* symtab.c (lookup_global_symbol_from_objfile): Only scan blockvector
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "linespec.h"
37 #include "source.h"
38 #include "filenames.h" /* for FILENAME_CMP */
39 #include "objc-lang.h"
40 #include "d-lang.h"
41 #include "ada-lang.h"
42 #include "go-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "psymtab.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static void output_source_filename (const char *, int *);
80
81 static int find_line_common (struct linetable *, int, int *, int);
82
83 static struct symbol *lookup_symbol_aux (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 int *is_a_field_of_this);
88
89 static
90 struct symbol *lookup_symbol_aux_local (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language);
94
95 static
96 struct symbol *lookup_symbol_aux_symtabs (int block_index,
97 const char *name,
98 const domain_enum domain,
99 struct objfile *exclude_objfile);
100
101 static
102 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
103 int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static void print_msymbol_info (struct minimal_symbol *);
108
109 void _initialize_symtab (void);
110
111 /* */
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). SEARCH_LEN is the length of
151 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
152 Returns true if they match, false otherwise. */
153
154 int
155 compare_filenames_for_search (const char *filename, const char *search_name,
156 int search_len)
157 {
158 int len = strlen (filename);
159
160 if (len < search_len)
161 return 0;
162
163 /* The tail of FILENAME must match. */
164 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
165 return 0;
166
167 /* Either the names must completely match, or the character
168 preceding the trailing SEARCH_NAME segment of FILENAME must be a
169 directory separator. */
170 return (len == search_len
171 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
172 || (HAS_DRIVE_SPEC (filename)
173 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
174 }
175
176 /* Check for a symtab of a specific name by searching some symtabs.
177 This is a helper function for callbacks of iterate_over_symtabs.
178
179 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
180 are identical to the `map_symtabs_matching_filename' method of
181 quick_symbol_functions.
182
183 FIRST and AFTER_LAST indicate the range of symtabs to search.
184 AFTER_LAST is one past the last symtab to search; NULL means to
185 search until the end of the list. */
186
187 int
188 iterate_over_some_symtabs (const char *name,
189 const char *full_path,
190 const char *real_path,
191 int (*callback) (struct symtab *symtab,
192 void *data),
193 void *data,
194 struct symtab *first,
195 struct symtab *after_last)
196 {
197 struct symtab *s = NULL;
198 const char* base_name = lbasename (name);
199 int name_len = strlen (name);
200 int is_abs = IS_ABSOLUTE_PATH (name);
201
202 for (s = first; s != NULL && s != after_last; s = s->next)
203 {
204 /* Exact match is always ok. */
205 if (FILENAME_CMP (name, s->filename) == 0)
206 {
207 if (callback (s, data))
208 return 1;
209 }
210
211 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
212 {
213 if (callback (s, data))
214 return 1;
215 }
216
217 /* Before we invoke realpath, which can get expensive when many
218 files are involved, do a quick comparison of the basenames. */
219 if (! basenames_may_differ
220 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
221 continue;
222
223 /* If the user gave us an absolute path, try to find the file in
224 this symtab and use its absolute path. */
225
226 if (full_path != NULL)
227 {
228 const char *fp = symtab_to_fullname (s);
229
230 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
231 {
232 if (callback (s, data))
233 return 1;
234 }
235
236 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
237 name_len))
238 {
239 if (callback (s, data))
240 return 1;
241 }
242 }
243
244 if (real_path != NULL)
245 {
246 char *fullname = symtab_to_fullname (s);
247
248 if (fullname != NULL)
249 {
250 char *rp = gdb_realpath (fullname);
251
252 make_cleanup (xfree, rp);
253 if (FILENAME_CMP (real_path, rp) == 0)
254 {
255 if (callback (s, data))
256 return 1;
257 }
258
259 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
260 {
261 if (callback (s, data))
262 return 1;
263 }
264 }
265 }
266 }
267
268 return 0;
269 }
270
271 /* Check for a symtab of a specific name; first in symtabs, then in
272 psymtabs. *If* there is no '/' in the name, a match after a '/'
273 in the symtab filename will also work.
274
275 Calls CALLBACK with each symtab that is found and with the supplied
276 DATA. If CALLBACK returns true, the search stops. */
277
278 void
279 iterate_over_symtabs (const char *name,
280 int (*callback) (struct symtab *symtab,
281 void *data),
282 void *data)
283 {
284 struct symtab *s = NULL;
285 struct objfile *objfile;
286 char *real_path = NULL;
287 char *full_path = NULL;
288 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
289
290 /* Here we are interested in canonicalizing an absolute path, not
291 absolutizing a relative path. */
292 if (IS_ABSOLUTE_PATH (name))
293 {
294 full_path = xfullpath (name);
295 make_cleanup (xfree, full_path);
296 real_path = gdb_realpath (name);
297 make_cleanup (xfree, real_path);
298 }
299
300 ALL_OBJFILES (objfile)
301 {
302 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
303 objfile->symtabs, NULL))
304 {
305 do_cleanups (cleanups);
306 return;
307 }
308 }
309
310 /* Same search rules as above apply here, but now we look thru the
311 psymtabs. */
312
313 ALL_OBJFILES (objfile)
314 {
315 if (objfile->sf
316 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
317 name,
318 full_path,
319 real_path,
320 callback,
321 data))
322 {
323 do_cleanups (cleanups);
324 return;
325 }
326 }
327
328 do_cleanups (cleanups);
329 }
330
331 /* The callback function used by lookup_symtab. */
332
333 static int
334 lookup_symtab_callback (struct symtab *symtab, void *data)
335 {
336 struct symtab **result_ptr = data;
337
338 *result_ptr = symtab;
339 return 1;
340 }
341
342 /* A wrapper for iterate_over_symtabs that returns the first matching
343 symtab, or NULL. */
344
345 struct symtab *
346 lookup_symtab (const char *name)
347 {
348 struct symtab *result = NULL;
349
350 iterate_over_symtabs (name, lookup_symtab_callback, &result);
351 return result;
352 }
353
354 \f
355 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
356 full method name, which consist of the class name (from T), the unadorned
357 method name from METHOD_ID, and the signature for the specific overload,
358 specified by SIGNATURE_ID. Note that this function is g++ specific. */
359
360 char *
361 gdb_mangle_name (struct type *type, int method_id, int signature_id)
362 {
363 int mangled_name_len;
364 char *mangled_name;
365 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
366 struct fn_field *method = &f[signature_id];
367 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
368 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
369 const char *newname = type_name_no_tag (type);
370
371 /* Does the form of physname indicate that it is the full mangled name
372 of a constructor (not just the args)? */
373 int is_full_physname_constructor;
374
375 int is_constructor;
376 int is_destructor = is_destructor_name (physname);
377 /* Need a new type prefix. */
378 char *const_prefix = method->is_const ? "C" : "";
379 char *volatile_prefix = method->is_volatile ? "V" : "";
380 char buf[20];
381 int len = (newname == NULL ? 0 : strlen (newname));
382
383 /* Nothing to do if physname already contains a fully mangled v3 abi name
384 or an operator name. */
385 if ((physname[0] == '_' && physname[1] == 'Z')
386 || is_operator_name (field_name))
387 return xstrdup (physname);
388
389 is_full_physname_constructor = is_constructor_name (physname);
390
391 is_constructor = is_full_physname_constructor
392 || (newname && strcmp (field_name, newname) == 0);
393
394 if (!is_destructor)
395 is_destructor = (strncmp (physname, "__dt", 4) == 0);
396
397 if (is_destructor || is_full_physname_constructor)
398 {
399 mangled_name = (char *) xmalloc (strlen (physname) + 1);
400 strcpy (mangled_name, physname);
401 return mangled_name;
402 }
403
404 if (len == 0)
405 {
406 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
407 }
408 else if (physname[0] == 't' || physname[0] == 'Q')
409 {
410 /* The physname for template and qualified methods already includes
411 the class name. */
412 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
413 newname = NULL;
414 len = 0;
415 }
416 else
417 {
418 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
419 }
420 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
421 + strlen (buf) + len + strlen (physname) + 1);
422
423 mangled_name = (char *) xmalloc (mangled_name_len);
424 if (is_constructor)
425 mangled_name[0] = '\0';
426 else
427 strcpy (mangled_name, field_name);
428
429 strcat (mangled_name, buf);
430 /* If the class doesn't have a name, i.e. newname NULL, then we just
431 mangle it using 0 for the length of the class. Thus it gets mangled
432 as something starting with `::' rather than `classname::'. */
433 if (newname != NULL)
434 strcat (mangled_name, newname);
435
436 strcat (mangled_name, physname);
437 return (mangled_name);
438 }
439
440 /* Initialize the cplus_specific structure. 'cplus_specific' should
441 only be allocated for use with cplus symbols. */
442
443 static void
444 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
445 struct objfile *objfile)
446 {
447 /* A language_specific structure should not have been previously
448 initialized. */
449 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
450 gdb_assert (objfile != NULL);
451
452 gsymbol->language_specific.cplus_specific =
453 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
454 }
455
456 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
457 correctly allocated. For C++ symbols a cplus_specific struct is
458 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
459 OBJFILE can be NULL. */
460
461 void
462 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
463 char *name,
464 struct objfile *objfile)
465 {
466 if (gsymbol->language == language_cplus)
467 {
468 if (gsymbol->language_specific.cplus_specific == NULL)
469 symbol_init_cplus_specific (gsymbol, objfile);
470
471 gsymbol->language_specific.cplus_specific->demangled_name = name;
472 }
473 else
474 gsymbol->language_specific.mangled_lang.demangled_name = name;
475 }
476
477 /* Return the demangled name of GSYMBOL. */
478
479 const char *
480 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
481 {
482 if (gsymbol->language == language_cplus)
483 {
484 if (gsymbol->language_specific.cplus_specific != NULL)
485 return gsymbol->language_specific.cplus_specific->demangled_name;
486 else
487 return NULL;
488 }
489 else
490 return gsymbol->language_specific.mangled_lang.demangled_name;
491 }
492
493 \f
494 /* Initialize the language dependent portion of a symbol
495 depending upon the language for the symbol. */
496
497 void
498 symbol_set_language (struct general_symbol_info *gsymbol,
499 enum language language)
500 {
501 gsymbol->language = language;
502 if (gsymbol->language == language_d
503 || gsymbol->language == language_go
504 || gsymbol->language == language_java
505 || gsymbol->language == language_objc
506 || gsymbol->language == language_fortran)
507 {
508 symbol_set_demangled_name (gsymbol, NULL, NULL);
509 }
510 else if (gsymbol->language == language_cplus)
511 gsymbol->language_specific.cplus_specific = NULL;
512 else
513 {
514 memset (&gsymbol->language_specific, 0,
515 sizeof (gsymbol->language_specific));
516 }
517 }
518
519 /* Functions to initialize a symbol's mangled name. */
520
521 /* Objects of this type are stored in the demangled name hash table. */
522 struct demangled_name_entry
523 {
524 char *mangled;
525 char demangled[1];
526 };
527
528 /* Hash function for the demangled name hash. */
529
530 static hashval_t
531 hash_demangled_name_entry (const void *data)
532 {
533 const struct demangled_name_entry *e = data;
534
535 return htab_hash_string (e->mangled);
536 }
537
538 /* Equality function for the demangled name hash. */
539
540 static int
541 eq_demangled_name_entry (const void *a, const void *b)
542 {
543 const struct demangled_name_entry *da = a;
544 const struct demangled_name_entry *db = b;
545
546 return strcmp (da->mangled, db->mangled) == 0;
547 }
548
549 /* Create the hash table used for demangled names. Each hash entry is
550 a pair of strings; one for the mangled name and one for the demangled
551 name. The entry is hashed via just the mangled name. */
552
553 static void
554 create_demangled_names_hash (struct objfile *objfile)
555 {
556 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
557 The hash table code will round this up to the next prime number.
558 Choosing a much larger table size wastes memory, and saves only about
559 1% in symbol reading. */
560
561 objfile->demangled_names_hash = htab_create_alloc
562 (256, hash_demangled_name_entry, eq_demangled_name_entry,
563 NULL, xcalloc, xfree);
564 }
565
566 /* Try to determine the demangled name for a symbol, based on the
567 language of that symbol. If the language is set to language_auto,
568 it will attempt to find any demangling algorithm that works and
569 then set the language appropriately. The returned name is allocated
570 by the demangler and should be xfree'd. */
571
572 static char *
573 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
574 const char *mangled)
575 {
576 char *demangled = NULL;
577
578 if (gsymbol->language == language_unknown)
579 gsymbol->language = language_auto;
580
581 if (gsymbol->language == language_objc
582 || gsymbol->language == language_auto)
583 {
584 demangled =
585 objc_demangle (mangled, 0);
586 if (demangled != NULL)
587 {
588 gsymbol->language = language_objc;
589 return demangled;
590 }
591 }
592 if (gsymbol->language == language_cplus
593 || gsymbol->language == language_auto)
594 {
595 demangled =
596 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
597 if (demangled != NULL)
598 {
599 gsymbol->language = language_cplus;
600 return demangled;
601 }
602 }
603 if (gsymbol->language == language_java)
604 {
605 demangled =
606 cplus_demangle (mangled,
607 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
608 if (demangled != NULL)
609 {
610 gsymbol->language = language_java;
611 return demangled;
612 }
613 }
614 if (gsymbol->language == language_d
615 || gsymbol->language == language_auto)
616 {
617 demangled = d_demangle(mangled, 0);
618 if (demangled != NULL)
619 {
620 gsymbol->language = language_d;
621 return demangled;
622 }
623 }
624 /* FIXME(dje): Continually adding languages here is clumsy.
625 Better to just call la_demangle if !auto, and if auto then call
626 a utility routine that tries successive languages in turn and reports
627 which one it finds. I realize the la_demangle options may be different
628 for different languages but there's already a FIXME for that. */
629 if (gsymbol->language == language_go
630 || gsymbol->language == language_auto)
631 {
632 demangled = go_demangle (mangled, 0);
633 if (demangled != NULL)
634 {
635 gsymbol->language = language_go;
636 return demangled;
637 }
638 }
639
640 /* We could support `gsymbol->language == language_fortran' here to provide
641 module namespaces also for inferiors with only minimal symbol table (ELF
642 symbols). Just the mangling standard is not standardized across compilers
643 and there is no DW_AT_producer available for inferiors with only the ELF
644 symbols to check the mangling kind. */
645 return NULL;
646 }
647
648 /* Set both the mangled and demangled (if any) names for GSYMBOL based
649 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
650 objfile's obstack; but if COPY_NAME is 0 and if NAME is
651 NUL-terminated, then this function assumes that NAME is already
652 correctly saved (either permanently or with a lifetime tied to the
653 objfile), and it will not be copied.
654
655 The hash table corresponding to OBJFILE is used, and the memory
656 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
657 so the pointer can be discarded after calling this function. */
658
659 /* We have to be careful when dealing with Java names: when we run
660 into a Java minimal symbol, we don't know it's a Java symbol, so it
661 gets demangled as a C++ name. This is unfortunate, but there's not
662 much we can do about it: but when demangling partial symbols and
663 regular symbols, we'd better not reuse the wrong demangled name.
664 (See PR gdb/1039.) We solve this by putting a distinctive prefix
665 on Java names when storing them in the hash table. */
666
667 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
668 don't mind the Java prefix so much: different languages have
669 different demangling requirements, so it's only natural that we
670 need to keep language data around in our demangling cache. But
671 it's not good that the minimal symbol has the wrong demangled name.
672 Unfortunately, I can't think of any easy solution to that
673 problem. */
674
675 #define JAVA_PREFIX "##JAVA$$"
676 #define JAVA_PREFIX_LEN 8
677
678 void
679 symbol_set_names (struct general_symbol_info *gsymbol,
680 const char *linkage_name, int len, int copy_name,
681 struct objfile *objfile)
682 {
683 struct demangled_name_entry **slot;
684 /* A 0-terminated copy of the linkage name. */
685 const char *linkage_name_copy;
686 /* A copy of the linkage name that might have a special Java prefix
687 added to it, for use when looking names up in the hash table. */
688 const char *lookup_name;
689 /* The length of lookup_name. */
690 int lookup_len;
691 struct demangled_name_entry entry;
692
693 if (gsymbol->language == language_ada)
694 {
695 /* In Ada, we do the symbol lookups using the mangled name, so
696 we can save some space by not storing the demangled name.
697
698 As a side note, we have also observed some overlap between
699 the C++ mangling and Ada mangling, similarly to what has
700 been observed with Java. Because we don't store the demangled
701 name with the symbol, we don't need to use the same trick
702 as Java. */
703 if (!copy_name)
704 gsymbol->name = linkage_name;
705 else
706 {
707 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
708
709 memcpy (name, linkage_name, len);
710 name[len] = '\0';
711 gsymbol->name = name;
712 }
713 symbol_set_demangled_name (gsymbol, NULL, NULL);
714
715 return;
716 }
717
718 if (objfile->demangled_names_hash == NULL)
719 create_demangled_names_hash (objfile);
720
721 /* The stabs reader generally provides names that are not
722 NUL-terminated; most of the other readers don't do this, so we
723 can just use the given copy, unless we're in the Java case. */
724 if (gsymbol->language == language_java)
725 {
726 char *alloc_name;
727
728 lookup_len = len + JAVA_PREFIX_LEN;
729 alloc_name = alloca (lookup_len + 1);
730 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
731 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
732 alloc_name[lookup_len] = '\0';
733
734 lookup_name = alloc_name;
735 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
736 }
737 else if (linkage_name[len] != '\0')
738 {
739 char *alloc_name;
740
741 lookup_len = len;
742 alloc_name = alloca (lookup_len + 1);
743 memcpy (alloc_name, linkage_name, len);
744 alloc_name[lookup_len] = '\0';
745
746 lookup_name = alloc_name;
747 linkage_name_copy = alloc_name;
748 }
749 else
750 {
751 lookup_len = len;
752 lookup_name = linkage_name;
753 linkage_name_copy = linkage_name;
754 }
755
756 entry.mangled = (char *) lookup_name;
757 slot = ((struct demangled_name_entry **)
758 htab_find_slot (objfile->demangled_names_hash,
759 &entry, INSERT));
760
761 /* If this name is not in the hash table, add it. */
762 if (*slot == NULL
763 /* A C version of the symbol may have already snuck into the table.
764 This happens to, e.g., main.init (__go_init_main). Cope. */
765 || (gsymbol->language == language_go
766 && (*slot)->demangled[0] == '\0'))
767 {
768 char *demangled_name = symbol_find_demangled_name (gsymbol,
769 linkage_name_copy);
770 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
771
772 /* Suppose we have demangled_name==NULL, copy_name==0, and
773 lookup_name==linkage_name. In this case, we already have the
774 mangled name saved, and we don't have a demangled name. So,
775 you might think we could save a little space by not recording
776 this in the hash table at all.
777
778 It turns out that it is actually important to still save such
779 an entry in the hash table, because storing this name gives
780 us better bcache hit rates for partial symbols. */
781 if (!copy_name && lookup_name == linkage_name)
782 {
783 *slot = obstack_alloc (&objfile->objfile_obstack,
784 offsetof (struct demangled_name_entry,
785 demangled)
786 + demangled_len + 1);
787 (*slot)->mangled = (char *) lookup_name;
788 }
789 else
790 {
791 /* If we must copy the mangled name, put it directly after
792 the demangled name so we can have a single
793 allocation. */
794 *slot = obstack_alloc (&objfile->objfile_obstack,
795 offsetof (struct demangled_name_entry,
796 demangled)
797 + lookup_len + demangled_len + 2);
798 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
799 strcpy ((*slot)->mangled, lookup_name);
800 }
801
802 if (demangled_name != NULL)
803 {
804 strcpy ((*slot)->demangled, demangled_name);
805 xfree (demangled_name);
806 }
807 else
808 (*slot)->demangled[0] = '\0';
809 }
810
811 gsymbol->name = (*slot)->mangled + lookup_len - len;
812 if ((*slot)->demangled[0] != '\0')
813 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
814 else
815 symbol_set_demangled_name (gsymbol, NULL, objfile);
816 }
817
818 /* Return the source code name of a symbol. In languages where
819 demangling is necessary, this is the demangled name. */
820
821 const char *
822 symbol_natural_name (const struct general_symbol_info *gsymbol)
823 {
824 switch (gsymbol->language)
825 {
826 case language_cplus:
827 case language_d:
828 case language_go:
829 case language_java:
830 case language_objc:
831 case language_fortran:
832 if (symbol_get_demangled_name (gsymbol) != NULL)
833 return symbol_get_demangled_name (gsymbol);
834 break;
835 case language_ada:
836 if (symbol_get_demangled_name (gsymbol) != NULL)
837 return symbol_get_demangled_name (gsymbol);
838 else
839 return ada_decode_symbol (gsymbol);
840 break;
841 default:
842 break;
843 }
844 return gsymbol->name;
845 }
846
847 /* Return the demangled name for a symbol based on the language for
848 that symbol. If no demangled name exists, return NULL. */
849
850 const char *
851 symbol_demangled_name (const struct general_symbol_info *gsymbol)
852 {
853 const char *dem_name = NULL;
854
855 switch (gsymbol->language)
856 {
857 case language_cplus:
858 case language_d:
859 case language_go:
860 case language_java:
861 case language_objc:
862 case language_fortran:
863 dem_name = symbol_get_demangled_name (gsymbol);
864 break;
865 case language_ada:
866 dem_name = symbol_get_demangled_name (gsymbol);
867 if (dem_name == NULL)
868 dem_name = ada_decode_symbol (gsymbol);
869 break;
870 default:
871 break;
872 }
873 return dem_name;
874 }
875
876 /* Return the search name of a symbol---generally the demangled or
877 linkage name of the symbol, depending on how it will be searched for.
878 If there is no distinct demangled name, then returns the same value
879 (same pointer) as SYMBOL_LINKAGE_NAME. */
880
881 const char *
882 symbol_search_name (const struct general_symbol_info *gsymbol)
883 {
884 if (gsymbol->language == language_ada)
885 return gsymbol->name;
886 else
887 return symbol_natural_name (gsymbol);
888 }
889
890 /* Initialize the structure fields to zero values. */
891
892 void
893 init_sal (struct symtab_and_line *sal)
894 {
895 sal->pspace = NULL;
896 sal->symtab = 0;
897 sal->section = 0;
898 sal->line = 0;
899 sal->pc = 0;
900 sal->end = 0;
901 sal->explicit_pc = 0;
902 sal->explicit_line = 0;
903 sal->probe = NULL;
904 }
905 \f
906
907 /* Return 1 if the two sections are the same, or if they could
908 plausibly be copies of each other, one in an original object
909 file and another in a separated debug file. */
910
911 int
912 matching_obj_sections (struct obj_section *obj_first,
913 struct obj_section *obj_second)
914 {
915 asection *first = obj_first? obj_first->the_bfd_section : NULL;
916 asection *second = obj_second? obj_second->the_bfd_section : NULL;
917 struct objfile *obj;
918
919 /* If they're the same section, then they match. */
920 if (first == second)
921 return 1;
922
923 /* If either is NULL, give up. */
924 if (first == NULL || second == NULL)
925 return 0;
926
927 /* This doesn't apply to absolute symbols. */
928 if (first->owner == NULL || second->owner == NULL)
929 return 0;
930
931 /* If they're in the same object file, they must be different sections. */
932 if (first->owner == second->owner)
933 return 0;
934
935 /* Check whether the two sections are potentially corresponding. They must
936 have the same size, address, and name. We can't compare section indexes,
937 which would be more reliable, because some sections may have been
938 stripped. */
939 if (bfd_get_section_size (first) != bfd_get_section_size (second))
940 return 0;
941
942 /* In-memory addresses may start at a different offset, relativize them. */
943 if (bfd_get_section_vma (first->owner, first)
944 - bfd_get_start_address (first->owner)
945 != bfd_get_section_vma (second->owner, second)
946 - bfd_get_start_address (second->owner))
947 return 0;
948
949 if (bfd_get_section_name (first->owner, first) == NULL
950 || bfd_get_section_name (second->owner, second) == NULL
951 || strcmp (bfd_get_section_name (first->owner, first),
952 bfd_get_section_name (second->owner, second)) != 0)
953 return 0;
954
955 /* Otherwise check that they are in corresponding objfiles. */
956
957 ALL_OBJFILES (obj)
958 if (obj->obfd == first->owner)
959 break;
960 gdb_assert (obj != NULL);
961
962 if (obj->separate_debug_objfile != NULL
963 && obj->separate_debug_objfile->obfd == second->owner)
964 return 1;
965 if (obj->separate_debug_objfile_backlink != NULL
966 && obj->separate_debug_objfile_backlink->obfd == second->owner)
967 return 1;
968
969 return 0;
970 }
971
972 struct symtab *
973 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
974 {
975 struct objfile *objfile;
976 struct minimal_symbol *msymbol;
977
978 /* If we know that this is not a text address, return failure. This is
979 necessary because we loop based on texthigh and textlow, which do
980 not include the data ranges. */
981 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
982 if (msymbol
983 && (MSYMBOL_TYPE (msymbol) == mst_data
984 || MSYMBOL_TYPE (msymbol) == mst_bss
985 || MSYMBOL_TYPE (msymbol) == mst_abs
986 || MSYMBOL_TYPE (msymbol) == mst_file_data
987 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
988 return NULL;
989
990 ALL_OBJFILES (objfile)
991 {
992 struct symtab *result = NULL;
993
994 if (objfile->sf)
995 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
996 pc, section, 0);
997 if (result)
998 return result;
999 }
1000
1001 return NULL;
1002 }
1003 \f
1004 /* Debug symbols usually don't have section information. We need to dig that
1005 out of the minimal symbols and stash that in the debug symbol. */
1006
1007 void
1008 fixup_section (struct general_symbol_info *ginfo,
1009 CORE_ADDR addr, struct objfile *objfile)
1010 {
1011 struct minimal_symbol *msym;
1012
1013 /* First, check whether a minimal symbol with the same name exists
1014 and points to the same address. The address check is required
1015 e.g. on PowerPC64, where the minimal symbol for a function will
1016 point to the function descriptor, while the debug symbol will
1017 point to the actual function code. */
1018 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1019 if (msym)
1020 {
1021 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1022 ginfo->section = SYMBOL_SECTION (msym);
1023 }
1024 else
1025 {
1026 /* Static, function-local variables do appear in the linker
1027 (minimal) symbols, but are frequently given names that won't
1028 be found via lookup_minimal_symbol(). E.g., it has been
1029 observed in frv-uclinux (ELF) executables that a static,
1030 function-local variable named "foo" might appear in the
1031 linker symbols as "foo.6" or "foo.3". Thus, there is no
1032 point in attempting to extend the lookup-by-name mechanism to
1033 handle this case due to the fact that there can be multiple
1034 names.
1035
1036 So, instead, search the section table when lookup by name has
1037 failed. The ``addr'' and ``endaddr'' fields may have already
1038 been relocated. If so, the relocation offset (i.e. the
1039 ANOFFSET value) needs to be subtracted from these values when
1040 performing the comparison. We unconditionally subtract it,
1041 because, when no relocation has been performed, the ANOFFSET
1042 value will simply be zero.
1043
1044 The address of the symbol whose section we're fixing up HAS
1045 NOT BEEN adjusted (relocated) yet. It can't have been since
1046 the section isn't yet known and knowing the section is
1047 necessary in order to add the correct relocation value. In
1048 other words, we wouldn't even be in this function (attempting
1049 to compute the section) if it were already known.
1050
1051 Note that it is possible to search the minimal symbols
1052 (subtracting the relocation value if necessary) to find the
1053 matching minimal symbol, but this is overkill and much less
1054 efficient. It is not necessary to find the matching minimal
1055 symbol, only its section.
1056
1057 Note that this technique (of doing a section table search)
1058 can fail when unrelocated section addresses overlap. For
1059 this reason, we still attempt a lookup by name prior to doing
1060 a search of the section table. */
1061
1062 struct obj_section *s;
1063
1064 ALL_OBJFILE_OSECTIONS (objfile, s)
1065 {
1066 int idx = s->the_bfd_section->index;
1067 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1068
1069 if (obj_section_addr (s) - offset <= addr
1070 && addr < obj_section_endaddr (s) - offset)
1071 {
1072 ginfo->obj_section = s;
1073 ginfo->section = idx;
1074 return;
1075 }
1076 }
1077 }
1078 }
1079
1080 struct symbol *
1081 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1082 {
1083 CORE_ADDR addr;
1084
1085 if (!sym)
1086 return NULL;
1087
1088 if (SYMBOL_OBJ_SECTION (sym))
1089 return sym;
1090
1091 /* We either have an OBJFILE, or we can get at it from the sym's
1092 symtab. Anything else is a bug. */
1093 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1094
1095 if (objfile == NULL)
1096 objfile = SYMBOL_SYMTAB (sym)->objfile;
1097
1098 /* We should have an objfile by now. */
1099 gdb_assert (objfile);
1100
1101 switch (SYMBOL_CLASS (sym))
1102 {
1103 case LOC_STATIC:
1104 case LOC_LABEL:
1105 addr = SYMBOL_VALUE_ADDRESS (sym);
1106 break;
1107 case LOC_BLOCK:
1108 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1109 break;
1110
1111 default:
1112 /* Nothing else will be listed in the minsyms -- no use looking
1113 it up. */
1114 return sym;
1115 }
1116
1117 fixup_section (&sym->ginfo, addr, objfile);
1118
1119 return sym;
1120 }
1121
1122 /* Compute the demangled form of NAME as used by the various symbol
1123 lookup functions. The result is stored in *RESULT_NAME. Returns a
1124 cleanup which can be used to clean up the result.
1125
1126 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1127 Normally, Ada symbol lookups are performed using the encoded name
1128 rather than the demangled name, and so it might seem to make sense
1129 for this function to return an encoded version of NAME.
1130 Unfortunately, we cannot do this, because this function is used in
1131 circumstances where it is not appropriate to try to encode NAME.
1132 For instance, when displaying the frame info, we demangle the name
1133 of each parameter, and then perform a symbol lookup inside our
1134 function using that demangled name. In Ada, certain functions
1135 have internally-generated parameters whose name contain uppercase
1136 characters. Encoding those name would result in those uppercase
1137 characters to become lowercase, and thus cause the symbol lookup
1138 to fail. */
1139
1140 struct cleanup *
1141 demangle_for_lookup (const char *name, enum language lang,
1142 const char **result_name)
1143 {
1144 char *demangled_name = NULL;
1145 const char *modified_name = NULL;
1146 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1147
1148 modified_name = name;
1149
1150 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1151 lookup, so we can always binary search. */
1152 if (lang == language_cplus)
1153 {
1154 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1155 if (demangled_name)
1156 {
1157 modified_name = demangled_name;
1158 make_cleanup (xfree, demangled_name);
1159 }
1160 else
1161 {
1162 /* If we were given a non-mangled name, canonicalize it
1163 according to the language (so far only for C++). */
1164 demangled_name = cp_canonicalize_string (name);
1165 if (demangled_name)
1166 {
1167 modified_name = demangled_name;
1168 make_cleanup (xfree, demangled_name);
1169 }
1170 }
1171 }
1172 else if (lang == language_java)
1173 {
1174 demangled_name = cplus_demangle (name,
1175 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1176 if (demangled_name)
1177 {
1178 modified_name = demangled_name;
1179 make_cleanup (xfree, demangled_name);
1180 }
1181 }
1182 else if (lang == language_d)
1183 {
1184 demangled_name = d_demangle (name, 0);
1185 if (demangled_name)
1186 {
1187 modified_name = demangled_name;
1188 make_cleanup (xfree, demangled_name);
1189 }
1190 }
1191 else if (lang == language_go)
1192 {
1193 demangled_name = go_demangle (name, 0);
1194 if (demangled_name)
1195 {
1196 modified_name = demangled_name;
1197 make_cleanup (xfree, demangled_name);
1198 }
1199 }
1200
1201 *result_name = modified_name;
1202 return cleanup;
1203 }
1204
1205 /* Find the definition for a specified symbol name NAME
1206 in domain DOMAIN, visible from lexical block BLOCK.
1207 Returns the struct symbol pointer, or zero if no symbol is found.
1208 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1209 NAME is a field of the current implied argument `this'. If so set
1210 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1211 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1212 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1213
1214 /* This function (or rather its subordinates) have a bunch of loops and
1215 it would seem to be attractive to put in some QUIT's (though I'm not really
1216 sure whether it can run long enough to be really important). But there
1217 are a few calls for which it would appear to be bad news to quit
1218 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1219 that there is C++ code below which can error(), but that probably
1220 doesn't affect these calls since they are looking for a known
1221 variable and thus can probably assume it will never hit the C++
1222 code). */
1223
1224 struct symbol *
1225 lookup_symbol_in_language (const char *name, const struct block *block,
1226 const domain_enum domain, enum language lang,
1227 int *is_a_field_of_this)
1228 {
1229 const char *modified_name;
1230 struct symbol *returnval;
1231 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1232
1233 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1234 is_a_field_of_this);
1235 do_cleanups (cleanup);
1236
1237 return returnval;
1238 }
1239
1240 /* Behave like lookup_symbol_in_language, but performed with the
1241 current language. */
1242
1243 struct symbol *
1244 lookup_symbol (const char *name, const struct block *block,
1245 domain_enum domain, int *is_a_field_of_this)
1246 {
1247 return lookup_symbol_in_language (name, block, domain,
1248 current_language->la_language,
1249 is_a_field_of_this);
1250 }
1251
1252 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1253 found, or NULL if not found. */
1254
1255 struct symbol *
1256 lookup_language_this (const struct language_defn *lang,
1257 const struct block *block)
1258 {
1259 if (lang->la_name_of_this == NULL || block == NULL)
1260 return NULL;
1261
1262 while (block)
1263 {
1264 struct symbol *sym;
1265
1266 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1267 if (sym != NULL)
1268 {
1269 block_found = block;
1270 return sym;
1271 }
1272 if (BLOCK_FUNCTION (block))
1273 break;
1274 block = BLOCK_SUPERBLOCK (block);
1275 }
1276
1277 return NULL;
1278 }
1279
1280 /* Behave like lookup_symbol except that NAME is the natural name
1281 (e.g., demangled name) of the symbol that we're looking for. */
1282
1283 static struct symbol *
1284 lookup_symbol_aux (const char *name, const struct block *block,
1285 const domain_enum domain, enum language language,
1286 int *is_a_field_of_this)
1287 {
1288 struct symbol *sym;
1289 const struct language_defn *langdef;
1290
1291 /* Make sure we do something sensible with is_a_field_of_this, since
1292 the callers that set this parameter to some non-null value will
1293 certainly use it later and expect it to be either 0 or 1.
1294 If we don't set it, the contents of is_a_field_of_this are
1295 undefined. */
1296 if (is_a_field_of_this != NULL)
1297 *is_a_field_of_this = 0;
1298
1299 /* Search specified block and its superiors. Don't search
1300 STATIC_BLOCK or GLOBAL_BLOCK. */
1301
1302 sym = lookup_symbol_aux_local (name, block, domain, language);
1303 if (sym != NULL)
1304 return sym;
1305
1306 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1307 check to see if NAME is a field of `this'. */
1308
1309 langdef = language_def (language);
1310
1311 if (is_a_field_of_this != NULL)
1312 {
1313 struct symbol *sym = lookup_language_this (langdef, block);
1314
1315 if (sym)
1316 {
1317 struct type *t = sym->type;
1318
1319 /* I'm not really sure that type of this can ever
1320 be typedefed; just be safe. */
1321 CHECK_TYPEDEF (t);
1322 if (TYPE_CODE (t) == TYPE_CODE_PTR
1323 || TYPE_CODE (t) == TYPE_CODE_REF)
1324 t = TYPE_TARGET_TYPE (t);
1325
1326 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1327 && TYPE_CODE (t) != TYPE_CODE_UNION)
1328 error (_("Internal error: `%s' is not an aggregate"),
1329 langdef->la_name_of_this);
1330
1331 if (check_field (t, name))
1332 {
1333 *is_a_field_of_this = 1;
1334 return NULL;
1335 }
1336 }
1337 }
1338
1339 /* Now do whatever is appropriate for LANGUAGE to look
1340 up static and global variables. */
1341
1342 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1343 if (sym != NULL)
1344 return sym;
1345
1346 /* Now search all static file-level symbols. Not strictly correct,
1347 but more useful than an error. */
1348
1349 return lookup_static_symbol_aux (name, domain);
1350 }
1351
1352 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1353 first, then check the psymtabs. If a psymtab indicates the existence of the
1354 desired name as a file-level static, then do psymtab-to-symtab conversion on
1355 the fly and return the found symbol. */
1356
1357 struct symbol *
1358 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1359 {
1360 struct objfile *objfile;
1361 struct symbol *sym;
1362
1363 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain, NULL);
1364 if (sym != NULL)
1365 return sym;
1366
1367 ALL_OBJFILES (objfile)
1368 {
1369 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1370 if (sym != NULL)
1371 return sym;
1372 }
1373
1374 return NULL;
1375 }
1376
1377 /* Check to see if the symbol is defined in BLOCK or its superiors.
1378 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1379
1380 static struct symbol *
1381 lookup_symbol_aux_local (const char *name, const struct block *block,
1382 const domain_enum domain,
1383 enum language language)
1384 {
1385 struct symbol *sym;
1386 const struct block *static_block = block_static_block (block);
1387 const char *scope = block_scope (block);
1388
1389 /* Check if either no block is specified or it's a global block. */
1390
1391 if (static_block == NULL)
1392 return NULL;
1393
1394 while (block != static_block)
1395 {
1396 sym = lookup_symbol_aux_block (name, block, domain);
1397 if (sym != NULL)
1398 return sym;
1399
1400 if (language == language_cplus || language == language_fortran)
1401 {
1402 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1403 domain);
1404 if (sym != NULL)
1405 return sym;
1406 }
1407
1408 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1409 break;
1410 block = BLOCK_SUPERBLOCK (block);
1411 }
1412
1413 /* We've reached the edge of the function without finding a result. */
1414
1415 return NULL;
1416 }
1417
1418 /* Look up OBJFILE to BLOCK. */
1419
1420 struct objfile *
1421 lookup_objfile_from_block (const struct block *block)
1422 {
1423 struct objfile *obj;
1424 struct symtab *s;
1425
1426 if (block == NULL)
1427 return NULL;
1428
1429 block = block_global_block (block);
1430 /* Go through SYMTABS. */
1431 ALL_SYMTABS (obj, s)
1432 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1433 {
1434 if (obj->separate_debug_objfile_backlink)
1435 obj = obj->separate_debug_objfile_backlink;
1436
1437 return obj;
1438 }
1439
1440 return NULL;
1441 }
1442
1443 /* Look up a symbol in a block; if found, fixup the symbol, and set
1444 block_found appropriately. */
1445
1446 struct symbol *
1447 lookup_symbol_aux_block (const char *name, const struct block *block,
1448 const domain_enum domain)
1449 {
1450 struct symbol *sym;
1451
1452 sym = lookup_block_symbol (block, name, domain);
1453 if (sym)
1454 {
1455 block_found = block;
1456 return fixup_symbol_section (sym, NULL);
1457 }
1458
1459 return NULL;
1460 }
1461
1462 /* Check all global symbols in OBJFILE in symtabs and
1463 psymtabs. */
1464
1465 struct symbol *
1466 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1467 const char *name,
1468 const domain_enum domain)
1469 {
1470 const struct objfile *objfile;
1471 struct symbol *sym;
1472 struct blockvector *bv;
1473 const struct block *block;
1474 struct symtab *s;
1475
1476 for (objfile = main_objfile;
1477 objfile;
1478 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1479 {
1480 /* Go through symtabs. */
1481 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1482 {
1483 bv = BLOCKVECTOR (s);
1484 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1485 sym = lookup_block_symbol (block, name, domain);
1486 if (sym)
1487 {
1488 block_found = block;
1489 return fixup_symbol_section (sym, (struct objfile *)objfile);
1490 }
1491 }
1492
1493 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1494 name, domain);
1495 if (sym)
1496 return sym;
1497 }
1498
1499 return NULL;
1500 }
1501
1502 /* Check to see if the symbol is defined in one of the OBJFILE's
1503 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1504 depending on whether or not we want to search global symbols or
1505 static symbols. */
1506
1507 static struct symbol *
1508 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1509 const char *name, const domain_enum domain)
1510 {
1511 struct symbol *sym = NULL;
1512 struct blockvector *bv;
1513 const struct block *block;
1514 struct symtab *s;
1515
1516 if (objfile->sf)
1517 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1518 name, domain);
1519
1520 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1521 {
1522 bv = BLOCKVECTOR (s);
1523 block = BLOCKVECTOR_BLOCK (bv, block_index);
1524 sym = lookup_block_symbol (block, name, domain);
1525 if (sym)
1526 {
1527 block_found = block;
1528 return fixup_symbol_section (sym, objfile);
1529 }
1530 }
1531
1532 return NULL;
1533 }
1534
1535 /* Same as lookup_symbol_aux_objfile, except that it searches all
1536 objfiles except for EXCLUDE_OBJFILE. Return the first match found.
1537
1538 If EXCLUDE_OBJFILE is NULL, then all objfiles are searched. */
1539
1540 static struct symbol *
1541 lookup_symbol_aux_symtabs (int block_index, const char *name,
1542 const domain_enum domain,
1543 struct objfile *exclude_objfile)
1544 {
1545 struct symbol *sym;
1546 struct objfile *objfile;
1547
1548 ALL_OBJFILES (objfile)
1549 {
1550 if (objfile != exclude_objfile)
1551 {
1552 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1553 if (sym)
1554 return sym;
1555 }
1556 }
1557
1558 return NULL;
1559 }
1560
1561 /* A helper function for lookup_symbol_aux that interfaces with the
1562 "quick" symbol table functions. */
1563
1564 static struct symbol *
1565 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1566 const char *name, const domain_enum domain)
1567 {
1568 struct symtab *symtab;
1569 struct blockvector *bv;
1570 const struct block *block;
1571 struct symbol *sym;
1572
1573 if (!objfile->sf)
1574 return NULL;
1575 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1576 if (!symtab)
1577 return NULL;
1578
1579 bv = BLOCKVECTOR (symtab);
1580 block = BLOCKVECTOR_BLOCK (bv, kind);
1581 sym = lookup_block_symbol (block, name, domain);
1582 if (!sym)
1583 {
1584 /* This shouldn't be necessary, but as a last resort try
1585 looking in the statics even though the psymtab claimed
1586 the symbol was global, or vice-versa. It's possible
1587 that the psymtab gets it wrong in some cases. */
1588
1589 /* FIXME: carlton/2002-09-30: Should we really do that?
1590 If that happens, isn't it likely to be a GDB error, in
1591 which case we should fix the GDB error rather than
1592 silently dealing with it here? So I'd vote for
1593 removing the check for the symbol in the other
1594 block. */
1595 block = BLOCKVECTOR_BLOCK (bv,
1596 kind == GLOBAL_BLOCK ?
1597 STATIC_BLOCK : GLOBAL_BLOCK);
1598 sym = lookup_block_symbol (block, name, domain);
1599 if (!sym)
1600 error (_("\
1601 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1602 %s may be an inlined function, or may be a template function\n\
1603 (if a template, try specifying an instantiation: %s<type>)."),
1604 kind == GLOBAL_BLOCK ? "global" : "static",
1605 name, symtab->filename, name, name);
1606 }
1607 return fixup_symbol_section (sym, objfile);
1608 }
1609
1610 /* A default version of lookup_symbol_nonlocal for use by languages
1611 that can't think of anything better to do. This implements the C
1612 lookup rules. */
1613
1614 struct symbol *
1615 basic_lookup_symbol_nonlocal (const char *name,
1616 const struct block *block,
1617 const domain_enum domain)
1618 {
1619 struct symbol *sym;
1620
1621 /* NOTE: carlton/2003-05-19: The comments below were written when
1622 this (or what turned into this) was part of lookup_symbol_aux;
1623 I'm much less worried about these questions now, since these
1624 decisions have turned out well, but I leave these comments here
1625 for posterity. */
1626
1627 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1628 not it would be appropriate to search the current global block
1629 here as well. (That's what this code used to do before the
1630 is_a_field_of_this check was moved up.) On the one hand, it's
1631 redundant with the lookup_symbol_aux_symtabs search that happens
1632 next. On the other hand, if decode_line_1 is passed an argument
1633 like filename:var, then the user presumably wants 'var' to be
1634 searched for in filename. On the third hand, there shouldn't be
1635 multiple global variables all of which are named 'var', and it's
1636 not like decode_line_1 has ever restricted its search to only
1637 global variables in a single filename. All in all, only
1638 searching the static block here seems best: it's correct and it's
1639 cleanest. */
1640
1641 /* NOTE: carlton/2002-12-05: There's also a possible performance
1642 issue here: if you usually search for global symbols in the
1643 current file, then it would be slightly better to search the
1644 current global block before searching all the symtabs. But there
1645 are other factors that have a much greater effect on performance
1646 than that one, so I don't think we should worry about that for
1647 now. */
1648
1649 sym = lookup_symbol_static (name, block, domain);
1650 if (sym != NULL)
1651 return sym;
1652
1653 return lookup_symbol_global (name, block, domain);
1654 }
1655
1656 /* Lookup a symbol in the static block associated to BLOCK, if there
1657 is one; do nothing if BLOCK is NULL or a global block. */
1658
1659 struct symbol *
1660 lookup_symbol_static (const char *name,
1661 const struct block *block,
1662 const domain_enum domain)
1663 {
1664 const struct block *static_block = block_static_block (block);
1665
1666 if (static_block != NULL)
1667 return lookup_symbol_aux_block (name, static_block, domain);
1668 else
1669 return NULL;
1670 }
1671
1672 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1673 necessary). */
1674
1675 struct symbol *
1676 lookup_symbol_global (const char *name,
1677 const struct block *block,
1678 const domain_enum domain)
1679 {
1680 struct symbol *sym = NULL;
1681 struct objfile *block_objfile = NULL;
1682 struct objfile *objfile = NULL;
1683
1684 /* Call library-specific lookup procedure. */
1685 block_objfile = lookup_objfile_from_block (block);
1686 if (block_objfile != NULL)
1687 sym = solib_global_lookup (block_objfile, name, domain);
1688 if (sym != NULL)
1689 return sym;
1690
1691 /* If BLOCK_OBJFILE is not NULL, then search this objfile first.
1692 In case the global symbol is defined in multiple objfiles,
1693 we have a better chance of finding the most relevant symbol. */
1694
1695 if (block_objfile != NULL)
1696 {
1697 sym = lookup_symbol_aux_objfile (block_objfile, GLOBAL_BLOCK,
1698 name, domain);
1699 if (sym == NULL)
1700 sym = lookup_symbol_aux_quick (block_objfile, GLOBAL_BLOCK,
1701 name, domain);
1702 if (sym != NULL)
1703 return sym;
1704 }
1705
1706 /* Symbol not found in the BLOCK_OBJFILE, so try all the other
1707 objfiles, starting with symtabs first, and then partial symtabs. */
1708
1709 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain, block_objfile);
1710 if (sym != NULL)
1711 return sym;
1712
1713 ALL_OBJFILES (objfile)
1714 {
1715 if (objfile != block_objfile)
1716 {
1717 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1718 if (sym)
1719 return sym;
1720 }
1721 }
1722
1723 return NULL;
1724 }
1725
1726 int
1727 symbol_matches_domain (enum language symbol_language,
1728 domain_enum symbol_domain,
1729 domain_enum domain)
1730 {
1731 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1732 A Java class declaration also defines a typedef for the class.
1733 Similarly, any Ada type declaration implicitly defines a typedef. */
1734 if (symbol_language == language_cplus
1735 || symbol_language == language_d
1736 || symbol_language == language_java
1737 || symbol_language == language_ada)
1738 {
1739 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1740 && symbol_domain == STRUCT_DOMAIN)
1741 return 1;
1742 }
1743 /* For all other languages, strict match is required. */
1744 return (symbol_domain == domain);
1745 }
1746
1747 /* Look up a type named NAME in the struct_domain. The type returned
1748 must not be opaque -- i.e., must have at least one field
1749 defined. */
1750
1751 struct type *
1752 lookup_transparent_type (const char *name)
1753 {
1754 return current_language->la_lookup_transparent_type (name);
1755 }
1756
1757 /* A helper for basic_lookup_transparent_type that interfaces with the
1758 "quick" symbol table functions. */
1759
1760 static struct type *
1761 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1762 const char *name)
1763 {
1764 struct symtab *symtab;
1765 struct blockvector *bv;
1766 struct block *block;
1767 struct symbol *sym;
1768
1769 if (!objfile->sf)
1770 return NULL;
1771 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1772 if (!symtab)
1773 return NULL;
1774
1775 bv = BLOCKVECTOR (symtab);
1776 block = BLOCKVECTOR_BLOCK (bv, kind);
1777 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1778 if (!sym)
1779 {
1780 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1781
1782 /* This shouldn't be necessary, but as a last resort
1783 * try looking in the 'other kind' even though the psymtab
1784 * claimed the symbol was one thing. It's possible that
1785 * the psymtab gets it wrong in some cases.
1786 */
1787 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1788 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1789 if (!sym)
1790 /* FIXME; error is wrong in one case. */
1791 error (_("\
1792 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1793 %s may be an inlined function, or may be a template function\n\
1794 (if a template, try specifying an instantiation: %s<type>)."),
1795 name, symtab->filename, name, name);
1796 }
1797 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1798 return SYMBOL_TYPE (sym);
1799
1800 return NULL;
1801 }
1802
1803 /* The standard implementation of lookup_transparent_type. This code
1804 was modeled on lookup_symbol -- the parts not relevant to looking
1805 up types were just left out. In particular it's assumed here that
1806 types are available in struct_domain and only at file-static or
1807 global blocks. */
1808
1809 struct type *
1810 basic_lookup_transparent_type (const char *name)
1811 {
1812 struct symbol *sym;
1813 struct symtab *s = NULL;
1814 struct blockvector *bv;
1815 struct objfile *objfile;
1816 struct block *block;
1817 struct type *t;
1818
1819 /* Now search all the global symbols. Do the symtab's first, then
1820 check the psymtab's. If a psymtab indicates the existence
1821 of the desired name as a global, then do psymtab-to-symtab
1822 conversion on the fly and return the found symbol. */
1823
1824 ALL_OBJFILES (objfile)
1825 {
1826 if (objfile->sf)
1827 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1828 GLOBAL_BLOCK,
1829 name, STRUCT_DOMAIN);
1830
1831 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1832 {
1833 bv = BLOCKVECTOR (s);
1834 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1835 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1836 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1837 {
1838 return SYMBOL_TYPE (sym);
1839 }
1840 }
1841 }
1842
1843 ALL_OBJFILES (objfile)
1844 {
1845 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1846 if (t)
1847 return t;
1848 }
1849
1850 /* Now search the static file-level symbols.
1851 Not strictly correct, but more useful than an error.
1852 Do the symtab's first, then
1853 check the psymtab's. If a psymtab indicates the existence
1854 of the desired name as a file-level static, then do psymtab-to-symtab
1855 conversion on the fly and return the found symbol. */
1856
1857 ALL_OBJFILES (objfile)
1858 {
1859 if (objfile->sf)
1860 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1861 name, STRUCT_DOMAIN);
1862
1863 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1864 {
1865 bv = BLOCKVECTOR (s);
1866 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1867 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1868 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1869 {
1870 return SYMBOL_TYPE (sym);
1871 }
1872 }
1873 }
1874
1875 ALL_OBJFILES (objfile)
1876 {
1877 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1878 if (t)
1879 return t;
1880 }
1881
1882 return (struct type *) 0;
1883 }
1884
1885 /* Find the name of the file containing main(). */
1886 /* FIXME: What about languages without main() or specially linked
1887 executables that have no main() ? */
1888
1889 const char *
1890 find_main_filename (void)
1891 {
1892 struct objfile *objfile;
1893 char *name = main_name ();
1894
1895 ALL_OBJFILES (objfile)
1896 {
1897 const char *result;
1898
1899 if (!objfile->sf)
1900 continue;
1901 result = objfile->sf->qf->find_symbol_file (objfile, name);
1902 if (result)
1903 return result;
1904 }
1905 return (NULL);
1906 }
1907
1908 /* Search BLOCK for symbol NAME in DOMAIN.
1909
1910 Note that if NAME is the demangled form of a C++ symbol, we will fail
1911 to find a match during the binary search of the non-encoded names, but
1912 for now we don't worry about the slight inefficiency of looking for
1913 a match we'll never find, since it will go pretty quick. Once the
1914 binary search terminates, we drop through and do a straight linear
1915 search on the symbols. Each symbol which is marked as being a ObjC/C++
1916 symbol (language_cplus or language_objc set) has both the encoded and
1917 non-encoded names tested for a match. */
1918
1919 struct symbol *
1920 lookup_block_symbol (const struct block *block, const char *name,
1921 const domain_enum domain)
1922 {
1923 struct block_iterator iter;
1924 struct symbol *sym;
1925
1926 if (!BLOCK_FUNCTION (block))
1927 {
1928 for (sym = block_iter_name_first (block, name, &iter);
1929 sym != NULL;
1930 sym = block_iter_name_next (name, &iter))
1931 {
1932 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1933 SYMBOL_DOMAIN (sym), domain))
1934 return sym;
1935 }
1936 return NULL;
1937 }
1938 else
1939 {
1940 /* Note that parameter symbols do not always show up last in the
1941 list; this loop makes sure to take anything else other than
1942 parameter symbols first; it only uses parameter symbols as a
1943 last resort. Note that this only takes up extra computation
1944 time on a match. */
1945
1946 struct symbol *sym_found = NULL;
1947
1948 for (sym = block_iter_name_first (block, name, &iter);
1949 sym != NULL;
1950 sym = block_iter_name_next (name, &iter))
1951 {
1952 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1953 SYMBOL_DOMAIN (sym), domain))
1954 {
1955 sym_found = sym;
1956 if (!SYMBOL_IS_ARGUMENT (sym))
1957 {
1958 break;
1959 }
1960 }
1961 }
1962 return (sym_found); /* Will be NULL if not found. */
1963 }
1964 }
1965
1966 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
1967 BLOCK.
1968
1969 For each symbol that matches, CALLBACK is called. The symbol and
1970 DATA are passed to the callback.
1971
1972 If CALLBACK returns zero, the iteration ends. Otherwise, the
1973 search continues. This function iterates upward through blocks.
1974 When the outermost block has been finished, the function
1975 returns. */
1976
1977 void
1978 iterate_over_symbols (const struct block *block, const char *name,
1979 const domain_enum domain,
1980 symbol_found_callback_ftype *callback,
1981 void *data)
1982 {
1983 while (block)
1984 {
1985 struct block_iterator iter;
1986 struct symbol *sym;
1987
1988 for (sym = block_iter_name_first (block, name, &iter);
1989 sym != NULL;
1990 sym = block_iter_name_next (name, &iter))
1991 {
1992 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1993 SYMBOL_DOMAIN (sym), domain))
1994 {
1995 if (!callback (sym, data))
1996 return;
1997 }
1998 }
1999
2000 block = BLOCK_SUPERBLOCK (block);
2001 }
2002 }
2003
2004 /* Find the symtab associated with PC and SECTION. Look through the
2005 psymtabs and read in another symtab if necessary. */
2006
2007 struct symtab *
2008 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2009 {
2010 struct block *b;
2011 struct blockvector *bv;
2012 struct symtab *s = NULL;
2013 struct symtab *best_s = NULL;
2014 struct objfile *objfile;
2015 struct program_space *pspace;
2016 CORE_ADDR distance = 0;
2017 struct minimal_symbol *msymbol;
2018
2019 pspace = current_program_space;
2020
2021 /* If we know that this is not a text address, return failure. This is
2022 necessary because we loop based on the block's high and low code
2023 addresses, which do not include the data ranges, and because
2024 we call find_pc_sect_psymtab which has a similar restriction based
2025 on the partial_symtab's texthigh and textlow. */
2026 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2027 if (msymbol
2028 && (MSYMBOL_TYPE (msymbol) == mst_data
2029 || MSYMBOL_TYPE (msymbol) == mst_bss
2030 || MSYMBOL_TYPE (msymbol) == mst_abs
2031 || MSYMBOL_TYPE (msymbol) == mst_file_data
2032 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2033 return NULL;
2034
2035 /* Search all symtabs for the one whose file contains our address, and which
2036 is the smallest of all the ones containing the address. This is designed
2037 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2038 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2039 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2040
2041 This happens for native ecoff format, where code from included files
2042 gets its own symtab. The symtab for the included file should have
2043 been read in already via the dependency mechanism.
2044 It might be swifter to create several symtabs with the same name
2045 like xcoff does (I'm not sure).
2046
2047 It also happens for objfiles that have their functions reordered.
2048 For these, the symtab we are looking for is not necessarily read in. */
2049
2050 ALL_PRIMARY_SYMTABS (objfile, s)
2051 {
2052 bv = BLOCKVECTOR (s);
2053 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2054
2055 if (BLOCK_START (b) <= pc
2056 && BLOCK_END (b) > pc
2057 && (distance == 0
2058 || BLOCK_END (b) - BLOCK_START (b) < distance))
2059 {
2060 /* For an objfile that has its functions reordered,
2061 find_pc_psymtab will find the proper partial symbol table
2062 and we simply return its corresponding symtab. */
2063 /* In order to better support objfiles that contain both
2064 stabs and coff debugging info, we continue on if a psymtab
2065 can't be found. */
2066 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2067 {
2068 struct symtab *result;
2069
2070 result
2071 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2072 msymbol,
2073 pc, section,
2074 0);
2075 if (result)
2076 return result;
2077 }
2078 if (section != 0)
2079 {
2080 struct block_iterator iter;
2081 struct symbol *sym = NULL;
2082
2083 ALL_BLOCK_SYMBOLS (b, iter, sym)
2084 {
2085 fixup_symbol_section (sym, objfile);
2086 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2087 break;
2088 }
2089 if (sym == NULL)
2090 continue; /* No symbol in this symtab matches
2091 section. */
2092 }
2093 distance = BLOCK_END (b) - BLOCK_START (b);
2094 best_s = s;
2095 }
2096 }
2097
2098 if (best_s != NULL)
2099 return (best_s);
2100
2101 ALL_OBJFILES (objfile)
2102 {
2103 struct symtab *result;
2104
2105 if (!objfile->sf)
2106 continue;
2107 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2108 msymbol,
2109 pc, section,
2110 1);
2111 if (result)
2112 return result;
2113 }
2114
2115 return NULL;
2116 }
2117
2118 /* Find the symtab associated with PC. Look through the psymtabs and read
2119 in another symtab if necessary. Backward compatibility, no section. */
2120
2121 struct symtab *
2122 find_pc_symtab (CORE_ADDR pc)
2123 {
2124 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2125 }
2126 \f
2127
2128 /* Find the source file and line number for a given PC value and SECTION.
2129 Return a structure containing a symtab pointer, a line number,
2130 and a pc range for the entire source line.
2131 The value's .pc field is NOT the specified pc.
2132 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2133 use the line that ends there. Otherwise, in that case, the line
2134 that begins there is used. */
2135
2136 /* The big complication here is that a line may start in one file, and end just
2137 before the start of another file. This usually occurs when you #include
2138 code in the middle of a subroutine. To properly find the end of a line's PC
2139 range, we must search all symtabs associated with this compilation unit, and
2140 find the one whose first PC is closer than that of the next line in this
2141 symtab. */
2142
2143 /* If it's worth the effort, we could be using a binary search. */
2144
2145 struct symtab_and_line
2146 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2147 {
2148 struct symtab *s;
2149 struct linetable *l;
2150 int len;
2151 int i;
2152 struct linetable_entry *item;
2153 struct symtab_and_line val;
2154 struct blockvector *bv;
2155 struct minimal_symbol *msymbol;
2156 struct minimal_symbol *mfunsym;
2157 struct objfile *objfile;
2158
2159 /* Info on best line seen so far, and where it starts, and its file. */
2160
2161 struct linetable_entry *best = NULL;
2162 CORE_ADDR best_end = 0;
2163 struct symtab *best_symtab = 0;
2164
2165 /* Store here the first line number
2166 of a file which contains the line at the smallest pc after PC.
2167 If we don't find a line whose range contains PC,
2168 we will use a line one less than this,
2169 with a range from the start of that file to the first line's pc. */
2170 struct linetable_entry *alt = NULL;
2171 struct symtab *alt_symtab = 0;
2172
2173 /* Info on best line seen in this file. */
2174
2175 struct linetable_entry *prev;
2176
2177 /* If this pc is not from the current frame,
2178 it is the address of the end of a call instruction.
2179 Quite likely that is the start of the following statement.
2180 But what we want is the statement containing the instruction.
2181 Fudge the pc to make sure we get that. */
2182
2183 init_sal (&val); /* initialize to zeroes */
2184
2185 val.pspace = current_program_space;
2186
2187 /* It's tempting to assume that, if we can't find debugging info for
2188 any function enclosing PC, that we shouldn't search for line
2189 number info, either. However, GAS can emit line number info for
2190 assembly files --- very helpful when debugging hand-written
2191 assembly code. In such a case, we'd have no debug info for the
2192 function, but we would have line info. */
2193
2194 if (notcurrent)
2195 pc -= 1;
2196
2197 /* elz: added this because this function returned the wrong
2198 information if the pc belongs to a stub (import/export)
2199 to call a shlib function. This stub would be anywhere between
2200 two functions in the target, and the line info was erroneously
2201 taken to be the one of the line before the pc. */
2202
2203 /* RT: Further explanation:
2204
2205 * We have stubs (trampolines) inserted between procedures.
2206 *
2207 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2208 * exists in the main image.
2209 *
2210 * In the minimal symbol table, we have a bunch of symbols
2211 * sorted by start address. The stubs are marked as "trampoline",
2212 * the others appear as text. E.g.:
2213 *
2214 * Minimal symbol table for main image
2215 * main: code for main (text symbol)
2216 * shr1: stub (trampoline symbol)
2217 * foo: code for foo (text symbol)
2218 * ...
2219 * Minimal symbol table for "shr1" image:
2220 * ...
2221 * shr1: code for shr1 (text symbol)
2222 * ...
2223 *
2224 * So the code below is trying to detect if we are in the stub
2225 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2226 * and if found, do the symbolization from the real-code address
2227 * rather than the stub address.
2228 *
2229 * Assumptions being made about the minimal symbol table:
2230 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2231 * if we're really in the trampoline.s If we're beyond it (say
2232 * we're in "foo" in the above example), it'll have a closer
2233 * symbol (the "foo" text symbol for example) and will not
2234 * return the trampoline.
2235 * 2. lookup_minimal_symbol_text() will find a real text symbol
2236 * corresponding to the trampoline, and whose address will
2237 * be different than the trampoline address. I put in a sanity
2238 * check for the address being the same, to avoid an
2239 * infinite recursion.
2240 */
2241 msymbol = lookup_minimal_symbol_by_pc (pc);
2242 if (msymbol != NULL)
2243 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2244 {
2245 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2246 NULL);
2247 if (mfunsym == NULL)
2248 /* I eliminated this warning since it is coming out
2249 * in the following situation:
2250 * gdb shmain // test program with shared libraries
2251 * (gdb) break shr1 // function in shared lib
2252 * Warning: In stub for ...
2253 * In the above situation, the shared lib is not loaded yet,
2254 * so of course we can't find the real func/line info,
2255 * but the "break" still works, and the warning is annoying.
2256 * So I commented out the warning. RT */
2257 /* warning ("In stub for %s; unable to find real function/line info",
2258 SYMBOL_LINKAGE_NAME (msymbol)); */
2259 ;
2260 /* fall through */
2261 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2262 == SYMBOL_VALUE_ADDRESS (msymbol))
2263 /* Avoid infinite recursion */
2264 /* See above comment about why warning is commented out. */
2265 /* warning ("In stub for %s; unable to find real function/line info",
2266 SYMBOL_LINKAGE_NAME (msymbol)); */
2267 ;
2268 /* fall through */
2269 else
2270 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2271 }
2272
2273
2274 s = find_pc_sect_symtab (pc, section);
2275 if (!s)
2276 {
2277 /* If no symbol information, return previous pc. */
2278 if (notcurrent)
2279 pc++;
2280 val.pc = pc;
2281 return val;
2282 }
2283
2284 bv = BLOCKVECTOR (s);
2285 objfile = s->objfile;
2286
2287 /* Look at all the symtabs that share this blockvector.
2288 They all have the same apriori range, that we found was right;
2289 but they have different line tables. */
2290
2291 ALL_OBJFILE_SYMTABS (objfile, s)
2292 {
2293 if (BLOCKVECTOR (s) != bv)
2294 continue;
2295
2296 /* Find the best line in this symtab. */
2297 l = LINETABLE (s);
2298 if (!l)
2299 continue;
2300 len = l->nitems;
2301 if (len <= 0)
2302 {
2303 /* I think len can be zero if the symtab lacks line numbers
2304 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2305 I'm not sure which, and maybe it depends on the symbol
2306 reader). */
2307 continue;
2308 }
2309
2310 prev = NULL;
2311 item = l->item; /* Get first line info. */
2312
2313 /* Is this file's first line closer than the first lines of other files?
2314 If so, record this file, and its first line, as best alternate. */
2315 if (item->pc > pc && (!alt || item->pc < alt->pc))
2316 {
2317 alt = item;
2318 alt_symtab = s;
2319 }
2320
2321 for (i = 0; i < len; i++, item++)
2322 {
2323 /* Leave prev pointing to the linetable entry for the last line
2324 that started at or before PC. */
2325 if (item->pc > pc)
2326 break;
2327
2328 prev = item;
2329 }
2330
2331 /* At this point, prev points at the line whose start addr is <= pc, and
2332 item points at the next line. If we ran off the end of the linetable
2333 (pc >= start of the last line), then prev == item. If pc < start of
2334 the first line, prev will not be set. */
2335
2336 /* Is this file's best line closer than the best in the other files?
2337 If so, record this file, and its best line, as best so far. Don't
2338 save prev if it represents the end of a function (i.e. line number
2339 0) instead of a real line. */
2340
2341 if (prev && prev->line && (!best || prev->pc > best->pc))
2342 {
2343 best = prev;
2344 best_symtab = s;
2345
2346 /* Discard BEST_END if it's before the PC of the current BEST. */
2347 if (best_end <= best->pc)
2348 best_end = 0;
2349 }
2350
2351 /* If another line (denoted by ITEM) is in the linetable and its
2352 PC is after BEST's PC, but before the current BEST_END, then
2353 use ITEM's PC as the new best_end. */
2354 if (best && i < len && item->pc > best->pc
2355 && (best_end == 0 || best_end > item->pc))
2356 best_end = item->pc;
2357 }
2358
2359 if (!best_symtab)
2360 {
2361 /* If we didn't find any line number info, just return zeros.
2362 We used to return alt->line - 1 here, but that could be
2363 anywhere; if we don't have line number info for this PC,
2364 don't make some up. */
2365 val.pc = pc;
2366 }
2367 else if (best->line == 0)
2368 {
2369 /* If our best fit is in a range of PC's for which no line
2370 number info is available (line number is zero) then we didn't
2371 find any valid line information. */
2372 val.pc = pc;
2373 }
2374 else
2375 {
2376 val.symtab = best_symtab;
2377 val.line = best->line;
2378 val.pc = best->pc;
2379 if (best_end && (!alt || best_end < alt->pc))
2380 val.end = best_end;
2381 else if (alt)
2382 val.end = alt->pc;
2383 else
2384 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2385 }
2386 val.section = section;
2387 return val;
2388 }
2389
2390 /* Backward compatibility (no section). */
2391
2392 struct symtab_and_line
2393 find_pc_line (CORE_ADDR pc, int notcurrent)
2394 {
2395 struct obj_section *section;
2396
2397 section = find_pc_overlay (pc);
2398 if (pc_in_unmapped_range (pc, section))
2399 pc = overlay_mapped_address (pc, section);
2400 return find_pc_sect_line (pc, section, notcurrent);
2401 }
2402 \f
2403 /* Find line number LINE in any symtab whose name is the same as
2404 SYMTAB.
2405
2406 If found, return the symtab that contains the linetable in which it was
2407 found, set *INDEX to the index in the linetable of the best entry
2408 found, and set *EXACT_MATCH nonzero if the value returned is an
2409 exact match.
2410
2411 If not found, return NULL. */
2412
2413 struct symtab *
2414 find_line_symtab (struct symtab *symtab, int line,
2415 int *index, int *exact_match)
2416 {
2417 int exact = 0; /* Initialized here to avoid a compiler warning. */
2418
2419 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2420 so far seen. */
2421
2422 int best_index;
2423 struct linetable *best_linetable;
2424 struct symtab *best_symtab;
2425
2426 /* First try looking it up in the given symtab. */
2427 best_linetable = LINETABLE (symtab);
2428 best_symtab = symtab;
2429 best_index = find_line_common (best_linetable, line, &exact, 0);
2430 if (best_index < 0 || !exact)
2431 {
2432 /* Didn't find an exact match. So we better keep looking for
2433 another symtab with the same name. In the case of xcoff,
2434 multiple csects for one source file (produced by IBM's FORTRAN
2435 compiler) produce multiple symtabs (this is unavoidable
2436 assuming csects can be at arbitrary places in memory and that
2437 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2438
2439 /* BEST is the smallest linenumber > LINE so far seen,
2440 or 0 if none has been seen so far.
2441 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2442 int best;
2443
2444 struct objfile *objfile;
2445 struct symtab *s;
2446
2447 if (best_index >= 0)
2448 best = best_linetable->item[best_index].line;
2449 else
2450 best = 0;
2451
2452 ALL_OBJFILES (objfile)
2453 {
2454 if (objfile->sf)
2455 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2456 symtab->filename);
2457 }
2458
2459 /* Get symbol full file name if possible. */
2460 symtab_to_fullname (symtab);
2461
2462 ALL_SYMTABS (objfile, s)
2463 {
2464 struct linetable *l;
2465 int ind;
2466
2467 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2468 continue;
2469 if (symtab->fullname != NULL
2470 && symtab_to_fullname (s) != NULL
2471 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2472 continue;
2473 l = LINETABLE (s);
2474 ind = find_line_common (l, line, &exact, 0);
2475 if (ind >= 0)
2476 {
2477 if (exact)
2478 {
2479 best_index = ind;
2480 best_linetable = l;
2481 best_symtab = s;
2482 goto done;
2483 }
2484 if (best == 0 || l->item[ind].line < best)
2485 {
2486 best = l->item[ind].line;
2487 best_index = ind;
2488 best_linetable = l;
2489 best_symtab = s;
2490 }
2491 }
2492 }
2493 }
2494 done:
2495 if (best_index < 0)
2496 return NULL;
2497
2498 if (index)
2499 *index = best_index;
2500 if (exact_match)
2501 *exact_match = exact;
2502
2503 return best_symtab;
2504 }
2505
2506 /* Given SYMTAB, returns all the PCs function in the symtab that
2507 exactly match LINE. Returns NULL if there are no exact matches,
2508 but updates BEST_ITEM in this case. */
2509
2510 VEC (CORE_ADDR) *
2511 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2512 struct linetable_entry **best_item)
2513 {
2514 int start = 0, ix;
2515 struct symbol *previous_function = NULL;
2516 VEC (CORE_ADDR) *result = NULL;
2517
2518 /* First, collect all the PCs that are at this line. */
2519 while (1)
2520 {
2521 int was_exact;
2522 int idx;
2523
2524 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2525 if (idx < 0)
2526 break;
2527
2528 if (!was_exact)
2529 {
2530 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2531
2532 if (*best_item == NULL || item->line < (*best_item)->line)
2533 *best_item = item;
2534
2535 break;
2536 }
2537
2538 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2539 start = idx + 1;
2540 }
2541
2542 return result;
2543 }
2544
2545 \f
2546 /* Set the PC value for a given source file and line number and return true.
2547 Returns zero for invalid line number (and sets the PC to 0).
2548 The source file is specified with a struct symtab. */
2549
2550 int
2551 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2552 {
2553 struct linetable *l;
2554 int ind;
2555
2556 *pc = 0;
2557 if (symtab == 0)
2558 return 0;
2559
2560 symtab = find_line_symtab (symtab, line, &ind, NULL);
2561 if (symtab != NULL)
2562 {
2563 l = LINETABLE (symtab);
2564 *pc = l->item[ind].pc;
2565 return 1;
2566 }
2567 else
2568 return 0;
2569 }
2570
2571 /* Find the range of pc values in a line.
2572 Store the starting pc of the line into *STARTPTR
2573 and the ending pc (start of next line) into *ENDPTR.
2574 Returns 1 to indicate success.
2575 Returns 0 if could not find the specified line. */
2576
2577 int
2578 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2579 CORE_ADDR *endptr)
2580 {
2581 CORE_ADDR startaddr;
2582 struct symtab_and_line found_sal;
2583
2584 startaddr = sal.pc;
2585 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2586 return 0;
2587
2588 /* This whole function is based on address. For example, if line 10 has
2589 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2590 "info line *0x123" should say the line goes from 0x100 to 0x200
2591 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2592 This also insures that we never give a range like "starts at 0x134
2593 and ends at 0x12c". */
2594
2595 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2596 if (found_sal.line != sal.line)
2597 {
2598 /* The specified line (sal) has zero bytes. */
2599 *startptr = found_sal.pc;
2600 *endptr = found_sal.pc;
2601 }
2602 else
2603 {
2604 *startptr = found_sal.pc;
2605 *endptr = found_sal.end;
2606 }
2607 return 1;
2608 }
2609
2610 /* Given a line table and a line number, return the index into the line
2611 table for the pc of the nearest line whose number is >= the specified one.
2612 Return -1 if none is found. The value is >= 0 if it is an index.
2613 START is the index at which to start searching the line table.
2614
2615 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2616
2617 static int
2618 find_line_common (struct linetable *l, int lineno,
2619 int *exact_match, int start)
2620 {
2621 int i;
2622 int len;
2623
2624 /* BEST is the smallest linenumber > LINENO so far seen,
2625 or 0 if none has been seen so far.
2626 BEST_INDEX identifies the item for it. */
2627
2628 int best_index = -1;
2629 int best = 0;
2630
2631 *exact_match = 0;
2632
2633 if (lineno <= 0)
2634 return -1;
2635 if (l == 0)
2636 return -1;
2637
2638 len = l->nitems;
2639 for (i = start; i < len; i++)
2640 {
2641 struct linetable_entry *item = &(l->item[i]);
2642
2643 if (item->line == lineno)
2644 {
2645 /* Return the first (lowest address) entry which matches. */
2646 *exact_match = 1;
2647 return i;
2648 }
2649
2650 if (item->line > lineno && (best == 0 || item->line < best))
2651 {
2652 best = item->line;
2653 best_index = i;
2654 }
2655 }
2656
2657 /* If we got here, we didn't get an exact match. */
2658 return best_index;
2659 }
2660
2661 int
2662 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2663 {
2664 struct symtab_and_line sal;
2665
2666 sal = find_pc_line (pc, 0);
2667 *startptr = sal.pc;
2668 *endptr = sal.end;
2669 return sal.symtab != 0;
2670 }
2671
2672 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2673 address for that function that has an entry in SYMTAB's line info
2674 table. If such an entry cannot be found, return FUNC_ADDR
2675 unaltered. */
2676
2677 static CORE_ADDR
2678 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2679 {
2680 CORE_ADDR func_start, func_end;
2681 struct linetable *l;
2682 int i;
2683
2684 /* Give up if this symbol has no lineinfo table. */
2685 l = LINETABLE (symtab);
2686 if (l == NULL)
2687 return func_addr;
2688
2689 /* Get the range for the function's PC values, or give up if we
2690 cannot, for some reason. */
2691 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2692 return func_addr;
2693
2694 /* Linetable entries are ordered by PC values, see the commentary in
2695 symtab.h where `struct linetable' is defined. Thus, the first
2696 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2697 address we are looking for. */
2698 for (i = 0; i < l->nitems; i++)
2699 {
2700 struct linetable_entry *item = &(l->item[i]);
2701
2702 /* Don't use line numbers of zero, they mark special entries in
2703 the table. See the commentary on symtab.h before the
2704 definition of struct linetable. */
2705 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2706 return item->pc;
2707 }
2708
2709 return func_addr;
2710 }
2711
2712 /* Given a function symbol SYM, find the symtab and line for the start
2713 of the function.
2714 If the argument FUNFIRSTLINE is nonzero, we want the first line
2715 of real code inside the function. */
2716
2717 struct symtab_and_line
2718 find_function_start_sal (struct symbol *sym, int funfirstline)
2719 {
2720 struct symtab_and_line sal;
2721
2722 fixup_symbol_section (sym, NULL);
2723 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2724 SYMBOL_OBJ_SECTION (sym), 0);
2725
2726 /* We always should have a line for the function start address.
2727 If we don't, something is odd. Create a plain SAL refering
2728 just the PC and hope that skip_prologue_sal (if requested)
2729 can find a line number for after the prologue. */
2730 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2731 {
2732 init_sal (&sal);
2733 sal.pspace = current_program_space;
2734 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2735 sal.section = SYMBOL_OBJ_SECTION (sym);
2736 }
2737
2738 if (funfirstline)
2739 skip_prologue_sal (&sal);
2740
2741 return sal;
2742 }
2743
2744 /* Adjust SAL to the first instruction past the function prologue.
2745 If the PC was explicitly specified, the SAL is not changed.
2746 If the line number was explicitly specified, at most the SAL's PC
2747 is updated. If SAL is already past the prologue, then do nothing. */
2748
2749 void
2750 skip_prologue_sal (struct symtab_and_line *sal)
2751 {
2752 struct symbol *sym;
2753 struct symtab_and_line start_sal;
2754 struct cleanup *old_chain;
2755 CORE_ADDR pc, saved_pc;
2756 struct obj_section *section;
2757 const char *name;
2758 struct objfile *objfile;
2759 struct gdbarch *gdbarch;
2760 struct block *b, *function_block;
2761 int force_skip, skip;
2762
2763 /* Do not change the SAL is PC was specified explicitly. */
2764 if (sal->explicit_pc)
2765 return;
2766
2767 old_chain = save_current_space_and_thread ();
2768 switch_to_program_space_and_thread (sal->pspace);
2769
2770 sym = find_pc_sect_function (sal->pc, sal->section);
2771 if (sym != NULL)
2772 {
2773 fixup_symbol_section (sym, NULL);
2774
2775 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2776 section = SYMBOL_OBJ_SECTION (sym);
2777 name = SYMBOL_LINKAGE_NAME (sym);
2778 objfile = SYMBOL_SYMTAB (sym)->objfile;
2779 }
2780 else
2781 {
2782 struct minimal_symbol *msymbol
2783 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2784
2785 if (msymbol == NULL)
2786 {
2787 do_cleanups (old_chain);
2788 return;
2789 }
2790
2791 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2792 section = SYMBOL_OBJ_SECTION (msymbol);
2793 name = SYMBOL_LINKAGE_NAME (msymbol);
2794 objfile = msymbol_objfile (msymbol);
2795 }
2796
2797 gdbarch = get_objfile_arch (objfile);
2798
2799 /* Process the prologue in two passes. In the first pass try to skip the
2800 prologue (SKIP is true) and verify there is a real need for it (indicated
2801 by FORCE_SKIP). If no such reason was found run a second pass where the
2802 prologue is not skipped (SKIP is false). */
2803
2804 skip = 1;
2805 force_skip = 1;
2806
2807 /* Be conservative - allow direct PC (without skipping prologue) only if we
2808 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2809 have to be set by the caller so we use SYM instead. */
2810 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2811 force_skip = 0;
2812
2813 saved_pc = pc;
2814 do
2815 {
2816 pc = saved_pc;
2817
2818 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2819 so that gdbarch_skip_prologue has something unique to work on. */
2820 if (section_is_overlay (section) && !section_is_mapped (section))
2821 pc = overlay_unmapped_address (pc, section);
2822
2823 /* Skip "first line" of function (which is actually its prologue). */
2824 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2825 if (skip)
2826 pc = gdbarch_skip_prologue (gdbarch, pc);
2827
2828 /* For overlays, map pc back into its mapped VMA range. */
2829 pc = overlay_mapped_address (pc, section);
2830
2831 /* Calculate line number. */
2832 start_sal = find_pc_sect_line (pc, section, 0);
2833
2834 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2835 line is still part of the same function. */
2836 if (skip && start_sal.pc != pc
2837 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2838 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2839 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2840 == lookup_minimal_symbol_by_pc_section (pc, section))))
2841 {
2842 /* First pc of next line */
2843 pc = start_sal.end;
2844 /* Recalculate the line number (might not be N+1). */
2845 start_sal = find_pc_sect_line (pc, section, 0);
2846 }
2847
2848 /* On targets with executable formats that don't have a concept of
2849 constructors (ELF with .init has, PE doesn't), gcc emits a call
2850 to `__main' in `main' between the prologue and before user
2851 code. */
2852 if (gdbarch_skip_main_prologue_p (gdbarch)
2853 && name && strcmp_iw (name, "main") == 0)
2854 {
2855 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2856 /* Recalculate the line number (might not be N+1). */
2857 start_sal = find_pc_sect_line (pc, section, 0);
2858 force_skip = 1;
2859 }
2860 }
2861 while (!force_skip && skip--);
2862
2863 /* If we still don't have a valid source line, try to find the first
2864 PC in the lineinfo table that belongs to the same function. This
2865 happens with COFF debug info, which does not seem to have an
2866 entry in lineinfo table for the code after the prologue which has
2867 no direct relation to source. For example, this was found to be
2868 the case with the DJGPP target using "gcc -gcoff" when the
2869 compiler inserted code after the prologue to make sure the stack
2870 is aligned. */
2871 if (!force_skip && sym && start_sal.symtab == NULL)
2872 {
2873 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2874 /* Recalculate the line number. */
2875 start_sal = find_pc_sect_line (pc, section, 0);
2876 }
2877
2878 do_cleanups (old_chain);
2879
2880 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2881 forward SAL to the end of the prologue. */
2882 if (sal->pc >= pc)
2883 return;
2884
2885 sal->pc = pc;
2886 sal->section = section;
2887
2888 /* Unless the explicit_line flag was set, update the SAL line
2889 and symtab to correspond to the modified PC location. */
2890 if (sal->explicit_line)
2891 return;
2892
2893 sal->symtab = start_sal.symtab;
2894 sal->line = start_sal.line;
2895 sal->end = start_sal.end;
2896
2897 /* Check if we are now inside an inlined function. If we can,
2898 use the call site of the function instead. */
2899 b = block_for_pc_sect (sal->pc, sal->section);
2900 function_block = NULL;
2901 while (b != NULL)
2902 {
2903 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2904 function_block = b;
2905 else if (BLOCK_FUNCTION (b) != NULL)
2906 break;
2907 b = BLOCK_SUPERBLOCK (b);
2908 }
2909 if (function_block != NULL
2910 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2911 {
2912 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2913 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2914 }
2915 }
2916
2917 /* If P is of the form "operator[ \t]+..." where `...' is
2918 some legitimate operator text, return a pointer to the
2919 beginning of the substring of the operator text.
2920 Otherwise, return "". */
2921
2922 static char *
2923 operator_chars (char *p, char **end)
2924 {
2925 *end = "";
2926 if (strncmp (p, "operator", 8))
2927 return *end;
2928 p += 8;
2929
2930 /* Don't get faked out by `operator' being part of a longer
2931 identifier. */
2932 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2933 return *end;
2934
2935 /* Allow some whitespace between `operator' and the operator symbol. */
2936 while (*p == ' ' || *p == '\t')
2937 p++;
2938
2939 /* Recognize 'operator TYPENAME'. */
2940
2941 if (isalpha (*p) || *p == '_' || *p == '$')
2942 {
2943 char *q = p + 1;
2944
2945 while (isalnum (*q) || *q == '_' || *q == '$')
2946 q++;
2947 *end = q;
2948 return p;
2949 }
2950
2951 while (*p)
2952 switch (*p)
2953 {
2954 case '\\': /* regexp quoting */
2955 if (p[1] == '*')
2956 {
2957 if (p[2] == '=') /* 'operator\*=' */
2958 *end = p + 3;
2959 else /* 'operator\*' */
2960 *end = p + 2;
2961 return p;
2962 }
2963 else if (p[1] == '[')
2964 {
2965 if (p[2] == ']')
2966 error (_("mismatched quoting on brackets, "
2967 "try 'operator\\[\\]'"));
2968 else if (p[2] == '\\' && p[3] == ']')
2969 {
2970 *end = p + 4; /* 'operator\[\]' */
2971 return p;
2972 }
2973 else
2974 error (_("nothing is allowed between '[' and ']'"));
2975 }
2976 else
2977 {
2978 /* Gratuitous qoute: skip it and move on. */
2979 p++;
2980 continue;
2981 }
2982 break;
2983 case '!':
2984 case '=':
2985 case '*':
2986 case '/':
2987 case '%':
2988 case '^':
2989 if (p[1] == '=')
2990 *end = p + 2;
2991 else
2992 *end = p + 1;
2993 return p;
2994 case '<':
2995 case '>':
2996 case '+':
2997 case '-':
2998 case '&':
2999 case '|':
3000 if (p[0] == '-' && p[1] == '>')
3001 {
3002 /* Struct pointer member operator 'operator->'. */
3003 if (p[2] == '*')
3004 {
3005 *end = p + 3; /* 'operator->*' */
3006 return p;
3007 }
3008 else if (p[2] == '\\')
3009 {
3010 *end = p + 4; /* Hopefully 'operator->\*' */
3011 return p;
3012 }
3013 else
3014 {
3015 *end = p + 2; /* 'operator->' */
3016 return p;
3017 }
3018 }
3019 if (p[1] == '=' || p[1] == p[0])
3020 *end = p + 2;
3021 else
3022 *end = p + 1;
3023 return p;
3024 case '~':
3025 case ',':
3026 *end = p + 1;
3027 return p;
3028 case '(':
3029 if (p[1] != ')')
3030 error (_("`operator ()' must be specified "
3031 "without whitespace in `()'"));
3032 *end = p + 2;
3033 return p;
3034 case '?':
3035 if (p[1] != ':')
3036 error (_("`operator ?:' must be specified "
3037 "without whitespace in `?:'"));
3038 *end = p + 2;
3039 return p;
3040 case '[':
3041 if (p[1] != ']')
3042 error (_("`operator []' must be specified "
3043 "without whitespace in `[]'"));
3044 *end = p + 2;
3045 return p;
3046 default:
3047 error (_("`operator %s' not supported"), p);
3048 break;
3049 }
3050
3051 *end = "";
3052 return *end;
3053 }
3054 \f
3055
3056 /* If FILE is not already in the table of files, return zero;
3057 otherwise return non-zero. Optionally add FILE to the table if ADD
3058 is non-zero. If *FIRST is non-zero, forget the old table
3059 contents. */
3060
3061 static int
3062 filename_seen (const char *file, int add, int *first)
3063 {
3064 /* Table of files seen so far. */
3065 static const char **tab = NULL;
3066 /* Allocated size of tab in elements.
3067 Start with one 256-byte block (when using GNU malloc.c).
3068 24 is the malloc overhead when range checking is in effect. */
3069 static int tab_alloc_size = (256 - 24) / sizeof (char *);
3070 /* Current size of tab in elements. */
3071 static int tab_cur_size;
3072 const char **p;
3073
3074 if (*first)
3075 {
3076 if (tab == NULL)
3077 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3078 tab_cur_size = 0;
3079 }
3080
3081 /* Is FILE in tab? */
3082 for (p = tab; p < tab + tab_cur_size; p++)
3083 if (filename_cmp (*p, file) == 0)
3084 return 1;
3085
3086 /* No; maybe add it to tab. */
3087 if (add)
3088 {
3089 if (tab_cur_size == tab_alloc_size)
3090 {
3091 tab_alloc_size *= 2;
3092 tab = (const char **) xrealloc ((char *) tab,
3093 tab_alloc_size * sizeof (*tab));
3094 }
3095 tab[tab_cur_size++] = file;
3096 }
3097
3098 return 0;
3099 }
3100
3101 /* Slave routine for sources_info. Force line breaks at ,'s.
3102 NAME is the name to print and *FIRST is nonzero if this is the first
3103 name printed. Set *FIRST to zero. */
3104
3105 static void
3106 output_source_filename (const char *name, int *first)
3107 {
3108 /* Since a single source file can result in several partial symbol
3109 tables, we need to avoid printing it more than once. Note: if
3110 some of the psymtabs are read in and some are not, it gets
3111 printed both under "Source files for which symbols have been
3112 read" and "Source files for which symbols will be read in on
3113 demand". I consider this a reasonable way to deal with the
3114 situation. I'm not sure whether this can also happen for
3115 symtabs; it doesn't hurt to check. */
3116
3117 /* Was NAME already seen? */
3118 if (filename_seen (name, 1, first))
3119 {
3120 /* Yes; don't print it again. */
3121 return;
3122 }
3123 /* No; print it and reset *FIRST. */
3124 if (*first)
3125 {
3126 *first = 0;
3127 }
3128 else
3129 {
3130 printf_filtered (", ");
3131 }
3132
3133 wrap_here ("");
3134 fputs_filtered (name, gdb_stdout);
3135 }
3136
3137 /* A callback for map_partial_symbol_filenames. */
3138
3139 static void
3140 output_partial_symbol_filename (const char *filename, const char *fullname,
3141 void *data)
3142 {
3143 output_source_filename (fullname ? fullname : filename, data);
3144 }
3145
3146 static void
3147 sources_info (char *ignore, int from_tty)
3148 {
3149 struct symtab *s;
3150 struct objfile *objfile;
3151 int first;
3152
3153 if (!have_full_symbols () && !have_partial_symbols ())
3154 {
3155 error (_("No symbol table is loaded. Use the \"file\" command."));
3156 }
3157
3158 printf_filtered ("Source files for which symbols have been read in:\n\n");
3159
3160 first = 1;
3161 ALL_SYMTABS (objfile, s)
3162 {
3163 const char *fullname = symtab_to_fullname (s);
3164
3165 output_source_filename (fullname ? fullname : s->filename, &first);
3166 }
3167 printf_filtered ("\n\n");
3168
3169 printf_filtered ("Source files for which symbols "
3170 "will be read in on demand:\n\n");
3171
3172 first = 1;
3173 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3174 1 /*need_fullname*/);
3175 printf_filtered ("\n");
3176 }
3177
3178 static int
3179 file_matches (const char *file, char *files[], int nfiles)
3180 {
3181 int i;
3182
3183 if (file != NULL && nfiles != 0)
3184 {
3185 for (i = 0; i < nfiles; i++)
3186 {
3187 if (filename_cmp (files[i], lbasename (file)) == 0)
3188 return 1;
3189 }
3190 }
3191 else if (nfiles == 0)
3192 return 1;
3193 return 0;
3194 }
3195
3196 /* Free any memory associated with a search. */
3197
3198 void
3199 free_search_symbols (struct symbol_search *symbols)
3200 {
3201 struct symbol_search *p;
3202 struct symbol_search *next;
3203
3204 for (p = symbols; p != NULL; p = next)
3205 {
3206 next = p->next;
3207 xfree (p);
3208 }
3209 }
3210
3211 static void
3212 do_free_search_symbols_cleanup (void *symbols)
3213 {
3214 free_search_symbols (symbols);
3215 }
3216
3217 struct cleanup *
3218 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3219 {
3220 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3221 }
3222
3223 /* Helper function for sort_search_symbols and qsort. Can only
3224 sort symbols, not minimal symbols. */
3225
3226 static int
3227 compare_search_syms (const void *sa, const void *sb)
3228 {
3229 struct symbol_search **sym_a = (struct symbol_search **) sa;
3230 struct symbol_search **sym_b = (struct symbol_search **) sb;
3231
3232 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3233 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3234 }
3235
3236 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3237 prevtail where it is, but update its next pointer to point to
3238 the first of the sorted symbols. */
3239
3240 static struct symbol_search *
3241 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3242 {
3243 struct symbol_search **symbols, *symp, *old_next;
3244 int i;
3245
3246 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3247 * nfound);
3248 symp = prevtail->next;
3249 for (i = 0; i < nfound; i++)
3250 {
3251 symbols[i] = symp;
3252 symp = symp->next;
3253 }
3254 /* Generally NULL. */
3255 old_next = symp;
3256
3257 qsort (symbols, nfound, sizeof (struct symbol_search *),
3258 compare_search_syms);
3259
3260 symp = prevtail;
3261 for (i = 0; i < nfound; i++)
3262 {
3263 symp->next = symbols[i];
3264 symp = symp->next;
3265 }
3266 symp->next = old_next;
3267
3268 xfree (symbols);
3269 return symp;
3270 }
3271
3272 /* An object of this type is passed as the user_data to the
3273 expand_symtabs_matching method. */
3274 struct search_symbols_data
3275 {
3276 int nfiles;
3277 char **files;
3278
3279 /* It is true if PREG contains valid data, false otherwise. */
3280 unsigned preg_p : 1;
3281 regex_t preg;
3282 };
3283
3284 /* A callback for expand_symtabs_matching. */
3285
3286 static int
3287 search_symbols_file_matches (const char *filename, void *user_data)
3288 {
3289 struct search_symbols_data *data = user_data;
3290
3291 return file_matches (filename, data->files, data->nfiles);
3292 }
3293
3294 /* A callback for expand_symtabs_matching. */
3295
3296 static int
3297 search_symbols_name_matches (const char *symname, void *user_data)
3298 {
3299 struct search_symbols_data *data = user_data;
3300
3301 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3302 }
3303
3304 /* Search the symbol table for matches to the regular expression REGEXP,
3305 returning the results in *MATCHES.
3306
3307 Only symbols of KIND are searched:
3308 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3309 and constants (enums)
3310 FUNCTIONS_DOMAIN - search all functions
3311 TYPES_DOMAIN - search all type names
3312 ALL_DOMAIN - an internal error for this function
3313
3314 free_search_symbols should be called when *MATCHES is no longer needed.
3315
3316 The results are sorted locally; each symtab's global and static blocks are
3317 separately alphabetized. */
3318
3319 void
3320 search_symbols (char *regexp, enum search_domain kind,
3321 int nfiles, char *files[],
3322 struct symbol_search **matches)
3323 {
3324 struct symtab *s;
3325 struct blockvector *bv;
3326 struct block *b;
3327 int i = 0;
3328 struct block_iterator iter;
3329 struct symbol *sym;
3330 struct objfile *objfile;
3331 struct minimal_symbol *msymbol;
3332 int found_misc = 0;
3333 static const enum minimal_symbol_type types[]
3334 = {mst_data, mst_text, mst_abs};
3335 static const enum minimal_symbol_type types2[]
3336 = {mst_bss, mst_file_text, mst_abs};
3337 static const enum minimal_symbol_type types3[]
3338 = {mst_file_data, mst_solib_trampoline, mst_abs};
3339 static const enum minimal_symbol_type types4[]
3340 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3341 enum minimal_symbol_type ourtype;
3342 enum minimal_symbol_type ourtype2;
3343 enum minimal_symbol_type ourtype3;
3344 enum minimal_symbol_type ourtype4;
3345 struct symbol_search *sr;
3346 struct symbol_search *psr;
3347 struct symbol_search *tail;
3348 struct search_symbols_data datum;
3349
3350 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3351 CLEANUP_CHAIN is freed only in the case of an error. */
3352 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3353 struct cleanup *retval_chain;
3354
3355 gdb_assert (kind <= TYPES_DOMAIN);
3356
3357 ourtype = types[kind];
3358 ourtype2 = types2[kind];
3359 ourtype3 = types3[kind];
3360 ourtype4 = types4[kind];
3361
3362 sr = *matches = NULL;
3363 tail = NULL;
3364 datum.preg_p = 0;
3365
3366 if (regexp != NULL)
3367 {
3368 /* Make sure spacing is right for C++ operators.
3369 This is just a courtesy to make the matching less sensitive
3370 to how many spaces the user leaves between 'operator'
3371 and <TYPENAME> or <OPERATOR>. */
3372 char *opend;
3373 char *opname = operator_chars (regexp, &opend);
3374 int errcode;
3375
3376 if (*opname)
3377 {
3378 int fix = -1; /* -1 means ok; otherwise number of
3379 spaces needed. */
3380
3381 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3382 {
3383 /* There should 1 space between 'operator' and 'TYPENAME'. */
3384 if (opname[-1] != ' ' || opname[-2] == ' ')
3385 fix = 1;
3386 }
3387 else
3388 {
3389 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3390 if (opname[-1] == ' ')
3391 fix = 0;
3392 }
3393 /* If wrong number of spaces, fix it. */
3394 if (fix >= 0)
3395 {
3396 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3397
3398 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3399 regexp = tmp;
3400 }
3401 }
3402
3403 errcode = regcomp (&datum.preg, regexp,
3404 REG_NOSUB | (case_sensitivity == case_sensitive_off
3405 ? REG_ICASE : 0));
3406 if (errcode != 0)
3407 {
3408 char *err = get_regcomp_error (errcode, &datum.preg);
3409
3410 make_cleanup (xfree, err);
3411 error (_("Invalid regexp (%s): %s"), err, regexp);
3412 }
3413 datum.preg_p = 1;
3414 make_regfree_cleanup (&datum.preg);
3415 }
3416
3417 /* Search through the partial symtabs *first* for all symbols
3418 matching the regexp. That way we don't have to reproduce all of
3419 the machinery below. */
3420
3421 datum.nfiles = nfiles;
3422 datum.files = files;
3423 ALL_OBJFILES (objfile)
3424 {
3425 if (objfile->sf)
3426 objfile->sf->qf->expand_symtabs_matching (objfile,
3427 (nfiles == 0
3428 ? NULL
3429 : search_symbols_file_matches),
3430 search_symbols_name_matches,
3431 kind,
3432 &datum);
3433 }
3434
3435 retval_chain = old_chain;
3436
3437 /* Here, we search through the minimal symbol tables for functions
3438 and variables that match, and force their symbols to be read.
3439 This is in particular necessary for demangled variable names,
3440 which are no longer put into the partial symbol tables.
3441 The symbol will then be found during the scan of symtabs below.
3442
3443 For functions, find_pc_symtab should succeed if we have debug info
3444 for the function, for variables we have to call lookup_symbol
3445 to determine if the variable has debug info.
3446 If the lookup fails, set found_misc so that we will rescan to print
3447 any matching symbols without debug info. */
3448
3449 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3450 {
3451 ALL_MSYMBOLS (objfile, msymbol)
3452 {
3453 QUIT;
3454
3455 if (MSYMBOL_TYPE (msymbol) == ourtype
3456 || MSYMBOL_TYPE (msymbol) == ourtype2
3457 || MSYMBOL_TYPE (msymbol) == ourtype3
3458 || MSYMBOL_TYPE (msymbol) == ourtype4)
3459 {
3460 if (!datum.preg_p
3461 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3462 NULL, 0) == 0)
3463 {
3464 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3465 {
3466 /* FIXME: carlton/2003-02-04: Given that the
3467 semantics of lookup_symbol keeps on changing
3468 slightly, it would be a nice idea if we had a
3469 function lookup_symbol_minsym that found the
3470 symbol associated to a given minimal symbol (if
3471 any). */
3472 if (kind == FUNCTIONS_DOMAIN
3473 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3474 (struct block *) NULL,
3475 VAR_DOMAIN, 0)
3476 == NULL)
3477 found_misc = 1;
3478 }
3479 }
3480 }
3481 }
3482 }
3483
3484 ALL_PRIMARY_SYMTABS (objfile, s)
3485 {
3486 bv = BLOCKVECTOR (s);
3487 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3488 {
3489 struct symbol_search *prevtail = tail;
3490 int nfound = 0;
3491
3492 b = BLOCKVECTOR_BLOCK (bv, i);
3493 ALL_BLOCK_SYMBOLS (b, iter, sym)
3494 {
3495 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3496
3497 QUIT;
3498
3499 if (file_matches (real_symtab->filename, files, nfiles)
3500 && ((!datum.preg_p
3501 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3502 NULL, 0) == 0)
3503 && ((kind == VARIABLES_DOMAIN
3504 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3505 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3506 && SYMBOL_CLASS (sym) != LOC_BLOCK
3507 /* LOC_CONST can be used for more than just enums,
3508 e.g., c++ static const members.
3509 We only want to skip enums here. */
3510 && !(SYMBOL_CLASS (sym) == LOC_CONST
3511 && TYPE_CODE (SYMBOL_TYPE (sym))
3512 == TYPE_CODE_ENUM))
3513 || (kind == FUNCTIONS_DOMAIN
3514 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3515 || (kind == TYPES_DOMAIN
3516 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3517 {
3518 /* match */
3519 psr = (struct symbol_search *)
3520 xmalloc (sizeof (struct symbol_search));
3521 psr->block = i;
3522 psr->symtab = real_symtab;
3523 psr->symbol = sym;
3524 psr->msymbol = NULL;
3525 psr->next = NULL;
3526 if (tail == NULL)
3527 sr = psr;
3528 else
3529 tail->next = psr;
3530 tail = psr;
3531 nfound ++;
3532 }
3533 }
3534 if (nfound > 0)
3535 {
3536 if (prevtail == NULL)
3537 {
3538 struct symbol_search dummy;
3539
3540 dummy.next = sr;
3541 tail = sort_search_symbols (&dummy, nfound);
3542 sr = dummy.next;
3543
3544 make_cleanup_free_search_symbols (sr);
3545 }
3546 else
3547 tail = sort_search_symbols (prevtail, nfound);
3548 }
3549 }
3550 }
3551
3552 /* If there are no eyes, avoid all contact. I mean, if there are
3553 no debug symbols, then print directly from the msymbol_vector. */
3554
3555 if (found_misc || kind != FUNCTIONS_DOMAIN)
3556 {
3557 ALL_MSYMBOLS (objfile, msymbol)
3558 {
3559 QUIT;
3560
3561 if (MSYMBOL_TYPE (msymbol) == ourtype
3562 || MSYMBOL_TYPE (msymbol) == ourtype2
3563 || MSYMBOL_TYPE (msymbol) == ourtype3
3564 || MSYMBOL_TYPE (msymbol) == ourtype4)
3565 {
3566 if (!datum.preg_p
3567 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3568 NULL, 0) == 0)
3569 {
3570 /* Functions: Look up by address. */
3571 if (kind != FUNCTIONS_DOMAIN ||
3572 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3573 {
3574 /* Variables/Absolutes: Look up by name. */
3575 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3576 (struct block *) NULL, VAR_DOMAIN, 0)
3577 == NULL)
3578 {
3579 /* match */
3580 psr = (struct symbol_search *)
3581 xmalloc (sizeof (struct symbol_search));
3582 psr->block = i;
3583 psr->msymbol = msymbol;
3584 psr->symtab = NULL;
3585 psr->symbol = NULL;
3586 psr->next = NULL;
3587 if (tail == NULL)
3588 {
3589 sr = psr;
3590 make_cleanup_free_search_symbols (sr);
3591 }
3592 else
3593 tail->next = psr;
3594 tail = psr;
3595 }
3596 }
3597 }
3598 }
3599 }
3600 }
3601
3602 discard_cleanups (retval_chain);
3603 do_cleanups (old_chain);
3604 *matches = sr;
3605 }
3606
3607 /* Helper function for symtab_symbol_info, this function uses
3608 the data returned from search_symbols() to print information
3609 regarding the match to gdb_stdout. */
3610
3611 static void
3612 print_symbol_info (enum search_domain kind,
3613 struct symtab *s, struct symbol *sym,
3614 int block, char *last)
3615 {
3616 if (last == NULL || filename_cmp (last, s->filename) != 0)
3617 {
3618 fputs_filtered ("\nFile ", gdb_stdout);
3619 fputs_filtered (s->filename, gdb_stdout);
3620 fputs_filtered (":\n", gdb_stdout);
3621 }
3622
3623 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3624 printf_filtered ("static ");
3625
3626 /* Typedef that is not a C++ class. */
3627 if (kind == TYPES_DOMAIN
3628 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3629 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3630 /* variable, func, or typedef-that-is-c++-class. */
3631 else if (kind < TYPES_DOMAIN
3632 || (kind == TYPES_DOMAIN
3633 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3634 {
3635 type_print (SYMBOL_TYPE (sym),
3636 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3637 ? "" : SYMBOL_PRINT_NAME (sym)),
3638 gdb_stdout, 0);
3639
3640 printf_filtered (";\n");
3641 }
3642 }
3643
3644 /* This help function for symtab_symbol_info() prints information
3645 for non-debugging symbols to gdb_stdout. */
3646
3647 static void
3648 print_msymbol_info (struct minimal_symbol *msymbol)
3649 {
3650 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3651 char *tmp;
3652
3653 if (gdbarch_addr_bit (gdbarch) <= 32)
3654 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3655 & (CORE_ADDR) 0xffffffff,
3656 8);
3657 else
3658 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3659 16);
3660 printf_filtered ("%s %s\n",
3661 tmp, SYMBOL_PRINT_NAME (msymbol));
3662 }
3663
3664 /* This is the guts of the commands "info functions", "info types", and
3665 "info variables". It calls search_symbols to find all matches and then
3666 print_[m]symbol_info to print out some useful information about the
3667 matches. */
3668
3669 static void
3670 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3671 {
3672 static const char * const classnames[] =
3673 {"variable", "function", "type"};
3674 struct symbol_search *symbols;
3675 struct symbol_search *p;
3676 struct cleanup *old_chain;
3677 char *last_filename = NULL;
3678 int first = 1;
3679
3680 gdb_assert (kind <= TYPES_DOMAIN);
3681
3682 /* Must make sure that if we're interrupted, symbols gets freed. */
3683 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3684 old_chain = make_cleanup_free_search_symbols (symbols);
3685
3686 printf_filtered (regexp
3687 ? "All %ss matching regular expression \"%s\":\n"
3688 : "All defined %ss:\n",
3689 classnames[kind], regexp);
3690
3691 for (p = symbols; p != NULL; p = p->next)
3692 {
3693 QUIT;
3694
3695 if (p->msymbol != NULL)
3696 {
3697 if (first)
3698 {
3699 printf_filtered ("\nNon-debugging symbols:\n");
3700 first = 0;
3701 }
3702 print_msymbol_info (p->msymbol);
3703 }
3704 else
3705 {
3706 print_symbol_info (kind,
3707 p->symtab,
3708 p->symbol,
3709 p->block,
3710 last_filename);
3711 last_filename = p->symtab->filename;
3712 }
3713 }
3714
3715 do_cleanups (old_chain);
3716 }
3717
3718 static void
3719 variables_info (char *regexp, int from_tty)
3720 {
3721 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3722 }
3723
3724 static void
3725 functions_info (char *regexp, int from_tty)
3726 {
3727 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3728 }
3729
3730
3731 static void
3732 types_info (char *regexp, int from_tty)
3733 {
3734 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3735 }
3736
3737 /* Breakpoint all functions matching regular expression. */
3738
3739 void
3740 rbreak_command_wrapper (char *regexp, int from_tty)
3741 {
3742 rbreak_command (regexp, from_tty);
3743 }
3744
3745 /* A cleanup function that calls end_rbreak_breakpoints. */
3746
3747 static void
3748 do_end_rbreak_breakpoints (void *ignore)
3749 {
3750 end_rbreak_breakpoints ();
3751 }
3752
3753 static void
3754 rbreak_command (char *regexp, int from_tty)
3755 {
3756 struct symbol_search *ss;
3757 struct symbol_search *p;
3758 struct cleanup *old_chain;
3759 char *string = NULL;
3760 int len = 0;
3761 char **files = NULL, *file_name;
3762 int nfiles = 0;
3763
3764 if (regexp)
3765 {
3766 char *colon = strchr (regexp, ':');
3767
3768 if (colon && *(colon + 1) != ':')
3769 {
3770 int colon_index;
3771
3772 colon_index = colon - regexp;
3773 file_name = alloca (colon_index + 1);
3774 memcpy (file_name, regexp, colon_index);
3775 file_name[colon_index--] = 0;
3776 while (isspace (file_name[colon_index]))
3777 file_name[colon_index--] = 0;
3778 files = &file_name;
3779 nfiles = 1;
3780 regexp = colon + 1;
3781 while (isspace (*regexp)) regexp++;
3782 }
3783 }
3784
3785 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3786 old_chain = make_cleanup_free_search_symbols (ss);
3787 make_cleanup (free_current_contents, &string);
3788
3789 start_rbreak_breakpoints ();
3790 make_cleanup (do_end_rbreak_breakpoints, NULL);
3791 for (p = ss; p != NULL; p = p->next)
3792 {
3793 if (p->msymbol == NULL)
3794 {
3795 int newlen = (strlen (p->symtab->filename)
3796 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3797 + 4);
3798
3799 if (newlen > len)
3800 {
3801 string = xrealloc (string, newlen);
3802 len = newlen;
3803 }
3804 strcpy (string, p->symtab->filename);
3805 strcat (string, ":'");
3806 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3807 strcat (string, "'");
3808 break_command (string, from_tty);
3809 print_symbol_info (FUNCTIONS_DOMAIN,
3810 p->symtab,
3811 p->symbol,
3812 p->block,
3813 p->symtab->filename);
3814 }
3815 else
3816 {
3817 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3818
3819 if (newlen > len)
3820 {
3821 string = xrealloc (string, newlen);
3822 len = newlen;
3823 }
3824 strcpy (string, "'");
3825 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3826 strcat (string, "'");
3827
3828 break_command (string, from_tty);
3829 printf_filtered ("<function, no debug info> %s;\n",
3830 SYMBOL_PRINT_NAME (p->msymbol));
3831 }
3832 }
3833
3834 do_cleanups (old_chain);
3835 }
3836 \f
3837
3838 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3839
3840 Either sym_text[sym_text_len] != '(' and then we search for any
3841 symbol starting with SYM_TEXT text.
3842
3843 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3844 be terminated at that point. Partial symbol tables do not have parameters
3845 information. */
3846
3847 static int
3848 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3849 {
3850 int (*ncmp) (const char *, const char *, size_t);
3851
3852 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3853
3854 if (ncmp (name, sym_text, sym_text_len) != 0)
3855 return 0;
3856
3857 if (sym_text[sym_text_len] == '(')
3858 {
3859 /* User searches for `name(someth...'. Require NAME to be terminated.
3860 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3861 present but accept even parameters presence. In this case this
3862 function is in fact strcmp_iw but whitespace skipping is not supported
3863 for tab completion. */
3864
3865 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3866 return 0;
3867 }
3868
3869 return 1;
3870 }
3871
3872 /* Free any memory associated with a completion list. */
3873
3874 static void
3875 free_completion_list (char ***list_ptr)
3876 {
3877 int i = 0;
3878 char **list = *list_ptr;
3879
3880 while (list[i] != NULL)
3881 {
3882 xfree (list[i]);
3883 i++;
3884 }
3885 xfree (list);
3886 }
3887
3888 /* Callback for make_cleanup. */
3889
3890 static void
3891 do_free_completion_list (void *list)
3892 {
3893 free_completion_list (list);
3894 }
3895
3896 /* Helper routine for make_symbol_completion_list. */
3897
3898 static int return_val_size;
3899 static int return_val_index;
3900 static char **return_val;
3901
3902 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3903 completion_list_add_name \
3904 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3905
3906 /* Test to see if the symbol specified by SYMNAME (which is already
3907 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3908 characters. If so, add it to the current completion list. */
3909
3910 static void
3911 completion_list_add_name (const char *symname,
3912 const char *sym_text, int sym_text_len,
3913 const char *text, const char *word)
3914 {
3915 int newsize;
3916
3917 /* Clip symbols that cannot match. */
3918 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3919 return;
3920
3921 /* We have a match for a completion, so add SYMNAME to the current list
3922 of matches. Note that the name is moved to freshly malloc'd space. */
3923
3924 {
3925 char *new;
3926
3927 if (word == sym_text)
3928 {
3929 new = xmalloc (strlen (symname) + 5);
3930 strcpy (new, symname);
3931 }
3932 else if (word > sym_text)
3933 {
3934 /* Return some portion of symname. */
3935 new = xmalloc (strlen (symname) + 5);
3936 strcpy (new, symname + (word - sym_text));
3937 }
3938 else
3939 {
3940 /* Return some of SYM_TEXT plus symname. */
3941 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3942 strncpy (new, word, sym_text - word);
3943 new[sym_text - word] = '\0';
3944 strcat (new, symname);
3945 }
3946
3947 if (return_val_index + 3 > return_val_size)
3948 {
3949 newsize = (return_val_size *= 2) * sizeof (char *);
3950 return_val = (char **) xrealloc ((char *) return_val, newsize);
3951 }
3952 return_val[return_val_index++] = new;
3953 return_val[return_val_index] = NULL;
3954 }
3955 }
3956
3957 /* ObjC: In case we are completing on a selector, look as the msymbol
3958 again and feed all the selectors into the mill. */
3959
3960 static void
3961 completion_list_objc_symbol (struct minimal_symbol *msymbol,
3962 const char *sym_text, int sym_text_len,
3963 const char *text, const char *word)
3964 {
3965 static char *tmp = NULL;
3966 static unsigned int tmplen = 0;
3967
3968 const char *method, *category, *selector;
3969 char *tmp2 = NULL;
3970
3971 method = SYMBOL_NATURAL_NAME (msymbol);
3972
3973 /* Is it a method? */
3974 if ((method[0] != '-') && (method[0] != '+'))
3975 return;
3976
3977 if (sym_text[0] == '[')
3978 /* Complete on shortened method method. */
3979 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3980
3981 while ((strlen (method) + 1) >= tmplen)
3982 {
3983 if (tmplen == 0)
3984 tmplen = 1024;
3985 else
3986 tmplen *= 2;
3987 tmp = xrealloc (tmp, tmplen);
3988 }
3989 selector = strchr (method, ' ');
3990 if (selector != NULL)
3991 selector++;
3992
3993 category = strchr (method, '(');
3994
3995 if ((category != NULL) && (selector != NULL))
3996 {
3997 memcpy (tmp, method, (category - method));
3998 tmp[category - method] = ' ';
3999 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4000 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4001 if (sym_text[0] == '[')
4002 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4003 }
4004
4005 if (selector != NULL)
4006 {
4007 /* Complete on selector only. */
4008 strcpy (tmp, selector);
4009 tmp2 = strchr (tmp, ']');
4010 if (tmp2 != NULL)
4011 *tmp2 = '\0';
4012
4013 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4014 }
4015 }
4016
4017 /* Break the non-quoted text based on the characters which are in
4018 symbols. FIXME: This should probably be language-specific. */
4019
4020 static char *
4021 language_search_unquoted_string (char *text, char *p)
4022 {
4023 for (; p > text; --p)
4024 {
4025 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4026 continue;
4027 else
4028 {
4029 if ((current_language->la_language == language_objc))
4030 {
4031 if (p[-1] == ':') /* Might be part of a method name. */
4032 continue;
4033 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4034 p -= 2; /* Beginning of a method name. */
4035 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4036 { /* Might be part of a method name. */
4037 char *t = p;
4038
4039 /* Seeing a ' ' or a '(' is not conclusive evidence
4040 that we are in the middle of a method name. However,
4041 finding "-[" or "+[" should be pretty un-ambiguous.
4042 Unfortunately we have to find it now to decide. */
4043
4044 while (t > text)
4045 if (isalnum (t[-1]) || t[-1] == '_' ||
4046 t[-1] == ' ' || t[-1] == ':' ||
4047 t[-1] == '(' || t[-1] == ')')
4048 --t;
4049 else
4050 break;
4051
4052 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4053 p = t - 2; /* Method name detected. */
4054 /* Else we leave with p unchanged. */
4055 }
4056 }
4057 break;
4058 }
4059 }
4060 return p;
4061 }
4062
4063 static void
4064 completion_list_add_fields (struct symbol *sym, char *sym_text,
4065 int sym_text_len, char *text, char *word)
4066 {
4067 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4068 {
4069 struct type *t = SYMBOL_TYPE (sym);
4070 enum type_code c = TYPE_CODE (t);
4071 int j;
4072
4073 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4074 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4075 if (TYPE_FIELD_NAME (t, j))
4076 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4077 sym_text, sym_text_len, text, word);
4078 }
4079 }
4080
4081 /* Type of the user_data argument passed to add_macro_name or
4082 expand_partial_symbol_name. The contents are simply whatever is
4083 needed by completion_list_add_name. */
4084 struct add_name_data
4085 {
4086 char *sym_text;
4087 int sym_text_len;
4088 char *text;
4089 char *word;
4090 };
4091
4092 /* A callback used with macro_for_each and macro_for_each_in_scope.
4093 This adds a macro's name to the current completion list. */
4094
4095 static void
4096 add_macro_name (const char *name, const struct macro_definition *ignore,
4097 struct macro_source_file *ignore2, int ignore3,
4098 void *user_data)
4099 {
4100 struct add_name_data *datum = (struct add_name_data *) user_data;
4101
4102 completion_list_add_name ((char *) name,
4103 datum->sym_text, datum->sym_text_len,
4104 datum->text, datum->word);
4105 }
4106
4107 /* A callback for expand_partial_symbol_names. */
4108
4109 static int
4110 expand_partial_symbol_name (const char *name, void *user_data)
4111 {
4112 struct add_name_data *datum = (struct add_name_data *) user_data;
4113
4114 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4115 }
4116
4117 char **
4118 default_make_symbol_completion_list_break_on (char *text, char *word,
4119 const char *break_on)
4120 {
4121 /* Problem: All of the symbols have to be copied because readline
4122 frees them. I'm not going to worry about this; hopefully there
4123 won't be that many. */
4124
4125 struct symbol *sym;
4126 struct symtab *s;
4127 struct minimal_symbol *msymbol;
4128 struct objfile *objfile;
4129 struct block *b;
4130 const struct block *surrounding_static_block, *surrounding_global_block;
4131 struct block_iterator iter;
4132 /* The symbol we are completing on. Points in same buffer as text. */
4133 char *sym_text;
4134 /* Length of sym_text. */
4135 int sym_text_len;
4136 struct add_name_data datum;
4137 struct cleanup *back_to;
4138
4139 /* Now look for the symbol we are supposed to complete on. */
4140 {
4141 char *p;
4142 char quote_found;
4143 char *quote_pos = NULL;
4144
4145 /* First see if this is a quoted string. */
4146 quote_found = '\0';
4147 for (p = text; *p != '\0'; ++p)
4148 {
4149 if (quote_found != '\0')
4150 {
4151 if (*p == quote_found)
4152 /* Found close quote. */
4153 quote_found = '\0';
4154 else if (*p == '\\' && p[1] == quote_found)
4155 /* A backslash followed by the quote character
4156 doesn't end the string. */
4157 ++p;
4158 }
4159 else if (*p == '\'' || *p == '"')
4160 {
4161 quote_found = *p;
4162 quote_pos = p;
4163 }
4164 }
4165 if (quote_found == '\'')
4166 /* A string within single quotes can be a symbol, so complete on it. */
4167 sym_text = quote_pos + 1;
4168 else if (quote_found == '"')
4169 /* A double-quoted string is never a symbol, nor does it make sense
4170 to complete it any other way. */
4171 {
4172 return_val = (char **) xmalloc (sizeof (char *));
4173 return_val[0] = NULL;
4174 return return_val;
4175 }
4176 else
4177 {
4178 /* It is not a quoted string. Break it based on the characters
4179 which are in symbols. */
4180 while (p > text)
4181 {
4182 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4183 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4184 --p;
4185 else
4186 break;
4187 }
4188 sym_text = p;
4189 }
4190 }
4191
4192 sym_text_len = strlen (sym_text);
4193
4194 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4195
4196 if (current_language->la_language == language_cplus
4197 || current_language->la_language == language_java
4198 || current_language->la_language == language_fortran)
4199 {
4200 /* These languages may have parameters entered by user but they are never
4201 present in the partial symbol tables. */
4202
4203 const char *cs = memchr (sym_text, '(', sym_text_len);
4204
4205 if (cs)
4206 sym_text_len = cs - sym_text;
4207 }
4208 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4209
4210 return_val_size = 100;
4211 return_val_index = 0;
4212 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4213 return_val[0] = NULL;
4214 back_to = make_cleanup (do_free_completion_list, &return_val);
4215
4216 datum.sym_text = sym_text;
4217 datum.sym_text_len = sym_text_len;
4218 datum.text = text;
4219 datum.word = word;
4220
4221 /* Look through the partial symtabs for all symbols which begin
4222 by matching SYM_TEXT. Expand all CUs that you find to the list.
4223 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4224 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4225
4226 /* At this point scan through the misc symbol vectors and add each
4227 symbol you find to the list. Eventually we want to ignore
4228 anything that isn't a text symbol (everything else will be
4229 handled by the psymtab code above). */
4230
4231 ALL_MSYMBOLS (objfile, msymbol)
4232 {
4233 QUIT;
4234 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4235
4236 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4237 }
4238
4239 /* Search upwards from currently selected frame (so that we can
4240 complete on local vars). Also catch fields of types defined in
4241 this places which match our text string. Only complete on types
4242 visible from current context. */
4243
4244 b = get_selected_block (0);
4245 surrounding_static_block = block_static_block (b);
4246 surrounding_global_block = block_global_block (b);
4247 if (surrounding_static_block != NULL)
4248 while (b != surrounding_static_block)
4249 {
4250 QUIT;
4251
4252 ALL_BLOCK_SYMBOLS (b, iter, sym)
4253 {
4254 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4255 word);
4256 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4257 word);
4258 }
4259
4260 /* Stop when we encounter an enclosing function. Do not stop for
4261 non-inlined functions - the locals of the enclosing function
4262 are in scope for a nested function. */
4263 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4264 break;
4265 b = BLOCK_SUPERBLOCK (b);
4266 }
4267
4268 /* Add fields from the file's types; symbols will be added below. */
4269
4270 if (surrounding_static_block != NULL)
4271 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4272 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4273
4274 if (surrounding_global_block != NULL)
4275 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4276 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4277
4278 /* Go through the symtabs and check the externs and statics for
4279 symbols which match. */
4280
4281 ALL_PRIMARY_SYMTABS (objfile, s)
4282 {
4283 QUIT;
4284 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4285 ALL_BLOCK_SYMBOLS (b, iter, sym)
4286 {
4287 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4288 }
4289 }
4290
4291 ALL_PRIMARY_SYMTABS (objfile, s)
4292 {
4293 QUIT;
4294 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4295 ALL_BLOCK_SYMBOLS (b, iter, sym)
4296 {
4297 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4298 }
4299 }
4300
4301 if (current_language->la_macro_expansion == macro_expansion_c)
4302 {
4303 struct macro_scope *scope;
4304
4305 /* Add any macros visible in the default scope. Note that this
4306 may yield the occasional wrong result, because an expression
4307 might be evaluated in a scope other than the default. For
4308 example, if the user types "break file:line if <TAB>", the
4309 resulting expression will be evaluated at "file:line" -- but
4310 at there does not seem to be a way to detect this at
4311 completion time. */
4312 scope = default_macro_scope ();
4313 if (scope)
4314 {
4315 macro_for_each_in_scope (scope->file, scope->line,
4316 add_macro_name, &datum);
4317 xfree (scope);
4318 }
4319
4320 /* User-defined macros are always visible. */
4321 macro_for_each (macro_user_macros, add_macro_name, &datum);
4322 }
4323
4324 discard_cleanups (back_to);
4325 return (return_val);
4326 }
4327
4328 char **
4329 default_make_symbol_completion_list (char *text, char *word)
4330 {
4331 return default_make_symbol_completion_list_break_on (text, word, "");
4332 }
4333
4334 /* Return a NULL terminated array of all symbols (regardless of class)
4335 which begin by matching TEXT. If the answer is no symbols, then
4336 the return value is an array which contains only a NULL pointer. */
4337
4338 char **
4339 make_symbol_completion_list (char *text, char *word)
4340 {
4341 return current_language->la_make_symbol_completion_list (text, word);
4342 }
4343
4344 /* Like make_symbol_completion_list, but suitable for use as a
4345 completion function. */
4346
4347 char **
4348 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4349 char *text, char *word)
4350 {
4351 return make_symbol_completion_list (text, word);
4352 }
4353
4354 /* Like make_symbol_completion_list, but returns a list of symbols
4355 defined in a source file FILE. */
4356
4357 char **
4358 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4359 {
4360 struct symbol *sym;
4361 struct symtab *s;
4362 struct block *b;
4363 struct block_iterator iter;
4364 /* The symbol we are completing on. Points in same buffer as text. */
4365 char *sym_text;
4366 /* Length of sym_text. */
4367 int sym_text_len;
4368
4369 /* Now look for the symbol we are supposed to complete on.
4370 FIXME: This should be language-specific. */
4371 {
4372 char *p;
4373 char quote_found;
4374 char *quote_pos = NULL;
4375
4376 /* First see if this is a quoted string. */
4377 quote_found = '\0';
4378 for (p = text; *p != '\0'; ++p)
4379 {
4380 if (quote_found != '\0')
4381 {
4382 if (*p == quote_found)
4383 /* Found close quote. */
4384 quote_found = '\0';
4385 else if (*p == '\\' && p[1] == quote_found)
4386 /* A backslash followed by the quote character
4387 doesn't end the string. */
4388 ++p;
4389 }
4390 else if (*p == '\'' || *p == '"')
4391 {
4392 quote_found = *p;
4393 quote_pos = p;
4394 }
4395 }
4396 if (quote_found == '\'')
4397 /* A string within single quotes can be a symbol, so complete on it. */
4398 sym_text = quote_pos + 1;
4399 else if (quote_found == '"')
4400 /* A double-quoted string is never a symbol, nor does it make sense
4401 to complete it any other way. */
4402 {
4403 return_val = (char **) xmalloc (sizeof (char *));
4404 return_val[0] = NULL;
4405 return return_val;
4406 }
4407 else
4408 {
4409 /* Not a quoted string. */
4410 sym_text = language_search_unquoted_string (text, p);
4411 }
4412 }
4413
4414 sym_text_len = strlen (sym_text);
4415
4416 return_val_size = 10;
4417 return_val_index = 0;
4418 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4419 return_val[0] = NULL;
4420
4421 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4422 in). */
4423 s = lookup_symtab (srcfile);
4424 if (s == NULL)
4425 {
4426 /* Maybe they typed the file with leading directories, while the
4427 symbol tables record only its basename. */
4428 const char *tail = lbasename (srcfile);
4429
4430 if (tail > srcfile)
4431 s = lookup_symtab (tail);
4432 }
4433
4434 /* If we have no symtab for that file, return an empty list. */
4435 if (s == NULL)
4436 return (return_val);
4437
4438 /* Go through this symtab and check the externs and statics for
4439 symbols which match. */
4440
4441 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4442 ALL_BLOCK_SYMBOLS (b, iter, sym)
4443 {
4444 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4445 }
4446
4447 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4448 ALL_BLOCK_SYMBOLS (b, iter, sym)
4449 {
4450 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4451 }
4452
4453 return (return_val);
4454 }
4455
4456 /* A helper function for make_source_files_completion_list. It adds
4457 another file name to a list of possible completions, growing the
4458 list as necessary. */
4459
4460 static void
4461 add_filename_to_list (const char *fname, char *text, char *word,
4462 char ***list, int *list_used, int *list_alloced)
4463 {
4464 char *new;
4465 size_t fnlen = strlen (fname);
4466
4467 if (*list_used + 1 >= *list_alloced)
4468 {
4469 *list_alloced *= 2;
4470 *list = (char **) xrealloc ((char *) *list,
4471 *list_alloced * sizeof (char *));
4472 }
4473
4474 if (word == text)
4475 {
4476 /* Return exactly fname. */
4477 new = xmalloc (fnlen + 5);
4478 strcpy (new, fname);
4479 }
4480 else if (word > text)
4481 {
4482 /* Return some portion of fname. */
4483 new = xmalloc (fnlen + 5);
4484 strcpy (new, fname + (word - text));
4485 }
4486 else
4487 {
4488 /* Return some of TEXT plus fname. */
4489 new = xmalloc (fnlen + (text - word) + 5);
4490 strncpy (new, word, text - word);
4491 new[text - word] = '\0';
4492 strcat (new, fname);
4493 }
4494 (*list)[*list_used] = new;
4495 (*list)[++*list_used] = NULL;
4496 }
4497
4498 static int
4499 not_interesting_fname (const char *fname)
4500 {
4501 static const char *illegal_aliens[] = {
4502 "_globals_", /* inserted by coff_symtab_read */
4503 NULL
4504 };
4505 int i;
4506
4507 for (i = 0; illegal_aliens[i]; i++)
4508 {
4509 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4510 return 1;
4511 }
4512 return 0;
4513 }
4514
4515 /* An object of this type is passed as the user_data argument to
4516 map_partial_symbol_filenames. */
4517 struct add_partial_filename_data
4518 {
4519 int *first;
4520 char *text;
4521 char *word;
4522 int text_len;
4523 char ***list;
4524 int *list_used;
4525 int *list_alloced;
4526 };
4527
4528 /* A callback for map_partial_symbol_filenames. */
4529
4530 static void
4531 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4532 void *user_data)
4533 {
4534 struct add_partial_filename_data *data = user_data;
4535
4536 if (not_interesting_fname (filename))
4537 return;
4538 if (!filename_seen (filename, 1, data->first)
4539 && filename_ncmp (filename, data->text, data->text_len) == 0)
4540 {
4541 /* This file matches for a completion; add it to the
4542 current list of matches. */
4543 add_filename_to_list (filename, data->text, data->word,
4544 data->list, data->list_used, data->list_alloced);
4545 }
4546 else
4547 {
4548 const char *base_name = lbasename (filename);
4549
4550 if (base_name != filename
4551 && !filename_seen (base_name, 1, data->first)
4552 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4553 add_filename_to_list (base_name, data->text, data->word,
4554 data->list, data->list_used, data->list_alloced);
4555 }
4556 }
4557
4558 /* Return a NULL terminated array of all source files whose names
4559 begin with matching TEXT. The file names are looked up in the
4560 symbol tables of this program. If the answer is no matchess, then
4561 the return value is an array which contains only a NULL pointer. */
4562
4563 char **
4564 make_source_files_completion_list (char *text, char *word)
4565 {
4566 struct symtab *s;
4567 struct objfile *objfile;
4568 int first = 1;
4569 int list_alloced = 1;
4570 int list_used = 0;
4571 size_t text_len = strlen (text);
4572 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4573 const char *base_name;
4574 struct add_partial_filename_data datum;
4575 struct cleanup *back_to;
4576
4577 list[0] = NULL;
4578
4579 if (!have_full_symbols () && !have_partial_symbols ())
4580 return list;
4581
4582 back_to = make_cleanup (do_free_completion_list, &list);
4583
4584 ALL_SYMTABS (objfile, s)
4585 {
4586 if (not_interesting_fname (s->filename))
4587 continue;
4588 if (!filename_seen (s->filename, 1, &first)
4589 && filename_ncmp (s->filename, text, text_len) == 0)
4590 {
4591 /* This file matches for a completion; add it to the current
4592 list of matches. */
4593 add_filename_to_list (s->filename, text, word,
4594 &list, &list_used, &list_alloced);
4595 }
4596 else
4597 {
4598 /* NOTE: We allow the user to type a base name when the
4599 debug info records leading directories, but not the other
4600 way around. This is what subroutines of breakpoint
4601 command do when they parse file names. */
4602 base_name = lbasename (s->filename);
4603 if (base_name != s->filename
4604 && !filename_seen (base_name, 1, &first)
4605 && filename_ncmp (base_name, text, text_len) == 0)
4606 add_filename_to_list (base_name, text, word,
4607 &list, &list_used, &list_alloced);
4608 }
4609 }
4610
4611 datum.first = &first;
4612 datum.text = text;
4613 datum.word = word;
4614 datum.text_len = text_len;
4615 datum.list = &list;
4616 datum.list_used = &list_used;
4617 datum.list_alloced = &list_alloced;
4618 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4619 0 /*need_fullname*/);
4620 discard_cleanups (back_to);
4621
4622 return list;
4623 }
4624
4625 /* Determine if PC is in the prologue of a function. The prologue is the area
4626 between the first instruction of a function, and the first executable line.
4627 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4628
4629 If non-zero, func_start is where we think the prologue starts, possibly
4630 by previous examination of symbol table information. */
4631
4632 int
4633 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4634 {
4635 struct symtab_and_line sal;
4636 CORE_ADDR func_addr, func_end;
4637
4638 /* We have several sources of information we can consult to figure
4639 this out.
4640 - Compilers usually emit line number info that marks the prologue
4641 as its own "source line". So the ending address of that "line"
4642 is the end of the prologue. If available, this is the most
4643 reliable method.
4644 - The minimal symbols and partial symbols, which can usually tell
4645 us the starting and ending addresses of a function.
4646 - If we know the function's start address, we can call the
4647 architecture-defined gdbarch_skip_prologue function to analyze the
4648 instruction stream and guess where the prologue ends.
4649 - Our `func_start' argument; if non-zero, this is the caller's
4650 best guess as to the function's entry point. At the time of
4651 this writing, handle_inferior_event doesn't get this right, so
4652 it should be our last resort. */
4653
4654 /* Consult the partial symbol table, to find which function
4655 the PC is in. */
4656 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4657 {
4658 CORE_ADDR prologue_end;
4659
4660 /* We don't even have minsym information, so fall back to using
4661 func_start, if given. */
4662 if (! func_start)
4663 return 1; /* We *might* be in a prologue. */
4664
4665 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4666
4667 return func_start <= pc && pc < prologue_end;
4668 }
4669
4670 /* If we have line number information for the function, that's
4671 usually pretty reliable. */
4672 sal = find_pc_line (func_addr, 0);
4673
4674 /* Now sal describes the source line at the function's entry point,
4675 which (by convention) is the prologue. The end of that "line",
4676 sal.end, is the end of the prologue.
4677
4678 Note that, for functions whose source code is all on a single
4679 line, the line number information doesn't always end up this way.
4680 So we must verify that our purported end-of-prologue address is
4681 *within* the function, not at its start or end. */
4682 if (sal.line == 0
4683 || sal.end <= func_addr
4684 || func_end <= sal.end)
4685 {
4686 /* We don't have any good line number info, so use the minsym
4687 information, together with the architecture-specific prologue
4688 scanning code. */
4689 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4690
4691 return func_addr <= pc && pc < prologue_end;
4692 }
4693
4694 /* We have line number info, and it looks good. */
4695 return func_addr <= pc && pc < sal.end;
4696 }
4697
4698 /* Given PC at the function's start address, attempt to find the
4699 prologue end using SAL information. Return zero if the skip fails.
4700
4701 A non-optimized prologue traditionally has one SAL for the function
4702 and a second for the function body. A single line function has
4703 them both pointing at the same line.
4704
4705 An optimized prologue is similar but the prologue may contain
4706 instructions (SALs) from the instruction body. Need to skip those
4707 while not getting into the function body.
4708
4709 The functions end point and an increasing SAL line are used as
4710 indicators of the prologue's endpoint.
4711
4712 This code is based on the function refine_prologue_limit
4713 (found in ia64). */
4714
4715 CORE_ADDR
4716 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4717 {
4718 struct symtab_and_line prologue_sal;
4719 CORE_ADDR start_pc;
4720 CORE_ADDR end_pc;
4721 struct block *bl;
4722
4723 /* Get an initial range for the function. */
4724 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4725 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4726
4727 prologue_sal = find_pc_line (start_pc, 0);
4728 if (prologue_sal.line != 0)
4729 {
4730 /* For languages other than assembly, treat two consecutive line
4731 entries at the same address as a zero-instruction prologue.
4732 The GNU assembler emits separate line notes for each instruction
4733 in a multi-instruction macro, but compilers generally will not
4734 do this. */
4735 if (prologue_sal.symtab->language != language_asm)
4736 {
4737 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4738 int idx = 0;
4739
4740 /* Skip any earlier lines, and any end-of-sequence marker
4741 from a previous function. */
4742 while (linetable->item[idx].pc != prologue_sal.pc
4743 || linetable->item[idx].line == 0)
4744 idx++;
4745
4746 if (idx+1 < linetable->nitems
4747 && linetable->item[idx+1].line != 0
4748 && linetable->item[idx+1].pc == start_pc)
4749 return start_pc;
4750 }
4751
4752 /* If there is only one sal that covers the entire function,
4753 then it is probably a single line function, like
4754 "foo(){}". */
4755 if (prologue_sal.end >= end_pc)
4756 return 0;
4757
4758 while (prologue_sal.end < end_pc)
4759 {
4760 struct symtab_and_line sal;
4761
4762 sal = find_pc_line (prologue_sal.end, 0);
4763 if (sal.line == 0)
4764 break;
4765 /* Assume that a consecutive SAL for the same (or larger)
4766 line mark the prologue -> body transition. */
4767 if (sal.line >= prologue_sal.line)
4768 break;
4769
4770 /* The line number is smaller. Check that it's from the
4771 same function, not something inlined. If it's inlined,
4772 then there is no point comparing the line numbers. */
4773 bl = block_for_pc (prologue_sal.end);
4774 while (bl)
4775 {
4776 if (block_inlined_p (bl))
4777 break;
4778 if (BLOCK_FUNCTION (bl))
4779 {
4780 bl = NULL;
4781 break;
4782 }
4783 bl = BLOCK_SUPERBLOCK (bl);
4784 }
4785 if (bl != NULL)
4786 break;
4787
4788 /* The case in which compiler's optimizer/scheduler has
4789 moved instructions into the prologue. We look ahead in
4790 the function looking for address ranges whose
4791 corresponding line number is less the first one that we
4792 found for the function. This is more conservative then
4793 refine_prologue_limit which scans a large number of SALs
4794 looking for any in the prologue. */
4795 prologue_sal = sal;
4796 }
4797 }
4798
4799 if (prologue_sal.end < end_pc)
4800 /* Return the end of this line, or zero if we could not find a
4801 line. */
4802 return prologue_sal.end;
4803 else
4804 /* Don't return END_PC, which is past the end of the function. */
4805 return prologue_sal.pc;
4806 }
4807 \f
4808 struct symtabs_and_lines
4809 decode_line_spec (char *string, int flags)
4810 {
4811 struct symtabs_and_lines sals;
4812 struct symtab_and_line cursal;
4813
4814 if (string == 0)
4815 error (_("Empty line specification."));
4816
4817 /* We use whatever is set as the current source line. We do not try
4818 and get a default or it will recursively call us! */
4819 cursal = get_current_source_symtab_and_line ();
4820
4821 sals = decode_line_1 (&string, flags,
4822 cursal.symtab, cursal.line);
4823
4824 if (*string)
4825 error (_("Junk at end of line specification: %s"), string);
4826 return sals;
4827 }
4828
4829 /* Track MAIN */
4830 static char *name_of_main;
4831 enum language language_of_main = language_unknown;
4832
4833 void
4834 set_main_name (const char *name)
4835 {
4836 if (name_of_main != NULL)
4837 {
4838 xfree (name_of_main);
4839 name_of_main = NULL;
4840 language_of_main = language_unknown;
4841 }
4842 if (name != NULL)
4843 {
4844 name_of_main = xstrdup (name);
4845 language_of_main = language_unknown;
4846 }
4847 }
4848
4849 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4850 accordingly. */
4851
4852 static void
4853 find_main_name (void)
4854 {
4855 const char *new_main_name;
4856
4857 /* Try to see if the main procedure is in Ada. */
4858 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4859 be to add a new method in the language vector, and call this
4860 method for each language until one of them returns a non-empty
4861 name. This would allow us to remove this hard-coded call to
4862 an Ada function. It is not clear that this is a better approach
4863 at this point, because all methods need to be written in a way
4864 such that false positives never be returned. For instance, it is
4865 important that a method does not return a wrong name for the main
4866 procedure if the main procedure is actually written in a different
4867 language. It is easy to guaranty this with Ada, since we use a
4868 special symbol generated only when the main in Ada to find the name
4869 of the main procedure. It is difficult however to see how this can
4870 be guarantied for languages such as C, for instance. This suggests
4871 that order of call for these methods becomes important, which means
4872 a more complicated approach. */
4873 new_main_name = ada_main_name ();
4874 if (new_main_name != NULL)
4875 {
4876 set_main_name (new_main_name);
4877 return;
4878 }
4879
4880 new_main_name = go_main_name ();
4881 if (new_main_name != NULL)
4882 {
4883 set_main_name (new_main_name);
4884 return;
4885 }
4886
4887 new_main_name = pascal_main_name ();
4888 if (new_main_name != NULL)
4889 {
4890 set_main_name (new_main_name);
4891 return;
4892 }
4893
4894 /* The languages above didn't identify the name of the main procedure.
4895 Fallback to "main". */
4896 set_main_name ("main");
4897 }
4898
4899 char *
4900 main_name (void)
4901 {
4902 if (name_of_main == NULL)
4903 find_main_name ();
4904
4905 return name_of_main;
4906 }
4907
4908 /* Handle ``executable_changed'' events for the symtab module. */
4909
4910 static void
4911 symtab_observer_executable_changed (void)
4912 {
4913 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4914 set_main_name (NULL);
4915 }
4916
4917 /* Return 1 if the supplied producer string matches the ARM RealView
4918 compiler (armcc). */
4919
4920 int
4921 producer_is_realview (const char *producer)
4922 {
4923 static const char *const arm_idents[] = {
4924 "ARM C Compiler, ADS",
4925 "Thumb C Compiler, ADS",
4926 "ARM C++ Compiler, ADS",
4927 "Thumb C++ Compiler, ADS",
4928 "ARM/Thumb C/C++ Compiler, RVCT",
4929 "ARM C/C++ Compiler, RVCT"
4930 };
4931 int i;
4932
4933 if (producer == NULL)
4934 return 0;
4935
4936 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4937 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4938 return 1;
4939
4940 return 0;
4941 }
4942
4943 void
4944 _initialize_symtab (void)
4945 {
4946 add_info ("variables", variables_info, _("\
4947 All global and static variable names, or those matching REGEXP."));
4948 if (dbx_commands)
4949 add_com ("whereis", class_info, variables_info, _("\
4950 All global and static variable names, or those matching REGEXP."));
4951
4952 add_info ("functions", functions_info,
4953 _("All function names, or those matching REGEXP."));
4954
4955 /* FIXME: This command has at least the following problems:
4956 1. It prints builtin types (in a very strange and confusing fashion).
4957 2. It doesn't print right, e.g. with
4958 typedef struct foo *FOO
4959 type_print prints "FOO" when we want to make it (in this situation)
4960 print "struct foo *".
4961 I also think "ptype" or "whatis" is more likely to be useful (but if
4962 there is much disagreement "info types" can be fixed). */
4963 add_info ("types", types_info,
4964 _("All type names, or those matching REGEXP."));
4965
4966 add_info ("sources", sources_info,
4967 _("Source files in the program."));
4968
4969 add_com ("rbreak", class_breakpoint, rbreak_command,
4970 _("Set a breakpoint for all functions matching REGEXP."));
4971
4972 if (xdb_commands)
4973 {
4974 add_com ("lf", class_info, sources_info,
4975 _("Source files in the program"));
4976 add_com ("lg", class_info, variables_info, _("\
4977 All global and static variable names, or those matching REGEXP."));
4978 }
4979
4980 add_setshow_enum_cmd ("multiple-symbols", no_class,
4981 multiple_symbols_modes, &multiple_symbols_mode,
4982 _("\
4983 Set the debugger behavior when more than one symbol are possible matches\n\
4984 in an expression."), _("\
4985 Show how the debugger handles ambiguities in expressions."), _("\
4986 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4987 NULL, NULL, &setlist, &showlist);
4988
4989 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4990 &basenames_may_differ, _("\
4991 Set whether a source file may have multiple base names."), _("\
4992 Show whether a source file may have multiple base names."), _("\
4993 (A \"base name\" is the name of a file with the directory part removed.\n\
4994 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4995 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4996 before comparing them. Canonicalization is an expensive operation,\n\
4997 but it allows the same file be known by more than one base name.\n\
4998 If not set (the default), all source files are assumed to have just\n\
4999 one base name, and gdb will do file name comparisons more efficiently."),
5000 NULL, NULL,
5001 &setlist, &showlist);
5002
5003 observer_attach_executable_changed (symtab_observer_executable_changed);
5004 }
This page took 0.13857 seconds and 4 git commands to generate.