog
,
4433 " sym_type_name %s\n",
4434 printed_sym_type_name
.c_str ());
4438 if (printed_sym_type_name
.empty ())
4441 return treg
.exec (printed_sym_type_name
.c_str (), 0, NULL
, 0) == 0;
4447 global_symbol_searcher::is_suitable_msymbol
4448 (const enum search_domain kind
, const minimal_symbol
*msymbol
)
4450 switch (MSYMBOL_TYPE (msymbol
))
4456 return kind
== VARIABLES_DOMAIN
;
4459 case mst_solib_trampoline
:
4460 case mst_text_gnu_ifunc
:
4461 return kind
== FUNCTIONS_DOMAIN
;
4470 global_symbol_searcher::expand_symtabs
4471 (objfile
*objfile
, const gdb::optional
<compiled_regex
> &preg
) const
4473 enum search_domain kind
= m_kind
;
4474 bool found_msymbol
= false;
4477 objfile
->sf
->qf
->expand_symtabs_matching
4479 [&] (const char *filename
, bool basenames
)
4481 return file_matches (filename
, filenames
, basenames
);
4483 lookup_name_info::match_any (),
4484 [&] (const char *symname
)
4486 return (!preg
.has_value ()
4487 || preg
->exec (symname
, 0, NULL
, 0) == 0);
4492 /* Here, we search through the minimal symbol tables for functions and
4493 variables that match, and force their symbols to be read. This is in
4494 particular necessary for demangled variable names, which are no longer
4495 put into the partial symbol tables. The symbol will then be found
4496 during the scan of symtabs later.
4498 For functions, find_pc_symtab should succeed if we have debug info for
4499 the function, for variables we have to call
4500 lookup_symbol_in_objfile_from_linkage_name to determine if the
4501 variable has debug info. If the lookup fails, set found_msymbol so
4502 that we will rescan to print any matching symbols without debug info.
4503 We only search the objfile the msymbol came from, we no longer search
4504 all objfiles. In large programs (1000s of shared libs) searching all
4505 objfiles is not worth the pain. */
4506 if (filenames
.empty ()
4507 && (kind
== VARIABLES_DOMAIN
|| kind
== FUNCTIONS_DOMAIN
))
4509 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
4513 if (msymbol
->created_by_gdb
)
4516 if (is_suitable_msymbol (kind
, msymbol
))
4518 if (!preg
.has_value ()
4519 || preg
->exec (msymbol
->natural_name (), 0,
4522 /* An important side-effect of these lookup functions is
4523 to expand the symbol table if msymbol is found, later
4524 in the process we will add matching symbols or
4525 msymbols to the results list, and that requires that
4526 the symbols tables are expanded. */
4527 if (kind
== FUNCTIONS_DOMAIN
4528 ? (find_pc_compunit_symtab
4529 (MSYMBOL_VALUE_ADDRESS (objfile
, msymbol
))
4531 : (lookup_symbol_in_objfile_from_linkage_name
4532 (objfile
, msymbol
->linkage_name (),
4535 found_msymbol
= true;
4541 return found_msymbol
;
4547 global_symbol_searcher::add_matching_symbols
4549 const gdb::optional
<compiled_regex
> &preg
,
4550 const gdb::optional
<compiled_regex
> &treg
,
4551 std::set
<symbol_search
> *result_set
) const
4553 enum search_domain kind
= m_kind
;
4555 /* Add matching symbols (if not already present). */
4556 for (compunit_symtab
*cust
: objfile
->compunits ())
4558 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (cust
);
4560 for (block_enum block
: { GLOBAL_BLOCK
, STATIC_BLOCK
})
4562 struct block_iterator iter
;
4564 const struct block
*b
= BLOCKVECTOR_BLOCK (bv
, block
);
4566 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
4568 struct symtab
*real_symtab
= symbol_symtab (sym
);
4572 /* Check first sole REAL_SYMTAB->FILENAME. It does
4573 not need to be a substring of symtab_to_fullname as
4574 it may contain "./" etc. */
4575 if ((file_matches (real_symtab
->filename
, filenames
, false)
4576 || ((basenames_may_differ
4577 || file_matches (lbasename (real_symtab
->filename
),
4579 && file_matches (symtab_to_fullname (real_symtab
),
4581 && ((!preg
.has_value ()
4582 || preg
->exec (sym
->natural_name (), 0,
4584 && ((kind
== VARIABLES_DOMAIN
4585 && SYMBOL_CLASS (sym
) != LOC_TYPEDEF
4586 && SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
4587 && SYMBOL_CLASS (sym
) != LOC_BLOCK
4588 /* LOC_CONST can be used for more than
4589 just enums, e.g., c++ static const
4590 members. We only want to skip enums
4592 && !(SYMBOL_CLASS (sym
) == LOC_CONST
4593 && (TYPE_CODE (SYMBOL_TYPE (sym
))
4595 && (!treg
.has_value ()
4596 || treg_matches_sym_type_name (*treg
, sym
)))
4597 || (kind
== FUNCTIONS_DOMAIN
4598 && SYMBOL_CLASS (sym
) == LOC_BLOCK
4599 && (!treg
.has_value ()
4600 || treg_matches_sym_type_name (*treg
,
4602 || (kind
== TYPES_DOMAIN
4603 && SYMBOL_CLASS (sym
) == LOC_TYPEDEF
4604 && SYMBOL_DOMAIN (sym
) != MODULE_DOMAIN
)
4605 || (kind
== MODULES_DOMAIN
4606 && SYMBOL_DOMAIN (sym
) == MODULE_DOMAIN
4607 && SYMBOL_LINE (sym
) != 0))))
4609 if (result_set
->size () < m_max_search_results
)
4611 /* Match, insert if not already in the results. */
4612 symbol_search
ss (block
, sym
);
4613 if (result_set
->find (ss
) == result_set
->end ())
4614 result_set
->insert (ss
);
4629 global_symbol_searcher::add_matching_msymbols
4630 (objfile
*objfile
, const gdb::optional
<compiled_regex
> &preg
,
4631 std::vector
<symbol_search
> *results
) const
4633 enum search_domain kind
= m_kind
;
4635 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
4639 if (msymbol
->created_by_gdb
)
4642 if (is_suitable_msymbol (kind
, msymbol
))
4644 if (!preg
.has_value ()
4645 || preg
->exec (msymbol
->natural_name (), 0,
4648 /* For functions we can do a quick check of whether the
4649 symbol might be found via find_pc_symtab. */
4650 if (kind
!= FUNCTIONS_DOMAIN
4651 || (find_pc_compunit_symtab
4652 (MSYMBOL_VALUE_ADDRESS (objfile
, msymbol
))
4655 if (lookup_symbol_in_objfile_from_linkage_name
4656 (objfile
, msymbol
->linkage_name (),
4657 VAR_DOMAIN
).symbol
== NULL
)
4659 /* Matching msymbol, add it to the results list. */
4660 if (results
->size () < m_max_search_results
)
4661 results
->emplace_back (GLOBAL_BLOCK
, msymbol
, objfile
);
4675 std::vector
<symbol_search
>
4676 global_symbol_searcher::search () const
4678 gdb::optional
<compiled_regex
> preg
;
4679 gdb::optional
<compiled_regex
> treg
;
4681 gdb_assert (m_kind
!= ALL_DOMAIN
);
4683 if (m_symbol_name_regexp
!= NULL
)
4685 const char *symbol_name_regexp
= m_symbol_name_regexp
;
4687 /* Make sure spacing is right for C++ operators.
4688 This is just a courtesy to make the matching less sensitive
4689 to how many spaces the user leaves between 'operator'
4690 and <TYPENAME> or <OPERATOR>. */
4692 const char *opname
= operator_chars (symbol_name_regexp
, &opend
);
4696 int fix
= -1; /* -1 means ok; otherwise number of
4699 if (isalpha (*opname
) || *opname
== '_' || *opname
== '$')
4701 /* There should 1 space between 'operator' and 'TYPENAME'. */
4702 if (opname
[-1] != ' ' || opname
[-2] == ' ')
4707 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4708 if (opname
[-1] == ' ')
4711 /* If wrong number of spaces, fix it. */
4714 char *tmp
= (char *) alloca (8 + fix
+ strlen (opname
) + 1);
4716 sprintf (tmp
, "operator%.*s%s", fix
, " ", opname
);
4717 symbol_name_regexp
= tmp
;
4721 int cflags
= REG_NOSUB
| (case_sensitivity
== case_sensitive_off
4723 preg
.emplace (symbol_name_regexp
, cflags
,
4724 _("Invalid regexp"));
4727 if (m_symbol_type_regexp
!= NULL
)
4729 int cflags
= REG_NOSUB
| (case_sensitivity
== case_sensitive_off
4731 treg
.emplace (m_symbol_type_regexp
, cflags
,
4732 _("Invalid regexp"));
4735 bool found_msymbol
= false;
4736 std::set
<symbol_search
> result_set
;
4737 for (objfile
*objfile
: current_program_space
->objfiles ())
4739 /* Expand symtabs within objfile that possibly contain matching
4741 found_msymbol
|= expand_symtabs (objfile
, preg
);
4743 /* Find matching symbols within OBJFILE and add them in to the
4744 RESULT_SET set. Use a set here so that we can easily detect
4745 duplicates as we go, and can therefore track how many unique
4746 matches we have found so far. */
4747 if (!add_matching_symbols (objfile
, preg
, treg
, &result_set
))
4751 /* Convert the result set into a sorted result list, as std::set is
4752 defined to be sorted then no explicit call to std::sort is needed. */
4753 std::vector
<symbol_search
> result (result_set
.begin (), result_set
.end ());
4755 /* If there are no debug symbols, then add matching minsyms. But if the
4756 user wants to see symbols matching a type regexp, then never give a
4757 minimal symbol, as we assume that a minimal symbol does not have a
4759 if ((found_msymbol
|| (filenames
.empty () && m_kind
== VARIABLES_DOMAIN
))
4760 && !m_exclude_minsyms
4761 && !treg
.has_value ())
4763 gdb_assert (m_kind
== VARIABLES_DOMAIN
|| m_kind
== FUNCTIONS_DOMAIN
);
4764 for (objfile
*objfile
: current_program_space
->objfiles ())
4765 if (!add_matching_msymbols (objfile
, preg
, &result
))
4775 symbol_to_info_string (struct symbol
*sym
, int block
,
4776 enum search_domain kind
)
4780 gdb_assert (block
== GLOBAL_BLOCK
|| block
== STATIC_BLOCK
);
4782 if (kind
!= TYPES_DOMAIN
&& block
== STATIC_BLOCK
)
4785 /* Typedef that is not a C++ class. */
4786 if (kind
== TYPES_DOMAIN
4787 && SYMBOL_DOMAIN (sym
) != STRUCT_DOMAIN
)
4789 string_file tmp_stream
;
4791 /* FIXME: For C (and C++) we end up with a difference in output here
4792 between how a typedef is printed, and non-typedefs are printed.
4793 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4794 appear C-like, while TYPE_PRINT doesn't.
4796 For the struct printing case below, things are worse, we force
4797 printing of the ";" in this function, which is going to be wrong
4798 for languages that don't require a ";" between statements. */
4799 if (TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_TYPEDEF
)
4800 typedef_print (SYMBOL_TYPE (sym
), sym
, &tmp_stream
);
4802 type_print (SYMBOL_TYPE (sym
), "", &tmp_stream
, -1);
4803 str
+= tmp_stream
.string ();
4805 /* variable, func, or typedef-that-is-c++-class. */
4806 else if (kind
< TYPES_DOMAIN
4807 || (kind
== TYPES_DOMAIN
4808 && SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
))
4810 string_file tmp_stream
;
4812 type_print (SYMBOL_TYPE (sym
),
4813 (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
4814 ? "" : sym
->print_name ()),
4817 str
+= tmp_stream
.string ();
4820 /* Printing of modules is currently done here, maybe at some future
4821 point we might want a language specific method to print the module
4822 symbol so that we can customise the output more. */
4823 else if (kind
== MODULES_DOMAIN
)
4824 str
+= sym
->print_name ();
4829 /* Helper function for symbol info commands, for example 'info functions',
4830 'info variables', etc. KIND is the kind of symbol we searched for, and
4831 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4832 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4833 print file and line number information for the symbol as well. Skip
4834 printing the filename if it matches LAST. */
4837 print_symbol_info (enum search_domain kind
,
4839 int block
, const char *last
)
4841 scoped_switch_to_sym_language_if_auto
l (sym
);
4842 struct symtab
*s
= symbol_symtab (sym
);
4846 const char *s_filename
= symtab_to_filename_for_display (s
);
4848 if (filename_cmp (last
, s_filename
) != 0)
4850 printf_filtered (_("\nFile %ps:\n"),
4851 styled_string (file_name_style
.style (),
4855 if (SYMBOL_LINE (sym
) != 0)
4856 printf_filtered ("%d:\t", SYMBOL_LINE (sym
));
4858 puts_filtered ("\t");
4861 std::string str
= symbol_to_info_string (sym
, block
, kind
);
4862 printf_filtered ("%s\n", str
.c_str ());
4865 /* This help function for symtab_symbol_info() prints information
4866 for non-debugging symbols to gdb_stdout. */
4869 print_msymbol_info (struct bound_minimal_symbol msymbol
)
4871 struct gdbarch
*gdbarch
= get_objfile_arch (msymbol
.objfile
);
4874 if (gdbarch_addr_bit (gdbarch
) <= 32)
4875 tmp
= hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol
)
4876 & (CORE_ADDR
) 0xffffffff,
4879 tmp
= hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol
),
4882 ui_file_style sym_style
= (msymbol
.minsym
->text_p ()
4883 ? function_name_style
.style ()
4884 : ui_file_style ());
4886 printf_filtered (_("%ps %ps\n"),
4887 styled_string (address_style
.style (), tmp
),
4888 styled_string (sym_style
, msymbol
.minsym
->print_name ()));
4891 /* This is the guts of the commands "info functions", "info types", and
4892 "info variables". It calls search_symbols to find all matches and then
4893 print_[m]symbol_info to print out some useful information about the
4897 symtab_symbol_info (bool quiet
, bool exclude_minsyms
,
4898 const char *regexp
, enum search_domain kind
,
4899 const char *t_regexp
, int from_tty
)
4901 static const char * const classnames
[] =
4902 {"variable", "function", "type", "module"};
4903 const char *last_filename
= "";
4906 gdb_assert (kind
!= ALL_DOMAIN
);
4908 if (regexp
!= nullptr && *regexp
== '\0')
4911 global_symbol_searcher
spec (kind
, regexp
);
4912 spec
.set_symbol_type_regexp (t_regexp
);
4913 spec
.set_exclude_minsyms (exclude_minsyms
);
4914 std::vector
<symbol_search
> symbols
= spec
.search ();
4920 if (t_regexp
!= NULL
)
4922 (_("All %ss matching regular expression \"%s\""
4923 " with type matching regular expression \"%s\":\n"),
4924 classnames
[kind
], regexp
, t_regexp
);
4926 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4927 classnames
[kind
], regexp
);
4931 if (t_regexp
!= NULL
)
4933 (_("All defined %ss"
4934 " with type matching regular expression \"%s\" :\n"),
4935 classnames
[kind
], t_regexp
);
4937 printf_filtered (_("All defined %ss:\n"), classnames
[kind
]);
4941 for (const symbol_search
&p
: symbols
)
4945 if (p
.msymbol
.minsym
!= NULL
)
4950 printf_filtered (_("\nNon-debugging symbols:\n"));
4953 print_msymbol_info (p
.msymbol
);
4957 print_symbol_info (kind
,
4962 = symtab_to_filename_for_display (symbol_symtab (p
.symbol
));
4967 /* Structure to hold the values of the options used by the 'info variables'
4968 and 'info functions' commands. These correspond to the -q, -t, and -n
4971 struct info_print_options
4974 bool exclude_minsyms
= false;
4975 char *type_regexp
= nullptr;
4977 ~info_print_options ()
4979 xfree (type_regexp
);
4983 /* The options used by the 'info variables' and 'info functions'
4986 static const gdb::option::option_def info_print_options_defs
[] = {
4987 gdb::option::boolean_option_def
<info_print_options
> {
4989 [] (info_print_options
*opt
) { return &opt
->quiet
; },
4990 nullptr, /* show_cmd_cb */
4991 nullptr /* set_doc */
4994 gdb::option::boolean_option_def
<info_print_options
> {
4996 [] (info_print_options
*opt
) { return &opt
->exclude_minsyms
; },
4997 nullptr, /* show_cmd_cb */
4998 nullptr /* set_doc */
5001 gdb::option::string_option_def
<info_print_options
> {
5003 [] (info_print_options
*opt
) { return &opt
->type_regexp
; },
5004 nullptr, /* show_cmd_cb */
5005 nullptr /* set_doc */
5009 /* Returns the option group used by 'info variables' and 'info
5012 static gdb::option::option_def_group
5013 make_info_print_options_def_group (info_print_options
*opts
)
5015 return {{info_print_options_defs
}, opts
};
5018 /* Command completer for 'info variables' and 'info functions'. */
5021 info_print_command_completer (struct cmd_list_element
*ignore
,
5022 completion_tracker
&tracker
,
5023 const char *text
, const char * /* word */)
5026 = make_info_print_options_def_group (nullptr);
5027 if (gdb::option::complete_options
5028 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
5031 const char *word
= advance_to_expression_complete_word_point (tracker
, text
);
5032 symbol_completer (ignore
, tracker
, text
, word
);
5035 /* Implement the 'info variables' command. */
5038 info_variables_command (const char *args
, int from_tty
)
5040 info_print_options opts
;
5041 auto grp
= make_info_print_options_def_group (&opts
);
5042 gdb::option::process_options
5043 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5044 if (args
!= nullptr && *args
== '\0')
5047 symtab_symbol_info (opts
.quiet
, opts
.exclude_minsyms
, args
, VARIABLES_DOMAIN
,
5048 opts
.type_regexp
, from_tty
);
5051 /* Implement the 'info functions' command. */
5054 info_functions_command (const char *args
, int from_tty
)
5056 info_print_options opts
;
5057 auto grp
= make_info_print_options_def_group (&opts
);
5058 gdb::option::process_options
5059 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5060 if (args
!= nullptr && *args
== '\0')
5063 symtab_symbol_info (opts
.quiet
, opts
.exclude_minsyms
, args
,
5064 FUNCTIONS_DOMAIN
, opts
.type_regexp
, from_tty
);
5067 /* Holds the -q option for the 'info types' command. */
5069 struct info_types_options
5074 /* The options used by the 'info types' command. */
5076 static const gdb::option::option_def info_types_options_defs
[] = {
5077 gdb::option::boolean_option_def
<info_types_options
> {
5079 [] (info_types_options
*opt
) { return &opt
->quiet
; },
5080 nullptr, /* show_cmd_cb */
5081 nullptr /* set_doc */
5085 /* Returns the option group used by 'info types'. */
5087 static gdb::option::option_def_group
5088 make_info_types_options_def_group (info_types_options
*opts
)
5090 return {{info_types_options_defs
}, opts
};
5093 /* Implement the 'info types' command. */
5096 info_types_command (const char *args
, int from_tty
)
5098 info_types_options opts
;
5100 auto grp
= make_info_types_options_def_group (&opts
);
5101 gdb::option::process_options
5102 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5103 if (args
!= nullptr && *args
== '\0')
5105 symtab_symbol_info (opts
.quiet
, false, args
, TYPES_DOMAIN
, NULL
, from_tty
);
5108 /* Command completer for 'info types' command. */
5111 info_types_command_completer (struct cmd_list_element
*ignore
,
5112 completion_tracker
&tracker
,
5113 const char *text
, const char * /* word */)
5116 = make_info_types_options_def_group (nullptr);
5117 if (gdb::option::complete_options
5118 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
5121 const char *word
= advance_to_expression_complete_word_point (tracker
, text
);
5122 symbol_completer (ignore
, tracker
, text
, word
);
5125 /* Implement the 'info modules' command. */
5128 info_modules_command (const char *args
, int from_tty
)
5130 info_types_options opts
;
5132 auto grp
= make_info_types_options_def_group (&opts
);
5133 gdb::option::process_options
5134 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5135 if (args
!= nullptr && *args
== '\0')
5137 symtab_symbol_info (opts
.quiet
, true, args
, MODULES_DOMAIN
, NULL
,
5142 rbreak_command (const char *regexp
, int from_tty
)
5145 const char *file_name
= nullptr;
5147 if (regexp
!= nullptr)
5149 const char *colon
= strchr (regexp
, ':');
5151 if (colon
&& *(colon
+ 1) != ':')
5156 colon_index
= colon
- regexp
;
5157 local_name
= (char *) alloca (colon_index
+ 1);
5158 memcpy (local_name
, regexp
, colon_index
);
5159 local_name
[colon_index
--] = 0;
5160 while (isspace (local_name
[colon_index
]))
5161 local_name
[colon_index
--] = 0;
5162 file_name
= local_name
;
5163 regexp
= skip_spaces (colon
+ 1);
5167 global_symbol_searcher
spec (FUNCTIONS_DOMAIN
, regexp
);
5168 if (file_name
!= nullptr)
5169 spec
.filenames
.push_back (file_name
);
5170 std::vector
<symbol_search
> symbols
= spec
.search ();
5172 scoped_rbreak_breakpoints finalize
;
5173 for (const symbol_search
&p
: symbols
)
5175 if (p
.msymbol
.minsym
== NULL
)
5177 struct symtab
*symtab
= symbol_symtab (p
.symbol
);
5178 const char *fullname
= symtab_to_fullname (symtab
);
5180 string
= string_printf ("%s:'%s'", fullname
,
5181 p
.symbol
->linkage_name ());
5182 break_command (&string
[0], from_tty
);
5183 print_symbol_info (FUNCTIONS_DOMAIN
, p
.symbol
, p
.block
, NULL
);
5187 string
= string_printf ("'%s'",
5188 p
.msymbol
.minsym
->linkage_name ());
5190 break_command (&string
[0], from_tty
);
5191 printf_filtered ("<function, no debug info> %s;\n",
5192 p
.msymbol
.minsym
->print_name ());
5198 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5201 compare_symbol_name (const char *symbol_name
, language symbol_language
,
5202 const lookup_name_info
&lookup_name
,
5203 completion_match_result
&match_res
)
5205 const language_defn
*lang
= language_def (symbol_language
);
5207 symbol_name_matcher_ftype
*name_match
5208 = get_symbol_name_matcher (lang
, lookup_name
);
5210 return name_match (symbol_name
, lookup_name
, &match_res
);
5216 completion_list_add_name (completion_tracker
&tracker
,
5217 language symbol_language
,
5218 const char *symname
,
5219 const lookup_name_info
&lookup_name
,
5220 const char *text
, const char *word
)
5222 completion_match_result
&match_res
5223 = tracker
.reset_completion_match_result ();
5225 /* Clip symbols that cannot match. */
5226 if (!compare_symbol_name (symname
, symbol_language
, lookup_name
, match_res
))
5229 /* Refresh SYMNAME from the match string. It's potentially
5230 different depending on language. (E.g., on Ada, the match may be
5231 the encoded symbol name wrapped in "<>"). */
5232 symname
= match_res
.match
.match ();
5233 gdb_assert (symname
!= NULL
);
5235 /* We have a match for a completion, so add SYMNAME to the current list
5236 of matches. Note that the name is moved to freshly malloc'd space. */
5239 gdb::unique_xmalloc_ptr
<char> completion
5240 = make_completion_match_str (symname
, text
, word
);
5242 /* Here we pass the match-for-lcd object to add_completion. Some
5243 languages match the user text against substrings of symbol
5244 names in some cases. E.g., in C++, "b push_ba" completes to
5245 "std::vector::push_back", "std::string::push_back", etc., and
5246 in this case we want the completion lowest common denominator
5247 to be "push_back" instead of "std::". */
5248 tracker
.add_completion (std::move (completion
),
5249 &match_res
.match_for_lcd
, text
, word
);
5253 /* completion_list_add_name wrapper for struct symbol. */
5256 completion_list_add_symbol (completion_tracker
&tracker
,
5258 const lookup_name_info
&lookup_name
,
5259 const char *text
, const char *word
)
5261 completion_list_add_name (tracker
, sym
->language (),
5262 sym
->natural_name (),
5263 lookup_name
, text
, word
);
5266 /* completion_list_add_name wrapper for struct minimal_symbol. */
5269 completion_list_add_msymbol (completion_tracker
&tracker
,
5270 minimal_symbol
*sym
,
5271 const lookup_name_info
&lookup_name
,
5272 const char *text
, const char *word
)
5274 completion_list_add_name (tracker
, sym
->language (),
5275 sym
->natural_name (),
5276 lookup_name
, text
, word
);
5280 /* ObjC: In case we are completing on a selector, look as the msymbol
5281 again and feed all the selectors into the mill. */
5284 completion_list_objc_symbol (completion_tracker
&tracker
,
5285 struct minimal_symbol
*msymbol
,
5286 const lookup_name_info
&lookup_name
,
5287 const char *text
, const char *word
)
5289 static char *tmp
= NULL
;
5290 static unsigned int tmplen
= 0;
5292 const char *method
, *category
, *selector
;
5295 method
= msymbol
->natural_name ();
5297 /* Is it a method? */
5298 if ((method
[0] != '-') && (method
[0] != '+'))
5302 /* Complete on shortened method method. */
5303 completion_list_add_name (tracker
, language_objc
,
5308 while ((strlen (method
) + 1) >= tmplen
)
5314 tmp
= (char *) xrealloc (tmp
, tmplen
);
5316 selector
= strchr (method
, ' ');
5317 if (selector
!= NULL
)
5320 category
= strchr (method
, '(');
5322 if ((category
!= NULL
) && (selector
!= NULL
))
5324 memcpy (tmp
, method
, (category
- method
));
5325 tmp
[category
- method
] = ' ';
5326 memcpy (tmp
+ (category
- method
) + 1, selector
, strlen (selector
) + 1);
5327 completion_list_add_name (tracker
, language_objc
, tmp
,
5328 lookup_name
, text
, word
);
5330 completion_list_add_name (tracker
, language_objc
, tmp
+ 1,
5331 lookup_name
, text
, word
);
5334 if (selector
!= NULL
)
5336 /* Complete on selector only. */
5337 strcpy (tmp
, selector
);
5338 tmp2
= strchr (tmp
, ']');
5342 completion_list_add_name (tracker
, language_objc
, tmp
,
5343 lookup_name
, text
, word
);
5347 /* Break the non-quoted text based on the characters which are in
5348 symbols. FIXME: This should probably be language-specific. */
5351 language_search_unquoted_string (const char *text
, const char *p
)
5353 for (; p
> text
; --p
)
5355 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0')
5359 if ((current_language
->la_language
== language_objc
))
5361 if (p
[-1] == ':') /* Might be part of a method name. */
5363 else if (p
[-1] == '[' && (p
[-2] == '-' || p
[-2] == '+'))
5364 p
-= 2; /* Beginning of a method name. */
5365 else if (p
[-1] == ' ' || p
[-1] == '(' || p
[-1] == ')')
5366 { /* Might be part of a method name. */
5369 /* Seeing a ' ' or a '(' is not conclusive evidence
5370 that we are in the middle of a method name. However,
5371 finding "-[" or "+[" should be pretty un-ambiguous.
5372 Unfortunately we have to find it now to decide. */
5375 if (isalnum (t
[-1]) || t
[-1] == '_' ||
5376 t
[-1] == ' ' || t
[-1] == ':' ||
5377 t
[-1] == '(' || t
[-1] == ')')
5382 if (t
[-1] == '[' && (t
[-2] == '-' || t
[-2] == '+'))
5383 p
= t
- 2; /* Method name detected. */
5384 /* Else we leave with p unchanged. */
5394 completion_list_add_fields (completion_tracker
&tracker
,
5396 const lookup_name_info
&lookup_name
,
5397 const char *text
, const char *word
)
5399 if (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
5401 struct type
*t
= SYMBOL_TYPE (sym
);
5402 enum type_code c
= TYPE_CODE (t
);
5405 if (c
== TYPE_CODE_UNION
|| c
== TYPE_CODE_STRUCT
)
5406 for (j
= TYPE_N_BASECLASSES (t
); j
< TYPE_NFIELDS (t
); j
++)
5407 if (TYPE_FIELD_NAME (t
, j
))
5408 completion_list_add_name (tracker
, sym
->language (),
5409 TYPE_FIELD_NAME (t
, j
),
5410 lookup_name
, text
, word
);
5417 symbol_is_function_or_method (symbol
*sym
)
5419 switch (TYPE_CODE (SYMBOL_TYPE (sym
)))
5421 case TYPE_CODE_FUNC
:
5422 case TYPE_CODE_METHOD
:
5432 symbol_is_function_or_method (minimal_symbol
*msymbol
)
5434 switch (MSYMBOL_TYPE (msymbol
))
5437 case mst_text_gnu_ifunc
:
5438 case mst_solib_trampoline
:
5448 bound_minimal_symbol
5449 find_gnu_ifunc (const symbol
*sym
)
5451 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
5454 lookup_name_info
lookup_name (sym
->search_name (),
5455 symbol_name_match_type::SEARCH_NAME
);
5456 struct objfile
*objfile
= symbol_objfile (sym
);
5458 CORE_ADDR address
= BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
));
5459 minimal_symbol
*ifunc
= NULL
;
5461 iterate_over_minimal_symbols (objfile
, lookup_name
,
5462 [&] (minimal_symbol
*minsym
)
5464 if (MSYMBOL_TYPE (minsym
) == mst_text_gnu_ifunc
5465 || MSYMBOL_TYPE (minsym
) == mst_data_gnu_ifunc
)
5467 CORE_ADDR msym_addr
= MSYMBOL_VALUE_ADDRESS (objfile
, minsym
);
5468 if (MSYMBOL_TYPE (minsym
) == mst_data_gnu_ifunc
)
5470 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
5472 = gdbarch_convert_from_func_ptr_addr (gdbarch
,
5474 current_top_target ());
5476 if (msym_addr
== address
)
5486 return {ifunc
, objfile
};
5490 /* Add matching symbols from SYMTAB to the current completion list. */
5493 add_symtab_completions (struct compunit_symtab
*cust
,
5494 completion_tracker
&tracker
,
5495 complete_symbol_mode mode
,
5496 const lookup_name_info
&lookup_name
,
5497 const char *text
, const char *word
,
5498 enum type_code code
)
5501 const struct block
*b
;
5502 struct block_iterator iter
;
5508 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
5511 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust
), i
);
5512 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5514 if (completion_skip_symbol (mode
, sym
))
5517 if (code
== TYPE_CODE_UNDEF
5518 || (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
5519 && TYPE_CODE (SYMBOL_TYPE (sym
)) == code
))
5520 completion_list_add_symbol (tracker
, sym
,
5528 default_collect_symbol_completion_matches_break_on
5529 (completion_tracker
&tracker
, complete_symbol_mode mode
,
5530 symbol_name_match_type name_match_type
,
5531 const char *text
, const char *word
,
5532 const char *break_on
, enum type_code code
)
5534 /* Problem: All of the symbols have to be copied because readline
5535 frees them. I'm not going to worry about this; hopefully there
5536 won't be that many. */
5539 const struct block
*b
;
5540 const struct block
*surrounding_static_block
, *surrounding_global_block
;
5541 struct block_iterator iter
;
5542 /* The symbol we are completing on. Points in same buffer as text. */
5543 const char *sym_text
;
5545 /* Now look for the symbol we are supposed to complete on. */
5546 if (mode
== complete_symbol_mode::LINESPEC
)
5552 const char *quote_pos
= NULL
;
5554 /* First see if this is a quoted string. */
5556 for (p
= text
; *p
!= '\0'; ++p
)
5558 if (quote_found
!= '\0')
5560 if (*p
== quote_found
)
5561 /* Found close quote. */
5563 else if (*p
== '\\' && p
[1] == quote_found
)
5564 /* A backslash followed by the quote character
5565 doesn't end the string. */
5568 else if (*p
== '\'' || *p
== '"')
5574 if (quote_found
== '\'')
5575 /* A string within single quotes can be a symbol, so complete on it. */
5576 sym_text
= quote_pos
+ 1;
5577 else if (quote_found
== '"')
5578 /* A double-quoted string is never a symbol, nor does it make sense
5579 to complete it any other way. */
5585 /* It is not a quoted string. Break it based on the characters
5586 which are in symbols. */
5589 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0'
5590 || p
[-1] == ':' || strchr (break_on
, p
[-1]) != NULL
)
5599 lookup_name_info
lookup_name (sym_text
, name_match_type
, true);
5601 /* At this point scan through the misc symbol vectors and add each
5602 symbol you find to the list. Eventually we want to ignore
5603 anything that isn't a text symbol (everything else will be
5604 handled by the psymtab code below). */
5606 if (code
== TYPE_CODE_UNDEF
)
5608 for (objfile
*objfile
: current_program_space
->objfiles ())
5610 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
5614 if (completion_skip_symbol (mode
, msymbol
))
5617 completion_list_add_msymbol (tracker
, msymbol
, lookup_name
,
5620 completion_list_objc_symbol (tracker
, msymbol
, lookup_name
,
5626 /* Add completions for all currently loaded symbol tables. */
5627 for (objfile
*objfile
: current_program_space
->objfiles ())
5629 for (compunit_symtab
*cust
: objfile
->compunits ())
5630 add_symtab_completions (cust
, tracker
, mode
, lookup_name
,
5631 sym_text
, word
, code
);
5634 /* Look through the partial symtabs for all symbols which begin by
5635 matching SYM_TEXT. Expand all CUs that you find to the list. */
5636 expand_symtabs_matching (NULL
,
5639 [&] (compunit_symtab
*symtab
) /* expansion notify */
5641 add_symtab_completions (symtab
,
5642 tracker
, mode
, lookup_name
,
5643 sym_text
, word
, code
);
5647 /* Search upwards from currently selected frame (so that we can
5648 complete on local vars). Also catch fields of types defined in
5649 this places which match our text string. Only complete on types
5650 visible from current context. */
5652 b
= get_selected_block (0);
5653 surrounding_static_block
= block_static_block (b
);
5654 surrounding_global_block
= block_global_block (b
);
5655 if (surrounding_static_block
!= NULL
)
5656 while (b
!= surrounding_static_block
)
5660 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5662 if (code
== TYPE_CODE_UNDEF
)
5664 completion_list_add_symbol (tracker
, sym
, lookup_name
,
5666 completion_list_add_fields (tracker
, sym
, lookup_name
,
5669 else if (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
5670 && TYPE_CODE (SYMBOL_TYPE (sym
)) == code
)
5671 completion_list_add_symbol (tracker
, sym
, lookup_name
,
5675 /* Stop when we encounter an enclosing function. Do not stop for
5676 non-inlined functions - the locals of the enclosing function
5677 are in scope for a nested function. */
5678 if (BLOCK_FUNCTION (b
) != NULL
&& block_inlined_p (b
))
5680 b
= BLOCK_SUPERBLOCK (b
);
5683 /* Add fields from the file's types; symbols will be added below. */
5685 if (code
== TYPE_CODE_UNDEF
)
5687 if (surrounding_static_block
!= NULL
)
5688 ALL_BLOCK_SYMBOLS (surrounding_static_block
, iter
, sym
)
5689 completion_list_add_fields (tracker
, sym
, lookup_name
,
5692 if (surrounding_global_block
!= NULL
)
5693 ALL_BLOCK_SYMBOLS (surrounding_global_block
, iter
, sym
)
5694 completion_list_add_fields (tracker
, sym
, lookup_name
,
5698 /* Skip macros if we are completing a struct tag -- arguable but
5699 usually what is expected. */
5700 if (current_language
->la_macro_expansion
== macro_expansion_c
5701 && code
== TYPE_CODE_UNDEF
)
5703 gdb::unique_xmalloc_ptr
<struct macro_scope
> scope
;
5705 /* This adds a macro's name to the current completion list. */
5706 auto add_macro_name
= [&] (const char *macro_name
,
5707 const macro_definition
*,
5708 macro_source_file
*,
5711 completion_list_add_name (tracker
, language_c
, macro_name
,
5712 lookup_name
, sym_text
, word
);
5715 /* Add any macros visible in the default scope. Note that this
5716 may yield the occasional wrong result, because an expression
5717 might be evaluated in a scope other than the default. For
5718 example, if the user types "break file:line if <TAB>", the
5719 resulting expression will be evaluated at "file:line" -- but
5720 at there does not seem to be a way to detect this at
5722 scope
= default_macro_scope ();
5724 macro_for_each_in_scope (scope
->file
, scope
->line
,
5727 /* User-defined macros are always visible. */
5728 macro_for_each (macro_user_macros
, add_macro_name
);
5733 default_collect_symbol_completion_matches (completion_tracker
&tracker
,
5734 complete_symbol_mode mode
,
5735 symbol_name_match_type name_match_type
,
5736 const char *text
, const char *word
,
5737 enum type_code code
)
5739 return default_collect_symbol_completion_matches_break_on (tracker
, mode
,
5745 /* Collect all symbols (regardless of class) which begin by matching
5749 collect_symbol_completion_matches (completion_tracker
&tracker
,
5750 complete_symbol_mode mode
,
5751 symbol_name_match_type name_match_type
,
5752 const char *text
, const char *word
)
5754 current_language
->la_collect_symbol_completion_matches (tracker
, mode
,
5760 /* Like collect_symbol_completion_matches, but only collect
5761 STRUCT_DOMAIN symbols whose type code is CODE. */
5764 collect_symbol_completion_matches_type (completion_tracker
&tracker
,
5765 const char *text
, const char *word
,
5766 enum type_code code
)
5768 complete_symbol_mode mode
= complete_symbol_mode::EXPRESSION
;
5769 symbol_name_match_type name_match_type
= symbol_name_match_type::EXPRESSION
;
5771 gdb_assert (code
== TYPE_CODE_UNION
5772 || code
== TYPE_CODE_STRUCT
5773 || code
== TYPE_CODE_ENUM
);
5774 current_language
->la_collect_symbol_completion_matches (tracker
, mode
,
5779 /* Like collect_symbol_completion_matches, but collects a list of
5780 symbols defined in all source files named SRCFILE. */
5783 collect_file_symbol_completion_matches (completion_tracker
&tracker
,
5784 complete_symbol_mode mode
,
5785 symbol_name_match_type name_match_type
,
5786 const char *text
, const char *word
,
5787 const char *srcfile
)
5789 /* The symbol we are completing on. Points in same buffer as text. */
5790 const char *sym_text
;
5792 /* Now look for the symbol we are supposed to complete on.
5793 FIXME: This should be language-specific. */
5794 if (mode
== complete_symbol_mode::LINESPEC
)
5800 const char *quote_pos
= NULL
;
5802 /* First see if this is a quoted string. */
5804 for (p
= text
; *p
!= '\0'; ++p
)
5806 if (quote_found
!= '\0')
5808 if (*p
== quote_found
)
5809 /* Found close quote. */
5811 else if (*p
== '\\' && p
[1] == quote_found
)
5812 /* A backslash followed by the quote character
5813 doesn't end the string. */
5816 else if (*p
== '\'' || *p
== '"')
5822 if (quote_found
== '\'')
5823 /* A string within single quotes can be a symbol, so complete on it. */
5824 sym_text
= quote_pos
+ 1;
5825 else if (quote_found
== '"')
5826 /* A double-quoted string is never a symbol, nor does it make sense
5827 to complete it any other way. */
5833 /* Not a quoted string. */
5834 sym_text
= language_search_unquoted_string (text
, p
);
5838 lookup_name_info
lookup_name (sym_text
, name_match_type
, true);
5840 /* Go through symtabs for SRCFILE and check the externs and statics
5841 for symbols which match. */
5842 iterate_over_symtabs (srcfile
, [&] (symtab
*s
)
5844 add_symtab_completions (SYMTAB_COMPUNIT (s
),
5845 tracker
, mode
, lookup_name
,
5846 sym_text
, word
, TYPE_CODE_UNDEF
);
5851 /* A helper function for make_source_files_completion_list. It adds
5852 another file name to a list of possible completions, growing the
5853 list as necessary. */
5856 add_filename_to_list (const char *fname
, const char *text
, const char *word
,
5857 completion_list
*list
)
5859 list
->emplace_back (make_completion_match_str (fname
, text
, word
));
5863 not_interesting_fname (const char *fname
)
5865 static const char *illegal_aliens
[] = {
5866 "_globals_", /* inserted by coff_symtab_read */
5871 for (i
= 0; illegal_aliens
[i
]; i
++)
5873 if (filename_cmp (fname
, illegal_aliens
[i
]) == 0)
5879 /* An object of this type is passed as the user_data argument to
5880 map_partial_symbol_filenames. */
5881 struct add_partial_filename_data
5883 struct filename_seen_cache
*filename_seen_cache
;
5887 completion_list
*list
;
5890 /* A callback for map_partial_symbol_filenames. */
5893 maybe_add_partial_symtab_filename (const char *filename
, const char *fullname
,
5896 struct add_partial_filename_data
*data
5897 = (struct add_partial_filename_data
*) user_data
;
5899 if (not_interesting_fname (filename
))
5901 if (!data
->filename_seen_cache
->seen (filename
)
5902 && filename_ncmp (filename
, data
->text
, data
->text_len
) == 0)
5904 /* This file matches for a completion; add it to the
5905 current list of matches. */
5906 add_filename_to_list (filename
, data
->text
, data
->word
, data
->list
);
5910 const char *base_name
= lbasename (filename
);
5912 if (base_name
!= filename
5913 && !data
->filename_seen_cache
->seen (base_name
)
5914 && filename_ncmp (base_name
, data
->text
, data
->text_len
) == 0)
5915 add_filename_to_list (base_name
, data
->text
, data
->word
, data
->list
);
5919 /* Return a list of all source files whose names begin with matching
5920 TEXT. The file names are looked up in the symbol tables of this
5924 make_source_files_completion_list (const char *text
, const char *word
)
5926 size_t text_len
= strlen (text
);
5927 completion_list list
;
5928 const char *base_name
;
5929 struct add_partial_filename_data datum
;
5931 if (!have_full_symbols () && !have_partial_symbols ())
5934 filename_seen_cache filenames_seen
;
5936 for (objfile
*objfile
: current_program_space
->objfiles ())
5938 for (compunit_symtab
*cu
: objfile
->compunits ())
5940 for (symtab
*s
: compunit_filetabs (cu
))
5942 if (not_interesting_fname (s
->filename
))
5944 if (!filenames_seen
.seen (s
->filename
)
5945 && filename_ncmp (s
->filename
, text
, text_len
) == 0)
5947 /* This file matches for a completion; add it to the current
5949 add_filename_to_list (s
->filename
, text
, word
, &list
);
5953 /* NOTE: We allow the user to type a base name when the
5954 debug info records leading directories, but not the other
5955 way around. This is what subroutines of breakpoint
5956 command do when they parse file names. */
5957 base_name
= lbasename (s
->filename
);
5958 if (base_name
!= s
->filename
5959 && !filenames_seen
.seen (base_name
)
5960 && filename_ncmp (base_name
, text
, text_len
) == 0)
5961 add_filename_to_list (base_name
, text
, word
, &list
);
5967 datum
.filename_seen_cache
= &filenames_seen
;
5970 datum
.text_len
= text_len
;
5972 map_symbol_filenames (maybe_add_partial_symtab_filename
, &datum
,
5973 0 /*need_fullname*/);
5980 /* Return the "main_info" object for the current program space. If
5981 the object has not yet been created, create it and fill in some
5984 static struct main_info
*
5985 get_main_info (void)
5987 struct main_info
*info
= main_progspace_key
.get (current_program_space
);
5991 /* It may seem strange to store the main name in the progspace
5992 and also in whatever objfile happens to see a main name in
5993 its debug info. The reason for this is mainly historical:
5994 gdb returned "main" as the name even if no function named
5995 "main" was defined the program; and this approach lets us
5996 keep compatibility. */
5997 info
= main_progspace_key
.emplace (current_program_space
);
6004 set_main_name (const char *name
, enum language lang
)
6006 struct main_info
*info
= get_main_info ();
6008 if (info
->name_of_main
!= NULL
)
6010 xfree (info
->name_of_main
);
6011 info
->name_of_main
= NULL
;
6012 info
->language_of_main
= language_unknown
;
6016 info
->name_of_main
= xstrdup (name
);
6017 info
->language_of_main
= lang
;
6021 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6025 find_main_name (void)
6027 const char *new_main_name
;
6029 /* First check the objfiles to see whether a debuginfo reader has
6030 picked up the appropriate main name. Historically the main name
6031 was found in a more or less random way; this approach instead
6032 relies on the order of objfile creation -- which still isn't
6033 guaranteed to get the correct answer, but is just probably more
6035 for (objfile
*objfile
: current_program_space
->objfiles ())
6037 if (objfile
->per_bfd
->name_of_main
!= NULL
)
6039 set_main_name (objfile
->per_bfd
->name_of_main
,
6040 objfile
->per_bfd
->language_of_main
);
6045 /* Try to see if the main procedure is in Ada. */
6046 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6047 be to add a new method in the language vector, and call this
6048 method for each language until one of them returns a non-empty
6049 name. This would allow us to remove this hard-coded call to
6050 an Ada function. It is not clear that this is a better approach
6051 at this point, because all methods need to be written in a way
6052 such that false positives never be returned. For instance, it is
6053 important that a method does not return a wrong name for the main
6054 procedure if the main procedure is actually written in a different
6055 language. It is easy to guaranty this with Ada, since we use a
6056 special symbol generated only when the main in Ada to find the name
6057 of the main procedure. It is difficult however to see how this can
6058 be guarantied for languages such as C, for instance. This suggests
6059 that order of call for these methods becomes important, which means
6060 a more complicated approach. */
6061 new_main_name
= ada_main_name ();
6062 if (new_main_name
!= NULL
)
6064 set_main_name (new_main_name
, language_ada
);
6068 new_main_name
= d_main_name ();
6069 if (new_main_name
!= NULL
)
6071 set_main_name (new_main_name
, language_d
);
6075 new_main_name
= go_main_name ();
6076 if (new_main_name
!= NULL
)
6078 set_main_name (new_main_name
, language_go
);
6082 new_main_name
= pascal_main_name ();
6083 if (new_main_name
!= NULL
)
6085 set_main_name (new_main_name
, language_pascal
);
6089 /* The languages above didn't identify the name of the main procedure.
6090 Fallback to "main". */
6091 set_main_name ("main", language_unknown
);
6099 struct main_info
*info
= get_main_info ();
6101 if (info
->name_of_main
== NULL
)
6104 return info
->name_of_main
;
6107 /* Return the language of the main function. If it is not known,
6108 return language_unknown. */
6111 main_language (void)
6113 struct main_info
*info
= get_main_info ();
6115 if (info
->name_of_main
== NULL
)
6118 return info
->language_of_main
;
6121 /* Handle ``executable_changed'' events for the symtab module. */
6124 symtab_observer_executable_changed (void)
6126 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6127 set_main_name (NULL
, language_unknown
);
6130 /* Return 1 if the supplied producer string matches the ARM RealView
6131 compiler (armcc). */
6134 producer_is_realview (const char *producer
)
6136 static const char *const arm_idents
[] = {
6137 "ARM C Compiler, ADS",
6138 "Thumb C Compiler, ADS",
6139 "ARM C++ Compiler, ADS",
6140 "Thumb C++ Compiler, ADS",
6141 "ARM/Thumb C/C++ Compiler, RVCT",
6142 "ARM C/C++ Compiler, RVCT"
6146 if (producer
== NULL
)
6149 for (i
= 0; i
< ARRAY_SIZE (arm_idents
); i
++)
6150 if (startswith (producer
, arm_idents
[i
]))
6158 /* The next index to hand out in response to a registration request. */
6160 static int next_aclass_value
= LOC_FINAL_VALUE
;
6162 /* The maximum number of "aclass" registrations we support. This is
6163 constant for convenience. */
6164 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6166 /* The objects representing the various "aclass" values. The elements
6167 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6168 elements are those registered at gdb initialization time. */
6170 static struct symbol_impl symbol_impl
[MAX_SYMBOL_IMPLS
];
6172 /* The globally visible pointer. This is separate from 'symbol_impl'
6173 so that it can be const. */
6175 const struct symbol_impl
*symbol_impls
= &symbol_impl
[0];
6177 /* Make sure we saved enough room in struct symbol. */
6179 gdb_static_assert (MAX_SYMBOL_IMPLS
<= (1 << SYMBOL_ACLASS_BITS
));
6181 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6182 is the ops vector associated with this index. This returns the new
6183 index, which should be used as the aclass_index field for symbols
6187 register_symbol_computed_impl (enum address_class aclass
,
6188 const struct symbol_computed_ops
*ops
)
6190 int result
= next_aclass_value
++;
6192 gdb_assert (aclass
== LOC_COMPUTED
);
6193 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6194 symbol_impl
[result
].aclass
= aclass
;
6195 symbol_impl
[result
].ops_computed
= ops
;
6197 /* Sanity check OPS. */
6198 gdb_assert (ops
!= NULL
);
6199 gdb_assert (ops
->tracepoint_var_ref
!= NULL
);
6200 gdb_assert (ops
->describe_location
!= NULL
);
6201 gdb_assert (ops
->get_symbol_read_needs
!= NULL
);
6202 gdb_assert (ops
->read_variable
!= NULL
);
6207 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6208 OPS is the ops vector associated with this index. This returns the
6209 new index, which should be used as the aclass_index field for symbols
6213 register_symbol_block_impl (enum address_class aclass
,
6214 const struct symbol_block_ops
*ops
)
6216 int result
= next_aclass_value
++;
6218 gdb_assert (aclass
== LOC_BLOCK
);
6219 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6220 symbol_impl
[result
].aclass
= aclass
;
6221 symbol_impl
[result
].ops_block
= ops
;
6223 /* Sanity check OPS. */
6224 gdb_assert (ops
!= NULL
);
6225 gdb_assert (ops
->find_frame_base_location
!= NULL
);
6230 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6231 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6232 this index. This returns the new index, which should be used as
6233 the aclass_index field for symbols of this type. */
6236 register_symbol_register_impl (enum address_class aclass
,
6237 const struct symbol_register_ops
*ops
)
6239 int result
= next_aclass_value
++;
6241 gdb_assert (aclass
== LOC_REGISTER
|| aclass
== LOC_REGPARM_ADDR
);
6242 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6243 symbol_impl
[result
].aclass
= aclass
;
6244 symbol_impl
[result
].ops_register
= ops
;
6249 /* Initialize elements of 'symbol_impl' for the constants in enum
6253 initialize_ordinary_address_classes (void)
6257 for (i
= 0; i
< LOC_FINAL_VALUE
; ++i
)
6258 symbol_impl
[i
].aclass
= (enum address_class
) i
;
6263 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6266 initialize_objfile_symbol (struct symbol
*sym
)
6268 SYMBOL_OBJFILE_OWNED (sym
) = 1;
6269 SYMBOL_SECTION (sym
) = -1;
6272 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6276 allocate_symbol (struct objfile
*objfile
)
6278 struct symbol
*result
= new (&objfile
->objfile_obstack
) symbol ();
6280 initialize_objfile_symbol (result
);
6285 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6288 struct template_symbol
*
6289 allocate_template_symbol (struct objfile
*objfile
)
6291 struct template_symbol
*result
;
6293 result
= new (&objfile
->objfile_obstack
) template_symbol ();
6294 initialize_objfile_symbol (result
);
6302 symbol_objfile (const struct symbol
*symbol
)
6304 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
6305 return SYMTAB_OBJFILE (symbol
->owner
.symtab
);
6311 symbol_arch (const struct symbol
*symbol
)
6313 if (!SYMBOL_OBJFILE_OWNED (symbol
))
6314 return symbol
->owner
.arch
;
6315 return get_objfile_arch (SYMTAB_OBJFILE (symbol
->owner
.symtab
));
6321 symbol_symtab (const struct symbol
*symbol
)
6323 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
6324 return symbol
->owner
.symtab
;
6330 symbol_set_symtab (struct symbol
*symbol
, struct symtab
*symtab
)
6332 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
6333 symbol
->owner
.symtab
= symtab
;
6339 get_symbol_address (const struct symbol
*sym
)
6341 gdb_assert (sym
->maybe_copied
);
6342 gdb_assert (SYMBOL_CLASS (sym
) == LOC_STATIC
);
6344 const char *linkage_name
= sym
->linkage_name ();
6346 for (objfile
*objfile
: current_program_space
->objfiles ())
6348 bound_minimal_symbol minsym
6349 = lookup_minimal_symbol_linkage (linkage_name
, objfile
);
6350 if (minsym
.minsym
!= nullptr)
6351 return BMSYMBOL_VALUE_ADDRESS (minsym
);
6353 return sym
->value
.address
;
6359 get_msymbol_address (struct objfile
*objf
, const struct minimal_symbol
*minsym
)
6361 gdb_assert (minsym
->maybe_copied
);
6362 gdb_assert ((objf
->flags
& OBJF_MAINLINE
) == 0);
6364 const char *linkage_name
= minsym
->linkage_name ();
6366 for (objfile
*objfile
: current_program_space
->objfiles ())
6368 if ((objfile
->flags
& OBJF_MAINLINE
) != 0)
6370 bound_minimal_symbol found
6371 = lookup_minimal_symbol_linkage (linkage_name
, objfile
);
6372 if (found
.minsym
!= nullptr)
6373 return BMSYMBOL_VALUE_ADDRESS (found
);
6376 return (minsym
->value
.address
6377 + ANOFFSET (objf
->section_offsets
, minsym
->section
));
6382 /* Hold the sub-commands of 'info module'. */
6384 static struct cmd_list_element
*info_module_cmdlist
= NULL
;
6386 /* Implement the 'info module' command, just displays some help text for
6387 the available sub-commands. */
6390 info_module_command (const char *args
, int from_tty
)
6392 help_list (info_module_cmdlist
, "info module ", class_info
, gdb_stdout
);
6397 std::vector
<module_symbol_search
>
6398 search_module_symbols (const char *module_regexp
, const char *regexp
,
6399 const char *type_regexp
, search_domain kind
)
6401 std::vector
<module_symbol_search
> results
;
6403 /* Search for all modules matching MODULE_REGEXP. */
6404 global_symbol_searcher
spec1 (MODULES_DOMAIN
, module_regexp
);
6405 spec1
.set_exclude_minsyms (true);
6406 std::vector
<symbol_search
> modules
= spec1
.search ();
6408 /* Now search for all symbols of the required KIND matching the required
6409 regular expressions. We figure out which ones are in which modules
6411 global_symbol_searcher
spec2 (kind
, regexp
);
6412 spec2
.set_symbol_type_regexp (type_regexp
);
6413 spec2
.set_exclude_minsyms (true);
6414 std::vector
<symbol_search
> symbols
= spec2
.search ();
6416 /* Now iterate over all MODULES, checking to see which items from
6417 SYMBOLS are in each module. */
6418 for (const symbol_search
&p
: modules
)
6422 /* This is a module. */
6423 gdb_assert (p
.symbol
!= nullptr);
6425 std::string prefix
= p
.symbol
->print_name ();
6428 for (const symbol_search
&q
: symbols
)
6430 if (q
.symbol
== nullptr)
6433 if (strncmp (q
.symbol
->print_name (), prefix
.c_str (),
6434 prefix
.size ()) != 0)
6437 results
.push_back ({p
, q
});
6444 /* Implement the core of both 'info module functions' and 'info module
6448 info_module_subcommand (bool quiet
, const char *module_regexp
,
6449 const char *regexp
, const char *type_regexp
,
6452 /* Print a header line. Don't build the header line bit by bit as this
6453 prevents internationalisation. */
6456 if (module_regexp
== nullptr)
6458 if (type_regexp
== nullptr)
6460 if (regexp
== nullptr)
6461 printf_filtered ((kind
== VARIABLES_DOMAIN
6462 ? _("All variables in all modules:")
6463 : _("All functions in all modules:")));
6466 ((kind
== VARIABLES_DOMAIN
6467 ? _("All variables matching regular expression"
6468 " \"%s\" in all modules:")
6469 : _("All functions matching regular expression"
6470 " \"%s\" in all modules:")),
6475 if (regexp
== nullptr)
6477 ((kind
== VARIABLES_DOMAIN
6478 ? _("All variables with type matching regular "
6479 "expression \"%s\" in all modules:")
6480 : _("All functions with type matching regular "
6481 "expression \"%s\" in all modules:")),
6485 ((kind
== VARIABLES_DOMAIN
6486 ? _("All variables matching regular expression "
6487 "\"%s\",\n\twith type matching regular "
6488 "expression \"%s\" in all modules:")
6489 : _("All functions matching regular expression "
6490 "\"%s\",\n\twith type matching regular "
6491 "expression \"%s\" in all modules:")),
6492 regexp
, type_regexp
);
6497 if (type_regexp
== nullptr)
6499 if (regexp
== nullptr)
6501 ((kind
== VARIABLES_DOMAIN
6502 ? _("All variables in all modules matching regular "
6503 "expression \"%s\":")
6504 : _("All functions in all modules matching regular "
6505 "expression \"%s\":")),
6509 ((kind
== VARIABLES_DOMAIN
6510 ? _("All variables matching regular expression "
6511 "\"%s\",\n\tin all modules matching regular "
6512 "expression \"%s\":")
6513 : _("All functions matching regular expression "
6514 "\"%s\",\n\tin all modules matching regular "
6515 "expression \"%s\":")),
6516 regexp
, module_regexp
);
6520 if (regexp
== nullptr)
6522 ((kind
== VARIABLES_DOMAIN
6523 ? _("All variables with type matching regular "
6524 "expression \"%s\"\n\tin all modules matching "
6525 "regular expression \"%s\":")
6526 : _("All functions with type matching regular "
6527 "expression \"%s\"\n\tin all modules matching "
6528 "regular expression \"%s\":")),
6529 type_regexp
, module_regexp
);
6532 ((kind
== VARIABLES_DOMAIN
6533 ? _("All variables matching regular expression "
6534 "\"%s\",\n\twith type matching regular expression "
6535 "\"%s\",\n\tin all modules matching regular "
6536 "expression \"%s\":")
6537 : _("All functions matching regular expression "
6538 "\"%s\",\n\twith type matching regular expression "
6539 "\"%s\",\n\tin all modules matching regular "
6540 "expression \"%s\":")),
6541 regexp
, type_regexp
, module_regexp
);
6544 printf_filtered ("\n");
6547 /* Find all symbols of type KIND matching the given regular expressions
6548 along with the symbols for the modules in which those symbols
6550 std::vector
<module_symbol_search
> module_symbols
6551 = search_module_symbols (module_regexp
, regexp
, type_regexp
, kind
);
6553 std::sort (module_symbols
.begin (), module_symbols
.end (),
6554 [] (const module_symbol_search
&a
, const module_symbol_search
&b
)
6556 if (a
.first
< b
.first
)
6558 else if (a
.first
== b
.first
)
6559 return a
.second
< b
.second
;
6564 const char *last_filename
= "";
6565 const symbol
*last_module_symbol
= nullptr;
6566 for (const module_symbol_search
&ms
: module_symbols
)
6568 const symbol_search
&p
= ms
.first
;
6569 const symbol_search
&q
= ms
.second
;
6571 gdb_assert (q
.symbol
!= nullptr);
6573 if (last_module_symbol
!= p
.symbol
)
6575 printf_filtered ("\n");
6576 printf_filtered (_("Module \"%s\":\n"), p
.symbol
->print_name ());
6577 last_module_symbol
= p
.symbol
;
6581 print_symbol_info (FUNCTIONS_DOMAIN
, q
.symbol
, q
.block
,
6584 = symtab_to_filename_for_display (symbol_symtab (q
.symbol
));
6588 /* Hold the option values for the 'info module .....' sub-commands. */
6590 struct info_modules_var_func_options
6593 char *type_regexp
= nullptr;
6594 char *module_regexp
= nullptr;
6596 ~info_modules_var_func_options ()
6598 xfree (type_regexp
);
6599 xfree (module_regexp
);
6603 /* The options used by 'info module variables' and 'info module functions'
6606 static const gdb::option::option_def info_modules_var_func_options_defs
[] = {
6607 gdb::option::boolean_option_def
<info_modules_var_func_options
> {
6609 [] (info_modules_var_func_options
*opt
) { return &opt
->quiet
; },
6610 nullptr, /* show_cmd_cb */
6611 nullptr /* set_doc */
6614 gdb::option::string_option_def
<info_modules_var_func_options
> {
6616 [] (info_modules_var_func_options
*opt
) { return &opt
->type_regexp
; },
6617 nullptr, /* show_cmd_cb */
6618 nullptr /* set_doc */
6621 gdb::option::string_option_def
<info_modules_var_func_options
> {
6623 [] (info_modules_var_func_options
*opt
) { return &opt
->module_regexp
; },
6624 nullptr, /* show_cmd_cb */
6625 nullptr /* set_doc */
6629 /* Return the option group used by the 'info module ...' sub-commands. */
6631 static inline gdb::option::option_def_group
6632 make_info_modules_var_func_options_def_group
6633 (info_modules_var_func_options
*opts
)
6635 return {{info_modules_var_func_options_defs
}, opts
};
6638 /* Implements the 'info module functions' command. */
6641 info_module_functions_command (const char *args
, int from_tty
)
6643 info_modules_var_func_options opts
;
6644 auto grp
= make_info_modules_var_func_options_def_group (&opts
);
6645 gdb::option::process_options
6646 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
6647 if (args
!= nullptr && *args
== '\0')
6650 info_module_subcommand (opts
.quiet
, opts
.module_regexp
, args
,
6651 opts
.type_regexp
, FUNCTIONS_DOMAIN
);
6654 /* Implements the 'info module variables' command. */
6657 info_module_variables_command (const char *args
, int from_tty
)
6659 info_modules_var_func_options opts
;
6660 auto grp
= make_info_modules_var_func_options_def_group (&opts
);
6661 gdb::option::process_options
6662 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
6663 if (args
!= nullptr && *args
== '\0')
6666 info_module_subcommand (opts
.quiet
, opts
.module_regexp
, args
,
6667 opts
.type_regexp
, VARIABLES_DOMAIN
);
6670 /* Command completer for 'info module ...' sub-commands. */
6673 info_module_var_func_command_completer (struct cmd_list_element
*ignore
,
6674 completion_tracker
&tracker
,
6676 const char * /* word */)
6679 const auto group
= make_info_modules_var_func_options_def_group (nullptr);
6680 if (gdb::option::complete_options
6681 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
6684 const char *word
= advance_to_expression_complete_word_point (tracker
, text
);
6685 symbol_completer (ignore
, tracker
, text
, word
);
6691 _initialize_symtab (void)
6693 cmd_list_element
*c
;
6695 initialize_ordinary_address_classes ();
6697 c
= add_info ("variables", info_variables_command
,
6698 info_print_args_help (_("\
6699 All global and static variable names or those matching REGEXPs.\n\
6700 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6701 Prints the global and static variables.\n"),
6702 _("global and static variables"),
6704 set_cmd_completer_handle_brkchars (c
, info_print_command_completer
);
6707 c
= add_com ("whereis", class_info
, info_variables_command
,
6708 info_print_args_help (_("\
6709 All global and static variable names, or those matching REGEXPs.\n\
6710 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6711 Prints the global and static variables.\n"),
6712 _("global and static variables"),
6714 set_cmd_completer_handle_brkchars (c
, info_print_command_completer
);
6717 c
= add_info ("functions", info_functions_command
,
6718 info_print_args_help (_("\
6719 All function names or those matching REGEXPs.\n\
6720 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6721 Prints the functions.\n"),
6724 set_cmd_completer_handle_brkchars (c
, info_print_command_completer
);
6726 c
= add_info ("types", info_types_command
, _("\
6727 All type names, or those matching REGEXP.\n\
6728 Usage: info types [-q] [REGEXP]\n\
6729 Print information about all types matching REGEXP, or all types if no\n\
6730 REGEXP is given. The optional flag -q disables printing of headers."));
6731 set_cmd_completer_handle_brkchars (c
, info_types_command_completer
);
6733 const auto info_sources_opts
= make_info_sources_options_def_group (nullptr);
6735 static std::string info_sources_help
6736 = gdb::option::build_help (_("\
6737 All source files in the program or those matching REGEXP.\n\
6738 Usage: info sources [OPTION]... [REGEXP]\n\
6739 By default, REGEXP is used to match anywhere in the filename.\n\
6745 c
= add_info ("sources", info_sources_command
, info_sources_help
.c_str ());
6746 set_cmd_completer_handle_brkchars (c
, info_sources_command_completer
);
6748 c
= add_info ("modules", info_modules_command
,
6749 _("All module names, or those matching REGEXP."));
6750 set_cmd_completer_handle_brkchars (c
, info_types_command_completer
);
6752 add_prefix_cmd ("module", class_info
, info_module_command
, _("\
6753 Print information about modules."),
6754 &info_module_cmdlist
, "info module ",
6757 c
= add_cmd ("functions", class_info
, info_module_functions_command
, _("\
6758 Display functions arranged by modules.\n\
6759 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6760 Print a summary of all functions within each Fortran module, grouped by\n\
6761 module and file. For each function the line on which the function is\n\
6762 defined is given along with the type signature and name of the function.\n\
6764 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6765 listed. If MODREGEXP is provided then only functions in modules matching\n\
6766 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6767 type signature matches TYPEREGEXP are listed.\n\
6769 The -q flag suppresses printing some header information."),
6770 &info_module_cmdlist
);
6771 set_cmd_completer_handle_brkchars
6772 (c
, info_module_var_func_command_completer
);
6774 c
= add_cmd ("variables", class_info
, info_module_variables_command
, _("\
6775 Display variables arranged by modules.\n\
6776 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6777 Print a summary of all variables within each Fortran module, grouped by\n\
6778 module and file. For each variable the line on which the variable is\n\
6779 defined is given along with the type and name of the variable.\n\
6781 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6782 listed. If MODREGEXP is provided then only variables in modules matching\n\
6783 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6784 type matches TYPEREGEXP are listed.\n\
6786 The -q flag suppresses printing some header information."),
6787 &info_module_cmdlist
);
6788 set_cmd_completer_handle_brkchars
6789 (c
, info_module_var_func_command_completer
);
6791 add_com ("rbreak", class_breakpoint
, rbreak_command
,
6792 _("Set a breakpoint for all functions matching REGEXP."));
6794 add_setshow_enum_cmd ("multiple-symbols", no_class
,
6795 multiple_symbols_modes
, &multiple_symbols_mode
,
6797 Set how the debugger handles ambiguities in expressions."), _("\
6798 Show how the debugger handles ambiguities in expressions."), _("\
6799 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6800 NULL
, NULL
, &setlist
, &showlist
);
6802 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure
,
6803 &basenames_may_differ
, _("\
6804 Set whether a source file may have multiple base names."), _("\
6805 Show whether a source file may have multiple base names."), _("\
6806 (A \"base name\" is the name of a file with the directory part removed.\n\
6807 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6808 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6809 before comparing them. Canonicalization is an expensive operation,\n\
6810 but it allows the same file be known by more than one base name.\n\
6811 If not set (the default), all source files are assumed to have just\n\
6812 one base name, and gdb will do file name comparisons more efficiently."),
6814 &setlist
, &showlist
);
6816 add_setshow_zuinteger_cmd ("symtab-create", no_class
, &symtab_create_debug
,
6817 _("Set debugging of symbol table creation."),
6818 _("Show debugging of symbol table creation."), _("\
6819 When enabled (non-zero), debugging messages are printed when building\n\
6820 symbol tables. A value of 1 (one) normally provides enough information.\n\
6821 A value greater than 1 provides more verbose information."),
6824 &setdebuglist
, &showdebuglist
);
6826 add_setshow_zuinteger_cmd ("symbol-lookup", no_class
, &symbol_lookup_debug
,
6828 Set debugging of symbol lookup."), _("\
6829 Show debugging of symbol lookup."), _("\
6830 When enabled (non-zero), symbol lookups are logged."),
6832 &setdebuglist
, &showdebuglist
);
6834 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class
,
6835 &new_symbol_cache_size
,
6836 _("Set the size of the symbol cache."),
6837 _("Show the size of the symbol cache."), _("\
6838 The size of the symbol cache.\n\
6839 If zero then the symbol cache is disabled."),
6840 set_symbol_cache_size_handler
, NULL
,
6841 &maintenance_set_cmdlist
,
6842 &maintenance_show_cmdlist
);
6844 add_cmd ("symbol-cache", class_maintenance
, maintenance_print_symbol_cache
,
6845 _("Dump the symbol cache for each program space."),
6846 &maintenanceprintlist
);
6848 add_cmd ("symbol-cache-statistics", class_maintenance
,
6849 maintenance_print_symbol_cache_statistics
,
6850 _("Print symbol cache statistics for each program space."),
6851 &maintenanceprintlist
);
6853 add_cmd ("flush-symbol-cache", class_maintenance
,
6854 maintenance_flush_symbol_cache
,
6855 _("Flush the symbol cache for each program space."),
6858 gdb::observers::executable_changed
.attach (symtab_observer_executable_changed
);
6859 gdb::observers::new_objfile
.attach (symtab_new_objfile_observer
);
6860 gdb::observers::free_objfile
.attach (symtab_free_objfile_observer
);