Fix whitespace in last change in top.c
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
672
673 void
674 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
675 const char *name,
676 struct obstack *obstack)
677 {
678 if (gsymbol->language () == language_ada)
679 {
680 if (name == NULL)
681 {
682 gsymbol->ada_mangled = 0;
683 gsymbol->language_specific.obstack = obstack;
684 }
685 else
686 {
687 gsymbol->ada_mangled = 1;
688 gsymbol->language_specific.demangled_name = name;
689 }
690 }
691 else
692 gsymbol->language_specific.demangled_name = name;
693 }
694
695 /* Return the demangled name of GSYMBOL. */
696
697 const char *
698 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
699 {
700 if (gsymbol->language () == language_ada)
701 {
702 if (!gsymbol->ada_mangled)
703 return NULL;
704 /* Fall through. */
705 }
706
707 return gsymbol->language_specific.demangled_name;
708 }
709
710 \f
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
713
714 void
715 general_symbol_info::set_language (enum language language,
716 struct obstack *obstack)
717 {
718 m_language = language;
719 if (language == language_cplus
720 || language == language_d
721 || language == language_go
722 || language == language_objc
723 || language == language_fortran)
724 {
725 symbol_set_demangled_name (this, NULL, obstack);
726 }
727 else if (language == language_ada)
728 {
729 gdb_assert (ada_mangled == 0);
730 language_specific.obstack = obstack;
731 }
732 else
733 {
734 memset (&language_specific, 0, sizeof (language_specific));
735 }
736 }
737
738 /* Functions to initialize a symbol's mangled name. */
739
740 /* Objects of this type are stored in the demangled name hash table. */
741 struct demangled_name_entry
742 {
743 demangled_name_entry (gdb::string_view mangled_name)
744 : mangled (mangled_name) {}
745
746 gdb::string_view mangled;
747 enum language language;
748 gdb::unique_xmalloc_ptr<char> demangled;
749 };
750
751 /* Hash function for the demangled name hash. */
752
753 static hashval_t
754 hash_demangled_name_entry (const void *data)
755 {
756 const struct demangled_name_entry *e
757 = (const struct demangled_name_entry *) data;
758
759 return fast_hash (e->mangled.data (), e->mangled.length ());
760 }
761
762 /* Equality function for the demangled name hash. */
763
764 static int
765 eq_demangled_name_entry (const void *a, const void *b)
766 {
767 const struct demangled_name_entry *da
768 = (const struct demangled_name_entry *) a;
769 const struct demangled_name_entry *db
770 = (const struct demangled_name_entry *) b;
771
772 return da->mangled == db->mangled;
773 }
774
775 static void
776 free_demangled_name_entry (void *data)
777 {
778 struct demangled_name_entry *e
779 = (struct demangled_name_entry *) data;
780
781 e->~demangled_name_entry();
782 }
783
784 /* Create the hash table used for demangled names. Each hash entry is
785 a pair of strings; one for the mangled name and one for the demangled
786 name. The entry is hashed via just the mangled name. */
787
788 static void
789 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
790 {
791 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
792 The hash table code will round this up to the next prime number.
793 Choosing a much larger table size wastes memory, and saves only about
794 1% in symbol reading. However, if the minsym count is already
795 initialized (e.g. because symbol name setting was deferred to
796 a background thread) we can initialize the hashtable with a count
797 based on that, because we will almost certainly have at least that
798 many entries. If we have a nonzero number but less than 256,
799 we still stay with 256 to have some space for psymbols, etc. */
800
801 /* htab will expand the table when it is 3/4th full, so we account for that
802 here. +2 to round up. */
803 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
804 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
805
806 per_bfd->demangled_names_hash.reset (htab_create_alloc
807 (count, hash_demangled_name_entry, eq_demangled_name_entry,
808 free_demangled_name_entry, xcalloc, xfree));
809 }
810
811 /* See symtab.h */
812
813 char *
814 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
815 const char *mangled)
816 {
817 char *demangled = NULL;
818 int i;
819
820 if (gsymbol->language () == language_unknown)
821 gsymbol->m_language = language_auto;
822
823 if (gsymbol->language () != language_auto)
824 {
825 const struct language_defn *lang = language_def (gsymbol->language ());
826
827 language_sniff_from_mangled_name (lang, mangled, &demangled);
828 return demangled;
829 }
830
831 for (i = language_unknown; i < nr_languages; ++i)
832 {
833 enum language l = (enum language) i;
834 const struct language_defn *lang = language_def (l);
835
836 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
837 {
838 gsymbol->m_language = l;
839 return demangled;
840 }
841 }
842
843 return NULL;
844 }
845
846 /* Set both the mangled and demangled (if any) names for GSYMBOL based
847 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
848 objfile's obstack; but if COPY_NAME is 0 and if NAME is
849 NUL-terminated, then this function assumes that NAME is already
850 correctly saved (either permanently or with a lifetime tied to the
851 objfile), and it will not be copied.
852
853 The hash table corresponding to OBJFILE is used, and the memory
854 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
855 so the pointer can be discarded after calling this function. */
856
857 void
858 symbol_set_names (struct general_symbol_info *gsymbol,
859 gdb::string_view linkage_name, bool copy_name,
860 struct objfile_per_bfd_storage *per_bfd,
861 gdb::optional<hashval_t> hash)
862 {
863 struct demangled_name_entry **slot;
864
865 if (gsymbol->language () == language_ada)
866 {
867 /* In Ada, we do the symbol lookups using the mangled name, so
868 we can save some space by not storing the demangled name. */
869 if (!copy_name)
870 gsymbol->name = linkage_name.data ();
871 else
872 {
873 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
874 linkage_name.length () + 1);
875
876 memcpy (name, linkage_name.data (), linkage_name.length ());
877 name[linkage_name.length ()] = '\0';
878 gsymbol->name = name;
879 }
880 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
881
882 return;
883 }
884
885 if (per_bfd->demangled_names_hash == NULL)
886 create_demangled_names_hash (per_bfd);
887
888 struct demangled_name_entry entry (linkage_name);
889 if (!hash.has_value ())
890 hash = hash_demangled_name_entry (&entry);
891 slot = ((struct demangled_name_entry **)
892 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
893 &entry, *hash, INSERT));
894
895 /* If this name is not in the hash table, add it. */
896 if (*slot == NULL
897 /* A C version of the symbol may have already snuck into the table.
898 This happens to, e.g., main.init (__go_init_main). Cope. */
899 || (gsymbol->language () == language_go && (*slot)->demangled == nullptr))
900 {
901 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
902 to true if the string might not be nullterminated. We have to make
903 this copy because demangling needs a nullterminated string. */
904 gdb::string_view linkage_name_copy;
905 if (copy_name)
906 {
907 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
908 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
909 alloc_name[linkage_name.length ()] = '\0';
910
911 linkage_name_copy = gdb::string_view (alloc_name,
912 linkage_name.length ());
913 }
914 else
915 linkage_name_copy = linkage_name;
916
917 /* The const_cast is safe because the only reason it is already
918 initialized is if we purposefully set it from a background
919 thread to avoid doing the work here. However, it is still
920 allocated from the heap and needs to be freed by us, just
921 like if we called symbol_find_demangled_name here. */
922 gdb::unique_xmalloc_ptr<char> demangled_name
923 (gsymbol->language_specific.demangled_name
924 ? const_cast<char *> (gsymbol->language_specific.demangled_name)
925 : symbol_find_demangled_name (gsymbol, linkage_name_copy.data ()));
926
927 /* Suppose we have demangled_name==NULL, copy_name==0, and
928 linkage_name_copy==linkage_name. In this case, we already have the
929 mangled name saved, and we don't have a demangled name. So,
930 you might think we could save a little space by not recording
931 this in the hash table at all.
932
933 It turns out that it is actually important to still save such
934 an entry in the hash table, because storing this name gives
935 us better bcache hit rates for partial symbols. */
936 if (!copy_name)
937 {
938 *slot
939 = ((struct demangled_name_entry *)
940 obstack_alloc (&per_bfd->storage_obstack,
941 sizeof (demangled_name_entry)));
942 new (*slot) demangled_name_entry (linkage_name);
943 }
944 else
945 {
946 /* If we must copy the mangled name, put it directly after
947 the struct so we can have a single allocation. */
948 *slot
949 = ((struct demangled_name_entry *)
950 obstack_alloc (&per_bfd->storage_obstack,
951 sizeof (demangled_name_entry)
952 + linkage_name.length () + 1));
953 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
954 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
955 mangled_ptr [linkage_name.length ()] = '\0';
956 new (*slot) demangled_name_entry
957 (gdb::string_view (mangled_ptr, linkage_name.length ()));
958 }
959 (*slot)->demangled = std::move (demangled_name);
960 (*slot)->language = gsymbol->language ();
961 }
962 else if (gsymbol->language () == language_unknown
963 || gsymbol->language () == language_auto)
964 gsymbol->m_language = (*slot)->language;
965
966 gsymbol->name = (*slot)->mangled.data ();
967 if ((*slot)->demangled != nullptr)
968 symbol_set_demangled_name (gsymbol, (*slot)->demangled.get (),
969 &per_bfd->storage_obstack);
970 else
971 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
972 }
973
974 /* See symtab.h. */
975
976 const char *
977 general_symbol_info::natural_name () const
978 {
979 switch (language ())
980 {
981 case language_cplus:
982 case language_d:
983 case language_go:
984 case language_objc:
985 case language_fortran:
986 if (symbol_get_demangled_name (this) != NULL)
987 return symbol_get_demangled_name (this);
988 break;
989 case language_ada:
990 return ada_decode_symbol (this);
991 default:
992 break;
993 }
994 return name;
995 }
996
997 /* See symtab.h. */
998
999 const char *
1000 general_symbol_info::demangled_name () const
1001 {
1002 const char *dem_name = NULL;
1003
1004 switch (language ())
1005 {
1006 case language_cplus:
1007 case language_d:
1008 case language_go:
1009 case language_objc:
1010 case language_fortran:
1011 dem_name = symbol_get_demangled_name (this);
1012 break;
1013 case language_ada:
1014 dem_name = ada_decode_symbol (this);
1015 break;
1016 default:
1017 break;
1018 }
1019 return dem_name;
1020 }
1021
1022 /* See symtab.h. */
1023
1024 const char *
1025 general_symbol_info::search_name () const
1026 {
1027 if (language () == language_ada)
1028 return name;
1029 else
1030 return natural_name ();
1031 }
1032
1033 /* See symtab.h. */
1034
1035 bool
1036 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1037 const lookup_name_info &name)
1038 {
1039 symbol_name_matcher_ftype *name_match
1040 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1041 return name_match (gsymbol->search_name (), name, NULL);
1042 }
1043
1044 \f
1045
1046 /* Return true if the two sections are the same, or if they could
1047 plausibly be copies of each other, one in an original object
1048 file and another in a separated debug file. */
1049
1050 bool
1051 matching_obj_sections (struct obj_section *obj_first,
1052 struct obj_section *obj_second)
1053 {
1054 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1055 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1056
1057 /* If they're the same section, then they match. */
1058 if (first == second)
1059 return true;
1060
1061 /* If either is NULL, give up. */
1062 if (first == NULL || second == NULL)
1063 return false;
1064
1065 /* This doesn't apply to absolute symbols. */
1066 if (first->owner == NULL || second->owner == NULL)
1067 return false;
1068
1069 /* If they're in the same object file, they must be different sections. */
1070 if (first->owner == second->owner)
1071 return false;
1072
1073 /* Check whether the two sections are potentially corresponding. They must
1074 have the same size, address, and name. We can't compare section indexes,
1075 which would be more reliable, because some sections may have been
1076 stripped. */
1077 if (bfd_section_size (first) != bfd_section_size (second))
1078 return false;
1079
1080 /* In-memory addresses may start at a different offset, relativize them. */
1081 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1082 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1083 return false;
1084
1085 if (bfd_section_name (first) == NULL
1086 || bfd_section_name (second) == NULL
1087 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1088 return false;
1089
1090 /* Otherwise check that they are in corresponding objfiles. */
1091
1092 struct objfile *obj = NULL;
1093 for (objfile *objfile : current_program_space->objfiles ())
1094 if (objfile->obfd == first->owner)
1095 {
1096 obj = objfile;
1097 break;
1098 }
1099 gdb_assert (obj != NULL);
1100
1101 if (obj->separate_debug_objfile != NULL
1102 && obj->separate_debug_objfile->obfd == second->owner)
1103 return true;
1104 if (obj->separate_debug_objfile_backlink != NULL
1105 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1106 return true;
1107
1108 return false;
1109 }
1110
1111 /* See symtab.h. */
1112
1113 void
1114 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1115 {
1116 struct bound_minimal_symbol msymbol;
1117
1118 /* If we know that this is not a text address, return failure. This is
1119 necessary because we loop based on texthigh and textlow, which do
1120 not include the data ranges. */
1121 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1122 if (msymbol.minsym && msymbol.minsym->data_p ())
1123 return;
1124
1125 for (objfile *objfile : current_program_space->objfiles ())
1126 {
1127 struct compunit_symtab *cust = NULL;
1128
1129 if (objfile->sf)
1130 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1131 pc, section, 0);
1132 if (cust)
1133 return;
1134 }
1135 }
1136 \f
1137 /* Hash function for the symbol cache. */
1138
1139 static unsigned int
1140 hash_symbol_entry (const struct objfile *objfile_context,
1141 const char *name, domain_enum domain)
1142 {
1143 unsigned int hash = (uintptr_t) objfile_context;
1144
1145 if (name != NULL)
1146 hash += htab_hash_string (name);
1147
1148 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1149 to map to the same slot. */
1150 if (domain == STRUCT_DOMAIN)
1151 hash += VAR_DOMAIN * 7;
1152 else
1153 hash += domain * 7;
1154
1155 return hash;
1156 }
1157
1158 /* Equality function for the symbol cache. */
1159
1160 static int
1161 eq_symbol_entry (const struct symbol_cache_slot *slot,
1162 const struct objfile *objfile_context,
1163 const char *name, domain_enum domain)
1164 {
1165 const char *slot_name;
1166 domain_enum slot_domain;
1167
1168 if (slot->state == SYMBOL_SLOT_UNUSED)
1169 return 0;
1170
1171 if (slot->objfile_context != objfile_context)
1172 return 0;
1173
1174 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1175 {
1176 slot_name = slot->value.not_found.name;
1177 slot_domain = slot->value.not_found.domain;
1178 }
1179 else
1180 {
1181 slot_name = slot->value.found.symbol->search_name ();
1182 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1183 }
1184
1185 /* NULL names match. */
1186 if (slot_name == NULL && name == NULL)
1187 {
1188 /* But there's no point in calling symbol_matches_domain in the
1189 SYMBOL_SLOT_FOUND case. */
1190 if (slot_domain != domain)
1191 return 0;
1192 }
1193 else if (slot_name != NULL && name != NULL)
1194 {
1195 /* It's important that we use the same comparison that was done
1196 the first time through. If the slot records a found symbol,
1197 then this means using the symbol name comparison function of
1198 the symbol's language with symbol->search_name (). See
1199 dictionary.c. It also means using symbol_matches_domain for
1200 found symbols. See block.c.
1201
1202 If the slot records a not-found symbol, then require a precise match.
1203 We could still be lax with whitespace like strcmp_iw though. */
1204
1205 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1206 {
1207 if (strcmp (slot_name, name) != 0)
1208 return 0;
1209 if (slot_domain != domain)
1210 return 0;
1211 }
1212 else
1213 {
1214 struct symbol *sym = slot->value.found.symbol;
1215 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1216
1217 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1218 return 0;
1219
1220 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1221 return 0;
1222 }
1223 }
1224 else
1225 {
1226 /* Only one name is NULL. */
1227 return 0;
1228 }
1229
1230 return 1;
1231 }
1232
1233 /* Given a cache of size SIZE, return the size of the struct (with variable
1234 length array) in bytes. */
1235
1236 static size_t
1237 symbol_cache_byte_size (unsigned int size)
1238 {
1239 return (sizeof (struct block_symbol_cache)
1240 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1241 }
1242
1243 /* Resize CACHE. */
1244
1245 static void
1246 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1247 {
1248 /* If there's no change in size, don't do anything.
1249 All caches have the same size, so we can just compare with the size
1250 of the global symbols cache. */
1251 if ((cache->global_symbols != NULL
1252 && cache->global_symbols->size == new_size)
1253 || (cache->global_symbols == NULL
1254 && new_size == 0))
1255 return;
1256
1257 destroy_block_symbol_cache (cache->global_symbols);
1258 destroy_block_symbol_cache (cache->static_symbols);
1259
1260 if (new_size == 0)
1261 {
1262 cache->global_symbols = NULL;
1263 cache->static_symbols = NULL;
1264 }
1265 else
1266 {
1267 size_t total_size = symbol_cache_byte_size (new_size);
1268
1269 cache->global_symbols
1270 = (struct block_symbol_cache *) xcalloc (1, total_size);
1271 cache->static_symbols
1272 = (struct block_symbol_cache *) xcalloc (1, total_size);
1273 cache->global_symbols->size = new_size;
1274 cache->static_symbols->size = new_size;
1275 }
1276 }
1277
1278 /* Return the symbol cache of PSPACE.
1279 Create one if it doesn't exist yet. */
1280
1281 static struct symbol_cache *
1282 get_symbol_cache (struct program_space *pspace)
1283 {
1284 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1285
1286 if (cache == NULL)
1287 {
1288 cache = symbol_cache_key.emplace (pspace);
1289 resize_symbol_cache (cache, symbol_cache_size);
1290 }
1291
1292 return cache;
1293 }
1294
1295 /* Set the size of the symbol cache in all program spaces. */
1296
1297 static void
1298 set_symbol_cache_size (unsigned int new_size)
1299 {
1300 struct program_space *pspace;
1301
1302 ALL_PSPACES (pspace)
1303 {
1304 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1305
1306 /* The pspace could have been created but not have a cache yet. */
1307 if (cache != NULL)
1308 resize_symbol_cache (cache, new_size);
1309 }
1310 }
1311
1312 /* Called when symbol-cache-size is set. */
1313
1314 static void
1315 set_symbol_cache_size_handler (const char *args, int from_tty,
1316 struct cmd_list_element *c)
1317 {
1318 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1319 {
1320 /* Restore the previous value.
1321 This is the value the "show" command prints. */
1322 new_symbol_cache_size = symbol_cache_size;
1323
1324 error (_("Symbol cache size is too large, max is %u."),
1325 MAX_SYMBOL_CACHE_SIZE);
1326 }
1327 symbol_cache_size = new_symbol_cache_size;
1328
1329 set_symbol_cache_size (symbol_cache_size);
1330 }
1331
1332 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1333 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1334 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1335 failed (and thus this one will too), or NULL if the symbol is not present
1336 in the cache.
1337 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1338 can be used to save the result of a full lookup attempt. */
1339
1340 static struct block_symbol
1341 symbol_cache_lookup (struct symbol_cache *cache,
1342 struct objfile *objfile_context, enum block_enum block,
1343 const char *name, domain_enum domain,
1344 struct block_symbol_cache **bsc_ptr,
1345 struct symbol_cache_slot **slot_ptr)
1346 {
1347 struct block_symbol_cache *bsc;
1348 unsigned int hash;
1349 struct symbol_cache_slot *slot;
1350
1351 if (block == GLOBAL_BLOCK)
1352 bsc = cache->global_symbols;
1353 else
1354 bsc = cache->static_symbols;
1355 if (bsc == NULL)
1356 {
1357 *bsc_ptr = NULL;
1358 *slot_ptr = NULL;
1359 return {};
1360 }
1361
1362 hash = hash_symbol_entry (objfile_context, name, domain);
1363 slot = bsc->symbols + hash % bsc->size;
1364
1365 *bsc_ptr = bsc;
1366 *slot_ptr = slot;
1367
1368 if (eq_symbol_entry (slot, objfile_context, name, domain))
1369 {
1370 if (symbol_lookup_debug)
1371 fprintf_unfiltered (gdb_stdlog,
1372 "%s block symbol cache hit%s for %s, %s\n",
1373 block == GLOBAL_BLOCK ? "Global" : "Static",
1374 slot->state == SYMBOL_SLOT_NOT_FOUND
1375 ? " (not found)" : "",
1376 name, domain_name (domain));
1377 ++bsc->hits;
1378 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1379 return SYMBOL_LOOKUP_FAILED;
1380 return slot->value.found;
1381 }
1382
1383 /* Symbol is not present in the cache. */
1384
1385 if (symbol_lookup_debug)
1386 {
1387 fprintf_unfiltered (gdb_stdlog,
1388 "%s block symbol cache miss for %s, %s\n",
1389 block == GLOBAL_BLOCK ? "Global" : "Static",
1390 name, domain_name (domain));
1391 }
1392 ++bsc->misses;
1393 return {};
1394 }
1395
1396 /* Mark SYMBOL as found in SLOT.
1397 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1398 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1399 necessarily the objfile the symbol was found in. */
1400
1401 static void
1402 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1403 struct symbol_cache_slot *slot,
1404 struct objfile *objfile_context,
1405 struct symbol *symbol,
1406 const struct block *block)
1407 {
1408 if (bsc == NULL)
1409 return;
1410 if (slot->state != SYMBOL_SLOT_UNUSED)
1411 {
1412 ++bsc->collisions;
1413 symbol_cache_clear_slot (slot);
1414 }
1415 slot->state = SYMBOL_SLOT_FOUND;
1416 slot->objfile_context = objfile_context;
1417 slot->value.found.symbol = symbol;
1418 slot->value.found.block = block;
1419 }
1420
1421 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1422 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1423 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1424
1425 static void
1426 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1427 struct symbol_cache_slot *slot,
1428 struct objfile *objfile_context,
1429 const char *name, domain_enum domain)
1430 {
1431 if (bsc == NULL)
1432 return;
1433 if (slot->state != SYMBOL_SLOT_UNUSED)
1434 {
1435 ++bsc->collisions;
1436 symbol_cache_clear_slot (slot);
1437 }
1438 slot->state = SYMBOL_SLOT_NOT_FOUND;
1439 slot->objfile_context = objfile_context;
1440 slot->value.not_found.name = xstrdup (name);
1441 slot->value.not_found.domain = domain;
1442 }
1443
1444 /* Flush the symbol cache of PSPACE. */
1445
1446 static void
1447 symbol_cache_flush (struct program_space *pspace)
1448 {
1449 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1450 int pass;
1451
1452 if (cache == NULL)
1453 return;
1454 if (cache->global_symbols == NULL)
1455 {
1456 gdb_assert (symbol_cache_size == 0);
1457 gdb_assert (cache->static_symbols == NULL);
1458 return;
1459 }
1460
1461 /* If the cache is untouched since the last flush, early exit.
1462 This is important for performance during the startup of a program linked
1463 with 100s (or 1000s) of shared libraries. */
1464 if (cache->global_symbols->misses == 0
1465 && cache->static_symbols->misses == 0)
1466 return;
1467
1468 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1469 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1470
1471 for (pass = 0; pass < 2; ++pass)
1472 {
1473 struct block_symbol_cache *bsc
1474 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1475 unsigned int i;
1476
1477 for (i = 0; i < bsc->size; ++i)
1478 symbol_cache_clear_slot (&bsc->symbols[i]);
1479 }
1480
1481 cache->global_symbols->hits = 0;
1482 cache->global_symbols->misses = 0;
1483 cache->global_symbols->collisions = 0;
1484 cache->static_symbols->hits = 0;
1485 cache->static_symbols->misses = 0;
1486 cache->static_symbols->collisions = 0;
1487 }
1488
1489 /* Dump CACHE. */
1490
1491 static void
1492 symbol_cache_dump (const struct symbol_cache *cache)
1493 {
1494 int pass;
1495
1496 if (cache->global_symbols == NULL)
1497 {
1498 printf_filtered (" <disabled>\n");
1499 return;
1500 }
1501
1502 for (pass = 0; pass < 2; ++pass)
1503 {
1504 const struct block_symbol_cache *bsc
1505 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1506 unsigned int i;
1507
1508 if (pass == 0)
1509 printf_filtered ("Global symbols:\n");
1510 else
1511 printf_filtered ("Static symbols:\n");
1512
1513 for (i = 0; i < bsc->size; ++i)
1514 {
1515 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1516
1517 QUIT;
1518
1519 switch (slot->state)
1520 {
1521 case SYMBOL_SLOT_UNUSED:
1522 break;
1523 case SYMBOL_SLOT_NOT_FOUND:
1524 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1525 host_address_to_string (slot->objfile_context),
1526 slot->value.not_found.name,
1527 domain_name (slot->value.not_found.domain));
1528 break;
1529 case SYMBOL_SLOT_FOUND:
1530 {
1531 struct symbol *found = slot->value.found.symbol;
1532 const struct objfile *context = slot->objfile_context;
1533
1534 printf_filtered (" [%4u] = %s, %s %s\n", i,
1535 host_address_to_string (context),
1536 found->print_name (),
1537 domain_name (SYMBOL_DOMAIN (found)));
1538 break;
1539 }
1540 }
1541 }
1542 }
1543 }
1544
1545 /* The "mt print symbol-cache" command. */
1546
1547 static void
1548 maintenance_print_symbol_cache (const char *args, int from_tty)
1549 {
1550 struct program_space *pspace;
1551
1552 ALL_PSPACES (pspace)
1553 {
1554 struct symbol_cache *cache;
1555
1556 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1557 pspace->num,
1558 pspace->symfile_object_file != NULL
1559 ? objfile_name (pspace->symfile_object_file)
1560 : "(no object file)");
1561
1562 /* If the cache hasn't been created yet, avoid creating one. */
1563 cache = symbol_cache_key.get (pspace);
1564 if (cache == NULL)
1565 printf_filtered (" <empty>\n");
1566 else
1567 symbol_cache_dump (cache);
1568 }
1569 }
1570
1571 /* The "mt flush-symbol-cache" command. */
1572
1573 static void
1574 maintenance_flush_symbol_cache (const char *args, int from_tty)
1575 {
1576 struct program_space *pspace;
1577
1578 ALL_PSPACES (pspace)
1579 {
1580 symbol_cache_flush (pspace);
1581 }
1582 }
1583
1584 /* Print usage statistics of CACHE. */
1585
1586 static void
1587 symbol_cache_stats (struct symbol_cache *cache)
1588 {
1589 int pass;
1590
1591 if (cache->global_symbols == NULL)
1592 {
1593 printf_filtered (" <disabled>\n");
1594 return;
1595 }
1596
1597 for (pass = 0; pass < 2; ++pass)
1598 {
1599 const struct block_symbol_cache *bsc
1600 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1601
1602 QUIT;
1603
1604 if (pass == 0)
1605 printf_filtered ("Global block cache stats:\n");
1606 else
1607 printf_filtered ("Static block cache stats:\n");
1608
1609 printf_filtered (" size: %u\n", bsc->size);
1610 printf_filtered (" hits: %u\n", bsc->hits);
1611 printf_filtered (" misses: %u\n", bsc->misses);
1612 printf_filtered (" collisions: %u\n", bsc->collisions);
1613 }
1614 }
1615
1616 /* The "mt print symbol-cache-statistics" command. */
1617
1618 static void
1619 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1620 {
1621 struct program_space *pspace;
1622
1623 ALL_PSPACES (pspace)
1624 {
1625 struct symbol_cache *cache;
1626
1627 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1628 pspace->num,
1629 pspace->symfile_object_file != NULL
1630 ? objfile_name (pspace->symfile_object_file)
1631 : "(no object file)");
1632
1633 /* If the cache hasn't been created yet, avoid creating one. */
1634 cache = symbol_cache_key.get (pspace);
1635 if (cache == NULL)
1636 printf_filtered (" empty, no stats available\n");
1637 else
1638 symbol_cache_stats (cache);
1639 }
1640 }
1641
1642 /* This module's 'new_objfile' observer. */
1643
1644 static void
1645 symtab_new_objfile_observer (struct objfile *objfile)
1646 {
1647 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1648 symbol_cache_flush (current_program_space);
1649 }
1650
1651 /* This module's 'free_objfile' observer. */
1652
1653 static void
1654 symtab_free_objfile_observer (struct objfile *objfile)
1655 {
1656 symbol_cache_flush (objfile->pspace);
1657 }
1658 \f
1659 /* Debug symbols usually don't have section information. We need to dig that
1660 out of the minimal symbols and stash that in the debug symbol. */
1661
1662 void
1663 fixup_section (struct general_symbol_info *ginfo,
1664 CORE_ADDR addr, struct objfile *objfile)
1665 {
1666 struct minimal_symbol *msym;
1667
1668 /* First, check whether a minimal symbol with the same name exists
1669 and points to the same address. The address check is required
1670 e.g. on PowerPC64, where the minimal symbol for a function will
1671 point to the function descriptor, while the debug symbol will
1672 point to the actual function code. */
1673 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1674 if (msym)
1675 ginfo->section = MSYMBOL_SECTION (msym);
1676 else
1677 {
1678 /* Static, function-local variables do appear in the linker
1679 (minimal) symbols, but are frequently given names that won't
1680 be found via lookup_minimal_symbol(). E.g., it has been
1681 observed in frv-uclinux (ELF) executables that a static,
1682 function-local variable named "foo" might appear in the
1683 linker symbols as "foo.6" or "foo.3". Thus, there is no
1684 point in attempting to extend the lookup-by-name mechanism to
1685 handle this case due to the fact that there can be multiple
1686 names.
1687
1688 So, instead, search the section table when lookup by name has
1689 failed. The ``addr'' and ``endaddr'' fields may have already
1690 been relocated. If so, the relocation offset (i.e. the
1691 ANOFFSET value) needs to be subtracted from these values when
1692 performing the comparison. We unconditionally subtract it,
1693 because, when no relocation has been performed, the ANOFFSET
1694 value will simply be zero.
1695
1696 The address of the symbol whose section we're fixing up HAS
1697 NOT BEEN adjusted (relocated) yet. It can't have been since
1698 the section isn't yet known and knowing the section is
1699 necessary in order to add the correct relocation value. In
1700 other words, we wouldn't even be in this function (attempting
1701 to compute the section) if it were already known.
1702
1703 Note that it is possible to search the minimal symbols
1704 (subtracting the relocation value if necessary) to find the
1705 matching minimal symbol, but this is overkill and much less
1706 efficient. It is not necessary to find the matching minimal
1707 symbol, only its section.
1708
1709 Note that this technique (of doing a section table search)
1710 can fail when unrelocated section addresses overlap. For
1711 this reason, we still attempt a lookup by name prior to doing
1712 a search of the section table. */
1713
1714 struct obj_section *s;
1715 int fallback = -1;
1716
1717 ALL_OBJFILE_OSECTIONS (objfile, s)
1718 {
1719 int idx = s - objfile->sections;
1720 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1721
1722 if (fallback == -1)
1723 fallback = idx;
1724
1725 if (obj_section_addr (s) - offset <= addr
1726 && addr < obj_section_endaddr (s) - offset)
1727 {
1728 ginfo->section = idx;
1729 return;
1730 }
1731 }
1732
1733 /* If we didn't find the section, assume it is in the first
1734 section. If there is no allocated section, then it hardly
1735 matters what we pick, so just pick zero. */
1736 if (fallback == -1)
1737 ginfo->section = 0;
1738 else
1739 ginfo->section = fallback;
1740 }
1741 }
1742
1743 struct symbol *
1744 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1745 {
1746 CORE_ADDR addr;
1747
1748 if (!sym)
1749 return NULL;
1750
1751 if (!SYMBOL_OBJFILE_OWNED (sym))
1752 return sym;
1753
1754 /* We either have an OBJFILE, or we can get at it from the sym's
1755 symtab. Anything else is a bug. */
1756 gdb_assert (objfile || symbol_symtab (sym));
1757
1758 if (objfile == NULL)
1759 objfile = symbol_objfile (sym);
1760
1761 if (SYMBOL_OBJ_SECTION (objfile, sym))
1762 return sym;
1763
1764 /* We should have an objfile by now. */
1765 gdb_assert (objfile);
1766
1767 switch (SYMBOL_CLASS (sym))
1768 {
1769 case LOC_STATIC:
1770 case LOC_LABEL:
1771 addr = SYMBOL_VALUE_ADDRESS (sym);
1772 break;
1773 case LOC_BLOCK:
1774 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1775 break;
1776
1777 default:
1778 /* Nothing else will be listed in the minsyms -- no use looking
1779 it up. */
1780 return sym;
1781 }
1782
1783 fixup_section (sym, addr, objfile);
1784
1785 return sym;
1786 }
1787
1788 /* See symtab.h. */
1789
1790 demangle_for_lookup_info::demangle_for_lookup_info
1791 (const lookup_name_info &lookup_name, language lang)
1792 {
1793 demangle_result_storage storage;
1794
1795 if (lookup_name.ignore_parameters () && lang == language_cplus)
1796 {
1797 gdb::unique_xmalloc_ptr<char> without_params
1798 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1799 lookup_name.completion_mode ());
1800
1801 if (without_params != NULL)
1802 {
1803 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1804 m_demangled_name = demangle_for_lookup (without_params.get (),
1805 lang, storage);
1806 return;
1807 }
1808 }
1809
1810 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1811 m_demangled_name = lookup_name.name ();
1812 else
1813 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1814 lang, storage);
1815 }
1816
1817 /* See symtab.h. */
1818
1819 const lookup_name_info &
1820 lookup_name_info::match_any ()
1821 {
1822 /* Lookup any symbol that "" would complete. I.e., this matches all
1823 symbol names. */
1824 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1825 true);
1826
1827 return lookup_name;
1828 }
1829
1830 /* Compute the demangled form of NAME as used by the various symbol
1831 lookup functions. The result can either be the input NAME
1832 directly, or a pointer to a buffer owned by the STORAGE object.
1833
1834 For Ada, this function just returns NAME, unmodified.
1835 Normally, Ada symbol lookups are performed using the encoded name
1836 rather than the demangled name, and so it might seem to make sense
1837 for this function to return an encoded version of NAME.
1838 Unfortunately, we cannot do this, because this function is used in
1839 circumstances where it is not appropriate to try to encode NAME.
1840 For instance, when displaying the frame info, we demangle the name
1841 of each parameter, and then perform a symbol lookup inside our
1842 function using that demangled name. In Ada, certain functions
1843 have internally-generated parameters whose name contain uppercase
1844 characters. Encoding those name would result in those uppercase
1845 characters to become lowercase, and thus cause the symbol lookup
1846 to fail. */
1847
1848 const char *
1849 demangle_for_lookup (const char *name, enum language lang,
1850 demangle_result_storage &storage)
1851 {
1852 /* If we are using C++, D, or Go, demangle the name before doing a
1853 lookup, so we can always binary search. */
1854 if (lang == language_cplus)
1855 {
1856 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1857 if (demangled_name != NULL)
1858 return storage.set_malloc_ptr (demangled_name);
1859
1860 /* If we were given a non-mangled name, canonicalize it
1861 according to the language (so far only for C++). */
1862 std::string canon = cp_canonicalize_string (name);
1863 if (!canon.empty ())
1864 return storage.swap_string (canon);
1865 }
1866 else if (lang == language_d)
1867 {
1868 char *demangled_name = d_demangle (name, 0);
1869 if (demangled_name != NULL)
1870 return storage.set_malloc_ptr (demangled_name);
1871 }
1872 else if (lang == language_go)
1873 {
1874 char *demangled_name = go_demangle (name, 0);
1875 if (demangled_name != NULL)
1876 return storage.set_malloc_ptr (demangled_name);
1877 }
1878
1879 return name;
1880 }
1881
1882 /* See symtab.h. */
1883
1884 unsigned int
1885 search_name_hash (enum language language, const char *search_name)
1886 {
1887 return language_def (language)->la_search_name_hash (search_name);
1888 }
1889
1890 /* See symtab.h.
1891
1892 This function (or rather its subordinates) have a bunch of loops and
1893 it would seem to be attractive to put in some QUIT's (though I'm not really
1894 sure whether it can run long enough to be really important). But there
1895 are a few calls for which it would appear to be bad news to quit
1896 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1897 that there is C++ code below which can error(), but that probably
1898 doesn't affect these calls since they are looking for a known
1899 variable and thus can probably assume it will never hit the C++
1900 code). */
1901
1902 struct block_symbol
1903 lookup_symbol_in_language (const char *name, const struct block *block,
1904 const domain_enum domain, enum language lang,
1905 struct field_of_this_result *is_a_field_of_this)
1906 {
1907 demangle_result_storage storage;
1908 const char *modified_name = demangle_for_lookup (name, lang, storage);
1909
1910 return lookup_symbol_aux (modified_name,
1911 symbol_name_match_type::FULL,
1912 block, domain, lang,
1913 is_a_field_of_this);
1914 }
1915
1916 /* See symtab.h. */
1917
1918 struct block_symbol
1919 lookup_symbol (const char *name, const struct block *block,
1920 domain_enum domain,
1921 struct field_of_this_result *is_a_field_of_this)
1922 {
1923 return lookup_symbol_in_language (name, block, domain,
1924 current_language->la_language,
1925 is_a_field_of_this);
1926 }
1927
1928 /* See symtab.h. */
1929
1930 struct block_symbol
1931 lookup_symbol_search_name (const char *search_name, const struct block *block,
1932 domain_enum domain)
1933 {
1934 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1935 block, domain, language_asm, NULL);
1936 }
1937
1938 /* See symtab.h. */
1939
1940 struct block_symbol
1941 lookup_language_this (const struct language_defn *lang,
1942 const struct block *block)
1943 {
1944 if (lang->la_name_of_this == NULL || block == NULL)
1945 return {};
1946
1947 if (symbol_lookup_debug > 1)
1948 {
1949 struct objfile *objfile = lookup_objfile_from_block (block);
1950
1951 fprintf_unfiltered (gdb_stdlog,
1952 "lookup_language_this (%s, %s (objfile %s))",
1953 lang->la_name, host_address_to_string (block),
1954 objfile_debug_name (objfile));
1955 }
1956
1957 while (block)
1958 {
1959 struct symbol *sym;
1960
1961 sym = block_lookup_symbol (block, lang->la_name_of_this,
1962 symbol_name_match_type::SEARCH_NAME,
1963 VAR_DOMAIN);
1964 if (sym != NULL)
1965 {
1966 if (symbol_lookup_debug > 1)
1967 {
1968 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1969 sym->print_name (),
1970 host_address_to_string (sym),
1971 host_address_to_string (block));
1972 }
1973 return (struct block_symbol) {sym, block};
1974 }
1975 if (BLOCK_FUNCTION (block))
1976 break;
1977 block = BLOCK_SUPERBLOCK (block);
1978 }
1979
1980 if (symbol_lookup_debug > 1)
1981 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1982 return {};
1983 }
1984
1985 /* Given TYPE, a structure/union,
1986 return 1 if the component named NAME from the ultimate target
1987 structure/union is defined, otherwise, return 0. */
1988
1989 static int
1990 check_field (struct type *type, const char *name,
1991 struct field_of_this_result *is_a_field_of_this)
1992 {
1993 int i;
1994
1995 /* The type may be a stub. */
1996 type = check_typedef (type);
1997
1998 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1999 {
2000 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2001
2002 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2003 {
2004 is_a_field_of_this->type = type;
2005 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2006 return 1;
2007 }
2008 }
2009
2010 /* C++: If it was not found as a data field, then try to return it
2011 as a pointer to a method. */
2012
2013 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2014 {
2015 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2016 {
2017 is_a_field_of_this->type = type;
2018 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2019 return 1;
2020 }
2021 }
2022
2023 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2024 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2025 return 1;
2026
2027 return 0;
2028 }
2029
2030 /* Behave like lookup_symbol except that NAME is the natural name
2031 (e.g., demangled name) of the symbol that we're looking for. */
2032
2033 static struct block_symbol
2034 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2035 const struct block *block,
2036 const domain_enum domain, enum language language,
2037 struct field_of_this_result *is_a_field_of_this)
2038 {
2039 struct block_symbol result;
2040 const struct language_defn *langdef;
2041
2042 if (symbol_lookup_debug)
2043 {
2044 struct objfile *objfile = lookup_objfile_from_block (block);
2045
2046 fprintf_unfiltered (gdb_stdlog,
2047 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2048 name, host_address_to_string (block),
2049 objfile != NULL
2050 ? objfile_debug_name (objfile) : "NULL",
2051 domain_name (domain), language_str (language));
2052 }
2053
2054 /* Make sure we do something sensible with is_a_field_of_this, since
2055 the callers that set this parameter to some non-null value will
2056 certainly use it later. If we don't set it, the contents of
2057 is_a_field_of_this are undefined. */
2058 if (is_a_field_of_this != NULL)
2059 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2060
2061 /* Search specified block and its superiors. Don't search
2062 STATIC_BLOCK or GLOBAL_BLOCK. */
2063
2064 result = lookup_local_symbol (name, match_type, block, domain, language);
2065 if (result.symbol != NULL)
2066 {
2067 if (symbol_lookup_debug)
2068 {
2069 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2070 host_address_to_string (result.symbol));
2071 }
2072 return result;
2073 }
2074
2075 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2076 check to see if NAME is a field of `this'. */
2077
2078 langdef = language_def (language);
2079
2080 /* Don't do this check if we are searching for a struct. It will
2081 not be found by check_field, but will be found by other
2082 means. */
2083 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2084 {
2085 result = lookup_language_this (langdef, block);
2086
2087 if (result.symbol)
2088 {
2089 struct type *t = result.symbol->type;
2090
2091 /* I'm not really sure that type of this can ever
2092 be typedefed; just be safe. */
2093 t = check_typedef (t);
2094 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2095 t = TYPE_TARGET_TYPE (t);
2096
2097 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2098 && TYPE_CODE (t) != TYPE_CODE_UNION)
2099 error (_("Internal error: `%s' is not an aggregate"),
2100 langdef->la_name_of_this);
2101
2102 if (check_field (t, name, is_a_field_of_this))
2103 {
2104 if (symbol_lookup_debug)
2105 {
2106 fprintf_unfiltered (gdb_stdlog,
2107 "lookup_symbol_aux (...) = NULL\n");
2108 }
2109 return {};
2110 }
2111 }
2112 }
2113
2114 /* Now do whatever is appropriate for LANGUAGE to look
2115 up static and global variables. */
2116
2117 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2118 if (result.symbol != NULL)
2119 {
2120 if (symbol_lookup_debug)
2121 {
2122 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2123 host_address_to_string (result.symbol));
2124 }
2125 return result;
2126 }
2127
2128 /* Now search all static file-level symbols. Not strictly correct,
2129 but more useful than an error. */
2130
2131 result = lookup_static_symbol (name, domain);
2132 if (symbol_lookup_debug)
2133 {
2134 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2135 result.symbol != NULL
2136 ? host_address_to_string (result.symbol)
2137 : "NULL");
2138 }
2139 return result;
2140 }
2141
2142 /* Check to see if the symbol is defined in BLOCK or its superiors.
2143 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2144
2145 static struct block_symbol
2146 lookup_local_symbol (const char *name,
2147 symbol_name_match_type match_type,
2148 const struct block *block,
2149 const domain_enum domain,
2150 enum language language)
2151 {
2152 struct symbol *sym;
2153 const struct block *static_block = block_static_block (block);
2154 const char *scope = block_scope (block);
2155
2156 /* Check if either no block is specified or it's a global block. */
2157
2158 if (static_block == NULL)
2159 return {};
2160
2161 while (block != static_block)
2162 {
2163 sym = lookup_symbol_in_block (name, match_type, block, domain);
2164 if (sym != NULL)
2165 return (struct block_symbol) {sym, block};
2166
2167 if (language == language_cplus || language == language_fortran)
2168 {
2169 struct block_symbol blocksym
2170 = cp_lookup_symbol_imports_or_template (scope, name, block,
2171 domain);
2172
2173 if (blocksym.symbol != NULL)
2174 return blocksym;
2175 }
2176
2177 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2178 break;
2179 block = BLOCK_SUPERBLOCK (block);
2180 }
2181
2182 /* We've reached the end of the function without finding a result. */
2183
2184 return {};
2185 }
2186
2187 /* See symtab.h. */
2188
2189 struct objfile *
2190 lookup_objfile_from_block (const struct block *block)
2191 {
2192 if (block == NULL)
2193 return NULL;
2194
2195 block = block_global_block (block);
2196 /* Look through all blockvectors. */
2197 for (objfile *obj : current_program_space->objfiles ())
2198 {
2199 for (compunit_symtab *cust : obj->compunits ())
2200 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2201 GLOBAL_BLOCK))
2202 {
2203 if (obj->separate_debug_objfile_backlink)
2204 obj = obj->separate_debug_objfile_backlink;
2205
2206 return obj;
2207 }
2208 }
2209
2210 return NULL;
2211 }
2212
2213 /* See symtab.h. */
2214
2215 struct symbol *
2216 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2217 const struct block *block,
2218 const domain_enum domain)
2219 {
2220 struct symbol *sym;
2221
2222 if (symbol_lookup_debug > 1)
2223 {
2224 struct objfile *objfile = lookup_objfile_from_block (block);
2225
2226 fprintf_unfiltered (gdb_stdlog,
2227 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2228 name, host_address_to_string (block),
2229 objfile_debug_name (objfile),
2230 domain_name (domain));
2231 }
2232
2233 sym = block_lookup_symbol (block, name, match_type, domain);
2234 if (sym)
2235 {
2236 if (symbol_lookup_debug > 1)
2237 {
2238 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2239 host_address_to_string (sym));
2240 }
2241 return fixup_symbol_section (sym, NULL);
2242 }
2243
2244 if (symbol_lookup_debug > 1)
2245 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2246 return NULL;
2247 }
2248
2249 /* See symtab.h. */
2250
2251 struct block_symbol
2252 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2253 enum block_enum block_index,
2254 const char *name,
2255 const domain_enum domain)
2256 {
2257 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2258
2259 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2260 {
2261 struct block_symbol result
2262 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2263
2264 if (result.symbol != nullptr)
2265 return result;
2266 }
2267
2268 return {};
2269 }
2270
2271 /* Check to see if the symbol is defined in one of the OBJFILE's
2272 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2273 depending on whether or not we want to search global symbols or
2274 static symbols. */
2275
2276 static struct block_symbol
2277 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2278 enum block_enum block_index, const char *name,
2279 const domain_enum domain)
2280 {
2281 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2282
2283 if (symbol_lookup_debug > 1)
2284 {
2285 fprintf_unfiltered (gdb_stdlog,
2286 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2287 objfile_debug_name (objfile),
2288 block_index == GLOBAL_BLOCK
2289 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2290 name, domain_name (domain));
2291 }
2292
2293 for (compunit_symtab *cust : objfile->compunits ())
2294 {
2295 const struct blockvector *bv;
2296 const struct block *block;
2297 struct block_symbol result;
2298
2299 bv = COMPUNIT_BLOCKVECTOR (cust);
2300 block = BLOCKVECTOR_BLOCK (bv, block_index);
2301 result.symbol = block_lookup_symbol_primary (block, name, domain);
2302 result.block = block;
2303 if (result.symbol != NULL)
2304 {
2305 if (symbol_lookup_debug > 1)
2306 {
2307 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2308 host_address_to_string (result.symbol),
2309 host_address_to_string (block));
2310 }
2311 result.symbol = fixup_symbol_section (result.symbol, objfile);
2312 return result;
2313
2314 }
2315 }
2316
2317 if (symbol_lookup_debug > 1)
2318 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2319 return {};
2320 }
2321
2322 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2323 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2324 and all associated separate debug objfiles.
2325
2326 Normally we only look in OBJFILE, and not any separate debug objfiles
2327 because the outer loop will cause them to be searched too. This case is
2328 different. Here we're called from search_symbols where it will only
2329 call us for the objfile that contains a matching minsym. */
2330
2331 static struct block_symbol
2332 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2333 const char *linkage_name,
2334 domain_enum domain)
2335 {
2336 enum language lang = current_language->la_language;
2337 struct objfile *main_objfile;
2338
2339 demangle_result_storage storage;
2340 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2341
2342 if (objfile->separate_debug_objfile_backlink)
2343 main_objfile = objfile->separate_debug_objfile_backlink;
2344 else
2345 main_objfile = objfile;
2346
2347 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2348 {
2349 struct block_symbol result;
2350
2351 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2352 modified_name, domain);
2353 if (result.symbol == NULL)
2354 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2355 modified_name, domain);
2356 if (result.symbol != NULL)
2357 return result;
2358 }
2359
2360 return {};
2361 }
2362
2363 /* A helper function that throws an exception when a symbol was found
2364 in a psymtab but not in a symtab. */
2365
2366 static void ATTRIBUTE_NORETURN
2367 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2368 struct compunit_symtab *cust)
2369 {
2370 error (_("\
2371 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2372 %s may be an inlined function, or may be a template function\n \
2373 (if a template, try specifying an instantiation: %s<type>)."),
2374 block_index == GLOBAL_BLOCK ? "global" : "static",
2375 name,
2376 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2377 name, name);
2378 }
2379
2380 /* A helper function for various lookup routines that interfaces with
2381 the "quick" symbol table functions. */
2382
2383 static struct block_symbol
2384 lookup_symbol_via_quick_fns (struct objfile *objfile,
2385 enum block_enum block_index, const char *name,
2386 const domain_enum domain)
2387 {
2388 struct compunit_symtab *cust;
2389 const struct blockvector *bv;
2390 const struct block *block;
2391 struct block_symbol result;
2392
2393 if (!objfile->sf)
2394 return {};
2395
2396 if (symbol_lookup_debug > 1)
2397 {
2398 fprintf_unfiltered (gdb_stdlog,
2399 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2400 objfile_debug_name (objfile),
2401 block_index == GLOBAL_BLOCK
2402 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2403 name, domain_name (domain));
2404 }
2405
2406 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2407 if (cust == NULL)
2408 {
2409 if (symbol_lookup_debug > 1)
2410 {
2411 fprintf_unfiltered (gdb_stdlog,
2412 "lookup_symbol_via_quick_fns (...) = NULL\n");
2413 }
2414 return {};
2415 }
2416
2417 bv = COMPUNIT_BLOCKVECTOR (cust);
2418 block = BLOCKVECTOR_BLOCK (bv, block_index);
2419 result.symbol = block_lookup_symbol (block, name,
2420 symbol_name_match_type::FULL, domain);
2421 if (result.symbol == NULL)
2422 error_in_psymtab_expansion (block_index, name, cust);
2423
2424 if (symbol_lookup_debug > 1)
2425 {
2426 fprintf_unfiltered (gdb_stdlog,
2427 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2428 host_address_to_string (result.symbol),
2429 host_address_to_string (block));
2430 }
2431
2432 result.symbol = fixup_symbol_section (result.symbol, objfile);
2433 result.block = block;
2434 return result;
2435 }
2436
2437 /* See symtab.h. */
2438
2439 struct block_symbol
2440 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2441 const char *name,
2442 const struct block *block,
2443 const domain_enum domain)
2444 {
2445 struct block_symbol result;
2446
2447 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2448 the current objfile. Searching the current objfile first is useful
2449 for both matching user expectations as well as performance. */
2450
2451 result = lookup_symbol_in_static_block (name, block, domain);
2452 if (result.symbol != NULL)
2453 return result;
2454
2455 /* If we didn't find a definition for a builtin type in the static block,
2456 search for it now. This is actually the right thing to do and can be
2457 a massive performance win. E.g., when debugging a program with lots of
2458 shared libraries we could search all of them only to find out the
2459 builtin type isn't defined in any of them. This is common for types
2460 like "void". */
2461 if (domain == VAR_DOMAIN)
2462 {
2463 struct gdbarch *gdbarch;
2464
2465 if (block == NULL)
2466 gdbarch = target_gdbarch ();
2467 else
2468 gdbarch = block_gdbarch (block);
2469 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2470 gdbarch, name);
2471 result.block = NULL;
2472 if (result.symbol != NULL)
2473 return result;
2474 }
2475
2476 return lookup_global_symbol (name, block, domain);
2477 }
2478
2479 /* See symtab.h. */
2480
2481 struct block_symbol
2482 lookup_symbol_in_static_block (const char *name,
2483 const struct block *block,
2484 const domain_enum domain)
2485 {
2486 const struct block *static_block = block_static_block (block);
2487 struct symbol *sym;
2488
2489 if (static_block == NULL)
2490 return {};
2491
2492 if (symbol_lookup_debug)
2493 {
2494 struct objfile *objfile = lookup_objfile_from_block (static_block);
2495
2496 fprintf_unfiltered (gdb_stdlog,
2497 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2498 " %s)\n",
2499 name,
2500 host_address_to_string (block),
2501 objfile_debug_name (objfile),
2502 domain_name (domain));
2503 }
2504
2505 sym = lookup_symbol_in_block (name,
2506 symbol_name_match_type::FULL,
2507 static_block, domain);
2508 if (symbol_lookup_debug)
2509 {
2510 fprintf_unfiltered (gdb_stdlog,
2511 "lookup_symbol_in_static_block (...) = %s\n",
2512 sym != NULL ? host_address_to_string (sym) : "NULL");
2513 }
2514 return (struct block_symbol) {sym, static_block};
2515 }
2516
2517 /* Perform the standard symbol lookup of NAME in OBJFILE:
2518 1) First search expanded symtabs, and if not found
2519 2) Search the "quick" symtabs (partial or .gdb_index).
2520 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2521
2522 static struct block_symbol
2523 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2524 const char *name, const domain_enum domain)
2525 {
2526 struct block_symbol result;
2527
2528 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2529
2530 if (symbol_lookup_debug)
2531 {
2532 fprintf_unfiltered (gdb_stdlog,
2533 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2534 objfile_debug_name (objfile),
2535 block_index == GLOBAL_BLOCK
2536 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2537 name, domain_name (domain));
2538 }
2539
2540 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2541 name, domain);
2542 if (result.symbol != NULL)
2543 {
2544 if (symbol_lookup_debug)
2545 {
2546 fprintf_unfiltered (gdb_stdlog,
2547 "lookup_symbol_in_objfile (...) = %s"
2548 " (in symtabs)\n",
2549 host_address_to_string (result.symbol));
2550 }
2551 return result;
2552 }
2553
2554 result = lookup_symbol_via_quick_fns (objfile, block_index,
2555 name, domain);
2556 if (symbol_lookup_debug)
2557 {
2558 fprintf_unfiltered (gdb_stdlog,
2559 "lookup_symbol_in_objfile (...) = %s%s\n",
2560 result.symbol != NULL
2561 ? host_address_to_string (result.symbol)
2562 : "NULL",
2563 result.symbol != NULL ? " (via quick fns)" : "");
2564 }
2565 return result;
2566 }
2567
2568 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2569
2570 struct global_or_static_sym_lookup_data
2571 {
2572 /* The name of the symbol we are searching for. */
2573 const char *name;
2574
2575 /* The domain to use for our search. */
2576 domain_enum domain;
2577
2578 /* The block index in which to search. */
2579 enum block_enum block_index;
2580
2581 /* The field where the callback should store the symbol if found.
2582 It should be initialized to {NULL, NULL} before the search is started. */
2583 struct block_symbol result;
2584 };
2585
2586 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2587 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2588 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2589 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2590
2591 static int
2592 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2593 void *cb_data)
2594 {
2595 struct global_or_static_sym_lookup_data *data =
2596 (struct global_or_static_sym_lookup_data *) cb_data;
2597
2598 gdb_assert (data->result.symbol == NULL
2599 && data->result.block == NULL);
2600
2601 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2602 data->name, data->domain);
2603
2604 /* If we found a match, tell the iterator to stop. Otherwise,
2605 keep going. */
2606 return (data->result.symbol != NULL);
2607 }
2608
2609 /* This function contains the common code of lookup_{global,static}_symbol.
2610 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2611 the objfile to start the lookup in. */
2612
2613 static struct block_symbol
2614 lookup_global_or_static_symbol (const char *name,
2615 enum block_enum block_index,
2616 struct objfile *objfile,
2617 const domain_enum domain)
2618 {
2619 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2620 struct block_symbol result;
2621 struct global_or_static_sym_lookup_data lookup_data;
2622 struct block_symbol_cache *bsc;
2623 struct symbol_cache_slot *slot;
2624
2625 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2626 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2627
2628 /* First see if we can find the symbol in the cache.
2629 This works because we use the current objfile to qualify the lookup. */
2630 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2631 &bsc, &slot);
2632 if (result.symbol != NULL)
2633 {
2634 if (SYMBOL_LOOKUP_FAILED_P (result))
2635 return {};
2636 return result;
2637 }
2638
2639 /* Do a global search (of global blocks, heh). */
2640 if (result.symbol == NULL)
2641 {
2642 memset (&lookup_data, 0, sizeof (lookup_data));
2643 lookup_data.name = name;
2644 lookup_data.block_index = block_index;
2645 lookup_data.domain = domain;
2646 gdbarch_iterate_over_objfiles_in_search_order
2647 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2648 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2649 result = lookup_data.result;
2650 }
2651
2652 if (result.symbol != NULL)
2653 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2654 else
2655 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2656
2657 return result;
2658 }
2659
2660 /* See symtab.h. */
2661
2662 struct block_symbol
2663 lookup_static_symbol (const char *name, const domain_enum domain)
2664 {
2665 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2666 }
2667
2668 /* See symtab.h. */
2669
2670 struct block_symbol
2671 lookup_global_symbol (const char *name,
2672 const struct block *block,
2673 const domain_enum domain)
2674 {
2675 /* If a block was passed in, we want to search the corresponding
2676 global block first. This yields "more expected" behavior, and is
2677 needed to support 'FILENAME'::VARIABLE lookups. */
2678 const struct block *global_block = block_global_block (block);
2679 if (global_block != nullptr)
2680 {
2681 symbol *sym = lookup_symbol_in_block (name,
2682 symbol_name_match_type::FULL,
2683 global_block, domain);
2684 if (sym != nullptr)
2685 return { sym, global_block };
2686 }
2687
2688 struct objfile *objfile = lookup_objfile_from_block (block);
2689 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2690 }
2691
2692 bool
2693 symbol_matches_domain (enum language symbol_language,
2694 domain_enum symbol_domain,
2695 domain_enum domain)
2696 {
2697 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2698 Similarly, any Ada type declaration implicitly defines a typedef. */
2699 if (symbol_language == language_cplus
2700 || symbol_language == language_d
2701 || symbol_language == language_ada
2702 || symbol_language == language_rust)
2703 {
2704 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2705 && symbol_domain == STRUCT_DOMAIN)
2706 return true;
2707 }
2708 /* For all other languages, strict match is required. */
2709 return (symbol_domain == domain);
2710 }
2711
2712 /* See symtab.h. */
2713
2714 struct type *
2715 lookup_transparent_type (const char *name)
2716 {
2717 return current_language->la_lookup_transparent_type (name);
2718 }
2719
2720 /* A helper for basic_lookup_transparent_type that interfaces with the
2721 "quick" symbol table functions. */
2722
2723 static struct type *
2724 basic_lookup_transparent_type_quick (struct objfile *objfile,
2725 enum block_enum block_index,
2726 const char *name)
2727 {
2728 struct compunit_symtab *cust;
2729 const struct blockvector *bv;
2730 const struct block *block;
2731 struct symbol *sym;
2732
2733 if (!objfile->sf)
2734 return NULL;
2735 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2736 STRUCT_DOMAIN);
2737 if (cust == NULL)
2738 return NULL;
2739
2740 bv = COMPUNIT_BLOCKVECTOR (cust);
2741 block = BLOCKVECTOR_BLOCK (bv, block_index);
2742 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2743 block_find_non_opaque_type, NULL);
2744 if (sym == NULL)
2745 error_in_psymtab_expansion (block_index, name, cust);
2746 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2747 return SYMBOL_TYPE (sym);
2748 }
2749
2750 /* Subroutine of basic_lookup_transparent_type to simplify it.
2751 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2752 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2753
2754 static struct type *
2755 basic_lookup_transparent_type_1 (struct objfile *objfile,
2756 enum block_enum block_index,
2757 const char *name)
2758 {
2759 const struct blockvector *bv;
2760 const struct block *block;
2761 const struct symbol *sym;
2762
2763 for (compunit_symtab *cust : objfile->compunits ())
2764 {
2765 bv = COMPUNIT_BLOCKVECTOR (cust);
2766 block = BLOCKVECTOR_BLOCK (bv, block_index);
2767 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2768 block_find_non_opaque_type, NULL);
2769 if (sym != NULL)
2770 {
2771 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2772 return SYMBOL_TYPE (sym);
2773 }
2774 }
2775
2776 return NULL;
2777 }
2778
2779 /* The standard implementation of lookup_transparent_type. This code
2780 was modeled on lookup_symbol -- the parts not relevant to looking
2781 up types were just left out. In particular it's assumed here that
2782 types are available in STRUCT_DOMAIN and only in file-static or
2783 global blocks. */
2784
2785 struct type *
2786 basic_lookup_transparent_type (const char *name)
2787 {
2788 struct type *t;
2789
2790 /* Now search all the global symbols. Do the symtab's first, then
2791 check the psymtab's. If a psymtab indicates the existence
2792 of the desired name as a global, then do psymtab-to-symtab
2793 conversion on the fly and return the found symbol. */
2794
2795 for (objfile *objfile : current_program_space->objfiles ())
2796 {
2797 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2798 if (t)
2799 return t;
2800 }
2801
2802 for (objfile *objfile : current_program_space->objfiles ())
2803 {
2804 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2805 if (t)
2806 return t;
2807 }
2808
2809 /* Now search the static file-level symbols.
2810 Not strictly correct, but more useful than an error.
2811 Do the symtab's first, then
2812 check the psymtab's. If a psymtab indicates the existence
2813 of the desired name as a file-level static, then do psymtab-to-symtab
2814 conversion on the fly and return the found symbol. */
2815
2816 for (objfile *objfile : current_program_space->objfiles ())
2817 {
2818 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2819 if (t)
2820 return t;
2821 }
2822
2823 for (objfile *objfile : current_program_space->objfiles ())
2824 {
2825 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2826 if (t)
2827 return t;
2828 }
2829
2830 return (struct type *) 0;
2831 }
2832
2833 /* See symtab.h. */
2834
2835 bool
2836 iterate_over_symbols (const struct block *block,
2837 const lookup_name_info &name,
2838 const domain_enum domain,
2839 gdb::function_view<symbol_found_callback_ftype> callback)
2840 {
2841 struct block_iterator iter;
2842 struct symbol *sym;
2843
2844 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2845 {
2846 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2847 {
2848 struct block_symbol block_sym = {sym, block};
2849
2850 if (!callback (&block_sym))
2851 return false;
2852 }
2853 }
2854 return true;
2855 }
2856
2857 /* See symtab.h. */
2858
2859 bool
2860 iterate_over_symbols_terminated
2861 (const struct block *block,
2862 const lookup_name_info &name,
2863 const domain_enum domain,
2864 gdb::function_view<symbol_found_callback_ftype> callback)
2865 {
2866 if (!iterate_over_symbols (block, name, domain, callback))
2867 return false;
2868 struct block_symbol block_sym = {nullptr, block};
2869 return callback (&block_sym);
2870 }
2871
2872 /* Find the compunit symtab associated with PC and SECTION.
2873 This will read in debug info as necessary. */
2874
2875 struct compunit_symtab *
2876 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2877 {
2878 struct compunit_symtab *best_cust = NULL;
2879 CORE_ADDR distance = 0;
2880 struct bound_minimal_symbol msymbol;
2881
2882 /* If we know that this is not a text address, return failure. This is
2883 necessary because we loop based on the block's high and low code
2884 addresses, which do not include the data ranges, and because
2885 we call find_pc_sect_psymtab which has a similar restriction based
2886 on the partial_symtab's texthigh and textlow. */
2887 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2888 if (msymbol.minsym && msymbol.minsym->data_p ())
2889 return NULL;
2890
2891 /* Search all symtabs for the one whose file contains our address, and which
2892 is the smallest of all the ones containing the address. This is designed
2893 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2894 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2895 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2896
2897 This happens for native ecoff format, where code from included files
2898 gets its own symtab. The symtab for the included file should have
2899 been read in already via the dependency mechanism.
2900 It might be swifter to create several symtabs with the same name
2901 like xcoff does (I'm not sure).
2902
2903 It also happens for objfiles that have their functions reordered.
2904 For these, the symtab we are looking for is not necessarily read in. */
2905
2906 for (objfile *obj_file : current_program_space->objfiles ())
2907 {
2908 for (compunit_symtab *cust : obj_file->compunits ())
2909 {
2910 const struct block *b;
2911 const struct blockvector *bv;
2912
2913 bv = COMPUNIT_BLOCKVECTOR (cust);
2914 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2915
2916 if (BLOCK_START (b) <= pc
2917 && BLOCK_END (b) > pc
2918 && (distance == 0
2919 || BLOCK_END (b) - BLOCK_START (b) < distance))
2920 {
2921 /* For an objfile that has its functions reordered,
2922 find_pc_psymtab will find the proper partial symbol table
2923 and we simply return its corresponding symtab. */
2924 /* In order to better support objfiles that contain both
2925 stabs and coff debugging info, we continue on if a psymtab
2926 can't be found. */
2927 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2928 {
2929 struct compunit_symtab *result;
2930
2931 result
2932 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2933 msymbol,
2934 pc,
2935 section,
2936 0);
2937 if (result != NULL)
2938 return result;
2939 }
2940 if (section != 0)
2941 {
2942 struct block_iterator iter;
2943 struct symbol *sym = NULL;
2944
2945 ALL_BLOCK_SYMBOLS (b, iter, sym)
2946 {
2947 fixup_symbol_section (sym, obj_file);
2948 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2949 sym),
2950 section))
2951 break;
2952 }
2953 if (sym == NULL)
2954 continue; /* No symbol in this symtab matches
2955 section. */
2956 }
2957 distance = BLOCK_END (b) - BLOCK_START (b);
2958 best_cust = cust;
2959 }
2960 }
2961 }
2962
2963 if (best_cust != NULL)
2964 return best_cust;
2965
2966 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2967
2968 for (objfile *objf : current_program_space->objfiles ())
2969 {
2970 struct compunit_symtab *result;
2971
2972 if (!objf->sf)
2973 continue;
2974 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2975 msymbol,
2976 pc, section,
2977 1);
2978 if (result != NULL)
2979 return result;
2980 }
2981
2982 return NULL;
2983 }
2984
2985 /* Find the compunit symtab associated with PC.
2986 This will read in debug info as necessary.
2987 Backward compatibility, no section. */
2988
2989 struct compunit_symtab *
2990 find_pc_compunit_symtab (CORE_ADDR pc)
2991 {
2992 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2993 }
2994
2995 /* See symtab.h. */
2996
2997 struct symbol *
2998 find_symbol_at_address (CORE_ADDR address)
2999 {
3000 for (objfile *objfile : current_program_space->objfiles ())
3001 {
3002 if (objfile->sf == NULL
3003 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3004 continue;
3005
3006 struct compunit_symtab *symtab
3007 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3008 if (symtab != NULL)
3009 {
3010 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3011
3012 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3013 {
3014 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3015 struct block_iterator iter;
3016 struct symbol *sym;
3017
3018 ALL_BLOCK_SYMBOLS (b, iter, sym)
3019 {
3020 if (SYMBOL_CLASS (sym) == LOC_STATIC
3021 && SYMBOL_VALUE_ADDRESS (sym) == address)
3022 return sym;
3023 }
3024 }
3025 }
3026 }
3027
3028 return NULL;
3029 }
3030
3031 \f
3032
3033 /* Find the source file and line number for a given PC value and SECTION.
3034 Return a structure containing a symtab pointer, a line number,
3035 and a pc range for the entire source line.
3036 The value's .pc field is NOT the specified pc.
3037 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3038 use the line that ends there. Otherwise, in that case, the line
3039 that begins there is used. */
3040
3041 /* The big complication here is that a line may start in one file, and end just
3042 before the start of another file. This usually occurs when you #include
3043 code in the middle of a subroutine. To properly find the end of a line's PC
3044 range, we must search all symtabs associated with this compilation unit, and
3045 find the one whose first PC is closer than that of the next line in this
3046 symtab. */
3047
3048 struct symtab_and_line
3049 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3050 {
3051 struct compunit_symtab *cust;
3052 struct linetable *l;
3053 int len;
3054 struct linetable_entry *item;
3055 const struct blockvector *bv;
3056 struct bound_minimal_symbol msymbol;
3057
3058 /* Info on best line seen so far, and where it starts, and its file. */
3059
3060 struct linetable_entry *best = NULL;
3061 CORE_ADDR best_end = 0;
3062 struct symtab *best_symtab = 0;
3063
3064 /* Store here the first line number
3065 of a file which contains the line at the smallest pc after PC.
3066 If we don't find a line whose range contains PC,
3067 we will use a line one less than this,
3068 with a range from the start of that file to the first line's pc. */
3069 struct linetable_entry *alt = NULL;
3070
3071 /* Info on best line seen in this file. */
3072
3073 struct linetable_entry *prev;
3074
3075 /* If this pc is not from the current frame,
3076 it is the address of the end of a call instruction.
3077 Quite likely that is the start of the following statement.
3078 But what we want is the statement containing the instruction.
3079 Fudge the pc to make sure we get that. */
3080
3081 /* It's tempting to assume that, if we can't find debugging info for
3082 any function enclosing PC, that we shouldn't search for line
3083 number info, either. However, GAS can emit line number info for
3084 assembly files --- very helpful when debugging hand-written
3085 assembly code. In such a case, we'd have no debug info for the
3086 function, but we would have line info. */
3087
3088 if (notcurrent)
3089 pc -= 1;
3090
3091 /* elz: added this because this function returned the wrong
3092 information if the pc belongs to a stub (import/export)
3093 to call a shlib function. This stub would be anywhere between
3094 two functions in the target, and the line info was erroneously
3095 taken to be the one of the line before the pc. */
3096
3097 /* RT: Further explanation:
3098
3099 * We have stubs (trampolines) inserted between procedures.
3100 *
3101 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3102 * exists in the main image.
3103 *
3104 * In the minimal symbol table, we have a bunch of symbols
3105 * sorted by start address. The stubs are marked as "trampoline",
3106 * the others appear as text. E.g.:
3107 *
3108 * Minimal symbol table for main image
3109 * main: code for main (text symbol)
3110 * shr1: stub (trampoline symbol)
3111 * foo: code for foo (text symbol)
3112 * ...
3113 * Minimal symbol table for "shr1" image:
3114 * ...
3115 * shr1: code for shr1 (text symbol)
3116 * ...
3117 *
3118 * So the code below is trying to detect if we are in the stub
3119 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3120 * and if found, do the symbolization from the real-code address
3121 * rather than the stub address.
3122 *
3123 * Assumptions being made about the minimal symbol table:
3124 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3125 * if we're really in the trampoline.s If we're beyond it (say
3126 * we're in "foo" in the above example), it'll have a closer
3127 * symbol (the "foo" text symbol for example) and will not
3128 * return the trampoline.
3129 * 2. lookup_minimal_symbol_text() will find a real text symbol
3130 * corresponding to the trampoline, and whose address will
3131 * be different than the trampoline address. I put in a sanity
3132 * check for the address being the same, to avoid an
3133 * infinite recursion.
3134 */
3135 msymbol = lookup_minimal_symbol_by_pc (pc);
3136 if (msymbol.minsym != NULL)
3137 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3138 {
3139 struct bound_minimal_symbol mfunsym
3140 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3141 NULL);
3142
3143 if (mfunsym.minsym == NULL)
3144 /* I eliminated this warning since it is coming out
3145 * in the following situation:
3146 * gdb shmain // test program with shared libraries
3147 * (gdb) break shr1 // function in shared lib
3148 * Warning: In stub for ...
3149 * In the above situation, the shared lib is not loaded yet,
3150 * so of course we can't find the real func/line info,
3151 * but the "break" still works, and the warning is annoying.
3152 * So I commented out the warning. RT */
3153 /* warning ("In stub for %s; unable to find real function/line info",
3154 msymbol->linkage_name ()); */
3155 ;
3156 /* fall through */
3157 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3158 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3159 /* Avoid infinite recursion */
3160 /* See above comment about why warning is commented out. */
3161 /* warning ("In stub for %s; unable to find real function/line info",
3162 msymbol->linkage_name ()); */
3163 ;
3164 /* fall through */
3165 else
3166 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3167 }
3168
3169 symtab_and_line val;
3170 val.pspace = current_program_space;
3171
3172 cust = find_pc_sect_compunit_symtab (pc, section);
3173 if (cust == NULL)
3174 {
3175 /* If no symbol information, return previous pc. */
3176 if (notcurrent)
3177 pc++;
3178 val.pc = pc;
3179 return val;
3180 }
3181
3182 bv = COMPUNIT_BLOCKVECTOR (cust);
3183
3184 /* Look at all the symtabs that share this blockvector.
3185 They all have the same apriori range, that we found was right;
3186 but they have different line tables. */
3187
3188 for (symtab *iter_s : compunit_filetabs (cust))
3189 {
3190 /* Find the best line in this symtab. */
3191 l = SYMTAB_LINETABLE (iter_s);
3192 if (!l)
3193 continue;
3194 len = l->nitems;
3195 if (len <= 0)
3196 {
3197 /* I think len can be zero if the symtab lacks line numbers
3198 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3199 I'm not sure which, and maybe it depends on the symbol
3200 reader). */
3201 continue;
3202 }
3203
3204 prev = NULL;
3205 item = l->item; /* Get first line info. */
3206
3207 /* Is this file's first line closer than the first lines of other files?
3208 If so, record this file, and its first line, as best alternate. */
3209 if (item->pc > pc && (!alt || item->pc < alt->pc))
3210 alt = item;
3211
3212 auto pc_compare = [](const CORE_ADDR & comp_pc,
3213 const struct linetable_entry & lhs)->bool
3214 {
3215 return comp_pc < lhs.pc;
3216 };
3217
3218 struct linetable_entry *first = item;
3219 struct linetable_entry *last = item + len;
3220 item = std::upper_bound (first, last, pc, pc_compare);
3221 if (item != first)
3222 prev = item - 1; /* Found a matching item. */
3223
3224 /* At this point, prev points at the line whose start addr is <= pc, and
3225 item points at the next line. If we ran off the end of the linetable
3226 (pc >= start of the last line), then prev == item. If pc < start of
3227 the first line, prev will not be set. */
3228
3229 /* Is this file's best line closer than the best in the other files?
3230 If so, record this file, and its best line, as best so far. Don't
3231 save prev if it represents the end of a function (i.e. line number
3232 0) instead of a real line. */
3233
3234 if (prev && prev->line && (!best || prev->pc > best->pc))
3235 {
3236 best = prev;
3237 best_symtab = iter_s;
3238
3239 /* Discard BEST_END if it's before the PC of the current BEST. */
3240 if (best_end <= best->pc)
3241 best_end = 0;
3242 }
3243
3244 /* If another line (denoted by ITEM) is in the linetable and its
3245 PC is after BEST's PC, but before the current BEST_END, then
3246 use ITEM's PC as the new best_end. */
3247 if (best && item < last && item->pc > best->pc
3248 && (best_end == 0 || best_end > item->pc))
3249 best_end = item->pc;
3250 }
3251
3252 if (!best_symtab)
3253 {
3254 /* If we didn't find any line number info, just return zeros.
3255 We used to return alt->line - 1 here, but that could be
3256 anywhere; if we don't have line number info for this PC,
3257 don't make some up. */
3258 val.pc = pc;
3259 }
3260 else if (best->line == 0)
3261 {
3262 /* If our best fit is in a range of PC's for which no line
3263 number info is available (line number is zero) then we didn't
3264 find any valid line information. */
3265 val.pc = pc;
3266 }
3267 else
3268 {
3269 val.symtab = best_symtab;
3270 val.line = best->line;
3271 val.pc = best->pc;
3272 if (best_end && (!alt || best_end < alt->pc))
3273 val.end = best_end;
3274 else if (alt)
3275 val.end = alt->pc;
3276 else
3277 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3278 }
3279 val.section = section;
3280 return val;
3281 }
3282
3283 /* Backward compatibility (no section). */
3284
3285 struct symtab_and_line
3286 find_pc_line (CORE_ADDR pc, int notcurrent)
3287 {
3288 struct obj_section *section;
3289
3290 section = find_pc_overlay (pc);
3291 if (pc_in_unmapped_range (pc, section))
3292 pc = overlay_mapped_address (pc, section);
3293 return find_pc_sect_line (pc, section, notcurrent);
3294 }
3295
3296 /* See symtab.h. */
3297
3298 struct symtab *
3299 find_pc_line_symtab (CORE_ADDR pc)
3300 {
3301 struct symtab_and_line sal;
3302
3303 /* This always passes zero for NOTCURRENT to find_pc_line.
3304 There are currently no callers that ever pass non-zero. */
3305 sal = find_pc_line (pc, 0);
3306 return sal.symtab;
3307 }
3308 \f
3309 /* Find line number LINE in any symtab whose name is the same as
3310 SYMTAB.
3311
3312 If found, return the symtab that contains the linetable in which it was
3313 found, set *INDEX to the index in the linetable of the best entry
3314 found, and set *EXACT_MATCH to true if the value returned is an
3315 exact match.
3316
3317 If not found, return NULL. */
3318
3319 struct symtab *
3320 find_line_symtab (struct symtab *sym_tab, int line,
3321 int *index, bool *exact_match)
3322 {
3323 int exact = 0; /* Initialized here to avoid a compiler warning. */
3324
3325 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3326 so far seen. */
3327
3328 int best_index;
3329 struct linetable *best_linetable;
3330 struct symtab *best_symtab;
3331
3332 /* First try looking it up in the given symtab. */
3333 best_linetable = SYMTAB_LINETABLE (sym_tab);
3334 best_symtab = sym_tab;
3335 best_index = find_line_common (best_linetable, line, &exact, 0);
3336 if (best_index < 0 || !exact)
3337 {
3338 /* Didn't find an exact match. So we better keep looking for
3339 another symtab with the same name. In the case of xcoff,
3340 multiple csects for one source file (produced by IBM's FORTRAN
3341 compiler) produce multiple symtabs (this is unavoidable
3342 assuming csects can be at arbitrary places in memory and that
3343 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3344
3345 /* BEST is the smallest linenumber > LINE so far seen,
3346 or 0 if none has been seen so far.
3347 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3348 int best;
3349
3350 if (best_index >= 0)
3351 best = best_linetable->item[best_index].line;
3352 else
3353 best = 0;
3354
3355 for (objfile *objfile : current_program_space->objfiles ())
3356 {
3357 if (objfile->sf)
3358 objfile->sf->qf->expand_symtabs_with_fullname
3359 (objfile, symtab_to_fullname (sym_tab));
3360 }
3361
3362 for (objfile *objfile : current_program_space->objfiles ())
3363 {
3364 for (compunit_symtab *cu : objfile->compunits ())
3365 {
3366 for (symtab *s : compunit_filetabs (cu))
3367 {
3368 struct linetable *l;
3369 int ind;
3370
3371 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3372 continue;
3373 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3374 symtab_to_fullname (s)) != 0)
3375 continue;
3376 l = SYMTAB_LINETABLE (s);
3377 ind = find_line_common (l, line, &exact, 0);
3378 if (ind >= 0)
3379 {
3380 if (exact)
3381 {
3382 best_index = ind;
3383 best_linetable = l;
3384 best_symtab = s;
3385 goto done;
3386 }
3387 if (best == 0 || l->item[ind].line < best)
3388 {
3389 best = l->item[ind].line;
3390 best_index = ind;
3391 best_linetable = l;
3392 best_symtab = s;
3393 }
3394 }
3395 }
3396 }
3397 }
3398 }
3399 done:
3400 if (best_index < 0)
3401 return NULL;
3402
3403 if (index)
3404 *index = best_index;
3405 if (exact_match)
3406 *exact_match = (exact != 0);
3407
3408 return best_symtab;
3409 }
3410
3411 /* Given SYMTAB, returns all the PCs function in the symtab that
3412 exactly match LINE. Returns an empty vector if there are no exact
3413 matches, but updates BEST_ITEM in this case. */
3414
3415 std::vector<CORE_ADDR>
3416 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3417 struct linetable_entry **best_item)
3418 {
3419 int start = 0;
3420 std::vector<CORE_ADDR> result;
3421
3422 /* First, collect all the PCs that are at this line. */
3423 while (1)
3424 {
3425 int was_exact;
3426 int idx;
3427
3428 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3429 start);
3430 if (idx < 0)
3431 break;
3432
3433 if (!was_exact)
3434 {
3435 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3436
3437 if (*best_item == NULL || item->line < (*best_item)->line)
3438 *best_item = item;
3439
3440 break;
3441 }
3442
3443 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3444 start = idx + 1;
3445 }
3446
3447 return result;
3448 }
3449
3450 \f
3451 /* Set the PC value for a given source file and line number and return true.
3452 Returns false for invalid line number (and sets the PC to 0).
3453 The source file is specified with a struct symtab. */
3454
3455 bool
3456 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3457 {
3458 struct linetable *l;
3459 int ind;
3460
3461 *pc = 0;
3462 if (symtab == 0)
3463 return false;
3464
3465 symtab = find_line_symtab (symtab, line, &ind, NULL);
3466 if (symtab != NULL)
3467 {
3468 l = SYMTAB_LINETABLE (symtab);
3469 *pc = l->item[ind].pc;
3470 return true;
3471 }
3472 else
3473 return false;
3474 }
3475
3476 /* Find the range of pc values in a line.
3477 Store the starting pc of the line into *STARTPTR
3478 and the ending pc (start of next line) into *ENDPTR.
3479 Returns true to indicate success.
3480 Returns false if could not find the specified line. */
3481
3482 bool
3483 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3484 CORE_ADDR *endptr)
3485 {
3486 CORE_ADDR startaddr;
3487 struct symtab_and_line found_sal;
3488
3489 startaddr = sal.pc;
3490 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3491 return false;
3492
3493 /* This whole function is based on address. For example, if line 10 has
3494 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3495 "info line *0x123" should say the line goes from 0x100 to 0x200
3496 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3497 This also insures that we never give a range like "starts at 0x134
3498 and ends at 0x12c". */
3499
3500 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3501 if (found_sal.line != sal.line)
3502 {
3503 /* The specified line (sal) has zero bytes. */
3504 *startptr = found_sal.pc;
3505 *endptr = found_sal.pc;
3506 }
3507 else
3508 {
3509 *startptr = found_sal.pc;
3510 *endptr = found_sal.end;
3511 }
3512 return true;
3513 }
3514
3515 /* Given a line table and a line number, return the index into the line
3516 table for the pc of the nearest line whose number is >= the specified one.
3517 Return -1 if none is found. The value is >= 0 if it is an index.
3518 START is the index at which to start searching the line table.
3519
3520 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3521
3522 static int
3523 find_line_common (struct linetable *l, int lineno,
3524 int *exact_match, int start)
3525 {
3526 int i;
3527 int len;
3528
3529 /* BEST is the smallest linenumber > LINENO so far seen,
3530 or 0 if none has been seen so far.
3531 BEST_INDEX identifies the item for it. */
3532
3533 int best_index = -1;
3534 int best = 0;
3535
3536 *exact_match = 0;
3537
3538 if (lineno <= 0)
3539 return -1;
3540 if (l == 0)
3541 return -1;
3542
3543 len = l->nitems;
3544 for (i = start; i < len; i++)
3545 {
3546 struct linetable_entry *item = &(l->item[i]);
3547
3548 if (item->line == lineno)
3549 {
3550 /* Return the first (lowest address) entry which matches. */
3551 *exact_match = 1;
3552 return i;
3553 }
3554
3555 if (item->line > lineno && (best == 0 || item->line < best))
3556 {
3557 best = item->line;
3558 best_index = i;
3559 }
3560 }
3561
3562 /* If we got here, we didn't get an exact match. */
3563 return best_index;
3564 }
3565
3566 bool
3567 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3568 {
3569 struct symtab_and_line sal;
3570
3571 sal = find_pc_line (pc, 0);
3572 *startptr = sal.pc;
3573 *endptr = sal.end;
3574 return sal.symtab != 0;
3575 }
3576
3577 /* Helper for find_function_start_sal. Does most of the work, except
3578 setting the sal's symbol. */
3579
3580 static symtab_and_line
3581 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3582 bool funfirstline)
3583 {
3584 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3585
3586 if (funfirstline && sal.symtab != NULL
3587 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3588 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3589 {
3590 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3591
3592 sal.pc = func_addr;
3593 if (gdbarch_skip_entrypoint_p (gdbarch))
3594 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3595 return sal;
3596 }
3597
3598 /* We always should have a line for the function start address.
3599 If we don't, something is odd. Create a plain SAL referring
3600 just the PC and hope that skip_prologue_sal (if requested)
3601 can find a line number for after the prologue. */
3602 if (sal.pc < func_addr)
3603 {
3604 sal = {};
3605 sal.pspace = current_program_space;
3606 sal.pc = func_addr;
3607 sal.section = section;
3608 }
3609
3610 if (funfirstline)
3611 skip_prologue_sal (&sal);
3612
3613 return sal;
3614 }
3615
3616 /* See symtab.h. */
3617
3618 symtab_and_line
3619 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3620 bool funfirstline)
3621 {
3622 symtab_and_line sal
3623 = find_function_start_sal_1 (func_addr, section, funfirstline);
3624
3625 /* find_function_start_sal_1 does a linetable search, so it finds
3626 the symtab and linenumber, but not a symbol. Fill in the
3627 function symbol too. */
3628 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3629
3630 return sal;
3631 }
3632
3633 /* See symtab.h. */
3634
3635 symtab_and_line
3636 find_function_start_sal (symbol *sym, bool funfirstline)
3637 {
3638 fixup_symbol_section (sym, NULL);
3639 symtab_and_line sal
3640 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3641 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3642 funfirstline);
3643 sal.symbol = sym;
3644 return sal;
3645 }
3646
3647
3648 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3649 address for that function that has an entry in SYMTAB's line info
3650 table. If such an entry cannot be found, return FUNC_ADDR
3651 unaltered. */
3652
3653 static CORE_ADDR
3654 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3655 {
3656 CORE_ADDR func_start, func_end;
3657 struct linetable *l;
3658 int i;
3659
3660 /* Give up if this symbol has no lineinfo table. */
3661 l = SYMTAB_LINETABLE (symtab);
3662 if (l == NULL)
3663 return func_addr;
3664
3665 /* Get the range for the function's PC values, or give up if we
3666 cannot, for some reason. */
3667 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3668 return func_addr;
3669
3670 /* Linetable entries are ordered by PC values, see the commentary in
3671 symtab.h where `struct linetable' is defined. Thus, the first
3672 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3673 address we are looking for. */
3674 for (i = 0; i < l->nitems; i++)
3675 {
3676 struct linetable_entry *item = &(l->item[i]);
3677
3678 /* Don't use line numbers of zero, they mark special entries in
3679 the table. See the commentary on symtab.h before the
3680 definition of struct linetable. */
3681 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3682 return item->pc;
3683 }
3684
3685 return func_addr;
3686 }
3687
3688 /* Adjust SAL to the first instruction past the function prologue.
3689 If the PC was explicitly specified, the SAL is not changed.
3690 If the line number was explicitly specified then the SAL can still be
3691 updated, unless the language for SAL is assembler, in which case the SAL
3692 will be left unchanged.
3693 If SAL is already past the prologue, then do nothing. */
3694
3695 void
3696 skip_prologue_sal (struct symtab_and_line *sal)
3697 {
3698 struct symbol *sym;
3699 struct symtab_and_line start_sal;
3700 CORE_ADDR pc, saved_pc;
3701 struct obj_section *section;
3702 const char *name;
3703 struct objfile *objfile;
3704 struct gdbarch *gdbarch;
3705 const struct block *b, *function_block;
3706 int force_skip, skip;
3707
3708 /* Do not change the SAL if PC was specified explicitly. */
3709 if (sal->explicit_pc)
3710 return;
3711
3712 /* In assembly code, if the user asks for a specific line then we should
3713 not adjust the SAL. The user already has instruction level
3714 visibility in this case, so selecting a line other than one requested
3715 is likely to be the wrong choice. */
3716 if (sal->symtab != nullptr
3717 && sal->explicit_line
3718 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3719 return;
3720
3721 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3722
3723 switch_to_program_space_and_thread (sal->pspace);
3724
3725 sym = find_pc_sect_function (sal->pc, sal->section);
3726 if (sym != NULL)
3727 {
3728 fixup_symbol_section (sym, NULL);
3729
3730 objfile = symbol_objfile (sym);
3731 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3732 section = SYMBOL_OBJ_SECTION (objfile, sym);
3733 name = sym->linkage_name ();
3734 }
3735 else
3736 {
3737 struct bound_minimal_symbol msymbol
3738 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3739
3740 if (msymbol.minsym == NULL)
3741 return;
3742
3743 objfile = msymbol.objfile;
3744 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3745 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3746 name = msymbol.minsym->linkage_name ();
3747 }
3748
3749 gdbarch = get_objfile_arch (objfile);
3750
3751 /* Process the prologue in two passes. In the first pass try to skip the
3752 prologue (SKIP is true) and verify there is a real need for it (indicated
3753 by FORCE_SKIP). If no such reason was found run a second pass where the
3754 prologue is not skipped (SKIP is false). */
3755
3756 skip = 1;
3757 force_skip = 1;
3758
3759 /* Be conservative - allow direct PC (without skipping prologue) only if we
3760 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3761 have to be set by the caller so we use SYM instead. */
3762 if (sym != NULL
3763 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3764 force_skip = 0;
3765
3766 saved_pc = pc;
3767 do
3768 {
3769 pc = saved_pc;
3770
3771 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3772 so that gdbarch_skip_prologue has something unique to work on. */
3773 if (section_is_overlay (section) && !section_is_mapped (section))
3774 pc = overlay_unmapped_address (pc, section);
3775
3776 /* Skip "first line" of function (which is actually its prologue). */
3777 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3778 if (gdbarch_skip_entrypoint_p (gdbarch))
3779 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3780 if (skip)
3781 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3782
3783 /* For overlays, map pc back into its mapped VMA range. */
3784 pc = overlay_mapped_address (pc, section);
3785
3786 /* Calculate line number. */
3787 start_sal = find_pc_sect_line (pc, section, 0);
3788
3789 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3790 line is still part of the same function. */
3791 if (skip && start_sal.pc != pc
3792 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3793 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3794 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3795 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3796 {
3797 /* First pc of next line */
3798 pc = start_sal.end;
3799 /* Recalculate the line number (might not be N+1). */
3800 start_sal = find_pc_sect_line (pc, section, 0);
3801 }
3802
3803 /* On targets with executable formats that don't have a concept of
3804 constructors (ELF with .init has, PE doesn't), gcc emits a call
3805 to `__main' in `main' between the prologue and before user
3806 code. */
3807 if (gdbarch_skip_main_prologue_p (gdbarch)
3808 && name && strcmp_iw (name, "main") == 0)
3809 {
3810 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3811 /* Recalculate the line number (might not be N+1). */
3812 start_sal = find_pc_sect_line (pc, section, 0);
3813 force_skip = 1;
3814 }
3815 }
3816 while (!force_skip && skip--);
3817
3818 /* If we still don't have a valid source line, try to find the first
3819 PC in the lineinfo table that belongs to the same function. This
3820 happens with COFF debug info, which does not seem to have an
3821 entry in lineinfo table for the code after the prologue which has
3822 no direct relation to source. For example, this was found to be
3823 the case with the DJGPP target using "gcc -gcoff" when the
3824 compiler inserted code after the prologue to make sure the stack
3825 is aligned. */
3826 if (!force_skip && sym && start_sal.symtab == NULL)
3827 {
3828 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3829 /* Recalculate the line number. */
3830 start_sal = find_pc_sect_line (pc, section, 0);
3831 }
3832
3833 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3834 forward SAL to the end of the prologue. */
3835 if (sal->pc >= pc)
3836 return;
3837
3838 sal->pc = pc;
3839 sal->section = section;
3840 sal->symtab = start_sal.symtab;
3841 sal->line = start_sal.line;
3842 sal->end = start_sal.end;
3843
3844 /* Check if we are now inside an inlined function. If we can,
3845 use the call site of the function instead. */
3846 b = block_for_pc_sect (sal->pc, sal->section);
3847 function_block = NULL;
3848 while (b != NULL)
3849 {
3850 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3851 function_block = b;
3852 else if (BLOCK_FUNCTION (b) != NULL)
3853 break;
3854 b = BLOCK_SUPERBLOCK (b);
3855 }
3856 if (function_block != NULL
3857 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3858 {
3859 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3860 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3861 }
3862 }
3863
3864 /* Given PC at the function's start address, attempt to find the
3865 prologue end using SAL information. Return zero if the skip fails.
3866
3867 A non-optimized prologue traditionally has one SAL for the function
3868 and a second for the function body. A single line function has
3869 them both pointing at the same line.
3870
3871 An optimized prologue is similar but the prologue may contain
3872 instructions (SALs) from the instruction body. Need to skip those
3873 while not getting into the function body.
3874
3875 The functions end point and an increasing SAL line are used as
3876 indicators of the prologue's endpoint.
3877
3878 This code is based on the function refine_prologue_limit
3879 (found in ia64). */
3880
3881 CORE_ADDR
3882 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3883 {
3884 struct symtab_and_line prologue_sal;
3885 CORE_ADDR start_pc;
3886 CORE_ADDR end_pc;
3887 const struct block *bl;
3888
3889 /* Get an initial range for the function. */
3890 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3891 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3892
3893 prologue_sal = find_pc_line (start_pc, 0);
3894 if (prologue_sal.line != 0)
3895 {
3896 /* For languages other than assembly, treat two consecutive line
3897 entries at the same address as a zero-instruction prologue.
3898 The GNU assembler emits separate line notes for each instruction
3899 in a multi-instruction macro, but compilers generally will not
3900 do this. */
3901 if (prologue_sal.symtab->language != language_asm)
3902 {
3903 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3904 int idx = 0;
3905
3906 /* Skip any earlier lines, and any end-of-sequence marker
3907 from a previous function. */
3908 while (linetable->item[idx].pc != prologue_sal.pc
3909 || linetable->item[idx].line == 0)
3910 idx++;
3911
3912 if (idx+1 < linetable->nitems
3913 && linetable->item[idx+1].line != 0
3914 && linetable->item[idx+1].pc == start_pc)
3915 return start_pc;
3916 }
3917
3918 /* If there is only one sal that covers the entire function,
3919 then it is probably a single line function, like
3920 "foo(){}". */
3921 if (prologue_sal.end >= end_pc)
3922 return 0;
3923
3924 while (prologue_sal.end < end_pc)
3925 {
3926 struct symtab_and_line sal;
3927
3928 sal = find_pc_line (prologue_sal.end, 0);
3929 if (sal.line == 0)
3930 break;
3931 /* Assume that a consecutive SAL for the same (or larger)
3932 line mark the prologue -> body transition. */
3933 if (sal.line >= prologue_sal.line)
3934 break;
3935 /* Likewise if we are in a different symtab altogether
3936 (e.g. within a file included via #include).  */
3937 if (sal.symtab != prologue_sal.symtab)
3938 break;
3939
3940 /* The line number is smaller. Check that it's from the
3941 same function, not something inlined. If it's inlined,
3942 then there is no point comparing the line numbers. */
3943 bl = block_for_pc (prologue_sal.end);
3944 while (bl)
3945 {
3946 if (block_inlined_p (bl))
3947 break;
3948 if (BLOCK_FUNCTION (bl))
3949 {
3950 bl = NULL;
3951 break;
3952 }
3953 bl = BLOCK_SUPERBLOCK (bl);
3954 }
3955 if (bl != NULL)
3956 break;
3957
3958 /* The case in which compiler's optimizer/scheduler has
3959 moved instructions into the prologue. We look ahead in
3960 the function looking for address ranges whose
3961 corresponding line number is less the first one that we
3962 found for the function. This is more conservative then
3963 refine_prologue_limit which scans a large number of SALs
3964 looking for any in the prologue. */
3965 prologue_sal = sal;
3966 }
3967 }
3968
3969 if (prologue_sal.end < end_pc)
3970 /* Return the end of this line, or zero if we could not find a
3971 line. */
3972 return prologue_sal.end;
3973 else
3974 /* Don't return END_PC, which is past the end of the function. */
3975 return prologue_sal.pc;
3976 }
3977
3978 /* See symtab.h. */
3979
3980 symbol *
3981 find_function_alias_target (bound_minimal_symbol msymbol)
3982 {
3983 CORE_ADDR func_addr;
3984 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3985 return NULL;
3986
3987 symbol *sym = find_pc_function (func_addr);
3988 if (sym != NULL
3989 && SYMBOL_CLASS (sym) == LOC_BLOCK
3990 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3991 return sym;
3992
3993 return NULL;
3994 }
3995
3996 \f
3997 /* If P is of the form "operator[ \t]+..." where `...' is
3998 some legitimate operator text, return a pointer to the
3999 beginning of the substring of the operator text.
4000 Otherwise, return "". */
4001
4002 static const char *
4003 operator_chars (const char *p, const char **end)
4004 {
4005 *end = "";
4006 if (!startswith (p, CP_OPERATOR_STR))
4007 return *end;
4008 p += CP_OPERATOR_LEN;
4009
4010 /* Don't get faked out by `operator' being part of a longer
4011 identifier. */
4012 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4013 return *end;
4014
4015 /* Allow some whitespace between `operator' and the operator symbol. */
4016 while (*p == ' ' || *p == '\t')
4017 p++;
4018
4019 /* Recognize 'operator TYPENAME'. */
4020
4021 if (isalpha (*p) || *p == '_' || *p == '$')
4022 {
4023 const char *q = p + 1;
4024
4025 while (isalnum (*q) || *q == '_' || *q == '$')
4026 q++;
4027 *end = q;
4028 return p;
4029 }
4030
4031 while (*p)
4032 switch (*p)
4033 {
4034 case '\\': /* regexp quoting */
4035 if (p[1] == '*')
4036 {
4037 if (p[2] == '=') /* 'operator\*=' */
4038 *end = p + 3;
4039 else /* 'operator\*' */
4040 *end = p + 2;
4041 return p;
4042 }
4043 else if (p[1] == '[')
4044 {
4045 if (p[2] == ']')
4046 error (_("mismatched quoting on brackets, "
4047 "try 'operator\\[\\]'"));
4048 else if (p[2] == '\\' && p[3] == ']')
4049 {
4050 *end = p + 4; /* 'operator\[\]' */
4051 return p;
4052 }
4053 else
4054 error (_("nothing is allowed between '[' and ']'"));
4055 }
4056 else
4057 {
4058 /* Gratuitous quote: skip it and move on. */
4059 p++;
4060 continue;
4061 }
4062 break;
4063 case '!':
4064 case '=':
4065 case '*':
4066 case '/':
4067 case '%':
4068 case '^':
4069 if (p[1] == '=')
4070 *end = p + 2;
4071 else
4072 *end = p + 1;
4073 return p;
4074 case '<':
4075 case '>':
4076 case '+':
4077 case '-':
4078 case '&':
4079 case '|':
4080 if (p[0] == '-' && p[1] == '>')
4081 {
4082 /* Struct pointer member operator 'operator->'. */
4083 if (p[2] == '*')
4084 {
4085 *end = p + 3; /* 'operator->*' */
4086 return p;
4087 }
4088 else if (p[2] == '\\')
4089 {
4090 *end = p + 4; /* Hopefully 'operator->\*' */
4091 return p;
4092 }
4093 else
4094 {
4095 *end = p + 2; /* 'operator->' */
4096 return p;
4097 }
4098 }
4099 if (p[1] == '=' || p[1] == p[0])
4100 *end = p + 2;
4101 else
4102 *end = p + 1;
4103 return p;
4104 case '~':
4105 case ',':
4106 *end = p + 1;
4107 return p;
4108 case '(':
4109 if (p[1] != ')')
4110 error (_("`operator ()' must be specified "
4111 "without whitespace in `()'"));
4112 *end = p + 2;
4113 return p;
4114 case '?':
4115 if (p[1] != ':')
4116 error (_("`operator ?:' must be specified "
4117 "without whitespace in `?:'"));
4118 *end = p + 2;
4119 return p;
4120 case '[':
4121 if (p[1] != ']')
4122 error (_("`operator []' must be specified "
4123 "without whitespace in `[]'"));
4124 *end = p + 2;
4125 return p;
4126 default:
4127 error (_("`operator %s' not supported"), p);
4128 break;
4129 }
4130
4131 *end = "";
4132 return *end;
4133 }
4134 \f
4135
4136 /* What part to match in a file name. */
4137
4138 struct filename_partial_match_opts
4139 {
4140 /* Only match the directory name part. */
4141 bool dirname = false;
4142
4143 /* Only match the basename part. */
4144 bool basename = false;
4145 };
4146
4147 /* Data structure to maintain printing state for output_source_filename. */
4148
4149 struct output_source_filename_data
4150 {
4151 /* Output only filenames matching REGEXP. */
4152 std::string regexp;
4153 gdb::optional<compiled_regex> c_regexp;
4154 /* Possibly only match a part of the filename. */
4155 filename_partial_match_opts partial_match;
4156
4157
4158 /* Cache of what we've seen so far. */
4159 struct filename_seen_cache *filename_seen_cache;
4160
4161 /* Flag of whether we're printing the first one. */
4162 int first;
4163 };
4164
4165 /* Slave routine for sources_info. Force line breaks at ,'s.
4166 NAME is the name to print.
4167 DATA contains the state for printing and watching for duplicates. */
4168
4169 static void
4170 output_source_filename (const char *name,
4171 struct output_source_filename_data *data)
4172 {
4173 /* Since a single source file can result in several partial symbol
4174 tables, we need to avoid printing it more than once. Note: if
4175 some of the psymtabs are read in and some are not, it gets
4176 printed both under "Source files for which symbols have been
4177 read" and "Source files for which symbols will be read in on
4178 demand". I consider this a reasonable way to deal with the
4179 situation. I'm not sure whether this can also happen for
4180 symtabs; it doesn't hurt to check. */
4181
4182 /* Was NAME already seen? */
4183 if (data->filename_seen_cache->seen (name))
4184 {
4185 /* Yes; don't print it again. */
4186 return;
4187 }
4188
4189 /* Does it match data->regexp? */
4190 if (data->c_regexp.has_value ())
4191 {
4192 const char *to_match;
4193 std::string dirname;
4194
4195 if (data->partial_match.dirname)
4196 {
4197 dirname = ldirname (name);
4198 to_match = dirname.c_str ();
4199 }
4200 else if (data->partial_match.basename)
4201 to_match = lbasename (name);
4202 else
4203 to_match = name;
4204
4205 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4206 return;
4207 }
4208
4209 /* Print it and reset *FIRST. */
4210 if (! data->first)
4211 printf_filtered (", ");
4212 data->first = 0;
4213
4214 wrap_here ("");
4215 fputs_styled (name, file_name_style.style (), gdb_stdout);
4216 }
4217
4218 /* A callback for map_partial_symbol_filenames. */
4219
4220 static void
4221 output_partial_symbol_filename (const char *filename, const char *fullname,
4222 void *data)
4223 {
4224 output_source_filename (fullname ? fullname : filename,
4225 (struct output_source_filename_data *) data);
4226 }
4227
4228 using isrc_flag_option_def
4229 = gdb::option::flag_option_def<filename_partial_match_opts>;
4230
4231 static const gdb::option::option_def info_sources_option_defs[] = {
4232
4233 isrc_flag_option_def {
4234 "dirname",
4235 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4236 N_("Show only the files having a dirname matching REGEXP."),
4237 },
4238
4239 isrc_flag_option_def {
4240 "basename",
4241 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4242 N_("Show only the files having a basename matching REGEXP."),
4243 },
4244
4245 };
4246
4247 /* Create an option_def_group for the "info sources" options, with
4248 ISRC_OPTS as context. */
4249
4250 static inline gdb::option::option_def_group
4251 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4252 {
4253 return {{info_sources_option_defs}, isrc_opts};
4254 }
4255
4256 /* Prints the header message for the source files that will be printed
4257 with the matching info present in DATA. SYMBOL_MSG is a message
4258 that tells what will or has been done with the symbols of the
4259 matching source files. */
4260
4261 static void
4262 print_info_sources_header (const char *symbol_msg,
4263 const struct output_source_filename_data *data)
4264 {
4265 puts_filtered (symbol_msg);
4266 if (!data->regexp.empty ())
4267 {
4268 if (data->partial_match.dirname)
4269 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4270 data->regexp.c_str ());
4271 else if (data->partial_match.basename)
4272 printf_filtered (_("(basename matching regular expression \"%s\")"),
4273 data->regexp.c_str ());
4274 else
4275 printf_filtered (_("(filename matching regular expression \"%s\")"),
4276 data->regexp.c_str ());
4277 }
4278 puts_filtered ("\n");
4279 }
4280
4281 /* Completer for "info sources". */
4282
4283 static void
4284 info_sources_command_completer (cmd_list_element *ignore,
4285 completion_tracker &tracker,
4286 const char *text, const char *word)
4287 {
4288 const auto group = make_info_sources_options_def_group (nullptr);
4289 if (gdb::option::complete_options
4290 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4291 return;
4292 }
4293
4294 static void
4295 info_sources_command (const char *args, int from_tty)
4296 {
4297 struct output_source_filename_data data;
4298
4299 if (!have_full_symbols () && !have_partial_symbols ())
4300 {
4301 error (_("No symbol table is loaded. Use the \"file\" command."));
4302 }
4303
4304 filename_seen_cache filenames_seen;
4305
4306 auto group = make_info_sources_options_def_group (&data.partial_match);
4307
4308 gdb::option::process_options
4309 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4310
4311 if (args != NULL && *args != '\000')
4312 data.regexp = args;
4313
4314 data.filename_seen_cache = &filenames_seen;
4315 data.first = 1;
4316
4317 if (data.partial_match.dirname && data.partial_match.basename)
4318 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4319 if ((data.partial_match.dirname || data.partial_match.basename)
4320 && data.regexp.empty ())
4321 error (_("Missing REGEXP for 'info sources'."));
4322
4323 if (data.regexp.empty ())
4324 data.c_regexp.reset ();
4325 else
4326 {
4327 int cflags = REG_NOSUB;
4328 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4329 cflags |= REG_ICASE;
4330 #endif
4331 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4332 _("Invalid regexp"));
4333 }
4334
4335 print_info_sources_header
4336 (_("Source files for which symbols have been read in:\n"), &data);
4337
4338 for (objfile *objfile : current_program_space->objfiles ())
4339 {
4340 for (compunit_symtab *cu : objfile->compunits ())
4341 {
4342 for (symtab *s : compunit_filetabs (cu))
4343 {
4344 const char *fullname = symtab_to_fullname (s);
4345
4346 output_source_filename (fullname, &data);
4347 }
4348 }
4349 }
4350 printf_filtered ("\n\n");
4351
4352 print_info_sources_header
4353 (_("Source files for which symbols will be read in on demand:\n"), &data);
4354
4355 filenames_seen.clear ();
4356 data.first = 1;
4357 map_symbol_filenames (output_partial_symbol_filename, &data,
4358 1 /*need_fullname*/);
4359 printf_filtered ("\n");
4360 }
4361
4362 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4363 true compare only lbasename of FILENAMES. */
4364
4365 static bool
4366 file_matches (const char *file, const std::vector<const char *> &filenames,
4367 bool basenames)
4368 {
4369 if (filenames.empty ())
4370 return true;
4371
4372 for (const char *name : filenames)
4373 {
4374 name = (basenames ? lbasename (name) : name);
4375 if (compare_filenames_for_search (file, name))
4376 return true;
4377 }
4378
4379 return false;
4380 }
4381
4382 /* Helper function for std::sort on symbol_search objects. Can only sort
4383 symbols, not minimal symbols. */
4384
4385 int
4386 symbol_search::compare_search_syms (const symbol_search &sym_a,
4387 const symbol_search &sym_b)
4388 {
4389 int c;
4390
4391 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4392 symbol_symtab (sym_b.symbol)->filename);
4393 if (c != 0)
4394 return c;
4395
4396 if (sym_a.block != sym_b.block)
4397 return sym_a.block - sym_b.block;
4398
4399 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4400 }
4401
4402 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4403 If SYM has no symbol_type or symbol_name, returns false. */
4404
4405 bool
4406 treg_matches_sym_type_name (const compiled_regex &treg,
4407 const struct symbol *sym)
4408 {
4409 struct type *sym_type;
4410 std::string printed_sym_type_name;
4411
4412 if (symbol_lookup_debug > 1)
4413 {
4414 fprintf_unfiltered (gdb_stdlog,
4415 "treg_matches_sym_type_name\n sym %s\n",
4416 sym->natural_name ());
4417 }
4418
4419 sym_type = SYMBOL_TYPE (sym);
4420 if (sym_type == NULL)
4421 return false;
4422
4423 {
4424 scoped_switch_to_sym_language_if_auto l (sym);
4425
4426 printed_sym_type_name = type_to_string (sym_type);
4427 }
4428
4429
4430 if (symbol_lookup_debug > 1)
4431 {
4432 fprintf_unfiltered (gdb_stdlog,
4433 " sym_type_name %s\n",
4434 printed_sym_type_name.c_str ());
4435 }
4436
4437
4438 if (printed_sym_type_name.empty ())
4439 return false;
4440
4441 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4442 }
4443
4444 /* See symtab.h. */
4445
4446 bool
4447 global_symbol_searcher::is_suitable_msymbol
4448 (const enum search_domain kind, const minimal_symbol *msymbol)
4449 {
4450 switch (MSYMBOL_TYPE (msymbol))
4451 {
4452 case mst_data:
4453 case mst_bss:
4454 case mst_file_data:
4455 case mst_file_bss:
4456 return kind == VARIABLES_DOMAIN;
4457 case mst_text:
4458 case mst_file_text:
4459 case mst_solib_trampoline:
4460 case mst_text_gnu_ifunc:
4461 return kind == FUNCTIONS_DOMAIN;
4462 default:
4463 return false;
4464 }
4465 }
4466
4467 /* See symtab.h. */
4468
4469 bool
4470 global_symbol_searcher::expand_symtabs
4471 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4472 {
4473 enum search_domain kind = m_kind;
4474 bool found_msymbol = false;
4475
4476 if (objfile->sf)
4477 objfile->sf->qf->expand_symtabs_matching
4478 (objfile,
4479 [&] (const char *filename, bool basenames)
4480 {
4481 return file_matches (filename, filenames, basenames);
4482 },
4483 lookup_name_info::match_any (),
4484 [&] (const char *symname)
4485 {
4486 return (!preg.has_value ()
4487 || preg->exec (symname, 0, NULL, 0) == 0);
4488 },
4489 NULL,
4490 kind);
4491
4492 /* Here, we search through the minimal symbol tables for functions and
4493 variables that match, and force their symbols to be read. This is in
4494 particular necessary for demangled variable names, which are no longer
4495 put into the partial symbol tables. The symbol will then be found
4496 during the scan of symtabs later.
4497
4498 For functions, find_pc_symtab should succeed if we have debug info for
4499 the function, for variables we have to call
4500 lookup_symbol_in_objfile_from_linkage_name to determine if the
4501 variable has debug info. If the lookup fails, set found_msymbol so
4502 that we will rescan to print any matching symbols without debug info.
4503 We only search the objfile the msymbol came from, we no longer search
4504 all objfiles. In large programs (1000s of shared libs) searching all
4505 objfiles is not worth the pain. */
4506 if (filenames.empty ()
4507 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4508 {
4509 for (minimal_symbol *msymbol : objfile->msymbols ())
4510 {
4511 QUIT;
4512
4513 if (msymbol->created_by_gdb)
4514 continue;
4515
4516 if (is_suitable_msymbol (kind, msymbol))
4517 {
4518 if (!preg.has_value ()
4519 || preg->exec (msymbol->natural_name (), 0,
4520 NULL, 0) == 0)
4521 {
4522 /* An important side-effect of these lookup functions is
4523 to expand the symbol table if msymbol is found, later
4524 in the process we will add matching symbols or
4525 msymbols to the results list, and that requires that
4526 the symbols tables are expanded. */
4527 if (kind == FUNCTIONS_DOMAIN
4528 ? (find_pc_compunit_symtab
4529 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4530 == NULL)
4531 : (lookup_symbol_in_objfile_from_linkage_name
4532 (objfile, msymbol->linkage_name (),
4533 VAR_DOMAIN)
4534 .symbol == NULL))
4535 found_msymbol = true;
4536 }
4537 }
4538 }
4539 }
4540
4541 return found_msymbol;
4542 }
4543
4544 /* See symtab.h. */
4545
4546 bool
4547 global_symbol_searcher::add_matching_symbols
4548 (objfile *objfile,
4549 const gdb::optional<compiled_regex> &preg,
4550 const gdb::optional<compiled_regex> &treg,
4551 std::set<symbol_search> *result_set) const
4552 {
4553 enum search_domain kind = m_kind;
4554
4555 /* Add matching symbols (if not already present). */
4556 for (compunit_symtab *cust : objfile->compunits ())
4557 {
4558 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4559
4560 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4561 {
4562 struct block_iterator iter;
4563 struct symbol *sym;
4564 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4565
4566 ALL_BLOCK_SYMBOLS (b, iter, sym)
4567 {
4568 struct symtab *real_symtab = symbol_symtab (sym);
4569
4570 QUIT;
4571
4572 /* Check first sole REAL_SYMTAB->FILENAME. It does
4573 not need to be a substring of symtab_to_fullname as
4574 it may contain "./" etc. */
4575 if ((file_matches (real_symtab->filename, filenames, false)
4576 || ((basenames_may_differ
4577 || file_matches (lbasename (real_symtab->filename),
4578 filenames, true))
4579 && file_matches (symtab_to_fullname (real_symtab),
4580 filenames, false)))
4581 && ((!preg.has_value ()
4582 || preg->exec (sym->natural_name (), 0,
4583 NULL, 0) == 0)
4584 && ((kind == VARIABLES_DOMAIN
4585 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4586 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4587 && SYMBOL_CLASS (sym) != LOC_BLOCK
4588 /* LOC_CONST can be used for more than
4589 just enums, e.g., c++ static const
4590 members. We only want to skip enums
4591 here. */
4592 && !(SYMBOL_CLASS (sym) == LOC_CONST
4593 && (TYPE_CODE (SYMBOL_TYPE (sym))
4594 == TYPE_CODE_ENUM))
4595 && (!treg.has_value ()
4596 || treg_matches_sym_type_name (*treg, sym)))
4597 || (kind == FUNCTIONS_DOMAIN
4598 && SYMBOL_CLASS (sym) == LOC_BLOCK
4599 && (!treg.has_value ()
4600 || treg_matches_sym_type_name (*treg,
4601 sym)))
4602 || (kind == TYPES_DOMAIN
4603 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4604 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4605 || (kind == MODULES_DOMAIN
4606 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4607 && SYMBOL_LINE (sym) != 0))))
4608 {
4609 if (result_set->size () < m_max_search_results)
4610 {
4611 /* Match, insert if not already in the results. */
4612 symbol_search ss (block, sym);
4613 if (result_set->find (ss) == result_set->end ())
4614 result_set->insert (ss);
4615 }
4616 else
4617 return false;
4618 }
4619 }
4620 }
4621 }
4622
4623 return true;
4624 }
4625
4626 /* See symtab.h. */
4627
4628 bool
4629 global_symbol_searcher::add_matching_msymbols
4630 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4631 std::vector<symbol_search> *results) const
4632 {
4633 enum search_domain kind = m_kind;
4634
4635 for (minimal_symbol *msymbol : objfile->msymbols ())
4636 {
4637 QUIT;
4638
4639 if (msymbol->created_by_gdb)
4640 continue;
4641
4642 if (is_suitable_msymbol (kind, msymbol))
4643 {
4644 if (!preg.has_value ()
4645 || preg->exec (msymbol->natural_name (), 0,
4646 NULL, 0) == 0)
4647 {
4648 /* For functions we can do a quick check of whether the
4649 symbol might be found via find_pc_symtab. */
4650 if (kind != FUNCTIONS_DOMAIN
4651 || (find_pc_compunit_symtab
4652 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4653 == NULL))
4654 {
4655 if (lookup_symbol_in_objfile_from_linkage_name
4656 (objfile, msymbol->linkage_name (),
4657 VAR_DOMAIN).symbol == NULL)
4658 {
4659 /* Matching msymbol, add it to the results list. */
4660 if (results->size () < m_max_search_results)
4661 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4662 else
4663 return false;
4664 }
4665 }
4666 }
4667 }
4668 }
4669
4670 return true;
4671 }
4672
4673 /* See symtab.h. */
4674
4675 std::vector<symbol_search>
4676 global_symbol_searcher::search () const
4677 {
4678 gdb::optional<compiled_regex> preg;
4679 gdb::optional<compiled_regex> treg;
4680
4681 gdb_assert (m_kind != ALL_DOMAIN);
4682
4683 if (m_symbol_name_regexp != NULL)
4684 {
4685 const char *symbol_name_regexp = m_symbol_name_regexp;
4686
4687 /* Make sure spacing is right for C++ operators.
4688 This is just a courtesy to make the matching less sensitive
4689 to how many spaces the user leaves between 'operator'
4690 and <TYPENAME> or <OPERATOR>. */
4691 const char *opend;
4692 const char *opname = operator_chars (symbol_name_regexp, &opend);
4693
4694 if (*opname)
4695 {
4696 int fix = -1; /* -1 means ok; otherwise number of
4697 spaces needed. */
4698
4699 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4700 {
4701 /* There should 1 space between 'operator' and 'TYPENAME'. */
4702 if (opname[-1] != ' ' || opname[-2] == ' ')
4703 fix = 1;
4704 }
4705 else
4706 {
4707 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4708 if (opname[-1] == ' ')
4709 fix = 0;
4710 }
4711 /* If wrong number of spaces, fix it. */
4712 if (fix >= 0)
4713 {
4714 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4715
4716 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4717 symbol_name_regexp = tmp;
4718 }
4719 }
4720
4721 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4722 ? REG_ICASE : 0);
4723 preg.emplace (symbol_name_regexp, cflags,
4724 _("Invalid regexp"));
4725 }
4726
4727 if (m_symbol_type_regexp != NULL)
4728 {
4729 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4730 ? REG_ICASE : 0);
4731 treg.emplace (m_symbol_type_regexp, cflags,
4732 _("Invalid regexp"));
4733 }
4734
4735 bool found_msymbol = false;
4736 std::set<symbol_search> result_set;
4737 for (objfile *objfile : current_program_space->objfiles ())
4738 {
4739 /* Expand symtabs within objfile that possibly contain matching
4740 symbols. */
4741 found_msymbol |= expand_symtabs (objfile, preg);
4742
4743 /* Find matching symbols within OBJFILE and add them in to the
4744 RESULT_SET set. Use a set here so that we can easily detect
4745 duplicates as we go, and can therefore track how many unique
4746 matches we have found so far. */
4747 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4748 break;
4749 }
4750
4751 /* Convert the result set into a sorted result list, as std::set is
4752 defined to be sorted then no explicit call to std::sort is needed. */
4753 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4754
4755 /* If there are no debug symbols, then add matching minsyms. But if the
4756 user wants to see symbols matching a type regexp, then never give a
4757 minimal symbol, as we assume that a minimal symbol does not have a
4758 type. */
4759 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4760 && !m_exclude_minsyms
4761 && !treg.has_value ())
4762 {
4763 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4764 for (objfile *objfile : current_program_space->objfiles ())
4765 if (!add_matching_msymbols (objfile, preg, &result))
4766 break;
4767 }
4768
4769 return result;
4770 }
4771
4772 /* See symtab.h. */
4773
4774 std::string
4775 symbol_to_info_string (struct symbol *sym, int block,
4776 enum search_domain kind)
4777 {
4778 std::string str;
4779
4780 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4781
4782 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4783 str += "static ";
4784
4785 /* Typedef that is not a C++ class. */
4786 if (kind == TYPES_DOMAIN
4787 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4788 {
4789 string_file tmp_stream;
4790
4791 /* FIXME: For C (and C++) we end up with a difference in output here
4792 between how a typedef is printed, and non-typedefs are printed.
4793 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4794 appear C-like, while TYPE_PRINT doesn't.
4795
4796 For the struct printing case below, things are worse, we force
4797 printing of the ";" in this function, which is going to be wrong
4798 for languages that don't require a ";" between statements. */
4799 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4800 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4801 else
4802 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4803 str += tmp_stream.string ();
4804 }
4805 /* variable, func, or typedef-that-is-c++-class. */
4806 else if (kind < TYPES_DOMAIN
4807 || (kind == TYPES_DOMAIN
4808 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4809 {
4810 string_file tmp_stream;
4811
4812 type_print (SYMBOL_TYPE (sym),
4813 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4814 ? "" : sym->print_name ()),
4815 &tmp_stream, 0);
4816
4817 str += tmp_stream.string ();
4818 str += ";";
4819 }
4820 /* Printing of modules is currently done here, maybe at some future
4821 point we might want a language specific method to print the module
4822 symbol so that we can customise the output more. */
4823 else if (kind == MODULES_DOMAIN)
4824 str += sym->print_name ();
4825
4826 return str;
4827 }
4828
4829 /* Helper function for symbol info commands, for example 'info functions',
4830 'info variables', etc. KIND is the kind of symbol we searched for, and
4831 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4832 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4833 print file and line number information for the symbol as well. Skip
4834 printing the filename if it matches LAST. */
4835
4836 static void
4837 print_symbol_info (enum search_domain kind,
4838 struct symbol *sym,
4839 int block, const char *last)
4840 {
4841 scoped_switch_to_sym_language_if_auto l (sym);
4842 struct symtab *s = symbol_symtab (sym);
4843
4844 if (last != NULL)
4845 {
4846 const char *s_filename = symtab_to_filename_for_display (s);
4847
4848 if (filename_cmp (last, s_filename) != 0)
4849 {
4850 printf_filtered (_("\nFile %ps:\n"),
4851 styled_string (file_name_style.style (),
4852 s_filename));
4853 }
4854
4855 if (SYMBOL_LINE (sym) != 0)
4856 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4857 else
4858 puts_filtered ("\t");
4859 }
4860
4861 std::string str = symbol_to_info_string (sym, block, kind);
4862 printf_filtered ("%s\n", str.c_str ());
4863 }
4864
4865 /* This help function for symtab_symbol_info() prints information
4866 for non-debugging symbols to gdb_stdout. */
4867
4868 static void
4869 print_msymbol_info (struct bound_minimal_symbol msymbol)
4870 {
4871 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4872 char *tmp;
4873
4874 if (gdbarch_addr_bit (gdbarch) <= 32)
4875 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4876 & (CORE_ADDR) 0xffffffff,
4877 8);
4878 else
4879 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4880 16);
4881
4882 ui_file_style sym_style = (msymbol.minsym->text_p ()
4883 ? function_name_style.style ()
4884 : ui_file_style ());
4885
4886 printf_filtered (_("%ps %ps\n"),
4887 styled_string (address_style.style (), tmp),
4888 styled_string (sym_style, msymbol.minsym->print_name ()));
4889 }
4890
4891 /* This is the guts of the commands "info functions", "info types", and
4892 "info variables". It calls search_symbols to find all matches and then
4893 print_[m]symbol_info to print out some useful information about the
4894 matches. */
4895
4896 static void
4897 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4898 const char *regexp, enum search_domain kind,
4899 const char *t_regexp, int from_tty)
4900 {
4901 static const char * const classnames[] =
4902 {"variable", "function", "type", "module"};
4903 const char *last_filename = "";
4904 int first = 1;
4905
4906 gdb_assert (kind != ALL_DOMAIN);
4907
4908 if (regexp != nullptr && *regexp == '\0')
4909 regexp = nullptr;
4910
4911 global_symbol_searcher spec (kind, regexp);
4912 spec.set_symbol_type_regexp (t_regexp);
4913 spec.set_exclude_minsyms (exclude_minsyms);
4914 std::vector<symbol_search> symbols = spec.search ();
4915
4916 if (!quiet)
4917 {
4918 if (regexp != NULL)
4919 {
4920 if (t_regexp != NULL)
4921 printf_filtered
4922 (_("All %ss matching regular expression \"%s\""
4923 " with type matching regular expression \"%s\":\n"),
4924 classnames[kind], regexp, t_regexp);
4925 else
4926 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4927 classnames[kind], regexp);
4928 }
4929 else
4930 {
4931 if (t_regexp != NULL)
4932 printf_filtered
4933 (_("All defined %ss"
4934 " with type matching regular expression \"%s\" :\n"),
4935 classnames[kind], t_regexp);
4936 else
4937 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4938 }
4939 }
4940
4941 for (const symbol_search &p : symbols)
4942 {
4943 QUIT;
4944
4945 if (p.msymbol.minsym != NULL)
4946 {
4947 if (first)
4948 {
4949 if (!quiet)
4950 printf_filtered (_("\nNon-debugging symbols:\n"));
4951 first = 0;
4952 }
4953 print_msymbol_info (p.msymbol);
4954 }
4955 else
4956 {
4957 print_symbol_info (kind,
4958 p.symbol,
4959 p.block,
4960 last_filename);
4961 last_filename
4962 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4963 }
4964 }
4965 }
4966
4967 /* Structure to hold the values of the options used by the 'info variables'
4968 and 'info functions' commands. These correspond to the -q, -t, and -n
4969 options. */
4970
4971 struct info_print_options
4972 {
4973 bool quiet = false;
4974 bool exclude_minsyms = false;
4975 char *type_regexp = nullptr;
4976
4977 ~info_print_options ()
4978 {
4979 xfree (type_regexp);
4980 }
4981 };
4982
4983 /* The options used by the 'info variables' and 'info functions'
4984 commands. */
4985
4986 static const gdb::option::option_def info_print_options_defs[] = {
4987 gdb::option::boolean_option_def<info_print_options> {
4988 "q",
4989 [] (info_print_options *opt) { return &opt->quiet; },
4990 nullptr, /* show_cmd_cb */
4991 nullptr /* set_doc */
4992 },
4993
4994 gdb::option::boolean_option_def<info_print_options> {
4995 "n",
4996 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4997 nullptr, /* show_cmd_cb */
4998 nullptr /* set_doc */
4999 },
5000
5001 gdb::option::string_option_def<info_print_options> {
5002 "t",
5003 [] (info_print_options *opt) { return &opt->type_regexp; },
5004 nullptr, /* show_cmd_cb */
5005 nullptr /* set_doc */
5006 }
5007 };
5008
5009 /* Returns the option group used by 'info variables' and 'info
5010 functions'. */
5011
5012 static gdb::option::option_def_group
5013 make_info_print_options_def_group (info_print_options *opts)
5014 {
5015 return {{info_print_options_defs}, opts};
5016 }
5017
5018 /* Command completer for 'info variables' and 'info functions'. */
5019
5020 static void
5021 info_print_command_completer (struct cmd_list_element *ignore,
5022 completion_tracker &tracker,
5023 const char *text, const char * /* word */)
5024 {
5025 const auto group
5026 = make_info_print_options_def_group (nullptr);
5027 if (gdb::option::complete_options
5028 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5029 return;
5030
5031 const char *word = advance_to_expression_complete_word_point (tracker, text);
5032 symbol_completer (ignore, tracker, text, word);
5033 }
5034
5035 /* Implement the 'info variables' command. */
5036
5037 static void
5038 info_variables_command (const char *args, int from_tty)
5039 {
5040 info_print_options opts;
5041 auto grp = make_info_print_options_def_group (&opts);
5042 gdb::option::process_options
5043 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5044 if (args != nullptr && *args == '\0')
5045 args = nullptr;
5046
5047 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5048 opts.type_regexp, from_tty);
5049 }
5050
5051 /* Implement the 'info functions' command. */
5052
5053 static void
5054 info_functions_command (const char *args, int from_tty)
5055 {
5056 info_print_options opts;
5057 auto grp = make_info_print_options_def_group (&opts);
5058 gdb::option::process_options
5059 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5060 if (args != nullptr && *args == '\0')
5061 args = nullptr;
5062
5063 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5064 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5065 }
5066
5067 /* Holds the -q option for the 'info types' command. */
5068
5069 struct info_types_options
5070 {
5071 bool quiet = false;
5072 };
5073
5074 /* The options used by the 'info types' command. */
5075
5076 static const gdb::option::option_def info_types_options_defs[] = {
5077 gdb::option::boolean_option_def<info_types_options> {
5078 "q",
5079 [] (info_types_options *opt) { return &opt->quiet; },
5080 nullptr, /* show_cmd_cb */
5081 nullptr /* set_doc */
5082 }
5083 };
5084
5085 /* Returns the option group used by 'info types'. */
5086
5087 static gdb::option::option_def_group
5088 make_info_types_options_def_group (info_types_options *opts)
5089 {
5090 return {{info_types_options_defs}, opts};
5091 }
5092
5093 /* Implement the 'info types' command. */
5094
5095 static void
5096 info_types_command (const char *args, int from_tty)
5097 {
5098 info_types_options opts;
5099
5100 auto grp = make_info_types_options_def_group (&opts);
5101 gdb::option::process_options
5102 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5103 if (args != nullptr && *args == '\0')
5104 args = nullptr;
5105 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5106 }
5107
5108 /* Command completer for 'info types' command. */
5109
5110 static void
5111 info_types_command_completer (struct cmd_list_element *ignore,
5112 completion_tracker &tracker,
5113 const char *text, const char * /* word */)
5114 {
5115 const auto group
5116 = make_info_types_options_def_group (nullptr);
5117 if (gdb::option::complete_options
5118 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5119 return;
5120
5121 const char *word = advance_to_expression_complete_word_point (tracker, text);
5122 symbol_completer (ignore, tracker, text, word);
5123 }
5124
5125 /* Implement the 'info modules' command. */
5126
5127 static void
5128 info_modules_command (const char *args, int from_tty)
5129 {
5130 info_types_options opts;
5131
5132 auto grp = make_info_types_options_def_group (&opts);
5133 gdb::option::process_options
5134 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5135 if (args != nullptr && *args == '\0')
5136 args = nullptr;
5137 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5138 from_tty);
5139 }
5140
5141 static void
5142 rbreak_command (const char *regexp, int from_tty)
5143 {
5144 std::string string;
5145 const char *file_name = nullptr;
5146
5147 if (regexp != nullptr)
5148 {
5149 const char *colon = strchr (regexp, ':');
5150
5151 if (colon && *(colon + 1) != ':')
5152 {
5153 int colon_index;
5154 char *local_name;
5155
5156 colon_index = colon - regexp;
5157 local_name = (char *) alloca (colon_index + 1);
5158 memcpy (local_name, regexp, colon_index);
5159 local_name[colon_index--] = 0;
5160 while (isspace (local_name[colon_index]))
5161 local_name[colon_index--] = 0;
5162 file_name = local_name;
5163 regexp = skip_spaces (colon + 1);
5164 }
5165 }
5166
5167 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5168 if (file_name != nullptr)
5169 spec.filenames.push_back (file_name);
5170 std::vector<symbol_search> symbols = spec.search ();
5171
5172 scoped_rbreak_breakpoints finalize;
5173 for (const symbol_search &p : symbols)
5174 {
5175 if (p.msymbol.minsym == NULL)
5176 {
5177 struct symtab *symtab = symbol_symtab (p.symbol);
5178 const char *fullname = symtab_to_fullname (symtab);
5179
5180 string = string_printf ("%s:'%s'", fullname,
5181 p.symbol->linkage_name ());
5182 break_command (&string[0], from_tty);
5183 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5184 }
5185 else
5186 {
5187 string = string_printf ("'%s'",
5188 p.msymbol.minsym->linkage_name ());
5189
5190 break_command (&string[0], from_tty);
5191 printf_filtered ("<function, no debug info> %s;\n",
5192 p.msymbol.minsym->print_name ());
5193 }
5194 }
5195 }
5196 \f
5197
5198 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5199
5200 static int
5201 compare_symbol_name (const char *symbol_name, language symbol_language,
5202 const lookup_name_info &lookup_name,
5203 completion_match_result &match_res)
5204 {
5205 const language_defn *lang = language_def (symbol_language);
5206
5207 symbol_name_matcher_ftype *name_match
5208 = get_symbol_name_matcher (lang, lookup_name);
5209
5210 return name_match (symbol_name, lookup_name, &match_res);
5211 }
5212
5213 /* See symtab.h. */
5214
5215 void
5216 completion_list_add_name (completion_tracker &tracker,
5217 language symbol_language,
5218 const char *symname,
5219 const lookup_name_info &lookup_name,
5220 const char *text, const char *word)
5221 {
5222 completion_match_result &match_res
5223 = tracker.reset_completion_match_result ();
5224
5225 /* Clip symbols that cannot match. */
5226 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5227 return;
5228
5229 /* Refresh SYMNAME from the match string. It's potentially
5230 different depending on language. (E.g., on Ada, the match may be
5231 the encoded symbol name wrapped in "<>"). */
5232 symname = match_res.match.match ();
5233 gdb_assert (symname != NULL);
5234
5235 /* We have a match for a completion, so add SYMNAME to the current list
5236 of matches. Note that the name is moved to freshly malloc'd space. */
5237
5238 {
5239 gdb::unique_xmalloc_ptr<char> completion
5240 = make_completion_match_str (symname, text, word);
5241
5242 /* Here we pass the match-for-lcd object to add_completion. Some
5243 languages match the user text against substrings of symbol
5244 names in some cases. E.g., in C++, "b push_ba" completes to
5245 "std::vector::push_back", "std::string::push_back", etc., and
5246 in this case we want the completion lowest common denominator
5247 to be "push_back" instead of "std::". */
5248 tracker.add_completion (std::move (completion),
5249 &match_res.match_for_lcd, text, word);
5250 }
5251 }
5252
5253 /* completion_list_add_name wrapper for struct symbol. */
5254
5255 static void
5256 completion_list_add_symbol (completion_tracker &tracker,
5257 symbol *sym,
5258 const lookup_name_info &lookup_name,
5259 const char *text, const char *word)
5260 {
5261 completion_list_add_name (tracker, sym->language (),
5262 sym->natural_name (),
5263 lookup_name, text, word);
5264 }
5265
5266 /* completion_list_add_name wrapper for struct minimal_symbol. */
5267
5268 static void
5269 completion_list_add_msymbol (completion_tracker &tracker,
5270 minimal_symbol *sym,
5271 const lookup_name_info &lookup_name,
5272 const char *text, const char *word)
5273 {
5274 completion_list_add_name (tracker, sym->language (),
5275 sym->natural_name (),
5276 lookup_name, text, word);
5277 }
5278
5279
5280 /* ObjC: In case we are completing on a selector, look as the msymbol
5281 again and feed all the selectors into the mill. */
5282
5283 static void
5284 completion_list_objc_symbol (completion_tracker &tracker,
5285 struct minimal_symbol *msymbol,
5286 const lookup_name_info &lookup_name,
5287 const char *text, const char *word)
5288 {
5289 static char *tmp = NULL;
5290 static unsigned int tmplen = 0;
5291
5292 const char *method, *category, *selector;
5293 char *tmp2 = NULL;
5294
5295 method = msymbol->natural_name ();
5296
5297 /* Is it a method? */
5298 if ((method[0] != '-') && (method[0] != '+'))
5299 return;
5300
5301 if (text[0] == '[')
5302 /* Complete on shortened method method. */
5303 completion_list_add_name (tracker, language_objc,
5304 method + 1,
5305 lookup_name,
5306 text, word);
5307
5308 while ((strlen (method) + 1) >= tmplen)
5309 {
5310 if (tmplen == 0)
5311 tmplen = 1024;
5312 else
5313 tmplen *= 2;
5314 tmp = (char *) xrealloc (tmp, tmplen);
5315 }
5316 selector = strchr (method, ' ');
5317 if (selector != NULL)
5318 selector++;
5319
5320 category = strchr (method, '(');
5321
5322 if ((category != NULL) && (selector != NULL))
5323 {
5324 memcpy (tmp, method, (category - method));
5325 tmp[category - method] = ' ';
5326 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5327 completion_list_add_name (tracker, language_objc, tmp,
5328 lookup_name, text, word);
5329 if (text[0] == '[')
5330 completion_list_add_name (tracker, language_objc, tmp + 1,
5331 lookup_name, text, word);
5332 }
5333
5334 if (selector != NULL)
5335 {
5336 /* Complete on selector only. */
5337 strcpy (tmp, selector);
5338 tmp2 = strchr (tmp, ']');
5339 if (tmp2 != NULL)
5340 *tmp2 = '\0';
5341
5342 completion_list_add_name (tracker, language_objc, tmp,
5343 lookup_name, text, word);
5344 }
5345 }
5346
5347 /* Break the non-quoted text based on the characters which are in
5348 symbols. FIXME: This should probably be language-specific. */
5349
5350 static const char *
5351 language_search_unquoted_string (const char *text, const char *p)
5352 {
5353 for (; p > text; --p)
5354 {
5355 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5356 continue;
5357 else
5358 {
5359 if ((current_language->la_language == language_objc))
5360 {
5361 if (p[-1] == ':') /* Might be part of a method name. */
5362 continue;
5363 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5364 p -= 2; /* Beginning of a method name. */
5365 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5366 { /* Might be part of a method name. */
5367 const char *t = p;
5368
5369 /* Seeing a ' ' or a '(' is not conclusive evidence
5370 that we are in the middle of a method name. However,
5371 finding "-[" or "+[" should be pretty un-ambiguous.
5372 Unfortunately we have to find it now to decide. */
5373
5374 while (t > text)
5375 if (isalnum (t[-1]) || t[-1] == '_' ||
5376 t[-1] == ' ' || t[-1] == ':' ||
5377 t[-1] == '(' || t[-1] == ')')
5378 --t;
5379 else
5380 break;
5381
5382 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5383 p = t - 2; /* Method name detected. */
5384 /* Else we leave with p unchanged. */
5385 }
5386 }
5387 break;
5388 }
5389 }
5390 return p;
5391 }
5392
5393 static void
5394 completion_list_add_fields (completion_tracker &tracker,
5395 struct symbol *sym,
5396 const lookup_name_info &lookup_name,
5397 const char *text, const char *word)
5398 {
5399 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5400 {
5401 struct type *t = SYMBOL_TYPE (sym);
5402 enum type_code c = TYPE_CODE (t);
5403 int j;
5404
5405 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5406 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5407 if (TYPE_FIELD_NAME (t, j))
5408 completion_list_add_name (tracker, sym->language (),
5409 TYPE_FIELD_NAME (t, j),
5410 lookup_name, text, word);
5411 }
5412 }
5413
5414 /* See symtab.h. */
5415
5416 bool
5417 symbol_is_function_or_method (symbol *sym)
5418 {
5419 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5420 {
5421 case TYPE_CODE_FUNC:
5422 case TYPE_CODE_METHOD:
5423 return true;
5424 default:
5425 return false;
5426 }
5427 }
5428
5429 /* See symtab.h. */
5430
5431 bool
5432 symbol_is_function_or_method (minimal_symbol *msymbol)
5433 {
5434 switch (MSYMBOL_TYPE (msymbol))
5435 {
5436 case mst_text:
5437 case mst_text_gnu_ifunc:
5438 case mst_solib_trampoline:
5439 case mst_file_text:
5440 return true;
5441 default:
5442 return false;
5443 }
5444 }
5445
5446 /* See symtab.h. */
5447
5448 bound_minimal_symbol
5449 find_gnu_ifunc (const symbol *sym)
5450 {
5451 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5452 return {};
5453
5454 lookup_name_info lookup_name (sym->search_name (),
5455 symbol_name_match_type::SEARCH_NAME);
5456 struct objfile *objfile = symbol_objfile (sym);
5457
5458 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5459 minimal_symbol *ifunc = NULL;
5460
5461 iterate_over_minimal_symbols (objfile, lookup_name,
5462 [&] (minimal_symbol *minsym)
5463 {
5464 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5465 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5466 {
5467 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5468 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5469 {
5470 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5471 msym_addr
5472 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5473 msym_addr,
5474 current_top_target ());
5475 }
5476 if (msym_addr == address)
5477 {
5478 ifunc = minsym;
5479 return true;
5480 }
5481 }
5482 return false;
5483 });
5484
5485 if (ifunc != NULL)
5486 return {ifunc, objfile};
5487 return {};
5488 }
5489
5490 /* Add matching symbols from SYMTAB to the current completion list. */
5491
5492 static void
5493 add_symtab_completions (struct compunit_symtab *cust,
5494 completion_tracker &tracker,
5495 complete_symbol_mode mode,
5496 const lookup_name_info &lookup_name,
5497 const char *text, const char *word,
5498 enum type_code code)
5499 {
5500 struct symbol *sym;
5501 const struct block *b;
5502 struct block_iterator iter;
5503 int i;
5504
5505 if (cust == NULL)
5506 return;
5507
5508 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5509 {
5510 QUIT;
5511 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5512 ALL_BLOCK_SYMBOLS (b, iter, sym)
5513 {
5514 if (completion_skip_symbol (mode, sym))
5515 continue;
5516
5517 if (code == TYPE_CODE_UNDEF
5518 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5519 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5520 completion_list_add_symbol (tracker, sym,
5521 lookup_name,
5522 text, word);
5523 }
5524 }
5525 }
5526
5527 void
5528 default_collect_symbol_completion_matches_break_on
5529 (completion_tracker &tracker, complete_symbol_mode mode,
5530 symbol_name_match_type name_match_type,
5531 const char *text, const char *word,
5532 const char *break_on, enum type_code code)
5533 {
5534 /* Problem: All of the symbols have to be copied because readline
5535 frees them. I'm not going to worry about this; hopefully there
5536 won't be that many. */
5537
5538 struct symbol *sym;
5539 const struct block *b;
5540 const struct block *surrounding_static_block, *surrounding_global_block;
5541 struct block_iterator iter;
5542 /* The symbol we are completing on. Points in same buffer as text. */
5543 const char *sym_text;
5544
5545 /* Now look for the symbol we are supposed to complete on. */
5546 if (mode == complete_symbol_mode::LINESPEC)
5547 sym_text = text;
5548 else
5549 {
5550 const char *p;
5551 char quote_found;
5552 const char *quote_pos = NULL;
5553
5554 /* First see if this is a quoted string. */
5555 quote_found = '\0';
5556 for (p = text; *p != '\0'; ++p)
5557 {
5558 if (quote_found != '\0')
5559 {
5560 if (*p == quote_found)
5561 /* Found close quote. */
5562 quote_found = '\0';
5563 else if (*p == '\\' && p[1] == quote_found)
5564 /* A backslash followed by the quote character
5565 doesn't end the string. */
5566 ++p;
5567 }
5568 else if (*p == '\'' || *p == '"')
5569 {
5570 quote_found = *p;
5571 quote_pos = p;
5572 }
5573 }
5574 if (quote_found == '\'')
5575 /* A string within single quotes can be a symbol, so complete on it. */
5576 sym_text = quote_pos + 1;
5577 else if (quote_found == '"')
5578 /* A double-quoted string is never a symbol, nor does it make sense
5579 to complete it any other way. */
5580 {
5581 return;
5582 }
5583 else
5584 {
5585 /* It is not a quoted string. Break it based on the characters
5586 which are in symbols. */
5587 while (p > text)
5588 {
5589 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5590 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5591 --p;
5592 else
5593 break;
5594 }
5595 sym_text = p;
5596 }
5597 }
5598
5599 lookup_name_info lookup_name (sym_text, name_match_type, true);
5600
5601 /* At this point scan through the misc symbol vectors and add each
5602 symbol you find to the list. Eventually we want to ignore
5603 anything that isn't a text symbol (everything else will be
5604 handled by the psymtab code below). */
5605
5606 if (code == TYPE_CODE_UNDEF)
5607 {
5608 for (objfile *objfile : current_program_space->objfiles ())
5609 {
5610 for (minimal_symbol *msymbol : objfile->msymbols ())
5611 {
5612 QUIT;
5613
5614 if (completion_skip_symbol (mode, msymbol))
5615 continue;
5616
5617 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5618 sym_text, word);
5619
5620 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5621 sym_text, word);
5622 }
5623 }
5624 }
5625
5626 /* Add completions for all currently loaded symbol tables. */
5627 for (objfile *objfile : current_program_space->objfiles ())
5628 {
5629 for (compunit_symtab *cust : objfile->compunits ())
5630 add_symtab_completions (cust, tracker, mode, lookup_name,
5631 sym_text, word, code);
5632 }
5633
5634 /* Look through the partial symtabs for all symbols which begin by
5635 matching SYM_TEXT. Expand all CUs that you find to the list. */
5636 expand_symtabs_matching (NULL,
5637 lookup_name,
5638 NULL,
5639 [&] (compunit_symtab *symtab) /* expansion notify */
5640 {
5641 add_symtab_completions (symtab,
5642 tracker, mode, lookup_name,
5643 sym_text, word, code);
5644 },
5645 ALL_DOMAIN);
5646
5647 /* Search upwards from currently selected frame (so that we can
5648 complete on local vars). Also catch fields of types defined in
5649 this places which match our text string. Only complete on types
5650 visible from current context. */
5651
5652 b = get_selected_block (0);
5653 surrounding_static_block = block_static_block (b);
5654 surrounding_global_block = block_global_block (b);
5655 if (surrounding_static_block != NULL)
5656 while (b != surrounding_static_block)
5657 {
5658 QUIT;
5659
5660 ALL_BLOCK_SYMBOLS (b, iter, sym)
5661 {
5662 if (code == TYPE_CODE_UNDEF)
5663 {
5664 completion_list_add_symbol (tracker, sym, lookup_name,
5665 sym_text, word);
5666 completion_list_add_fields (tracker, sym, lookup_name,
5667 sym_text, word);
5668 }
5669 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5670 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5671 completion_list_add_symbol (tracker, sym, lookup_name,
5672 sym_text, word);
5673 }
5674
5675 /* Stop when we encounter an enclosing function. Do not stop for
5676 non-inlined functions - the locals of the enclosing function
5677 are in scope for a nested function. */
5678 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5679 break;
5680 b = BLOCK_SUPERBLOCK (b);
5681 }
5682
5683 /* Add fields from the file's types; symbols will be added below. */
5684
5685 if (code == TYPE_CODE_UNDEF)
5686 {
5687 if (surrounding_static_block != NULL)
5688 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5689 completion_list_add_fields (tracker, sym, lookup_name,
5690 sym_text, word);
5691
5692 if (surrounding_global_block != NULL)
5693 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5694 completion_list_add_fields (tracker, sym, lookup_name,
5695 sym_text, word);
5696 }
5697
5698 /* Skip macros if we are completing a struct tag -- arguable but
5699 usually what is expected. */
5700 if (current_language->la_macro_expansion == macro_expansion_c
5701 && code == TYPE_CODE_UNDEF)
5702 {
5703 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5704
5705 /* This adds a macro's name to the current completion list. */
5706 auto add_macro_name = [&] (const char *macro_name,
5707 const macro_definition *,
5708 macro_source_file *,
5709 int)
5710 {
5711 completion_list_add_name (tracker, language_c, macro_name,
5712 lookup_name, sym_text, word);
5713 };
5714
5715 /* Add any macros visible in the default scope. Note that this
5716 may yield the occasional wrong result, because an expression
5717 might be evaluated in a scope other than the default. For
5718 example, if the user types "break file:line if <TAB>", the
5719 resulting expression will be evaluated at "file:line" -- but
5720 at there does not seem to be a way to detect this at
5721 completion time. */
5722 scope = default_macro_scope ();
5723 if (scope)
5724 macro_for_each_in_scope (scope->file, scope->line,
5725 add_macro_name);
5726
5727 /* User-defined macros are always visible. */
5728 macro_for_each (macro_user_macros, add_macro_name);
5729 }
5730 }
5731
5732 void
5733 default_collect_symbol_completion_matches (completion_tracker &tracker,
5734 complete_symbol_mode mode,
5735 symbol_name_match_type name_match_type,
5736 const char *text, const char *word,
5737 enum type_code code)
5738 {
5739 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5740 name_match_type,
5741 text, word, "",
5742 code);
5743 }
5744
5745 /* Collect all symbols (regardless of class) which begin by matching
5746 TEXT. */
5747
5748 void
5749 collect_symbol_completion_matches (completion_tracker &tracker,
5750 complete_symbol_mode mode,
5751 symbol_name_match_type name_match_type,
5752 const char *text, const char *word)
5753 {
5754 current_language->la_collect_symbol_completion_matches (tracker, mode,
5755 name_match_type,
5756 text, word,
5757 TYPE_CODE_UNDEF);
5758 }
5759
5760 /* Like collect_symbol_completion_matches, but only collect
5761 STRUCT_DOMAIN symbols whose type code is CODE. */
5762
5763 void
5764 collect_symbol_completion_matches_type (completion_tracker &tracker,
5765 const char *text, const char *word,
5766 enum type_code code)
5767 {
5768 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5769 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5770
5771 gdb_assert (code == TYPE_CODE_UNION
5772 || code == TYPE_CODE_STRUCT
5773 || code == TYPE_CODE_ENUM);
5774 current_language->la_collect_symbol_completion_matches (tracker, mode,
5775 name_match_type,
5776 text, word, code);
5777 }
5778
5779 /* Like collect_symbol_completion_matches, but collects a list of
5780 symbols defined in all source files named SRCFILE. */
5781
5782 void
5783 collect_file_symbol_completion_matches (completion_tracker &tracker,
5784 complete_symbol_mode mode,
5785 symbol_name_match_type name_match_type,
5786 const char *text, const char *word,
5787 const char *srcfile)
5788 {
5789 /* The symbol we are completing on. Points in same buffer as text. */
5790 const char *sym_text;
5791
5792 /* Now look for the symbol we are supposed to complete on.
5793 FIXME: This should be language-specific. */
5794 if (mode == complete_symbol_mode::LINESPEC)
5795 sym_text = text;
5796 else
5797 {
5798 const char *p;
5799 char quote_found;
5800 const char *quote_pos = NULL;
5801
5802 /* First see if this is a quoted string. */
5803 quote_found = '\0';
5804 for (p = text; *p != '\0'; ++p)
5805 {
5806 if (quote_found != '\0')
5807 {
5808 if (*p == quote_found)
5809 /* Found close quote. */
5810 quote_found = '\0';
5811 else if (*p == '\\' && p[1] == quote_found)
5812 /* A backslash followed by the quote character
5813 doesn't end the string. */
5814 ++p;
5815 }
5816 else if (*p == '\'' || *p == '"')
5817 {
5818 quote_found = *p;
5819 quote_pos = p;
5820 }
5821 }
5822 if (quote_found == '\'')
5823 /* A string within single quotes can be a symbol, so complete on it. */
5824 sym_text = quote_pos + 1;
5825 else if (quote_found == '"')
5826 /* A double-quoted string is never a symbol, nor does it make sense
5827 to complete it any other way. */
5828 {
5829 return;
5830 }
5831 else
5832 {
5833 /* Not a quoted string. */
5834 sym_text = language_search_unquoted_string (text, p);
5835 }
5836 }
5837
5838 lookup_name_info lookup_name (sym_text, name_match_type, true);
5839
5840 /* Go through symtabs for SRCFILE and check the externs and statics
5841 for symbols which match. */
5842 iterate_over_symtabs (srcfile, [&] (symtab *s)
5843 {
5844 add_symtab_completions (SYMTAB_COMPUNIT (s),
5845 tracker, mode, lookup_name,
5846 sym_text, word, TYPE_CODE_UNDEF);
5847 return false;
5848 });
5849 }
5850
5851 /* A helper function for make_source_files_completion_list. It adds
5852 another file name to a list of possible completions, growing the
5853 list as necessary. */
5854
5855 static void
5856 add_filename_to_list (const char *fname, const char *text, const char *word,
5857 completion_list *list)
5858 {
5859 list->emplace_back (make_completion_match_str (fname, text, word));
5860 }
5861
5862 static int
5863 not_interesting_fname (const char *fname)
5864 {
5865 static const char *illegal_aliens[] = {
5866 "_globals_", /* inserted by coff_symtab_read */
5867 NULL
5868 };
5869 int i;
5870
5871 for (i = 0; illegal_aliens[i]; i++)
5872 {
5873 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5874 return 1;
5875 }
5876 return 0;
5877 }
5878
5879 /* An object of this type is passed as the user_data argument to
5880 map_partial_symbol_filenames. */
5881 struct add_partial_filename_data
5882 {
5883 struct filename_seen_cache *filename_seen_cache;
5884 const char *text;
5885 const char *word;
5886 int text_len;
5887 completion_list *list;
5888 };
5889
5890 /* A callback for map_partial_symbol_filenames. */
5891
5892 static void
5893 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5894 void *user_data)
5895 {
5896 struct add_partial_filename_data *data
5897 = (struct add_partial_filename_data *) user_data;
5898
5899 if (not_interesting_fname (filename))
5900 return;
5901 if (!data->filename_seen_cache->seen (filename)
5902 && filename_ncmp (filename, data->text, data->text_len) == 0)
5903 {
5904 /* This file matches for a completion; add it to the
5905 current list of matches. */
5906 add_filename_to_list (filename, data->text, data->word, data->list);
5907 }
5908 else
5909 {
5910 const char *base_name = lbasename (filename);
5911
5912 if (base_name != filename
5913 && !data->filename_seen_cache->seen (base_name)
5914 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5915 add_filename_to_list (base_name, data->text, data->word, data->list);
5916 }
5917 }
5918
5919 /* Return a list of all source files whose names begin with matching
5920 TEXT. The file names are looked up in the symbol tables of this
5921 program. */
5922
5923 completion_list
5924 make_source_files_completion_list (const char *text, const char *word)
5925 {
5926 size_t text_len = strlen (text);
5927 completion_list list;
5928 const char *base_name;
5929 struct add_partial_filename_data datum;
5930
5931 if (!have_full_symbols () && !have_partial_symbols ())
5932 return list;
5933
5934 filename_seen_cache filenames_seen;
5935
5936 for (objfile *objfile : current_program_space->objfiles ())
5937 {
5938 for (compunit_symtab *cu : objfile->compunits ())
5939 {
5940 for (symtab *s : compunit_filetabs (cu))
5941 {
5942 if (not_interesting_fname (s->filename))
5943 continue;
5944 if (!filenames_seen.seen (s->filename)
5945 && filename_ncmp (s->filename, text, text_len) == 0)
5946 {
5947 /* This file matches for a completion; add it to the current
5948 list of matches. */
5949 add_filename_to_list (s->filename, text, word, &list);
5950 }
5951 else
5952 {
5953 /* NOTE: We allow the user to type a base name when the
5954 debug info records leading directories, but not the other
5955 way around. This is what subroutines of breakpoint
5956 command do when they parse file names. */
5957 base_name = lbasename (s->filename);
5958 if (base_name != s->filename
5959 && !filenames_seen.seen (base_name)
5960 && filename_ncmp (base_name, text, text_len) == 0)
5961 add_filename_to_list (base_name, text, word, &list);
5962 }
5963 }
5964 }
5965 }
5966
5967 datum.filename_seen_cache = &filenames_seen;
5968 datum.text = text;
5969 datum.word = word;
5970 datum.text_len = text_len;
5971 datum.list = &list;
5972 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5973 0 /*need_fullname*/);
5974
5975 return list;
5976 }
5977 \f
5978 /* Track MAIN */
5979
5980 /* Return the "main_info" object for the current program space. If
5981 the object has not yet been created, create it and fill in some
5982 default values. */
5983
5984 static struct main_info *
5985 get_main_info (void)
5986 {
5987 struct main_info *info = main_progspace_key.get (current_program_space);
5988
5989 if (info == NULL)
5990 {
5991 /* It may seem strange to store the main name in the progspace
5992 and also in whatever objfile happens to see a main name in
5993 its debug info. The reason for this is mainly historical:
5994 gdb returned "main" as the name even if no function named
5995 "main" was defined the program; and this approach lets us
5996 keep compatibility. */
5997 info = main_progspace_key.emplace (current_program_space);
5998 }
5999
6000 return info;
6001 }
6002
6003 static void
6004 set_main_name (const char *name, enum language lang)
6005 {
6006 struct main_info *info = get_main_info ();
6007
6008 if (info->name_of_main != NULL)
6009 {
6010 xfree (info->name_of_main);
6011 info->name_of_main = NULL;
6012 info->language_of_main = language_unknown;
6013 }
6014 if (name != NULL)
6015 {
6016 info->name_of_main = xstrdup (name);
6017 info->language_of_main = lang;
6018 }
6019 }
6020
6021 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6022 accordingly. */
6023
6024 static void
6025 find_main_name (void)
6026 {
6027 const char *new_main_name;
6028
6029 /* First check the objfiles to see whether a debuginfo reader has
6030 picked up the appropriate main name. Historically the main name
6031 was found in a more or less random way; this approach instead
6032 relies on the order of objfile creation -- which still isn't
6033 guaranteed to get the correct answer, but is just probably more
6034 accurate. */
6035 for (objfile *objfile : current_program_space->objfiles ())
6036 {
6037 if (objfile->per_bfd->name_of_main != NULL)
6038 {
6039 set_main_name (objfile->per_bfd->name_of_main,
6040 objfile->per_bfd->language_of_main);
6041 return;
6042 }
6043 }
6044
6045 /* Try to see if the main procedure is in Ada. */
6046 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6047 be to add a new method in the language vector, and call this
6048 method for each language until one of them returns a non-empty
6049 name. This would allow us to remove this hard-coded call to
6050 an Ada function. It is not clear that this is a better approach
6051 at this point, because all methods need to be written in a way
6052 such that false positives never be returned. For instance, it is
6053 important that a method does not return a wrong name for the main
6054 procedure if the main procedure is actually written in a different
6055 language. It is easy to guaranty this with Ada, since we use a
6056 special symbol generated only when the main in Ada to find the name
6057 of the main procedure. It is difficult however to see how this can
6058 be guarantied for languages such as C, for instance. This suggests
6059 that order of call for these methods becomes important, which means
6060 a more complicated approach. */
6061 new_main_name = ada_main_name ();
6062 if (new_main_name != NULL)
6063 {
6064 set_main_name (new_main_name, language_ada);
6065 return;
6066 }
6067
6068 new_main_name = d_main_name ();
6069 if (new_main_name != NULL)
6070 {
6071 set_main_name (new_main_name, language_d);
6072 return;
6073 }
6074
6075 new_main_name = go_main_name ();
6076 if (new_main_name != NULL)
6077 {
6078 set_main_name (new_main_name, language_go);
6079 return;
6080 }
6081
6082 new_main_name = pascal_main_name ();
6083 if (new_main_name != NULL)
6084 {
6085 set_main_name (new_main_name, language_pascal);
6086 return;
6087 }
6088
6089 /* The languages above didn't identify the name of the main procedure.
6090 Fallback to "main". */
6091 set_main_name ("main", language_unknown);
6092 }
6093
6094 /* See symtab.h. */
6095
6096 const char *
6097 main_name ()
6098 {
6099 struct main_info *info = get_main_info ();
6100
6101 if (info->name_of_main == NULL)
6102 find_main_name ();
6103
6104 return info->name_of_main;
6105 }
6106
6107 /* Return the language of the main function. If it is not known,
6108 return language_unknown. */
6109
6110 enum language
6111 main_language (void)
6112 {
6113 struct main_info *info = get_main_info ();
6114
6115 if (info->name_of_main == NULL)
6116 find_main_name ();
6117
6118 return info->language_of_main;
6119 }
6120
6121 /* Handle ``executable_changed'' events for the symtab module. */
6122
6123 static void
6124 symtab_observer_executable_changed (void)
6125 {
6126 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6127 set_main_name (NULL, language_unknown);
6128 }
6129
6130 /* Return 1 if the supplied producer string matches the ARM RealView
6131 compiler (armcc). */
6132
6133 bool
6134 producer_is_realview (const char *producer)
6135 {
6136 static const char *const arm_idents[] = {
6137 "ARM C Compiler, ADS",
6138 "Thumb C Compiler, ADS",
6139 "ARM C++ Compiler, ADS",
6140 "Thumb C++ Compiler, ADS",
6141 "ARM/Thumb C/C++ Compiler, RVCT",
6142 "ARM C/C++ Compiler, RVCT"
6143 };
6144 int i;
6145
6146 if (producer == NULL)
6147 return false;
6148
6149 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6150 if (startswith (producer, arm_idents[i]))
6151 return true;
6152
6153 return false;
6154 }
6155
6156 \f
6157
6158 /* The next index to hand out in response to a registration request. */
6159
6160 static int next_aclass_value = LOC_FINAL_VALUE;
6161
6162 /* The maximum number of "aclass" registrations we support. This is
6163 constant for convenience. */
6164 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6165
6166 /* The objects representing the various "aclass" values. The elements
6167 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6168 elements are those registered at gdb initialization time. */
6169
6170 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6171
6172 /* The globally visible pointer. This is separate from 'symbol_impl'
6173 so that it can be const. */
6174
6175 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6176
6177 /* Make sure we saved enough room in struct symbol. */
6178
6179 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6180
6181 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6182 is the ops vector associated with this index. This returns the new
6183 index, which should be used as the aclass_index field for symbols
6184 of this type. */
6185
6186 int
6187 register_symbol_computed_impl (enum address_class aclass,
6188 const struct symbol_computed_ops *ops)
6189 {
6190 int result = next_aclass_value++;
6191
6192 gdb_assert (aclass == LOC_COMPUTED);
6193 gdb_assert (result < MAX_SYMBOL_IMPLS);
6194 symbol_impl[result].aclass = aclass;
6195 symbol_impl[result].ops_computed = ops;
6196
6197 /* Sanity check OPS. */
6198 gdb_assert (ops != NULL);
6199 gdb_assert (ops->tracepoint_var_ref != NULL);
6200 gdb_assert (ops->describe_location != NULL);
6201 gdb_assert (ops->get_symbol_read_needs != NULL);
6202 gdb_assert (ops->read_variable != NULL);
6203
6204 return result;
6205 }
6206
6207 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6208 OPS is the ops vector associated with this index. This returns the
6209 new index, which should be used as the aclass_index field for symbols
6210 of this type. */
6211
6212 int
6213 register_symbol_block_impl (enum address_class aclass,
6214 const struct symbol_block_ops *ops)
6215 {
6216 int result = next_aclass_value++;
6217
6218 gdb_assert (aclass == LOC_BLOCK);
6219 gdb_assert (result < MAX_SYMBOL_IMPLS);
6220 symbol_impl[result].aclass = aclass;
6221 symbol_impl[result].ops_block = ops;
6222
6223 /* Sanity check OPS. */
6224 gdb_assert (ops != NULL);
6225 gdb_assert (ops->find_frame_base_location != NULL);
6226
6227 return result;
6228 }
6229
6230 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6231 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6232 this index. This returns the new index, which should be used as
6233 the aclass_index field for symbols of this type. */
6234
6235 int
6236 register_symbol_register_impl (enum address_class aclass,
6237 const struct symbol_register_ops *ops)
6238 {
6239 int result = next_aclass_value++;
6240
6241 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6242 gdb_assert (result < MAX_SYMBOL_IMPLS);
6243 symbol_impl[result].aclass = aclass;
6244 symbol_impl[result].ops_register = ops;
6245
6246 return result;
6247 }
6248
6249 /* Initialize elements of 'symbol_impl' for the constants in enum
6250 address_class. */
6251
6252 static void
6253 initialize_ordinary_address_classes (void)
6254 {
6255 int i;
6256
6257 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6258 symbol_impl[i].aclass = (enum address_class) i;
6259 }
6260
6261 \f
6262
6263 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6264
6265 void
6266 initialize_objfile_symbol (struct symbol *sym)
6267 {
6268 SYMBOL_OBJFILE_OWNED (sym) = 1;
6269 SYMBOL_SECTION (sym) = -1;
6270 }
6271
6272 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6273 obstack. */
6274
6275 struct symbol *
6276 allocate_symbol (struct objfile *objfile)
6277 {
6278 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6279
6280 initialize_objfile_symbol (result);
6281
6282 return result;
6283 }
6284
6285 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6286 obstack. */
6287
6288 struct template_symbol *
6289 allocate_template_symbol (struct objfile *objfile)
6290 {
6291 struct template_symbol *result;
6292
6293 result = new (&objfile->objfile_obstack) template_symbol ();
6294 initialize_objfile_symbol (result);
6295
6296 return result;
6297 }
6298
6299 /* See symtab.h. */
6300
6301 struct objfile *
6302 symbol_objfile (const struct symbol *symbol)
6303 {
6304 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6305 return SYMTAB_OBJFILE (symbol->owner.symtab);
6306 }
6307
6308 /* See symtab.h. */
6309
6310 struct gdbarch *
6311 symbol_arch (const struct symbol *symbol)
6312 {
6313 if (!SYMBOL_OBJFILE_OWNED (symbol))
6314 return symbol->owner.arch;
6315 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6316 }
6317
6318 /* See symtab.h. */
6319
6320 struct symtab *
6321 symbol_symtab (const struct symbol *symbol)
6322 {
6323 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6324 return symbol->owner.symtab;
6325 }
6326
6327 /* See symtab.h. */
6328
6329 void
6330 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6331 {
6332 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6333 symbol->owner.symtab = symtab;
6334 }
6335
6336 /* See symtab.h. */
6337
6338 CORE_ADDR
6339 get_symbol_address (const struct symbol *sym)
6340 {
6341 gdb_assert (sym->maybe_copied);
6342 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6343
6344 const char *linkage_name = sym->linkage_name ();
6345
6346 for (objfile *objfile : current_program_space->objfiles ())
6347 {
6348 bound_minimal_symbol minsym
6349 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6350 if (minsym.minsym != nullptr)
6351 return BMSYMBOL_VALUE_ADDRESS (minsym);
6352 }
6353 return sym->value.address;
6354 }
6355
6356 /* See symtab.h. */
6357
6358 CORE_ADDR
6359 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6360 {
6361 gdb_assert (minsym->maybe_copied);
6362 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6363
6364 const char *linkage_name = minsym->linkage_name ();
6365
6366 for (objfile *objfile : current_program_space->objfiles ())
6367 {
6368 if ((objfile->flags & OBJF_MAINLINE) != 0)
6369 {
6370 bound_minimal_symbol found
6371 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6372 if (found.minsym != nullptr)
6373 return BMSYMBOL_VALUE_ADDRESS (found);
6374 }
6375 }
6376 return (minsym->value.address
6377 + ANOFFSET (objf->section_offsets, minsym->section));
6378 }
6379
6380 \f
6381
6382 /* Hold the sub-commands of 'info module'. */
6383
6384 static struct cmd_list_element *info_module_cmdlist = NULL;
6385
6386 /* Implement the 'info module' command, just displays some help text for
6387 the available sub-commands. */
6388
6389 static void
6390 info_module_command (const char *args, int from_tty)
6391 {
6392 help_list (info_module_cmdlist, "info module ", class_info, gdb_stdout);
6393 }
6394
6395 /* See symtab.h. */
6396
6397 std::vector<module_symbol_search>
6398 search_module_symbols (const char *module_regexp, const char *regexp,
6399 const char *type_regexp, search_domain kind)
6400 {
6401 std::vector<module_symbol_search> results;
6402
6403 /* Search for all modules matching MODULE_REGEXP. */
6404 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6405 spec1.set_exclude_minsyms (true);
6406 std::vector<symbol_search> modules = spec1.search ();
6407
6408 /* Now search for all symbols of the required KIND matching the required
6409 regular expressions. We figure out which ones are in which modules
6410 below. */
6411 global_symbol_searcher spec2 (kind, regexp);
6412 spec2.set_symbol_type_regexp (type_regexp);
6413 spec2.set_exclude_minsyms (true);
6414 std::vector<symbol_search> symbols = spec2.search ();
6415
6416 /* Now iterate over all MODULES, checking to see which items from
6417 SYMBOLS are in each module. */
6418 for (const symbol_search &p : modules)
6419 {
6420 QUIT;
6421
6422 /* This is a module. */
6423 gdb_assert (p.symbol != nullptr);
6424
6425 std::string prefix = p.symbol->print_name ();
6426 prefix += "::";
6427
6428 for (const symbol_search &q : symbols)
6429 {
6430 if (q.symbol == nullptr)
6431 continue;
6432
6433 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6434 prefix.size ()) != 0)
6435 continue;
6436
6437 results.push_back ({p, q});
6438 }
6439 }
6440
6441 return results;
6442 }
6443
6444 /* Implement the core of both 'info module functions' and 'info module
6445 variables'. */
6446
6447 static void
6448 info_module_subcommand (bool quiet, const char *module_regexp,
6449 const char *regexp, const char *type_regexp,
6450 search_domain kind)
6451 {
6452 /* Print a header line. Don't build the header line bit by bit as this
6453 prevents internationalisation. */
6454 if (!quiet)
6455 {
6456 if (module_regexp == nullptr)
6457 {
6458 if (type_regexp == nullptr)
6459 {
6460 if (regexp == nullptr)
6461 printf_filtered ((kind == VARIABLES_DOMAIN
6462 ? _("All variables in all modules:")
6463 : _("All functions in all modules:")));
6464 else
6465 printf_filtered
6466 ((kind == VARIABLES_DOMAIN
6467 ? _("All variables matching regular expression"
6468 " \"%s\" in all modules:")
6469 : _("All functions matching regular expression"
6470 " \"%s\" in all modules:")),
6471 regexp);
6472 }
6473 else
6474 {
6475 if (regexp == nullptr)
6476 printf_filtered
6477 ((kind == VARIABLES_DOMAIN
6478 ? _("All variables with type matching regular "
6479 "expression \"%s\" in all modules:")
6480 : _("All functions with type matching regular "
6481 "expression \"%s\" in all modules:")),
6482 type_regexp);
6483 else
6484 printf_filtered
6485 ((kind == VARIABLES_DOMAIN
6486 ? _("All variables matching regular expression "
6487 "\"%s\",\n\twith type matching regular "
6488 "expression \"%s\" in all modules:")
6489 : _("All functions matching regular expression "
6490 "\"%s\",\n\twith type matching regular "
6491 "expression \"%s\" in all modules:")),
6492 regexp, type_regexp);
6493 }
6494 }
6495 else
6496 {
6497 if (type_regexp == nullptr)
6498 {
6499 if (regexp == nullptr)
6500 printf_filtered
6501 ((kind == VARIABLES_DOMAIN
6502 ? _("All variables in all modules matching regular "
6503 "expression \"%s\":")
6504 : _("All functions in all modules matching regular "
6505 "expression \"%s\":")),
6506 module_regexp);
6507 else
6508 printf_filtered
6509 ((kind == VARIABLES_DOMAIN
6510 ? _("All variables matching regular expression "
6511 "\"%s\",\n\tin all modules matching regular "
6512 "expression \"%s\":")
6513 : _("All functions matching regular expression "
6514 "\"%s\",\n\tin all modules matching regular "
6515 "expression \"%s\":")),
6516 regexp, module_regexp);
6517 }
6518 else
6519 {
6520 if (regexp == nullptr)
6521 printf_filtered
6522 ((kind == VARIABLES_DOMAIN
6523 ? _("All variables with type matching regular "
6524 "expression \"%s\"\n\tin all modules matching "
6525 "regular expression \"%s\":")
6526 : _("All functions with type matching regular "
6527 "expression \"%s\"\n\tin all modules matching "
6528 "regular expression \"%s\":")),
6529 type_regexp, module_regexp);
6530 else
6531 printf_filtered
6532 ((kind == VARIABLES_DOMAIN
6533 ? _("All variables matching regular expression "
6534 "\"%s\",\n\twith type matching regular expression "
6535 "\"%s\",\n\tin all modules matching regular "
6536 "expression \"%s\":")
6537 : _("All functions matching regular expression "
6538 "\"%s\",\n\twith type matching regular expression "
6539 "\"%s\",\n\tin all modules matching regular "
6540 "expression \"%s\":")),
6541 regexp, type_regexp, module_regexp);
6542 }
6543 }
6544 printf_filtered ("\n");
6545 }
6546
6547 /* Find all symbols of type KIND matching the given regular expressions
6548 along with the symbols for the modules in which those symbols
6549 reside. */
6550 std::vector<module_symbol_search> module_symbols
6551 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6552
6553 std::sort (module_symbols.begin (), module_symbols.end (),
6554 [] (const module_symbol_search &a, const module_symbol_search &b)
6555 {
6556 if (a.first < b.first)
6557 return true;
6558 else if (a.first == b.first)
6559 return a.second < b.second;
6560 else
6561 return false;
6562 });
6563
6564 const char *last_filename = "";
6565 const symbol *last_module_symbol = nullptr;
6566 for (const module_symbol_search &ms : module_symbols)
6567 {
6568 const symbol_search &p = ms.first;
6569 const symbol_search &q = ms.second;
6570
6571 gdb_assert (q.symbol != nullptr);
6572
6573 if (last_module_symbol != p.symbol)
6574 {
6575 printf_filtered ("\n");
6576 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6577 last_module_symbol = p.symbol;
6578 last_filename = "";
6579 }
6580
6581 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6582 last_filename);
6583 last_filename
6584 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6585 }
6586 }
6587
6588 /* Hold the option values for the 'info module .....' sub-commands. */
6589
6590 struct info_modules_var_func_options
6591 {
6592 bool quiet = false;
6593 char *type_regexp = nullptr;
6594 char *module_regexp = nullptr;
6595
6596 ~info_modules_var_func_options ()
6597 {
6598 xfree (type_regexp);
6599 xfree (module_regexp);
6600 }
6601 };
6602
6603 /* The options used by 'info module variables' and 'info module functions'
6604 commands. */
6605
6606 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6607 gdb::option::boolean_option_def<info_modules_var_func_options> {
6608 "q",
6609 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6610 nullptr, /* show_cmd_cb */
6611 nullptr /* set_doc */
6612 },
6613
6614 gdb::option::string_option_def<info_modules_var_func_options> {
6615 "t",
6616 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6617 nullptr, /* show_cmd_cb */
6618 nullptr /* set_doc */
6619 },
6620
6621 gdb::option::string_option_def<info_modules_var_func_options> {
6622 "m",
6623 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6624 nullptr, /* show_cmd_cb */
6625 nullptr /* set_doc */
6626 }
6627 };
6628
6629 /* Return the option group used by the 'info module ...' sub-commands. */
6630
6631 static inline gdb::option::option_def_group
6632 make_info_modules_var_func_options_def_group
6633 (info_modules_var_func_options *opts)
6634 {
6635 return {{info_modules_var_func_options_defs}, opts};
6636 }
6637
6638 /* Implements the 'info module functions' command. */
6639
6640 static void
6641 info_module_functions_command (const char *args, int from_tty)
6642 {
6643 info_modules_var_func_options opts;
6644 auto grp = make_info_modules_var_func_options_def_group (&opts);
6645 gdb::option::process_options
6646 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6647 if (args != nullptr && *args == '\0')
6648 args = nullptr;
6649
6650 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6651 opts.type_regexp, FUNCTIONS_DOMAIN);
6652 }
6653
6654 /* Implements the 'info module variables' command. */
6655
6656 static void
6657 info_module_variables_command (const char *args, int from_tty)
6658 {
6659 info_modules_var_func_options opts;
6660 auto grp = make_info_modules_var_func_options_def_group (&opts);
6661 gdb::option::process_options
6662 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6663 if (args != nullptr && *args == '\0')
6664 args = nullptr;
6665
6666 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6667 opts.type_regexp, VARIABLES_DOMAIN);
6668 }
6669
6670 /* Command completer for 'info module ...' sub-commands. */
6671
6672 static void
6673 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6674 completion_tracker &tracker,
6675 const char *text,
6676 const char * /* word */)
6677 {
6678
6679 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6680 if (gdb::option::complete_options
6681 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6682 return;
6683
6684 const char *word = advance_to_expression_complete_word_point (tracker, text);
6685 symbol_completer (ignore, tracker, text, word);
6686 }
6687
6688 \f
6689
6690 void
6691 _initialize_symtab (void)
6692 {
6693 cmd_list_element *c;
6694
6695 initialize_ordinary_address_classes ();
6696
6697 c = add_info ("variables", info_variables_command,
6698 info_print_args_help (_("\
6699 All global and static variable names or those matching REGEXPs.\n\
6700 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6701 Prints the global and static variables.\n"),
6702 _("global and static variables"),
6703 true));
6704 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6705 if (dbx_commands)
6706 {
6707 c = add_com ("whereis", class_info, info_variables_command,
6708 info_print_args_help (_("\
6709 All global and static variable names, or those matching REGEXPs.\n\
6710 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6711 Prints the global and static variables.\n"),
6712 _("global and static variables"),
6713 true));
6714 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6715 }
6716
6717 c = add_info ("functions", info_functions_command,
6718 info_print_args_help (_("\
6719 All function names or those matching REGEXPs.\n\
6720 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6721 Prints the functions.\n"),
6722 _("functions"),
6723 true));
6724 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6725
6726 c = add_info ("types", info_types_command, _("\
6727 All type names, or those matching REGEXP.\n\
6728 Usage: info types [-q] [REGEXP]\n\
6729 Print information about all types matching REGEXP, or all types if no\n\
6730 REGEXP is given. The optional flag -q disables printing of headers."));
6731 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6732
6733 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6734
6735 static std::string info_sources_help
6736 = gdb::option::build_help (_("\
6737 All source files in the program or those matching REGEXP.\n\
6738 Usage: info sources [OPTION]... [REGEXP]\n\
6739 By default, REGEXP is used to match anywhere in the filename.\n\
6740 \n\
6741 Options:\n\
6742 %OPTIONS%"),
6743 info_sources_opts);
6744
6745 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6746 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6747
6748 c = add_info ("modules", info_modules_command,
6749 _("All module names, or those matching REGEXP."));
6750 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6751
6752 add_prefix_cmd ("module", class_info, info_module_command, _("\
6753 Print information about modules."),
6754 &info_module_cmdlist, "info module ",
6755 0, &infolist);
6756
6757 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6758 Display functions arranged by modules.\n\
6759 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6760 Print a summary of all functions within each Fortran module, grouped by\n\
6761 module and file. For each function the line on which the function is\n\
6762 defined is given along with the type signature and name of the function.\n\
6763 \n\
6764 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6765 listed. If MODREGEXP is provided then only functions in modules matching\n\
6766 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6767 type signature matches TYPEREGEXP are listed.\n\
6768 \n\
6769 The -q flag suppresses printing some header information."),
6770 &info_module_cmdlist);
6771 set_cmd_completer_handle_brkchars
6772 (c, info_module_var_func_command_completer);
6773
6774 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6775 Display variables arranged by modules.\n\
6776 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6777 Print a summary of all variables within each Fortran module, grouped by\n\
6778 module and file. For each variable the line on which the variable is\n\
6779 defined is given along with the type and name of the variable.\n\
6780 \n\
6781 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6782 listed. If MODREGEXP is provided then only variables in modules matching\n\
6783 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6784 type matches TYPEREGEXP are listed.\n\
6785 \n\
6786 The -q flag suppresses printing some header information."),
6787 &info_module_cmdlist);
6788 set_cmd_completer_handle_brkchars
6789 (c, info_module_var_func_command_completer);
6790
6791 add_com ("rbreak", class_breakpoint, rbreak_command,
6792 _("Set a breakpoint for all functions matching REGEXP."));
6793
6794 add_setshow_enum_cmd ("multiple-symbols", no_class,
6795 multiple_symbols_modes, &multiple_symbols_mode,
6796 _("\
6797 Set how the debugger handles ambiguities in expressions."), _("\
6798 Show how the debugger handles ambiguities in expressions."), _("\
6799 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6800 NULL, NULL, &setlist, &showlist);
6801
6802 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6803 &basenames_may_differ, _("\
6804 Set whether a source file may have multiple base names."), _("\
6805 Show whether a source file may have multiple base names."), _("\
6806 (A \"base name\" is the name of a file with the directory part removed.\n\
6807 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6808 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6809 before comparing them. Canonicalization is an expensive operation,\n\
6810 but it allows the same file be known by more than one base name.\n\
6811 If not set (the default), all source files are assumed to have just\n\
6812 one base name, and gdb will do file name comparisons more efficiently."),
6813 NULL, NULL,
6814 &setlist, &showlist);
6815
6816 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6817 _("Set debugging of symbol table creation."),
6818 _("Show debugging of symbol table creation."), _("\
6819 When enabled (non-zero), debugging messages are printed when building\n\
6820 symbol tables. A value of 1 (one) normally provides enough information.\n\
6821 A value greater than 1 provides more verbose information."),
6822 NULL,
6823 NULL,
6824 &setdebuglist, &showdebuglist);
6825
6826 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6827 _("\
6828 Set debugging of symbol lookup."), _("\
6829 Show debugging of symbol lookup."), _("\
6830 When enabled (non-zero), symbol lookups are logged."),
6831 NULL, NULL,
6832 &setdebuglist, &showdebuglist);
6833
6834 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6835 &new_symbol_cache_size,
6836 _("Set the size of the symbol cache."),
6837 _("Show the size of the symbol cache."), _("\
6838 The size of the symbol cache.\n\
6839 If zero then the symbol cache is disabled."),
6840 set_symbol_cache_size_handler, NULL,
6841 &maintenance_set_cmdlist,
6842 &maintenance_show_cmdlist);
6843
6844 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6845 _("Dump the symbol cache for each program space."),
6846 &maintenanceprintlist);
6847
6848 add_cmd ("symbol-cache-statistics", class_maintenance,
6849 maintenance_print_symbol_cache_statistics,
6850 _("Print symbol cache statistics for each program space."),
6851 &maintenanceprintlist);
6852
6853 add_cmd ("flush-symbol-cache", class_maintenance,
6854 maintenance_flush_symbol_cache,
6855 _("Flush the symbol cache for each program space."),
6856 &maintenancelist);
6857
6858 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6859 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6860 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6861 }
This page took 0.18033 seconds and 4 git commands to generate.