Change tui_make_status_line to be a method
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile,
96 enum block_enum block_index,
97 const char *name, const domain_enum domain);
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 main_info () = default;
104
105 ~main_info ()
106 {
107 xfree (name_of_main);
108 }
109
110 /* Name of "main". */
111
112 char *name_of_main = nullptr;
113
114 /* Language of "main". */
115
116 enum language language_of_main = language_unknown;
117 };
118
119 /* Program space key for finding name and language of "main". */
120
121 static const program_space_key<main_info> main_progspace_key;
122
123 /* The default symbol cache size.
124 There is no extra cpu cost for large N (except when flushing the cache,
125 which is rare). The value here is just a first attempt. A better default
126 value may be higher or lower. A prime number can make up for a bad hash
127 computation, so that's why the number is what it is. */
128 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
129
130 /* The maximum symbol cache size.
131 There's no method to the decision of what value to use here, other than
132 there's no point in allowing a user typo to make gdb consume all memory. */
133 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
134
135 /* symbol_cache_lookup returns this if a previous lookup failed to find the
136 symbol in any objfile. */
137 #define SYMBOL_LOOKUP_FAILED \
138 ((struct block_symbol) {(struct symbol *) 1, NULL})
139 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
140
141 /* Recording lookups that don't find the symbol is just as important, if not
142 more so, than recording found symbols. */
143
144 enum symbol_cache_slot_state
145 {
146 SYMBOL_SLOT_UNUSED,
147 SYMBOL_SLOT_NOT_FOUND,
148 SYMBOL_SLOT_FOUND
149 };
150
151 struct symbol_cache_slot
152 {
153 enum symbol_cache_slot_state state;
154
155 /* The objfile that was current when the symbol was looked up.
156 This is only needed for global blocks, but for simplicity's sake
157 we allocate the space for both. If data shows the extra space used
158 for static blocks is a problem, we can split things up then.
159
160 Global blocks need cache lookup to include the objfile context because
161 we need to account for gdbarch_iterate_over_objfiles_in_search_order
162 which can traverse objfiles in, effectively, any order, depending on
163 the current objfile, thus affecting which symbol is found. Normally,
164 only the current objfile is searched first, and then the rest are
165 searched in recorded order; but putting cache lookup inside
166 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
167 Instead we just make the current objfile part of the context of
168 cache lookup. This means we can record the same symbol multiple times,
169 each with a different "current objfile" that was in effect when the
170 lookup was saved in the cache, but cache space is pretty cheap. */
171 const struct objfile *objfile_context;
172
173 union
174 {
175 struct block_symbol found;
176 struct
177 {
178 char *name;
179 domain_enum domain;
180 } not_found;
181 } value;
182 };
183
184 /* Symbols don't specify global vs static block.
185 So keep them in separate caches. */
186
187 struct block_symbol_cache
188 {
189 unsigned int hits;
190 unsigned int misses;
191 unsigned int collisions;
192
193 /* SYMBOLS is a variable length array of this size.
194 One can imagine that in general one cache (global/static) should be a
195 fraction of the size of the other, but there's no data at the moment
196 on which to decide. */
197 unsigned int size;
198
199 struct symbol_cache_slot symbols[1];
200 };
201
202 /* The symbol cache.
203
204 Searching for symbols in the static and global blocks over multiple objfiles
205 again and again can be slow, as can searching very big objfiles. This is a
206 simple cache to improve symbol lookup performance, which is critical to
207 overall gdb performance.
208
209 Symbols are hashed on the name, its domain, and block.
210 They are also hashed on their objfile for objfile-specific lookups. */
211
212 struct symbol_cache
213 {
214 symbol_cache () = default;
215
216 ~symbol_cache ()
217 {
218 xfree (global_symbols);
219 xfree (static_symbols);
220 }
221
222 struct block_symbol_cache *global_symbols = nullptr;
223 struct block_symbol_cache *static_symbols = nullptr;
224 };
225
226 /* Program space key for finding its symbol cache. */
227
228 static const program_space_key<symbol_cache> symbol_cache_key;
229
230 /* When non-zero, print debugging messages related to symtab creation. */
231 unsigned int symtab_create_debug = 0;
232
233 /* When non-zero, print debugging messages related to symbol lookup. */
234 unsigned int symbol_lookup_debug = 0;
235
236 /* The size of the cache is staged here. */
237 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
238
239 /* The current value of the symbol cache size.
240 This is saved so that if the user enters a value too big we can restore
241 the original value from here. */
242 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
243
244 /* True if a file may be known by two different basenames.
245 This is the uncommon case, and significantly slows down gdb.
246 Default set to "off" to not slow down the common case. */
247 bool basenames_may_differ = false;
248
249 /* Allow the user to configure the debugger behavior with respect
250 to multiple-choice menus when more than one symbol matches during
251 a symbol lookup. */
252
253 const char multiple_symbols_ask[] = "ask";
254 const char multiple_symbols_all[] = "all";
255 const char multiple_symbols_cancel[] = "cancel";
256 static const char *const multiple_symbols_modes[] =
257 {
258 multiple_symbols_ask,
259 multiple_symbols_all,
260 multiple_symbols_cancel,
261 NULL
262 };
263 static const char *multiple_symbols_mode = multiple_symbols_all;
264
265 /* Read-only accessor to AUTO_SELECT_MODE. */
266
267 const char *
268 multiple_symbols_select_mode (void)
269 {
270 return multiple_symbols_mode;
271 }
272
273 /* Return the name of a domain_enum. */
274
275 const char *
276 domain_name (domain_enum e)
277 {
278 switch (e)
279 {
280 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
281 case VAR_DOMAIN: return "VAR_DOMAIN";
282 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
283 case MODULE_DOMAIN: return "MODULE_DOMAIN";
284 case LABEL_DOMAIN: return "LABEL_DOMAIN";
285 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
286 default: gdb_assert_not_reached ("bad domain_enum");
287 }
288 }
289
290 /* Return the name of a search_domain . */
291
292 const char *
293 search_domain_name (enum search_domain e)
294 {
295 switch (e)
296 {
297 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
298 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
299 case TYPES_DOMAIN: return "TYPES_DOMAIN";
300 case ALL_DOMAIN: return "ALL_DOMAIN";
301 default: gdb_assert_not_reached ("bad search_domain");
302 }
303 }
304
305 /* See symtab.h. */
306
307 struct symtab *
308 compunit_primary_filetab (const struct compunit_symtab *cust)
309 {
310 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
311
312 /* The primary file symtab is the first one in the list. */
313 return COMPUNIT_FILETABS (cust);
314 }
315
316 /* See symtab.h. */
317
318 enum language
319 compunit_language (const struct compunit_symtab *cust)
320 {
321 struct symtab *symtab = compunit_primary_filetab (cust);
322
323 /* The language of the compunit symtab is the language of its primary
324 source file. */
325 return SYMTAB_LANGUAGE (symtab);
326 }
327
328 /* See symtab.h. */
329
330 bool
331 minimal_symbol::data_p () const
332 {
333 return type == mst_data
334 || type == mst_bss
335 || type == mst_abs
336 || type == mst_file_data
337 || type == mst_file_bss;
338 }
339
340 /* See symtab.h. */
341
342 bool
343 minimal_symbol::text_p () const
344 {
345 return type == mst_text
346 || type == mst_text_gnu_ifunc
347 || type == mst_data_gnu_ifunc
348 || type == mst_slot_got_plt
349 || type == mst_solib_trampoline
350 || type == mst_file_text;
351 }
352
353 /* See whether FILENAME matches SEARCH_NAME using the rule that we
354 advertise to the user. (The manual's description of linespecs
355 describes what we advertise). Returns true if they match, false
356 otherwise. */
357
358 int
359 compare_filenames_for_search (const char *filename, const char *search_name)
360 {
361 int len = strlen (filename);
362 size_t search_len = strlen (search_name);
363
364 if (len < search_len)
365 return 0;
366
367 /* The tail of FILENAME must match. */
368 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
369 return 0;
370
371 /* Either the names must completely match, or the character
372 preceding the trailing SEARCH_NAME segment of FILENAME must be a
373 directory separator.
374
375 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
376 cannot match FILENAME "/path//dir/file.c" - as user has requested
377 absolute path. The sama applies for "c:\file.c" possibly
378 incorrectly hypothetically matching "d:\dir\c:\file.c".
379
380 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
381 compatible with SEARCH_NAME "file.c". In such case a compiler had
382 to put the "c:file.c" name into debug info. Such compatibility
383 works only on GDB built for DOS host. */
384 return (len == search_len
385 || (!IS_ABSOLUTE_PATH (search_name)
386 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
387 || (HAS_DRIVE_SPEC (filename)
388 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
389 }
390
391 /* Same as compare_filenames_for_search, but for glob-style patterns.
392 Heads up on the order of the arguments. They match the order of
393 compare_filenames_for_search, but it's the opposite of the order of
394 arguments to gdb_filename_fnmatch. */
395
396 int
397 compare_glob_filenames_for_search (const char *filename,
398 const char *search_name)
399 {
400 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
401 all /s have to be explicitly specified. */
402 int file_path_elements = count_path_elements (filename);
403 int search_path_elements = count_path_elements (search_name);
404
405 if (search_path_elements > file_path_elements)
406 return 0;
407
408 if (IS_ABSOLUTE_PATH (search_name))
409 {
410 return (search_path_elements == file_path_elements
411 && gdb_filename_fnmatch (search_name, filename,
412 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
413 }
414
415 {
416 const char *file_to_compare
417 = strip_leading_path_elements (filename,
418 file_path_elements - search_path_elements);
419
420 return gdb_filename_fnmatch (search_name, file_to_compare,
421 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
422 }
423 }
424
425 /* Check for a symtab of a specific name by searching some symtabs.
426 This is a helper function for callbacks of iterate_over_symtabs.
427
428 If NAME is not absolute, then REAL_PATH is NULL
429 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
430
431 The return value, NAME, REAL_PATH and CALLBACK are identical to the
432 `map_symtabs_matching_filename' method of quick_symbol_functions.
433
434 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
435 Each symtab within the specified compunit symtab is also searched.
436 AFTER_LAST is one past the last compunit symtab to search; NULL means to
437 search until the end of the list. */
438
439 bool
440 iterate_over_some_symtabs (const char *name,
441 const char *real_path,
442 struct compunit_symtab *first,
443 struct compunit_symtab *after_last,
444 gdb::function_view<bool (symtab *)> callback)
445 {
446 struct compunit_symtab *cust;
447 const char* base_name = lbasename (name);
448
449 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
450 {
451 for (symtab *s : compunit_filetabs (cust))
452 {
453 if (compare_filenames_for_search (s->filename, name))
454 {
455 if (callback (s))
456 return true;
457 continue;
458 }
459
460 /* Before we invoke realpath, which can get expensive when many
461 files are involved, do a quick comparison of the basenames. */
462 if (! basenames_may_differ
463 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
464 continue;
465
466 if (compare_filenames_for_search (symtab_to_fullname (s), name))
467 {
468 if (callback (s))
469 return true;
470 continue;
471 }
472
473 /* If the user gave us an absolute path, try to find the file in
474 this symtab and use its absolute path. */
475 if (real_path != NULL)
476 {
477 const char *fullname = symtab_to_fullname (s);
478
479 gdb_assert (IS_ABSOLUTE_PATH (real_path));
480 gdb_assert (IS_ABSOLUTE_PATH (name));
481 if (FILENAME_CMP (real_path, fullname) == 0)
482 {
483 if (callback (s))
484 return true;
485 continue;
486 }
487 }
488 }
489 }
490
491 return false;
492 }
493
494 /* Check for a symtab of a specific name; first in symtabs, then in
495 psymtabs. *If* there is no '/' in the name, a match after a '/'
496 in the symtab filename will also work.
497
498 Calls CALLBACK with each symtab that is found. If CALLBACK returns
499 true, the search stops. */
500
501 void
502 iterate_over_symtabs (const char *name,
503 gdb::function_view<bool (symtab *)> callback)
504 {
505 gdb::unique_xmalloc_ptr<char> real_path;
506
507 /* Here we are interested in canonicalizing an absolute path, not
508 absolutizing a relative path. */
509 if (IS_ABSOLUTE_PATH (name))
510 {
511 real_path = gdb_realpath (name);
512 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
513 }
514
515 for (objfile *objfile : current_program_space->objfiles ())
516 {
517 if (iterate_over_some_symtabs (name, real_path.get (),
518 objfile->compunit_symtabs, NULL,
519 callback))
520 return;
521 }
522
523 /* Same search rules as above apply here, but now we look thru the
524 psymtabs. */
525
526 for (objfile *objfile : current_program_space->objfiles ())
527 {
528 if (objfile->sf
529 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
530 name,
531 real_path.get (),
532 callback))
533 return;
534 }
535 }
536
537 /* A wrapper for iterate_over_symtabs that returns the first matching
538 symtab, or NULL. */
539
540 struct symtab *
541 lookup_symtab (const char *name)
542 {
543 struct symtab *result = NULL;
544
545 iterate_over_symtabs (name, [&] (symtab *symtab)
546 {
547 result = symtab;
548 return true;
549 });
550
551 return result;
552 }
553
554 \f
555 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
556 full method name, which consist of the class name (from T), the unadorned
557 method name from METHOD_ID, and the signature for the specific overload,
558 specified by SIGNATURE_ID. Note that this function is g++ specific. */
559
560 char *
561 gdb_mangle_name (struct type *type, int method_id, int signature_id)
562 {
563 int mangled_name_len;
564 char *mangled_name;
565 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
566 struct fn_field *method = &f[signature_id];
567 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
568 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
569 const char *newname = TYPE_NAME (type);
570
571 /* Does the form of physname indicate that it is the full mangled name
572 of a constructor (not just the args)? */
573 int is_full_physname_constructor;
574
575 int is_constructor;
576 int is_destructor = is_destructor_name (physname);
577 /* Need a new type prefix. */
578 const char *const_prefix = method->is_const ? "C" : "";
579 const char *volatile_prefix = method->is_volatile ? "V" : "";
580 char buf[20];
581 int len = (newname == NULL ? 0 : strlen (newname));
582
583 /* Nothing to do if physname already contains a fully mangled v3 abi name
584 or an operator name. */
585 if ((physname[0] == '_' && physname[1] == 'Z')
586 || is_operator_name (field_name))
587 return xstrdup (physname);
588
589 is_full_physname_constructor = is_constructor_name (physname);
590
591 is_constructor = is_full_physname_constructor
592 || (newname && strcmp (field_name, newname) == 0);
593
594 if (!is_destructor)
595 is_destructor = (startswith (physname, "__dt"));
596
597 if (is_destructor || is_full_physname_constructor)
598 {
599 mangled_name = (char *) xmalloc (strlen (physname) + 1);
600 strcpy (mangled_name, physname);
601 return mangled_name;
602 }
603
604 if (len == 0)
605 {
606 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
607 }
608 else if (physname[0] == 't' || physname[0] == 'Q')
609 {
610 /* The physname for template and qualified methods already includes
611 the class name. */
612 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
613 newname = NULL;
614 len = 0;
615 }
616 else
617 {
618 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
619 volatile_prefix, len);
620 }
621 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
622 + strlen (buf) + len + strlen (physname) + 1);
623
624 mangled_name = (char *) xmalloc (mangled_name_len);
625 if (is_constructor)
626 mangled_name[0] = '\0';
627 else
628 strcpy (mangled_name, field_name);
629
630 strcat (mangled_name, buf);
631 /* If the class doesn't have a name, i.e. newname NULL, then we just
632 mangle it using 0 for the length of the class. Thus it gets mangled
633 as something starting with `::' rather than `classname::'. */
634 if (newname != NULL)
635 strcat (mangled_name, newname);
636
637 strcat (mangled_name, physname);
638 return (mangled_name);
639 }
640
641 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
642 correctly allocated. */
643
644 void
645 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
646 const char *name,
647 struct obstack *obstack)
648 {
649 if (gsymbol->language == language_ada)
650 {
651 if (name == NULL)
652 {
653 gsymbol->ada_mangled = 0;
654 gsymbol->language_specific.obstack = obstack;
655 }
656 else
657 {
658 gsymbol->ada_mangled = 1;
659 gsymbol->language_specific.demangled_name = name;
660 }
661 }
662 else
663 gsymbol->language_specific.demangled_name = name;
664 }
665
666 /* Return the demangled name of GSYMBOL. */
667
668 const char *
669 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
670 {
671 if (gsymbol->language == language_ada)
672 {
673 if (!gsymbol->ada_mangled)
674 return NULL;
675 /* Fall through. */
676 }
677
678 return gsymbol->language_specific.demangled_name;
679 }
680
681 \f
682 /* Initialize the language dependent portion of a symbol
683 depending upon the language for the symbol. */
684
685 void
686 symbol_set_language (struct general_symbol_info *gsymbol,
687 enum language language,
688 struct obstack *obstack)
689 {
690 gsymbol->language = language;
691 if (gsymbol->language == language_cplus
692 || gsymbol->language == language_d
693 || gsymbol->language == language_go
694 || gsymbol->language == language_objc
695 || gsymbol->language == language_fortran)
696 {
697 symbol_set_demangled_name (gsymbol, NULL, obstack);
698 }
699 else if (gsymbol->language == language_ada)
700 {
701 gdb_assert (gsymbol->ada_mangled == 0);
702 gsymbol->language_specific.obstack = obstack;
703 }
704 else
705 {
706 memset (&gsymbol->language_specific, 0,
707 sizeof (gsymbol->language_specific));
708 }
709 }
710
711 /* Functions to initialize a symbol's mangled name. */
712
713 /* Objects of this type are stored in the demangled name hash table. */
714 struct demangled_name_entry
715 {
716 const char *mangled;
717 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
718 char demangled[1];
719 };
720
721 /* Hash function for the demangled name hash. */
722
723 static hashval_t
724 hash_demangled_name_entry (const void *data)
725 {
726 const struct demangled_name_entry *e
727 = (const struct demangled_name_entry *) data;
728
729 return htab_hash_string (e->mangled);
730 }
731
732 /* Equality function for the demangled name hash. */
733
734 static int
735 eq_demangled_name_entry (const void *a, const void *b)
736 {
737 const struct demangled_name_entry *da
738 = (const struct demangled_name_entry *) a;
739 const struct demangled_name_entry *db
740 = (const struct demangled_name_entry *) b;
741
742 return strcmp (da->mangled, db->mangled) == 0;
743 }
744
745 /* Create the hash table used for demangled names. Each hash entry is
746 a pair of strings; one for the mangled name and one for the demangled
747 name. The entry is hashed via just the mangled name. */
748
749 static void
750 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
751 {
752 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
753 The hash table code will round this up to the next prime number.
754 Choosing a much larger table size wastes memory, and saves only about
755 1% in symbol reading. */
756
757 per_bfd->demangled_names_hash.reset (htab_create_alloc
758 (256, hash_demangled_name_entry, eq_demangled_name_entry,
759 NULL, xcalloc, xfree));
760 }
761
762 /* Try to determine the demangled name for a symbol, based on the
763 language of that symbol. If the language is set to language_auto,
764 it will attempt to find any demangling algorithm that works and
765 then set the language appropriately. The returned name is allocated
766 by the demangler and should be xfree'd. */
767
768 static char *
769 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
770 const char *mangled)
771 {
772 char *demangled = NULL;
773 int i;
774
775 if (gsymbol->language == language_unknown)
776 gsymbol->language = language_auto;
777
778 if (gsymbol->language != language_auto)
779 {
780 const struct language_defn *lang = language_def (gsymbol->language);
781
782 language_sniff_from_mangled_name (lang, mangled, &demangled);
783 return demangled;
784 }
785
786 for (i = language_unknown; i < nr_languages; ++i)
787 {
788 enum language l = (enum language) i;
789 const struct language_defn *lang = language_def (l);
790
791 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
792 {
793 gsymbol->language = l;
794 return demangled;
795 }
796 }
797
798 return NULL;
799 }
800
801 /* Set both the mangled and demangled (if any) names for GSYMBOL based
802 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
803 objfile's obstack; but if COPY_NAME is 0 and if NAME is
804 NUL-terminated, then this function assumes that NAME is already
805 correctly saved (either permanently or with a lifetime tied to the
806 objfile), and it will not be copied.
807
808 The hash table corresponding to OBJFILE is used, and the memory
809 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
810 so the pointer can be discarded after calling this function. */
811
812 void
813 symbol_set_names (struct general_symbol_info *gsymbol,
814 const char *linkage_name, int len, bool copy_name,
815 struct objfile_per_bfd_storage *per_bfd)
816 {
817 struct demangled_name_entry **slot;
818 /* A 0-terminated copy of the linkage name. */
819 const char *linkage_name_copy;
820 struct demangled_name_entry entry;
821
822 if (gsymbol->language == language_ada)
823 {
824 /* In Ada, we do the symbol lookups using the mangled name, so
825 we can save some space by not storing the demangled name. */
826 if (!copy_name)
827 gsymbol->name = linkage_name;
828 else
829 {
830 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
831 len + 1);
832
833 memcpy (name, linkage_name, len);
834 name[len] = '\0';
835 gsymbol->name = name;
836 }
837 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
838
839 return;
840 }
841
842 if (per_bfd->demangled_names_hash == NULL)
843 create_demangled_names_hash (per_bfd);
844
845 if (linkage_name[len] != '\0')
846 {
847 char *alloc_name;
848
849 alloc_name = (char *) alloca (len + 1);
850 memcpy (alloc_name, linkage_name, len);
851 alloc_name[len] = '\0';
852
853 linkage_name_copy = alloc_name;
854 }
855 else
856 linkage_name_copy = linkage_name;
857
858 entry.mangled = linkage_name_copy;
859 slot = ((struct demangled_name_entry **)
860 htab_find_slot (per_bfd->demangled_names_hash.get (),
861 &entry, INSERT));
862
863 /* If this name is not in the hash table, add it. */
864 if (*slot == NULL
865 /* A C version of the symbol may have already snuck into the table.
866 This happens to, e.g., main.init (__go_init_main). Cope. */
867 || (gsymbol->language == language_go
868 && (*slot)->demangled[0] == '\0'))
869 {
870 char *demangled_name_ptr
871 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
872 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
873 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 linkage_name_copy==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && linkage_name_copy == linkage_name)
885 {
886 *slot
887 = ((struct demangled_name_entry *)
888 obstack_alloc (&per_bfd->storage_obstack,
889 offsetof (struct demangled_name_entry, demangled)
890 + demangled_len + 1));
891 (*slot)->mangled = linkage_name;
892 }
893 else
894 {
895 char *mangled_ptr;
896
897 /* If we must copy the mangled name, put it directly after
898 the demangled name so we can have a single
899 allocation. */
900 *slot
901 = ((struct demangled_name_entry *)
902 obstack_alloc (&per_bfd->storage_obstack,
903 offsetof (struct demangled_name_entry, demangled)
904 + len + demangled_len + 2));
905 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
906 strcpy (mangled_ptr, linkage_name_copy);
907 (*slot)->mangled = mangled_ptr;
908 }
909 (*slot)->language = gsymbol->language;
910
911 if (demangled_name != NULL)
912 strcpy ((*slot)->demangled, demangled_name.get ());
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916 else if (gsymbol->language == language_unknown
917 || gsymbol->language == language_auto)
918 gsymbol->language = (*slot)->language;
919
920 gsymbol->name = (*slot)->mangled;
921 if ((*slot)->demangled[0] != '\0')
922 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
923 &per_bfd->storage_obstack);
924 else
925 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
926 }
927
928 /* Return the source code name of a symbol. In languages where
929 demangling is necessary, this is the demangled name. */
930
931 const char *
932 symbol_natural_name (const struct general_symbol_info *gsymbol)
933 {
934 switch (gsymbol->language)
935 {
936 case language_cplus:
937 case language_d:
938 case language_go:
939 case language_objc:
940 case language_fortran:
941 if (symbol_get_demangled_name (gsymbol) != NULL)
942 return symbol_get_demangled_name (gsymbol);
943 break;
944 case language_ada:
945 return ada_decode_symbol (gsymbol);
946 default:
947 break;
948 }
949 return gsymbol->name;
950 }
951
952 /* Return the demangled name for a symbol based on the language for
953 that symbol. If no demangled name exists, return NULL. */
954
955 const char *
956 symbol_demangled_name (const struct general_symbol_info *gsymbol)
957 {
958 const char *dem_name = NULL;
959
960 switch (gsymbol->language)
961 {
962 case language_cplus:
963 case language_d:
964 case language_go:
965 case language_objc:
966 case language_fortran:
967 dem_name = symbol_get_demangled_name (gsymbol);
968 break;
969 case language_ada:
970 dem_name = ada_decode_symbol (gsymbol);
971 break;
972 default:
973 break;
974 }
975 return dem_name;
976 }
977
978 /* Return the search name of a symbol---generally the demangled or
979 linkage name of the symbol, depending on how it will be searched for.
980 If there is no distinct demangled name, then returns the same value
981 (same pointer) as SYMBOL_LINKAGE_NAME. */
982
983 const char *
984 symbol_search_name (const struct general_symbol_info *gsymbol)
985 {
986 if (gsymbol->language == language_ada)
987 return gsymbol->name;
988 else
989 return symbol_natural_name (gsymbol);
990 }
991
992 /* See symtab.h. */
993
994 bool
995 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
996 const lookup_name_info &name)
997 {
998 symbol_name_matcher_ftype *name_match
999 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1000 return name_match (symbol_search_name (gsymbol), name, NULL);
1001 }
1002
1003 \f
1004
1005 /* Return 1 if the two sections are the same, or if they could
1006 plausibly be copies of each other, one in an original object
1007 file and another in a separated debug file. */
1008
1009 int
1010 matching_obj_sections (struct obj_section *obj_first,
1011 struct obj_section *obj_second)
1012 {
1013 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1014 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1015
1016 /* If they're the same section, then they match. */
1017 if (first == second)
1018 return 1;
1019
1020 /* If either is NULL, give up. */
1021 if (first == NULL || second == NULL)
1022 return 0;
1023
1024 /* This doesn't apply to absolute symbols. */
1025 if (first->owner == NULL || second->owner == NULL)
1026 return 0;
1027
1028 /* If they're in the same object file, they must be different sections. */
1029 if (first->owner == second->owner)
1030 return 0;
1031
1032 /* Check whether the two sections are potentially corresponding. They must
1033 have the same size, address, and name. We can't compare section indexes,
1034 which would be more reliable, because some sections may have been
1035 stripped. */
1036 if (bfd_section_size (first) != bfd_section_size (second))
1037 return 0;
1038
1039 /* In-memory addresses may start at a different offset, relativize them. */
1040 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1041 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1042 return 0;
1043
1044 if (bfd_section_name (first) == NULL
1045 || bfd_section_name (second) == NULL
1046 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1047 return 0;
1048
1049 /* Otherwise check that they are in corresponding objfiles. */
1050
1051 struct objfile *obj = NULL;
1052 for (objfile *objfile : current_program_space->objfiles ())
1053 if (objfile->obfd == first->owner)
1054 {
1055 obj = objfile;
1056 break;
1057 }
1058 gdb_assert (obj != NULL);
1059
1060 if (obj->separate_debug_objfile != NULL
1061 && obj->separate_debug_objfile->obfd == second->owner)
1062 return 1;
1063 if (obj->separate_debug_objfile_backlink != NULL
1064 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1065 return 1;
1066
1067 return 0;
1068 }
1069
1070 /* See symtab.h. */
1071
1072 void
1073 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1074 {
1075 struct bound_minimal_symbol msymbol;
1076
1077 /* If we know that this is not a text address, return failure. This is
1078 necessary because we loop based on texthigh and textlow, which do
1079 not include the data ranges. */
1080 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1081 if (msymbol.minsym && msymbol.minsym->data_p ())
1082 return;
1083
1084 for (objfile *objfile : current_program_space->objfiles ())
1085 {
1086 struct compunit_symtab *cust = NULL;
1087
1088 if (objfile->sf)
1089 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1090 pc, section, 0);
1091 if (cust)
1092 return;
1093 }
1094 }
1095 \f
1096 /* Hash function for the symbol cache. */
1097
1098 static unsigned int
1099 hash_symbol_entry (const struct objfile *objfile_context,
1100 const char *name, domain_enum domain)
1101 {
1102 unsigned int hash = (uintptr_t) objfile_context;
1103
1104 if (name != NULL)
1105 hash += htab_hash_string (name);
1106
1107 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1108 to map to the same slot. */
1109 if (domain == STRUCT_DOMAIN)
1110 hash += VAR_DOMAIN * 7;
1111 else
1112 hash += domain * 7;
1113
1114 return hash;
1115 }
1116
1117 /* Equality function for the symbol cache. */
1118
1119 static int
1120 eq_symbol_entry (const struct symbol_cache_slot *slot,
1121 const struct objfile *objfile_context,
1122 const char *name, domain_enum domain)
1123 {
1124 const char *slot_name;
1125 domain_enum slot_domain;
1126
1127 if (slot->state == SYMBOL_SLOT_UNUSED)
1128 return 0;
1129
1130 if (slot->objfile_context != objfile_context)
1131 return 0;
1132
1133 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1134 {
1135 slot_name = slot->value.not_found.name;
1136 slot_domain = slot->value.not_found.domain;
1137 }
1138 else
1139 {
1140 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1141 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1142 }
1143
1144 /* NULL names match. */
1145 if (slot_name == NULL && name == NULL)
1146 {
1147 /* But there's no point in calling symbol_matches_domain in the
1148 SYMBOL_SLOT_FOUND case. */
1149 if (slot_domain != domain)
1150 return 0;
1151 }
1152 else if (slot_name != NULL && name != NULL)
1153 {
1154 /* It's important that we use the same comparison that was done
1155 the first time through. If the slot records a found symbol,
1156 then this means using the symbol name comparison function of
1157 the symbol's language with SYMBOL_SEARCH_NAME. See
1158 dictionary.c. It also means using symbol_matches_domain for
1159 found symbols. See block.c.
1160
1161 If the slot records a not-found symbol, then require a precise match.
1162 We could still be lax with whitespace like strcmp_iw though. */
1163
1164 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1165 {
1166 if (strcmp (slot_name, name) != 0)
1167 return 0;
1168 if (slot_domain != domain)
1169 return 0;
1170 }
1171 else
1172 {
1173 struct symbol *sym = slot->value.found.symbol;
1174 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1175
1176 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1177 return 0;
1178
1179 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1180 slot_domain, domain))
1181 return 0;
1182 }
1183 }
1184 else
1185 {
1186 /* Only one name is NULL. */
1187 return 0;
1188 }
1189
1190 return 1;
1191 }
1192
1193 /* Given a cache of size SIZE, return the size of the struct (with variable
1194 length array) in bytes. */
1195
1196 static size_t
1197 symbol_cache_byte_size (unsigned int size)
1198 {
1199 return (sizeof (struct block_symbol_cache)
1200 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1201 }
1202
1203 /* Resize CACHE. */
1204
1205 static void
1206 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1207 {
1208 /* If there's no change in size, don't do anything.
1209 All caches have the same size, so we can just compare with the size
1210 of the global symbols cache. */
1211 if ((cache->global_symbols != NULL
1212 && cache->global_symbols->size == new_size)
1213 || (cache->global_symbols == NULL
1214 && new_size == 0))
1215 return;
1216
1217 xfree (cache->global_symbols);
1218 xfree (cache->static_symbols);
1219
1220 if (new_size == 0)
1221 {
1222 cache->global_symbols = NULL;
1223 cache->static_symbols = NULL;
1224 }
1225 else
1226 {
1227 size_t total_size = symbol_cache_byte_size (new_size);
1228
1229 cache->global_symbols
1230 = (struct block_symbol_cache *) xcalloc (1, total_size);
1231 cache->static_symbols
1232 = (struct block_symbol_cache *) xcalloc (1, total_size);
1233 cache->global_symbols->size = new_size;
1234 cache->static_symbols->size = new_size;
1235 }
1236 }
1237
1238 /* Return the symbol cache of PSPACE.
1239 Create one if it doesn't exist yet. */
1240
1241 static struct symbol_cache *
1242 get_symbol_cache (struct program_space *pspace)
1243 {
1244 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1245
1246 if (cache == NULL)
1247 {
1248 cache = symbol_cache_key.emplace (pspace);
1249 resize_symbol_cache (cache, symbol_cache_size);
1250 }
1251
1252 return cache;
1253 }
1254
1255 /* Set the size of the symbol cache in all program spaces. */
1256
1257 static void
1258 set_symbol_cache_size (unsigned int new_size)
1259 {
1260 struct program_space *pspace;
1261
1262 ALL_PSPACES (pspace)
1263 {
1264 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1265
1266 /* The pspace could have been created but not have a cache yet. */
1267 if (cache != NULL)
1268 resize_symbol_cache (cache, new_size);
1269 }
1270 }
1271
1272 /* Called when symbol-cache-size is set. */
1273
1274 static void
1275 set_symbol_cache_size_handler (const char *args, int from_tty,
1276 struct cmd_list_element *c)
1277 {
1278 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1279 {
1280 /* Restore the previous value.
1281 This is the value the "show" command prints. */
1282 new_symbol_cache_size = symbol_cache_size;
1283
1284 error (_("Symbol cache size is too large, max is %u."),
1285 MAX_SYMBOL_CACHE_SIZE);
1286 }
1287 symbol_cache_size = new_symbol_cache_size;
1288
1289 set_symbol_cache_size (symbol_cache_size);
1290 }
1291
1292 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1293 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1294 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1295 failed (and thus this one will too), or NULL if the symbol is not present
1296 in the cache.
1297 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1298 can be used to save the result of a full lookup attempt. */
1299
1300 static struct block_symbol
1301 symbol_cache_lookup (struct symbol_cache *cache,
1302 struct objfile *objfile_context, enum block_enum block,
1303 const char *name, domain_enum domain,
1304 struct block_symbol_cache **bsc_ptr,
1305 struct symbol_cache_slot **slot_ptr)
1306 {
1307 struct block_symbol_cache *bsc;
1308 unsigned int hash;
1309 struct symbol_cache_slot *slot;
1310
1311 if (block == GLOBAL_BLOCK)
1312 bsc = cache->global_symbols;
1313 else
1314 bsc = cache->static_symbols;
1315 if (bsc == NULL)
1316 {
1317 *bsc_ptr = NULL;
1318 *slot_ptr = NULL;
1319 return {};
1320 }
1321
1322 hash = hash_symbol_entry (objfile_context, name, domain);
1323 slot = bsc->symbols + hash % bsc->size;
1324
1325 *bsc_ptr = bsc;
1326 *slot_ptr = slot;
1327
1328 if (eq_symbol_entry (slot, objfile_context, name, domain))
1329 {
1330 if (symbol_lookup_debug)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "%s block symbol cache hit%s for %s, %s\n",
1333 block == GLOBAL_BLOCK ? "Global" : "Static",
1334 slot->state == SYMBOL_SLOT_NOT_FOUND
1335 ? " (not found)" : "",
1336 name, domain_name (domain));
1337 ++bsc->hits;
1338 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1339 return SYMBOL_LOOKUP_FAILED;
1340 return slot->value.found;
1341 }
1342
1343 /* Symbol is not present in the cache. */
1344
1345 if (symbol_lookup_debug)
1346 {
1347 fprintf_unfiltered (gdb_stdlog,
1348 "%s block symbol cache miss for %s, %s\n",
1349 block == GLOBAL_BLOCK ? "Global" : "Static",
1350 name, domain_name (domain));
1351 }
1352 ++bsc->misses;
1353 return {};
1354 }
1355
1356 /* Clear out SLOT. */
1357
1358 static void
1359 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1360 {
1361 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1362 xfree (slot->value.not_found.name);
1363 slot->state = SYMBOL_SLOT_UNUSED;
1364 }
1365
1366 /* Mark SYMBOL as found in SLOT.
1367 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1368 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1369 necessarily the objfile the symbol was found in. */
1370
1371 static void
1372 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1373 struct symbol_cache_slot *slot,
1374 struct objfile *objfile_context,
1375 struct symbol *symbol,
1376 const struct block *block)
1377 {
1378 if (bsc == NULL)
1379 return;
1380 if (slot->state != SYMBOL_SLOT_UNUSED)
1381 {
1382 ++bsc->collisions;
1383 symbol_cache_clear_slot (slot);
1384 }
1385 slot->state = SYMBOL_SLOT_FOUND;
1386 slot->objfile_context = objfile_context;
1387 slot->value.found.symbol = symbol;
1388 slot->value.found.block = block;
1389 }
1390
1391 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1392 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1393 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1394
1395 static void
1396 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1397 struct symbol_cache_slot *slot,
1398 struct objfile *objfile_context,
1399 const char *name, domain_enum domain)
1400 {
1401 if (bsc == NULL)
1402 return;
1403 if (slot->state != SYMBOL_SLOT_UNUSED)
1404 {
1405 ++bsc->collisions;
1406 symbol_cache_clear_slot (slot);
1407 }
1408 slot->state = SYMBOL_SLOT_NOT_FOUND;
1409 slot->objfile_context = objfile_context;
1410 slot->value.not_found.name = xstrdup (name);
1411 slot->value.not_found.domain = domain;
1412 }
1413
1414 /* Flush the symbol cache of PSPACE. */
1415
1416 static void
1417 symbol_cache_flush (struct program_space *pspace)
1418 {
1419 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1420 int pass;
1421
1422 if (cache == NULL)
1423 return;
1424 if (cache->global_symbols == NULL)
1425 {
1426 gdb_assert (symbol_cache_size == 0);
1427 gdb_assert (cache->static_symbols == NULL);
1428 return;
1429 }
1430
1431 /* If the cache is untouched since the last flush, early exit.
1432 This is important for performance during the startup of a program linked
1433 with 100s (or 1000s) of shared libraries. */
1434 if (cache->global_symbols->misses == 0
1435 && cache->static_symbols->misses == 0)
1436 return;
1437
1438 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1439 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1440
1441 for (pass = 0; pass < 2; ++pass)
1442 {
1443 struct block_symbol_cache *bsc
1444 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1445 unsigned int i;
1446
1447 for (i = 0; i < bsc->size; ++i)
1448 symbol_cache_clear_slot (&bsc->symbols[i]);
1449 }
1450
1451 cache->global_symbols->hits = 0;
1452 cache->global_symbols->misses = 0;
1453 cache->global_symbols->collisions = 0;
1454 cache->static_symbols->hits = 0;
1455 cache->static_symbols->misses = 0;
1456 cache->static_symbols->collisions = 0;
1457 }
1458
1459 /* Dump CACHE. */
1460
1461 static void
1462 symbol_cache_dump (const struct symbol_cache *cache)
1463 {
1464 int pass;
1465
1466 if (cache->global_symbols == NULL)
1467 {
1468 printf_filtered (" <disabled>\n");
1469 return;
1470 }
1471
1472 for (pass = 0; pass < 2; ++pass)
1473 {
1474 const struct block_symbol_cache *bsc
1475 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1476 unsigned int i;
1477
1478 if (pass == 0)
1479 printf_filtered ("Global symbols:\n");
1480 else
1481 printf_filtered ("Static symbols:\n");
1482
1483 for (i = 0; i < bsc->size; ++i)
1484 {
1485 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1486
1487 QUIT;
1488
1489 switch (slot->state)
1490 {
1491 case SYMBOL_SLOT_UNUSED:
1492 break;
1493 case SYMBOL_SLOT_NOT_FOUND:
1494 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1495 host_address_to_string (slot->objfile_context),
1496 slot->value.not_found.name,
1497 domain_name (slot->value.not_found.domain));
1498 break;
1499 case SYMBOL_SLOT_FOUND:
1500 {
1501 struct symbol *found = slot->value.found.symbol;
1502 const struct objfile *context = slot->objfile_context;
1503
1504 printf_filtered (" [%4u] = %s, %s %s\n", i,
1505 host_address_to_string (context),
1506 SYMBOL_PRINT_NAME (found),
1507 domain_name (SYMBOL_DOMAIN (found)));
1508 break;
1509 }
1510 }
1511 }
1512 }
1513 }
1514
1515 /* The "mt print symbol-cache" command. */
1516
1517 static void
1518 maintenance_print_symbol_cache (const char *args, int from_tty)
1519 {
1520 struct program_space *pspace;
1521
1522 ALL_PSPACES (pspace)
1523 {
1524 struct symbol_cache *cache;
1525
1526 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1527 pspace->num,
1528 pspace->symfile_object_file != NULL
1529 ? objfile_name (pspace->symfile_object_file)
1530 : "(no object file)");
1531
1532 /* If the cache hasn't been created yet, avoid creating one. */
1533 cache = symbol_cache_key.get (pspace);
1534 if (cache == NULL)
1535 printf_filtered (" <empty>\n");
1536 else
1537 symbol_cache_dump (cache);
1538 }
1539 }
1540
1541 /* The "mt flush-symbol-cache" command. */
1542
1543 static void
1544 maintenance_flush_symbol_cache (const char *args, int from_tty)
1545 {
1546 struct program_space *pspace;
1547
1548 ALL_PSPACES (pspace)
1549 {
1550 symbol_cache_flush (pspace);
1551 }
1552 }
1553
1554 /* Print usage statistics of CACHE. */
1555
1556 static void
1557 symbol_cache_stats (struct symbol_cache *cache)
1558 {
1559 int pass;
1560
1561 if (cache->global_symbols == NULL)
1562 {
1563 printf_filtered (" <disabled>\n");
1564 return;
1565 }
1566
1567 for (pass = 0; pass < 2; ++pass)
1568 {
1569 const struct block_symbol_cache *bsc
1570 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1571
1572 QUIT;
1573
1574 if (pass == 0)
1575 printf_filtered ("Global block cache stats:\n");
1576 else
1577 printf_filtered ("Static block cache stats:\n");
1578
1579 printf_filtered (" size: %u\n", bsc->size);
1580 printf_filtered (" hits: %u\n", bsc->hits);
1581 printf_filtered (" misses: %u\n", bsc->misses);
1582 printf_filtered (" collisions: %u\n", bsc->collisions);
1583 }
1584 }
1585
1586 /* The "mt print symbol-cache-statistics" command. */
1587
1588 static void
1589 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1590 {
1591 struct program_space *pspace;
1592
1593 ALL_PSPACES (pspace)
1594 {
1595 struct symbol_cache *cache;
1596
1597 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1598 pspace->num,
1599 pspace->symfile_object_file != NULL
1600 ? objfile_name (pspace->symfile_object_file)
1601 : "(no object file)");
1602
1603 /* If the cache hasn't been created yet, avoid creating one. */
1604 cache = symbol_cache_key.get (pspace);
1605 if (cache == NULL)
1606 printf_filtered (" empty, no stats available\n");
1607 else
1608 symbol_cache_stats (cache);
1609 }
1610 }
1611
1612 /* This module's 'new_objfile' observer. */
1613
1614 static void
1615 symtab_new_objfile_observer (struct objfile *objfile)
1616 {
1617 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1618 symbol_cache_flush (current_program_space);
1619 }
1620
1621 /* This module's 'free_objfile' observer. */
1622
1623 static void
1624 symtab_free_objfile_observer (struct objfile *objfile)
1625 {
1626 symbol_cache_flush (objfile->pspace);
1627 }
1628 \f
1629 /* Debug symbols usually don't have section information. We need to dig that
1630 out of the minimal symbols and stash that in the debug symbol. */
1631
1632 void
1633 fixup_section (struct general_symbol_info *ginfo,
1634 CORE_ADDR addr, struct objfile *objfile)
1635 {
1636 struct minimal_symbol *msym;
1637
1638 /* First, check whether a minimal symbol with the same name exists
1639 and points to the same address. The address check is required
1640 e.g. on PowerPC64, where the minimal symbol for a function will
1641 point to the function descriptor, while the debug symbol will
1642 point to the actual function code. */
1643 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1644 if (msym)
1645 ginfo->section = MSYMBOL_SECTION (msym);
1646 else
1647 {
1648 /* Static, function-local variables do appear in the linker
1649 (minimal) symbols, but are frequently given names that won't
1650 be found via lookup_minimal_symbol(). E.g., it has been
1651 observed in frv-uclinux (ELF) executables that a static,
1652 function-local variable named "foo" might appear in the
1653 linker symbols as "foo.6" or "foo.3". Thus, there is no
1654 point in attempting to extend the lookup-by-name mechanism to
1655 handle this case due to the fact that there can be multiple
1656 names.
1657
1658 So, instead, search the section table when lookup by name has
1659 failed. The ``addr'' and ``endaddr'' fields may have already
1660 been relocated. If so, the relocation offset (i.e. the
1661 ANOFFSET value) needs to be subtracted from these values when
1662 performing the comparison. We unconditionally subtract it,
1663 because, when no relocation has been performed, the ANOFFSET
1664 value will simply be zero.
1665
1666 The address of the symbol whose section we're fixing up HAS
1667 NOT BEEN adjusted (relocated) yet. It can't have been since
1668 the section isn't yet known and knowing the section is
1669 necessary in order to add the correct relocation value. In
1670 other words, we wouldn't even be in this function (attempting
1671 to compute the section) if it were already known.
1672
1673 Note that it is possible to search the minimal symbols
1674 (subtracting the relocation value if necessary) to find the
1675 matching minimal symbol, but this is overkill and much less
1676 efficient. It is not necessary to find the matching minimal
1677 symbol, only its section.
1678
1679 Note that this technique (of doing a section table search)
1680 can fail when unrelocated section addresses overlap. For
1681 this reason, we still attempt a lookup by name prior to doing
1682 a search of the section table. */
1683
1684 struct obj_section *s;
1685 int fallback = -1;
1686
1687 ALL_OBJFILE_OSECTIONS (objfile, s)
1688 {
1689 int idx = s - objfile->sections;
1690 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1691
1692 if (fallback == -1)
1693 fallback = idx;
1694
1695 if (obj_section_addr (s) - offset <= addr
1696 && addr < obj_section_endaddr (s) - offset)
1697 {
1698 ginfo->section = idx;
1699 return;
1700 }
1701 }
1702
1703 /* If we didn't find the section, assume it is in the first
1704 section. If there is no allocated section, then it hardly
1705 matters what we pick, so just pick zero. */
1706 if (fallback == -1)
1707 ginfo->section = 0;
1708 else
1709 ginfo->section = fallback;
1710 }
1711 }
1712
1713 struct symbol *
1714 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1715 {
1716 CORE_ADDR addr;
1717
1718 if (!sym)
1719 return NULL;
1720
1721 if (!SYMBOL_OBJFILE_OWNED (sym))
1722 return sym;
1723
1724 /* We either have an OBJFILE, or we can get at it from the sym's
1725 symtab. Anything else is a bug. */
1726 gdb_assert (objfile || symbol_symtab (sym));
1727
1728 if (objfile == NULL)
1729 objfile = symbol_objfile (sym);
1730
1731 if (SYMBOL_OBJ_SECTION (objfile, sym))
1732 return sym;
1733
1734 /* We should have an objfile by now. */
1735 gdb_assert (objfile);
1736
1737 switch (SYMBOL_CLASS (sym))
1738 {
1739 case LOC_STATIC:
1740 case LOC_LABEL:
1741 addr = SYMBOL_VALUE_ADDRESS (sym);
1742 break;
1743 case LOC_BLOCK:
1744 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1745 break;
1746
1747 default:
1748 /* Nothing else will be listed in the minsyms -- no use looking
1749 it up. */
1750 return sym;
1751 }
1752
1753 fixup_section (&sym->ginfo, addr, objfile);
1754
1755 return sym;
1756 }
1757
1758 /* See symtab.h. */
1759
1760 demangle_for_lookup_info::demangle_for_lookup_info
1761 (const lookup_name_info &lookup_name, language lang)
1762 {
1763 demangle_result_storage storage;
1764
1765 if (lookup_name.ignore_parameters () && lang == language_cplus)
1766 {
1767 gdb::unique_xmalloc_ptr<char> without_params
1768 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1769 lookup_name.completion_mode ());
1770
1771 if (without_params != NULL)
1772 {
1773 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1774 m_demangled_name = demangle_for_lookup (without_params.get (),
1775 lang, storage);
1776 return;
1777 }
1778 }
1779
1780 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1781 m_demangled_name = lookup_name.name ();
1782 else
1783 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1784 lang, storage);
1785 }
1786
1787 /* See symtab.h. */
1788
1789 const lookup_name_info &
1790 lookup_name_info::match_any ()
1791 {
1792 /* Lookup any symbol that "" would complete. I.e., this matches all
1793 symbol names. */
1794 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1795 true);
1796
1797 return lookup_name;
1798 }
1799
1800 /* Compute the demangled form of NAME as used by the various symbol
1801 lookup functions. The result can either be the input NAME
1802 directly, or a pointer to a buffer owned by the STORAGE object.
1803
1804 For Ada, this function just returns NAME, unmodified.
1805 Normally, Ada symbol lookups are performed using the encoded name
1806 rather than the demangled name, and so it might seem to make sense
1807 for this function to return an encoded version of NAME.
1808 Unfortunately, we cannot do this, because this function is used in
1809 circumstances where it is not appropriate to try to encode NAME.
1810 For instance, when displaying the frame info, we demangle the name
1811 of each parameter, and then perform a symbol lookup inside our
1812 function using that demangled name. In Ada, certain functions
1813 have internally-generated parameters whose name contain uppercase
1814 characters. Encoding those name would result in those uppercase
1815 characters to become lowercase, and thus cause the symbol lookup
1816 to fail. */
1817
1818 const char *
1819 demangle_for_lookup (const char *name, enum language lang,
1820 demangle_result_storage &storage)
1821 {
1822 /* If we are using C++, D, or Go, demangle the name before doing a
1823 lookup, so we can always binary search. */
1824 if (lang == language_cplus)
1825 {
1826 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1827 if (demangled_name != NULL)
1828 return storage.set_malloc_ptr (demangled_name);
1829
1830 /* If we were given a non-mangled name, canonicalize it
1831 according to the language (so far only for C++). */
1832 std::string canon = cp_canonicalize_string (name);
1833 if (!canon.empty ())
1834 return storage.swap_string (canon);
1835 }
1836 else if (lang == language_d)
1837 {
1838 char *demangled_name = d_demangle (name, 0);
1839 if (demangled_name != NULL)
1840 return storage.set_malloc_ptr (demangled_name);
1841 }
1842 else if (lang == language_go)
1843 {
1844 char *demangled_name = go_demangle (name, 0);
1845 if (demangled_name != NULL)
1846 return storage.set_malloc_ptr (demangled_name);
1847 }
1848
1849 return name;
1850 }
1851
1852 /* See symtab.h. */
1853
1854 unsigned int
1855 search_name_hash (enum language language, const char *search_name)
1856 {
1857 return language_def (language)->la_search_name_hash (search_name);
1858 }
1859
1860 /* See symtab.h.
1861
1862 This function (or rather its subordinates) have a bunch of loops and
1863 it would seem to be attractive to put in some QUIT's (though I'm not really
1864 sure whether it can run long enough to be really important). But there
1865 are a few calls for which it would appear to be bad news to quit
1866 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1867 that there is C++ code below which can error(), but that probably
1868 doesn't affect these calls since they are looking for a known
1869 variable and thus can probably assume it will never hit the C++
1870 code). */
1871
1872 struct block_symbol
1873 lookup_symbol_in_language (const char *name, const struct block *block,
1874 const domain_enum domain, enum language lang,
1875 struct field_of_this_result *is_a_field_of_this)
1876 {
1877 demangle_result_storage storage;
1878 const char *modified_name = demangle_for_lookup (name, lang, storage);
1879
1880 return lookup_symbol_aux (modified_name,
1881 symbol_name_match_type::FULL,
1882 block, domain, lang,
1883 is_a_field_of_this);
1884 }
1885
1886 /* See symtab.h. */
1887
1888 struct block_symbol
1889 lookup_symbol (const char *name, const struct block *block,
1890 domain_enum domain,
1891 struct field_of_this_result *is_a_field_of_this)
1892 {
1893 return lookup_symbol_in_language (name, block, domain,
1894 current_language->la_language,
1895 is_a_field_of_this);
1896 }
1897
1898 /* See symtab.h. */
1899
1900 struct block_symbol
1901 lookup_symbol_search_name (const char *search_name, const struct block *block,
1902 domain_enum domain)
1903 {
1904 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1905 block, domain, language_asm, NULL);
1906 }
1907
1908 /* See symtab.h. */
1909
1910 struct block_symbol
1911 lookup_language_this (const struct language_defn *lang,
1912 const struct block *block)
1913 {
1914 if (lang->la_name_of_this == NULL || block == NULL)
1915 return {};
1916
1917 if (symbol_lookup_debug > 1)
1918 {
1919 struct objfile *objfile = lookup_objfile_from_block (block);
1920
1921 fprintf_unfiltered (gdb_stdlog,
1922 "lookup_language_this (%s, %s (objfile %s))",
1923 lang->la_name, host_address_to_string (block),
1924 objfile_debug_name (objfile));
1925 }
1926
1927 while (block)
1928 {
1929 struct symbol *sym;
1930
1931 sym = block_lookup_symbol (block, lang->la_name_of_this,
1932 symbol_name_match_type::SEARCH_NAME,
1933 VAR_DOMAIN);
1934 if (sym != NULL)
1935 {
1936 if (symbol_lookup_debug > 1)
1937 {
1938 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1939 SYMBOL_PRINT_NAME (sym),
1940 host_address_to_string (sym),
1941 host_address_to_string (block));
1942 }
1943 return (struct block_symbol) {sym, block};
1944 }
1945 if (BLOCK_FUNCTION (block))
1946 break;
1947 block = BLOCK_SUPERBLOCK (block);
1948 }
1949
1950 if (symbol_lookup_debug > 1)
1951 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1952 return {};
1953 }
1954
1955 /* Given TYPE, a structure/union,
1956 return 1 if the component named NAME from the ultimate target
1957 structure/union is defined, otherwise, return 0. */
1958
1959 static int
1960 check_field (struct type *type, const char *name,
1961 struct field_of_this_result *is_a_field_of_this)
1962 {
1963 int i;
1964
1965 /* The type may be a stub. */
1966 type = check_typedef (type);
1967
1968 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1969 {
1970 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1971
1972 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1973 {
1974 is_a_field_of_this->type = type;
1975 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1976 return 1;
1977 }
1978 }
1979
1980 /* C++: If it was not found as a data field, then try to return it
1981 as a pointer to a method. */
1982
1983 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1984 {
1985 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1986 {
1987 is_a_field_of_this->type = type;
1988 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1989 return 1;
1990 }
1991 }
1992
1993 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1994 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1995 return 1;
1996
1997 return 0;
1998 }
1999
2000 /* Behave like lookup_symbol except that NAME is the natural name
2001 (e.g., demangled name) of the symbol that we're looking for. */
2002
2003 static struct block_symbol
2004 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2005 const struct block *block,
2006 const domain_enum domain, enum language language,
2007 struct field_of_this_result *is_a_field_of_this)
2008 {
2009 struct block_symbol result;
2010 const struct language_defn *langdef;
2011
2012 if (symbol_lookup_debug)
2013 {
2014 struct objfile *objfile = lookup_objfile_from_block (block);
2015
2016 fprintf_unfiltered (gdb_stdlog,
2017 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2018 name, host_address_to_string (block),
2019 objfile != NULL
2020 ? objfile_debug_name (objfile) : "NULL",
2021 domain_name (domain), language_str (language));
2022 }
2023
2024 /* Make sure we do something sensible with is_a_field_of_this, since
2025 the callers that set this parameter to some non-null value will
2026 certainly use it later. If we don't set it, the contents of
2027 is_a_field_of_this are undefined. */
2028 if (is_a_field_of_this != NULL)
2029 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2030
2031 /* Search specified block and its superiors. Don't search
2032 STATIC_BLOCK or GLOBAL_BLOCK. */
2033
2034 result = lookup_local_symbol (name, match_type, block, domain, language);
2035 if (result.symbol != NULL)
2036 {
2037 if (symbol_lookup_debug)
2038 {
2039 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2040 host_address_to_string (result.symbol));
2041 }
2042 return result;
2043 }
2044
2045 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2046 check to see if NAME is a field of `this'. */
2047
2048 langdef = language_def (language);
2049
2050 /* Don't do this check if we are searching for a struct. It will
2051 not be found by check_field, but will be found by other
2052 means. */
2053 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2054 {
2055 result = lookup_language_this (langdef, block);
2056
2057 if (result.symbol)
2058 {
2059 struct type *t = result.symbol->type;
2060
2061 /* I'm not really sure that type of this can ever
2062 be typedefed; just be safe. */
2063 t = check_typedef (t);
2064 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2065 t = TYPE_TARGET_TYPE (t);
2066
2067 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2068 && TYPE_CODE (t) != TYPE_CODE_UNION)
2069 error (_("Internal error: `%s' is not an aggregate"),
2070 langdef->la_name_of_this);
2071
2072 if (check_field (t, name, is_a_field_of_this))
2073 {
2074 if (symbol_lookup_debug)
2075 {
2076 fprintf_unfiltered (gdb_stdlog,
2077 "lookup_symbol_aux (...) = NULL\n");
2078 }
2079 return {};
2080 }
2081 }
2082 }
2083
2084 /* Now do whatever is appropriate for LANGUAGE to look
2085 up static and global variables. */
2086
2087 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2088 if (result.symbol != NULL)
2089 {
2090 if (symbol_lookup_debug)
2091 {
2092 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2093 host_address_to_string (result.symbol));
2094 }
2095 return result;
2096 }
2097
2098 /* Now search all static file-level symbols. Not strictly correct,
2099 but more useful than an error. */
2100
2101 result = lookup_static_symbol (name, domain);
2102 if (symbol_lookup_debug)
2103 {
2104 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2105 result.symbol != NULL
2106 ? host_address_to_string (result.symbol)
2107 : "NULL");
2108 }
2109 return result;
2110 }
2111
2112 /* Check to see if the symbol is defined in BLOCK or its superiors.
2113 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2114
2115 static struct block_symbol
2116 lookup_local_symbol (const char *name,
2117 symbol_name_match_type match_type,
2118 const struct block *block,
2119 const domain_enum domain,
2120 enum language language)
2121 {
2122 struct symbol *sym;
2123 const struct block *static_block = block_static_block (block);
2124 const char *scope = block_scope (block);
2125
2126 /* Check if either no block is specified or it's a global block. */
2127
2128 if (static_block == NULL)
2129 return {};
2130
2131 while (block != static_block)
2132 {
2133 sym = lookup_symbol_in_block (name, match_type, block, domain);
2134 if (sym != NULL)
2135 return (struct block_symbol) {sym, block};
2136
2137 if (language == language_cplus || language == language_fortran)
2138 {
2139 struct block_symbol blocksym
2140 = cp_lookup_symbol_imports_or_template (scope, name, block,
2141 domain);
2142
2143 if (blocksym.symbol != NULL)
2144 return blocksym;
2145 }
2146
2147 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2148 break;
2149 block = BLOCK_SUPERBLOCK (block);
2150 }
2151
2152 /* We've reached the end of the function without finding a result. */
2153
2154 return {};
2155 }
2156
2157 /* See symtab.h. */
2158
2159 struct objfile *
2160 lookup_objfile_from_block (const struct block *block)
2161 {
2162 if (block == NULL)
2163 return NULL;
2164
2165 block = block_global_block (block);
2166 /* Look through all blockvectors. */
2167 for (objfile *obj : current_program_space->objfiles ())
2168 {
2169 for (compunit_symtab *cust : obj->compunits ())
2170 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2171 GLOBAL_BLOCK))
2172 {
2173 if (obj->separate_debug_objfile_backlink)
2174 obj = obj->separate_debug_objfile_backlink;
2175
2176 return obj;
2177 }
2178 }
2179
2180 return NULL;
2181 }
2182
2183 /* See symtab.h. */
2184
2185 struct symbol *
2186 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2187 const struct block *block,
2188 const domain_enum domain)
2189 {
2190 struct symbol *sym;
2191
2192 if (symbol_lookup_debug > 1)
2193 {
2194 struct objfile *objfile = lookup_objfile_from_block (block);
2195
2196 fprintf_unfiltered (gdb_stdlog,
2197 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2198 name, host_address_to_string (block),
2199 objfile_debug_name (objfile),
2200 domain_name (domain));
2201 }
2202
2203 sym = block_lookup_symbol (block, name, match_type, domain);
2204 if (sym)
2205 {
2206 if (symbol_lookup_debug > 1)
2207 {
2208 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2209 host_address_to_string (sym));
2210 }
2211 return fixup_symbol_section (sym, NULL);
2212 }
2213
2214 if (symbol_lookup_debug > 1)
2215 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2216 return NULL;
2217 }
2218
2219 /* See symtab.h. */
2220
2221 struct block_symbol
2222 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2223 enum block_enum block_index,
2224 const char *name,
2225 const domain_enum domain)
2226 {
2227 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2228
2229 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2230 {
2231 struct block_symbol result
2232 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2233
2234 if (result.symbol != nullptr)
2235 return result;
2236 }
2237
2238 return {};
2239 }
2240
2241 /* Check to see if the symbol is defined in one of the OBJFILE's
2242 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2243 depending on whether or not we want to search global symbols or
2244 static symbols. */
2245
2246 static struct block_symbol
2247 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2248 enum block_enum block_index, const char *name,
2249 const domain_enum domain)
2250 {
2251 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2252
2253 if (symbol_lookup_debug > 1)
2254 {
2255 fprintf_unfiltered (gdb_stdlog,
2256 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2257 objfile_debug_name (objfile),
2258 block_index == GLOBAL_BLOCK
2259 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2260 name, domain_name (domain));
2261 }
2262
2263 for (compunit_symtab *cust : objfile->compunits ())
2264 {
2265 const struct blockvector *bv;
2266 const struct block *block;
2267 struct block_symbol result;
2268
2269 bv = COMPUNIT_BLOCKVECTOR (cust);
2270 block = BLOCKVECTOR_BLOCK (bv, block_index);
2271 result.symbol = block_lookup_symbol_primary (block, name, domain);
2272 result.block = block;
2273 if (result.symbol != NULL)
2274 {
2275 if (symbol_lookup_debug > 1)
2276 {
2277 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2278 host_address_to_string (result.symbol),
2279 host_address_to_string (block));
2280 }
2281 result.symbol = fixup_symbol_section (result.symbol, objfile);
2282 return result;
2283
2284 }
2285 }
2286
2287 if (symbol_lookup_debug > 1)
2288 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2289 return {};
2290 }
2291
2292 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2293 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2294 and all associated separate debug objfiles.
2295
2296 Normally we only look in OBJFILE, and not any separate debug objfiles
2297 because the outer loop will cause them to be searched too. This case is
2298 different. Here we're called from search_symbols where it will only
2299 call us for the objfile that contains a matching minsym. */
2300
2301 static struct block_symbol
2302 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2303 const char *linkage_name,
2304 domain_enum domain)
2305 {
2306 enum language lang = current_language->la_language;
2307 struct objfile *main_objfile;
2308
2309 demangle_result_storage storage;
2310 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2311
2312 if (objfile->separate_debug_objfile_backlink)
2313 main_objfile = objfile->separate_debug_objfile_backlink;
2314 else
2315 main_objfile = objfile;
2316
2317 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2318 {
2319 struct block_symbol result;
2320
2321 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2322 modified_name, domain);
2323 if (result.symbol == NULL)
2324 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2325 modified_name, domain);
2326 if (result.symbol != NULL)
2327 return result;
2328 }
2329
2330 return {};
2331 }
2332
2333 /* A helper function that throws an exception when a symbol was found
2334 in a psymtab but not in a symtab. */
2335
2336 static void ATTRIBUTE_NORETURN
2337 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2338 struct compunit_symtab *cust)
2339 {
2340 error (_("\
2341 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2342 %s may be an inlined function, or may be a template function\n \
2343 (if a template, try specifying an instantiation: %s<type>)."),
2344 block_index == GLOBAL_BLOCK ? "global" : "static",
2345 name,
2346 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2347 name, name);
2348 }
2349
2350 /* A helper function for various lookup routines that interfaces with
2351 the "quick" symbol table functions. */
2352
2353 static struct block_symbol
2354 lookup_symbol_via_quick_fns (struct objfile *objfile,
2355 enum block_enum block_index, const char *name,
2356 const domain_enum domain)
2357 {
2358 struct compunit_symtab *cust;
2359 const struct blockvector *bv;
2360 const struct block *block;
2361 struct block_symbol result;
2362
2363 if (!objfile->sf)
2364 return {};
2365
2366 if (symbol_lookup_debug > 1)
2367 {
2368 fprintf_unfiltered (gdb_stdlog,
2369 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2370 objfile_debug_name (objfile),
2371 block_index == GLOBAL_BLOCK
2372 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2373 name, domain_name (domain));
2374 }
2375
2376 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2377 if (cust == NULL)
2378 {
2379 if (symbol_lookup_debug > 1)
2380 {
2381 fprintf_unfiltered (gdb_stdlog,
2382 "lookup_symbol_via_quick_fns (...) = NULL\n");
2383 }
2384 return {};
2385 }
2386
2387 bv = COMPUNIT_BLOCKVECTOR (cust);
2388 block = BLOCKVECTOR_BLOCK (bv, block_index);
2389 result.symbol = block_lookup_symbol (block, name,
2390 symbol_name_match_type::FULL, domain);
2391 if (result.symbol == NULL)
2392 error_in_psymtab_expansion (block_index, name, cust);
2393
2394 if (symbol_lookup_debug > 1)
2395 {
2396 fprintf_unfiltered (gdb_stdlog,
2397 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2398 host_address_to_string (result.symbol),
2399 host_address_to_string (block));
2400 }
2401
2402 result.symbol = fixup_symbol_section (result.symbol, objfile);
2403 result.block = block;
2404 return result;
2405 }
2406
2407 /* See symtab.h. */
2408
2409 struct block_symbol
2410 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2411 const char *name,
2412 const struct block *block,
2413 const domain_enum domain)
2414 {
2415 struct block_symbol result;
2416
2417 /* NOTE: carlton/2003-05-19: The comments below were written when
2418 this (or what turned into this) was part of lookup_symbol_aux;
2419 I'm much less worried about these questions now, since these
2420 decisions have turned out well, but I leave these comments here
2421 for posterity. */
2422
2423 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2424 not it would be appropriate to search the current global block
2425 here as well. (That's what this code used to do before the
2426 is_a_field_of_this check was moved up.) On the one hand, it's
2427 redundant with the lookup in all objfiles search that happens
2428 next. On the other hand, if decode_line_1 is passed an argument
2429 like filename:var, then the user presumably wants 'var' to be
2430 searched for in filename. On the third hand, there shouldn't be
2431 multiple global variables all of which are named 'var', and it's
2432 not like decode_line_1 has ever restricted its search to only
2433 global variables in a single filename. All in all, only
2434 searching the static block here seems best: it's correct and it's
2435 cleanest. */
2436
2437 /* NOTE: carlton/2002-12-05: There's also a possible performance
2438 issue here: if you usually search for global symbols in the
2439 current file, then it would be slightly better to search the
2440 current global block before searching all the symtabs. But there
2441 are other factors that have a much greater effect on performance
2442 than that one, so I don't think we should worry about that for
2443 now. */
2444
2445 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2446 the current objfile. Searching the current objfile first is useful
2447 for both matching user expectations as well as performance. */
2448
2449 result = lookup_symbol_in_static_block (name, block, domain);
2450 if (result.symbol != NULL)
2451 return result;
2452
2453 /* If we didn't find a definition for a builtin type in the static block,
2454 search for it now. This is actually the right thing to do and can be
2455 a massive performance win. E.g., when debugging a program with lots of
2456 shared libraries we could search all of them only to find out the
2457 builtin type isn't defined in any of them. This is common for types
2458 like "void". */
2459 if (domain == VAR_DOMAIN)
2460 {
2461 struct gdbarch *gdbarch;
2462
2463 if (block == NULL)
2464 gdbarch = target_gdbarch ();
2465 else
2466 gdbarch = block_gdbarch (block);
2467 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2468 gdbarch, name);
2469 result.block = NULL;
2470 if (result.symbol != NULL)
2471 return result;
2472 }
2473
2474 return lookup_global_symbol (name, block, domain);
2475 }
2476
2477 /* See symtab.h. */
2478
2479 struct block_symbol
2480 lookup_symbol_in_static_block (const char *name,
2481 const struct block *block,
2482 const domain_enum domain)
2483 {
2484 const struct block *static_block = block_static_block (block);
2485 struct symbol *sym;
2486
2487 if (static_block == NULL)
2488 return {};
2489
2490 if (symbol_lookup_debug)
2491 {
2492 struct objfile *objfile = lookup_objfile_from_block (static_block);
2493
2494 fprintf_unfiltered (gdb_stdlog,
2495 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2496 " %s)\n",
2497 name,
2498 host_address_to_string (block),
2499 objfile_debug_name (objfile),
2500 domain_name (domain));
2501 }
2502
2503 sym = lookup_symbol_in_block (name,
2504 symbol_name_match_type::FULL,
2505 static_block, domain);
2506 if (symbol_lookup_debug)
2507 {
2508 fprintf_unfiltered (gdb_stdlog,
2509 "lookup_symbol_in_static_block (...) = %s\n",
2510 sym != NULL ? host_address_to_string (sym) : "NULL");
2511 }
2512 return (struct block_symbol) {sym, static_block};
2513 }
2514
2515 /* Perform the standard symbol lookup of NAME in OBJFILE:
2516 1) First search expanded symtabs, and if not found
2517 2) Search the "quick" symtabs (partial or .gdb_index).
2518 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2519
2520 static struct block_symbol
2521 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2522 const char *name, const domain_enum domain)
2523 {
2524 struct block_symbol result;
2525
2526 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2527
2528 if (symbol_lookup_debug)
2529 {
2530 fprintf_unfiltered (gdb_stdlog,
2531 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2532 objfile_debug_name (objfile),
2533 block_index == GLOBAL_BLOCK
2534 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2535 name, domain_name (domain));
2536 }
2537
2538 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2539 name, domain);
2540 if (result.symbol != NULL)
2541 {
2542 if (symbol_lookup_debug)
2543 {
2544 fprintf_unfiltered (gdb_stdlog,
2545 "lookup_symbol_in_objfile (...) = %s"
2546 " (in symtabs)\n",
2547 host_address_to_string (result.symbol));
2548 }
2549 return result;
2550 }
2551
2552 result = lookup_symbol_via_quick_fns (objfile, block_index,
2553 name, domain);
2554 if (symbol_lookup_debug)
2555 {
2556 fprintf_unfiltered (gdb_stdlog,
2557 "lookup_symbol_in_objfile (...) = %s%s\n",
2558 result.symbol != NULL
2559 ? host_address_to_string (result.symbol)
2560 : "NULL",
2561 result.symbol != NULL ? " (via quick fns)" : "");
2562 }
2563 return result;
2564 }
2565
2566 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2567
2568 struct global_or_static_sym_lookup_data
2569 {
2570 /* The name of the symbol we are searching for. */
2571 const char *name;
2572
2573 /* The domain to use for our search. */
2574 domain_enum domain;
2575
2576 /* The block index in which to search. */
2577 enum block_enum block_index;
2578
2579 /* The field where the callback should store the symbol if found.
2580 It should be initialized to {NULL, NULL} before the search is started. */
2581 struct block_symbol result;
2582 };
2583
2584 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2585 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2586 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2587 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2588
2589 static int
2590 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2591 void *cb_data)
2592 {
2593 struct global_or_static_sym_lookup_data *data =
2594 (struct global_or_static_sym_lookup_data *) cb_data;
2595
2596 gdb_assert (data->result.symbol == NULL
2597 && data->result.block == NULL);
2598
2599 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2600 data->name, data->domain);
2601
2602 /* If we found a match, tell the iterator to stop. Otherwise,
2603 keep going. */
2604 return (data->result.symbol != NULL);
2605 }
2606
2607 /* This function contains the common code of lookup_{global,static}_symbol.
2608 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2609 the objfile to start the lookup in. */
2610
2611 static struct block_symbol
2612 lookup_global_or_static_symbol (const char *name,
2613 enum block_enum block_index,
2614 struct objfile *objfile,
2615 const domain_enum domain)
2616 {
2617 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2618 struct block_symbol result;
2619 struct global_or_static_sym_lookup_data lookup_data;
2620 struct block_symbol_cache *bsc;
2621 struct symbol_cache_slot *slot;
2622
2623 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2624 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2625
2626 /* First see if we can find the symbol in the cache.
2627 This works because we use the current objfile to qualify the lookup. */
2628 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2629 &bsc, &slot);
2630 if (result.symbol != NULL)
2631 {
2632 if (SYMBOL_LOOKUP_FAILED_P (result))
2633 return {};
2634 return result;
2635 }
2636
2637 /* Call library-specific lookup procedure. */
2638 if (objfile != NULL)
2639 result = solib_global_lookup (objfile, name, domain);
2640
2641 /* If that didn't work go a global search (of global blocks, heh). */
2642 if (result.symbol == NULL)
2643 {
2644 memset (&lookup_data, 0, sizeof (lookup_data));
2645 lookup_data.name = name;
2646 lookup_data.block_index = block_index;
2647 lookup_data.domain = domain;
2648 gdbarch_iterate_over_objfiles_in_search_order
2649 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2650 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2651 result = lookup_data.result;
2652 }
2653
2654 if (result.symbol != NULL)
2655 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2656 else
2657 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2658
2659 return result;
2660 }
2661
2662 /* See symtab.h. */
2663
2664 struct block_symbol
2665 lookup_static_symbol (const char *name, const domain_enum domain)
2666 {
2667 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2668 }
2669
2670 /* See symtab.h. */
2671
2672 struct block_symbol
2673 lookup_global_symbol (const char *name,
2674 const struct block *block,
2675 const domain_enum domain)
2676 {
2677 struct objfile *objfile = lookup_objfile_from_block (block);
2678 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2679 }
2680
2681 int
2682 symbol_matches_domain (enum language symbol_language,
2683 domain_enum symbol_domain,
2684 domain_enum domain)
2685 {
2686 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2687 Similarly, any Ada type declaration implicitly defines a typedef. */
2688 if (symbol_language == language_cplus
2689 || symbol_language == language_d
2690 || symbol_language == language_ada
2691 || symbol_language == language_rust)
2692 {
2693 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2694 && symbol_domain == STRUCT_DOMAIN)
2695 return 1;
2696 }
2697 /* For all other languages, strict match is required. */
2698 return (symbol_domain == domain);
2699 }
2700
2701 /* See symtab.h. */
2702
2703 struct type *
2704 lookup_transparent_type (const char *name)
2705 {
2706 return current_language->la_lookup_transparent_type (name);
2707 }
2708
2709 /* A helper for basic_lookup_transparent_type that interfaces with the
2710 "quick" symbol table functions. */
2711
2712 static struct type *
2713 basic_lookup_transparent_type_quick (struct objfile *objfile,
2714 enum block_enum block_index,
2715 const char *name)
2716 {
2717 struct compunit_symtab *cust;
2718 const struct blockvector *bv;
2719 const struct block *block;
2720 struct symbol *sym;
2721
2722 if (!objfile->sf)
2723 return NULL;
2724 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2725 STRUCT_DOMAIN);
2726 if (cust == NULL)
2727 return NULL;
2728
2729 bv = COMPUNIT_BLOCKVECTOR (cust);
2730 block = BLOCKVECTOR_BLOCK (bv, block_index);
2731 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2732 block_find_non_opaque_type, NULL);
2733 if (sym == NULL)
2734 error_in_psymtab_expansion (block_index, name, cust);
2735 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2736 return SYMBOL_TYPE (sym);
2737 }
2738
2739 /* Subroutine of basic_lookup_transparent_type to simplify it.
2740 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2741 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2742
2743 static struct type *
2744 basic_lookup_transparent_type_1 (struct objfile *objfile,
2745 enum block_enum block_index,
2746 const char *name)
2747 {
2748 const struct blockvector *bv;
2749 const struct block *block;
2750 const struct symbol *sym;
2751
2752 for (compunit_symtab *cust : objfile->compunits ())
2753 {
2754 bv = COMPUNIT_BLOCKVECTOR (cust);
2755 block = BLOCKVECTOR_BLOCK (bv, block_index);
2756 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2757 block_find_non_opaque_type, NULL);
2758 if (sym != NULL)
2759 {
2760 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2761 return SYMBOL_TYPE (sym);
2762 }
2763 }
2764
2765 return NULL;
2766 }
2767
2768 /* The standard implementation of lookup_transparent_type. This code
2769 was modeled on lookup_symbol -- the parts not relevant to looking
2770 up types were just left out. In particular it's assumed here that
2771 types are available in STRUCT_DOMAIN and only in file-static or
2772 global blocks. */
2773
2774 struct type *
2775 basic_lookup_transparent_type (const char *name)
2776 {
2777 struct type *t;
2778
2779 /* Now search all the global symbols. Do the symtab's first, then
2780 check the psymtab's. If a psymtab indicates the existence
2781 of the desired name as a global, then do psymtab-to-symtab
2782 conversion on the fly and return the found symbol. */
2783
2784 for (objfile *objfile : current_program_space->objfiles ())
2785 {
2786 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2787 if (t)
2788 return t;
2789 }
2790
2791 for (objfile *objfile : current_program_space->objfiles ())
2792 {
2793 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2794 if (t)
2795 return t;
2796 }
2797
2798 /* Now search the static file-level symbols.
2799 Not strictly correct, but more useful than an error.
2800 Do the symtab's first, then
2801 check the psymtab's. If a psymtab indicates the existence
2802 of the desired name as a file-level static, then do psymtab-to-symtab
2803 conversion on the fly and return the found symbol. */
2804
2805 for (objfile *objfile : current_program_space->objfiles ())
2806 {
2807 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2808 if (t)
2809 return t;
2810 }
2811
2812 for (objfile *objfile : current_program_space->objfiles ())
2813 {
2814 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2815 if (t)
2816 return t;
2817 }
2818
2819 return (struct type *) 0;
2820 }
2821
2822 /* See symtab.h. */
2823
2824 bool
2825 iterate_over_symbols (const struct block *block,
2826 const lookup_name_info &name,
2827 const domain_enum domain,
2828 gdb::function_view<symbol_found_callback_ftype> callback)
2829 {
2830 struct block_iterator iter;
2831 struct symbol *sym;
2832
2833 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2834 {
2835 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2836 SYMBOL_DOMAIN (sym), domain))
2837 {
2838 struct block_symbol block_sym = {sym, block};
2839
2840 if (!callback (&block_sym))
2841 return false;
2842 }
2843 }
2844 return true;
2845 }
2846
2847 /* See symtab.h. */
2848
2849 bool
2850 iterate_over_symbols_terminated
2851 (const struct block *block,
2852 const lookup_name_info &name,
2853 const domain_enum domain,
2854 gdb::function_view<symbol_found_callback_ftype> callback)
2855 {
2856 if (!iterate_over_symbols (block, name, domain, callback))
2857 return false;
2858 struct block_symbol block_sym = {nullptr, block};
2859 return callback (&block_sym);
2860 }
2861
2862 /* Find the compunit symtab associated with PC and SECTION.
2863 This will read in debug info as necessary. */
2864
2865 struct compunit_symtab *
2866 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2867 {
2868 struct compunit_symtab *best_cust = NULL;
2869 CORE_ADDR distance = 0;
2870 struct bound_minimal_symbol msymbol;
2871
2872 /* If we know that this is not a text address, return failure. This is
2873 necessary because we loop based on the block's high and low code
2874 addresses, which do not include the data ranges, and because
2875 we call find_pc_sect_psymtab which has a similar restriction based
2876 on the partial_symtab's texthigh and textlow. */
2877 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2878 if (msymbol.minsym && msymbol.minsym->data_p ())
2879 return NULL;
2880
2881 /* Search all symtabs for the one whose file contains our address, and which
2882 is the smallest of all the ones containing the address. This is designed
2883 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2884 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2885 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2886
2887 This happens for native ecoff format, where code from included files
2888 gets its own symtab. The symtab for the included file should have
2889 been read in already via the dependency mechanism.
2890 It might be swifter to create several symtabs with the same name
2891 like xcoff does (I'm not sure).
2892
2893 It also happens for objfiles that have their functions reordered.
2894 For these, the symtab we are looking for is not necessarily read in. */
2895
2896 for (objfile *obj_file : current_program_space->objfiles ())
2897 {
2898 for (compunit_symtab *cust : obj_file->compunits ())
2899 {
2900 const struct block *b;
2901 const struct blockvector *bv;
2902
2903 bv = COMPUNIT_BLOCKVECTOR (cust);
2904 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2905
2906 if (BLOCK_START (b) <= pc
2907 && BLOCK_END (b) > pc
2908 && (distance == 0
2909 || BLOCK_END (b) - BLOCK_START (b) < distance))
2910 {
2911 /* For an objfile that has its functions reordered,
2912 find_pc_psymtab will find the proper partial symbol table
2913 and we simply return its corresponding symtab. */
2914 /* In order to better support objfiles that contain both
2915 stabs and coff debugging info, we continue on if a psymtab
2916 can't be found. */
2917 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2918 {
2919 struct compunit_symtab *result;
2920
2921 result
2922 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2923 msymbol,
2924 pc,
2925 section,
2926 0);
2927 if (result != NULL)
2928 return result;
2929 }
2930 if (section != 0)
2931 {
2932 struct block_iterator iter;
2933 struct symbol *sym = NULL;
2934
2935 ALL_BLOCK_SYMBOLS (b, iter, sym)
2936 {
2937 fixup_symbol_section (sym, obj_file);
2938 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2939 sym),
2940 section))
2941 break;
2942 }
2943 if (sym == NULL)
2944 continue; /* No symbol in this symtab matches
2945 section. */
2946 }
2947 distance = BLOCK_END (b) - BLOCK_START (b);
2948 best_cust = cust;
2949 }
2950 }
2951 }
2952
2953 if (best_cust != NULL)
2954 return best_cust;
2955
2956 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2957
2958 for (objfile *objf : current_program_space->objfiles ())
2959 {
2960 struct compunit_symtab *result;
2961
2962 if (!objf->sf)
2963 continue;
2964 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2965 msymbol,
2966 pc, section,
2967 1);
2968 if (result != NULL)
2969 return result;
2970 }
2971
2972 return NULL;
2973 }
2974
2975 /* Find the compunit symtab associated with PC.
2976 This will read in debug info as necessary.
2977 Backward compatibility, no section. */
2978
2979 struct compunit_symtab *
2980 find_pc_compunit_symtab (CORE_ADDR pc)
2981 {
2982 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2983 }
2984
2985 /* See symtab.h. */
2986
2987 struct symbol *
2988 find_symbol_at_address (CORE_ADDR address)
2989 {
2990 for (objfile *objfile : current_program_space->objfiles ())
2991 {
2992 if (objfile->sf == NULL
2993 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2994 continue;
2995
2996 struct compunit_symtab *symtab
2997 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2998 if (symtab != NULL)
2999 {
3000 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3001
3002 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3003 {
3004 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3005 struct block_iterator iter;
3006 struct symbol *sym;
3007
3008 ALL_BLOCK_SYMBOLS (b, iter, sym)
3009 {
3010 if (SYMBOL_CLASS (sym) == LOC_STATIC
3011 && SYMBOL_VALUE_ADDRESS (sym) == address)
3012 return sym;
3013 }
3014 }
3015 }
3016 }
3017
3018 return NULL;
3019 }
3020
3021 \f
3022
3023 /* Find the source file and line number for a given PC value and SECTION.
3024 Return a structure containing a symtab pointer, a line number,
3025 and a pc range for the entire source line.
3026 The value's .pc field is NOT the specified pc.
3027 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3028 use the line that ends there. Otherwise, in that case, the line
3029 that begins there is used. */
3030
3031 /* The big complication here is that a line may start in one file, and end just
3032 before the start of another file. This usually occurs when you #include
3033 code in the middle of a subroutine. To properly find the end of a line's PC
3034 range, we must search all symtabs associated with this compilation unit, and
3035 find the one whose first PC is closer than that of the next line in this
3036 symtab. */
3037
3038 struct symtab_and_line
3039 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3040 {
3041 struct compunit_symtab *cust;
3042 struct linetable *l;
3043 int len;
3044 struct linetable_entry *item;
3045 const struct blockvector *bv;
3046 struct bound_minimal_symbol msymbol;
3047
3048 /* Info on best line seen so far, and where it starts, and its file. */
3049
3050 struct linetable_entry *best = NULL;
3051 CORE_ADDR best_end = 0;
3052 struct symtab *best_symtab = 0;
3053
3054 /* Store here the first line number
3055 of a file which contains the line at the smallest pc after PC.
3056 If we don't find a line whose range contains PC,
3057 we will use a line one less than this,
3058 with a range from the start of that file to the first line's pc. */
3059 struct linetable_entry *alt = NULL;
3060
3061 /* Info on best line seen in this file. */
3062
3063 struct linetable_entry *prev;
3064
3065 /* If this pc is not from the current frame,
3066 it is the address of the end of a call instruction.
3067 Quite likely that is the start of the following statement.
3068 But what we want is the statement containing the instruction.
3069 Fudge the pc to make sure we get that. */
3070
3071 /* It's tempting to assume that, if we can't find debugging info for
3072 any function enclosing PC, that we shouldn't search for line
3073 number info, either. However, GAS can emit line number info for
3074 assembly files --- very helpful when debugging hand-written
3075 assembly code. In such a case, we'd have no debug info for the
3076 function, but we would have line info. */
3077
3078 if (notcurrent)
3079 pc -= 1;
3080
3081 /* elz: added this because this function returned the wrong
3082 information if the pc belongs to a stub (import/export)
3083 to call a shlib function. This stub would be anywhere between
3084 two functions in the target, and the line info was erroneously
3085 taken to be the one of the line before the pc. */
3086
3087 /* RT: Further explanation:
3088
3089 * We have stubs (trampolines) inserted between procedures.
3090 *
3091 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3092 * exists in the main image.
3093 *
3094 * In the minimal symbol table, we have a bunch of symbols
3095 * sorted by start address. The stubs are marked as "trampoline",
3096 * the others appear as text. E.g.:
3097 *
3098 * Minimal symbol table for main image
3099 * main: code for main (text symbol)
3100 * shr1: stub (trampoline symbol)
3101 * foo: code for foo (text symbol)
3102 * ...
3103 * Minimal symbol table for "shr1" image:
3104 * ...
3105 * shr1: code for shr1 (text symbol)
3106 * ...
3107 *
3108 * So the code below is trying to detect if we are in the stub
3109 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3110 * and if found, do the symbolization from the real-code address
3111 * rather than the stub address.
3112 *
3113 * Assumptions being made about the minimal symbol table:
3114 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3115 * if we're really in the trampoline.s If we're beyond it (say
3116 * we're in "foo" in the above example), it'll have a closer
3117 * symbol (the "foo" text symbol for example) and will not
3118 * return the trampoline.
3119 * 2. lookup_minimal_symbol_text() will find a real text symbol
3120 * corresponding to the trampoline, and whose address will
3121 * be different than the trampoline address. I put in a sanity
3122 * check for the address being the same, to avoid an
3123 * infinite recursion.
3124 */
3125 msymbol = lookup_minimal_symbol_by_pc (pc);
3126 if (msymbol.minsym != NULL)
3127 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3128 {
3129 struct bound_minimal_symbol mfunsym
3130 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3131 NULL);
3132
3133 if (mfunsym.minsym == NULL)
3134 /* I eliminated this warning since it is coming out
3135 * in the following situation:
3136 * gdb shmain // test program with shared libraries
3137 * (gdb) break shr1 // function in shared lib
3138 * Warning: In stub for ...
3139 * In the above situation, the shared lib is not loaded yet,
3140 * so of course we can't find the real func/line info,
3141 * but the "break" still works, and the warning is annoying.
3142 * So I commented out the warning. RT */
3143 /* warning ("In stub for %s; unable to find real function/line info",
3144 SYMBOL_LINKAGE_NAME (msymbol)); */
3145 ;
3146 /* fall through */
3147 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3148 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3149 /* Avoid infinite recursion */
3150 /* See above comment about why warning is commented out. */
3151 /* warning ("In stub for %s; unable to find real function/line info",
3152 SYMBOL_LINKAGE_NAME (msymbol)); */
3153 ;
3154 /* fall through */
3155 else
3156 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3157 }
3158
3159 symtab_and_line val;
3160 val.pspace = current_program_space;
3161
3162 cust = find_pc_sect_compunit_symtab (pc, section);
3163 if (cust == NULL)
3164 {
3165 /* If no symbol information, return previous pc. */
3166 if (notcurrent)
3167 pc++;
3168 val.pc = pc;
3169 return val;
3170 }
3171
3172 bv = COMPUNIT_BLOCKVECTOR (cust);
3173
3174 /* Look at all the symtabs that share this blockvector.
3175 They all have the same apriori range, that we found was right;
3176 but they have different line tables. */
3177
3178 for (symtab *iter_s : compunit_filetabs (cust))
3179 {
3180 /* Find the best line in this symtab. */
3181 l = SYMTAB_LINETABLE (iter_s);
3182 if (!l)
3183 continue;
3184 len = l->nitems;
3185 if (len <= 0)
3186 {
3187 /* I think len can be zero if the symtab lacks line numbers
3188 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3189 I'm not sure which, and maybe it depends on the symbol
3190 reader). */
3191 continue;
3192 }
3193
3194 prev = NULL;
3195 item = l->item; /* Get first line info. */
3196
3197 /* Is this file's first line closer than the first lines of other files?
3198 If so, record this file, and its first line, as best alternate. */
3199 if (item->pc > pc && (!alt || item->pc < alt->pc))
3200 alt = item;
3201
3202 auto pc_compare = [](const CORE_ADDR & comp_pc,
3203 const struct linetable_entry & lhs)->bool
3204 {
3205 return comp_pc < lhs.pc;
3206 };
3207
3208 struct linetable_entry *first = item;
3209 struct linetable_entry *last = item + len;
3210 item = std::upper_bound (first, last, pc, pc_compare);
3211 if (item != first)
3212 prev = item - 1; /* Found a matching item. */
3213
3214 /* At this point, prev points at the line whose start addr is <= pc, and
3215 item points at the next line. If we ran off the end of the linetable
3216 (pc >= start of the last line), then prev == item. If pc < start of
3217 the first line, prev will not be set. */
3218
3219 /* Is this file's best line closer than the best in the other files?
3220 If so, record this file, and its best line, as best so far. Don't
3221 save prev if it represents the end of a function (i.e. line number
3222 0) instead of a real line. */
3223
3224 if (prev && prev->line && (!best || prev->pc > best->pc))
3225 {
3226 best = prev;
3227 best_symtab = iter_s;
3228
3229 /* Discard BEST_END if it's before the PC of the current BEST. */
3230 if (best_end <= best->pc)
3231 best_end = 0;
3232 }
3233
3234 /* If another line (denoted by ITEM) is in the linetable and its
3235 PC is after BEST's PC, but before the current BEST_END, then
3236 use ITEM's PC as the new best_end. */
3237 if (best && item < last && item->pc > best->pc
3238 && (best_end == 0 || best_end > item->pc))
3239 best_end = item->pc;
3240 }
3241
3242 if (!best_symtab)
3243 {
3244 /* If we didn't find any line number info, just return zeros.
3245 We used to return alt->line - 1 here, but that could be
3246 anywhere; if we don't have line number info for this PC,
3247 don't make some up. */
3248 val.pc = pc;
3249 }
3250 else if (best->line == 0)
3251 {
3252 /* If our best fit is in a range of PC's for which no line
3253 number info is available (line number is zero) then we didn't
3254 find any valid line information. */
3255 val.pc = pc;
3256 }
3257 else
3258 {
3259 val.symtab = best_symtab;
3260 val.line = best->line;
3261 val.pc = best->pc;
3262 if (best_end && (!alt || best_end < alt->pc))
3263 val.end = best_end;
3264 else if (alt)
3265 val.end = alt->pc;
3266 else
3267 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3268 }
3269 val.section = section;
3270 return val;
3271 }
3272
3273 /* Backward compatibility (no section). */
3274
3275 struct symtab_and_line
3276 find_pc_line (CORE_ADDR pc, int notcurrent)
3277 {
3278 struct obj_section *section;
3279
3280 section = find_pc_overlay (pc);
3281 if (pc_in_unmapped_range (pc, section))
3282 pc = overlay_mapped_address (pc, section);
3283 return find_pc_sect_line (pc, section, notcurrent);
3284 }
3285
3286 /* See symtab.h. */
3287
3288 struct symtab *
3289 find_pc_line_symtab (CORE_ADDR pc)
3290 {
3291 struct symtab_and_line sal;
3292
3293 /* This always passes zero for NOTCURRENT to find_pc_line.
3294 There are currently no callers that ever pass non-zero. */
3295 sal = find_pc_line (pc, 0);
3296 return sal.symtab;
3297 }
3298 \f
3299 /* Find line number LINE in any symtab whose name is the same as
3300 SYMTAB.
3301
3302 If found, return the symtab that contains the linetable in which it was
3303 found, set *INDEX to the index in the linetable of the best entry
3304 found, and set *EXACT_MATCH nonzero if the value returned is an
3305 exact match.
3306
3307 If not found, return NULL. */
3308
3309 struct symtab *
3310 find_line_symtab (struct symtab *sym_tab, int line,
3311 int *index, int *exact_match)
3312 {
3313 int exact = 0; /* Initialized here to avoid a compiler warning. */
3314
3315 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3316 so far seen. */
3317
3318 int best_index;
3319 struct linetable *best_linetable;
3320 struct symtab *best_symtab;
3321
3322 /* First try looking it up in the given symtab. */
3323 best_linetable = SYMTAB_LINETABLE (sym_tab);
3324 best_symtab = sym_tab;
3325 best_index = find_line_common (best_linetable, line, &exact, 0);
3326 if (best_index < 0 || !exact)
3327 {
3328 /* Didn't find an exact match. So we better keep looking for
3329 another symtab with the same name. In the case of xcoff,
3330 multiple csects for one source file (produced by IBM's FORTRAN
3331 compiler) produce multiple symtabs (this is unavoidable
3332 assuming csects can be at arbitrary places in memory and that
3333 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3334
3335 /* BEST is the smallest linenumber > LINE so far seen,
3336 or 0 if none has been seen so far.
3337 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3338 int best;
3339
3340 if (best_index >= 0)
3341 best = best_linetable->item[best_index].line;
3342 else
3343 best = 0;
3344
3345 for (objfile *objfile : current_program_space->objfiles ())
3346 {
3347 if (objfile->sf)
3348 objfile->sf->qf->expand_symtabs_with_fullname
3349 (objfile, symtab_to_fullname (sym_tab));
3350 }
3351
3352 for (objfile *objfile : current_program_space->objfiles ())
3353 {
3354 for (compunit_symtab *cu : objfile->compunits ())
3355 {
3356 for (symtab *s : compunit_filetabs (cu))
3357 {
3358 struct linetable *l;
3359 int ind;
3360
3361 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3362 continue;
3363 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3364 symtab_to_fullname (s)) != 0)
3365 continue;
3366 l = SYMTAB_LINETABLE (s);
3367 ind = find_line_common (l, line, &exact, 0);
3368 if (ind >= 0)
3369 {
3370 if (exact)
3371 {
3372 best_index = ind;
3373 best_linetable = l;
3374 best_symtab = s;
3375 goto done;
3376 }
3377 if (best == 0 || l->item[ind].line < best)
3378 {
3379 best = l->item[ind].line;
3380 best_index = ind;
3381 best_linetable = l;
3382 best_symtab = s;
3383 }
3384 }
3385 }
3386 }
3387 }
3388 }
3389 done:
3390 if (best_index < 0)
3391 return NULL;
3392
3393 if (index)
3394 *index = best_index;
3395 if (exact_match)
3396 *exact_match = exact;
3397
3398 return best_symtab;
3399 }
3400
3401 /* Given SYMTAB, returns all the PCs function in the symtab that
3402 exactly match LINE. Returns an empty vector if there are no exact
3403 matches, but updates BEST_ITEM in this case. */
3404
3405 std::vector<CORE_ADDR>
3406 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3407 struct linetable_entry **best_item)
3408 {
3409 int start = 0;
3410 std::vector<CORE_ADDR> result;
3411
3412 /* First, collect all the PCs that are at this line. */
3413 while (1)
3414 {
3415 int was_exact;
3416 int idx;
3417
3418 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3419 start);
3420 if (idx < 0)
3421 break;
3422
3423 if (!was_exact)
3424 {
3425 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3426
3427 if (*best_item == NULL || item->line < (*best_item)->line)
3428 *best_item = item;
3429
3430 break;
3431 }
3432
3433 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3434 start = idx + 1;
3435 }
3436
3437 return result;
3438 }
3439
3440 \f
3441 /* Set the PC value for a given source file and line number and return true.
3442 Returns zero for invalid line number (and sets the PC to 0).
3443 The source file is specified with a struct symtab. */
3444
3445 int
3446 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3447 {
3448 struct linetable *l;
3449 int ind;
3450
3451 *pc = 0;
3452 if (symtab == 0)
3453 return 0;
3454
3455 symtab = find_line_symtab (symtab, line, &ind, NULL);
3456 if (symtab != NULL)
3457 {
3458 l = SYMTAB_LINETABLE (symtab);
3459 *pc = l->item[ind].pc;
3460 return 1;
3461 }
3462 else
3463 return 0;
3464 }
3465
3466 /* Find the range of pc values in a line.
3467 Store the starting pc of the line into *STARTPTR
3468 and the ending pc (start of next line) into *ENDPTR.
3469 Returns 1 to indicate success.
3470 Returns 0 if could not find the specified line. */
3471
3472 int
3473 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3474 CORE_ADDR *endptr)
3475 {
3476 CORE_ADDR startaddr;
3477 struct symtab_and_line found_sal;
3478
3479 startaddr = sal.pc;
3480 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3481 return 0;
3482
3483 /* This whole function is based on address. For example, if line 10 has
3484 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3485 "info line *0x123" should say the line goes from 0x100 to 0x200
3486 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3487 This also insures that we never give a range like "starts at 0x134
3488 and ends at 0x12c". */
3489
3490 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3491 if (found_sal.line != sal.line)
3492 {
3493 /* The specified line (sal) has zero bytes. */
3494 *startptr = found_sal.pc;
3495 *endptr = found_sal.pc;
3496 }
3497 else
3498 {
3499 *startptr = found_sal.pc;
3500 *endptr = found_sal.end;
3501 }
3502 return 1;
3503 }
3504
3505 /* Given a line table and a line number, return the index into the line
3506 table for the pc of the nearest line whose number is >= the specified one.
3507 Return -1 if none is found. The value is >= 0 if it is an index.
3508 START is the index at which to start searching the line table.
3509
3510 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3511
3512 static int
3513 find_line_common (struct linetable *l, int lineno,
3514 int *exact_match, int start)
3515 {
3516 int i;
3517 int len;
3518
3519 /* BEST is the smallest linenumber > LINENO so far seen,
3520 or 0 if none has been seen so far.
3521 BEST_INDEX identifies the item for it. */
3522
3523 int best_index = -1;
3524 int best = 0;
3525
3526 *exact_match = 0;
3527
3528 if (lineno <= 0)
3529 return -1;
3530 if (l == 0)
3531 return -1;
3532
3533 len = l->nitems;
3534 for (i = start; i < len; i++)
3535 {
3536 struct linetable_entry *item = &(l->item[i]);
3537
3538 if (item->line == lineno)
3539 {
3540 /* Return the first (lowest address) entry which matches. */
3541 *exact_match = 1;
3542 return i;
3543 }
3544
3545 if (item->line > lineno && (best == 0 || item->line < best))
3546 {
3547 best = item->line;
3548 best_index = i;
3549 }
3550 }
3551
3552 /* If we got here, we didn't get an exact match. */
3553 return best_index;
3554 }
3555
3556 int
3557 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3558 {
3559 struct symtab_and_line sal;
3560
3561 sal = find_pc_line (pc, 0);
3562 *startptr = sal.pc;
3563 *endptr = sal.end;
3564 return sal.symtab != 0;
3565 }
3566
3567 /* Helper for find_function_start_sal. Does most of the work, except
3568 setting the sal's symbol. */
3569
3570 static symtab_and_line
3571 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3572 bool funfirstline)
3573 {
3574 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3575
3576 if (funfirstline && sal.symtab != NULL
3577 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3578 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3579 {
3580 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3581
3582 sal.pc = func_addr;
3583 if (gdbarch_skip_entrypoint_p (gdbarch))
3584 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3585 return sal;
3586 }
3587
3588 /* We always should have a line for the function start address.
3589 If we don't, something is odd. Create a plain SAL referring
3590 just the PC and hope that skip_prologue_sal (if requested)
3591 can find a line number for after the prologue. */
3592 if (sal.pc < func_addr)
3593 {
3594 sal = {};
3595 sal.pspace = current_program_space;
3596 sal.pc = func_addr;
3597 sal.section = section;
3598 }
3599
3600 if (funfirstline)
3601 skip_prologue_sal (&sal);
3602
3603 return sal;
3604 }
3605
3606 /* See symtab.h. */
3607
3608 symtab_and_line
3609 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3610 bool funfirstline)
3611 {
3612 symtab_and_line sal
3613 = find_function_start_sal_1 (func_addr, section, funfirstline);
3614
3615 /* find_function_start_sal_1 does a linetable search, so it finds
3616 the symtab and linenumber, but not a symbol. Fill in the
3617 function symbol too. */
3618 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3619
3620 return sal;
3621 }
3622
3623 /* See symtab.h. */
3624
3625 symtab_and_line
3626 find_function_start_sal (symbol *sym, bool funfirstline)
3627 {
3628 fixup_symbol_section (sym, NULL);
3629 symtab_and_line sal
3630 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3631 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3632 funfirstline);
3633 sal.symbol = sym;
3634 return sal;
3635 }
3636
3637
3638 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3639 address for that function that has an entry in SYMTAB's line info
3640 table. If such an entry cannot be found, return FUNC_ADDR
3641 unaltered. */
3642
3643 static CORE_ADDR
3644 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3645 {
3646 CORE_ADDR func_start, func_end;
3647 struct linetable *l;
3648 int i;
3649
3650 /* Give up if this symbol has no lineinfo table. */
3651 l = SYMTAB_LINETABLE (symtab);
3652 if (l == NULL)
3653 return func_addr;
3654
3655 /* Get the range for the function's PC values, or give up if we
3656 cannot, for some reason. */
3657 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3658 return func_addr;
3659
3660 /* Linetable entries are ordered by PC values, see the commentary in
3661 symtab.h where `struct linetable' is defined. Thus, the first
3662 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3663 address we are looking for. */
3664 for (i = 0; i < l->nitems; i++)
3665 {
3666 struct linetable_entry *item = &(l->item[i]);
3667
3668 /* Don't use line numbers of zero, they mark special entries in
3669 the table. See the commentary on symtab.h before the
3670 definition of struct linetable. */
3671 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3672 return item->pc;
3673 }
3674
3675 return func_addr;
3676 }
3677
3678 /* Adjust SAL to the first instruction past the function prologue.
3679 If the PC was explicitly specified, the SAL is not changed.
3680 If the line number was explicitly specified then the SAL can still be
3681 updated, unless the language for SAL is assembler, in which case the SAL
3682 will be left unchanged.
3683 If SAL is already past the prologue, then do nothing. */
3684
3685 void
3686 skip_prologue_sal (struct symtab_and_line *sal)
3687 {
3688 struct symbol *sym;
3689 struct symtab_and_line start_sal;
3690 CORE_ADDR pc, saved_pc;
3691 struct obj_section *section;
3692 const char *name;
3693 struct objfile *objfile;
3694 struct gdbarch *gdbarch;
3695 const struct block *b, *function_block;
3696 int force_skip, skip;
3697
3698 /* Do not change the SAL if PC was specified explicitly. */
3699 if (sal->explicit_pc)
3700 return;
3701
3702 /* In assembly code, if the user asks for a specific line then we should
3703 not adjust the SAL. The user already has instruction level
3704 visibility in this case, so selecting a line other than one requested
3705 is likely to be the wrong choice. */
3706 if (sal->symtab != nullptr
3707 && sal->explicit_line
3708 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3709 return;
3710
3711 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3712
3713 switch_to_program_space_and_thread (sal->pspace);
3714
3715 sym = find_pc_sect_function (sal->pc, sal->section);
3716 if (sym != NULL)
3717 {
3718 fixup_symbol_section (sym, NULL);
3719
3720 objfile = symbol_objfile (sym);
3721 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3722 section = SYMBOL_OBJ_SECTION (objfile, sym);
3723 name = SYMBOL_LINKAGE_NAME (sym);
3724 }
3725 else
3726 {
3727 struct bound_minimal_symbol msymbol
3728 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3729
3730 if (msymbol.minsym == NULL)
3731 return;
3732
3733 objfile = msymbol.objfile;
3734 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3735 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3736 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3737 }
3738
3739 gdbarch = get_objfile_arch (objfile);
3740
3741 /* Process the prologue in two passes. In the first pass try to skip the
3742 prologue (SKIP is true) and verify there is a real need for it (indicated
3743 by FORCE_SKIP). If no such reason was found run a second pass where the
3744 prologue is not skipped (SKIP is false). */
3745
3746 skip = 1;
3747 force_skip = 1;
3748
3749 /* Be conservative - allow direct PC (without skipping prologue) only if we
3750 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3751 have to be set by the caller so we use SYM instead. */
3752 if (sym != NULL
3753 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3754 force_skip = 0;
3755
3756 saved_pc = pc;
3757 do
3758 {
3759 pc = saved_pc;
3760
3761 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3762 so that gdbarch_skip_prologue has something unique to work on. */
3763 if (section_is_overlay (section) && !section_is_mapped (section))
3764 pc = overlay_unmapped_address (pc, section);
3765
3766 /* Skip "first line" of function (which is actually its prologue). */
3767 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3768 if (gdbarch_skip_entrypoint_p (gdbarch))
3769 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3770 if (skip)
3771 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3772
3773 /* For overlays, map pc back into its mapped VMA range. */
3774 pc = overlay_mapped_address (pc, section);
3775
3776 /* Calculate line number. */
3777 start_sal = find_pc_sect_line (pc, section, 0);
3778
3779 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3780 line is still part of the same function. */
3781 if (skip && start_sal.pc != pc
3782 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3783 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3784 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3785 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3786 {
3787 /* First pc of next line */
3788 pc = start_sal.end;
3789 /* Recalculate the line number (might not be N+1). */
3790 start_sal = find_pc_sect_line (pc, section, 0);
3791 }
3792
3793 /* On targets with executable formats that don't have a concept of
3794 constructors (ELF with .init has, PE doesn't), gcc emits a call
3795 to `__main' in `main' between the prologue and before user
3796 code. */
3797 if (gdbarch_skip_main_prologue_p (gdbarch)
3798 && name && strcmp_iw (name, "main") == 0)
3799 {
3800 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3801 /* Recalculate the line number (might not be N+1). */
3802 start_sal = find_pc_sect_line (pc, section, 0);
3803 force_skip = 1;
3804 }
3805 }
3806 while (!force_skip && skip--);
3807
3808 /* If we still don't have a valid source line, try to find the first
3809 PC in the lineinfo table that belongs to the same function. This
3810 happens with COFF debug info, which does not seem to have an
3811 entry in lineinfo table for the code after the prologue which has
3812 no direct relation to source. For example, this was found to be
3813 the case with the DJGPP target using "gcc -gcoff" when the
3814 compiler inserted code after the prologue to make sure the stack
3815 is aligned. */
3816 if (!force_skip && sym && start_sal.symtab == NULL)
3817 {
3818 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3819 /* Recalculate the line number. */
3820 start_sal = find_pc_sect_line (pc, section, 0);
3821 }
3822
3823 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3824 forward SAL to the end of the prologue. */
3825 if (sal->pc >= pc)
3826 return;
3827
3828 sal->pc = pc;
3829 sal->section = section;
3830 sal->symtab = start_sal.symtab;
3831 sal->line = start_sal.line;
3832 sal->end = start_sal.end;
3833
3834 /* Check if we are now inside an inlined function. If we can,
3835 use the call site of the function instead. */
3836 b = block_for_pc_sect (sal->pc, sal->section);
3837 function_block = NULL;
3838 while (b != NULL)
3839 {
3840 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3841 function_block = b;
3842 else if (BLOCK_FUNCTION (b) != NULL)
3843 break;
3844 b = BLOCK_SUPERBLOCK (b);
3845 }
3846 if (function_block != NULL
3847 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3848 {
3849 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3850 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3851 }
3852 }
3853
3854 /* Given PC at the function's start address, attempt to find the
3855 prologue end using SAL information. Return zero if the skip fails.
3856
3857 A non-optimized prologue traditionally has one SAL for the function
3858 and a second for the function body. A single line function has
3859 them both pointing at the same line.
3860
3861 An optimized prologue is similar but the prologue may contain
3862 instructions (SALs) from the instruction body. Need to skip those
3863 while not getting into the function body.
3864
3865 The functions end point and an increasing SAL line are used as
3866 indicators of the prologue's endpoint.
3867
3868 This code is based on the function refine_prologue_limit
3869 (found in ia64). */
3870
3871 CORE_ADDR
3872 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3873 {
3874 struct symtab_and_line prologue_sal;
3875 CORE_ADDR start_pc;
3876 CORE_ADDR end_pc;
3877 const struct block *bl;
3878
3879 /* Get an initial range for the function. */
3880 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3881 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3882
3883 prologue_sal = find_pc_line (start_pc, 0);
3884 if (prologue_sal.line != 0)
3885 {
3886 /* For languages other than assembly, treat two consecutive line
3887 entries at the same address as a zero-instruction prologue.
3888 The GNU assembler emits separate line notes for each instruction
3889 in a multi-instruction macro, but compilers generally will not
3890 do this. */
3891 if (prologue_sal.symtab->language != language_asm)
3892 {
3893 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3894 int idx = 0;
3895
3896 /* Skip any earlier lines, and any end-of-sequence marker
3897 from a previous function. */
3898 while (linetable->item[idx].pc != prologue_sal.pc
3899 || linetable->item[idx].line == 0)
3900 idx++;
3901
3902 if (idx+1 < linetable->nitems
3903 && linetable->item[idx+1].line != 0
3904 && linetable->item[idx+1].pc == start_pc)
3905 return start_pc;
3906 }
3907
3908 /* If there is only one sal that covers the entire function,
3909 then it is probably a single line function, like
3910 "foo(){}". */
3911 if (prologue_sal.end >= end_pc)
3912 return 0;
3913
3914 while (prologue_sal.end < end_pc)
3915 {
3916 struct symtab_and_line sal;
3917
3918 sal = find_pc_line (prologue_sal.end, 0);
3919 if (sal.line == 0)
3920 break;
3921 /* Assume that a consecutive SAL for the same (or larger)
3922 line mark the prologue -> body transition. */
3923 if (sal.line >= prologue_sal.line)
3924 break;
3925 /* Likewise if we are in a different symtab altogether
3926 (e.g. within a file included via #include).  */
3927 if (sal.symtab != prologue_sal.symtab)
3928 break;
3929
3930 /* The line number is smaller. Check that it's from the
3931 same function, not something inlined. If it's inlined,
3932 then there is no point comparing the line numbers. */
3933 bl = block_for_pc (prologue_sal.end);
3934 while (bl)
3935 {
3936 if (block_inlined_p (bl))
3937 break;
3938 if (BLOCK_FUNCTION (bl))
3939 {
3940 bl = NULL;
3941 break;
3942 }
3943 bl = BLOCK_SUPERBLOCK (bl);
3944 }
3945 if (bl != NULL)
3946 break;
3947
3948 /* The case in which compiler's optimizer/scheduler has
3949 moved instructions into the prologue. We look ahead in
3950 the function looking for address ranges whose
3951 corresponding line number is less the first one that we
3952 found for the function. This is more conservative then
3953 refine_prologue_limit which scans a large number of SALs
3954 looking for any in the prologue. */
3955 prologue_sal = sal;
3956 }
3957 }
3958
3959 if (prologue_sal.end < end_pc)
3960 /* Return the end of this line, or zero if we could not find a
3961 line. */
3962 return prologue_sal.end;
3963 else
3964 /* Don't return END_PC, which is past the end of the function. */
3965 return prologue_sal.pc;
3966 }
3967
3968 /* See symtab.h. */
3969
3970 symbol *
3971 find_function_alias_target (bound_minimal_symbol msymbol)
3972 {
3973 CORE_ADDR func_addr;
3974 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3975 return NULL;
3976
3977 symbol *sym = find_pc_function (func_addr);
3978 if (sym != NULL
3979 && SYMBOL_CLASS (sym) == LOC_BLOCK
3980 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3981 return sym;
3982
3983 return NULL;
3984 }
3985
3986 \f
3987 /* If P is of the form "operator[ \t]+..." where `...' is
3988 some legitimate operator text, return a pointer to the
3989 beginning of the substring of the operator text.
3990 Otherwise, return "". */
3991
3992 static const char *
3993 operator_chars (const char *p, const char **end)
3994 {
3995 *end = "";
3996 if (!startswith (p, CP_OPERATOR_STR))
3997 return *end;
3998 p += CP_OPERATOR_LEN;
3999
4000 /* Don't get faked out by `operator' being part of a longer
4001 identifier. */
4002 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4003 return *end;
4004
4005 /* Allow some whitespace between `operator' and the operator symbol. */
4006 while (*p == ' ' || *p == '\t')
4007 p++;
4008
4009 /* Recognize 'operator TYPENAME'. */
4010
4011 if (isalpha (*p) || *p == '_' || *p == '$')
4012 {
4013 const char *q = p + 1;
4014
4015 while (isalnum (*q) || *q == '_' || *q == '$')
4016 q++;
4017 *end = q;
4018 return p;
4019 }
4020
4021 while (*p)
4022 switch (*p)
4023 {
4024 case '\\': /* regexp quoting */
4025 if (p[1] == '*')
4026 {
4027 if (p[2] == '=') /* 'operator\*=' */
4028 *end = p + 3;
4029 else /* 'operator\*' */
4030 *end = p + 2;
4031 return p;
4032 }
4033 else if (p[1] == '[')
4034 {
4035 if (p[2] == ']')
4036 error (_("mismatched quoting on brackets, "
4037 "try 'operator\\[\\]'"));
4038 else if (p[2] == '\\' && p[3] == ']')
4039 {
4040 *end = p + 4; /* 'operator\[\]' */
4041 return p;
4042 }
4043 else
4044 error (_("nothing is allowed between '[' and ']'"));
4045 }
4046 else
4047 {
4048 /* Gratuitous qoute: skip it and move on. */
4049 p++;
4050 continue;
4051 }
4052 break;
4053 case '!':
4054 case '=':
4055 case '*':
4056 case '/':
4057 case '%':
4058 case '^':
4059 if (p[1] == '=')
4060 *end = p + 2;
4061 else
4062 *end = p + 1;
4063 return p;
4064 case '<':
4065 case '>':
4066 case '+':
4067 case '-':
4068 case '&':
4069 case '|':
4070 if (p[0] == '-' && p[1] == '>')
4071 {
4072 /* Struct pointer member operator 'operator->'. */
4073 if (p[2] == '*')
4074 {
4075 *end = p + 3; /* 'operator->*' */
4076 return p;
4077 }
4078 else if (p[2] == '\\')
4079 {
4080 *end = p + 4; /* Hopefully 'operator->\*' */
4081 return p;
4082 }
4083 else
4084 {
4085 *end = p + 2; /* 'operator->' */
4086 return p;
4087 }
4088 }
4089 if (p[1] == '=' || p[1] == p[0])
4090 *end = p + 2;
4091 else
4092 *end = p + 1;
4093 return p;
4094 case '~':
4095 case ',':
4096 *end = p + 1;
4097 return p;
4098 case '(':
4099 if (p[1] != ')')
4100 error (_("`operator ()' must be specified "
4101 "without whitespace in `()'"));
4102 *end = p + 2;
4103 return p;
4104 case '?':
4105 if (p[1] != ':')
4106 error (_("`operator ?:' must be specified "
4107 "without whitespace in `?:'"));
4108 *end = p + 2;
4109 return p;
4110 case '[':
4111 if (p[1] != ']')
4112 error (_("`operator []' must be specified "
4113 "without whitespace in `[]'"));
4114 *end = p + 2;
4115 return p;
4116 default:
4117 error (_("`operator %s' not supported"), p);
4118 break;
4119 }
4120
4121 *end = "";
4122 return *end;
4123 }
4124 \f
4125
4126 /* What part to match in a file name. */
4127
4128 struct filename_partial_match_opts
4129 {
4130 /* Only match the directory name part. */
4131 bool dirname = false;
4132
4133 /* Only match the basename part. */
4134 bool basename = false;
4135 };
4136
4137 /* Data structure to maintain printing state for output_source_filename. */
4138
4139 struct output_source_filename_data
4140 {
4141 /* Output only filenames matching REGEXP. */
4142 std::string regexp;
4143 gdb::optional<compiled_regex> c_regexp;
4144 /* Possibly only match a part of the filename. */
4145 filename_partial_match_opts partial_match;
4146
4147
4148 /* Cache of what we've seen so far. */
4149 struct filename_seen_cache *filename_seen_cache;
4150
4151 /* Flag of whether we're printing the first one. */
4152 int first;
4153 };
4154
4155 /* Slave routine for sources_info. Force line breaks at ,'s.
4156 NAME is the name to print.
4157 DATA contains the state for printing and watching for duplicates. */
4158
4159 static void
4160 output_source_filename (const char *name,
4161 struct output_source_filename_data *data)
4162 {
4163 /* Since a single source file can result in several partial symbol
4164 tables, we need to avoid printing it more than once. Note: if
4165 some of the psymtabs are read in and some are not, it gets
4166 printed both under "Source files for which symbols have been
4167 read" and "Source files for which symbols will be read in on
4168 demand". I consider this a reasonable way to deal with the
4169 situation. I'm not sure whether this can also happen for
4170 symtabs; it doesn't hurt to check. */
4171
4172 /* Was NAME already seen? */
4173 if (data->filename_seen_cache->seen (name))
4174 {
4175 /* Yes; don't print it again. */
4176 return;
4177 }
4178
4179 /* Does it match data->regexp? */
4180 if (data->c_regexp.has_value ())
4181 {
4182 const char *to_match;
4183 std::string dirname;
4184
4185 if (data->partial_match.dirname)
4186 {
4187 dirname = ldirname (name);
4188 to_match = dirname.c_str ();
4189 }
4190 else if (data->partial_match.basename)
4191 to_match = lbasename (name);
4192 else
4193 to_match = name;
4194
4195 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4196 return;
4197 }
4198
4199 /* Print it and reset *FIRST. */
4200 if (! data->first)
4201 printf_filtered (", ");
4202 data->first = 0;
4203
4204 wrap_here ("");
4205 fputs_styled (name, file_name_style.style (), gdb_stdout);
4206 }
4207
4208 /* A callback for map_partial_symbol_filenames. */
4209
4210 static void
4211 output_partial_symbol_filename (const char *filename, const char *fullname,
4212 void *data)
4213 {
4214 output_source_filename (fullname ? fullname : filename,
4215 (struct output_source_filename_data *) data);
4216 }
4217
4218 using isrc_flag_option_def
4219 = gdb::option::flag_option_def<filename_partial_match_opts>;
4220
4221 static const gdb::option::option_def info_sources_option_defs[] = {
4222
4223 isrc_flag_option_def {
4224 "dirname",
4225 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4226 N_("Show only the files having a dirname matching REGEXP."),
4227 },
4228
4229 isrc_flag_option_def {
4230 "basename",
4231 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4232 N_("Show only the files having a basename matching REGEXP."),
4233 },
4234
4235 };
4236
4237 /* Create an option_def_group for the "info sources" options, with
4238 ISRC_OPTS as context. */
4239
4240 static inline gdb::option::option_def_group
4241 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4242 {
4243 return {{info_sources_option_defs}, isrc_opts};
4244 }
4245
4246 /* Prints the header message for the source files that will be printed
4247 with the matching info present in DATA. SYMBOL_MSG is a message
4248 that tells what will or has been done with the symbols of the
4249 matching source files. */
4250
4251 static void
4252 print_info_sources_header (const char *symbol_msg,
4253 const struct output_source_filename_data *data)
4254 {
4255 puts_filtered (symbol_msg);
4256 if (!data->regexp.empty ())
4257 {
4258 if (data->partial_match.dirname)
4259 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4260 data->regexp.c_str ());
4261 else if (data->partial_match.basename)
4262 printf_filtered (_("(basename matching regular expression \"%s\")"),
4263 data->regexp.c_str ());
4264 else
4265 printf_filtered (_("(filename matching regular expression \"%s\")"),
4266 data->regexp.c_str ());
4267 }
4268 puts_filtered ("\n");
4269 }
4270
4271 /* Completer for "info sources". */
4272
4273 static void
4274 info_sources_command_completer (cmd_list_element *ignore,
4275 completion_tracker &tracker,
4276 const char *text, const char *word)
4277 {
4278 const auto group = make_info_sources_options_def_group (nullptr);
4279 if (gdb::option::complete_options
4280 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4281 return;
4282 }
4283
4284 static void
4285 info_sources_command (const char *args, int from_tty)
4286 {
4287 struct output_source_filename_data data;
4288
4289 if (!have_full_symbols () && !have_partial_symbols ())
4290 {
4291 error (_("No symbol table is loaded. Use the \"file\" command."));
4292 }
4293
4294 filename_seen_cache filenames_seen;
4295
4296 auto group = make_info_sources_options_def_group (&data.partial_match);
4297
4298 gdb::option::process_options
4299 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4300
4301 if (args != NULL && *args != '\000')
4302 data.regexp = args;
4303
4304 data.filename_seen_cache = &filenames_seen;
4305 data.first = 1;
4306
4307 if (data.partial_match.dirname && data.partial_match.basename)
4308 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4309 if ((data.partial_match.dirname || data.partial_match.basename)
4310 && data.regexp.empty ())
4311 error (_("Missing REGEXP for 'info sources'."));
4312
4313 if (data.regexp.empty ())
4314 data.c_regexp.reset ();
4315 else
4316 {
4317 int cflags = REG_NOSUB;
4318 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4319 cflags |= REG_ICASE;
4320 #endif
4321 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4322 _("Invalid regexp"));
4323 }
4324
4325 print_info_sources_header
4326 (_("Source files for which symbols have been read in:\n"), &data);
4327
4328 for (objfile *objfile : current_program_space->objfiles ())
4329 {
4330 for (compunit_symtab *cu : objfile->compunits ())
4331 {
4332 for (symtab *s : compunit_filetabs (cu))
4333 {
4334 const char *fullname = symtab_to_fullname (s);
4335
4336 output_source_filename (fullname, &data);
4337 }
4338 }
4339 }
4340 printf_filtered ("\n\n");
4341
4342 print_info_sources_header
4343 (_("Source files for which symbols will be read in on demand:\n"), &data);
4344
4345 filenames_seen.clear ();
4346 data.first = 1;
4347 map_symbol_filenames (output_partial_symbol_filename, &data,
4348 1 /*need_fullname*/);
4349 printf_filtered ("\n");
4350 }
4351
4352 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4353 non-zero compare only lbasename of FILES. */
4354
4355 static int
4356 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4357 {
4358 int i;
4359
4360 if (file != NULL && nfiles != 0)
4361 {
4362 for (i = 0; i < nfiles; i++)
4363 {
4364 if (compare_filenames_for_search (file, (basenames
4365 ? lbasename (files[i])
4366 : files[i])))
4367 return 1;
4368 }
4369 }
4370 else if (nfiles == 0)
4371 return 1;
4372 return 0;
4373 }
4374
4375 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4376 sort symbols, not minimal symbols. */
4377
4378 int
4379 symbol_search::compare_search_syms (const symbol_search &sym_a,
4380 const symbol_search &sym_b)
4381 {
4382 int c;
4383
4384 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4385 symbol_symtab (sym_b.symbol)->filename);
4386 if (c != 0)
4387 return c;
4388
4389 if (sym_a.block != sym_b.block)
4390 return sym_a.block - sym_b.block;
4391
4392 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4393 SYMBOL_PRINT_NAME (sym_b.symbol));
4394 }
4395
4396 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4397 If SYM has no symbol_type or symbol_name, returns false. */
4398
4399 bool
4400 treg_matches_sym_type_name (const compiled_regex &treg,
4401 const struct symbol *sym)
4402 {
4403 struct type *sym_type;
4404 std::string printed_sym_type_name;
4405
4406 if (symbol_lookup_debug > 1)
4407 {
4408 fprintf_unfiltered (gdb_stdlog,
4409 "treg_matches_sym_type_name\n sym %s\n",
4410 SYMBOL_NATURAL_NAME (sym));
4411 }
4412
4413 sym_type = SYMBOL_TYPE (sym);
4414 if (sym_type == NULL)
4415 return false;
4416
4417 {
4418 scoped_switch_to_sym_language_if_auto l (sym);
4419
4420 printed_sym_type_name = type_to_string (sym_type);
4421 }
4422
4423
4424 if (symbol_lookup_debug > 1)
4425 {
4426 fprintf_unfiltered (gdb_stdlog,
4427 " sym_type_name %s\n",
4428 printed_sym_type_name.c_str ());
4429 }
4430
4431
4432 if (printed_sym_type_name.empty ())
4433 return false;
4434
4435 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4436 }
4437
4438
4439 /* Sort the symbols in RESULT and remove duplicates. */
4440
4441 static void
4442 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4443 {
4444 std::sort (result->begin (), result->end ());
4445 result->erase (std::unique (result->begin (), result->end ()),
4446 result->end ());
4447 }
4448
4449 /* Search the symbol table for matches to the regular expression REGEXP,
4450 returning the results.
4451
4452 Only symbols of KIND are searched:
4453 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4454 and constants (enums).
4455 if T_REGEXP is not NULL, only returns var that have
4456 a type matching regular expression T_REGEXP.
4457 FUNCTIONS_DOMAIN - search all functions
4458 TYPES_DOMAIN - search all type names
4459 ALL_DOMAIN - an internal error for this function
4460
4461 Within each file the results are sorted locally; each symtab's global and
4462 static blocks are separately alphabetized.
4463 Duplicate entries are removed.
4464
4465 When EXCLUDE_MINSYMS is false then matching minsyms are also returned,
4466 otherwise they are excluded. */
4467
4468 std::vector<symbol_search>
4469 search_symbols (const char *regexp, enum search_domain kind,
4470 const char *t_regexp,
4471 int nfiles, const char *files[],
4472 bool exclude_minsyms)
4473 {
4474 const struct blockvector *bv;
4475 const struct block *b;
4476 int i = 0;
4477 struct block_iterator iter;
4478 struct symbol *sym;
4479 int found_misc = 0;
4480 static const enum minimal_symbol_type types[]
4481 = {mst_data, mst_text, mst_unknown};
4482 static const enum minimal_symbol_type types2[]
4483 = {mst_bss, mst_file_text, mst_unknown};
4484 static const enum minimal_symbol_type types3[]
4485 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4486 static const enum minimal_symbol_type types4[]
4487 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4488 enum minimal_symbol_type ourtype;
4489 enum minimal_symbol_type ourtype2;
4490 enum minimal_symbol_type ourtype3;
4491 enum minimal_symbol_type ourtype4;
4492 std::vector<symbol_search> result;
4493 gdb::optional<compiled_regex> preg;
4494 gdb::optional<compiled_regex> treg;
4495
4496 gdb_assert (kind <= TYPES_DOMAIN);
4497
4498 ourtype = types[kind];
4499 ourtype2 = types2[kind];
4500 ourtype3 = types3[kind];
4501 ourtype4 = types4[kind];
4502
4503 if (regexp != NULL)
4504 {
4505 /* Make sure spacing is right for C++ operators.
4506 This is just a courtesy to make the matching less sensitive
4507 to how many spaces the user leaves between 'operator'
4508 and <TYPENAME> or <OPERATOR>. */
4509 const char *opend;
4510 const char *opname = operator_chars (regexp, &opend);
4511
4512 if (*opname)
4513 {
4514 int fix = -1; /* -1 means ok; otherwise number of
4515 spaces needed. */
4516
4517 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4518 {
4519 /* There should 1 space between 'operator' and 'TYPENAME'. */
4520 if (opname[-1] != ' ' || opname[-2] == ' ')
4521 fix = 1;
4522 }
4523 else
4524 {
4525 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4526 if (opname[-1] == ' ')
4527 fix = 0;
4528 }
4529 /* If wrong number of spaces, fix it. */
4530 if (fix >= 0)
4531 {
4532 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4533
4534 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4535 regexp = tmp;
4536 }
4537 }
4538
4539 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4540 ? REG_ICASE : 0);
4541 preg.emplace (regexp, cflags, _("Invalid regexp"));
4542 }
4543
4544 if (t_regexp != NULL)
4545 {
4546 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4547 ? REG_ICASE : 0);
4548 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4549 }
4550
4551 /* Search through the partial symtabs *first* for all symbols
4552 matching the regexp. That way we don't have to reproduce all of
4553 the machinery below. */
4554 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4555 {
4556 return file_matches (filename, files, nfiles,
4557 basenames);
4558 },
4559 lookup_name_info::match_any (),
4560 [&] (const char *symname)
4561 {
4562 return (!preg.has_value ()
4563 || preg->exec (symname,
4564 0, NULL, 0) == 0);
4565 },
4566 NULL,
4567 kind);
4568
4569 /* Here, we search through the minimal symbol tables for functions
4570 and variables that match, and force their symbols to be read.
4571 This is in particular necessary for demangled variable names,
4572 which are no longer put into the partial symbol tables.
4573 The symbol will then be found during the scan of symtabs below.
4574
4575 For functions, find_pc_symtab should succeed if we have debug info
4576 for the function, for variables we have to call
4577 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4578 has debug info.
4579 If the lookup fails, set found_misc so that we will rescan to print
4580 any matching symbols without debug info.
4581 We only search the objfile the msymbol came from, we no longer search
4582 all objfiles. In large programs (1000s of shared libs) searching all
4583 objfiles is not worth the pain. */
4584
4585 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4586 {
4587 for (objfile *objfile : current_program_space->objfiles ())
4588 {
4589 for (minimal_symbol *msymbol : objfile->msymbols ())
4590 {
4591 QUIT;
4592
4593 if (msymbol->created_by_gdb)
4594 continue;
4595
4596 if (MSYMBOL_TYPE (msymbol) == ourtype
4597 || MSYMBOL_TYPE (msymbol) == ourtype2
4598 || MSYMBOL_TYPE (msymbol) == ourtype3
4599 || MSYMBOL_TYPE (msymbol) == ourtype4)
4600 {
4601 if (!preg.has_value ()
4602 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4603 NULL, 0) == 0)
4604 {
4605 /* Note: An important side-effect of these
4606 lookup functions is to expand the symbol
4607 table if msymbol is found, for the benefit of
4608 the next loop on compunits. */
4609 if (kind == FUNCTIONS_DOMAIN
4610 ? (find_pc_compunit_symtab
4611 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4612 == NULL)
4613 : (lookup_symbol_in_objfile_from_linkage_name
4614 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4615 VAR_DOMAIN)
4616 .symbol == NULL))
4617 found_misc = 1;
4618 }
4619 }
4620 }
4621 }
4622 }
4623
4624 for (objfile *objfile : current_program_space->objfiles ())
4625 {
4626 for (compunit_symtab *cust : objfile->compunits ())
4627 {
4628 bv = COMPUNIT_BLOCKVECTOR (cust);
4629 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4630 {
4631 b = BLOCKVECTOR_BLOCK (bv, i);
4632 ALL_BLOCK_SYMBOLS (b, iter, sym)
4633 {
4634 struct symtab *real_symtab = symbol_symtab (sym);
4635
4636 QUIT;
4637
4638 /* Check first sole REAL_SYMTAB->FILENAME. It does
4639 not need to be a substring of symtab_to_fullname as
4640 it may contain "./" etc. */
4641 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4642 || ((basenames_may_differ
4643 || file_matches (lbasename (real_symtab->filename),
4644 files, nfiles, 1))
4645 && file_matches (symtab_to_fullname (real_symtab),
4646 files, nfiles, 0)))
4647 && ((!preg.has_value ()
4648 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4649 NULL, 0) == 0)
4650 && ((kind == VARIABLES_DOMAIN
4651 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4652 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4653 && SYMBOL_CLASS (sym) != LOC_BLOCK
4654 /* LOC_CONST can be used for more than
4655 just enums, e.g., c++ static const
4656 members. We only want to skip enums
4657 here. */
4658 && !(SYMBOL_CLASS (sym) == LOC_CONST
4659 && (TYPE_CODE (SYMBOL_TYPE (sym))
4660 == TYPE_CODE_ENUM))
4661 && (!treg.has_value ()
4662 || treg_matches_sym_type_name (*treg, sym)))
4663 || (kind == FUNCTIONS_DOMAIN
4664 && SYMBOL_CLASS (sym) == LOC_BLOCK
4665 && (!treg.has_value ()
4666 || treg_matches_sym_type_name (*treg,
4667 sym)))
4668 || (kind == TYPES_DOMAIN
4669 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4670 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN))))
4671 {
4672 /* match */
4673 result.emplace_back (i, sym);
4674 }
4675 }
4676 }
4677 }
4678 }
4679
4680 if (!result.empty ())
4681 sort_search_symbols_remove_dups (&result);
4682
4683 /* If there are no eyes, avoid all contact. I mean, if there are
4684 no debug symbols, then add matching minsyms. But if the user wants
4685 to see symbols matching a type regexp, then never give a minimal symbol,
4686 as we assume that a minimal symbol does not have a type. */
4687
4688 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4689 && !exclude_minsyms
4690 && !treg.has_value ())
4691 {
4692 for (objfile *objfile : current_program_space->objfiles ())
4693 {
4694 for (minimal_symbol *msymbol : objfile->msymbols ())
4695 {
4696 QUIT;
4697
4698 if (msymbol->created_by_gdb)
4699 continue;
4700
4701 if (MSYMBOL_TYPE (msymbol) == ourtype
4702 || MSYMBOL_TYPE (msymbol) == ourtype2
4703 || MSYMBOL_TYPE (msymbol) == ourtype3
4704 || MSYMBOL_TYPE (msymbol) == ourtype4)
4705 {
4706 if (!preg.has_value ()
4707 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4708 NULL, 0) == 0)
4709 {
4710 /* For functions we can do a quick check of whether the
4711 symbol might be found via find_pc_symtab. */
4712 if (kind != FUNCTIONS_DOMAIN
4713 || (find_pc_compunit_symtab
4714 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4715 == NULL))
4716 {
4717 if (lookup_symbol_in_objfile_from_linkage_name
4718 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4719 VAR_DOMAIN)
4720 .symbol == NULL)
4721 {
4722 /* match */
4723 result.emplace_back (i, msymbol, objfile);
4724 }
4725 }
4726 }
4727 }
4728 }
4729 }
4730 }
4731
4732 return result;
4733 }
4734
4735 /* Helper function for symtab_symbol_info, this function uses
4736 the data returned from search_symbols() to print information
4737 regarding the match to gdb_stdout. If LAST is not NULL,
4738 print file and line number information for the symbol as
4739 well. Skip printing the filename if it matches LAST. */
4740
4741 static void
4742 print_symbol_info (enum search_domain kind,
4743 struct symbol *sym,
4744 int block, const char *last)
4745 {
4746 scoped_switch_to_sym_language_if_auto l (sym);
4747 struct symtab *s = symbol_symtab (sym);
4748
4749 if (last != NULL)
4750 {
4751 const char *s_filename = symtab_to_filename_for_display (s);
4752
4753 if (filename_cmp (last, s_filename) != 0)
4754 {
4755 fputs_filtered ("\nFile ", gdb_stdout);
4756 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4757 fputs_filtered (":\n", gdb_stdout);
4758 }
4759
4760 if (SYMBOL_LINE (sym) != 0)
4761 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4762 else
4763 puts_filtered ("\t");
4764 }
4765
4766 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4767 printf_filtered ("static ");
4768
4769 /* Typedef that is not a C++ class. */
4770 if (kind == TYPES_DOMAIN
4771 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4772 {
4773 /* FIXME: For C (and C++) we end up with a difference in output here
4774 between how a typedef is printed, and non-typedefs are printed.
4775 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4776 appear C-like, while TYPE_PRINT doesn't.
4777
4778 For the struct printing case below, things are worse, we force
4779 printing of the ";" in this function, which is going to be wrong
4780 for languages that don't require a ";" between statements. */
4781 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4782 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4783 else
4784 {
4785 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4786 printf_filtered ("\n");
4787 }
4788 }
4789 /* variable, func, or typedef-that-is-c++-class. */
4790 else if (kind < TYPES_DOMAIN
4791 || (kind == TYPES_DOMAIN
4792 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4793 {
4794 type_print (SYMBOL_TYPE (sym),
4795 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4796 ? "" : SYMBOL_PRINT_NAME (sym)),
4797 gdb_stdout, 0);
4798
4799 printf_filtered (";\n");
4800 }
4801 }
4802
4803 /* This help function for symtab_symbol_info() prints information
4804 for non-debugging symbols to gdb_stdout. */
4805
4806 static void
4807 print_msymbol_info (struct bound_minimal_symbol msymbol)
4808 {
4809 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4810 char *tmp;
4811
4812 if (gdbarch_addr_bit (gdbarch) <= 32)
4813 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4814 & (CORE_ADDR) 0xffffffff,
4815 8);
4816 else
4817 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4818 16);
4819 fputs_styled (tmp, address_style.style (), gdb_stdout);
4820 fputs_filtered (" ", gdb_stdout);
4821 if (msymbol.minsym->text_p ())
4822 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4823 function_name_style.style (),
4824 gdb_stdout);
4825 else
4826 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4827 fputs_filtered ("\n", gdb_stdout);
4828 }
4829
4830 /* This is the guts of the commands "info functions", "info types", and
4831 "info variables". It calls search_symbols to find all matches and then
4832 print_[m]symbol_info to print out some useful information about the
4833 matches. */
4834
4835 static void
4836 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4837 const char *regexp, enum search_domain kind,
4838 const char *t_regexp, int from_tty)
4839 {
4840 static const char * const classnames[] =
4841 {"variable", "function", "type"};
4842 const char *last_filename = "";
4843 int first = 1;
4844
4845 gdb_assert (kind <= TYPES_DOMAIN);
4846
4847 if (regexp != nullptr && *regexp == '\0')
4848 regexp = nullptr;
4849
4850 /* Must make sure that if we're interrupted, symbols gets freed. */
4851 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4852 t_regexp, 0, NULL,
4853 exclude_minsyms);
4854
4855 if (!quiet)
4856 {
4857 if (regexp != NULL)
4858 {
4859 if (t_regexp != NULL)
4860 printf_filtered
4861 (_("All %ss matching regular expression \"%s\""
4862 " with type matching regular expression \"%s\":\n"),
4863 classnames[kind], regexp, t_regexp);
4864 else
4865 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4866 classnames[kind], regexp);
4867 }
4868 else
4869 {
4870 if (t_regexp != NULL)
4871 printf_filtered
4872 (_("All defined %ss"
4873 " with type matching regular expression \"%s\" :\n"),
4874 classnames[kind], t_regexp);
4875 else
4876 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4877 }
4878 }
4879
4880 for (const symbol_search &p : symbols)
4881 {
4882 QUIT;
4883
4884 if (p.msymbol.minsym != NULL)
4885 {
4886 if (first)
4887 {
4888 if (!quiet)
4889 printf_filtered (_("\nNon-debugging symbols:\n"));
4890 first = 0;
4891 }
4892 print_msymbol_info (p.msymbol);
4893 }
4894 else
4895 {
4896 print_symbol_info (kind,
4897 p.symbol,
4898 p.block,
4899 last_filename);
4900 last_filename
4901 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4902 }
4903 }
4904 }
4905
4906 /* Structure to hold the values of the options used by the 'info variables'
4907 and 'info functions' commands. These correspond to the -q, -t, and -n
4908 options. */
4909
4910 struct info_print_options
4911 {
4912 bool quiet = false;
4913 bool exclude_minsyms = false;
4914 char *type_regexp = nullptr;
4915
4916 ~info_print_options ()
4917 {
4918 xfree (type_regexp);
4919 }
4920 };
4921
4922 /* The options used by the 'info variables' and 'info functions'
4923 commands. */
4924
4925 static const gdb::option::option_def info_print_options_defs[] = {
4926 gdb::option::boolean_option_def<info_print_options> {
4927 "q",
4928 [] (info_print_options *opt) { return &opt->quiet; },
4929 nullptr, /* show_cmd_cb */
4930 nullptr /* set_doc */
4931 },
4932
4933 gdb::option::boolean_option_def<info_print_options> {
4934 "n",
4935 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4936 nullptr, /* show_cmd_cb */
4937 nullptr /* set_doc */
4938 },
4939
4940 gdb::option::string_option_def<info_print_options> {
4941 "t",
4942 [] (info_print_options *opt) { return &opt->type_regexp; },
4943 nullptr, /* show_cmd_cb */
4944 nullptr /* set_doc */
4945 }
4946 };
4947
4948 /* Returns the option group used by 'info variables' and 'info
4949 functions'. */
4950
4951 static gdb::option::option_def_group
4952 make_info_print_options_def_group (info_print_options *opts)
4953 {
4954 return {{info_print_options_defs}, opts};
4955 }
4956
4957 /* Command completer for 'info variables' and 'info functions'. */
4958
4959 static void
4960 info_print_command_completer (struct cmd_list_element *ignore,
4961 completion_tracker &tracker,
4962 const char *text, const char * /* word */)
4963 {
4964 const auto group
4965 = make_info_print_options_def_group (nullptr);
4966 if (gdb::option::complete_options
4967 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4968 return;
4969
4970 const char *word = advance_to_expression_complete_word_point (tracker, text);
4971 symbol_completer (ignore, tracker, text, word);
4972 }
4973
4974 /* Implement the 'info variables' command. */
4975
4976 static void
4977 info_variables_command (const char *args, int from_tty)
4978 {
4979 info_print_options opts;
4980 auto grp = make_info_print_options_def_group (&opts);
4981 gdb::option::process_options
4982 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4983 if (args != nullptr && *args == '\0')
4984 args = nullptr;
4985
4986 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
4987 opts.type_regexp, from_tty);
4988 }
4989
4990 /* Implement the 'info functions' command. */
4991
4992 static void
4993 info_functions_command (const char *args, int from_tty)
4994 {
4995 info_print_options opts;
4996 auto grp = make_info_print_options_def_group (&opts);
4997 gdb::option::process_options
4998 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4999 if (args != nullptr && *args == '\0')
5000 args = nullptr;
5001
5002 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5003 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5004 }
5005
5006 /* Holds the -q option for the 'info types' command. */
5007
5008 struct info_types_options
5009 {
5010 bool quiet = false;
5011 };
5012
5013 /* The options used by the 'info types' command. */
5014
5015 static const gdb::option::option_def info_types_options_defs[] = {
5016 gdb::option::boolean_option_def<info_types_options> {
5017 "q",
5018 [] (info_types_options *opt) { return &opt->quiet; },
5019 nullptr, /* show_cmd_cb */
5020 nullptr /* set_doc */
5021 }
5022 };
5023
5024 /* Returns the option group used by 'info types'. */
5025
5026 static gdb::option::option_def_group
5027 make_info_types_options_def_group (info_types_options *opts)
5028 {
5029 return {{info_types_options_defs}, opts};
5030 }
5031
5032 /* Implement the 'info types' command. */
5033
5034 static void
5035 info_types_command (const char *args, int from_tty)
5036 {
5037 info_types_options opts;
5038
5039 auto grp = make_info_types_options_def_group (&opts);
5040 gdb::option::process_options
5041 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5042 if (args != nullptr && *args == '\0')
5043 args = nullptr;
5044 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5045 }
5046
5047 /* Command completer for 'info types' command. */
5048
5049 static void
5050 info_types_command_completer (struct cmd_list_element *ignore,
5051 completion_tracker &tracker,
5052 const char *text, const char * /* word */)
5053 {
5054 const auto group
5055 = make_info_types_options_def_group (nullptr);
5056 if (gdb::option::complete_options
5057 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5058 return;
5059
5060 const char *word = advance_to_expression_complete_word_point (tracker, text);
5061 symbol_completer (ignore, tracker, text, word);
5062 }
5063
5064 /* Breakpoint all functions matching regular expression. */
5065
5066 void
5067 rbreak_command_wrapper (char *regexp, int from_tty)
5068 {
5069 rbreak_command (regexp, from_tty);
5070 }
5071
5072 static void
5073 rbreak_command (const char *regexp, int from_tty)
5074 {
5075 std::string string;
5076 const char **files = NULL;
5077 const char *file_name;
5078 int nfiles = 0;
5079
5080 if (regexp)
5081 {
5082 const char *colon = strchr (regexp, ':');
5083
5084 if (colon && *(colon + 1) != ':')
5085 {
5086 int colon_index;
5087 char *local_name;
5088
5089 colon_index = colon - regexp;
5090 local_name = (char *) alloca (colon_index + 1);
5091 memcpy (local_name, regexp, colon_index);
5092 local_name[colon_index--] = 0;
5093 while (isspace (local_name[colon_index]))
5094 local_name[colon_index--] = 0;
5095 file_name = local_name;
5096 files = &file_name;
5097 nfiles = 1;
5098 regexp = skip_spaces (colon + 1);
5099 }
5100 }
5101
5102 std::vector<symbol_search> symbols = search_symbols (regexp,
5103 FUNCTIONS_DOMAIN,
5104 NULL,
5105 nfiles, files,
5106 false);
5107
5108 scoped_rbreak_breakpoints finalize;
5109 for (const symbol_search &p : symbols)
5110 {
5111 if (p.msymbol.minsym == NULL)
5112 {
5113 struct symtab *symtab = symbol_symtab (p.symbol);
5114 const char *fullname = symtab_to_fullname (symtab);
5115
5116 string = string_printf ("%s:'%s'", fullname,
5117 SYMBOL_LINKAGE_NAME (p.symbol));
5118 break_command (&string[0], from_tty);
5119 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5120 }
5121 else
5122 {
5123 string = string_printf ("'%s'",
5124 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
5125
5126 break_command (&string[0], from_tty);
5127 printf_filtered ("<function, no debug info> %s;\n",
5128 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
5129 }
5130 }
5131 }
5132 \f
5133
5134 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5135
5136 static int
5137 compare_symbol_name (const char *symbol_name, language symbol_language,
5138 const lookup_name_info &lookup_name,
5139 completion_match_result &match_res)
5140 {
5141 const language_defn *lang = language_def (symbol_language);
5142
5143 symbol_name_matcher_ftype *name_match
5144 = get_symbol_name_matcher (lang, lookup_name);
5145
5146 return name_match (symbol_name, lookup_name, &match_res);
5147 }
5148
5149 /* See symtab.h. */
5150
5151 void
5152 completion_list_add_name (completion_tracker &tracker,
5153 language symbol_language,
5154 const char *symname,
5155 const lookup_name_info &lookup_name,
5156 const char *text, const char *word)
5157 {
5158 completion_match_result &match_res
5159 = tracker.reset_completion_match_result ();
5160
5161 /* Clip symbols that cannot match. */
5162 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5163 return;
5164
5165 /* Refresh SYMNAME from the match string. It's potentially
5166 different depending on language. (E.g., on Ada, the match may be
5167 the encoded symbol name wrapped in "<>"). */
5168 symname = match_res.match.match ();
5169 gdb_assert (symname != NULL);
5170
5171 /* We have a match for a completion, so add SYMNAME to the current list
5172 of matches. Note that the name is moved to freshly malloc'd space. */
5173
5174 {
5175 gdb::unique_xmalloc_ptr<char> completion
5176 = make_completion_match_str (symname, text, word);
5177
5178 /* Here we pass the match-for-lcd object to add_completion. Some
5179 languages match the user text against substrings of symbol
5180 names in some cases. E.g., in C++, "b push_ba" completes to
5181 "std::vector::push_back", "std::string::push_back", etc., and
5182 in this case we want the completion lowest common denominator
5183 to be "push_back" instead of "std::". */
5184 tracker.add_completion (std::move (completion),
5185 &match_res.match_for_lcd, text, word);
5186 }
5187 }
5188
5189 /* completion_list_add_name wrapper for struct symbol. */
5190
5191 static void
5192 completion_list_add_symbol (completion_tracker &tracker,
5193 symbol *sym,
5194 const lookup_name_info &lookup_name,
5195 const char *text, const char *word)
5196 {
5197 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5198 SYMBOL_NATURAL_NAME (sym),
5199 lookup_name, text, word);
5200 }
5201
5202 /* completion_list_add_name wrapper for struct minimal_symbol. */
5203
5204 static void
5205 completion_list_add_msymbol (completion_tracker &tracker,
5206 minimal_symbol *sym,
5207 const lookup_name_info &lookup_name,
5208 const char *text, const char *word)
5209 {
5210 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5211 MSYMBOL_NATURAL_NAME (sym),
5212 lookup_name, text, word);
5213 }
5214
5215
5216 /* ObjC: In case we are completing on a selector, look as the msymbol
5217 again and feed all the selectors into the mill. */
5218
5219 static void
5220 completion_list_objc_symbol (completion_tracker &tracker,
5221 struct minimal_symbol *msymbol,
5222 const lookup_name_info &lookup_name,
5223 const char *text, const char *word)
5224 {
5225 static char *tmp = NULL;
5226 static unsigned int tmplen = 0;
5227
5228 const char *method, *category, *selector;
5229 char *tmp2 = NULL;
5230
5231 method = MSYMBOL_NATURAL_NAME (msymbol);
5232
5233 /* Is it a method? */
5234 if ((method[0] != '-') && (method[0] != '+'))
5235 return;
5236
5237 if (text[0] == '[')
5238 /* Complete on shortened method method. */
5239 completion_list_add_name (tracker, language_objc,
5240 method + 1,
5241 lookup_name,
5242 text, word);
5243
5244 while ((strlen (method) + 1) >= tmplen)
5245 {
5246 if (tmplen == 0)
5247 tmplen = 1024;
5248 else
5249 tmplen *= 2;
5250 tmp = (char *) xrealloc (tmp, tmplen);
5251 }
5252 selector = strchr (method, ' ');
5253 if (selector != NULL)
5254 selector++;
5255
5256 category = strchr (method, '(');
5257
5258 if ((category != NULL) && (selector != NULL))
5259 {
5260 memcpy (tmp, method, (category - method));
5261 tmp[category - method] = ' ';
5262 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5263 completion_list_add_name (tracker, language_objc, tmp,
5264 lookup_name, text, word);
5265 if (text[0] == '[')
5266 completion_list_add_name (tracker, language_objc, tmp + 1,
5267 lookup_name, text, word);
5268 }
5269
5270 if (selector != NULL)
5271 {
5272 /* Complete on selector only. */
5273 strcpy (tmp, selector);
5274 tmp2 = strchr (tmp, ']');
5275 if (tmp2 != NULL)
5276 *tmp2 = '\0';
5277
5278 completion_list_add_name (tracker, language_objc, tmp,
5279 lookup_name, text, word);
5280 }
5281 }
5282
5283 /* Break the non-quoted text based on the characters which are in
5284 symbols. FIXME: This should probably be language-specific. */
5285
5286 static const char *
5287 language_search_unquoted_string (const char *text, const char *p)
5288 {
5289 for (; p > text; --p)
5290 {
5291 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5292 continue;
5293 else
5294 {
5295 if ((current_language->la_language == language_objc))
5296 {
5297 if (p[-1] == ':') /* Might be part of a method name. */
5298 continue;
5299 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5300 p -= 2; /* Beginning of a method name. */
5301 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5302 { /* Might be part of a method name. */
5303 const char *t = p;
5304
5305 /* Seeing a ' ' or a '(' is not conclusive evidence
5306 that we are in the middle of a method name. However,
5307 finding "-[" or "+[" should be pretty un-ambiguous.
5308 Unfortunately we have to find it now to decide. */
5309
5310 while (t > text)
5311 if (isalnum (t[-1]) || t[-1] == '_' ||
5312 t[-1] == ' ' || t[-1] == ':' ||
5313 t[-1] == '(' || t[-1] == ')')
5314 --t;
5315 else
5316 break;
5317
5318 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5319 p = t - 2; /* Method name detected. */
5320 /* Else we leave with p unchanged. */
5321 }
5322 }
5323 break;
5324 }
5325 }
5326 return p;
5327 }
5328
5329 static void
5330 completion_list_add_fields (completion_tracker &tracker,
5331 struct symbol *sym,
5332 const lookup_name_info &lookup_name,
5333 const char *text, const char *word)
5334 {
5335 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5336 {
5337 struct type *t = SYMBOL_TYPE (sym);
5338 enum type_code c = TYPE_CODE (t);
5339 int j;
5340
5341 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5342 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5343 if (TYPE_FIELD_NAME (t, j))
5344 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5345 TYPE_FIELD_NAME (t, j),
5346 lookup_name, text, word);
5347 }
5348 }
5349
5350 /* See symtab.h. */
5351
5352 bool
5353 symbol_is_function_or_method (symbol *sym)
5354 {
5355 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5356 {
5357 case TYPE_CODE_FUNC:
5358 case TYPE_CODE_METHOD:
5359 return true;
5360 default:
5361 return false;
5362 }
5363 }
5364
5365 /* See symtab.h. */
5366
5367 bool
5368 symbol_is_function_or_method (minimal_symbol *msymbol)
5369 {
5370 switch (MSYMBOL_TYPE (msymbol))
5371 {
5372 case mst_text:
5373 case mst_text_gnu_ifunc:
5374 case mst_solib_trampoline:
5375 case mst_file_text:
5376 return true;
5377 default:
5378 return false;
5379 }
5380 }
5381
5382 /* See symtab.h. */
5383
5384 bound_minimal_symbol
5385 find_gnu_ifunc (const symbol *sym)
5386 {
5387 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5388 return {};
5389
5390 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5391 symbol_name_match_type::SEARCH_NAME);
5392 struct objfile *objfile = symbol_objfile (sym);
5393
5394 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5395 minimal_symbol *ifunc = NULL;
5396
5397 iterate_over_minimal_symbols (objfile, lookup_name,
5398 [&] (minimal_symbol *minsym)
5399 {
5400 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5401 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5402 {
5403 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5404 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5405 {
5406 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5407 msym_addr
5408 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5409 msym_addr,
5410 current_top_target ());
5411 }
5412 if (msym_addr == address)
5413 {
5414 ifunc = minsym;
5415 return true;
5416 }
5417 }
5418 return false;
5419 });
5420
5421 if (ifunc != NULL)
5422 return {ifunc, objfile};
5423 return {};
5424 }
5425
5426 /* Add matching symbols from SYMTAB to the current completion list. */
5427
5428 static void
5429 add_symtab_completions (struct compunit_symtab *cust,
5430 completion_tracker &tracker,
5431 complete_symbol_mode mode,
5432 const lookup_name_info &lookup_name,
5433 const char *text, const char *word,
5434 enum type_code code)
5435 {
5436 struct symbol *sym;
5437 const struct block *b;
5438 struct block_iterator iter;
5439 int i;
5440
5441 if (cust == NULL)
5442 return;
5443
5444 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5445 {
5446 QUIT;
5447 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5448 ALL_BLOCK_SYMBOLS (b, iter, sym)
5449 {
5450 if (completion_skip_symbol (mode, sym))
5451 continue;
5452
5453 if (code == TYPE_CODE_UNDEF
5454 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5455 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5456 completion_list_add_symbol (tracker, sym,
5457 lookup_name,
5458 text, word);
5459 }
5460 }
5461 }
5462
5463 void
5464 default_collect_symbol_completion_matches_break_on
5465 (completion_tracker &tracker, complete_symbol_mode mode,
5466 symbol_name_match_type name_match_type,
5467 const char *text, const char *word,
5468 const char *break_on, enum type_code code)
5469 {
5470 /* Problem: All of the symbols have to be copied because readline
5471 frees them. I'm not going to worry about this; hopefully there
5472 won't be that many. */
5473
5474 struct symbol *sym;
5475 const struct block *b;
5476 const struct block *surrounding_static_block, *surrounding_global_block;
5477 struct block_iterator iter;
5478 /* The symbol we are completing on. Points in same buffer as text. */
5479 const char *sym_text;
5480
5481 /* Now look for the symbol we are supposed to complete on. */
5482 if (mode == complete_symbol_mode::LINESPEC)
5483 sym_text = text;
5484 else
5485 {
5486 const char *p;
5487 char quote_found;
5488 const char *quote_pos = NULL;
5489
5490 /* First see if this is a quoted string. */
5491 quote_found = '\0';
5492 for (p = text; *p != '\0'; ++p)
5493 {
5494 if (quote_found != '\0')
5495 {
5496 if (*p == quote_found)
5497 /* Found close quote. */
5498 quote_found = '\0';
5499 else if (*p == '\\' && p[1] == quote_found)
5500 /* A backslash followed by the quote character
5501 doesn't end the string. */
5502 ++p;
5503 }
5504 else if (*p == '\'' || *p == '"')
5505 {
5506 quote_found = *p;
5507 quote_pos = p;
5508 }
5509 }
5510 if (quote_found == '\'')
5511 /* A string within single quotes can be a symbol, so complete on it. */
5512 sym_text = quote_pos + 1;
5513 else if (quote_found == '"')
5514 /* A double-quoted string is never a symbol, nor does it make sense
5515 to complete it any other way. */
5516 {
5517 return;
5518 }
5519 else
5520 {
5521 /* It is not a quoted string. Break it based on the characters
5522 which are in symbols. */
5523 while (p > text)
5524 {
5525 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5526 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5527 --p;
5528 else
5529 break;
5530 }
5531 sym_text = p;
5532 }
5533 }
5534
5535 lookup_name_info lookup_name (sym_text, name_match_type, true);
5536
5537 /* At this point scan through the misc symbol vectors and add each
5538 symbol you find to the list. Eventually we want to ignore
5539 anything that isn't a text symbol (everything else will be
5540 handled by the psymtab code below). */
5541
5542 if (code == TYPE_CODE_UNDEF)
5543 {
5544 for (objfile *objfile : current_program_space->objfiles ())
5545 {
5546 for (minimal_symbol *msymbol : objfile->msymbols ())
5547 {
5548 QUIT;
5549
5550 if (completion_skip_symbol (mode, msymbol))
5551 continue;
5552
5553 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5554 sym_text, word);
5555
5556 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5557 sym_text, word);
5558 }
5559 }
5560 }
5561
5562 /* Add completions for all currently loaded symbol tables. */
5563 for (objfile *objfile : current_program_space->objfiles ())
5564 {
5565 for (compunit_symtab *cust : objfile->compunits ())
5566 add_symtab_completions (cust, tracker, mode, lookup_name,
5567 sym_text, word, code);
5568 }
5569
5570 /* Look through the partial symtabs for all symbols which begin by
5571 matching SYM_TEXT. Expand all CUs that you find to the list. */
5572 expand_symtabs_matching (NULL,
5573 lookup_name,
5574 NULL,
5575 [&] (compunit_symtab *symtab) /* expansion notify */
5576 {
5577 add_symtab_completions (symtab,
5578 tracker, mode, lookup_name,
5579 sym_text, word, code);
5580 },
5581 ALL_DOMAIN);
5582
5583 /* Search upwards from currently selected frame (so that we can
5584 complete on local vars). Also catch fields of types defined in
5585 this places which match our text string. Only complete on types
5586 visible from current context. */
5587
5588 b = get_selected_block (0);
5589 surrounding_static_block = block_static_block (b);
5590 surrounding_global_block = block_global_block (b);
5591 if (surrounding_static_block != NULL)
5592 while (b != surrounding_static_block)
5593 {
5594 QUIT;
5595
5596 ALL_BLOCK_SYMBOLS (b, iter, sym)
5597 {
5598 if (code == TYPE_CODE_UNDEF)
5599 {
5600 completion_list_add_symbol (tracker, sym, lookup_name,
5601 sym_text, word);
5602 completion_list_add_fields (tracker, sym, lookup_name,
5603 sym_text, word);
5604 }
5605 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5606 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5607 completion_list_add_symbol (tracker, sym, lookup_name,
5608 sym_text, word);
5609 }
5610
5611 /* Stop when we encounter an enclosing function. Do not stop for
5612 non-inlined functions - the locals of the enclosing function
5613 are in scope for a nested function. */
5614 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5615 break;
5616 b = BLOCK_SUPERBLOCK (b);
5617 }
5618
5619 /* Add fields from the file's types; symbols will be added below. */
5620
5621 if (code == TYPE_CODE_UNDEF)
5622 {
5623 if (surrounding_static_block != NULL)
5624 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5625 completion_list_add_fields (tracker, sym, lookup_name,
5626 sym_text, word);
5627
5628 if (surrounding_global_block != NULL)
5629 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5630 completion_list_add_fields (tracker, sym, lookup_name,
5631 sym_text, word);
5632 }
5633
5634 /* Skip macros if we are completing a struct tag -- arguable but
5635 usually what is expected. */
5636 if (current_language->la_macro_expansion == macro_expansion_c
5637 && code == TYPE_CODE_UNDEF)
5638 {
5639 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5640
5641 /* This adds a macro's name to the current completion list. */
5642 auto add_macro_name = [&] (const char *macro_name,
5643 const macro_definition *,
5644 macro_source_file *,
5645 int)
5646 {
5647 completion_list_add_name (tracker, language_c, macro_name,
5648 lookup_name, sym_text, word);
5649 };
5650
5651 /* Add any macros visible in the default scope. Note that this
5652 may yield the occasional wrong result, because an expression
5653 might be evaluated in a scope other than the default. For
5654 example, if the user types "break file:line if <TAB>", the
5655 resulting expression will be evaluated at "file:line" -- but
5656 at there does not seem to be a way to detect this at
5657 completion time. */
5658 scope = default_macro_scope ();
5659 if (scope)
5660 macro_for_each_in_scope (scope->file, scope->line,
5661 add_macro_name);
5662
5663 /* User-defined macros are always visible. */
5664 macro_for_each (macro_user_macros, add_macro_name);
5665 }
5666 }
5667
5668 void
5669 default_collect_symbol_completion_matches (completion_tracker &tracker,
5670 complete_symbol_mode mode,
5671 symbol_name_match_type name_match_type,
5672 const char *text, const char *word,
5673 enum type_code code)
5674 {
5675 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5676 name_match_type,
5677 text, word, "",
5678 code);
5679 }
5680
5681 /* Collect all symbols (regardless of class) which begin by matching
5682 TEXT. */
5683
5684 void
5685 collect_symbol_completion_matches (completion_tracker &tracker,
5686 complete_symbol_mode mode,
5687 symbol_name_match_type name_match_type,
5688 const char *text, const char *word)
5689 {
5690 current_language->la_collect_symbol_completion_matches (tracker, mode,
5691 name_match_type,
5692 text, word,
5693 TYPE_CODE_UNDEF);
5694 }
5695
5696 /* Like collect_symbol_completion_matches, but only collect
5697 STRUCT_DOMAIN symbols whose type code is CODE. */
5698
5699 void
5700 collect_symbol_completion_matches_type (completion_tracker &tracker,
5701 const char *text, const char *word,
5702 enum type_code code)
5703 {
5704 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5705 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5706
5707 gdb_assert (code == TYPE_CODE_UNION
5708 || code == TYPE_CODE_STRUCT
5709 || code == TYPE_CODE_ENUM);
5710 current_language->la_collect_symbol_completion_matches (tracker, mode,
5711 name_match_type,
5712 text, word, code);
5713 }
5714
5715 /* Like collect_symbol_completion_matches, but collects a list of
5716 symbols defined in all source files named SRCFILE. */
5717
5718 void
5719 collect_file_symbol_completion_matches (completion_tracker &tracker,
5720 complete_symbol_mode mode,
5721 symbol_name_match_type name_match_type,
5722 const char *text, const char *word,
5723 const char *srcfile)
5724 {
5725 /* The symbol we are completing on. Points in same buffer as text. */
5726 const char *sym_text;
5727
5728 /* Now look for the symbol we are supposed to complete on.
5729 FIXME: This should be language-specific. */
5730 if (mode == complete_symbol_mode::LINESPEC)
5731 sym_text = text;
5732 else
5733 {
5734 const char *p;
5735 char quote_found;
5736 const char *quote_pos = NULL;
5737
5738 /* First see if this is a quoted string. */
5739 quote_found = '\0';
5740 for (p = text; *p != '\0'; ++p)
5741 {
5742 if (quote_found != '\0')
5743 {
5744 if (*p == quote_found)
5745 /* Found close quote. */
5746 quote_found = '\0';
5747 else if (*p == '\\' && p[1] == quote_found)
5748 /* A backslash followed by the quote character
5749 doesn't end the string. */
5750 ++p;
5751 }
5752 else if (*p == '\'' || *p == '"')
5753 {
5754 quote_found = *p;
5755 quote_pos = p;
5756 }
5757 }
5758 if (quote_found == '\'')
5759 /* A string within single quotes can be a symbol, so complete on it. */
5760 sym_text = quote_pos + 1;
5761 else if (quote_found == '"')
5762 /* A double-quoted string is never a symbol, nor does it make sense
5763 to complete it any other way. */
5764 {
5765 return;
5766 }
5767 else
5768 {
5769 /* Not a quoted string. */
5770 sym_text = language_search_unquoted_string (text, p);
5771 }
5772 }
5773
5774 lookup_name_info lookup_name (sym_text, name_match_type, true);
5775
5776 /* Go through symtabs for SRCFILE and check the externs and statics
5777 for symbols which match. */
5778 iterate_over_symtabs (srcfile, [&] (symtab *s)
5779 {
5780 add_symtab_completions (SYMTAB_COMPUNIT (s),
5781 tracker, mode, lookup_name,
5782 sym_text, word, TYPE_CODE_UNDEF);
5783 return false;
5784 });
5785 }
5786
5787 /* A helper function for make_source_files_completion_list. It adds
5788 another file name to a list of possible completions, growing the
5789 list as necessary. */
5790
5791 static void
5792 add_filename_to_list (const char *fname, const char *text, const char *word,
5793 completion_list *list)
5794 {
5795 list->emplace_back (make_completion_match_str (fname, text, word));
5796 }
5797
5798 static int
5799 not_interesting_fname (const char *fname)
5800 {
5801 static const char *illegal_aliens[] = {
5802 "_globals_", /* inserted by coff_symtab_read */
5803 NULL
5804 };
5805 int i;
5806
5807 for (i = 0; illegal_aliens[i]; i++)
5808 {
5809 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5810 return 1;
5811 }
5812 return 0;
5813 }
5814
5815 /* An object of this type is passed as the user_data argument to
5816 map_partial_symbol_filenames. */
5817 struct add_partial_filename_data
5818 {
5819 struct filename_seen_cache *filename_seen_cache;
5820 const char *text;
5821 const char *word;
5822 int text_len;
5823 completion_list *list;
5824 };
5825
5826 /* A callback for map_partial_symbol_filenames. */
5827
5828 static void
5829 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5830 void *user_data)
5831 {
5832 struct add_partial_filename_data *data
5833 = (struct add_partial_filename_data *) user_data;
5834
5835 if (not_interesting_fname (filename))
5836 return;
5837 if (!data->filename_seen_cache->seen (filename)
5838 && filename_ncmp (filename, data->text, data->text_len) == 0)
5839 {
5840 /* This file matches for a completion; add it to the
5841 current list of matches. */
5842 add_filename_to_list (filename, data->text, data->word, data->list);
5843 }
5844 else
5845 {
5846 const char *base_name = lbasename (filename);
5847
5848 if (base_name != filename
5849 && !data->filename_seen_cache->seen (base_name)
5850 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5851 add_filename_to_list (base_name, data->text, data->word, data->list);
5852 }
5853 }
5854
5855 /* Return a list of all source files whose names begin with matching
5856 TEXT. The file names are looked up in the symbol tables of this
5857 program. */
5858
5859 completion_list
5860 make_source_files_completion_list (const char *text, const char *word)
5861 {
5862 size_t text_len = strlen (text);
5863 completion_list list;
5864 const char *base_name;
5865 struct add_partial_filename_data datum;
5866
5867 if (!have_full_symbols () && !have_partial_symbols ())
5868 return list;
5869
5870 filename_seen_cache filenames_seen;
5871
5872 for (objfile *objfile : current_program_space->objfiles ())
5873 {
5874 for (compunit_symtab *cu : objfile->compunits ())
5875 {
5876 for (symtab *s : compunit_filetabs (cu))
5877 {
5878 if (not_interesting_fname (s->filename))
5879 continue;
5880 if (!filenames_seen.seen (s->filename)
5881 && filename_ncmp (s->filename, text, text_len) == 0)
5882 {
5883 /* This file matches for a completion; add it to the current
5884 list of matches. */
5885 add_filename_to_list (s->filename, text, word, &list);
5886 }
5887 else
5888 {
5889 /* NOTE: We allow the user to type a base name when the
5890 debug info records leading directories, but not the other
5891 way around. This is what subroutines of breakpoint
5892 command do when they parse file names. */
5893 base_name = lbasename (s->filename);
5894 if (base_name != s->filename
5895 && !filenames_seen.seen (base_name)
5896 && filename_ncmp (base_name, text, text_len) == 0)
5897 add_filename_to_list (base_name, text, word, &list);
5898 }
5899 }
5900 }
5901 }
5902
5903 datum.filename_seen_cache = &filenames_seen;
5904 datum.text = text;
5905 datum.word = word;
5906 datum.text_len = text_len;
5907 datum.list = &list;
5908 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5909 0 /*need_fullname*/);
5910
5911 return list;
5912 }
5913 \f
5914 /* Track MAIN */
5915
5916 /* Return the "main_info" object for the current program space. If
5917 the object has not yet been created, create it and fill in some
5918 default values. */
5919
5920 static struct main_info *
5921 get_main_info (void)
5922 {
5923 struct main_info *info = main_progspace_key.get (current_program_space);
5924
5925 if (info == NULL)
5926 {
5927 /* It may seem strange to store the main name in the progspace
5928 and also in whatever objfile happens to see a main name in
5929 its debug info. The reason for this is mainly historical:
5930 gdb returned "main" as the name even if no function named
5931 "main" was defined the program; and this approach lets us
5932 keep compatibility. */
5933 info = main_progspace_key.emplace (current_program_space);
5934 }
5935
5936 return info;
5937 }
5938
5939 static void
5940 set_main_name (const char *name, enum language lang)
5941 {
5942 struct main_info *info = get_main_info ();
5943
5944 if (info->name_of_main != NULL)
5945 {
5946 xfree (info->name_of_main);
5947 info->name_of_main = NULL;
5948 info->language_of_main = language_unknown;
5949 }
5950 if (name != NULL)
5951 {
5952 info->name_of_main = xstrdup (name);
5953 info->language_of_main = lang;
5954 }
5955 }
5956
5957 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5958 accordingly. */
5959
5960 static void
5961 find_main_name (void)
5962 {
5963 const char *new_main_name;
5964
5965 /* First check the objfiles to see whether a debuginfo reader has
5966 picked up the appropriate main name. Historically the main name
5967 was found in a more or less random way; this approach instead
5968 relies on the order of objfile creation -- which still isn't
5969 guaranteed to get the correct answer, but is just probably more
5970 accurate. */
5971 for (objfile *objfile : current_program_space->objfiles ())
5972 {
5973 if (objfile->per_bfd->name_of_main != NULL)
5974 {
5975 set_main_name (objfile->per_bfd->name_of_main,
5976 objfile->per_bfd->language_of_main);
5977 return;
5978 }
5979 }
5980
5981 /* Try to see if the main procedure is in Ada. */
5982 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5983 be to add a new method in the language vector, and call this
5984 method for each language until one of them returns a non-empty
5985 name. This would allow us to remove this hard-coded call to
5986 an Ada function. It is not clear that this is a better approach
5987 at this point, because all methods need to be written in a way
5988 such that false positives never be returned. For instance, it is
5989 important that a method does not return a wrong name for the main
5990 procedure if the main procedure is actually written in a different
5991 language. It is easy to guaranty this with Ada, since we use a
5992 special symbol generated only when the main in Ada to find the name
5993 of the main procedure. It is difficult however to see how this can
5994 be guarantied for languages such as C, for instance. This suggests
5995 that order of call for these methods becomes important, which means
5996 a more complicated approach. */
5997 new_main_name = ada_main_name ();
5998 if (new_main_name != NULL)
5999 {
6000 set_main_name (new_main_name, language_ada);
6001 return;
6002 }
6003
6004 new_main_name = d_main_name ();
6005 if (new_main_name != NULL)
6006 {
6007 set_main_name (new_main_name, language_d);
6008 return;
6009 }
6010
6011 new_main_name = go_main_name ();
6012 if (new_main_name != NULL)
6013 {
6014 set_main_name (new_main_name, language_go);
6015 return;
6016 }
6017
6018 new_main_name = pascal_main_name ();
6019 if (new_main_name != NULL)
6020 {
6021 set_main_name (new_main_name, language_pascal);
6022 return;
6023 }
6024
6025 /* The languages above didn't identify the name of the main procedure.
6026 Fallback to "main". */
6027 set_main_name ("main", language_unknown);
6028 }
6029
6030 /* See symtab.h. */
6031
6032 const char *
6033 main_name ()
6034 {
6035 struct main_info *info = get_main_info ();
6036
6037 if (info->name_of_main == NULL)
6038 find_main_name ();
6039
6040 return info->name_of_main;
6041 }
6042
6043 /* Return the language of the main function. If it is not known,
6044 return language_unknown. */
6045
6046 enum language
6047 main_language (void)
6048 {
6049 struct main_info *info = get_main_info ();
6050
6051 if (info->name_of_main == NULL)
6052 find_main_name ();
6053
6054 return info->language_of_main;
6055 }
6056
6057 /* Handle ``executable_changed'' events for the symtab module. */
6058
6059 static void
6060 symtab_observer_executable_changed (void)
6061 {
6062 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6063 set_main_name (NULL, language_unknown);
6064 }
6065
6066 /* Return 1 if the supplied producer string matches the ARM RealView
6067 compiler (armcc). */
6068
6069 int
6070 producer_is_realview (const char *producer)
6071 {
6072 static const char *const arm_idents[] = {
6073 "ARM C Compiler, ADS",
6074 "Thumb C Compiler, ADS",
6075 "ARM C++ Compiler, ADS",
6076 "Thumb C++ Compiler, ADS",
6077 "ARM/Thumb C/C++ Compiler, RVCT",
6078 "ARM C/C++ Compiler, RVCT"
6079 };
6080 int i;
6081
6082 if (producer == NULL)
6083 return 0;
6084
6085 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6086 if (startswith (producer, arm_idents[i]))
6087 return 1;
6088
6089 return 0;
6090 }
6091
6092 \f
6093
6094 /* The next index to hand out in response to a registration request. */
6095
6096 static int next_aclass_value = LOC_FINAL_VALUE;
6097
6098 /* The maximum number of "aclass" registrations we support. This is
6099 constant for convenience. */
6100 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6101
6102 /* The objects representing the various "aclass" values. The elements
6103 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6104 elements are those registered at gdb initialization time. */
6105
6106 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6107
6108 /* The globally visible pointer. This is separate from 'symbol_impl'
6109 so that it can be const. */
6110
6111 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6112
6113 /* Make sure we saved enough room in struct symbol. */
6114
6115 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6116
6117 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6118 is the ops vector associated with this index. This returns the new
6119 index, which should be used as the aclass_index field for symbols
6120 of this type. */
6121
6122 int
6123 register_symbol_computed_impl (enum address_class aclass,
6124 const struct symbol_computed_ops *ops)
6125 {
6126 int result = next_aclass_value++;
6127
6128 gdb_assert (aclass == LOC_COMPUTED);
6129 gdb_assert (result < MAX_SYMBOL_IMPLS);
6130 symbol_impl[result].aclass = aclass;
6131 symbol_impl[result].ops_computed = ops;
6132
6133 /* Sanity check OPS. */
6134 gdb_assert (ops != NULL);
6135 gdb_assert (ops->tracepoint_var_ref != NULL);
6136 gdb_assert (ops->describe_location != NULL);
6137 gdb_assert (ops->get_symbol_read_needs != NULL);
6138 gdb_assert (ops->read_variable != NULL);
6139
6140 return result;
6141 }
6142
6143 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6144 OPS is the ops vector associated with this index. This returns the
6145 new index, which should be used as the aclass_index field for symbols
6146 of this type. */
6147
6148 int
6149 register_symbol_block_impl (enum address_class aclass,
6150 const struct symbol_block_ops *ops)
6151 {
6152 int result = next_aclass_value++;
6153
6154 gdb_assert (aclass == LOC_BLOCK);
6155 gdb_assert (result < MAX_SYMBOL_IMPLS);
6156 symbol_impl[result].aclass = aclass;
6157 symbol_impl[result].ops_block = ops;
6158
6159 /* Sanity check OPS. */
6160 gdb_assert (ops != NULL);
6161 gdb_assert (ops->find_frame_base_location != NULL);
6162
6163 return result;
6164 }
6165
6166 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6167 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6168 this index. This returns the new index, which should be used as
6169 the aclass_index field for symbols of this type. */
6170
6171 int
6172 register_symbol_register_impl (enum address_class aclass,
6173 const struct symbol_register_ops *ops)
6174 {
6175 int result = next_aclass_value++;
6176
6177 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6178 gdb_assert (result < MAX_SYMBOL_IMPLS);
6179 symbol_impl[result].aclass = aclass;
6180 symbol_impl[result].ops_register = ops;
6181
6182 return result;
6183 }
6184
6185 /* Initialize elements of 'symbol_impl' for the constants in enum
6186 address_class. */
6187
6188 static void
6189 initialize_ordinary_address_classes (void)
6190 {
6191 int i;
6192
6193 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6194 symbol_impl[i].aclass = (enum address_class) i;
6195 }
6196
6197 \f
6198
6199 /* Helper function to initialize the fields of an objfile-owned symbol.
6200 It assumed that *SYM is already all zeroes. */
6201
6202 static void
6203 initialize_objfile_symbol_1 (struct symbol *sym)
6204 {
6205 SYMBOL_OBJFILE_OWNED (sym) = 1;
6206 SYMBOL_SECTION (sym) = -1;
6207 }
6208
6209 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6210
6211 void
6212 initialize_objfile_symbol (struct symbol *sym)
6213 {
6214 memset (sym, 0, sizeof (*sym));
6215 initialize_objfile_symbol_1 (sym);
6216 }
6217
6218 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6219 obstack. */
6220
6221 struct symbol *
6222 allocate_symbol (struct objfile *objfile)
6223 {
6224 struct symbol *result;
6225
6226 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6227 initialize_objfile_symbol_1 (result);
6228
6229 return result;
6230 }
6231
6232 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6233 obstack. */
6234
6235 struct template_symbol *
6236 allocate_template_symbol (struct objfile *objfile)
6237 {
6238 struct template_symbol *result;
6239
6240 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6241 initialize_objfile_symbol_1 (result);
6242
6243 return result;
6244 }
6245
6246 /* See symtab.h. */
6247
6248 struct objfile *
6249 symbol_objfile (const struct symbol *symbol)
6250 {
6251 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6252 return SYMTAB_OBJFILE (symbol->owner.symtab);
6253 }
6254
6255 /* See symtab.h. */
6256
6257 struct gdbarch *
6258 symbol_arch (const struct symbol *symbol)
6259 {
6260 if (!SYMBOL_OBJFILE_OWNED (symbol))
6261 return symbol->owner.arch;
6262 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6263 }
6264
6265 /* See symtab.h. */
6266
6267 struct symtab *
6268 symbol_symtab (const struct symbol *symbol)
6269 {
6270 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6271 return symbol->owner.symtab;
6272 }
6273
6274 /* See symtab.h. */
6275
6276 void
6277 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6278 {
6279 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6280 symbol->owner.symtab = symtab;
6281 }
6282
6283 \f
6284
6285 void
6286 _initialize_symtab (void)
6287 {
6288 cmd_list_element *c;
6289
6290 initialize_ordinary_address_classes ();
6291
6292 c = add_info ("variables", info_variables_command,
6293 info_print_args_help (_("\
6294 All global and static variable names or those matching REGEXPs.\n\
6295 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6296 Prints the global and static variables.\n"),
6297 _("global and static variables"),
6298 true));
6299 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6300 if (dbx_commands)
6301 {
6302 c = add_com ("whereis", class_info, info_variables_command,
6303 info_print_args_help (_("\
6304 All global and static variable names, or those matching REGEXPs.\n\
6305 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6306 Prints the global and static variables.\n"),
6307 _("global and static variables"),
6308 true));
6309 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6310 }
6311
6312 c = add_info ("functions", info_functions_command,
6313 info_print_args_help (_("\
6314 All function names or those matching REGEXPs.\n\
6315 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6316 Prints the functions.\n"),
6317 _("functions"),
6318 true));
6319 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6320
6321 c = add_info ("types", info_types_command, _("\
6322 All type names, or those matching REGEXP.\n\
6323 Usage: info types [-q] [REGEXP]\n\
6324 Print information about all types matching REGEXP, or all types if no\n\
6325 REGEXP is given. The optional flag -q disables printing of headers."));
6326 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6327
6328 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6329
6330 static std::string info_sources_help
6331 = gdb::option::build_help (_("\
6332 All source files in the program or those matching REGEXP.\n\
6333 Usage: info sources [OPTION]... [REGEXP]\n\
6334 By default, REGEXP is used to match anywhere in the filename.\n\
6335 \n\
6336 Options:\n\
6337 %OPTIONS%"),
6338 info_sources_opts);
6339
6340 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6341 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6342
6343 add_com ("rbreak", class_breakpoint, rbreak_command,
6344 _("Set a breakpoint for all functions matching REGEXP."));
6345
6346 add_setshow_enum_cmd ("multiple-symbols", no_class,
6347 multiple_symbols_modes, &multiple_symbols_mode,
6348 _("\
6349 Set how the debugger handles ambiguities in expressions."), _("\
6350 Show how the debugger handles ambiguities in expressions."), _("\
6351 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6352 NULL, NULL, &setlist, &showlist);
6353
6354 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6355 &basenames_may_differ, _("\
6356 Set whether a source file may have multiple base names."), _("\
6357 Show whether a source file may have multiple base names."), _("\
6358 (A \"base name\" is the name of a file with the directory part removed.\n\
6359 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6360 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6361 before comparing them. Canonicalization is an expensive operation,\n\
6362 but it allows the same file be known by more than one base name.\n\
6363 If not set (the default), all source files are assumed to have just\n\
6364 one base name, and gdb will do file name comparisons more efficiently."),
6365 NULL, NULL,
6366 &setlist, &showlist);
6367
6368 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6369 _("Set debugging of symbol table creation."),
6370 _("Show debugging of symbol table creation."), _("\
6371 When enabled (non-zero), debugging messages are printed when building\n\
6372 symbol tables. A value of 1 (one) normally provides enough information.\n\
6373 A value greater than 1 provides more verbose information."),
6374 NULL,
6375 NULL,
6376 &setdebuglist, &showdebuglist);
6377
6378 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6379 _("\
6380 Set debugging of symbol lookup."), _("\
6381 Show debugging of symbol lookup."), _("\
6382 When enabled (non-zero), symbol lookups are logged."),
6383 NULL, NULL,
6384 &setdebuglist, &showdebuglist);
6385
6386 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6387 &new_symbol_cache_size,
6388 _("Set the size of the symbol cache."),
6389 _("Show the size of the symbol cache."), _("\
6390 The size of the symbol cache.\n\
6391 If zero then the symbol cache is disabled."),
6392 set_symbol_cache_size_handler, NULL,
6393 &maintenance_set_cmdlist,
6394 &maintenance_show_cmdlist);
6395
6396 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6397 _("Dump the symbol cache for each program space."),
6398 &maintenanceprintlist);
6399
6400 add_cmd ("symbol-cache-statistics", class_maintenance,
6401 maintenance_print_symbol_cache_statistics,
6402 _("Print symbol cache statistics for each program space."),
6403 &maintenanceprintlist);
6404
6405 add_cmd ("flush-symbol-cache", class_maintenance,
6406 maintenance_flush_symbol_cache,
6407 _("Flush the symbol cache for each program space."),
6408 &maintenancelist);
6409
6410 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6411 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6412 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6413 }
This page took 0.160088 seconds and 4 git commands to generate.