gdb/testsuite: make test names unique in gdb.python/py-format-string.exp
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "cli/cli-cmds.h"
46 #include "fnmatch.h"
47 #include "hashtab.h"
48 #include "typeprint.h"
49
50 #include "gdb_obstack.h"
51 #include "block.h"
52 #include "dictionary.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include <sys/stat.h>
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observable.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "parser-defs.h"
66 #include "completer.h"
67 #include "progspace-and-thread.h"
68 #include "gdbsupport/gdb_optional.h"
69 #include "filename-seen-cache.h"
70 #include "arch-utils.h"
71 #include <algorithm>
72 #include "gdbsupport/gdb_string_view.h"
73 #include "gdbsupport/pathstuff.h"
74 #include "gdbsupport/common-utils.h"
75
76 /* Forward declarations for local functions. */
77
78 static void rbreak_command (const char *, int);
79
80 static int find_line_common (struct linetable *, int, int *, int);
81
82 static struct block_symbol
83 lookup_symbol_aux (const char *name,
84 symbol_name_match_type match_type,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 struct field_of_this_result *);
89
90 static
91 struct block_symbol lookup_local_symbol (const char *name,
92 symbol_name_match_type match_type,
93 const struct block *block,
94 const domain_enum domain,
95 enum language language);
96
97 static struct block_symbol
98 lookup_symbol_in_objfile (struct objfile *objfile,
99 enum block_enum block_index,
100 const char *name, const domain_enum domain);
101
102 /* Type of the data stored on the program space. */
103
104 struct main_info
105 {
106 main_info () = default;
107
108 ~main_info ()
109 {
110 xfree (name_of_main);
111 }
112
113 /* Name of "main". */
114
115 char *name_of_main = nullptr;
116
117 /* Language of "main". */
118
119 enum language language_of_main = language_unknown;
120 };
121
122 /* Program space key for finding name and language of "main". */
123
124 static const program_space_key<main_info> main_progspace_key;
125
126 /* The default symbol cache size.
127 There is no extra cpu cost for large N (except when flushing the cache,
128 which is rare). The value here is just a first attempt. A better default
129 value may be higher or lower. A prime number can make up for a bad hash
130 computation, so that's why the number is what it is. */
131 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
132
133 /* The maximum symbol cache size.
134 There's no method to the decision of what value to use here, other than
135 there's no point in allowing a user typo to make gdb consume all memory. */
136 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
137
138 /* symbol_cache_lookup returns this if a previous lookup failed to find the
139 symbol in any objfile. */
140 #define SYMBOL_LOOKUP_FAILED \
141 ((struct block_symbol) {(struct symbol *) 1, NULL})
142 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
143
144 /* Recording lookups that don't find the symbol is just as important, if not
145 more so, than recording found symbols. */
146
147 enum symbol_cache_slot_state
148 {
149 SYMBOL_SLOT_UNUSED,
150 SYMBOL_SLOT_NOT_FOUND,
151 SYMBOL_SLOT_FOUND
152 };
153
154 struct symbol_cache_slot
155 {
156 enum symbol_cache_slot_state state;
157
158 /* The objfile that was current when the symbol was looked up.
159 This is only needed for global blocks, but for simplicity's sake
160 we allocate the space for both. If data shows the extra space used
161 for static blocks is a problem, we can split things up then.
162
163 Global blocks need cache lookup to include the objfile context because
164 we need to account for gdbarch_iterate_over_objfiles_in_search_order
165 which can traverse objfiles in, effectively, any order, depending on
166 the current objfile, thus affecting which symbol is found. Normally,
167 only the current objfile is searched first, and then the rest are
168 searched in recorded order; but putting cache lookup inside
169 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
170 Instead we just make the current objfile part of the context of
171 cache lookup. This means we can record the same symbol multiple times,
172 each with a different "current objfile" that was in effect when the
173 lookup was saved in the cache, but cache space is pretty cheap. */
174 const struct objfile *objfile_context;
175
176 union
177 {
178 struct block_symbol found;
179 struct
180 {
181 char *name;
182 domain_enum domain;
183 } not_found;
184 } value;
185 };
186
187 /* Clear out SLOT. */
188
189 static void
190 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
191 {
192 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
193 xfree (slot->value.not_found.name);
194 slot->state = SYMBOL_SLOT_UNUSED;
195 }
196
197 /* Symbols don't specify global vs static block.
198 So keep them in separate caches. */
199
200 struct block_symbol_cache
201 {
202 unsigned int hits;
203 unsigned int misses;
204 unsigned int collisions;
205
206 /* SYMBOLS is a variable length array of this size.
207 One can imagine that in general one cache (global/static) should be a
208 fraction of the size of the other, but there's no data at the moment
209 on which to decide. */
210 unsigned int size;
211
212 struct symbol_cache_slot symbols[1];
213 };
214
215 /* Clear all slots of BSC and free BSC. */
216
217 static void
218 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
219 {
220 if (bsc != nullptr)
221 {
222 for (unsigned int i = 0; i < bsc->size; i++)
223 symbol_cache_clear_slot (&bsc->symbols[i]);
224 xfree (bsc);
225 }
226 }
227
228 /* The symbol cache.
229
230 Searching for symbols in the static and global blocks over multiple objfiles
231 again and again can be slow, as can searching very big objfiles. This is a
232 simple cache to improve symbol lookup performance, which is critical to
233 overall gdb performance.
234
235 Symbols are hashed on the name, its domain, and block.
236 They are also hashed on their objfile for objfile-specific lookups. */
237
238 struct symbol_cache
239 {
240 symbol_cache () = default;
241
242 ~symbol_cache ()
243 {
244 destroy_block_symbol_cache (global_symbols);
245 destroy_block_symbol_cache (static_symbols);
246 }
247
248 struct block_symbol_cache *global_symbols = nullptr;
249 struct block_symbol_cache *static_symbols = nullptr;
250 };
251
252 /* Program space key for finding its symbol cache. */
253
254 static const program_space_key<symbol_cache> symbol_cache_key;
255
256 /* When non-zero, print debugging messages related to symtab creation. */
257 unsigned int symtab_create_debug = 0;
258
259 /* When non-zero, print debugging messages related to symbol lookup. */
260 unsigned int symbol_lookup_debug = 0;
261
262 /* The size of the cache is staged here. */
263 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
264
265 /* The current value of the symbol cache size.
266 This is saved so that if the user enters a value too big we can restore
267 the original value from here. */
268 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
269
270 /* True if a file may be known by two different basenames.
271 This is the uncommon case, and significantly slows down gdb.
272 Default set to "off" to not slow down the common case. */
273 bool basenames_may_differ = false;
274
275 /* Allow the user to configure the debugger behavior with respect
276 to multiple-choice menus when more than one symbol matches during
277 a symbol lookup. */
278
279 const char multiple_symbols_ask[] = "ask";
280 const char multiple_symbols_all[] = "all";
281 const char multiple_symbols_cancel[] = "cancel";
282 static const char *const multiple_symbols_modes[] =
283 {
284 multiple_symbols_ask,
285 multiple_symbols_all,
286 multiple_symbols_cancel,
287 NULL
288 };
289 static const char *multiple_symbols_mode = multiple_symbols_all;
290
291 /* Read-only accessor to AUTO_SELECT_MODE. */
292
293 const char *
294 multiple_symbols_select_mode (void)
295 {
296 return multiple_symbols_mode;
297 }
298
299 /* Return the name of a domain_enum. */
300
301 const char *
302 domain_name (domain_enum e)
303 {
304 switch (e)
305 {
306 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
307 case VAR_DOMAIN: return "VAR_DOMAIN";
308 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
309 case MODULE_DOMAIN: return "MODULE_DOMAIN";
310 case LABEL_DOMAIN: return "LABEL_DOMAIN";
311 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
312 default: gdb_assert_not_reached ("bad domain_enum");
313 }
314 }
315
316 /* Return the name of a search_domain . */
317
318 const char *
319 search_domain_name (enum search_domain e)
320 {
321 switch (e)
322 {
323 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
324 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
325 case TYPES_DOMAIN: return "TYPES_DOMAIN";
326 case MODULES_DOMAIN: return "MODULES_DOMAIN";
327 case ALL_DOMAIN: return "ALL_DOMAIN";
328 default: gdb_assert_not_reached ("bad search_domain");
329 }
330 }
331
332 /* See symtab.h. */
333
334 struct symtab *
335 compunit_primary_filetab (const struct compunit_symtab *cust)
336 {
337 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
338
339 /* The primary file symtab is the first one in the list. */
340 return COMPUNIT_FILETABS (cust);
341 }
342
343 /* See symtab.h. */
344
345 enum language
346 compunit_language (const struct compunit_symtab *cust)
347 {
348 struct symtab *symtab = compunit_primary_filetab (cust);
349
350 /* The language of the compunit symtab is the language of its primary
351 source file. */
352 return SYMTAB_LANGUAGE (symtab);
353 }
354
355 /* See symtab.h. */
356
357 bool
358 minimal_symbol::data_p () const
359 {
360 return type == mst_data
361 || type == mst_bss
362 || type == mst_abs
363 || type == mst_file_data
364 || type == mst_file_bss;
365 }
366
367 /* See symtab.h. */
368
369 bool
370 minimal_symbol::text_p () const
371 {
372 return type == mst_text
373 || type == mst_text_gnu_ifunc
374 || type == mst_data_gnu_ifunc
375 || type == mst_slot_got_plt
376 || type == mst_solib_trampoline
377 || type == mst_file_text;
378 }
379
380 /* See whether FILENAME matches SEARCH_NAME using the rule that we
381 advertise to the user. (The manual's description of linespecs
382 describes what we advertise). Returns true if they match, false
383 otherwise. */
384
385 bool
386 compare_filenames_for_search (const char *filename, const char *search_name)
387 {
388 int len = strlen (filename);
389 size_t search_len = strlen (search_name);
390
391 if (len < search_len)
392 return false;
393
394 /* The tail of FILENAME must match. */
395 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
396 return false;
397
398 /* Either the names must completely match, or the character
399 preceding the trailing SEARCH_NAME segment of FILENAME must be a
400 directory separator.
401
402 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
403 cannot match FILENAME "/path//dir/file.c" - as user has requested
404 absolute path. The sama applies for "c:\file.c" possibly
405 incorrectly hypothetically matching "d:\dir\c:\file.c".
406
407 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
408 compatible with SEARCH_NAME "file.c". In such case a compiler had
409 to put the "c:file.c" name into debug info. Such compatibility
410 works only on GDB built for DOS host. */
411 return (len == search_len
412 || (!IS_ABSOLUTE_PATH (search_name)
413 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
414 || (HAS_DRIVE_SPEC (filename)
415 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
416 }
417
418 /* Same as compare_filenames_for_search, but for glob-style patterns.
419 Heads up on the order of the arguments. They match the order of
420 compare_filenames_for_search, but it's the opposite of the order of
421 arguments to gdb_filename_fnmatch. */
422
423 bool
424 compare_glob_filenames_for_search (const char *filename,
425 const char *search_name)
426 {
427 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
428 all /s have to be explicitly specified. */
429 int file_path_elements = count_path_elements (filename);
430 int search_path_elements = count_path_elements (search_name);
431
432 if (search_path_elements > file_path_elements)
433 return false;
434
435 if (IS_ABSOLUTE_PATH (search_name))
436 {
437 return (search_path_elements == file_path_elements
438 && gdb_filename_fnmatch (search_name, filename,
439 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
440 }
441
442 {
443 const char *file_to_compare
444 = strip_leading_path_elements (filename,
445 file_path_elements - search_path_elements);
446
447 return gdb_filename_fnmatch (search_name, file_to_compare,
448 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
449 }
450 }
451
452 /* Check for a symtab of a specific name by searching some symtabs.
453 This is a helper function for callbacks of iterate_over_symtabs.
454
455 If NAME is not absolute, then REAL_PATH is NULL
456 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
457
458 The return value, NAME, REAL_PATH and CALLBACK are identical to the
459 `map_symtabs_matching_filename' method of quick_symbol_functions.
460
461 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
462 Each symtab within the specified compunit symtab is also searched.
463 AFTER_LAST is one past the last compunit symtab to search; NULL means to
464 search until the end of the list. */
465
466 bool
467 iterate_over_some_symtabs (const char *name,
468 const char *real_path,
469 struct compunit_symtab *first,
470 struct compunit_symtab *after_last,
471 gdb::function_view<bool (symtab *)> callback)
472 {
473 struct compunit_symtab *cust;
474 const char* base_name = lbasename (name);
475
476 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
477 {
478 for (symtab *s : compunit_filetabs (cust))
479 {
480 if (compare_filenames_for_search (s->filename, name))
481 {
482 if (callback (s))
483 return true;
484 continue;
485 }
486
487 /* Before we invoke realpath, which can get expensive when many
488 files are involved, do a quick comparison of the basenames. */
489 if (! basenames_may_differ
490 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
491 continue;
492
493 if (compare_filenames_for_search (symtab_to_fullname (s), name))
494 {
495 if (callback (s))
496 return true;
497 continue;
498 }
499
500 /* If the user gave us an absolute path, try to find the file in
501 this symtab and use its absolute path. */
502 if (real_path != NULL)
503 {
504 const char *fullname = symtab_to_fullname (s);
505
506 gdb_assert (IS_ABSOLUTE_PATH (real_path));
507 gdb_assert (IS_ABSOLUTE_PATH (name));
508 gdb::unique_xmalloc_ptr<char> fullname_real_path
509 = gdb_realpath (fullname);
510 fullname = fullname_real_path.get ();
511 if (FILENAME_CMP (real_path, fullname) == 0)
512 {
513 if (callback (s))
514 return true;
515 continue;
516 }
517 }
518 }
519 }
520
521 return false;
522 }
523
524 /* Check for a symtab of a specific name; first in symtabs, then in
525 psymtabs. *If* there is no '/' in the name, a match after a '/'
526 in the symtab filename will also work.
527
528 Calls CALLBACK with each symtab that is found. If CALLBACK returns
529 true, the search stops. */
530
531 void
532 iterate_over_symtabs (const char *name,
533 gdb::function_view<bool (symtab *)> callback)
534 {
535 gdb::unique_xmalloc_ptr<char> real_path;
536
537 /* Here we are interested in canonicalizing an absolute path, not
538 absolutizing a relative path. */
539 if (IS_ABSOLUTE_PATH (name))
540 {
541 real_path = gdb_realpath (name);
542 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
543 }
544
545 for (objfile *objfile : current_program_space->objfiles ())
546 {
547 if (iterate_over_some_symtabs (name, real_path.get (),
548 objfile->compunit_symtabs, NULL,
549 callback))
550 return;
551 }
552
553 /* Same search rules as above apply here, but now we look thru the
554 psymtabs. */
555
556 for (objfile *objfile : current_program_space->objfiles ())
557 {
558 if (objfile->sf
559 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
560 name,
561 real_path.get (),
562 callback))
563 return;
564 }
565 }
566
567 /* A wrapper for iterate_over_symtabs that returns the first matching
568 symtab, or NULL. */
569
570 struct symtab *
571 lookup_symtab (const char *name)
572 {
573 struct symtab *result = NULL;
574
575 iterate_over_symtabs (name, [&] (symtab *symtab)
576 {
577 result = symtab;
578 return true;
579 });
580
581 return result;
582 }
583
584 \f
585 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
586 full method name, which consist of the class name (from T), the unadorned
587 method name from METHOD_ID, and the signature for the specific overload,
588 specified by SIGNATURE_ID. Note that this function is g++ specific. */
589
590 char *
591 gdb_mangle_name (struct type *type, int method_id, int signature_id)
592 {
593 int mangled_name_len;
594 char *mangled_name;
595 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
596 struct fn_field *method = &f[signature_id];
597 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
598 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
599 const char *newname = type->name ();
600
601 /* Does the form of physname indicate that it is the full mangled name
602 of a constructor (not just the args)? */
603 int is_full_physname_constructor;
604
605 int is_constructor;
606 int is_destructor = is_destructor_name (physname);
607 /* Need a new type prefix. */
608 const char *const_prefix = method->is_const ? "C" : "";
609 const char *volatile_prefix = method->is_volatile ? "V" : "";
610 char buf[20];
611 int len = (newname == NULL ? 0 : strlen (newname));
612
613 /* Nothing to do if physname already contains a fully mangled v3 abi name
614 or an operator name. */
615 if ((physname[0] == '_' && physname[1] == 'Z')
616 || is_operator_name (field_name))
617 return xstrdup (physname);
618
619 is_full_physname_constructor = is_constructor_name (physname);
620
621 is_constructor = is_full_physname_constructor
622 || (newname && strcmp (field_name, newname) == 0);
623
624 if (!is_destructor)
625 is_destructor = (startswith (physname, "__dt"));
626
627 if (is_destructor || is_full_physname_constructor)
628 {
629 mangled_name = (char *) xmalloc (strlen (physname) + 1);
630 strcpy (mangled_name, physname);
631 return mangled_name;
632 }
633
634 if (len == 0)
635 {
636 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
637 }
638 else if (physname[0] == 't' || physname[0] == 'Q')
639 {
640 /* The physname for template and qualified methods already includes
641 the class name. */
642 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
643 newname = NULL;
644 len = 0;
645 }
646 else
647 {
648 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
649 volatile_prefix, len);
650 }
651 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
652 + strlen (buf) + len + strlen (physname) + 1);
653
654 mangled_name = (char *) xmalloc (mangled_name_len);
655 if (is_constructor)
656 mangled_name[0] = '\0';
657 else
658 strcpy (mangled_name, field_name);
659
660 strcat (mangled_name, buf);
661 /* If the class doesn't have a name, i.e. newname NULL, then we just
662 mangle it using 0 for the length of the class. Thus it gets mangled
663 as something starting with `::' rather than `classname::'. */
664 if (newname != NULL)
665 strcat (mangled_name, newname);
666
667 strcat (mangled_name, physname);
668 return (mangled_name);
669 }
670
671 /* See symtab.h. */
672
673 void
674 general_symbol_info::set_demangled_name (const char *name,
675 struct obstack *obstack)
676 {
677 if (language () == language_ada)
678 {
679 if (name == NULL)
680 {
681 ada_mangled = 0;
682 language_specific.obstack = obstack;
683 }
684 else
685 {
686 ada_mangled = 1;
687 language_specific.demangled_name = name;
688 }
689 }
690 else
691 language_specific.demangled_name = name;
692 }
693
694 \f
695 /* Initialize the language dependent portion of a symbol
696 depending upon the language for the symbol. */
697
698 void
699 general_symbol_info::set_language (enum language language,
700 struct obstack *obstack)
701 {
702 m_language = language;
703 if (language == language_cplus
704 || language == language_d
705 || language == language_go
706 || language == language_objc
707 || language == language_fortran)
708 {
709 set_demangled_name (NULL, obstack);
710 }
711 else if (language == language_ada)
712 {
713 gdb_assert (ada_mangled == 0);
714 language_specific.obstack = obstack;
715 }
716 else
717 {
718 memset (&language_specific, 0, sizeof (language_specific));
719 }
720 }
721
722 /* Functions to initialize a symbol's mangled name. */
723
724 /* Objects of this type are stored in the demangled name hash table. */
725 struct demangled_name_entry
726 {
727 demangled_name_entry (gdb::string_view mangled_name)
728 : mangled (mangled_name) {}
729
730 gdb::string_view mangled;
731 enum language language;
732 gdb::unique_xmalloc_ptr<char> demangled;
733 };
734
735 /* Hash function for the demangled name hash. */
736
737 static hashval_t
738 hash_demangled_name_entry (const void *data)
739 {
740 const struct demangled_name_entry *e
741 = (const struct demangled_name_entry *) data;
742
743 return fast_hash (e->mangled.data (), e->mangled.length ());
744 }
745
746 /* Equality function for the demangled name hash. */
747
748 static int
749 eq_demangled_name_entry (const void *a, const void *b)
750 {
751 const struct demangled_name_entry *da
752 = (const struct demangled_name_entry *) a;
753 const struct demangled_name_entry *db
754 = (const struct demangled_name_entry *) b;
755
756 return da->mangled == db->mangled;
757 }
758
759 static void
760 free_demangled_name_entry (void *data)
761 {
762 struct demangled_name_entry *e
763 = (struct demangled_name_entry *) data;
764
765 e->~demangled_name_entry();
766 }
767
768 /* Create the hash table used for demangled names. Each hash entry is
769 a pair of strings; one for the mangled name and one for the demangled
770 name. The entry is hashed via just the mangled name. */
771
772 static void
773 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
774 {
775 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
776 The hash table code will round this up to the next prime number.
777 Choosing a much larger table size wastes memory, and saves only about
778 1% in symbol reading. However, if the minsym count is already
779 initialized (e.g. because symbol name setting was deferred to
780 a background thread) we can initialize the hashtable with a count
781 based on that, because we will almost certainly have at least that
782 many entries. If we have a nonzero number but less than 256,
783 we still stay with 256 to have some space for psymbols, etc. */
784
785 /* htab will expand the table when it is 3/4th full, so we account for that
786 here. +2 to round up. */
787 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
788 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
789
790 per_bfd->demangled_names_hash.reset (htab_create_alloc
791 (count, hash_demangled_name_entry, eq_demangled_name_entry,
792 free_demangled_name_entry, xcalloc, xfree));
793 }
794
795 /* See symtab.h */
796
797 char *
798 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
799 const char *mangled)
800 {
801 char *demangled = NULL;
802 int i;
803
804 if (gsymbol->language () == language_unknown)
805 gsymbol->m_language = language_auto;
806
807 if (gsymbol->language () != language_auto)
808 {
809 const struct language_defn *lang = language_def (gsymbol->language ());
810
811 lang->sniff_from_mangled_name (mangled, &demangled);
812 return demangled;
813 }
814
815 for (i = language_unknown; i < nr_languages; ++i)
816 {
817 enum language l = (enum language) i;
818 const struct language_defn *lang = language_def (l);
819
820 if (lang->sniff_from_mangled_name (mangled, &demangled))
821 {
822 gsymbol->m_language = l;
823 return demangled;
824 }
825 }
826
827 return NULL;
828 }
829
830 /* Set both the mangled and demangled (if any) names for GSYMBOL based
831 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
832 objfile's obstack; but if COPY_NAME is 0 and if NAME is
833 NUL-terminated, then this function assumes that NAME is already
834 correctly saved (either permanently or with a lifetime tied to the
835 objfile), and it will not be copied.
836
837 The hash table corresponding to OBJFILE is used, and the memory
838 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
839 so the pointer can be discarded after calling this function. */
840
841 void
842 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
843 bool copy_name,
844 objfile_per_bfd_storage *per_bfd,
845 gdb::optional<hashval_t> hash)
846 {
847 struct demangled_name_entry **slot;
848
849 if (language () == language_ada)
850 {
851 /* In Ada, we do the symbol lookups using the mangled name, so
852 we can save some space by not storing the demangled name. */
853 if (!copy_name)
854 m_name = linkage_name.data ();
855 else
856 m_name = obstack_strndup (&per_bfd->storage_obstack,
857 linkage_name.data (),
858 linkage_name.length ());
859 set_demangled_name (NULL, &per_bfd->storage_obstack);
860
861 return;
862 }
863
864 if (per_bfd->demangled_names_hash == NULL)
865 create_demangled_names_hash (per_bfd);
866
867 struct demangled_name_entry entry (linkage_name);
868 if (!hash.has_value ())
869 hash = hash_demangled_name_entry (&entry);
870 slot = ((struct demangled_name_entry **)
871 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
872 &entry, *hash, INSERT));
873
874 /* The const_cast is safe because the only reason it is already
875 initialized is if we purposefully set it from a background
876 thread to avoid doing the work here. However, it is still
877 allocated from the heap and needs to be freed by us, just
878 like if we called symbol_find_demangled_name here. If this is
879 nullptr, we call symbol_find_demangled_name below, but we put
880 this smart pointer here to be sure that we don't leak this name. */
881 gdb::unique_xmalloc_ptr<char> demangled_name
882 (const_cast<char *> (language_specific.demangled_name));
883
884 /* If this name is not in the hash table, add it. */
885 if (*slot == NULL
886 /* A C version of the symbol may have already snuck into the table.
887 This happens to, e.g., main.init (__go_init_main). Cope. */
888 || (language () == language_go && (*slot)->demangled == nullptr))
889 {
890 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
891 to true if the string might not be nullterminated. We have to make
892 this copy because demangling needs a nullterminated string. */
893 gdb::string_view linkage_name_copy;
894 if (copy_name)
895 {
896 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
897 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
898 alloc_name[linkage_name.length ()] = '\0';
899
900 linkage_name_copy = gdb::string_view (alloc_name,
901 linkage_name.length ());
902 }
903 else
904 linkage_name_copy = linkage_name;
905
906 if (demangled_name.get () == nullptr)
907 demangled_name.reset
908 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
909
910 /* Suppose we have demangled_name==NULL, copy_name==0, and
911 linkage_name_copy==linkage_name. In this case, we already have the
912 mangled name saved, and we don't have a demangled name. So,
913 you might think we could save a little space by not recording
914 this in the hash table at all.
915
916 It turns out that it is actually important to still save such
917 an entry in the hash table, because storing this name gives
918 us better bcache hit rates for partial symbols. */
919 if (!copy_name)
920 {
921 *slot
922 = ((struct demangled_name_entry *)
923 obstack_alloc (&per_bfd->storage_obstack,
924 sizeof (demangled_name_entry)));
925 new (*slot) demangled_name_entry (linkage_name);
926 }
927 else
928 {
929 /* If we must copy the mangled name, put it directly after
930 the struct so we can have a single allocation. */
931 *slot
932 = ((struct demangled_name_entry *)
933 obstack_alloc (&per_bfd->storage_obstack,
934 sizeof (demangled_name_entry)
935 + linkage_name.length () + 1));
936 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
937 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
938 mangled_ptr [linkage_name.length ()] = '\0';
939 new (*slot) demangled_name_entry
940 (gdb::string_view (mangled_ptr, linkage_name.length ()));
941 }
942 (*slot)->demangled = std::move (demangled_name);
943 (*slot)->language = language ();
944 }
945 else if (language () == language_unknown || language () == language_auto)
946 m_language = (*slot)->language;
947
948 m_name = (*slot)->mangled.data ();
949 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
950 }
951
952 /* See symtab.h. */
953
954 const char *
955 general_symbol_info::natural_name () const
956 {
957 switch (language ())
958 {
959 case language_cplus:
960 case language_d:
961 case language_go:
962 case language_objc:
963 case language_fortran:
964 case language_rust:
965 if (language_specific.demangled_name != nullptr)
966 return language_specific.demangled_name;
967 break;
968 case language_ada:
969 return ada_decode_symbol (this);
970 default:
971 break;
972 }
973 return linkage_name ();
974 }
975
976 /* See symtab.h. */
977
978 const char *
979 general_symbol_info::demangled_name () const
980 {
981 const char *dem_name = NULL;
982
983 switch (language ())
984 {
985 case language_cplus:
986 case language_d:
987 case language_go:
988 case language_objc:
989 case language_fortran:
990 case language_rust:
991 dem_name = language_specific.demangled_name;
992 break;
993 case language_ada:
994 dem_name = ada_decode_symbol (this);
995 break;
996 default:
997 break;
998 }
999 return dem_name;
1000 }
1001
1002 /* See symtab.h. */
1003
1004 const char *
1005 general_symbol_info::search_name () const
1006 {
1007 if (language () == language_ada)
1008 return linkage_name ();
1009 else
1010 return natural_name ();
1011 }
1012
1013 /* See symtab.h. */
1014
1015 struct obj_section *
1016 general_symbol_info::obj_section (const struct objfile *objfile) const
1017 {
1018 if (section_index () >= 0)
1019 return &objfile->sections[section_index ()];
1020 return nullptr;
1021 }
1022
1023 /* See symtab.h. */
1024
1025 bool
1026 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1027 const lookup_name_info &name)
1028 {
1029 symbol_name_matcher_ftype *name_match
1030 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1031 return name_match (gsymbol->search_name (), name, NULL);
1032 }
1033
1034 \f
1035
1036 /* Return true if the two sections are the same, or if they could
1037 plausibly be copies of each other, one in an original object
1038 file and another in a separated debug file. */
1039
1040 bool
1041 matching_obj_sections (struct obj_section *obj_first,
1042 struct obj_section *obj_second)
1043 {
1044 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1045 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1046
1047 /* If they're the same section, then they match. */
1048 if (first == second)
1049 return true;
1050
1051 /* If either is NULL, give up. */
1052 if (first == NULL || second == NULL)
1053 return false;
1054
1055 /* This doesn't apply to absolute symbols. */
1056 if (first->owner == NULL || second->owner == NULL)
1057 return false;
1058
1059 /* If they're in the same object file, they must be different sections. */
1060 if (first->owner == second->owner)
1061 return false;
1062
1063 /* Check whether the two sections are potentially corresponding. They must
1064 have the same size, address, and name. We can't compare section indexes,
1065 which would be more reliable, because some sections may have been
1066 stripped. */
1067 if (bfd_section_size (first) != bfd_section_size (second))
1068 return false;
1069
1070 /* In-memory addresses may start at a different offset, relativize them. */
1071 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1072 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1073 return false;
1074
1075 if (bfd_section_name (first) == NULL
1076 || bfd_section_name (second) == NULL
1077 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1078 return false;
1079
1080 /* Otherwise check that they are in corresponding objfiles. */
1081
1082 struct objfile *obj = NULL;
1083 for (objfile *objfile : current_program_space->objfiles ())
1084 if (objfile->obfd == first->owner)
1085 {
1086 obj = objfile;
1087 break;
1088 }
1089 gdb_assert (obj != NULL);
1090
1091 if (obj->separate_debug_objfile != NULL
1092 && obj->separate_debug_objfile->obfd == second->owner)
1093 return true;
1094 if (obj->separate_debug_objfile_backlink != NULL
1095 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1096 return true;
1097
1098 return false;
1099 }
1100
1101 /* See symtab.h. */
1102
1103 void
1104 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1105 {
1106 struct bound_minimal_symbol msymbol;
1107
1108 /* If we know that this is not a text address, return failure. This is
1109 necessary because we loop based on texthigh and textlow, which do
1110 not include the data ranges. */
1111 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1112 if (msymbol.minsym && msymbol.minsym->data_p ())
1113 return;
1114
1115 for (objfile *objfile : current_program_space->objfiles ())
1116 {
1117 struct compunit_symtab *cust = NULL;
1118
1119 if (objfile->sf)
1120 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1121 pc, section, 0);
1122 if (cust)
1123 return;
1124 }
1125 }
1126 \f
1127 /* Hash function for the symbol cache. */
1128
1129 static unsigned int
1130 hash_symbol_entry (const struct objfile *objfile_context,
1131 const char *name, domain_enum domain)
1132 {
1133 unsigned int hash = (uintptr_t) objfile_context;
1134
1135 if (name != NULL)
1136 hash += htab_hash_string (name);
1137
1138 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1139 to map to the same slot. */
1140 if (domain == STRUCT_DOMAIN)
1141 hash += VAR_DOMAIN * 7;
1142 else
1143 hash += domain * 7;
1144
1145 return hash;
1146 }
1147
1148 /* Equality function for the symbol cache. */
1149
1150 static int
1151 eq_symbol_entry (const struct symbol_cache_slot *slot,
1152 const struct objfile *objfile_context,
1153 const char *name, domain_enum domain)
1154 {
1155 const char *slot_name;
1156 domain_enum slot_domain;
1157
1158 if (slot->state == SYMBOL_SLOT_UNUSED)
1159 return 0;
1160
1161 if (slot->objfile_context != objfile_context)
1162 return 0;
1163
1164 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1165 {
1166 slot_name = slot->value.not_found.name;
1167 slot_domain = slot->value.not_found.domain;
1168 }
1169 else
1170 {
1171 slot_name = slot->value.found.symbol->search_name ();
1172 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1173 }
1174
1175 /* NULL names match. */
1176 if (slot_name == NULL && name == NULL)
1177 {
1178 /* But there's no point in calling symbol_matches_domain in the
1179 SYMBOL_SLOT_FOUND case. */
1180 if (slot_domain != domain)
1181 return 0;
1182 }
1183 else if (slot_name != NULL && name != NULL)
1184 {
1185 /* It's important that we use the same comparison that was done
1186 the first time through. If the slot records a found symbol,
1187 then this means using the symbol name comparison function of
1188 the symbol's language with symbol->search_name (). See
1189 dictionary.c. It also means using symbol_matches_domain for
1190 found symbols. See block.c.
1191
1192 If the slot records a not-found symbol, then require a precise match.
1193 We could still be lax with whitespace like strcmp_iw though. */
1194
1195 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1196 {
1197 if (strcmp (slot_name, name) != 0)
1198 return 0;
1199 if (slot_domain != domain)
1200 return 0;
1201 }
1202 else
1203 {
1204 struct symbol *sym = slot->value.found.symbol;
1205 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1206
1207 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1208 return 0;
1209
1210 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1211 return 0;
1212 }
1213 }
1214 else
1215 {
1216 /* Only one name is NULL. */
1217 return 0;
1218 }
1219
1220 return 1;
1221 }
1222
1223 /* Given a cache of size SIZE, return the size of the struct (with variable
1224 length array) in bytes. */
1225
1226 static size_t
1227 symbol_cache_byte_size (unsigned int size)
1228 {
1229 return (sizeof (struct block_symbol_cache)
1230 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1231 }
1232
1233 /* Resize CACHE. */
1234
1235 static void
1236 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1237 {
1238 /* If there's no change in size, don't do anything.
1239 All caches have the same size, so we can just compare with the size
1240 of the global symbols cache. */
1241 if ((cache->global_symbols != NULL
1242 && cache->global_symbols->size == new_size)
1243 || (cache->global_symbols == NULL
1244 && new_size == 0))
1245 return;
1246
1247 destroy_block_symbol_cache (cache->global_symbols);
1248 destroy_block_symbol_cache (cache->static_symbols);
1249
1250 if (new_size == 0)
1251 {
1252 cache->global_symbols = NULL;
1253 cache->static_symbols = NULL;
1254 }
1255 else
1256 {
1257 size_t total_size = symbol_cache_byte_size (new_size);
1258
1259 cache->global_symbols
1260 = (struct block_symbol_cache *) xcalloc (1, total_size);
1261 cache->static_symbols
1262 = (struct block_symbol_cache *) xcalloc (1, total_size);
1263 cache->global_symbols->size = new_size;
1264 cache->static_symbols->size = new_size;
1265 }
1266 }
1267
1268 /* Return the symbol cache of PSPACE.
1269 Create one if it doesn't exist yet. */
1270
1271 static struct symbol_cache *
1272 get_symbol_cache (struct program_space *pspace)
1273 {
1274 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1275
1276 if (cache == NULL)
1277 {
1278 cache = symbol_cache_key.emplace (pspace);
1279 resize_symbol_cache (cache, symbol_cache_size);
1280 }
1281
1282 return cache;
1283 }
1284
1285 /* Set the size of the symbol cache in all program spaces. */
1286
1287 static void
1288 set_symbol_cache_size (unsigned int new_size)
1289 {
1290 for (struct program_space *pspace : program_spaces)
1291 {
1292 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1293
1294 /* The pspace could have been created but not have a cache yet. */
1295 if (cache != NULL)
1296 resize_symbol_cache (cache, new_size);
1297 }
1298 }
1299
1300 /* Called when symbol-cache-size is set. */
1301
1302 static void
1303 set_symbol_cache_size_handler (const char *args, int from_tty,
1304 struct cmd_list_element *c)
1305 {
1306 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1307 {
1308 /* Restore the previous value.
1309 This is the value the "show" command prints. */
1310 new_symbol_cache_size = symbol_cache_size;
1311
1312 error (_("Symbol cache size is too large, max is %u."),
1313 MAX_SYMBOL_CACHE_SIZE);
1314 }
1315 symbol_cache_size = new_symbol_cache_size;
1316
1317 set_symbol_cache_size (symbol_cache_size);
1318 }
1319
1320 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1321 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1322 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1323 failed (and thus this one will too), or NULL if the symbol is not present
1324 in the cache.
1325 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1326 can be used to save the result of a full lookup attempt. */
1327
1328 static struct block_symbol
1329 symbol_cache_lookup (struct symbol_cache *cache,
1330 struct objfile *objfile_context, enum block_enum block,
1331 const char *name, domain_enum domain,
1332 struct block_symbol_cache **bsc_ptr,
1333 struct symbol_cache_slot **slot_ptr)
1334 {
1335 struct block_symbol_cache *bsc;
1336 unsigned int hash;
1337 struct symbol_cache_slot *slot;
1338
1339 if (block == GLOBAL_BLOCK)
1340 bsc = cache->global_symbols;
1341 else
1342 bsc = cache->static_symbols;
1343 if (bsc == NULL)
1344 {
1345 *bsc_ptr = NULL;
1346 *slot_ptr = NULL;
1347 return {};
1348 }
1349
1350 hash = hash_symbol_entry (objfile_context, name, domain);
1351 slot = bsc->symbols + hash % bsc->size;
1352
1353 *bsc_ptr = bsc;
1354 *slot_ptr = slot;
1355
1356 if (eq_symbol_entry (slot, objfile_context, name, domain))
1357 {
1358 if (symbol_lookup_debug)
1359 fprintf_unfiltered (gdb_stdlog,
1360 "%s block symbol cache hit%s for %s, %s\n",
1361 block == GLOBAL_BLOCK ? "Global" : "Static",
1362 slot->state == SYMBOL_SLOT_NOT_FOUND
1363 ? " (not found)" : "",
1364 name, domain_name (domain));
1365 ++bsc->hits;
1366 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1367 return SYMBOL_LOOKUP_FAILED;
1368 return slot->value.found;
1369 }
1370
1371 /* Symbol is not present in the cache. */
1372
1373 if (symbol_lookup_debug)
1374 {
1375 fprintf_unfiltered (gdb_stdlog,
1376 "%s block symbol cache miss for %s, %s\n",
1377 block == GLOBAL_BLOCK ? "Global" : "Static",
1378 name, domain_name (domain));
1379 }
1380 ++bsc->misses;
1381 return {};
1382 }
1383
1384 /* Mark SYMBOL as found in SLOT.
1385 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1386 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1387 necessarily the objfile the symbol was found in. */
1388
1389 static void
1390 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1391 struct symbol_cache_slot *slot,
1392 struct objfile *objfile_context,
1393 struct symbol *symbol,
1394 const struct block *block)
1395 {
1396 if (bsc == NULL)
1397 return;
1398 if (slot->state != SYMBOL_SLOT_UNUSED)
1399 {
1400 ++bsc->collisions;
1401 symbol_cache_clear_slot (slot);
1402 }
1403 slot->state = SYMBOL_SLOT_FOUND;
1404 slot->objfile_context = objfile_context;
1405 slot->value.found.symbol = symbol;
1406 slot->value.found.block = block;
1407 }
1408
1409 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1410 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1411 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1412
1413 static void
1414 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1415 struct symbol_cache_slot *slot,
1416 struct objfile *objfile_context,
1417 const char *name, domain_enum domain)
1418 {
1419 if (bsc == NULL)
1420 return;
1421 if (slot->state != SYMBOL_SLOT_UNUSED)
1422 {
1423 ++bsc->collisions;
1424 symbol_cache_clear_slot (slot);
1425 }
1426 slot->state = SYMBOL_SLOT_NOT_FOUND;
1427 slot->objfile_context = objfile_context;
1428 slot->value.not_found.name = xstrdup (name);
1429 slot->value.not_found.domain = domain;
1430 }
1431
1432 /* Flush the symbol cache of PSPACE. */
1433
1434 static void
1435 symbol_cache_flush (struct program_space *pspace)
1436 {
1437 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1438 int pass;
1439
1440 if (cache == NULL)
1441 return;
1442 if (cache->global_symbols == NULL)
1443 {
1444 gdb_assert (symbol_cache_size == 0);
1445 gdb_assert (cache->static_symbols == NULL);
1446 return;
1447 }
1448
1449 /* If the cache is untouched since the last flush, early exit.
1450 This is important for performance during the startup of a program linked
1451 with 100s (or 1000s) of shared libraries. */
1452 if (cache->global_symbols->misses == 0
1453 && cache->static_symbols->misses == 0)
1454 return;
1455
1456 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1457 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1458
1459 for (pass = 0; pass < 2; ++pass)
1460 {
1461 struct block_symbol_cache *bsc
1462 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1463 unsigned int i;
1464
1465 for (i = 0; i < bsc->size; ++i)
1466 symbol_cache_clear_slot (&bsc->symbols[i]);
1467 }
1468
1469 cache->global_symbols->hits = 0;
1470 cache->global_symbols->misses = 0;
1471 cache->global_symbols->collisions = 0;
1472 cache->static_symbols->hits = 0;
1473 cache->static_symbols->misses = 0;
1474 cache->static_symbols->collisions = 0;
1475 }
1476
1477 /* Dump CACHE. */
1478
1479 static void
1480 symbol_cache_dump (const struct symbol_cache *cache)
1481 {
1482 int pass;
1483
1484 if (cache->global_symbols == NULL)
1485 {
1486 printf_filtered (" <disabled>\n");
1487 return;
1488 }
1489
1490 for (pass = 0; pass < 2; ++pass)
1491 {
1492 const struct block_symbol_cache *bsc
1493 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1494 unsigned int i;
1495
1496 if (pass == 0)
1497 printf_filtered ("Global symbols:\n");
1498 else
1499 printf_filtered ("Static symbols:\n");
1500
1501 for (i = 0; i < bsc->size; ++i)
1502 {
1503 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1504
1505 QUIT;
1506
1507 switch (slot->state)
1508 {
1509 case SYMBOL_SLOT_UNUSED:
1510 break;
1511 case SYMBOL_SLOT_NOT_FOUND:
1512 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1513 host_address_to_string (slot->objfile_context),
1514 slot->value.not_found.name,
1515 domain_name (slot->value.not_found.domain));
1516 break;
1517 case SYMBOL_SLOT_FOUND:
1518 {
1519 struct symbol *found = slot->value.found.symbol;
1520 const struct objfile *context = slot->objfile_context;
1521
1522 printf_filtered (" [%4u] = %s, %s %s\n", i,
1523 host_address_to_string (context),
1524 found->print_name (),
1525 domain_name (SYMBOL_DOMAIN (found)));
1526 break;
1527 }
1528 }
1529 }
1530 }
1531 }
1532
1533 /* The "mt print symbol-cache" command. */
1534
1535 static void
1536 maintenance_print_symbol_cache (const char *args, int from_tty)
1537 {
1538 for (struct program_space *pspace : program_spaces)
1539 {
1540 struct symbol_cache *cache;
1541
1542 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1543 pspace->num,
1544 pspace->symfile_object_file != NULL
1545 ? objfile_name (pspace->symfile_object_file)
1546 : "(no object file)");
1547
1548 /* If the cache hasn't been created yet, avoid creating one. */
1549 cache = symbol_cache_key.get (pspace);
1550 if (cache == NULL)
1551 printf_filtered (" <empty>\n");
1552 else
1553 symbol_cache_dump (cache);
1554 }
1555 }
1556
1557 /* The "mt flush-symbol-cache" command. */
1558
1559 static void
1560 maintenance_flush_symbol_cache (const char *args, int from_tty)
1561 {
1562 for (struct program_space *pspace : program_spaces)
1563 {
1564 symbol_cache_flush (pspace);
1565 }
1566 }
1567
1568 /* Print usage statistics of CACHE. */
1569
1570 static void
1571 symbol_cache_stats (struct symbol_cache *cache)
1572 {
1573 int pass;
1574
1575 if (cache->global_symbols == NULL)
1576 {
1577 printf_filtered (" <disabled>\n");
1578 return;
1579 }
1580
1581 for (pass = 0; pass < 2; ++pass)
1582 {
1583 const struct block_symbol_cache *bsc
1584 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1585
1586 QUIT;
1587
1588 if (pass == 0)
1589 printf_filtered ("Global block cache stats:\n");
1590 else
1591 printf_filtered ("Static block cache stats:\n");
1592
1593 printf_filtered (" size: %u\n", bsc->size);
1594 printf_filtered (" hits: %u\n", bsc->hits);
1595 printf_filtered (" misses: %u\n", bsc->misses);
1596 printf_filtered (" collisions: %u\n", bsc->collisions);
1597 }
1598 }
1599
1600 /* The "mt print symbol-cache-statistics" command. */
1601
1602 static void
1603 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1604 {
1605 for (struct program_space *pspace : program_spaces)
1606 {
1607 struct symbol_cache *cache;
1608
1609 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1610 pspace->num,
1611 pspace->symfile_object_file != NULL
1612 ? objfile_name (pspace->symfile_object_file)
1613 : "(no object file)");
1614
1615 /* If the cache hasn't been created yet, avoid creating one. */
1616 cache = symbol_cache_key.get (pspace);
1617 if (cache == NULL)
1618 printf_filtered (" empty, no stats available\n");
1619 else
1620 symbol_cache_stats (cache);
1621 }
1622 }
1623
1624 /* This module's 'new_objfile' observer. */
1625
1626 static void
1627 symtab_new_objfile_observer (struct objfile *objfile)
1628 {
1629 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1630 symbol_cache_flush (current_program_space);
1631 }
1632
1633 /* This module's 'free_objfile' observer. */
1634
1635 static void
1636 symtab_free_objfile_observer (struct objfile *objfile)
1637 {
1638 symbol_cache_flush (objfile->pspace);
1639 }
1640 \f
1641 /* Debug symbols usually don't have section information. We need to dig that
1642 out of the minimal symbols and stash that in the debug symbol. */
1643
1644 void
1645 fixup_section (struct general_symbol_info *ginfo,
1646 CORE_ADDR addr, struct objfile *objfile)
1647 {
1648 struct minimal_symbol *msym;
1649
1650 /* First, check whether a minimal symbol with the same name exists
1651 and points to the same address. The address check is required
1652 e.g. on PowerPC64, where the minimal symbol for a function will
1653 point to the function descriptor, while the debug symbol will
1654 point to the actual function code. */
1655 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1656 objfile);
1657 if (msym)
1658 ginfo->set_section_index (msym->section_index ());
1659 else
1660 {
1661 /* Static, function-local variables do appear in the linker
1662 (minimal) symbols, but are frequently given names that won't
1663 be found via lookup_minimal_symbol(). E.g., it has been
1664 observed in frv-uclinux (ELF) executables that a static,
1665 function-local variable named "foo" might appear in the
1666 linker symbols as "foo.6" or "foo.3". Thus, there is no
1667 point in attempting to extend the lookup-by-name mechanism to
1668 handle this case due to the fact that there can be multiple
1669 names.
1670
1671 So, instead, search the section table when lookup by name has
1672 failed. The ``addr'' and ``endaddr'' fields may have already
1673 been relocated. If so, the relocation offset needs to be
1674 subtracted from these values when performing the comparison.
1675 We unconditionally subtract it, because, when no relocation
1676 has been performed, the value will simply be zero.
1677
1678 The address of the symbol whose section we're fixing up HAS
1679 NOT BEEN adjusted (relocated) yet. It can't have been since
1680 the section isn't yet known and knowing the section is
1681 necessary in order to add the correct relocation value. In
1682 other words, we wouldn't even be in this function (attempting
1683 to compute the section) if it were already known.
1684
1685 Note that it is possible to search the minimal symbols
1686 (subtracting the relocation value if necessary) to find the
1687 matching minimal symbol, but this is overkill and much less
1688 efficient. It is not necessary to find the matching minimal
1689 symbol, only its section.
1690
1691 Note that this technique (of doing a section table search)
1692 can fail when unrelocated section addresses overlap. For
1693 this reason, we still attempt a lookup by name prior to doing
1694 a search of the section table. */
1695
1696 struct obj_section *s;
1697 int fallback = -1;
1698
1699 ALL_OBJFILE_OSECTIONS (objfile, s)
1700 {
1701 int idx = s - objfile->sections;
1702 CORE_ADDR offset = objfile->section_offsets[idx];
1703
1704 if (fallback == -1)
1705 fallback = idx;
1706
1707 if (obj_section_addr (s) - offset <= addr
1708 && addr < obj_section_endaddr (s) - offset)
1709 {
1710 ginfo->set_section_index (idx);
1711 return;
1712 }
1713 }
1714
1715 /* If we didn't find the section, assume it is in the first
1716 section. If there is no allocated section, then it hardly
1717 matters what we pick, so just pick zero. */
1718 if (fallback == -1)
1719 ginfo->set_section_index (0);
1720 else
1721 ginfo->set_section_index (fallback);
1722 }
1723 }
1724
1725 struct symbol *
1726 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1727 {
1728 CORE_ADDR addr;
1729
1730 if (!sym)
1731 return NULL;
1732
1733 if (!SYMBOL_OBJFILE_OWNED (sym))
1734 return sym;
1735
1736 /* We either have an OBJFILE, or we can get at it from the sym's
1737 symtab. Anything else is a bug. */
1738 gdb_assert (objfile || symbol_symtab (sym));
1739
1740 if (objfile == NULL)
1741 objfile = symbol_objfile (sym);
1742
1743 if (sym->obj_section (objfile) != nullptr)
1744 return sym;
1745
1746 /* We should have an objfile by now. */
1747 gdb_assert (objfile);
1748
1749 switch (SYMBOL_CLASS (sym))
1750 {
1751 case LOC_STATIC:
1752 case LOC_LABEL:
1753 addr = SYMBOL_VALUE_ADDRESS (sym);
1754 break;
1755 case LOC_BLOCK:
1756 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1757 break;
1758
1759 default:
1760 /* Nothing else will be listed in the minsyms -- no use looking
1761 it up. */
1762 return sym;
1763 }
1764
1765 fixup_section (sym, addr, objfile);
1766
1767 return sym;
1768 }
1769
1770 /* See symtab.h. */
1771
1772 demangle_for_lookup_info::demangle_for_lookup_info
1773 (const lookup_name_info &lookup_name, language lang)
1774 {
1775 demangle_result_storage storage;
1776
1777 if (lookup_name.ignore_parameters () && lang == language_cplus)
1778 {
1779 gdb::unique_xmalloc_ptr<char> without_params
1780 = cp_remove_params_if_any (lookup_name.c_str (),
1781 lookup_name.completion_mode ());
1782
1783 if (without_params != NULL)
1784 {
1785 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1786 m_demangled_name = demangle_for_lookup (without_params.get (),
1787 lang, storage);
1788 return;
1789 }
1790 }
1791
1792 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1793 m_demangled_name = lookup_name.c_str ();
1794 else
1795 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1796 lang, storage);
1797 }
1798
1799 /* See symtab.h. */
1800
1801 const lookup_name_info &
1802 lookup_name_info::match_any ()
1803 {
1804 /* Lookup any symbol that "" would complete. I.e., this matches all
1805 symbol names. */
1806 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1807 true);
1808
1809 return lookup_name;
1810 }
1811
1812 /* Compute the demangled form of NAME as used by the various symbol
1813 lookup functions. The result can either be the input NAME
1814 directly, or a pointer to a buffer owned by the STORAGE object.
1815
1816 For Ada, this function just returns NAME, unmodified.
1817 Normally, Ada symbol lookups are performed using the encoded name
1818 rather than the demangled name, and so it might seem to make sense
1819 for this function to return an encoded version of NAME.
1820 Unfortunately, we cannot do this, because this function is used in
1821 circumstances where it is not appropriate to try to encode NAME.
1822 For instance, when displaying the frame info, we demangle the name
1823 of each parameter, and then perform a symbol lookup inside our
1824 function using that demangled name. In Ada, certain functions
1825 have internally-generated parameters whose name contain uppercase
1826 characters. Encoding those name would result in those uppercase
1827 characters to become lowercase, and thus cause the symbol lookup
1828 to fail. */
1829
1830 const char *
1831 demangle_for_lookup (const char *name, enum language lang,
1832 demangle_result_storage &storage)
1833 {
1834 /* If we are using C++, D, or Go, demangle the name before doing a
1835 lookup, so we can always binary search. */
1836 if (lang == language_cplus)
1837 {
1838 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1839 if (demangled_name != NULL)
1840 return storage.set_malloc_ptr (demangled_name);
1841
1842 /* If we were given a non-mangled name, canonicalize it
1843 according to the language (so far only for C++). */
1844 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1845 if (canon != nullptr)
1846 return storage.set_malloc_ptr (std::move (canon));
1847 }
1848 else if (lang == language_d)
1849 {
1850 char *demangled_name = d_demangle (name, 0);
1851 if (demangled_name != NULL)
1852 return storage.set_malloc_ptr (demangled_name);
1853 }
1854 else if (lang == language_go)
1855 {
1856 char *demangled_name
1857 = language_def (language_go)->demangle_symbol (name, 0);
1858 if (demangled_name != NULL)
1859 return storage.set_malloc_ptr (demangled_name);
1860 }
1861
1862 return name;
1863 }
1864
1865 /* See symtab.h. */
1866
1867 unsigned int
1868 search_name_hash (enum language language, const char *search_name)
1869 {
1870 return language_def (language)->search_name_hash (search_name);
1871 }
1872
1873 /* See symtab.h.
1874
1875 This function (or rather its subordinates) have a bunch of loops and
1876 it would seem to be attractive to put in some QUIT's (though I'm not really
1877 sure whether it can run long enough to be really important). But there
1878 are a few calls for which it would appear to be bad news to quit
1879 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1880 that there is C++ code below which can error(), but that probably
1881 doesn't affect these calls since they are looking for a known
1882 variable and thus can probably assume it will never hit the C++
1883 code). */
1884
1885 struct block_symbol
1886 lookup_symbol_in_language (const char *name, const struct block *block,
1887 const domain_enum domain, enum language lang,
1888 struct field_of_this_result *is_a_field_of_this)
1889 {
1890 demangle_result_storage storage;
1891 const char *modified_name = demangle_for_lookup (name, lang, storage);
1892
1893 return lookup_symbol_aux (modified_name,
1894 symbol_name_match_type::FULL,
1895 block, domain, lang,
1896 is_a_field_of_this);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct block_symbol
1902 lookup_symbol (const char *name, const struct block *block,
1903 domain_enum domain,
1904 struct field_of_this_result *is_a_field_of_this)
1905 {
1906 return lookup_symbol_in_language (name, block, domain,
1907 current_language->la_language,
1908 is_a_field_of_this);
1909 }
1910
1911 /* See symtab.h. */
1912
1913 struct block_symbol
1914 lookup_symbol_search_name (const char *search_name, const struct block *block,
1915 domain_enum domain)
1916 {
1917 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1918 block, domain, language_asm, NULL);
1919 }
1920
1921 /* See symtab.h. */
1922
1923 struct block_symbol
1924 lookup_language_this (const struct language_defn *lang,
1925 const struct block *block)
1926 {
1927 if (lang->name_of_this () == NULL || block == NULL)
1928 return {};
1929
1930 if (symbol_lookup_debug > 1)
1931 {
1932 struct objfile *objfile = block_objfile (block);
1933
1934 fprintf_unfiltered (gdb_stdlog,
1935 "lookup_language_this (%s, %s (objfile %s))",
1936 lang->name (), host_address_to_string (block),
1937 objfile_debug_name (objfile));
1938 }
1939
1940 while (block)
1941 {
1942 struct symbol *sym;
1943
1944 sym = block_lookup_symbol (block, lang->name_of_this (),
1945 symbol_name_match_type::SEARCH_NAME,
1946 VAR_DOMAIN);
1947 if (sym != NULL)
1948 {
1949 if (symbol_lookup_debug > 1)
1950 {
1951 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1952 sym->print_name (),
1953 host_address_to_string (sym),
1954 host_address_to_string (block));
1955 }
1956 return (struct block_symbol) {sym, block};
1957 }
1958 if (BLOCK_FUNCTION (block))
1959 break;
1960 block = BLOCK_SUPERBLOCK (block);
1961 }
1962
1963 if (symbol_lookup_debug > 1)
1964 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1965 return {};
1966 }
1967
1968 /* Given TYPE, a structure/union,
1969 return 1 if the component named NAME from the ultimate target
1970 structure/union is defined, otherwise, return 0. */
1971
1972 static int
1973 check_field (struct type *type, const char *name,
1974 struct field_of_this_result *is_a_field_of_this)
1975 {
1976 int i;
1977
1978 /* The type may be a stub. */
1979 type = check_typedef (type);
1980
1981 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1982 {
1983 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1984
1985 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1986 {
1987 is_a_field_of_this->type = type;
1988 is_a_field_of_this->field = &type->field (i);
1989 return 1;
1990 }
1991 }
1992
1993 /* C++: If it was not found as a data field, then try to return it
1994 as a pointer to a method. */
1995
1996 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1997 {
1998 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1999 {
2000 is_a_field_of_this->type = type;
2001 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2002 return 1;
2003 }
2004 }
2005
2006 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2007 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2008 return 1;
2009
2010 return 0;
2011 }
2012
2013 /* Behave like lookup_symbol except that NAME is the natural name
2014 (e.g., demangled name) of the symbol that we're looking for. */
2015
2016 static struct block_symbol
2017 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2018 const struct block *block,
2019 const domain_enum domain, enum language language,
2020 struct field_of_this_result *is_a_field_of_this)
2021 {
2022 struct block_symbol result;
2023 const struct language_defn *langdef;
2024
2025 if (symbol_lookup_debug)
2026 {
2027 struct objfile *objfile = (block == nullptr
2028 ? nullptr : block_objfile (block));
2029
2030 fprintf_unfiltered (gdb_stdlog,
2031 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2032 name, host_address_to_string (block),
2033 objfile != NULL
2034 ? objfile_debug_name (objfile) : "NULL",
2035 domain_name (domain), language_str (language));
2036 }
2037
2038 /* Make sure we do something sensible with is_a_field_of_this, since
2039 the callers that set this parameter to some non-null value will
2040 certainly use it later. If we don't set it, the contents of
2041 is_a_field_of_this are undefined. */
2042 if (is_a_field_of_this != NULL)
2043 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2044
2045 /* Search specified block and its superiors. Don't search
2046 STATIC_BLOCK or GLOBAL_BLOCK. */
2047
2048 result = lookup_local_symbol (name, match_type, block, domain, language);
2049 if (result.symbol != NULL)
2050 {
2051 if (symbol_lookup_debug)
2052 {
2053 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2054 host_address_to_string (result.symbol));
2055 }
2056 return result;
2057 }
2058
2059 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2060 check to see if NAME is a field of `this'. */
2061
2062 langdef = language_def (language);
2063
2064 /* Don't do this check if we are searching for a struct. It will
2065 not be found by check_field, but will be found by other
2066 means. */
2067 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2068 {
2069 result = lookup_language_this (langdef, block);
2070
2071 if (result.symbol)
2072 {
2073 struct type *t = result.symbol->type;
2074
2075 /* I'm not really sure that type of this can ever
2076 be typedefed; just be safe. */
2077 t = check_typedef (t);
2078 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2079 t = TYPE_TARGET_TYPE (t);
2080
2081 if (t->code () != TYPE_CODE_STRUCT
2082 && t->code () != TYPE_CODE_UNION)
2083 error (_("Internal error: `%s' is not an aggregate"),
2084 langdef->name_of_this ());
2085
2086 if (check_field (t, name, is_a_field_of_this))
2087 {
2088 if (symbol_lookup_debug)
2089 {
2090 fprintf_unfiltered (gdb_stdlog,
2091 "lookup_symbol_aux (...) = NULL\n");
2092 }
2093 return {};
2094 }
2095 }
2096 }
2097
2098 /* Now do whatever is appropriate for LANGUAGE to look
2099 up static and global variables. */
2100
2101 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2102 if (result.symbol != NULL)
2103 {
2104 if (symbol_lookup_debug)
2105 {
2106 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2107 host_address_to_string (result.symbol));
2108 }
2109 return result;
2110 }
2111
2112 /* Now search all static file-level symbols. Not strictly correct,
2113 but more useful than an error. */
2114
2115 result = lookup_static_symbol (name, domain);
2116 if (symbol_lookup_debug)
2117 {
2118 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2119 result.symbol != NULL
2120 ? host_address_to_string (result.symbol)
2121 : "NULL");
2122 }
2123 return result;
2124 }
2125
2126 /* Check to see if the symbol is defined in BLOCK or its superiors.
2127 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2128
2129 static struct block_symbol
2130 lookup_local_symbol (const char *name,
2131 symbol_name_match_type match_type,
2132 const struct block *block,
2133 const domain_enum domain,
2134 enum language language)
2135 {
2136 struct symbol *sym;
2137 const struct block *static_block = block_static_block (block);
2138 const char *scope = block_scope (block);
2139
2140 /* Check if either no block is specified or it's a global block. */
2141
2142 if (static_block == NULL)
2143 return {};
2144
2145 while (block != static_block)
2146 {
2147 sym = lookup_symbol_in_block (name, match_type, block, domain);
2148 if (sym != NULL)
2149 return (struct block_symbol) {sym, block};
2150
2151 if (language == language_cplus || language == language_fortran)
2152 {
2153 struct block_symbol blocksym
2154 = cp_lookup_symbol_imports_or_template (scope, name, block,
2155 domain);
2156
2157 if (blocksym.symbol != NULL)
2158 return blocksym;
2159 }
2160
2161 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2162 break;
2163 block = BLOCK_SUPERBLOCK (block);
2164 }
2165
2166 /* We've reached the end of the function without finding a result. */
2167
2168 return {};
2169 }
2170
2171 /* See symtab.h. */
2172
2173 struct symbol *
2174 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2175 const struct block *block,
2176 const domain_enum domain)
2177 {
2178 struct symbol *sym;
2179
2180 if (symbol_lookup_debug > 1)
2181 {
2182 struct objfile *objfile = (block == nullptr
2183 ? nullptr : block_objfile (block));
2184
2185 fprintf_unfiltered (gdb_stdlog,
2186 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2187 name, host_address_to_string (block),
2188 objfile_debug_name (objfile),
2189 domain_name (domain));
2190 }
2191
2192 sym = block_lookup_symbol (block, name, match_type, domain);
2193 if (sym)
2194 {
2195 if (symbol_lookup_debug > 1)
2196 {
2197 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2198 host_address_to_string (sym));
2199 }
2200 return fixup_symbol_section (sym, NULL);
2201 }
2202
2203 if (symbol_lookup_debug > 1)
2204 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2205 return NULL;
2206 }
2207
2208 /* See symtab.h. */
2209
2210 struct block_symbol
2211 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2212 enum block_enum block_index,
2213 const char *name,
2214 const domain_enum domain)
2215 {
2216 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2217
2218 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2219 {
2220 struct block_symbol result
2221 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2222
2223 if (result.symbol != nullptr)
2224 return result;
2225 }
2226
2227 return {};
2228 }
2229
2230 /* Check to see if the symbol is defined in one of the OBJFILE's
2231 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2232 depending on whether or not we want to search global symbols or
2233 static symbols. */
2234
2235 static struct block_symbol
2236 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2237 enum block_enum block_index, const char *name,
2238 const domain_enum domain)
2239 {
2240 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2241
2242 if (symbol_lookup_debug > 1)
2243 {
2244 fprintf_unfiltered (gdb_stdlog,
2245 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2246 objfile_debug_name (objfile),
2247 block_index == GLOBAL_BLOCK
2248 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2249 name, domain_name (domain));
2250 }
2251
2252 struct block_symbol other;
2253 other.symbol = NULL;
2254 for (compunit_symtab *cust : objfile->compunits ())
2255 {
2256 const struct blockvector *bv;
2257 const struct block *block;
2258 struct block_symbol result;
2259
2260 bv = COMPUNIT_BLOCKVECTOR (cust);
2261 block = BLOCKVECTOR_BLOCK (bv, block_index);
2262 result.symbol = block_lookup_symbol_primary (block, name, domain);
2263 result.block = block;
2264 if (result.symbol == NULL)
2265 continue;
2266 if (best_symbol (result.symbol, domain))
2267 {
2268 other = result;
2269 break;
2270 }
2271 if (symbol_matches_domain (result.symbol->language (),
2272 SYMBOL_DOMAIN (result.symbol), domain))
2273 {
2274 struct symbol *better
2275 = better_symbol (other.symbol, result.symbol, domain);
2276 if (better != other.symbol)
2277 {
2278 other.symbol = better;
2279 other.block = block;
2280 }
2281 }
2282 }
2283
2284 if (other.symbol != NULL)
2285 {
2286 if (symbol_lookup_debug > 1)
2287 {
2288 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2289 host_address_to_string (other.symbol),
2290 host_address_to_string (other.block));
2291 }
2292 other.symbol = fixup_symbol_section (other.symbol, objfile);
2293 return other;
2294 }
2295
2296 if (symbol_lookup_debug > 1)
2297 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2298 return {};
2299 }
2300
2301 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2302 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2303 and all associated separate debug objfiles.
2304
2305 Normally we only look in OBJFILE, and not any separate debug objfiles
2306 because the outer loop will cause them to be searched too. This case is
2307 different. Here we're called from search_symbols where it will only
2308 call us for the objfile that contains a matching minsym. */
2309
2310 static struct block_symbol
2311 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2312 const char *linkage_name,
2313 domain_enum domain)
2314 {
2315 enum language lang = current_language->la_language;
2316 struct objfile *main_objfile;
2317
2318 demangle_result_storage storage;
2319 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2320
2321 if (objfile->separate_debug_objfile_backlink)
2322 main_objfile = objfile->separate_debug_objfile_backlink;
2323 else
2324 main_objfile = objfile;
2325
2326 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2327 {
2328 struct block_symbol result;
2329
2330 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2331 modified_name, domain);
2332 if (result.symbol == NULL)
2333 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2334 modified_name, domain);
2335 if (result.symbol != NULL)
2336 return result;
2337 }
2338
2339 return {};
2340 }
2341
2342 /* A helper function that throws an exception when a symbol was found
2343 in a psymtab but not in a symtab. */
2344
2345 static void ATTRIBUTE_NORETURN
2346 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2347 struct compunit_symtab *cust)
2348 {
2349 error (_("\
2350 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2351 %s may be an inlined function, or may be a template function\n \
2352 (if a template, try specifying an instantiation: %s<type>)."),
2353 block_index == GLOBAL_BLOCK ? "global" : "static",
2354 name,
2355 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2356 name, name);
2357 }
2358
2359 /* A helper function for various lookup routines that interfaces with
2360 the "quick" symbol table functions. */
2361
2362 static struct block_symbol
2363 lookup_symbol_via_quick_fns (struct objfile *objfile,
2364 enum block_enum block_index, const char *name,
2365 const domain_enum domain)
2366 {
2367 struct compunit_symtab *cust;
2368 const struct blockvector *bv;
2369 const struct block *block;
2370 struct block_symbol result;
2371
2372 if (!objfile->sf)
2373 return {};
2374
2375 if (symbol_lookup_debug > 1)
2376 {
2377 fprintf_unfiltered (gdb_stdlog,
2378 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2379 objfile_debug_name (objfile),
2380 block_index == GLOBAL_BLOCK
2381 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2382 name, domain_name (domain));
2383 }
2384
2385 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2386 if (cust == NULL)
2387 {
2388 if (symbol_lookup_debug > 1)
2389 {
2390 fprintf_unfiltered (gdb_stdlog,
2391 "lookup_symbol_via_quick_fns (...) = NULL\n");
2392 }
2393 return {};
2394 }
2395
2396 bv = COMPUNIT_BLOCKVECTOR (cust);
2397 block = BLOCKVECTOR_BLOCK (bv, block_index);
2398 result.symbol = block_lookup_symbol (block, name,
2399 symbol_name_match_type::FULL, domain);
2400 if (result.symbol == NULL)
2401 error_in_psymtab_expansion (block_index, name, cust);
2402
2403 if (symbol_lookup_debug > 1)
2404 {
2405 fprintf_unfiltered (gdb_stdlog,
2406 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2407 host_address_to_string (result.symbol),
2408 host_address_to_string (block));
2409 }
2410
2411 result.symbol = fixup_symbol_section (result.symbol, objfile);
2412 result.block = block;
2413 return result;
2414 }
2415
2416 /* See language.h. */
2417
2418 struct block_symbol
2419 language_defn::lookup_symbol_nonlocal (const char *name,
2420 const struct block *block,
2421 const domain_enum domain) const
2422 {
2423 struct block_symbol result;
2424
2425 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2426 the current objfile. Searching the current objfile first is useful
2427 for both matching user expectations as well as performance. */
2428
2429 result = lookup_symbol_in_static_block (name, block, domain);
2430 if (result.symbol != NULL)
2431 return result;
2432
2433 /* If we didn't find a definition for a builtin type in the static block,
2434 search for it now. This is actually the right thing to do and can be
2435 a massive performance win. E.g., when debugging a program with lots of
2436 shared libraries we could search all of them only to find out the
2437 builtin type isn't defined in any of them. This is common for types
2438 like "void". */
2439 if (domain == VAR_DOMAIN)
2440 {
2441 struct gdbarch *gdbarch;
2442
2443 if (block == NULL)
2444 gdbarch = target_gdbarch ();
2445 else
2446 gdbarch = block_gdbarch (block);
2447 result.symbol = language_lookup_primitive_type_as_symbol (this,
2448 gdbarch, name);
2449 result.block = NULL;
2450 if (result.symbol != NULL)
2451 return result;
2452 }
2453
2454 return lookup_global_symbol (name, block, domain);
2455 }
2456
2457 /* See symtab.h. */
2458
2459 struct block_symbol
2460 lookup_symbol_in_static_block (const char *name,
2461 const struct block *block,
2462 const domain_enum domain)
2463 {
2464 const struct block *static_block = block_static_block (block);
2465 struct symbol *sym;
2466
2467 if (static_block == NULL)
2468 return {};
2469
2470 if (symbol_lookup_debug)
2471 {
2472 struct objfile *objfile = (block == nullptr
2473 ? nullptr : block_objfile (block));
2474
2475 fprintf_unfiltered (gdb_stdlog,
2476 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2477 " %s)\n",
2478 name,
2479 host_address_to_string (block),
2480 objfile_debug_name (objfile),
2481 domain_name (domain));
2482 }
2483
2484 sym = lookup_symbol_in_block (name,
2485 symbol_name_match_type::FULL,
2486 static_block, domain);
2487 if (symbol_lookup_debug)
2488 {
2489 fprintf_unfiltered (gdb_stdlog,
2490 "lookup_symbol_in_static_block (...) = %s\n",
2491 sym != NULL ? host_address_to_string (sym) : "NULL");
2492 }
2493 return (struct block_symbol) {sym, static_block};
2494 }
2495
2496 /* Perform the standard symbol lookup of NAME in OBJFILE:
2497 1) First search expanded symtabs, and if not found
2498 2) Search the "quick" symtabs (partial or .gdb_index).
2499 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2500
2501 static struct block_symbol
2502 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2503 const char *name, const domain_enum domain)
2504 {
2505 struct block_symbol result;
2506
2507 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2508
2509 if (symbol_lookup_debug)
2510 {
2511 fprintf_unfiltered (gdb_stdlog,
2512 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2513 objfile_debug_name (objfile),
2514 block_index == GLOBAL_BLOCK
2515 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2516 name, domain_name (domain));
2517 }
2518
2519 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2520 name, domain);
2521 if (result.symbol != NULL)
2522 {
2523 if (symbol_lookup_debug)
2524 {
2525 fprintf_unfiltered (gdb_stdlog,
2526 "lookup_symbol_in_objfile (...) = %s"
2527 " (in symtabs)\n",
2528 host_address_to_string (result.symbol));
2529 }
2530 return result;
2531 }
2532
2533 result = lookup_symbol_via_quick_fns (objfile, block_index,
2534 name, domain);
2535 if (symbol_lookup_debug)
2536 {
2537 fprintf_unfiltered (gdb_stdlog,
2538 "lookup_symbol_in_objfile (...) = %s%s\n",
2539 result.symbol != NULL
2540 ? host_address_to_string (result.symbol)
2541 : "NULL",
2542 result.symbol != NULL ? " (via quick fns)" : "");
2543 }
2544 return result;
2545 }
2546
2547 /* Find the language for partial symbol with NAME. */
2548
2549 static enum language
2550 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2551 {
2552 for (objfile *objfile : current_program_space->objfiles ())
2553 {
2554 if (objfile->sf && objfile->sf->qf
2555 && objfile->sf->qf->lookup_global_symbol_language)
2556 continue;
2557 return language_unknown;
2558 }
2559
2560 for (objfile *objfile : current_program_space->objfiles ())
2561 {
2562 bool symbol_found_p;
2563 enum language lang
2564 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2565 &symbol_found_p);
2566 if (!symbol_found_p)
2567 continue;
2568 return lang;
2569 }
2570
2571 return language_unknown;
2572 }
2573
2574 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2575
2576 struct global_or_static_sym_lookup_data
2577 {
2578 /* The name of the symbol we are searching for. */
2579 const char *name;
2580
2581 /* The domain to use for our search. */
2582 domain_enum domain;
2583
2584 /* The block index in which to search. */
2585 enum block_enum block_index;
2586
2587 /* The field where the callback should store the symbol if found.
2588 It should be initialized to {NULL, NULL} before the search is started. */
2589 struct block_symbol result;
2590 };
2591
2592 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2593 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2594 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2595 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2596
2597 static int
2598 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2599 void *cb_data)
2600 {
2601 struct global_or_static_sym_lookup_data *data =
2602 (struct global_or_static_sym_lookup_data *) cb_data;
2603
2604 gdb_assert (data->result.symbol == NULL
2605 && data->result.block == NULL);
2606
2607 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2608 data->name, data->domain);
2609
2610 /* If we found a match, tell the iterator to stop. Otherwise,
2611 keep going. */
2612 return (data->result.symbol != NULL);
2613 }
2614
2615 /* This function contains the common code of lookup_{global,static}_symbol.
2616 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2617 the objfile to start the lookup in. */
2618
2619 static struct block_symbol
2620 lookup_global_or_static_symbol (const char *name,
2621 enum block_enum block_index,
2622 struct objfile *objfile,
2623 const domain_enum domain)
2624 {
2625 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2626 struct block_symbol result;
2627 struct global_or_static_sym_lookup_data lookup_data;
2628 struct block_symbol_cache *bsc;
2629 struct symbol_cache_slot *slot;
2630
2631 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2632 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2633
2634 /* First see if we can find the symbol in the cache.
2635 This works because we use the current objfile to qualify the lookup. */
2636 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2637 &bsc, &slot);
2638 if (result.symbol != NULL)
2639 {
2640 if (SYMBOL_LOOKUP_FAILED_P (result))
2641 return {};
2642 return result;
2643 }
2644
2645 /* Do a global search (of global blocks, heh). */
2646 if (result.symbol == NULL)
2647 {
2648 memset (&lookup_data, 0, sizeof (lookup_data));
2649 lookup_data.name = name;
2650 lookup_data.block_index = block_index;
2651 lookup_data.domain = domain;
2652 gdbarch_iterate_over_objfiles_in_search_order
2653 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2654 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2655 result = lookup_data.result;
2656 }
2657
2658 if (result.symbol != NULL)
2659 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2660 else
2661 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2662
2663 return result;
2664 }
2665
2666 /* See symtab.h. */
2667
2668 struct block_symbol
2669 lookup_static_symbol (const char *name, const domain_enum domain)
2670 {
2671 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2672 }
2673
2674 /* See symtab.h. */
2675
2676 struct block_symbol
2677 lookup_global_symbol (const char *name,
2678 const struct block *block,
2679 const domain_enum domain)
2680 {
2681 /* If a block was passed in, we want to search the corresponding
2682 global block first. This yields "more expected" behavior, and is
2683 needed to support 'FILENAME'::VARIABLE lookups. */
2684 const struct block *global_block = block_global_block (block);
2685 symbol *sym = NULL;
2686 if (global_block != nullptr)
2687 {
2688 sym = lookup_symbol_in_block (name,
2689 symbol_name_match_type::FULL,
2690 global_block, domain);
2691 if (sym != NULL && best_symbol (sym, domain))
2692 return { sym, global_block };
2693 }
2694
2695 struct objfile *objfile = nullptr;
2696 if (block != nullptr)
2697 {
2698 objfile = block_objfile (block);
2699 if (objfile->separate_debug_objfile_backlink != nullptr)
2700 objfile = objfile->separate_debug_objfile_backlink;
2701 }
2702
2703 block_symbol bs
2704 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2705 if (better_symbol (sym, bs.symbol, domain) == sym)
2706 return { sym, global_block };
2707 else
2708 return bs;
2709 }
2710
2711 bool
2712 symbol_matches_domain (enum language symbol_language,
2713 domain_enum symbol_domain,
2714 domain_enum domain)
2715 {
2716 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2717 Similarly, any Ada type declaration implicitly defines a typedef. */
2718 if (symbol_language == language_cplus
2719 || symbol_language == language_d
2720 || symbol_language == language_ada
2721 || symbol_language == language_rust)
2722 {
2723 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2724 && symbol_domain == STRUCT_DOMAIN)
2725 return true;
2726 }
2727 /* For all other languages, strict match is required. */
2728 return (symbol_domain == domain);
2729 }
2730
2731 /* See symtab.h. */
2732
2733 struct type *
2734 lookup_transparent_type (const char *name)
2735 {
2736 return current_language->lookup_transparent_type (name);
2737 }
2738
2739 /* A helper for basic_lookup_transparent_type that interfaces with the
2740 "quick" symbol table functions. */
2741
2742 static struct type *
2743 basic_lookup_transparent_type_quick (struct objfile *objfile,
2744 enum block_enum block_index,
2745 const char *name)
2746 {
2747 struct compunit_symtab *cust;
2748 const struct blockvector *bv;
2749 const struct block *block;
2750 struct symbol *sym;
2751
2752 if (!objfile->sf)
2753 return NULL;
2754 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2755 STRUCT_DOMAIN);
2756 if (cust == NULL)
2757 return NULL;
2758
2759 bv = COMPUNIT_BLOCKVECTOR (cust);
2760 block = BLOCKVECTOR_BLOCK (bv, block_index);
2761 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2762 block_find_non_opaque_type, NULL);
2763 if (sym == NULL)
2764 error_in_psymtab_expansion (block_index, name, cust);
2765 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2766 return SYMBOL_TYPE (sym);
2767 }
2768
2769 /* Subroutine of basic_lookup_transparent_type to simplify it.
2770 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2771 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2772
2773 static struct type *
2774 basic_lookup_transparent_type_1 (struct objfile *objfile,
2775 enum block_enum block_index,
2776 const char *name)
2777 {
2778 const struct blockvector *bv;
2779 const struct block *block;
2780 const struct symbol *sym;
2781
2782 for (compunit_symtab *cust : objfile->compunits ())
2783 {
2784 bv = COMPUNIT_BLOCKVECTOR (cust);
2785 block = BLOCKVECTOR_BLOCK (bv, block_index);
2786 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2787 block_find_non_opaque_type, NULL);
2788 if (sym != NULL)
2789 {
2790 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2791 return SYMBOL_TYPE (sym);
2792 }
2793 }
2794
2795 return NULL;
2796 }
2797
2798 /* The standard implementation of lookup_transparent_type. This code
2799 was modeled on lookup_symbol -- the parts not relevant to looking
2800 up types were just left out. In particular it's assumed here that
2801 types are available in STRUCT_DOMAIN and only in file-static or
2802 global blocks. */
2803
2804 struct type *
2805 basic_lookup_transparent_type (const char *name)
2806 {
2807 struct type *t;
2808
2809 /* Now search all the global symbols. Do the symtab's first, then
2810 check the psymtab's. If a psymtab indicates the existence
2811 of the desired name as a global, then do psymtab-to-symtab
2812 conversion on the fly and return the found symbol. */
2813
2814 for (objfile *objfile : current_program_space->objfiles ())
2815 {
2816 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2817 if (t)
2818 return t;
2819 }
2820
2821 for (objfile *objfile : current_program_space->objfiles ())
2822 {
2823 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2824 if (t)
2825 return t;
2826 }
2827
2828 /* Now search the static file-level symbols.
2829 Not strictly correct, but more useful than an error.
2830 Do the symtab's first, then
2831 check the psymtab's. If a psymtab indicates the existence
2832 of the desired name as a file-level static, then do psymtab-to-symtab
2833 conversion on the fly and return the found symbol. */
2834
2835 for (objfile *objfile : current_program_space->objfiles ())
2836 {
2837 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2838 if (t)
2839 return t;
2840 }
2841
2842 for (objfile *objfile : current_program_space->objfiles ())
2843 {
2844 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2845 if (t)
2846 return t;
2847 }
2848
2849 return (struct type *) 0;
2850 }
2851
2852 /* See symtab.h. */
2853
2854 bool
2855 iterate_over_symbols (const struct block *block,
2856 const lookup_name_info &name,
2857 const domain_enum domain,
2858 gdb::function_view<symbol_found_callback_ftype> callback)
2859 {
2860 struct block_iterator iter;
2861 struct symbol *sym;
2862
2863 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2864 {
2865 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2866 {
2867 struct block_symbol block_sym = {sym, block};
2868
2869 if (!callback (&block_sym))
2870 return false;
2871 }
2872 }
2873 return true;
2874 }
2875
2876 /* See symtab.h. */
2877
2878 bool
2879 iterate_over_symbols_terminated
2880 (const struct block *block,
2881 const lookup_name_info &name,
2882 const domain_enum domain,
2883 gdb::function_view<symbol_found_callback_ftype> callback)
2884 {
2885 if (!iterate_over_symbols (block, name, domain, callback))
2886 return false;
2887 struct block_symbol block_sym = {nullptr, block};
2888 return callback (&block_sym);
2889 }
2890
2891 /* Find the compunit symtab associated with PC and SECTION.
2892 This will read in debug info as necessary. */
2893
2894 struct compunit_symtab *
2895 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2896 {
2897 struct compunit_symtab *best_cust = NULL;
2898 CORE_ADDR best_cust_range = 0;
2899 struct bound_minimal_symbol msymbol;
2900
2901 /* If we know that this is not a text address, return failure. This is
2902 necessary because we loop based on the block's high and low code
2903 addresses, which do not include the data ranges, and because
2904 we call find_pc_sect_psymtab which has a similar restriction based
2905 on the partial_symtab's texthigh and textlow. */
2906 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2907 if (msymbol.minsym && msymbol.minsym->data_p ())
2908 return NULL;
2909
2910 /* Search all symtabs for the one whose file contains our address, and which
2911 is the smallest of all the ones containing the address. This is designed
2912 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2913 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2914 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2915
2916 This happens for native ecoff format, where code from included files
2917 gets its own symtab. The symtab for the included file should have
2918 been read in already via the dependency mechanism.
2919 It might be swifter to create several symtabs with the same name
2920 like xcoff does (I'm not sure).
2921
2922 It also happens for objfiles that have their functions reordered.
2923 For these, the symtab we are looking for is not necessarily read in. */
2924
2925 for (objfile *obj_file : current_program_space->objfiles ())
2926 {
2927 for (compunit_symtab *cust : obj_file->compunits ())
2928 {
2929 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
2930 const struct block *global_block
2931 = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2932 CORE_ADDR start = BLOCK_START (global_block);
2933 CORE_ADDR end = BLOCK_END (global_block);
2934 bool in_range_p = start <= pc && pc < end;
2935 if (!in_range_p)
2936 continue;
2937
2938 if (BLOCKVECTOR_MAP (bv))
2939 {
2940 if (addrmap_find (BLOCKVECTOR_MAP (bv), pc) == nullptr)
2941 continue;
2942
2943 return cust;
2944 }
2945
2946 CORE_ADDR range = end - start;
2947 if (best_cust != nullptr
2948 && range >= best_cust_range)
2949 /* Cust doesn't have a smaller range than best_cust, skip it. */
2950 continue;
2951
2952 /* For an objfile that has its functions reordered,
2953 find_pc_psymtab will find the proper partial symbol table
2954 and we simply return its corresponding symtab. */
2955 /* In order to better support objfiles that contain both
2956 stabs and coff debugging info, we continue on if a psymtab
2957 can't be found. */
2958 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2959 {
2960 struct compunit_symtab *result;
2961
2962 result
2963 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2964 msymbol,
2965 pc,
2966 section,
2967 0);
2968 if (result != NULL)
2969 return result;
2970 }
2971
2972 if (section != 0)
2973 {
2974 struct symbol *sym = NULL;
2975 struct block_iterator iter;
2976
2977 for (int b_index = GLOBAL_BLOCK;
2978 b_index <= STATIC_BLOCK && sym == NULL;
2979 ++b_index)
2980 {
2981 const struct block *b = BLOCKVECTOR_BLOCK (bv, b_index);
2982 ALL_BLOCK_SYMBOLS (b, iter, sym)
2983 {
2984 fixup_symbol_section (sym, obj_file);
2985 if (matching_obj_sections (sym->obj_section (obj_file),
2986 section))
2987 break;
2988 }
2989 }
2990 if (sym == NULL)
2991 continue; /* No symbol in this symtab matches
2992 section. */
2993 }
2994
2995 /* Cust is best found sofar, save it. */
2996 best_cust = cust;
2997 best_cust_range = range;
2998 }
2999 }
3000
3001 if (best_cust != NULL)
3002 return best_cust;
3003
3004 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3005
3006 for (objfile *objf : current_program_space->objfiles ())
3007 {
3008 struct compunit_symtab *result;
3009
3010 if (!objf->sf)
3011 continue;
3012 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
3013 msymbol,
3014 pc, section,
3015 1);
3016 if (result != NULL)
3017 return result;
3018 }
3019
3020 return NULL;
3021 }
3022
3023 /* Find the compunit symtab associated with PC.
3024 This will read in debug info as necessary.
3025 Backward compatibility, no section. */
3026
3027 struct compunit_symtab *
3028 find_pc_compunit_symtab (CORE_ADDR pc)
3029 {
3030 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3031 }
3032
3033 /* See symtab.h. */
3034
3035 struct symbol *
3036 find_symbol_at_address (CORE_ADDR address)
3037 {
3038 /* A helper function to search a given symtab for a symbol matching
3039 ADDR. */
3040 auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol *
3041 {
3042 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3043
3044 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3045 {
3046 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3047 struct block_iterator iter;
3048 struct symbol *sym;
3049
3050 ALL_BLOCK_SYMBOLS (b, iter, sym)
3051 {
3052 if (SYMBOL_CLASS (sym) == LOC_STATIC
3053 && SYMBOL_VALUE_ADDRESS (sym) == addr)
3054 return sym;
3055 }
3056 }
3057 return nullptr;
3058 };
3059
3060 for (objfile *objfile : current_program_space->objfiles ())
3061 {
3062 /* If this objfile doesn't have "quick" functions, then it may
3063 have been read with -readnow, in which case we need to search
3064 the symtabs directly. */
3065 if (objfile->sf == NULL
3066 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3067 {
3068 for (compunit_symtab *symtab : objfile->compunits ())
3069 {
3070 struct symbol *sym = search_symtab (symtab, address);
3071 if (sym != nullptr)
3072 return sym;
3073 }
3074 }
3075 else
3076 {
3077 struct compunit_symtab *symtab
3078 = objfile->sf->qf->find_compunit_symtab_by_address (objfile,
3079 address);
3080 if (symtab != NULL)
3081 {
3082 struct symbol *sym = search_symtab (symtab, address);
3083 if (sym != nullptr)
3084 return sym;
3085 }
3086 }
3087 }
3088
3089 return NULL;
3090 }
3091
3092 \f
3093
3094 /* Find the source file and line number for a given PC value and SECTION.
3095 Return a structure containing a symtab pointer, a line number,
3096 and a pc range for the entire source line.
3097 The value's .pc field is NOT the specified pc.
3098 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3099 use the line that ends there. Otherwise, in that case, the line
3100 that begins there is used. */
3101
3102 /* The big complication here is that a line may start in one file, and end just
3103 before the start of another file. This usually occurs when you #include
3104 code in the middle of a subroutine. To properly find the end of a line's PC
3105 range, we must search all symtabs associated with this compilation unit, and
3106 find the one whose first PC is closer than that of the next line in this
3107 symtab. */
3108
3109 struct symtab_and_line
3110 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3111 {
3112 struct compunit_symtab *cust;
3113 struct linetable *l;
3114 int len;
3115 struct linetable_entry *item;
3116 const struct blockvector *bv;
3117 struct bound_minimal_symbol msymbol;
3118
3119 /* Info on best line seen so far, and where it starts, and its file. */
3120
3121 struct linetable_entry *best = NULL;
3122 CORE_ADDR best_end = 0;
3123 struct symtab *best_symtab = 0;
3124
3125 /* Store here the first line number
3126 of a file which contains the line at the smallest pc after PC.
3127 If we don't find a line whose range contains PC,
3128 we will use a line one less than this,
3129 with a range from the start of that file to the first line's pc. */
3130 struct linetable_entry *alt = NULL;
3131
3132 /* Info on best line seen in this file. */
3133
3134 struct linetable_entry *prev;
3135
3136 /* If this pc is not from the current frame,
3137 it is the address of the end of a call instruction.
3138 Quite likely that is the start of the following statement.
3139 But what we want is the statement containing the instruction.
3140 Fudge the pc to make sure we get that. */
3141
3142 /* It's tempting to assume that, if we can't find debugging info for
3143 any function enclosing PC, that we shouldn't search for line
3144 number info, either. However, GAS can emit line number info for
3145 assembly files --- very helpful when debugging hand-written
3146 assembly code. In such a case, we'd have no debug info for the
3147 function, but we would have line info. */
3148
3149 if (notcurrent)
3150 pc -= 1;
3151
3152 /* elz: added this because this function returned the wrong
3153 information if the pc belongs to a stub (import/export)
3154 to call a shlib function. This stub would be anywhere between
3155 two functions in the target, and the line info was erroneously
3156 taken to be the one of the line before the pc. */
3157
3158 /* RT: Further explanation:
3159
3160 * We have stubs (trampolines) inserted between procedures.
3161 *
3162 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3163 * exists in the main image.
3164 *
3165 * In the minimal symbol table, we have a bunch of symbols
3166 * sorted by start address. The stubs are marked as "trampoline",
3167 * the others appear as text. E.g.:
3168 *
3169 * Minimal symbol table for main image
3170 * main: code for main (text symbol)
3171 * shr1: stub (trampoline symbol)
3172 * foo: code for foo (text symbol)
3173 * ...
3174 * Minimal symbol table for "shr1" image:
3175 * ...
3176 * shr1: code for shr1 (text symbol)
3177 * ...
3178 *
3179 * So the code below is trying to detect if we are in the stub
3180 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3181 * and if found, do the symbolization from the real-code address
3182 * rather than the stub address.
3183 *
3184 * Assumptions being made about the minimal symbol table:
3185 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3186 * if we're really in the trampoline.s If we're beyond it (say
3187 * we're in "foo" in the above example), it'll have a closer
3188 * symbol (the "foo" text symbol for example) and will not
3189 * return the trampoline.
3190 * 2. lookup_minimal_symbol_text() will find a real text symbol
3191 * corresponding to the trampoline, and whose address will
3192 * be different than the trampoline address. I put in a sanity
3193 * check for the address being the same, to avoid an
3194 * infinite recursion.
3195 */
3196 msymbol = lookup_minimal_symbol_by_pc (pc);
3197 if (msymbol.minsym != NULL)
3198 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3199 {
3200 struct bound_minimal_symbol mfunsym
3201 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3202 NULL);
3203
3204 if (mfunsym.minsym == NULL)
3205 /* I eliminated this warning since it is coming out
3206 * in the following situation:
3207 * gdb shmain // test program with shared libraries
3208 * (gdb) break shr1 // function in shared lib
3209 * Warning: In stub for ...
3210 * In the above situation, the shared lib is not loaded yet,
3211 * so of course we can't find the real func/line info,
3212 * but the "break" still works, and the warning is annoying.
3213 * So I commented out the warning. RT */
3214 /* warning ("In stub for %s; unable to find real function/line info",
3215 msymbol->linkage_name ()); */
3216 ;
3217 /* fall through */
3218 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3219 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3220 /* Avoid infinite recursion */
3221 /* See above comment about why warning is commented out. */
3222 /* warning ("In stub for %s; unable to find real function/line info",
3223 msymbol->linkage_name ()); */
3224 ;
3225 /* fall through */
3226 else
3227 {
3228 /* Detect an obvious case of infinite recursion. If this
3229 should occur, we'd like to know about it, so error out,
3230 fatally. */
3231 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3232 internal_error (__FILE__, __LINE__,
3233 _("Infinite recursion detected in find_pc_sect_line;"
3234 "please file a bug report"));
3235
3236 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3237 }
3238 }
3239
3240 symtab_and_line val;
3241 val.pspace = current_program_space;
3242
3243 cust = find_pc_sect_compunit_symtab (pc, section);
3244 if (cust == NULL)
3245 {
3246 /* If no symbol information, return previous pc. */
3247 if (notcurrent)
3248 pc++;
3249 val.pc = pc;
3250 return val;
3251 }
3252
3253 bv = COMPUNIT_BLOCKVECTOR (cust);
3254
3255 /* Look at all the symtabs that share this blockvector.
3256 They all have the same apriori range, that we found was right;
3257 but they have different line tables. */
3258
3259 for (symtab *iter_s : compunit_filetabs (cust))
3260 {
3261 /* Find the best line in this symtab. */
3262 l = SYMTAB_LINETABLE (iter_s);
3263 if (!l)
3264 continue;
3265 len = l->nitems;
3266 if (len <= 0)
3267 {
3268 /* I think len can be zero if the symtab lacks line numbers
3269 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3270 I'm not sure which, and maybe it depends on the symbol
3271 reader). */
3272 continue;
3273 }
3274
3275 prev = NULL;
3276 item = l->item; /* Get first line info. */
3277
3278 /* Is this file's first line closer than the first lines of other files?
3279 If so, record this file, and its first line, as best alternate. */
3280 if (item->pc > pc && (!alt || item->pc < alt->pc))
3281 alt = item;
3282
3283 auto pc_compare = [](const CORE_ADDR & comp_pc,
3284 const struct linetable_entry & lhs)->bool
3285 {
3286 return comp_pc < lhs.pc;
3287 };
3288
3289 struct linetable_entry *first = item;
3290 struct linetable_entry *last = item + len;
3291 item = std::upper_bound (first, last, pc, pc_compare);
3292 if (item != first)
3293 prev = item - 1; /* Found a matching item. */
3294
3295 /* At this point, prev points at the line whose start addr is <= pc, and
3296 item points at the next line. If we ran off the end of the linetable
3297 (pc >= start of the last line), then prev == item. If pc < start of
3298 the first line, prev will not be set. */
3299
3300 /* Is this file's best line closer than the best in the other files?
3301 If so, record this file, and its best line, as best so far. Don't
3302 save prev if it represents the end of a function (i.e. line number
3303 0) instead of a real line. */
3304
3305 if (prev && prev->line && (!best || prev->pc > best->pc))
3306 {
3307 best = prev;
3308 best_symtab = iter_s;
3309
3310 /* If during the binary search we land on a non-statement entry,
3311 scan backward through entries at the same address to see if
3312 there is an entry marked as is-statement. In theory this
3313 duplication should have been removed from the line table
3314 during construction, this is just a double check. If the line
3315 table has had the duplication removed then this should be
3316 pretty cheap. */
3317 if (!best->is_stmt)
3318 {
3319 struct linetable_entry *tmp = best;
3320 while (tmp > first && (tmp - 1)->pc == tmp->pc
3321 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3322 --tmp;
3323 if (tmp->is_stmt)
3324 best = tmp;
3325 }
3326
3327 /* Discard BEST_END if it's before the PC of the current BEST. */
3328 if (best_end <= best->pc)
3329 best_end = 0;
3330 }
3331
3332 /* If another line (denoted by ITEM) is in the linetable and its
3333 PC is after BEST's PC, but before the current BEST_END, then
3334 use ITEM's PC as the new best_end. */
3335 if (best && item < last && item->pc > best->pc
3336 && (best_end == 0 || best_end > item->pc))
3337 best_end = item->pc;
3338 }
3339
3340 if (!best_symtab)
3341 {
3342 /* If we didn't find any line number info, just return zeros.
3343 We used to return alt->line - 1 here, but that could be
3344 anywhere; if we don't have line number info for this PC,
3345 don't make some up. */
3346 val.pc = pc;
3347 }
3348 else if (best->line == 0)
3349 {
3350 /* If our best fit is in a range of PC's for which no line
3351 number info is available (line number is zero) then we didn't
3352 find any valid line information. */
3353 val.pc = pc;
3354 }
3355 else
3356 {
3357 val.is_stmt = best->is_stmt;
3358 val.symtab = best_symtab;
3359 val.line = best->line;
3360 val.pc = best->pc;
3361 if (best_end && (!alt || best_end < alt->pc))
3362 val.end = best_end;
3363 else if (alt)
3364 val.end = alt->pc;
3365 else
3366 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3367 }
3368 val.section = section;
3369 return val;
3370 }
3371
3372 /* Backward compatibility (no section). */
3373
3374 struct symtab_and_line
3375 find_pc_line (CORE_ADDR pc, int notcurrent)
3376 {
3377 struct obj_section *section;
3378
3379 section = find_pc_overlay (pc);
3380 if (!pc_in_unmapped_range (pc, section))
3381 return find_pc_sect_line (pc, section, notcurrent);
3382
3383 /* If the original PC was an unmapped address then we translate this to a
3384 mapped address in order to lookup the sal. However, as the user
3385 passed us an unmapped address it makes more sense to return a result
3386 that has the pc and end fields translated to unmapped addresses. */
3387 pc = overlay_mapped_address (pc, section);
3388 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3389 sal.pc = overlay_unmapped_address (sal.pc, section);
3390 sal.end = overlay_unmapped_address (sal.end, section);
3391 return sal;
3392 }
3393
3394 /* See symtab.h. */
3395
3396 struct symtab *
3397 find_pc_line_symtab (CORE_ADDR pc)
3398 {
3399 struct symtab_and_line sal;
3400
3401 /* This always passes zero for NOTCURRENT to find_pc_line.
3402 There are currently no callers that ever pass non-zero. */
3403 sal = find_pc_line (pc, 0);
3404 return sal.symtab;
3405 }
3406 \f
3407 /* Find line number LINE in any symtab whose name is the same as
3408 SYMTAB.
3409
3410 If found, return the symtab that contains the linetable in which it was
3411 found, set *INDEX to the index in the linetable of the best entry
3412 found, and set *EXACT_MATCH to true if the value returned is an
3413 exact match.
3414
3415 If not found, return NULL. */
3416
3417 struct symtab *
3418 find_line_symtab (struct symtab *sym_tab, int line,
3419 int *index, bool *exact_match)
3420 {
3421 int exact = 0; /* Initialized here to avoid a compiler warning. */
3422
3423 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3424 so far seen. */
3425
3426 int best_index;
3427 struct linetable *best_linetable;
3428 struct symtab *best_symtab;
3429
3430 /* First try looking it up in the given symtab. */
3431 best_linetable = SYMTAB_LINETABLE (sym_tab);
3432 best_symtab = sym_tab;
3433 best_index = find_line_common (best_linetable, line, &exact, 0);
3434 if (best_index < 0 || !exact)
3435 {
3436 /* Didn't find an exact match. So we better keep looking for
3437 another symtab with the same name. In the case of xcoff,
3438 multiple csects for one source file (produced by IBM's FORTRAN
3439 compiler) produce multiple symtabs (this is unavoidable
3440 assuming csects can be at arbitrary places in memory and that
3441 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3442
3443 /* BEST is the smallest linenumber > LINE so far seen,
3444 or 0 if none has been seen so far.
3445 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3446 int best;
3447
3448 if (best_index >= 0)
3449 best = best_linetable->item[best_index].line;
3450 else
3451 best = 0;
3452
3453 for (objfile *objfile : current_program_space->objfiles ())
3454 {
3455 if (objfile->sf)
3456 objfile->sf->qf->expand_symtabs_with_fullname
3457 (objfile, symtab_to_fullname (sym_tab));
3458 }
3459
3460 for (objfile *objfile : current_program_space->objfiles ())
3461 {
3462 for (compunit_symtab *cu : objfile->compunits ())
3463 {
3464 for (symtab *s : compunit_filetabs (cu))
3465 {
3466 struct linetable *l;
3467 int ind;
3468
3469 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3470 continue;
3471 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3472 symtab_to_fullname (s)) != 0)
3473 continue;
3474 l = SYMTAB_LINETABLE (s);
3475 ind = find_line_common (l, line, &exact, 0);
3476 if (ind >= 0)
3477 {
3478 if (exact)
3479 {
3480 best_index = ind;
3481 best_linetable = l;
3482 best_symtab = s;
3483 goto done;
3484 }
3485 if (best == 0 || l->item[ind].line < best)
3486 {
3487 best = l->item[ind].line;
3488 best_index = ind;
3489 best_linetable = l;
3490 best_symtab = s;
3491 }
3492 }
3493 }
3494 }
3495 }
3496 }
3497 done:
3498 if (best_index < 0)
3499 return NULL;
3500
3501 if (index)
3502 *index = best_index;
3503 if (exact_match)
3504 *exact_match = (exact != 0);
3505
3506 return best_symtab;
3507 }
3508
3509 /* Given SYMTAB, returns all the PCs function in the symtab that
3510 exactly match LINE. Returns an empty vector if there are no exact
3511 matches, but updates BEST_ITEM in this case. */
3512
3513 std::vector<CORE_ADDR>
3514 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3515 struct linetable_entry **best_item)
3516 {
3517 int start = 0;
3518 std::vector<CORE_ADDR> result;
3519
3520 /* First, collect all the PCs that are at this line. */
3521 while (1)
3522 {
3523 int was_exact;
3524 int idx;
3525
3526 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3527 start);
3528 if (idx < 0)
3529 break;
3530
3531 if (!was_exact)
3532 {
3533 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3534
3535 if (*best_item == NULL
3536 || (item->line < (*best_item)->line && item->is_stmt))
3537 *best_item = item;
3538
3539 break;
3540 }
3541
3542 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3543 start = idx + 1;
3544 }
3545
3546 return result;
3547 }
3548
3549 \f
3550 /* Set the PC value for a given source file and line number and return true.
3551 Returns false for invalid line number (and sets the PC to 0).
3552 The source file is specified with a struct symtab. */
3553
3554 bool
3555 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3556 {
3557 struct linetable *l;
3558 int ind;
3559
3560 *pc = 0;
3561 if (symtab == 0)
3562 return false;
3563
3564 symtab = find_line_symtab (symtab, line, &ind, NULL);
3565 if (symtab != NULL)
3566 {
3567 l = SYMTAB_LINETABLE (symtab);
3568 *pc = l->item[ind].pc;
3569 return true;
3570 }
3571 else
3572 return false;
3573 }
3574
3575 /* Find the range of pc values in a line.
3576 Store the starting pc of the line into *STARTPTR
3577 and the ending pc (start of next line) into *ENDPTR.
3578 Returns true to indicate success.
3579 Returns false if could not find the specified line. */
3580
3581 bool
3582 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3583 CORE_ADDR *endptr)
3584 {
3585 CORE_ADDR startaddr;
3586 struct symtab_and_line found_sal;
3587
3588 startaddr = sal.pc;
3589 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3590 return false;
3591
3592 /* This whole function is based on address. For example, if line 10 has
3593 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3594 "info line *0x123" should say the line goes from 0x100 to 0x200
3595 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3596 This also insures that we never give a range like "starts at 0x134
3597 and ends at 0x12c". */
3598
3599 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3600 if (found_sal.line != sal.line)
3601 {
3602 /* The specified line (sal) has zero bytes. */
3603 *startptr = found_sal.pc;
3604 *endptr = found_sal.pc;
3605 }
3606 else
3607 {
3608 *startptr = found_sal.pc;
3609 *endptr = found_sal.end;
3610 }
3611 return true;
3612 }
3613
3614 /* Given a line table and a line number, return the index into the line
3615 table for the pc of the nearest line whose number is >= the specified one.
3616 Return -1 if none is found. The value is >= 0 if it is an index.
3617 START is the index at which to start searching the line table.
3618
3619 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3620
3621 static int
3622 find_line_common (struct linetable *l, int lineno,
3623 int *exact_match, int start)
3624 {
3625 int i;
3626 int len;
3627
3628 /* BEST is the smallest linenumber > LINENO so far seen,
3629 or 0 if none has been seen so far.
3630 BEST_INDEX identifies the item for it. */
3631
3632 int best_index = -1;
3633 int best = 0;
3634
3635 *exact_match = 0;
3636
3637 if (lineno <= 0)
3638 return -1;
3639 if (l == 0)
3640 return -1;
3641
3642 len = l->nitems;
3643 for (i = start; i < len; i++)
3644 {
3645 struct linetable_entry *item = &(l->item[i]);
3646
3647 /* Ignore non-statements. */
3648 if (!item->is_stmt)
3649 continue;
3650
3651 if (item->line == lineno)
3652 {
3653 /* Return the first (lowest address) entry which matches. */
3654 *exact_match = 1;
3655 return i;
3656 }
3657
3658 if (item->line > lineno && (best == 0 || item->line < best))
3659 {
3660 best = item->line;
3661 best_index = i;
3662 }
3663 }
3664
3665 /* If we got here, we didn't get an exact match. */
3666 return best_index;
3667 }
3668
3669 bool
3670 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3671 {
3672 struct symtab_and_line sal;
3673
3674 sal = find_pc_line (pc, 0);
3675 *startptr = sal.pc;
3676 *endptr = sal.end;
3677 return sal.symtab != 0;
3678 }
3679
3680 /* Helper for find_function_start_sal. Does most of the work, except
3681 setting the sal's symbol. */
3682
3683 static symtab_and_line
3684 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3685 bool funfirstline)
3686 {
3687 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3688
3689 if (funfirstline && sal.symtab != NULL
3690 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3691 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3692 {
3693 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3694
3695 sal.pc = func_addr;
3696 if (gdbarch_skip_entrypoint_p (gdbarch))
3697 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3698 return sal;
3699 }
3700
3701 /* We always should have a line for the function start address.
3702 If we don't, something is odd. Create a plain SAL referring
3703 just the PC and hope that skip_prologue_sal (if requested)
3704 can find a line number for after the prologue. */
3705 if (sal.pc < func_addr)
3706 {
3707 sal = {};
3708 sal.pspace = current_program_space;
3709 sal.pc = func_addr;
3710 sal.section = section;
3711 }
3712
3713 if (funfirstline)
3714 skip_prologue_sal (&sal);
3715
3716 return sal;
3717 }
3718
3719 /* See symtab.h. */
3720
3721 symtab_and_line
3722 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3723 bool funfirstline)
3724 {
3725 symtab_and_line sal
3726 = find_function_start_sal_1 (func_addr, section, funfirstline);
3727
3728 /* find_function_start_sal_1 does a linetable search, so it finds
3729 the symtab and linenumber, but not a symbol. Fill in the
3730 function symbol too. */
3731 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3732
3733 return sal;
3734 }
3735
3736 /* See symtab.h. */
3737
3738 symtab_and_line
3739 find_function_start_sal (symbol *sym, bool funfirstline)
3740 {
3741 fixup_symbol_section (sym, NULL);
3742 symtab_and_line sal
3743 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3744 sym->obj_section (symbol_objfile (sym)),
3745 funfirstline);
3746 sal.symbol = sym;
3747 return sal;
3748 }
3749
3750
3751 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3752 address for that function that has an entry in SYMTAB's line info
3753 table. If such an entry cannot be found, return FUNC_ADDR
3754 unaltered. */
3755
3756 static CORE_ADDR
3757 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3758 {
3759 CORE_ADDR func_start, func_end;
3760 struct linetable *l;
3761 int i;
3762
3763 /* Give up if this symbol has no lineinfo table. */
3764 l = SYMTAB_LINETABLE (symtab);
3765 if (l == NULL)
3766 return func_addr;
3767
3768 /* Get the range for the function's PC values, or give up if we
3769 cannot, for some reason. */
3770 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3771 return func_addr;
3772
3773 /* Linetable entries are ordered by PC values, see the commentary in
3774 symtab.h where `struct linetable' is defined. Thus, the first
3775 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3776 address we are looking for. */
3777 for (i = 0; i < l->nitems; i++)
3778 {
3779 struct linetable_entry *item = &(l->item[i]);
3780
3781 /* Don't use line numbers of zero, they mark special entries in
3782 the table. See the commentary on symtab.h before the
3783 definition of struct linetable. */
3784 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3785 return item->pc;
3786 }
3787
3788 return func_addr;
3789 }
3790
3791 /* Adjust SAL to the first instruction past the function prologue.
3792 If the PC was explicitly specified, the SAL is not changed.
3793 If the line number was explicitly specified then the SAL can still be
3794 updated, unless the language for SAL is assembler, in which case the SAL
3795 will be left unchanged.
3796 If SAL is already past the prologue, then do nothing. */
3797
3798 void
3799 skip_prologue_sal (struct symtab_and_line *sal)
3800 {
3801 struct symbol *sym;
3802 struct symtab_and_line start_sal;
3803 CORE_ADDR pc, saved_pc;
3804 struct obj_section *section;
3805 const char *name;
3806 struct objfile *objfile;
3807 struct gdbarch *gdbarch;
3808 const struct block *b, *function_block;
3809 int force_skip, skip;
3810
3811 /* Do not change the SAL if PC was specified explicitly. */
3812 if (sal->explicit_pc)
3813 return;
3814
3815 /* In assembly code, if the user asks for a specific line then we should
3816 not adjust the SAL. The user already has instruction level
3817 visibility in this case, so selecting a line other than one requested
3818 is likely to be the wrong choice. */
3819 if (sal->symtab != nullptr
3820 && sal->explicit_line
3821 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3822 return;
3823
3824 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3825
3826 switch_to_program_space_and_thread (sal->pspace);
3827
3828 sym = find_pc_sect_function (sal->pc, sal->section);
3829 if (sym != NULL)
3830 {
3831 fixup_symbol_section (sym, NULL);
3832
3833 objfile = symbol_objfile (sym);
3834 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3835 section = sym->obj_section (objfile);
3836 name = sym->linkage_name ();
3837 }
3838 else
3839 {
3840 struct bound_minimal_symbol msymbol
3841 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3842
3843 if (msymbol.minsym == NULL)
3844 return;
3845
3846 objfile = msymbol.objfile;
3847 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3848 section = msymbol.minsym->obj_section (objfile);
3849 name = msymbol.minsym->linkage_name ();
3850 }
3851
3852 gdbarch = objfile->arch ();
3853
3854 /* Process the prologue in two passes. In the first pass try to skip the
3855 prologue (SKIP is true) and verify there is a real need for it (indicated
3856 by FORCE_SKIP). If no such reason was found run a second pass where the
3857 prologue is not skipped (SKIP is false). */
3858
3859 skip = 1;
3860 force_skip = 1;
3861
3862 /* Be conservative - allow direct PC (without skipping prologue) only if we
3863 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3864 have to be set by the caller so we use SYM instead. */
3865 if (sym != NULL
3866 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3867 force_skip = 0;
3868
3869 saved_pc = pc;
3870 do
3871 {
3872 pc = saved_pc;
3873
3874 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3875 so that gdbarch_skip_prologue has something unique to work on. */
3876 if (section_is_overlay (section) && !section_is_mapped (section))
3877 pc = overlay_unmapped_address (pc, section);
3878
3879 /* Skip "first line" of function (which is actually its prologue). */
3880 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3881 if (gdbarch_skip_entrypoint_p (gdbarch))
3882 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3883 if (skip)
3884 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3885
3886 /* For overlays, map pc back into its mapped VMA range. */
3887 pc = overlay_mapped_address (pc, section);
3888
3889 /* Calculate line number. */
3890 start_sal = find_pc_sect_line (pc, section, 0);
3891
3892 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3893 line is still part of the same function. */
3894 if (skip && start_sal.pc != pc
3895 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3896 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3897 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3898 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3899 {
3900 /* First pc of next line */
3901 pc = start_sal.end;
3902 /* Recalculate the line number (might not be N+1). */
3903 start_sal = find_pc_sect_line (pc, section, 0);
3904 }
3905
3906 /* On targets with executable formats that don't have a concept of
3907 constructors (ELF with .init has, PE doesn't), gcc emits a call
3908 to `__main' in `main' between the prologue and before user
3909 code. */
3910 if (gdbarch_skip_main_prologue_p (gdbarch)
3911 && name && strcmp_iw (name, "main") == 0)
3912 {
3913 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3914 /* Recalculate the line number (might not be N+1). */
3915 start_sal = find_pc_sect_line (pc, section, 0);
3916 force_skip = 1;
3917 }
3918 }
3919 while (!force_skip && skip--);
3920
3921 /* If we still don't have a valid source line, try to find the first
3922 PC in the lineinfo table that belongs to the same function. This
3923 happens with COFF debug info, which does not seem to have an
3924 entry in lineinfo table for the code after the prologue which has
3925 no direct relation to source. For example, this was found to be
3926 the case with the DJGPP target using "gcc -gcoff" when the
3927 compiler inserted code after the prologue to make sure the stack
3928 is aligned. */
3929 if (!force_skip && sym && start_sal.symtab == NULL)
3930 {
3931 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3932 /* Recalculate the line number. */
3933 start_sal = find_pc_sect_line (pc, section, 0);
3934 }
3935
3936 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3937 forward SAL to the end of the prologue. */
3938 if (sal->pc >= pc)
3939 return;
3940
3941 sal->pc = pc;
3942 sal->section = section;
3943 sal->symtab = start_sal.symtab;
3944 sal->line = start_sal.line;
3945 sal->end = start_sal.end;
3946
3947 /* Check if we are now inside an inlined function. If we can,
3948 use the call site of the function instead. */
3949 b = block_for_pc_sect (sal->pc, sal->section);
3950 function_block = NULL;
3951 while (b != NULL)
3952 {
3953 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3954 function_block = b;
3955 else if (BLOCK_FUNCTION (b) != NULL)
3956 break;
3957 b = BLOCK_SUPERBLOCK (b);
3958 }
3959 if (function_block != NULL
3960 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3961 {
3962 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3963 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3964 }
3965 }
3966
3967 /* Given PC at the function's start address, attempt to find the
3968 prologue end using SAL information. Return zero if the skip fails.
3969
3970 A non-optimized prologue traditionally has one SAL for the function
3971 and a second for the function body. A single line function has
3972 them both pointing at the same line.
3973
3974 An optimized prologue is similar but the prologue may contain
3975 instructions (SALs) from the instruction body. Need to skip those
3976 while not getting into the function body.
3977
3978 The functions end point and an increasing SAL line are used as
3979 indicators of the prologue's endpoint.
3980
3981 This code is based on the function refine_prologue_limit
3982 (found in ia64). */
3983
3984 CORE_ADDR
3985 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3986 {
3987 struct symtab_and_line prologue_sal;
3988 CORE_ADDR start_pc;
3989 CORE_ADDR end_pc;
3990 const struct block *bl;
3991
3992 /* Get an initial range for the function. */
3993 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3994 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3995
3996 prologue_sal = find_pc_line (start_pc, 0);
3997 if (prologue_sal.line != 0)
3998 {
3999 /* For languages other than assembly, treat two consecutive line
4000 entries at the same address as a zero-instruction prologue.
4001 The GNU assembler emits separate line notes for each instruction
4002 in a multi-instruction macro, but compilers generally will not
4003 do this. */
4004 if (prologue_sal.symtab->language != language_asm)
4005 {
4006 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
4007 int idx = 0;
4008
4009 /* Skip any earlier lines, and any end-of-sequence marker
4010 from a previous function. */
4011 while (linetable->item[idx].pc != prologue_sal.pc
4012 || linetable->item[idx].line == 0)
4013 idx++;
4014
4015 if (idx+1 < linetable->nitems
4016 && linetable->item[idx+1].line != 0
4017 && linetable->item[idx+1].pc == start_pc)
4018 return start_pc;
4019 }
4020
4021 /* If there is only one sal that covers the entire function,
4022 then it is probably a single line function, like
4023 "foo(){}". */
4024 if (prologue_sal.end >= end_pc)
4025 return 0;
4026
4027 while (prologue_sal.end < end_pc)
4028 {
4029 struct symtab_and_line sal;
4030
4031 sal = find_pc_line (prologue_sal.end, 0);
4032 if (sal.line == 0)
4033 break;
4034 /* Assume that a consecutive SAL for the same (or larger)
4035 line mark the prologue -> body transition. */
4036 if (sal.line >= prologue_sal.line)
4037 break;
4038 /* Likewise if we are in a different symtab altogether
4039 (e.g. within a file included via #include).  */
4040 if (sal.symtab != prologue_sal.symtab)
4041 break;
4042
4043 /* The line number is smaller. Check that it's from the
4044 same function, not something inlined. If it's inlined,
4045 then there is no point comparing the line numbers. */
4046 bl = block_for_pc (prologue_sal.end);
4047 while (bl)
4048 {
4049 if (block_inlined_p (bl))
4050 break;
4051 if (BLOCK_FUNCTION (bl))
4052 {
4053 bl = NULL;
4054 break;
4055 }
4056 bl = BLOCK_SUPERBLOCK (bl);
4057 }
4058 if (bl != NULL)
4059 break;
4060
4061 /* The case in which compiler's optimizer/scheduler has
4062 moved instructions into the prologue. We look ahead in
4063 the function looking for address ranges whose
4064 corresponding line number is less the first one that we
4065 found for the function. This is more conservative then
4066 refine_prologue_limit which scans a large number of SALs
4067 looking for any in the prologue. */
4068 prologue_sal = sal;
4069 }
4070 }
4071
4072 if (prologue_sal.end < end_pc)
4073 /* Return the end of this line, or zero if we could not find a
4074 line. */
4075 return prologue_sal.end;
4076 else
4077 /* Don't return END_PC, which is past the end of the function. */
4078 return prologue_sal.pc;
4079 }
4080
4081 /* See symtab.h. */
4082
4083 symbol *
4084 find_function_alias_target (bound_minimal_symbol msymbol)
4085 {
4086 CORE_ADDR func_addr;
4087 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4088 return NULL;
4089
4090 symbol *sym = find_pc_function (func_addr);
4091 if (sym != NULL
4092 && SYMBOL_CLASS (sym) == LOC_BLOCK
4093 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4094 return sym;
4095
4096 return NULL;
4097 }
4098
4099 \f
4100 /* If P is of the form "operator[ \t]+..." where `...' is
4101 some legitimate operator text, return a pointer to the
4102 beginning of the substring of the operator text.
4103 Otherwise, return "". */
4104
4105 static const char *
4106 operator_chars (const char *p, const char **end)
4107 {
4108 *end = "";
4109 if (!startswith (p, CP_OPERATOR_STR))
4110 return *end;
4111 p += CP_OPERATOR_LEN;
4112
4113 /* Don't get faked out by `operator' being part of a longer
4114 identifier. */
4115 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4116 return *end;
4117
4118 /* Allow some whitespace between `operator' and the operator symbol. */
4119 while (*p == ' ' || *p == '\t')
4120 p++;
4121
4122 /* Recognize 'operator TYPENAME'. */
4123
4124 if (isalpha (*p) || *p == '_' || *p == '$')
4125 {
4126 const char *q = p + 1;
4127
4128 while (isalnum (*q) || *q == '_' || *q == '$')
4129 q++;
4130 *end = q;
4131 return p;
4132 }
4133
4134 while (*p)
4135 switch (*p)
4136 {
4137 case '\\': /* regexp quoting */
4138 if (p[1] == '*')
4139 {
4140 if (p[2] == '=') /* 'operator\*=' */
4141 *end = p + 3;
4142 else /* 'operator\*' */
4143 *end = p + 2;
4144 return p;
4145 }
4146 else if (p[1] == '[')
4147 {
4148 if (p[2] == ']')
4149 error (_("mismatched quoting on brackets, "
4150 "try 'operator\\[\\]'"));
4151 else if (p[2] == '\\' && p[3] == ']')
4152 {
4153 *end = p + 4; /* 'operator\[\]' */
4154 return p;
4155 }
4156 else
4157 error (_("nothing is allowed between '[' and ']'"));
4158 }
4159 else
4160 {
4161 /* Gratuitous quote: skip it and move on. */
4162 p++;
4163 continue;
4164 }
4165 break;
4166 case '!':
4167 case '=':
4168 case '*':
4169 case '/':
4170 case '%':
4171 case '^':
4172 if (p[1] == '=')
4173 *end = p + 2;
4174 else
4175 *end = p + 1;
4176 return p;
4177 case '<':
4178 case '>':
4179 case '+':
4180 case '-':
4181 case '&':
4182 case '|':
4183 if (p[0] == '-' && p[1] == '>')
4184 {
4185 /* Struct pointer member operator 'operator->'. */
4186 if (p[2] == '*')
4187 {
4188 *end = p + 3; /* 'operator->*' */
4189 return p;
4190 }
4191 else if (p[2] == '\\')
4192 {
4193 *end = p + 4; /* Hopefully 'operator->\*' */
4194 return p;
4195 }
4196 else
4197 {
4198 *end = p + 2; /* 'operator->' */
4199 return p;
4200 }
4201 }
4202 if (p[1] == '=' || p[1] == p[0])
4203 *end = p + 2;
4204 else
4205 *end = p + 1;
4206 return p;
4207 case '~':
4208 case ',':
4209 *end = p + 1;
4210 return p;
4211 case '(':
4212 if (p[1] != ')')
4213 error (_("`operator ()' must be specified "
4214 "without whitespace in `()'"));
4215 *end = p + 2;
4216 return p;
4217 case '?':
4218 if (p[1] != ':')
4219 error (_("`operator ?:' must be specified "
4220 "without whitespace in `?:'"));
4221 *end = p + 2;
4222 return p;
4223 case '[':
4224 if (p[1] != ']')
4225 error (_("`operator []' must be specified "
4226 "without whitespace in `[]'"));
4227 *end = p + 2;
4228 return p;
4229 default:
4230 error (_("`operator %s' not supported"), p);
4231 break;
4232 }
4233
4234 *end = "";
4235 return *end;
4236 }
4237 \f
4238
4239 /* What part to match in a file name. */
4240
4241 struct filename_partial_match_opts
4242 {
4243 /* Only match the directory name part. */
4244 bool dirname = false;
4245
4246 /* Only match the basename part. */
4247 bool basename = false;
4248 };
4249
4250 /* Data structure to maintain printing state for output_source_filename. */
4251
4252 struct output_source_filename_data
4253 {
4254 /* Output only filenames matching REGEXP. */
4255 std::string regexp;
4256 gdb::optional<compiled_regex> c_regexp;
4257 /* Possibly only match a part of the filename. */
4258 filename_partial_match_opts partial_match;
4259
4260
4261 /* Cache of what we've seen so far. */
4262 struct filename_seen_cache *filename_seen_cache;
4263
4264 /* Flag of whether we're printing the first one. */
4265 int first;
4266 };
4267
4268 /* Slave routine for sources_info. Force line breaks at ,'s.
4269 NAME is the name to print.
4270 DATA contains the state for printing and watching for duplicates. */
4271
4272 static void
4273 output_source_filename (const char *name,
4274 struct output_source_filename_data *data)
4275 {
4276 /* Since a single source file can result in several partial symbol
4277 tables, we need to avoid printing it more than once. Note: if
4278 some of the psymtabs are read in and some are not, it gets
4279 printed both under "Source files for which symbols have been
4280 read" and "Source files for which symbols will be read in on
4281 demand". I consider this a reasonable way to deal with the
4282 situation. I'm not sure whether this can also happen for
4283 symtabs; it doesn't hurt to check. */
4284
4285 /* Was NAME already seen? */
4286 if (data->filename_seen_cache->seen (name))
4287 {
4288 /* Yes; don't print it again. */
4289 return;
4290 }
4291
4292 /* Does it match data->regexp? */
4293 if (data->c_regexp.has_value ())
4294 {
4295 const char *to_match;
4296 std::string dirname;
4297
4298 if (data->partial_match.dirname)
4299 {
4300 dirname = ldirname (name);
4301 to_match = dirname.c_str ();
4302 }
4303 else if (data->partial_match.basename)
4304 to_match = lbasename (name);
4305 else
4306 to_match = name;
4307
4308 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4309 return;
4310 }
4311
4312 /* Print it and reset *FIRST. */
4313 if (! data->first)
4314 printf_filtered (", ");
4315 data->first = 0;
4316
4317 wrap_here ("");
4318 fputs_styled (name, file_name_style.style (), gdb_stdout);
4319 }
4320
4321 /* A callback for map_partial_symbol_filenames. */
4322
4323 static void
4324 output_partial_symbol_filename (const char *filename, const char *fullname,
4325 void *data)
4326 {
4327 output_source_filename (fullname ? fullname : filename,
4328 (struct output_source_filename_data *) data);
4329 }
4330
4331 using isrc_flag_option_def
4332 = gdb::option::flag_option_def<filename_partial_match_opts>;
4333
4334 static const gdb::option::option_def info_sources_option_defs[] = {
4335
4336 isrc_flag_option_def {
4337 "dirname",
4338 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4339 N_("Show only the files having a dirname matching REGEXP."),
4340 },
4341
4342 isrc_flag_option_def {
4343 "basename",
4344 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4345 N_("Show only the files having a basename matching REGEXP."),
4346 },
4347
4348 };
4349
4350 /* Create an option_def_group for the "info sources" options, with
4351 ISRC_OPTS as context. */
4352
4353 static inline gdb::option::option_def_group
4354 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4355 {
4356 return {{info_sources_option_defs}, isrc_opts};
4357 }
4358
4359 /* Prints the header message for the source files that will be printed
4360 with the matching info present in DATA. SYMBOL_MSG is a message
4361 that tells what will or has been done with the symbols of the
4362 matching source files. */
4363
4364 static void
4365 print_info_sources_header (const char *symbol_msg,
4366 const struct output_source_filename_data *data)
4367 {
4368 puts_filtered (symbol_msg);
4369 if (!data->regexp.empty ())
4370 {
4371 if (data->partial_match.dirname)
4372 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4373 data->regexp.c_str ());
4374 else if (data->partial_match.basename)
4375 printf_filtered (_("(basename matching regular expression \"%s\")"),
4376 data->regexp.c_str ());
4377 else
4378 printf_filtered (_("(filename matching regular expression \"%s\")"),
4379 data->regexp.c_str ());
4380 }
4381 puts_filtered ("\n");
4382 }
4383
4384 /* Completer for "info sources". */
4385
4386 static void
4387 info_sources_command_completer (cmd_list_element *ignore,
4388 completion_tracker &tracker,
4389 const char *text, const char *word)
4390 {
4391 const auto group = make_info_sources_options_def_group (nullptr);
4392 if (gdb::option::complete_options
4393 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4394 return;
4395 }
4396
4397 static void
4398 info_sources_command (const char *args, int from_tty)
4399 {
4400 struct output_source_filename_data data;
4401
4402 if (!have_full_symbols () && !have_partial_symbols ())
4403 {
4404 error (_("No symbol table is loaded. Use the \"file\" command."));
4405 }
4406
4407 filename_seen_cache filenames_seen;
4408
4409 auto group = make_info_sources_options_def_group (&data.partial_match);
4410
4411 gdb::option::process_options
4412 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4413
4414 if (args != NULL && *args != '\000')
4415 data.regexp = args;
4416
4417 data.filename_seen_cache = &filenames_seen;
4418 data.first = 1;
4419
4420 if (data.partial_match.dirname && data.partial_match.basename)
4421 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4422 if ((data.partial_match.dirname || data.partial_match.basename)
4423 && data.regexp.empty ())
4424 error (_("Missing REGEXP for 'info sources'."));
4425
4426 if (data.regexp.empty ())
4427 data.c_regexp.reset ();
4428 else
4429 {
4430 int cflags = REG_NOSUB;
4431 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4432 cflags |= REG_ICASE;
4433 #endif
4434 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4435 _("Invalid regexp"));
4436 }
4437
4438 print_info_sources_header
4439 (_("Source files for which symbols have been read in:\n"), &data);
4440
4441 for (objfile *objfile : current_program_space->objfiles ())
4442 {
4443 for (compunit_symtab *cu : objfile->compunits ())
4444 {
4445 for (symtab *s : compunit_filetabs (cu))
4446 {
4447 const char *fullname = symtab_to_fullname (s);
4448
4449 output_source_filename (fullname, &data);
4450 }
4451 }
4452 }
4453 printf_filtered ("\n\n");
4454
4455 print_info_sources_header
4456 (_("Source files for which symbols will be read in on demand:\n"), &data);
4457
4458 filenames_seen.clear ();
4459 data.first = 1;
4460 map_symbol_filenames (output_partial_symbol_filename, &data,
4461 1 /*need_fullname*/);
4462 printf_filtered ("\n");
4463 }
4464
4465 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4466 true compare only lbasename of FILENAMES. */
4467
4468 static bool
4469 file_matches (const char *file, const std::vector<const char *> &filenames,
4470 bool basenames)
4471 {
4472 if (filenames.empty ())
4473 return true;
4474
4475 for (const char *name : filenames)
4476 {
4477 name = (basenames ? lbasename (name) : name);
4478 if (compare_filenames_for_search (file, name))
4479 return true;
4480 }
4481
4482 return false;
4483 }
4484
4485 /* Helper function for std::sort on symbol_search objects. Can only sort
4486 symbols, not minimal symbols. */
4487
4488 int
4489 symbol_search::compare_search_syms (const symbol_search &sym_a,
4490 const symbol_search &sym_b)
4491 {
4492 int c;
4493
4494 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4495 symbol_symtab (sym_b.symbol)->filename);
4496 if (c != 0)
4497 return c;
4498
4499 if (sym_a.block != sym_b.block)
4500 return sym_a.block - sym_b.block;
4501
4502 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4503 }
4504
4505 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4506 If SYM has no symbol_type or symbol_name, returns false. */
4507
4508 bool
4509 treg_matches_sym_type_name (const compiled_regex &treg,
4510 const struct symbol *sym)
4511 {
4512 struct type *sym_type;
4513 std::string printed_sym_type_name;
4514
4515 if (symbol_lookup_debug > 1)
4516 {
4517 fprintf_unfiltered (gdb_stdlog,
4518 "treg_matches_sym_type_name\n sym %s\n",
4519 sym->natural_name ());
4520 }
4521
4522 sym_type = SYMBOL_TYPE (sym);
4523 if (sym_type == NULL)
4524 return false;
4525
4526 {
4527 scoped_switch_to_sym_language_if_auto l (sym);
4528
4529 printed_sym_type_name = type_to_string (sym_type);
4530 }
4531
4532
4533 if (symbol_lookup_debug > 1)
4534 {
4535 fprintf_unfiltered (gdb_stdlog,
4536 " sym_type_name %s\n",
4537 printed_sym_type_name.c_str ());
4538 }
4539
4540
4541 if (printed_sym_type_name.empty ())
4542 return false;
4543
4544 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4545 }
4546
4547 /* See symtab.h. */
4548
4549 bool
4550 global_symbol_searcher::is_suitable_msymbol
4551 (const enum search_domain kind, const minimal_symbol *msymbol)
4552 {
4553 switch (MSYMBOL_TYPE (msymbol))
4554 {
4555 case mst_data:
4556 case mst_bss:
4557 case mst_file_data:
4558 case mst_file_bss:
4559 return kind == VARIABLES_DOMAIN;
4560 case mst_text:
4561 case mst_file_text:
4562 case mst_solib_trampoline:
4563 case mst_text_gnu_ifunc:
4564 return kind == FUNCTIONS_DOMAIN;
4565 default:
4566 return false;
4567 }
4568 }
4569
4570 /* See symtab.h. */
4571
4572 bool
4573 global_symbol_searcher::expand_symtabs
4574 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4575 {
4576 enum search_domain kind = m_kind;
4577 bool found_msymbol = false;
4578
4579 if (objfile->sf)
4580 objfile->sf->qf->expand_symtabs_matching
4581 (objfile,
4582 [&] (const char *filename, bool basenames)
4583 {
4584 return file_matches (filename, filenames, basenames);
4585 },
4586 &lookup_name_info::match_any (),
4587 [&] (const char *symname)
4588 {
4589 return (!preg.has_value ()
4590 || preg->exec (symname, 0, NULL, 0) == 0);
4591 },
4592 NULL,
4593 kind);
4594
4595 /* Here, we search through the minimal symbol tables for functions and
4596 variables that match, and force their symbols to be read. This is in
4597 particular necessary for demangled variable names, which are no longer
4598 put into the partial symbol tables. The symbol will then be found
4599 during the scan of symtabs later.
4600
4601 For functions, find_pc_symtab should succeed if we have debug info for
4602 the function, for variables we have to call
4603 lookup_symbol_in_objfile_from_linkage_name to determine if the
4604 variable has debug info. If the lookup fails, set found_msymbol so
4605 that we will rescan to print any matching symbols without debug info.
4606 We only search the objfile the msymbol came from, we no longer search
4607 all objfiles. In large programs (1000s of shared libs) searching all
4608 objfiles is not worth the pain. */
4609 if (filenames.empty ()
4610 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4611 {
4612 for (minimal_symbol *msymbol : objfile->msymbols ())
4613 {
4614 QUIT;
4615
4616 if (msymbol->created_by_gdb)
4617 continue;
4618
4619 if (is_suitable_msymbol (kind, msymbol))
4620 {
4621 if (!preg.has_value ()
4622 || preg->exec (msymbol->natural_name (), 0,
4623 NULL, 0) == 0)
4624 {
4625 /* An important side-effect of these lookup functions is
4626 to expand the symbol table if msymbol is found, later
4627 in the process we will add matching symbols or
4628 msymbols to the results list, and that requires that
4629 the symbols tables are expanded. */
4630 if (kind == FUNCTIONS_DOMAIN
4631 ? (find_pc_compunit_symtab
4632 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4633 == NULL)
4634 : (lookup_symbol_in_objfile_from_linkage_name
4635 (objfile, msymbol->linkage_name (),
4636 VAR_DOMAIN)
4637 .symbol == NULL))
4638 found_msymbol = true;
4639 }
4640 }
4641 }
4642 }
4643
4644 return found_msymbol;
4645 }
4646
4647 /* See symtab.h. */
4648
4649 bool
4650 global_symbol_searcher::add_matching_symbols
4651 (objfile *objfile,
4652 const gdb::optional<compiled_regex> &preg,
4653 const gdb::optional<compiled_regex> &treg,
4654 std::set<symbol_search> *result_set) const
4655 {
4656 enum search_domain kind = m_kind;
4657
4658 /* Add matching symbols (if not already present). */
4659 for (compunit_symtab *cust : objfile->compunits ())
4660 {
4661 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4662
4663 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4664 {
4665 struct block_iterator iter;
4666 struct symbol *sym;
4667 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4668
4669 ALL_BLOCK_SYMBOLS (b, iter, sym)
4670 {
4671 struct symtab *real_symtab = symbol_symtab (sym);
4672
4673 QUIT;
4674
4675 /* Check first sole REAL_SYMTAB->FILENAME. It does
4676 not need to be a substring of symtab_to_fullname as
4677 it may contain "./" etc. */
4678 if ((file_matches (real_symtab->filename, filenames, false)
4679 || ((basenames_may_differ
4680 || file_matches (lbasename (real_symtab->filename),
4681 filenames, true))
4682 && file_matches (symtab_to_fullname (real_symtab),
4683 filenames, false)))
4684 && ((!preg.has_value ()
4685 || preg->exec (sym->natural_name (), 0,
4686 NULL, 0) == 0)
4687 && ((kind == VARIABLES_DOMAIN
4688 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4689 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4690 && SYMBOL_CLASS (sym) != LOC_BLOCK
4691 /* LOC_CONST can be used for more than
4692 just enums, e.g., c++ static const
4693 members. We only want to skip enums
4694 here. */
4695 && !(SYMBOL_CLASS (sym) == LOC_CONST
4696 && (SYMBOL_TYPE (sym)->code ()
4697 == TYPE_CODE_ENUM))
4698 && (!treg.has_value ()
4699 || treg_matches_sym_type_name (*treg, sym)))
4700 || (kind == FUNCTIONS_DOMAIN
4701 && SYMBOL_CLASS (sym) == LOC_BLOCK
4702 && (!treg.has_value ()
4703 || treg_matches_sym_type_name (*treg,
4704 sym)))
4705 || (kind == TYPES_DOMAIN
4706 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4707 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4708 || (kind == MODULES_DOMAIN
4709 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4710 && SYMBOL_LINE (sym) != 0))))
4711 {
4712 if (result_set->size () < m_max_search_results)
4713 {
4714 /* Match, insert if not already in the results. */
4715 symbol_search ss (block, sym);
4716 if (result_set->find (ss) == result_set->end ())
4717 result_set->insert (ss);
4718 }
4719 else
4720 return false;
4721 }
4722 }
4723 }
4724 }
4725
4726 return true;
4727 }
4728
4729 /* See symtab.h. */
4730
4731 bool
4732 global_symbol_searcher::add_matching_msymbols
4733 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4734 std::vector<symbol_search> *results) const
4735 {
4736 enum search_domain kind = m_kind;
4737
4738 for (minimal_symbol *msymbol : objfile->msymbols ())
4739 {
4740 QUIT;
4741
4742 if (msymbol->created_by_gdb)
4743 continue;
4744
4745 if (is_suitable_msymbol (kind, msymbol))
4746 {
4747 if (!preg.has_value ()
4748 || preg->exec (msymbol->natural_name (), 0,
4749 NULL, 0) == 0)
4750 {
4751 /* For functions we can do a quick check of whether the
4752 symbol might be found via find_pc_symtab. */
4753 if (kind != FUNCTIONS_DOMAIN
4754 || (find_pc_compunit_symtab
4755 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4756 == NULL))
4757 {
4758 if (lookup_symbol_in_objfile_from_linkage_name
4759 (objfile, msymbol->linkage_name (),
4760 VAR_DOMAIN).symbol == NULL)
4761 {
4762 /* Matching msymbol, add it to the results list. */
4763 if (results->size () < m_max_search_results)
4764 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4765 else
4766 return false;
4767 }
4768 }
4769 }
4770 }
4771 }
4772
4773 return true;
4774 }
4775
4776 /* See symtab.h. */
4777
4778 std::vector<symbol_search>
4779 global_symbol_searcher::search () const
4780 {
4781 gdb::optional<compiled_regex> preg;
4782 gdb::optional<compiled_regex> treg;
4783
4784 gdb_assert (m_kind != ALL_DOMAIN);
4785
4786 if (m_symbol_name_regexp != NULL)
4787 {
4788 const char *symbol_name_regexp = m_symbol_name_regexp;
4789
4790 /* Make sure spacing is right for C++ operators.
4791 This is just a courtesy to make the matching less sensitive
4792 to how many spaces the user leaves between 'operator'
4793 and <TYPENAME> or <OPERATOR>. */
4794 const char *opend;
4795 const char *opname = operator_chars (symbol_name_regexp, &opend);
4796
4797 if (*opname)
4798 {
4799 int fix = -1; /* -1 means ok; otherwise number of
4800 spaces needed. */
4801
4802 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4803 {
4804 /* There should 1 space between 'operator' and 'TYPENAME'. */
4805 if (opname[-1] != ' ' || opname[-2] == ' ')
4806 fix = 1;
4807 }
4808 else
4809 {
4810 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4811 if (opname[-1] == ' ')
4812 fix = 0;
4813 }
4814 /* If wrong number of spaces, fix it. */
4815 if (fix >= 0)
4816 {
4817 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4818
4819 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4820 symbol_name_regexp = tmp;
4821 }
4822 }
4823
4824 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4825 ? REG_ICASE : 0);
4826 preg.emplace (symbol_name_regexp, cflags,
4827 _("Invalid regexp"));
4828 }
4829
4830 if (m_symbol_type_regexp != NULL)
4831 {
4832 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4833 ? REG_ICASE : 0);
4834 treg.emplace (m_symbol_type_regexp, cflags,
4835 _("Invalid regexp"));
4836 }
4837
4838 bool found_msymbol = false;
4839 std::set<symbol_search> result_set;
4840 for (objfile *objfile : current_program_space->objfiles ())
4841 {
4842 /* Expand symtabs within objfile that possibly contain matching
4843 symbols. */
4844 found_msymbol |= expand_symtabs (objfile, preg);
4845
4846 /* Find matching symbols within OBJFILE and add them in to the
4847 RESULT_SET set. Use a set here so that we can easily detect
4848 duplicates as we go, and can therefore track how many unique
4849 matches we have found so far. */
4850 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4851 break;
4852 }
4853
4854 /* Convert the result set into a sorted result list, as std::set is
4855 defined to be sorted then no explicit call to std::sort is needed. */
4856 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4857
4858 /* If there are no debug symbols, then add matching minsyms. But if the
4859 user wants to see symbols matching a type regexp, then never give a
4860 minimal symbol, as we assume that a minimal symbol does not have a
4861 type. */
4862 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4863 && !m_exclude_minsyms
4864 && !treg.has_value ())
4865 {
4866 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4867 for (objfile *objfile : current_program_space->objfiles ())
4868 if (!add_matching_msymbols (objfile, preg, &result))
4869 break;
4870 }
4871
4872 return result;
4873 }
4874
4875 /* See symtab.h. */
4876
4877 std::string
4878 symbol_to_info_string (struct symbol *sym, int block,
4879 enum search_domain kind)
4880 {
4881 std::string str;
4882
4883 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4884
4885 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4886 str += "static ";
4887
4888 /* Typedef that is not a C++ class. */
4889 if (kind == TYPES_DOMAIN
4890 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4891 {
4892 string_file tmp_stream;
4893
4894 /* FIXME: For C (and C++) we end up with a difference in output here
4895 between how a typedef is printed, and non-typedefs are printed.
4896 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4897 appear C-like, while TYPE_PRINT doesn't.
4898
4899 For the struct printing case below, things are worse, we force
4900 printing of the ";" in this function, which is going to be wrong
4901 for languages that don't require a ";" between statements. */
4902 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4903 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4904 else
4905 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4906 str += tmp_stream.string ();
4907 }
4908 /* variable, func, or typedef-that-is-c++-class. */
4909 else if (kind < TYPES_DOMAIN
4910 || (kind == TYPES_DOMAIN
4911 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4912 {
4913 string_file tmp_stream;
4914
4915 type_print (SYMBOL_TYPE (sym),
4916 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4917 ? "" : sym->print_name ()),
4918 &tmp_stream, 0);
4919
4920 str += tmp_stream.string ();
4921 str += ";";
4922 }
4923 /* Printing of modules is currently done here, maybe at some future
4924 point we might want a language specific method to print the module
4925 symbol so that we can customise the output more. */
4926 else if (kind == MODULES_DOMAIN)
4927 str += sym->print_name ();
4928
4929 return str;
4930 }
4931
4932 /* Helper function for symbol info commands, for example 'info functions',
4933 'info variables', etc. KIND is the kind of symbol we searched for, and
4934 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4935 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4936 print file and line number information for the symbol as well. Skip
4937 printing the filename if it matches LAST. */
4938
4939 static void
4940 print_symbol_info (enum search_domain kind,
4941 struct symbol *sym,
4942 int block, const char *last)
4943 {
4944 scoped_switch_to_sym_language_if_auto l (sym);
4945 struct symtab *s = symbol_symtab (sym);
4946
4947 if (last != NULL)
4948 {
4949 const char *s_filename = symtab_to_filename_for_display (s);
4950
4951 if (filename_cmp (last, s_filename) != 0)
4952 {
4953 printf_filtered (_("\nFile %ps:\n"),
4954 styled_string (file_name_style.style (),
4955 s_filename));
4956 }
4957
4958 if (SYMBOL_LINE (sym) != 0)
4959 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4960 else
4961 puts_filtered ("\t");
4962 }
4963
4964 std::string str = symbol_to_info_string (sym, block, kind);
4965 printf_filtered ("%s\n", str.c_str ());
4966 }
4967
4968 /* This help function for symtab_symbol_info() prints information
4969 for non-debugging symbols to gdb_stdout. */
4970
4971 static void
4972 print_msymbol_info (struct bound_minimal_symbol msymbol)
4973 {
4974 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4975 char *tmp;
4976
4977 if (gdbarch_addr_bit (gdbarch) <= 32)
4978 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4979 & (CORE_ADDR) 0xffffffff,
4980 8);
4981 else
4982 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4983 16);
4984
4985 ui_file_style sym_style = (msymbol.minsym->text_p ()
4986 ? function_name_style.style ()
4987 : ui_file_style ());
4988
4989 printf_filtered (_("%ps %ps\n"),
4990 styled_string (address_style.style (), tmp),
4991 styled_string (sym_style, msymbol.minsym->print_name ()));
4992 }
4993
4994 /* This is the guts of the commands "info functions", "info types", and
4995 "info variables". It calls search_symbols to find all matches and then
4996 print_[m]symbol_info to print out some useful information about the
4997 matches. */
4998
4999 static void
5000 symtab_symbol_info (bool quiet, bool exclude_minsyms,
5001 const char *regexp, enum search_domain kind,
5002 const char *t_regexp, int from_tty)
5003 {
5004 static const char * const classnames[] =
5005 {"variable", "function", "type", "module"};
5006 const char *last_filename = "";
5007 int first = 1;
5008
5009 gdb_assert (kind != ALL_DOMAIN);
5010
5011 if (regexp != nullptr && *regexp == '\0')
5012 regexp = nullptr;
5013
5014 global_symbol_searcher spec (kind, regexp);
5015 spec.set_symbol_type_regexp (t_regexp);
5016 spec.set_exclude_minsyms (exclude_minsyms);
5017 std::vector<symbol_search> symbols = spec.search ();
5018
5019 if (!quiet)
5020 {
5021 if (regexp != NULL)
5022 {
5023 if (t_regexp != NULL)
5024 printf_filtered
5025 (_("All %ss matching regular expression \"%s\""
5026 " with type matching regular expression \"%s\":\n"),
5027 classnames[kind], regexp, t_regexp);
5028 else
5029 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
5030 classnames[kind], regexp);
5031 }
5032 else
5033 {
5034 if (t_regexp != NULL)
5035 printf_filtered
5036 (_("All defined %ss"
5037 " with type matching regular expression \"%s\" :\n"),
5038 classnames[kind], t_regexp);
5039 else
5040 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5041 }
5042 }
5043
5044 for (const symbol_search &p : symbols)
5045 {
5046 QUIT;
5047
5048 if (p.msymbol.minsym != NULL)
5049 {
5050 if (first)
5051 {
5052 if (!quiet)
5053 printf_filtered (_("\nNon-debugging symbols:\n"));
5054 first = 0;
5055 }
5056 print_msymbol_info (p.msymbol);
5057 }
5058 else
5059 {
5060 print_symbol_info (kind,
5061 p.symbol,
5062 p.block,
5063 last_filename);
5064 last_filename
5065 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5066 }
5067 }
5068 }
5069
5070 /* Structure to hold the values of the options used by the 'info variables'
5071 and 'info functions' commands. These correspond to the -q, -t, and -n
5072 options. */
5073
5074 struct info_vars_funcs_options
5075 {
5076 bool quiet = false;
5077 bool exclude_minsyms = false;
5078 char *type_regexp = nullptr;
5079
5080 ~info_vars_funcs_options ()
5081 {
5082 xfree (type_regexp);
5083 }
5084 };
5085
5086 /* The options used by the 'info variables' and 'info functions'
5087 commands. */
5088
5089 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5090 gdb::option::boolean_option_def<info_vars_funcs_options> {
5091 "q",
5092 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5093 nullptr, /* show_cmd_cb */
5094 nullptr /* set_doc */
5095 },
5096
5097 gdb::option::boolean_option_def<info_vars_funcs_options> {
5098 "n",
5099 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5100 nullptr, /* show_cmd_cb */
5101 nullptr /* set_doc */
5102 },
5103
5104 gdb::option::string_option_def<info_vars_funcs_options> {
5105 "t",
5106 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5107 },
5108 nullptr, /* show_cmd_cb */
5109 nullptr /* set_doc */
5110 }
5111 };
5112
5113 /* Returns the option group used by 'info variables' and 'info
5114 functions'. */
5115
5116 static gdb::option::option_def_group
5117 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5118 {
5119 return {{info_vars_funcs_options_defs}, opts};
5120 }
5121
5122 /* Command completer for 'info variables' and 'info functions'. */
5123
5124 static void
5125 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5126 completion_tracker &tracker,
5127 const char *text, const char * /* word */)
5128 {
5129 const auto group
5130 = make_info_vars_funcs_options_def_group (nullptr);
5131 if (gdb::option::complete_options
5132 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5133 return;
5134
5135 const char *word = advance_to_expression_complete_word_point (tracker, text);
5136 symbol_completer (ignore, tracker, text, word);
5137 }
5138
5139 /* Implement the 'info variables' command. */
5140
5141 static void
5142 info_variables_command (const char *args, int from_tty)
5143 {
5144 info_vars_funcs_options opts;
5145 auto grp = make_info_vars_funcs_options_def_group (&opts);
5146 gdb::option::process_options
5147 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5148 if (args != nullptr && *args == '\0')
5149 args = nullptr;
5150
5151 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5152 opts.type_regexp, from_tty);
5153 }
5154
5155 /* Implement the 'info functions' command. */
5156
5157 static void
5158 info_functions_command (const char *args, int from_tty)
5159 {
5160 info_vars_funcs_options opts;
5161
5162 auto grp = make_info_vars_funcs_options_def_group (&opts);
5163 gdb::option::process_options
5164 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5165 if (args != nullptr && *args == '\0')
5166 args = nullptr;
5167
5168 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5169 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5170 }
5171
5172 /* Holds the -q option for the 'info types' command. */
5173
5174 struct info_types_options
5175 {
5176 bool quiet = false;
5177 };
5178
5179 /* The options used by the 'info types' command. */
5180
5181 static const gdb::option::option_def info_types_options_defs[] = {
5182 gdb::option::boolean_option_def<info_types_options> {
5183 "q",
5184 [] (info_types_options *opt) { return &opt->quiet; },
5185 nullptr, /* show_cmd_cb */
5186 nullptr /* set_doc */
5187 }
5188 };
5189
5190 /* Returns the option group used by 'info types'. */
5191
5192 static gdb::option::option_def_group
5193 make_info_types_options_def_group (info_types_options *opts)
5194 {
5195 return {{info_types_options_defs}, opts};
5196 }
5197
5198 /* Implement the 'info types' command. */
5199
5200 static void
5201 info_types_command (const char *args, int from_tty)
5202 {
5203 info_types_options opts;
5204
5205 auto grp = make_info_types_options_def_group (&opts);
5206 gdb::option::process_options
5207 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5208 if (args != nullptr && *args == '\0')
5209 args = nullptr;
5210 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5211 }
5212
5213 /* Command completer for 'info types' command. */
5214
5215 static void
5216 info_types_command_completer (struct cmd_list_element *ignore,
5217 completion_tracker &tracker,
5218 const char *text, const char * /* word */)
5219 {
5220 const auto group
5221 = make_info_types_options_def_group (nullptr);
5222 if (gdb::option::complete_options
5223 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5224 return;
5225
5226 const char *word = advance_to_expression_complete_word_point (tracker, text);
5227 symbol_completer (ignore, tracker, text, word);
5228 }
5229
5230 /* Implement the 'info modules' command. */
5231
5232 static void
5233 info_modules_command (const char *args, int from_tty)
5234 {
5235 info_types_options opts;
5236
5237 auto grp = make_info_types_options_def_group (&opts);
5238 gdb::option::process_options
5239 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5240 if (args != nullptr && *args == '\0')
5241 args = nullptr;
5242 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5243 from_tty);
5244 }
5245
5246 static void
5247 rbreak_command (const char *regexp, int from_tty)
5248 {
5249 std::string string;
5250 const char *file_name = nullptr;
5251
5252 if (regexp != nullptr)
5253 {
5254 const char *colon = strchr (regexp, ':');
5255
5256 /* Ignore the colon if it is part of a Windows drive. */
5257 if (HAS_DRIVE_SPEC (regexp)
5258 && (regexp[2] == '/' || regexp[2] == '\\'))
5259 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5260
5261 if (colon && *(colon + 1) != ':')
5262 {
5263 int colon_index;
5264 char *local_name;
5265
5266 colon_index = colon - regexp;
5267 local_name = (char *) alloca (colon_index + 1);
5268 memcpy (local_name, regexp, colon_index);
5269 local_name[colon_index--] = 0;
5270 while (isspace (local_name[colon_index]))
5271 local_name[colon_index--] = 0;
5272 file_name = local_name;
5273 regexp = skip_spaces (colon + 1);
5274 }
5275 }
5276
5277 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5278 if (file_name != nullptr)
5279 spec.filenames.push_back (file_name);
5280 std::vector<symbol_search> symbols = spec.search ();
5281
5282 scoped_rbreak_breakpoints finalize;
5283 for (const symbol_search &p : symbols)
5284 {
5285 if (p.msymbol.minsym == NULL)
5286 {
5287 struct symtab *symtab = symbol_symtab (p.symbol);
5288 const char *fullname = symtab_to_fullname (symtab);
5289
5290 string = string_printf ("%s:'%s'", fullname,
5291 p.symbol->linkage_name ());
5292 break_command (&string[0], from_tty);
5293 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5294 }
5295 else
5296 {
5297 string = string_printf ("'%s'",
5298 p.msymbol.minsym->linkage_name ());
5299
5300 break_command (&string[0], from_tty);
5301 printf_filtered ("<function, no debug info> %s;\n",
5302 p.msymbol.minsym->print_name ());
5303 }
5304 }
5305 }
5306 \f
5307
5308 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5309
5310 static int
5311 compare_symbol_name (const char *symbol_name, language symbol_language,
5312 const lookup_name_info &lookup_name,
5313 completion_match_result &match_res)
5314 {
5315 const language_defn *lang = language_def (symbol_language);
5316
5317 symbol_name_matcher_ftype *name_match
5318 = lang->get_symbol_name_matcher (lookup_name);
5319
5320 return name_match (symbol_name, lookup_name, &match_res);
5321 }
5322
5323 /* See symtab.h. */
5324
5325 bool
5326 completion_list_add_name (completion_tracker &tracker,
5327 language symbol_language,
5328 const char *symname,
5329 const lookup_name_info &lookup_name,
5330 const char *text, const char *word)
5331 {
5332 completion_match_result &match_res
5333 = tracker.reset_completion_match_result ();
5334
5335 /* Clip symbols that cannot match. */
5336 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5337 return false;
5338
5339 /* Refresh SYMNAME from the match string. It's potentially
5340 different depending on language. (E.g., on Ada, the match may be
5341 the encoded symbol name wrapped in "<>"). */
5342 symname = match_res.match.match ();
5343 gdb_assert (symname != NULL);
5344
5345 /* We have a match for a completion, so add SYMNAME to the current list
5346 of matches. Note that the name is moved to freshly malloc'd space. */
5347
5348 {
5349 gdb::unique_xmalloc_ptr<char> completion
5350 = make_completion_match_str (symname, text, word);
5351
5352 /* Here we pass the match-for-lcd object to add_completion. Some
5353 languages match the user text against substrings of symbol
5354 names in some cases. E.g., in C++, "b push_ba" completes to
5355 "std::vector::push_back", "std::string::push_back", etc., and
5356 in this case we want the completion lowest common denominator
5357 to be "push_back" instead of "std::". */
5358 tracker.add_completion (std::move (completion),
5359 &match_res.match_for_lcd, text, word);
5360 }
5361
5362 return true;
5363 }
5364
5365 /* completion_list_add_name wrapper for struct symbol. */
5366
5367 static void
5368 completion_list_add_symbol (completion_tracker &tracker,
5369 symbol *sym,
5370 const lookup_name_info &lookup_name,
5371 const char *text, const char *word)
5372 {
5373 if (!completion_list_add_name (tracker, sym->language (),
5374 sym->natural_name (),
5375 lookup_name, text, word))
5376 return;
5377
5378 /* C++ function symbols include the parameters within both the msymbol
5379 name and the symbol name. The problem is that the msymbol name will
5380 describe the parameters in the most basic way, with typedefs stripped
5381 out, while the symbol name will represent the types as they appear in
5382 the program. This means we will see duplicate entries in the
5383 completion tracker. The following converts the symbol name back to
5384 the msymbol name and removes the msymbol name from the completion
5385 tracker. */
5386 if (sym->language () == language_cplus
5387 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5388 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5389 {
5390 /* The call to canonicalize returns the empty string if the input
5391 string is already in canonical form, thanks to this we don't
5392 remove the symbol we just added above. */
5393 gdb::unique_xmalloc_ptr<char> str
5394 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5395 if (str != nullptr)
5396 tracker.remove_completion (str.get ());
5397 }
5398 }
5399
5400 /* completion_list_add_name wrapper for struct minimal_symbol. */
5401
5402 static void
5403 completion_list_add_msymbol (completion_tracker &tracker,
5404 minimal_symbol *sym,
5405 const lookup_name_info &lookup_name,
5406 const char *text, const char *word)
5407 {
5408 completion_list_add_name (tracker, sym->language (),
5409 sym->natural_name (),
5410 lookup_name, text, word);
5411 }
5412
5413
5414 /* ObjC: In case we are completing on a selector, look as the msymbol
5415 again and feed all the selectors into the mill. */
5416
5417 static void
5418 completion_list_objc_symbol (completion_tracker &tracker,
5419 struct minimal_symbol *msymbol,
5420 const lookup_name_info &lookup_name,
5421 const char *text, const char *word)
5422 {
5423 static char *tmp = NULL;
5424 static unsigned int tmplen = 0;
5425
5426 const char *method, *category, *selector;
5427 char *tmp2 = NULL;
5428
5429 method = msymbol->natural_name ();
5430
5431 /* Is it a method? */
5432 if ((method[0] != '-') && (method[0] != '+'))
5433 return;
5434
5435 if (text[0] == '[')
5436 /* Complete on shortened method method. */
5437 completion_list_add_name (tracker, language_objc,
5438 method + 1,
5439 lookup_name,
5440 text, word);
5441
5442 while ((strlen (method) + 1) >= tmplen)
5443 {
5444 if (tmplen == 0)
5445 tmplen = 1024;
5446 else
5447 tmplen *= 2;
5448 tmp = (char *) xrealloc (tmp, tmplen);
5449 }
5450 selector = strchr (method, ' ');
5451 if (selector != NULL)
5452 selector++;
5453
5454 category = strchr (method, '(');
5455
5456 if ((category != NULL) && (selector != NULL))
5457 {
5458 memcpy (tmp, method, (category - method));
5459 tmp[category - method] = ' ';
5460 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5461 completion_list_add_name (tracker, language_objc, tmp,
5462 lookup_name, text, word);
5463 if (text[0] == '[')
5464 completion_list_add_name (tracker, language_objc, tmp + 1,
5465 lookup_name, text, word);
5466 }
5467
5468 if (selector != NULL)
5469 {
5470 /* Complete on selector only. */
5471 strcpy (tmp, selector);
5472 tmp2 = strchr (tmp, ']');
5473 if (tmp2 != NULL)
5474 *tmp2 = '\0';
5475
5476 completion_list_add_name (tracker, language_objc, tmp,
5477 lookup_name, text, word);
5478 }
5479 }
5480
5481 /* Break the non-quoted text based on the characters which are in
5482 symbols. FIXME: This should probably be language-specific. */
5483
5484 static const char *
5485 language_search_unquoted_string (const char *text, const char *p)
5486 {
5487 for (; p > text; --p)
5488 {
5489 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5490 continue;
5491 else
5492 {
5493 if ((current_language->la_language == language_objc))
5494 {
5495 if (p[-1] == ':') /* Might be part of a method name. */
5496 continue;
5497 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5498 p -= 2; /* Beginning of a method name. */
5499 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5500 { /* Might be part of a method name. */
5501 const char *t = p;
5502
5503 /* Seeing a ' ' or a '(' is not conclusive evidence
5504 that we are in the middle of a method name. However,
5505 finding "-[" or "+[" should be pretty un-ambiguous.
5506 Unfortunately we have to find it now to decide. */
5507
5508 while (t > text)
5509 if (isalnum (t[-1]) || t[-1] == '_' ||
5510 t[-1] == ' ' || t[-1] == ':' ||
5511 t[-1] == '(' || t[-1] == ')')
5512 --t;
5513 else
5514 break;
5515
5516 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5517 p = t - 2; /* Method name detected. */
5518 /* Else we leave with p unchanged. */
5519 }
5520 }
5521 break;
5522 }
5523 }
5524 return p;
5525 }
5526
5527 static void
5528 completion_list_add_fields (completion_tracker &tracker,
5529 struct symbol *sym,
5530 const lookup_name_info &lookup_name,
5531 const char *text, const char *word)
5532 {
5533 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5534 {
5535 struct type *t = SYMBOL_TYPE (sym);
5536 enum type_code c = t->code ();
5537 int j;
5538
5539 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5540 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5541 if (TYPE_FIELD_NAME (t, j))
5542 completion_list_add_name (tracker, sym->language (),
5543 TYPE_FIELD_NAME (t, j),
5544 lookup_name, text, word);
5545 }
5546 }
5547
5548 /* See symtab.h. */
5549
5550 bool
5551 symbol_is_function_or_method (symbol *sym)
5552 {
5553 switch (SYMBOL_TYPE (sym)->code ())
5554 {
5555 case TYPE_CODE_FUNC:
5556 case TYPE_CODE_METHOD:
5557 return true;
5558 default:
5559 return false;
5560 }
5561 }
5562
5563 /* See symtab.h. */
5564
5565 bool
5566 symbol_is_function_or_method (minimal_symbol *msymbol)
5567 {
5568 switch (MSYMBOL_TYPE (msymbol))
5569 {
5570 case mst_text:
5571 case mst_text_gnu_ifunc:
5572 case mst_solib_trampoline:
5573 case mst_file_text:
5574 return true;
5575 default:
5576 return false;
5577 }
5578 }
5579
5580 /* See symtab.h. */
5581
5582 bound_minimal_symbol
5583 find_gnu_ifunc (const symbol *sym)
5584 {
5585 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5586 return {};
5587
5588 lookup_name_info lookup_name (sym->search_name (),
5589 symbol_name_match_type::SEARCH_NAME);
5590 struct objfile *objfile = symbol_objfile (sym);
5591
5592 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5593 minimal_symbol *ifunc = NULL;
5594
5595 iterate_over_minimal_symbols (objfile, lookup_name,
5596 [&] (minimal_symbol *minsym)
5597 {
5598 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5599 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5600 {
5601 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5602 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5603 {
5604 struct gdbarch *gdbarch = objfile->arch ();
5605 msym_addr
5606 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5607 msym_addr,
5608 current_top_target ());
5609 }
5610 if (msym_addr == address)
5611 {
5612 ifunc = minsym;
5613 return true;
5614 }
5615 }
5616 return false;
5617 });
5618
5619 if (ifunc != NULL)
5620 return {ifunc, objfile};
5621 return {};
5622 }
5623
5624 /* Add matching symbols from SYMTAB to the current completion list. */
5625
5626 static void
5627 add_symtab_completions (struct compunit_symtab *cust,
5628 completion_tracker &tracker,
5629 complete_symbol_mode mode,
5630 const lookup_name_info &lookup_name,
5631 const char *text, const char *word,
5632 enum type_code code)
5633 {
5634 struct symbol *sym;
5635 const struct block *b;
5636 struct block_iterator iter;
5637 int i;
5638
5639 if (cust == NULL)
5640 return;
5641
5642 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5643 {
5644 QUIT;
5645 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5646 ALL_BLOCK_SYMBOLS (b, iter, sym)
5647 {
5648 if (completion_skip_symbol (mode, sym))
5649 continue;
5650
5651 if (code == TYPE_CODE_UNDEF
5652 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5653 && SYMBOL_TYPE (sym)->code () == code))
5654 completion_list_add_symbol (tracker, sym,
5655 lookup_name,
5656 text, word);
5657 }
5658 }
5659 }
5660
5661 void
5662 default_collect_symbol_completion_matches_break_on
5663 (completion_tracker &tracker, complete_symbol_mode mode,
5664 symbol_name_match_type name_match_type,
5665 const char *text, const char *word,
5666 const char *break_on, enum type_code code)
5667 {
5668 /* Problem: All of the symbols have to be copied because readline
5669 frees them. I'm not going to worry about this; hopefully there
5670 won't be that many. */
5671
5672 struct symbol *sym;
5673 const struct block *b;
5674 const struct block *surrounding_static_block, *surrounding_global_block;
5675 struct block_iterator iter;
5676 /* The symbol we are completing on. Points in same buffer as text. */
5677 const char *sym_text;
5678
5679 /* Now look for the symbol we are supposed to complete on. */
5680 if (mode == complete_symbol_mode::LINESPEC)
5681 sym_text = text;
5682 else
5683 {
5684 const char *p;
5685 char quote_found;
5686 const char *quote_pos = NULL;
5687
5688 /* First see if this is a quoted string. */
5689 quote_found = '\0';
5690 for (p = text; *p != '\0'; ++p)
5691 {
5692 if (quote_found != '\0')
5693 {
5694 if (*p == quote_found)
5695 /* Found close quote. */
5696 quote_found = '\0';
5697 else if (*p == '\\' && p[1] == quote_found)
5698 /* A backslash followed by the quote character
5699 doesn't end the string. */
5700 ++p;
5701 }
5702 else if (*p == '\'' || *p == '"')
5703 {
5704 quote_found = *p;
5705 quote_pos = p;
5706 }
5707 }
5708 if (quote_found == '\'')
5709 /* A string within single quotes can be a symbol, so complete on it. */
5710 sym_text = quote_pos + 1;
5711 else if (quote_found == '"')
5712 /* A double-quoted string is never a symbol, nor does it make sense
5713 to complete it any other way. */
5714 {
5715 return;
5716 }
5717 else
5718 {
5719 /* It is not a quoted string. Break it based on the characters
5720 which are in symbols. */
5721 while (p > text)
5722 {
5723 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5724 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5725 --p;
5726 else
5727 break;
5728 }
5729 sym_text = p;
5730 }
5731 }
5732
5733 lookup_name_info lookup_name (sym_text, name_match_type, true);
5734
5735 /* At this point scan through the misc symbol vectors and add each
5736 symbol you find to the list. Eventually we want to ignore
5737 anything that isn't a text symbol (everything else will be
5738 handled by the psymtab code below). */
5739
5740 if (code == TYPE_CODE_UNDEF)
5741 {
5742 for (objfile *objfile : current_program_space->objfiles ())
5743 {
5744 for (minimal_symbol *msymbol : objfile->msymbols ())
5745 {
5746 QUIT;
5747
5748 if (completion_skip_symbol (mode, msymbol))
5749 continue;
5750
5751 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5752 sym_text, word);
5753
5754 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5755 sym_text, word);
5756 }
5757 }
5758 }
5759
5760 /* Add completions for all currently loaded symbol tables. */
5761 for (objfile *objfile : current_program_space->objfiles ())
5762 {
5763 for (compunit_symtab *cust : objfile->compunits ())
5764 add_symtab_completions (cust, tracker, mode, lookup_name,
5765 sym_text, word, code);
5766 }
5767
5768 /* Look through the partial symtabs for all symbols which begin by
5769 matching SYM_TEXT. Expand all CUs that you find to the list. */
5770 expand_symtabs_matching (NULL,
5771 lookup_name,
5772 NULL,
5773 [&] (compunit_symtab *symtab) /* expansion notify */
5774 {
5775 add_symtab_completions (symtab,
5776 tracker, mode, lookup_name,
5777 sym_text, word, code);
5778 },
5779 ALL_DOMAIN);
5780
5781 /* Search upwards from currently selected frame (so that we can
5782 complete on local vars). Also catch fields of types defined in
5783 this places which match our text string. Only complete on types
5784 visible from current context. */
5785
5786 b = get_selected_block (0);
5787 surrounding_static_block = block_static_block (b);
5788 surrounding_global_block = block_global_block (b);
5789 if (surrounding_static_block != NULL)
5790 while (b != surrounding_static_block)
5791 {
5792 QUIT;
5793
5794 ALL_BLOCK_SYMBOLS (b, iter, sym)
5795 {
5796 if (code == TYPE_CODE_UNDEF)
5797 {
5798 completion_list_add_symbol (tracker, sym, lookup_name,
5799 sym_text, word);
5800 completion_list_add_fields (tracker, sym, lookup_name,
5801 sym_text, word);
5802 }
5803 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5804 && SYMBOL_TYPE (sym)->code () == code)
5805 completion_list_add_symbol (tracker, sym, lookup_name,
5806 sym_text, word);
5807 }
5808
5809 /* Stop when we encounter an enclosing function. Do not stop for
5810 non-inlined functions - the locals of the enclosing function
5811 are in scope for a nested function. */
5812 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5813 break;
5814 b = BLOCK_SUPERBLOCK (b);
5815 }
5816
5817 /* Add fields from the file's types; symbols will be added below. */
5818
5819 if (code == TYPE_CODE_UNDEF)
5820 {
5821 if (surrounding_static_block != NULL)
5822 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5823 completion_list_add_fields (tracker, sym, lookup_name,
5824 sym_text, word);
5825
5826 if (surrounding_global_block != NULL)
5827 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5828 completion_list_add_fields (tracker, sym, lookup_name,
5829 sym_text, word);
5830 }
5831
5832 /* Skip macros if we are completing a struct tag -- arguable but
5833 usually what is expected. */
5834 if (current_language->macro_expansion () == macro_expansion_c
5835 && code == TYPE_CODE_UNDEF)
5836 {
5837 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5838
5839 /* This adds a macro's name to the current completion list. */
5840 auto add_macro_name = [&] (const char *macro_name,
5841 const macro_definition *,
5842 macro_source_file *,
5843 int)
5844 {
5845 completion_list_add_name (tracker, language_c, macro_name,
5846 lookup_name, sym_text, word);
5847 };
5848
5849 /* Add any macros visible in the default scope. Note that this
5850 may yield the occasional wrong result, because an expression
5851 might be evaluated in a scope other than the default. For
5852 example, if the user types "break file:line if <TAB>", the
5853 resulting expression will be evaluated at "file:line" -- but
5854 at there does not seem to be a way to detect this at
5855 completion time. */
5856 scope = default_macro_scope ();
5857 if (scope)
5858 macro_for_each_in_scope (scope->file, scope->line,
5859 add_macro_name);
5860
5861 /* User-defined macros are always visible. */
5862 macro_for_each (macro_user_macros, add_macro_name);
5863 }
5864 }
5865
5866 /* Collect all symbols (regardless of class) which begin by matching
5867 TEXT. */
5868
5869 void
5870 collect_symbol_completion_matches (completion_tracker &tracker,
5871 complete_symbol_mode mode,
5872 symbol_name_match_type name_match_type,
5873 const char *text, const char *word)
5874 {
5875 current_language->collect_symbol_completion_matches (tracker, mode,
5876 name_match_type,
5877 text, word,
5878 TYPE_CODE_UNDEF);
5879 }
5880
5881 /* Like collect_symbol_completion_matches, but only collect
5882 STRUCT_DOMAIN symbols whose type code is CODE. */
5883
5884 void
5885 collect_symbol_completion_matches_type (completion_tracker &tracker,
5886 const char *text, const char *word,
5887 enum type_code code)
5888 {
5889 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5890 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5891
5892 gdb_assert (code == TYPE_CODE_UNION
5893 || code == TYPE_CODE_STRUCT
5894 || code == TYPE_CODE_ENUM);
5895 current_language->collect_symbol_completion_matches (tracker, mode,
5896 name_match_type,
5897 text, word, code);
5898 }
5899
5900 /* Like collect_symbol_completion_matches, but collects a list of
5901 symbols defined in all source files named SRCFILE. */
5902
5903 void
5904 collect_file_symbol_completion_matches (completion_tracker &tracker,
5905 complete_symbol_mode mode,
5906 symbol_name_match_type name_match_type,
5907 const char *text, const char *word,
5908 const char *srcfile)
5909 {
5910 /* The symbol we are completing on. Points in same buffer as text. */
5911 const char *sym_text;
5912
5913 /* Now look for the symbol we are supposed to complete on.
5914 FIXME: This should be language-specific. */
5915 if (mode == complete_symbol_mode::LINESPEC)
5916 sym_text = text;
5917 else
5918 {
5919 const char *p;
5920 char quote_found;
5921 const char *quote_pos = NULL;
5922
5923 /* First see if this is a quoted string. */
5924 quote_found = '\0';
5925 for (p = text; *p != '\0'; ++p)
5926 {
5927 if (quote_found != '\0')
5928 {
5929 if (*p == quote_found)
5930 /* Found close quote. */
5931 quote_found = '\0';
5932 else if (*p == '\\' && p[1] == quote_found)
5933 /* A backslash followed by the quote character
5934 doesn't end the string. */
5935 ++p;
5936 }
5937 else if (*p == '\'' || *p == '"')
5938 {
5939 quote_found = *p;
5940 quote_pos = p;
5941 }
5942 }
5943 if (quote_found == '\'')
5944 /* A string within single quotes can be a symbol, so complete on it. */
5945 sym_text = quote_pos + 1;
5946 else if (quote_found == '"')
5947 /* A double-quoted string is never a symbol, nor does it make sense
5948 to complete it any other way. */
5949 {
5950 return;
5951 }
5952 else
5953 {
5954 /* Not a quoted string. */
5955 sym_text = language_search_unquoted_string (text, p);
5956 }
5957 }
5958
5959 lookup_name_info lookup_name (sym_text, name_match_type, true);
5960
5961 /* Go through symtabs for SRCFILE and check the externs and statics
5962 for symbols which match. */
5963 iterate_over_symtabs (srcfile, [&] (symtab *s)
5964 {
5965 add_symtab_completions (SYMTAB_COMPUNIT (s),
5966 tracker, mode, lookup_name,
5967 sym_text, word, TYPE_CODE_UNDEF);
5968 return false;
5969 });
5970 }
5971
5972 /* A helper function for make_source_files_completion_list. It adds
5973 another file name to a list of possible completions, growing the
5974 list as necessary. */
5975
5976 static void
5977 add_filename_to_list (const char *fname, const char *text, const char *word,
5978 completion_list *list)
5979 {
5980 list->emplace_back (make_completion_match_str (fname, text, word));
5981 }
5982
5983 static int
5984 not_interesting_fname (const char *fname)
5985 {
5986 static const char *illegal_aliens[] = {
5987 "_globals_", /* inserted by coff_symtab_read */
5988 NULL
5989 };
5990 int i;
5991
5992 for (i = 0; illegal_aliens[i]; i++)
5993 {
5994 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5995 return 1;
5996 }
5997 return 0;
5998 }
5999
6000 /* An object of this type is passed as the user_data argument to
6001 map_partial_symbol_filenames. */
6002 struct add_partial_filename_data
6003 {
6004 struct filename_seen_cache *filename_seen_cache;
6005 const char *text;
6006 const char *word;
6007 int text_len;
6008 completion_list *list;
6009 };
6010
6011 /* A callback for map_partial_symbol_filenames. */
6012
6013 static void
6014 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
6015 void *user_data)
6016 {
6017 struct add_partial_filename_data *data
6018 = (struct add_partial_filename_data *) user_data;
6019
6020 if (not_interesting_fname (filename))
6021 return;
6022 if (!data->filename_seen_cache->seen (filename)
6023 && filename_ncmp (filename, data->text, data->text_len) == 0)
6024 {
6025 /* This file matches for a completion; add it to the
6026 current list of matches. */
6027 add_filename_to_list (filename, data->text, data->word, data->list);
6028 }
6029 else
6030 {
6031 const char *base_name = lbasename (filename);
6032
6033 if (base_name != filename
6034 && !data->filename_seen_cache->seen (base_name)
6035 && filename_ncmp (base_name, data->text, data->text_len) == 0)
6036 add_filename_to_list (base_name, data->text, data->word, data->list);
6037 }
6038 }
6039
6040 /* Return a list of all source files whose names begin with matching
6041 TEXT. The file names are looked up in the symbol tables of this
6042 program. */
6043
6044 completion_list
6045 make_source_files_completion_list (const char *text, const char *word)
6046 {
6047 size_t text_len = strlen (text);
6048 completion_list list;
6049 const char *base_name;
6050 struct add_partial_filename_data datum;
6051
6052 if (!have_full_symbols () && !have_partial_symbols ())
6053 return list;
6054
6055 filename_seen_cache filenames_seen;
6056
6057 for (objfile *objfile : current_program_space->objfiles ())
6058 {
6059 for (compunit_symtab *cu : objfile->compunits ())
6060 {
6061 for (symtab *s : compunit_filetabs (cu))
6062 {
6063 if (not_interesting_fname (s->filename))
6064 continue;
6065 if (!filenames_seen.seen (s->filename)
6066 && filename_ncmp (s->filename, text, text_len) == 0)
6067 {
6068 /* This file matches for a completion; add it to the current
6069 list of matches. */
6070 add_filename_to_list (s->filename, text, word, &list);
6071 }
6072 else
6073 {
6074 /* NOTE: We allow the user to type a base name when the
6075 debug info records leading directories, but not the other
6076 way around. This is what subroutines of breakpoint
6077 command do when they parse file names. */
6078 base_name = lbasename (s->filename);
6079 if (base_name != s->filename
6080 && !filenames_seen.seen (base_name)
6081 && filename_ncmp (base_name, text, text_len) == 0)
6082 add_filename_to_list (base_name, text, word, &list);
6083 }
6084 }
6085 }
6086 }
6087
6088 datum.filename_seen_cache = &filenames_seen;
6089 datum.text = text;
6090 datum.word = word;
6091 datum.text_len = text_len;
6092 datum.list = &list;
6093 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6094 0 /*need_fullname*/);
6095
6096 return list;
6097 }
6098 \f
6099 /* Track MAIN */
6100
6101 /* Return the "main_info" object for the current program space. If
6102 the object has not yet been created, create it and fill in some
6103 default values. */
6104
6105 static struct main_info *
6106 get_main_info (void)
6107 {
6108 struct main_info *info = main_progspace_key.get (current_program_space);
6109
6110 if (info == NULL)
6111 {
6112 /* It may seem strange to store the main name in the progspace
6113 and also in whatever objfile happens to see a main name in
6114 its debug info. The reason for this is mainly historical:
6115 gdb returned "main" as the name even if no function named
6116 "main" was defined the program; and this approach lets us
6117 keep compatibility. */
6118 info = main_progspace_key.emplace (current_program_space);
6119 }
6120
6121 return info;
6122 }
6123
6124 static void
6125 set_main_name (const char *name, enum language lang)
6126 {
6127 struct main_info *info = get_main_info ();
6128
6129 if (info->name_of_main != NULL)
6130 {
6131 xfree (info->name_of_main);
6132 info->name_of_main = NULL;
6133 info->language_of_main = language_unknown;
6134 }
6135 if (name != NULL)
6136 {
6137 info->name_of_main = xstrdup (name);
6138 info->language_of_main = lang;
6139 }
6140 }
6141
6142 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6143 accordingly. */
6144
6145 static void
6146 find_main_name (void)
6147 {
6148 const char *new_main_name;
6149
6150 /* First check the objfiles to see whether a debuginfo reader has
6151 picked up the appropriate main name. Historically the main name
6152 was found in a more or less random way; this approach instead
6153 relies on the order of objfile creation -- which still isn't
6154 guaranteed to get the correct answer, but is just probably more
6155 accurate. */
6156 for (objfile *objfile : current_program_space->objfiles ())
6157 {
6158 if (objfile->per_bfd->name_of_main != NULL)
6159 {
6160 set_main_name (objfile->per_bfd->name_of_main,
6161 objfile->per_bfd->language_of_main);
6162 return;
6163 }
6164 }
6165
6166 /* Try to see if the main procedure is in Ada. */
6167 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6168 be to add a new method in the language vector, and call this
6169 method for each language until one of them returns a non-empty
6170 name. This would allow us to remove this hard-coded call to
6171 an Ada function. It is not clear that this is a better approach
6172 at this point, because all methods need to be written in a way
6173 such that false positives never be returned. For instance, it is
6174 important that a method does not return a wrong name for the main
6175 procedure if the main procedure is actually written in a different
6176 language. It is easy to guaranty this with Ada, since we use a
6177 special symbol generated only when the main in Ada to find the name
6178 of the main procedure. It is difficult however to see how this can
6179 be guarantied for languages such as C, for instance. This suggests
6180 that order of call for these methods becomes important, which means
6181 a more complicated approach. */
6182 new_main_name = ada_main_name ();
6183 if (new_main_name != NULL)
6184 {
6185 set_main_name (new_main_name, language_ada);
6186 return;
6187 }
6188
6189 new_main_name = d_main_name ();
6190 if (new_main_name != NULL)
6191 {
6192 set_main_name (new_main_name, language_d);
6193 return;
6194 }
6195
6196 new_main_name = go_main_name ();
6197 if (new_main_name != NULL)
6198 {
6199 set_main_name (new_main_name, language_go);
6200 return;
6201 }
6202
6203 new_main_name = pascal_main_name ();
6204 if (new_main_name != NULL)
6205 {
6206 set_main_name (new_main_name, language_pascal);
6207 return;
6208 }
6209
6210 /* The languages above didn't identify the name of the main procedure.
6211 Fallback to "main". */
6212
6213 /* Try to find language for main in psymtabs. */
6214 enum language lang
6215 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6216 if (lang != language_unknown)
6217 {
6218 set_main_name ("main", lang);
6219 return;
6220 }
6221
6222 set_main_name ("main", language_unknown);
6223 }
6224
6225 /* See symtab.h. */
6226
6227 const char *
6228 main_name ()
6229 {
6230 struct main_info *info = get_main_info ();
6231
6232 if (info->name_of_main == NULL)
6233 find_main_name ();
6234
6235 return info->name_of_main;
6236 }
6237
6238 /* Return the language of the main function. If it is not known,
6239 return language_unknown. */
6240
6241 enum language
6242 main_language (void)
6243 {
6244 struct main_info *info = get_main_info ();
6245
6246 if (info->name_of_main == NULL)
6247 find_main_name ();
6248
6249 return info->language_of_main;
6250 }
6251
6252 /* Handle ``executable_changed'' events for the symtab module. */
6253
6254 static void
6255 symtab_observer_executable_changed (void)
6256 {
6257 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6258 set_main_name (NULL, language_unknown);
6259 }
6260
6261 /* Return 1 if the supplied producer string matches the ARM RealView
6262 compiler (armcc). */
6263
6264 bool
6265 producer_is_realview (const char *producer)
6266 {
6267 static const char *const arm_idents[] = {
6268 "ARM C Compiler, ADS",
6269 "Thumb C Compiler, ADS",
6270 "ARM C++ Compiler, ADS",
6271 "Thumb C++ Compiler, ADS",
6272 "ARM/Thumb C/C++ Compiler, RVCT",
6273 "ARM C/C++ Compiler, RVCT"
6274 };
6275 int i;
6276
6277 if (producer == NULL)
6278 return false;
6279
6280 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6281 if (startswith (producer, arm_idents[i]))
6282 return true;
6283
6284 return false;
6285 }
6286
6287 \f
6288
6289 /* The next index to hand out in response to a registration request. */
6290
6291 static int next_aclass_value = LOC_FINAL_VALUE;
6292
6293 /* The maximum number of "aclass" registrations we support. This is
6294 constant for convenience. */
6295 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6296
6297 /* The objects representing the various "aclass" values. The elements
6298 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6299 elements are those registered at gdb initialization time. */
6300
6301 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6302
6303 /* The globally visible pointer. This is separate from 'symbol_impl'
6304 so that it can be const. */
6305
6306 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6307
6308 /* Make sure we saved enough room in struct symbol. */
6309
6310 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6311
6312 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6313 is the ops vector associated with this index. This returns the new
6314 index, which should be used as the aclass_index field for symbols
6315 of this type. */
6316
6317 int
6318 register_symbol_computed_impl (enum address_class aclass,
6319 const struct symbol_computed_ops *ops)
6320 {
6321 int result = next_aclass_value++;
6322
6323 gdb_assert (aclass == LOC_COMPUTED);
6324 gdb_assert (result < MAX_SYMBOL_IMPLS);
6325 symbol_impl[result].aclass = aclass;
6326 symbol_impl[result].ops_computed = ops;
6327
6328 /* Sanity check OPS. */
6329 gdb_assert (ops != NULL);
6330 gdb_assert (ops->tracepoint_var_ref != NULL);
6331 gdb_assert (ops->describe_location != NULL);
6332 gdb_assert (ops->get_symbol_read_needs != NULL);
6333 gdb_assert (ops->read_variable != NULL);
6334
6335 return result;
6336 }
6337
6338 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6339 OPS is the ops vector associated with this index. This returns the
6340 new index, which should be used as the aclass_index field for symbols
6341 of this type. */
6342
6343 int
6344 register_symbol_block_impl (enum address_class aclass,
6345 const struct symbol_block_ops *ops)
6346 {
6347 int result = next_aclass_value++;
6348
6349 gdb_assert (aclass == LOC_BLOCK);
6350 gdb_assert (result < MAX_SYMBOL_IMPLS);
6351 symbol_impl[result].aclass = aclass;
6352 symbol_impl[result].ops_block = ops;
6353
6354 /* Sanity check OPS. */
6355 gdb_assert (ops != NULL);
6356 gdb_assert (ops->find_frame_base_location != NULL);
6357
6358 return result;
6359 }
6360
6361 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6362 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6363 this index. This returns the new index, which should be used as
6364 the aclass_index field for symbols of this type. */
6365
6366 int
6367 register_symbol_register_impl (enum address_class aclass,
6368 const struct symbol_register_ops *ops)
6369 {
6370 int result = next_aclass_value++;
6371
6372 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6373 gdb_assert (result < MAX_SYMBOL_IMPLS);
6374 symbol_impl[result].aclass = aclass;
6375 symbol_impl[result].ops_register = ops;
6376
6377 return result;
6378 }
6379
6380 /* Initialize elements of 'symbol_impl' for the constants in enum
6381 address_class. */
6382
6383 static void
6384 initialize_ordinary_address_classes (void)
6385 {
6386 int i;
6387
6388 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6389 symbol_impl[i].aclass = (enum address_class) i;
6390 }
6391
6392 \f
6393
6394 /* See symtab.h. */
6395
6396 struct objfile *
6397 symbol_objfile (const struct symbol *symbol)
6398 {
6399 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6400 return SYMTAB_OBJFILE (symbol->owner.symtab);
6401 }
6402
6403 /* See symtab.h. */
6404
6405 struct gdbarch *
6406 symbol_arch (const struct symbol *symbol)
6407 {
6408 if (!SYMBOL_OBJFILE_OWNED (symbol))
6409 return symbol->owner.arch;
6410 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6411 }
6412
6413 /* See symtab.h. */
6414
6415 struct symtab *
6416 symbol_symtab (const struct symbol *symbol)
6417 {
6418 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6419 return symbol->owner.symtab;
6420 }
6421
6422 /* See symtab.h. */
6423
6424 void
6425 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6426 {
6427 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6428 symbol->owner.symtab = symtab;
6429 }
6430
6431 /* See symtab.h. */
6432
6433 CORE_ADDR
6434 get_symbol_address (const struct symbol *sym)
6435 {
6436 gdb_assert (sym->maybe_copied);
6437 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6438
6439 const char *linkage_name = sym->linkage_name ();
6440
6441 for (objfile *objfile : current_program_space->objfiles ())
6442 {
6443 if (objfile->separate_debug_objfile_backlink != nullptr)
6444 continue;
6445
6446 bound_minimal_symbol minsym
6447 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6448 if (minsym.minsym != nullptr)
6449 return BMSYMBOL_VALUE_ADDRESS (minsym);
6450 }
6451 return sym->value.address;
6452 }
6453
6454 /* See symtab.h. */
6455
6456 CORE_ADDR
6457 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6458 {
6459 gdb_assert (minsym->maybe_copied);
6460 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6461
6462 const char *linkage_name = minsym->linkage_name ();
6463
6464 for (objfile *objfile : current_program_space->objfiles ())
6465 {
6466 if (objfile->separate_debug_objfile_backlink == nullptr
6467 && (objfile->flags & OBJF_MAINLINE) != 0)
6468 {
6469 bound_minimal_symbol found
6470 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6471 if (found.minsym != nullptr)
6472 return BMSYMBOL_VALUE_ADDRESS (found);
6473 }
6474 }
6475 return (minsym->value.address
6476 + objf->section_offsets[minsym->section_index ()]);
6477 }
6478
6479 \f
6480
6481 /* Hold the sub-commands of 'info module'. */
6482
6483 static struct cmd_list_element *info_module_cmdlist = NULL;
6484
6485 /* See symtab.h. */
6486
6487 std::vector<module_symbol_search>
6488 search_module_symbols (const char *module_regexp, const char *regexp,
6489 const char *type_regexp, search_domain kind)
6490 {
6491 std::vector<module_symbol_search> results;
6492
6493 /* Search for all modules matching MODULE_REGEXP. */
6494 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6495 spec1.set_exclude_minsyms (true);
6496 std::vector<symbol_search> modules = spec1.search ();
6497
6498 /* Now search for all symbols of the required KIND matching the required
6499 regular expressions. We figure out which ones are in which modules
6500 below. */
6501 global_symbol_searcher spec2 (kind, regexp);
6502 spec2.set_symbol_type_regexp (type_regexp);
6503 spec2.set_exclude_minsyms (true);
6504 std::vector<symbol_search> symbols = spec2.search ();
6505
6506 /* Now iterate over all MODULES, checking to see which items from
6507 SYMBOLS are in each module. */
6508 for (const symbol_search &p : modules)
6509 {
6510 QUIT;
6511
6512 /* This is a module. */
6513 gdb_assert (p.symbol != nullptr);
6514
6515 std::string prefix = p.symbol->print_name ();
6516 prefix += "::";
6517
6518 for (const symbol_search &q : symbols)
6519 {
6520 if (q.symbol == nullptr)
6521 continue;
6522
6523 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6524 prefix.size ()) != 0)
6525 continue;
6526
6527 results.push_back ({p, q});
6528 }
6529 }
6530
6531 return results;
6532 }
6533
6534 /* Implement the core of both 'info module functions' and 'info module
6535 variables'. */
6536
6537 static void
6538 info_module_subcommand (bool quiet, const char *module_regexp,
6539 const char *regexp, const char *type_regexp,
6540 search_domain kind)
6541 {
6542 /* Print a header line. Don't build the header line bit by bit as this
6543 prevents internationalisation. */
6544 if (!quiet)
6545 {
6546 if (module_regexp == nullptr)
6547 {
6548 if (type_regexp == nullptr)
6549 {
6550 if (regexp == nullptr)
6551 printf_filtered ((kind == VARIABLES_DOMAIN
6552 ? _("All variables in all modules:")
6553 : _("All functions in all modules:")));
6554 else
6555 printf_filtered
6556 ((kind == VARIABLES_DOMAIN
6557 ? _("All variables matching regular expression"
6558 " \"%s\" in all modules:")
6559 : _("All functions matching regular expression"
6560 " \"%s\" in all modules:")),
6561 regexp);
6562 }
6563 else
6564 {
6565 if (regexp == nullptr)
6566 printf_filtered
6567 ((kind == VARIABLES_DOMAIN
6568 ? _("All variables with type matching regular "
6569 "expression \"%s\" in all modules:")
6570 : _("All functions with type matching regular "
6571 "expression \"%s\" in all modules:")),
6572 type_regexp);
6573 else
6574 printf_filtered
6575 ((kind == VARIABLES_DOMAIN
6576 ? _("All variables matching regular expression "
6577 "\"%s\",\n\twith type matching regular "
6578 "expression \"%s\" in all modules:")
6579 : _("All functions matching regular expression "
6580 "\"%s\",\n\twith type matching regular "
6581 "expression \"%s\" in all modules:")),
6582 regexp, type_regexp);
6583 }
6584 }
6585 else
6586 {
6587 if (type_regexp == nullptr)
6588 {
6589 if (regexp == nullptr)
6590 printf_filtered
6591 ((kind == VARIABLES_DOMAIN
6592 ? _("All variables in all modules matching regular "
6593 "expression \"%s\":")
6594 : _("All functions in all modules matching regular "
6595 "expression \"%s\":")),
6596 module_regexp);
6597 else
6598 printf_filtered
6599 ((kind == VARIABLES_DOMAIN
6600 ? _("All variables matching regular expression "
6601 "\"%s\",\n\tin all modules matching regular "
6602 "expression \"%s\":")
6603 : _("All functions matching regular expression "
6604 "\"%s\",\n\tin all modules matching regular "
6605 "expression \"%s\":")),
6606 regexp, module_regexp);
6607 }
6608 else
6609 {
6610 if (regexp == nullptr)
6611 printf_filtered
6612 ((kind == VARIABLES_DOMAIN
6613 ? _("All variables with type matching regular "
6614 "expression \"%s\"\n\tin all modules matching "
6615 "regular expression \"%s\":")
6616 : _("All functions with type matching regular "
6617 "expression \"%s\"\n\tin all modules matching "
6618 "regular expression \"%s\":")),
6619 type_regexp, module_regexp);
6620 else
6621 printf_filtered
6622 ((kind == VARIABLES_DOMAIN
6623 ? _("All variables matching regular expression "
6624 "\"%s\",\n\twith type matching regular expression "
6625 "\"%s\",\n\tin all modules matching regular "
6626 "expression \"%s\":")
6627 : _("All functions matching regular expression "
6628 "\"%s\",\n\twith type matching regular expression "
6629 "\"%s\",\n\tin all modules matching regular "
6630 "expression \"%s\":")),
6631 regexp, type_regexp, module_regexp);
6632 }
6633 }
6634 printf_filtered ("\n");
6635 }
6636
6637 /* Find all symbols of type KIND matching the given regular expressions
6638 along with the symbols for the modules in which those symbols
6639 reside. */
6640 std::vector<module_symbol_search> module_symbols
6641 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6642
6643 std::sort (module_symbols.begin (), module_symbols.end (),
6644 [] (const module_symbol_search &a, const module_symbol_search &b)
6645 {
6646 if (a.first < b.first)
6647 return true;
6648 else if (a.first == b.first)
6649 return a.second < b.second;
6650 else
6651 return false;
6652 });
6653
6654 const char *last_filename = "";
6655 const symbol *last_module_symbol = nullptr;
6656 for (const module_symbol_search &ms : module_symbols)
6657 {
6658 const symbol_search &p = ms.first;
6659 const symbol_search &q = ms.second;
6660
6661 gdb_assert (q.symbol != nullptr);
6662
6663 if (last_module_symbol != p.symbol)
6664 {
6665 printf_filtered ("\n");
6666 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6667 last_module_symbol = p.symbol;
6668 last_filename = "";
6669 }
6670
6671 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6672 last_filename);
6673 last_filename
6674 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6675 }
6676 }
6677
6678 /* Hold the option values for the 'info module .....' sub-commands. */
6679
6680 struct info_modules_var_func_options
6681 {
6682 bool quiet = false;
6683 char *type_regexp = nullptr;
6684 char *module_regexp = nullptr;
6685
6686 ~info_modules_var_func_options ()
6687 {
6688 xfree (type_regexp);
6689 xfree (module_regexp);
6690 }
6691 };
6692
6693 /* The options used by 'info module variables' and 'info module functions'
6694 commands. */
6695
6696 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6697 gdb::option::boolean_option_def<info_modules_var_func_options> {
6698 "q",
6699 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6700 nullptr, /* show_cmd_cb */
6701 nullptr /* set_doc */
6702 },
6703
6704 gdb::option::string_option_def<info_modules_var_func_options> {
6705 "t",
6706 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6707 nullptr, /* show_cmd_cb */
6708 nullptr /* set_doc */
6709 },
6710
6711 gdb::option::string_option_def<info_modules_var_func_options> {
6712 "m",
6713 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6714 nullptr, /* show_cmd_cb */
6715 nullptr /* set_doc */
6716 }
6717 };
6718
6719 /* Return the option group used by the 'info module ...' sub-commands. */
6720
6721 static inline gdb::option::option_def_group
6722 make_info_modules_var_func_options_def_group
6723 (info_modules_var_func_options *opts)
6724 {
6725 return {{info_modules_var_func_options_defs}, opts};
6726 }
6727
6728 /* Implements the 'info module functions' command. */
6729
6730 static void
6731 info_module_functions_command (const char *args, int from_tty)
6732 {
6733 info_modules_var_func_options opts;
6734 auto grp = make_info_modules_var_func_options_def_group (&opts);
6735 gdb::option::process_options
6736 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6737 if (args != nullptr && *args == '\0')
6738 args = nullptr;
6739
6740 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6741 opts.type_regexp, FUNCTIONS_DOMAIN);
6742 }
6743
6744 /* Implements the 'info module variables' command. */
6745
6746 static void
6747 info_module_variables_command (const char *args, int from_tty)
6748 {
6749 info_modules_var_func_options opts;
6750 auto grp = make_info_modules_var_func_options_def_group (&opts);
6751 gdb::option::process_options
6752 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6753 if (args != nullptr && *args == '\0')
6754 args = nullptr;
6755
6756 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6757 opts.type_regexp, VARIABLES_DOMAIN);
6758 }
6759
6760 /* Command completer for 'info module ...' sub-commands. */
6761
6762 static void
6763 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6764 completion_tracker &tracker,
6765 const char *text,
6766 const char * /* word */)
6767 {
6768
6769 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6770 if (gdb::option::complete_options
6771 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6772 return;
6773
6774 const char *word = advance_to_expression_complete_word_point (tracker, text);
6775 symbol_completer (ignore, tracker, text, word);
6776 }
6777
6778 \f
6779
6780 void _initialize_symtab ();
6781 void
6782 _initialize_symtab ()
6783 {
6784 cmd_list_element *c;
6785
6786 initialize_ordinary_address_classes ();
6787
6788 c = add_info ("variables", info_variables_command,
6789 info_print_args_help (_("\
6790 All global and static variable names or those matching REGEXPs.\n\
6791 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6792 Prints the global and static variables.\n"),
6793 _("global and static variables"),
6794 true));
6795 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6796 if (dbx_commands)
6797 {
6798 c = add_com ("whereis", class_info, info_variables_command,
6799 info_print_args_help (_("\
6800 All global and static variable names, or those matching REGEXPs.\n\
6801 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6802 Prints the global and static variables.\n"),
6803 _("global and static variables"),
6804 true));
6805 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6806 }
6807
6808 c = add_info ("functions", info_functions_command,
6809 info_print_args_help (_("\
6810 All function names or those matching REGEXPs.\n\
6811 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6812 Prints the functions.\n"),
6813 _("functions"),
6814 true));
6815 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6816
6817 c = add_info ("types", info_types_command, _("\
6818 All type names, or those matching REGEXP.\n\
6819 Usage: info types [-q] [REGEXP]\n\
6820 Print information about all types matching REGEXP, or all types if no\n\
6821 REGEXP is given. The optional flag -q disables printing of headers."));
6822 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6823
6824 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6825
6826 static std::string info_sources_help
6827 = gdb::option::build_help (_("\
6828 All source files in the program or those matching REGEXP.\n\
6829 Usage: info sources [OPTION]... [REGEXP]\n\
6830 By default, REGEXP is used to match anywhere in the filename.\n\
6831 \n\
6832 Options:\n\
6833 %OPTIONS%"),
6834 info_sources_opts);
6835
6836 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6837 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6838
6839 c = add_info ("modules", info_modules_command,
6840 _("All module names, or those matching REGEXP."));
6841 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6842
6843 add_basic_prefix_cmd ("module", class_info, _("\
6844 Print information about modules."),
6845 &info_module_cmdlist, "info module ",
6846 0, &infolist);
6847
6848 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6849 Display functions arranged by modules.\n\
6850 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6851 Print a summary of all functions within each Fortran module, grouped by\n\
6852 module and file. For each function the line on which the function is\n\
6853 defined is given along with the type signature and name of the function.\n\
6854 \n\
6855 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6856 listed. If MODREGEXP is provided then only functions in modules matching\n\
6857 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6858 type signature matches TYPEREGEXP are listed.\n\
6859 \n\
6860 The -q flag suppresses printing some header information."),
6861 &info_module_cmdlist);
6862 set_cmd_completer_handle_brkchars
6863 (c, info_module_var_func_command_completer);
6864
6865 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6866 Display variables arranged by modules.\n\
6867 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6868 Print a summary of all variables within each Fortran module, grouped by\n\
6869 module and file. For each variable the line on which the variable is\n\
6870 defined is given along with the type and name of the variable.\n\
6871 \n\
6872 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6873 listed. If MODREGEXP is provided then only variables in modules matching\n\
6874 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6875 type matches TYPEREGEXP are listed.\n\
6876 \n\
6877 The -q flag suppresses printing some header information."),
6878 &info_module_cmdlist);
6879 set_cmd_completer_handle_brkchars
6880 (c, info_module_var_func_command_completer);
6881
6882 add_com ("rbreak", class_breakpoint, rbreak_command,
6883 _("Set a breakpoint for all functions matching REGEXP."));
6884
6885 add_setshow_enum_cmd ("multiple-symbols", no_class,
6886 multiple_symbols_modes, &multiple_symbols_mode,
6887 _("\
6888 Set how the debugger handles ambiguities in expressions."), _("\
6889 Show how the debugger handles ambiguities in expressions."), _("\
6890 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6891 NULL, NULL, &setlist, &showlist);
6892
6893 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6894 &basenames_may_differ, _("\
6895 Set whether a source file may have multiple base names."), _("\
6896 Show whether a source file may have multiple base names."), _("\
6897 (A \"base name\" is the name of a file with the directory part removed.\n\
6898 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6899 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6900 before comparing them. Canonicalization is an expensive operation,\n\
6901 but it allows the same file be known by more than one base name.\n\
6902 If not set (the default), all source files are assumed to have just\n\
6903 one base name, and gdb will do file name comparisons more efficiently."),
6904 NULL, NULL,
6905 &setlist, &showlist);
6906
6907 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6908 _("Set debugging of symbol table creation."),
6909 _("Show debugging of symbol table creation."), _("\
6910 When enabled (non-zero), debugging messages are printed when building\n\
6911 symbol tables. A value of 1 (one) normally provides enough information.\n\
6912 A value greater than 1 provides more verbose information."),
6913 NULL,
6914 NULL,
6915 &setdebuglist, &showdebuglist);
6916
6917 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6918 _("\
6919 Set debugging of symbol lookup."), _("\
6920 Show debugging of symbol lookup."), _("\
6921 When enabled (non-zero), symbol lookups are logged."),
6922 NULL, NULL,
6923 &setdebuglist, &showdebuglist);
6924
6925 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6926 &new_symbol_cache_size,
6927 _("Set the size of the symbol cache."),
6928 _("Show the size of the symbol cache."), _("\
6929 The size of the symbol cache.\n\
6930 If zero then the symbol cache is disabled."),
6931 set_symbol_cache_size_handler, NULL,
6932 &maintenance_set_cmdlist,
6933 &maintenance_show_cmdlist);
6934
6935 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6936 _("Dump the symbol cache for each program space."),
6937 &maintenanceprintlist);
6938
6939 add_cmd ("symbol-cache-statistics", class_maintenance,
6940 maintenance_print_symbol_cache_statistics,
6941 _("Print symbol cache statistics for each program space."),
6942 &maintenanceprintlist);
6943
6944 add_cmd ("symbol-cache", class_maintenance,
6945 maintenance_flush_symbol_cache,
6946 _("Flush the symbol cache for each program space."),
6947 &maintenanceflushlist);
6948 c = add_alias_cmd ("flush-symbol-cache", "flush symbol-cache",
6949 class_maintenance, 0, &maintenancelist);
6950 deprecate_cmd (c, "maintenancelist flush symbol-cache");
6951
6952 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6953 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6954 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6955 }
This page took 0.273391 seconds and 4 git commands to generate.