* gdb.ada/assign_1.exp: New testcase.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61
62 /* Prototypes for local functions */
63
64 static void completion_list_add_name (char *, char *, int, char *, char *);
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static void output_source_filename (const char *, int *);
77
78 static int find_line_common (struct linetable *, int, int *);
79
80 /* This one is used by linespec.c */
81
82 char *operator_chars (char *p, char **end);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const char *linkage_name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 int *is_a_field_of_this,
90 struct symtab **symtab);
91
92 static
93 struct symbol *lookup_symbol_aux_local (const char *name,
94 const char *linkage_name,
95 const struct block *block,
96 const domain_enum domain,
97 struct symtab **symtab);
98
99 static
100 struct symbol *lookup_symbol_aux_symtabs (int block_index,
101 const char *name,
102 const char *linkage_name,
103 const domain_enum domain,
104 struct symtab **symtab);
105
106 static
107 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain,
111 struct symtab **symtab);
112
113 static void fixup_section (struct general_symbol_info *, struct objfile *);
114
115 static int file_matches (char *, char **, int);
116
117 static void print_symbol_info (domain_enum,
118 struct symtab *, struct symbol *, int, char *);
119
120 static void print_msymbol_info (struct minimal_symbol *);
121
122 static void symtab_symbol_info (char *, domain_enum, int);
123
124 void _initialize_symtab (void);
125
126 /* */
127
128 /* Allow the user to configure the debugger behavior with respect
129 to multiple-choice menus when more than one symbol matches during
130 a symbol lookup. */
131
132 const char multiple_symbols_ask[] = "ask";
133 const char multiple_symbols_all[] = "all";
134 const char multiple_symbols_cancel[] = "cancel";
135 static const char *multiple_symbols_modes[] =
136 {
137 multiple_symbols_ask,
138 multiple_symbols_all,
139 multiple_symbols_cancel,
140 NULL
141 };
142 static const char *multiple_symbols_mode = multiple_symbols_all;
143
144 /* Read-only accessor to AUTO_SELECT_MODE. */
145
146 const char *
147 multiple_symbols_select_mode (void)
148 {
149 return multiple_symbols_mode;
150 }
151
152 /* The single non-language-specific builtin type */
153 struct type *builtin_type_error;
154
155 /* Block in which the most recently searched-for symbol was found.
156 Might be better to make this a parameter to lookup_symbol and
157 value_of_this. */
158
159 const struct block *block_found;
160
161 /* Check for a symtab of a specific name; first in symtabs, then in
162 psymtabs. *If* there is no '/' in the name, a match after a '/'
163 in the symtab filename will also work. */
164
165 struct symtab *
166 lookup_symtab (const char *name)
167 {
168 struct symtab *s;
169 struct partial_symtab *ps;
170 struct objfile *objfile;
171 char *real_path = NULL;
172 char *full_path = NULL;
173
174 /* Here we are interested in canonicalizing an absolute path, not
175 absolutizing a relative path. */
176 if (IS_ABSOLUTE_PATH (name))
177 {
178 full_path = xfullpath (name);
179 make_cleanup (xfree, full_path);
180 real_path = gdb_realpath (name);
181 make_cleanup (xfree, real_path);
182 }
183
184 got_symtab:
185
186 /* First, search for an exact match */
187
188 ALL_SYMTABS (objfile, s)
189 {
190 if (FILENAME_CMP (name, s->filename) == 0)
191 {
192 return s;
193 }
194
195 /* If the user gave us an absolute path, try to find the file in
196 this symtab and use its absolute path. */
197
198 if (full_path != NULL)
199 {
200 const char *fp = symtab_to_fullname (s);
201 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
202 {
203 return s;
204 }
205 }
206
207 if (real_path != NULL)
208 {
209 char *fullname = symtab_to_fullname (s);
210 if (fullname != NULL)
211 {
212 char *rp = gdb_realpath (fullname);
213 make_cleanup (xfree, rp);
214 if (FILENAME_CMP (real_path, rp) == 0)
215 {
216 return s;
217 }
218 }
219 }
220 }
221
222 /* Now, search for a matching tail (only if name doesn't have any dirs) */
223
224 if (lbasename (name) == name)
225 ALL_SYMTABS (objfile, s)
226 {
227 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
228 return s;
229 }
230
231 /* Same search rules as above apply here, but now we look thru the
232 psymtabs. */
233
234 ps = lookup_partial_symtab (name);
235 if (!ps)
236 return (NULL);
237
238 if (ps->readin)
239 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
240 ps->filename, name);
241
242 s = PSYMTAB_TO_SYMTAB (ps);
243
244 if (s)
245 return s;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257
258 /* Lookup the partial symbol table of a source file named NAME.
259 *If* there is no '/' in the name, a match after a '/'
260 in the psymtab filename will also work. */
261
262 struct partial_symtab *
263 lookup_partial_symtab (const char *name)
264 {
265 struct partial_symtab *pst;
266 struct objfile *objfile;
267 char *full_path = NULL;
268 char *real_path = NULL;
269
270 /* Here we are interested in canonicalizing an absolute path, not
271 absolutizing a relative path. */
272 if (IS_ABSOLUTE_PATH (name))
273 {
274 full_path = xfullpath (name);
275 make_cleanup (xfree, full_path);
276 real_path = gdb_realpath (name);
277 make_cleanup (xfree, real_path);
278 }
279
280 ALL_PSYMTABS (objfile, pst)
281 {
282 if (FILENAME_CMP (name, pst->filename) == 0)
283 {
284 return (pst);
285 }
286
287 /* If the user gave us an absolute path, try to find the file in
288 this symtab and use its absolute path. */
289 if (full_path != NULL)
290 {
291 psymtab_to_fullname (pst);
292 if (pst->fullname != NULL
293 && FILENAME_CMP (full_path, pst->fullname) == 0)
294 {
295 return pst;
296 }
297 }
298
299 if (real_path != NULL)
300 {
301 char *rp = NULL;
302 psymtab_to_fullname (pst);
303 if (pst->fullname != NULL)
304 {
305 rp = gdb_realpath (pst->fullname);
306 make_cleanup (xfree, rp);
307 }
308 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
309 {
310 return pst;
311 }
312 }
313 }
314
315 /* Now, search for a matching tail (only if name doesn't have any dirs) */
316
317 if (lbasename (name) == name)
318 ALL_PSYMTABS (objfile, pst)
319 {
320 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
321 return (pst);
322 }
323
324 return (NULL);
325 }
326 \f
327 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
328 full method name, which consist of the class name (from T), the unadorned
329 method name from METHOD_ID, and the signature for the specific overload,
330 specified by SIGNATURE_ID. Note that this function is g++ specific. */
331
332 char *
333 gdb_mangle_name (struct type *type, int method_id, int signature_id)
334 {
335 int mangled_name_len;
336 char *mangled_name;
337 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
338 struct fn_field *method = &f[signature_id];
339 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
340 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
341 char *newname = type_name_no_tag (type);
342
343 /* Does the form of physname indicate that it is the full mangled name
344 of a constructor (not just the args)? */
345 int is_full_physname_constructor;
346
347 int is_constructor;
348 int is_destructor = is_destructor_name (physname);
349 /* Need a new type prefix. */
350 char *const_prefix = method->is_const ? "C" : "";
351 char *volatile_prefix = method->is_volatile ? "V" : "";
352 char buf[20];
353 int len = (newname == NULL ? 0 : strlen (newname));
354
355 /* Nothing to do if physname already contains a fully mangled v3 abi name
356 or an operator name. */
357 if ((physname[0] == '_' && physname[1] == 'Z')
358 || is_operator_name (field_name))
359 return xstrdup (physname);
360
361 is_full_physname_constructor = is_constructor_name (physname);
362
363 is_constructor =
364 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
365
366 if (!is_destructor)
367 is_destructor = (strncmp (physname, "__dt", 4) == 0);
368
369 if (is_destructor || is_full_physname_constructor)
370 {
371 mangled_name = (char *) xmalloc (strlen (physname) + 1);
372 strcpy (mangled_name, physname);
373 return mangled_name;
374 }
375
376 if (len == 0)
377 {
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 }
380 else if (physname[0] == 't' || physname[0] == 'Q')
381 {
382 /* The physname for template and qualified methods already includes
383 the class name. */
384 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
385 newname = NULL;
386 len = 0;
387 }
388 else
389 {
390 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
391 }
392 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
393 + strlen (buf) + len + strlen (physname) + 1);
394
395 {
396 mangled_name = (char *) xmalloc (mangled_name_len);
397 if (is_constructor)
398 mangled_name[0] = '\0';
399 else
400 strcpy (mangled_name, field_name);
401 }
402 strcat (mangled_name, buf);
403 /* If the class doesn't have a name, i.e. newname NULL, then we just
404 mangle it using 0 for the length of the class. Thus it gets mangled
405 as something starting with `::' rather than `classname::'. */
406 if (newname != NULL)
407 strcat (mangled_name, newname);
408
409 strcat (mangled_name, physname);
410 return (mangled_name);
411 }
412
413 \f
414 /* Initialize the language dependent portion of a symbol
415 depending upon the language for the symbol. */
416 void
417 symbol_init_language_specific (struct general_symbol_info *gsymbol,
418 enum language language)
419 {
420 gsymbol->language = language;
421 if (gsymbol->language == language_cplus
422 || gsymbol->language == language_java
423 || gsymbol->language == language_objc)
424 {
425 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
426 }
427 else
428 {
429 memset (&gsymbol->language_specific, 0,
430 sizeof (gsymbol->language_specific));
431 }
432 }
433
434 /* Functions to initialize a symbol's mangled name. */
435
436 /* Create the hash table used for demangled names. Each hash entry is
437 a pair of strings; one for the mangled name and one for the demangled
438 name. The entry is hashed via just the mangled name. */
439
440 static void
441 create_demangled_names_hash (struct objfile *objfile)
442 {
443 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
444 The hash table code will round this up to the next prime number.
445 Choosing a much larger table size wastes memory, and saves only about
446 1% in symbol reading. */
447
448 objfile->demangled_names_hash = htab_create_alloc
449 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
450 NULL, xcalloc, xfree);
451 }
452
453 /* Try to determine the demangled name for a symbol, based on the
454 language of that symbol. If the language is set to language_auto,
455 it will attempt to find any demangling algorithm that works and
456 then set the language appropriately. The returned name is allocated
457 by the demangler and should be xfree'd. */
458
459 static char *
460 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
461 const char *mangled)
462 {
463 char *demangled = NULL;
464
465 if (gsymbol->language == language_unknown)
466 gsymbol->language = language_auto;
467
468 if (gsymbol->language == language_objc
469 || gsymbol->language == language_auto)
470 {
471 demangled =
472 objc_demangle (mangled, 0);
473 if (demangled != NULL)
474 {
475 gsymbol->language = language_objc;
476 return demangled;
477 }
478 }
479 if (gsymbol->language == language_cplus
480 || gsymbol->language == language_auto)
481 {
482 demangled =
483 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
484 if (demangled != NULL)
485 {
486 gsymbol->language = language_cplus;
487 return demangled;
488 }
489 }
490 if (gsymbol->language == language_java)
491 {
492 demangled =
493 cplus_demangle (mangled,
494 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
495 if (demangled != NULL)
496 {
497 gsymbol->language = language_java;
498 return demangled;
499 }
500 }
501 return NULL;
502 }
503
504 /* Set both the mangled and demangled (if any) names for GSYMBOL based
505 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
506 is used, and the memory comes from that objfile's objfile_obstack.
507 LINKAGE_NAME is copied, so the pointer can be discarded after
508 calling this function. */
509
510 /* We have to be careful when dealing with Java names: when we run
511 into a Java minimal symbol, we don't know it's a Java symbol, so it
512 gets demangled as a C++ name. This is unfortunate, but there's not
513 much we can do about it: but when demangling partial symbols and
514 regular symbols, we'd better not reuse the wrong demangled name.
515 (See PR gdb/1039.) We solve this by putting a distinctive prefix
516 on Java names when storing them in the hash table. */
517
518 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
519 don't mind the Java prefix so much: different languages have
520 different demangling requirements, so it's only natural that we
521 need to keep language data around in our demangling cache. But
522 it's not good that the minimal symbol has the wrong demangled name.
523 Unfortunately, I can't think of any easy solution to that
524 problem. */
525
526 #define JAVA_PREFIX "##JAVA$$"
527 #define JAVA_PREFIX_LEN 8
528
529 void
530 symbol_set_names (struct general_symbol_info *gsymbol,
531 const char *linkage_name, int len, struct objfile *objfile)
532 {
533 char **slot;
534 /* A 0-terminated copy of the linkage name. */
535 const char *linkage_name_copy;
536 /* A copy of the linkage name that might have a special Java prefix
537 added to it, for use when looking names up in the hash table. */
538 const char *lookup_name;
539 /* The length of lookup_name. */
540 int lookup_len;
541
542 if (objfile->demangled_names_hash == NULL)
543 create_demangled_names_hash (objfile);
544
545 if (gsymbol->language == language_ada)
546 {
547 /* In Ada, we do the symbol lookups using the mangled name, so
548 we can save some space by not storing the demangled name.
549
550 As a side note, we have also observed some overlap between
551 the C++ mangling and Ada mangling, similarly to what has
552 been observed with Java. Because we don't store the demangled
553 name with the symbol, we don't need to use the same trick
554 as Java. */
555 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
556 memcpy (gsymbol->name, linkage_name, len);
557 gsymbol->name[len] = '\0';
558 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
559
560 return;
561 }
562
563 /* The stabs reader generally provides names that are not
564 NUL-terminated; most of the other readers don't do this, so we
565 can just use the given copy, unless we're in the Java case. */
566 if (gsymbol->language == language_java)
567 {
568 char *alloc_name;
569 lookup_len = len + JAVA_PREFIX_LEN;
570
571 alloc_name = alloca (lookup_len + 1);
572 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
573 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
574 alloc_name[lookup_len] = '\0';
575
576 lookup_name = alloc_name;
577 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
578 }
579 else if (linkage_name[len] != '\0')
580 {
581 char *alloc_name;
582 lookup_len = len;
583
584 alloc_name = alloca (lookup_len + 1);
585 memcpy (alloc_name, linkage_name, len);
586 alloc_name[lookup_len] = '\0';
587
588 lookup_name = alloc_name;
589 linkage_name_copy = alloc_name;
590 }
591 else
592 {
593 lookup_len = len;
594 lookup_name = linkage_name;
595 linkage_name_copy = linkage_name;
596 }
597
598 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
599 lookup_name, INSERT);
600
601 /* If this name is not in the hash table, add it. */
602 if (*slot == NULL)
603 {
604 char *demangled_name = symbol_find_demangled_name (gsymbol,
605 linkage_name_copy);
606 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
607
608 /* If there is a demangled name, place it right after the mangled name.
609 Otherwise, just place a second zero byte after the end of the mangled
610 name. */
611 *slot = obstack_alloc (&objfile->objfile_obstack,
612 lookup_len + demangled_len + 2);
613 memcpy (*slot, lookup_name, lookup_len + 1);
614 if (demangled_name != NULL)
615 {
616 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
617 xfree (demangled_name);
618 }
619 else
620 (*slot)[lookup_len + 1] = '\0';
621 }
622
623 gsymbol->name = *slot + lookup_len - len;
624 if ((*slot)[lookup_len + 1] != '\0')
625 gsymbol->language_specific.cplus_specific.demangled_name
626 = &(*slot)[lookup_len + 1];
627 else
628 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
629 }
630
631 /* Return the source code name of a symbol. In languages where
632 demangling is necessary, this is the demangled name. */
633
634 char *
635 symbol_natural_name (const struct general_symbol_info *gsymbol)
636 {
637 switch (gsymbol->language)
638 {
639 case language_cplus:
640 case language_java:
641 case language_objc:
642 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
643 return gsymbol->language_specific.cplus_specific.demangled_name;
644 break;
645 case language_ada:
646 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
647 return gsymbol->language_specific.cplus_specific.demangled_name;
648 else
649 return ada_decode_symbol (gsymbol);
650 break;
651 default:
652 break;
653 }
654 return gsymbol->name;
655 }
656
657 /* Return the demangled name for a symbol based on the language for
658 that symbol. If no demangled name exists, return NULL. */
659 char *
660 symbol_demangled_name (struct general_symbol_info *gsymbol)
661 {
662 switch (gsymbol->language)
663 {
664 case language_cplus:
665 case language_java:
666 case language_objc:
667 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
668 return gsymbol->language_specific.cplus_specific.demangled_name;
669 break;
670 case language_ada:
671 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
672 return gsymbol->language_specific.cplus_specific.demangled_name;
673 else
674 return ada_decode_symbol (gsymbol);
675 break;
676 default:
677 break;
678 }
679 return NULL;
680 }
681
682 /* Return the search name of a symbol---generally the demangled or
683 linkage name of the symbol, depending on how it will be searched for.
684 If there is no distinct demangled name, then returns the same value
685 (same pointer) as SYMBOL_LINKAGE_NAME. */
686 char *
687 symbol_search_name (const struct general_symbol_info *gsymbol)
688 {
689 if (gsymbol->language == language_ada)
690 return gsymbol->name;
691 else
692 return symbol_natural_name (gsymbol);
693 }
694
695 /* Initialize the structure fields to zero values. */
696 void
697 init_sal (struct symtab_and_line *sal)
698 {
699 sal->symtab = 0;
700 sal->section = 0;
701 sal->line = 0;
702 sal->pc = 0;
703 sal->end = 0;
704 sal->explicit_pc = 0;
705 sal->explicit_line = 0;
706 }
707 \f
708
709 /* Return 1 if the two sections are the same, or if they could
710 plausibly be copies of each other, one in an original object
711 file and another in a separated debug file. */
712
713 int
714 matching_bfd_sections (asection *first, asection *second)
715 {
716 struct objfile *obj;
717
718 /* If they're the same section, then they match. */
719 if (first == second)
720 return 1;
721
722 /* If either is NULL, give up. */
723 if (first == NULL || second == NULL)
724 return 0;
725
726 /* This doesn't apply to absolute symbols. */
727 if (first->owner == NULL || second->owner == NULL)
728 return 0;
729
730 /* If they're in the same object file, they must be different sections. */
731 if (first->owner == second->owner)
732 return 0;
733
734 /* Check whether the two sections are potentially corresponding. They must
735 have the same size, address, and name. We can't compare section indexes,
736 which would be more reliable, because some sections may have been
737 stripped. */
738 if (bfd_get_section_size (first) != bfd_get_section_size (second))
739 return 0;
740
741 /* In-memory addresses may start at a different offset, relativize them. */
742 if (bfd_get_section_vma (first->owner, first)
743 - bfd_get_start_address (first->owner)
744 != bfd_get_section_vma (second->owner, second)
745 - bfd_get_start_address (second->owner))
746 return 0;
747
748 if (bfd_get_section_name (first->owner, first) == NULL
749 || bfd_get_section_name (second->owner, second) == NULL
750 || strcmp (bfd_get_section_name (first->owner, first),
751 bfd_get_section_name (second->owner, second)) != 0)
752 return 0;
753
754 /* Otherwise check that they are in corresponding objfiles. */
755
756 ALL_OBJFILES (obj)
757 if (obj->obfd == first->owner)
758 break;
759 gdb_assert (obj != NULL);
760
761 if (obj->separate_debug_objfile != NULL
762 && obj->separate_debug_objfile->obfd == second->owner)
763 return 1;
764 if (obj->separate_debug_objfile_backlink != NULL
765 && obj->separate_debug_objfile_backlink->obfd == second->owner)
766 return 1;
767
768 return 0;
769 }
770
771 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
772 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
773
774 struct partial_symtab *
775 find_pc_sect_psymtab_closer (CORE_ADDR pc, asection *section,
776 struct partial_symtab *pst,
777 struct minimal_symbol *msymbol)
778 {
779 struct objfile *objfile = pst->objfile;
780 struct partial_symtab *tpst;
781 struct partial_symtab *best_pst = pst;
782 CORE_ADDR best_addr = pst->textlow;
783
784 /* An objfile that has its functions reordered might have
785 many partial symbol tables containing the PC, but
786 we want the partial symbol table that contains the
787 function containing the PC. */
788 if (!(objfile->flags & OBJF_REORDERED) &&
789 section == 0) /* can't validate section this way */
790 return pst;
791
792 if (msymbol == NULL)
793 return (pst);
794
795 /* The code range of partial symtabs sometimes overlap, so, in
796 the loop below, we need to check all partial symtabs and
797 find the one that fits better for the given PC address. We
798 select the partial symtab that contains a symbol whose
799 address is closest to the PC address. By closest we mean
800 that find_pc_sect_symbol returns the symbol with address
801 that is closest and still less than the given PC. */
802 for (tpst = pst; tpst != NULL; tpst = tpst->next)
803 {
804 if (pc >= tpst->textlow && pc < tpst->texthigh)
805 {
806 struct partial_symbol *p;
807 CORE_ADDR this_addr;
808
809 /* NOTE: This assumes that every psymbol has a
810 corresponding msymbol, which is not necessarily
811 true; the debug info might be much richer than the
812 object's symbol table. */
813 p = find_pc_sect_psymbol (tpst, pc, section);
814 if (p != NULL
815 && SYMBOL_VALUE_ADDRESS (p)
816 == SYMBOL_VALUE_ADDRESS (msymbol))
817 return tpst;
818
819 /* Also accept the textlow value of a psymtab as a
820 "symbol", to provide some support for partial
821 symbol tables with line information but no debug
822 symbols (e.g. those produced by an assembler). */
823 if (p != NULL)
824 this_addr = SYMBOL_VALUE_ADDRESS (p);
825 else
826 this_addr = tpst->textlow;
827
828 /* Check whether it is closer than our current
829 BEST_ADDR. Since this symbol address is
830 necessarily lower or equal to PC, the symbol closer
831 to PC is the symbol which address is the highest.
832 This way we return the psymtab which contains such
833 best match symbol. This can help in cases where the
834 symbol information/debuginfo is not complete, like
835 for instance on IRIX6 with gcc, where no debug info
836 is emitted for statics. (See also the nodebug.exp
837 testcase.) */
838 if (this_addr > best_addr)
839 {
840 best_addr = this_addr;
841 best_pst = tpst;
842 }
843 }
844 }
845 return best_pst;
846 }
847
848 /* Find which partial symtab contains PC and SECTION. Return 0 if
849 none. We return the psymtab that contains a symbol whose address
850 exactly matches PC, or, if we cannot find an exact match, the
851 psymtab that contains a symbol whose address is closest to PC. */
852 struct partial_symtab *
853 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
854 {
855 struct objfile *objfile;
856 struct minimal_symbol *msymbol;
857
858 /* If we know that this is not a text address, return failure. This is
859 necessary because we loop based on texthigh and textlow, which do
860 not include the data ranges. */
861 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
862 if (msymbol
863 && (msymbol->type == mst_data
864 || msymbol->type == mst_bss
865 || msymbol->type == mst_abs
866 || msymbol->type == mst_file_data
867 || msymbol->type == mst_file_bss))
868 return NULL;
869
870 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
871 than the later used TEXTLOW/TEXTHIGH one. */
872
873 ALL_OBJFILES (objfile)
874 if (objfile->psymtabs_addrmap != NULL)
875 {
876 struct partial_symtab *pst;
877
878 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
879 if (pst != NULL)
880 {
881 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
882 PSYMTABS_ADDRMAP we used has already the best 1-byte
883 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
884 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
885 overlap. */
886
887 return pst;
888 }
889 }
890
891 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
892 which still have no corresponding full SYMTABs read. But it is not
893 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
894 so far. */
895
896 ALL_OBJFILES (objfile)
897 {
898 struct partial_symtab *pst;
899
900 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
901 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
902 debug info type in single OBJFILE. */
903
904 ALL_OBJFILE_PSYMTABS (objfile, pst)
905 if (pc >= pst->textlow && pc < pst->texthigh)
906 {
907 struct partial_symtab *best_pst;
908
909 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
910 msymbol);
911 if (best_pst != NULL)
912 return best_pst;
913 }
914 }
915
916 return NULL;
917 }
918
919 /* Find which partial symtab contains PC. Return 0 if none.
920 Backward compatibility, no section */
921
922 struct partial_symtab *
923 find_pc_psymtab (CORE_ADDR pc)
924 {
925 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
926 }
927
928 /* Find which partial symbol within a psymtab matches PC and SECTION.
929 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
930
931 struct partial_symbol *
932 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
933 asection *section)
934 {
935 struct partial_symbol *best = NULL, *p, **pp;
936 CORE_ADDR best_pc;
937
938 if (!psymtab)
939 psymtab = find_pc_sect_psymtab (pc, section);
940 if (!psymtab)
941 return 0;
942
943 /* Cope with programs that start at address 0 */
944 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
945
946 /* Search the global symbols as well as the static symbols, so that
947 find_pc_partial_function doesn't use a minimal symbol and thus
948 cache a bad endaddr. */
949 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
950 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
951 < psymtab->n_global_syms);
952 pp++)
953 {
954 p = *pp;
955 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
956 && SYMBOL_CLASS (p) == LOC_BLOCK
957 && pc >= SYMBOL_VALUE_ADDRESS (p)
958 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
959 || (psymtab->textlow == 0
960 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
961 {
962 if (section) /* match on a specific section */
963 {
964 fixup_psymbol_section (p, psymtab->objfile);
965 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
966 continue;
967 }
968 best_pc = SYMBOL_VALUE_ADDRESS (p);
969 best = p;
970 }
971 }
972
973 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
974 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
975 < psymtab->n_static_syms);
976 pp++)
977 {
978 p = *pp;
979 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
980 && SYMBOL_CLASS (p) == LOC_BLOCK
981 && pc >= SYMBOL_VALUE_ADDRESS (p)
982 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
983 || (psymtab->textlow == 0
984 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
985 {
986 if (section) /* match on a specific section */
987 {
988 fixup_psymbol_section (p, psymtab->objfile);
989 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
990 continue;
991 }
992 best_pc = SYMBOL_VALUE_ADDRESS (p);
993 best = p;
994 }
995 }
996
997 return best;
998 }
999
1000 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1001 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1002
1003 struct partial_symbol *
1004 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1005 {
1006 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1007 }
1008 \f
1009 /* Debug symbols usually don't have section information. We need to dig that
1010 out of the minimal symbols and stash that in the debug symbol. */
1011
1012 static void
1013 fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
1014 {
1015 struct minimal_symbol *msym;
1016 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
1017
1018 /* First, check whether a minimal symbol with the same name exists
1019 and points to the same address. The address check is required
1020 e.g. on PowerPC64, where the minimal symbol for a function will
1021 point to the function descriptor, while the debug symbol will
1022 point to the actual function code. */
1023 if (msym
1024 && SYMBOL_VALUE_ADDRESS (msym) == ginfo->value.address)
1025 {
1026 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
1027 ginfo->section = SYMBOL_SECTION (msym);
1028 }
1029 else if (objfile)
1030 {
1031 /* Static, function-local variables do appear in the linker
1032 (minimal) symbols, but are frequently given names that won't
1033 be found via lookup_minimal_symbol(). E.g., it has been
1034 observed in frv-uclinux (ELF) executables that a static,
1035 function-local variable named "foo" might appear in the
1036 linker symbols as "foo.6" or "foo.3". Thus, there is no
1037 point in attempting to extend the lookup-by-name mechanism to
1038 handle this case due to the fact that there can be multiple
1039 names.
1040
1041 So, instead, search the section table when lookup by name has
1042 failed. The ``addr'' and ``endaddr'' fields may have already
1043 been relocated. If so, the relocation offset (i.e. the
1044 ANOFFSET value) needs to be subtracted from these values when
1045 performing the comparison. We unconditionally subtract it,
1046 because, when no relocation has been performed, the ANOFFSET
1047 value will simply be zero.
1048
1049 The address of the symbol whose section we're fixing up HAS
1050 NOT BEEN adjusted (relocated) yet. It can't have been since
1051 the section isn't yet known and knowing the section is
1052 necessary in order to add the correct relocation value. In
1053 other words, we wouldn't even be in this function (attempting
1054 to compute the section) if it were already known.
1055
1056 Note that it is possible to search the minimal symbols
1057 (subtracting the relocation value if necessary) to find the
1058 matching minimal symbol, but this is overkill and much less
1059 efficient. It is not necessary to find the matching minimal
1060 symbol, only its section.
1061
1062 Note that this technique (of doing a section table search)
1063 can fail when unrelocated section addresses overlap. For
1064 this reason, we still attempt a lookup by name prior to doing
1065 a search of the section table. */
1066
1067 CORE_ADDR addr;
1068 struct obj_section *s;
1069
1070 addr = ginfo->value.address;
1071
1072 ALL_OBJFILE_OSECTIONS (objfile, s)
1073 {
1074 int idx = s->the_bfd_section->index;
1075 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1076
1077 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1078 {
1079 ginfo->bfd_section = s->the_bfd_section;
1080 ginfo->section = idx;
1081 return;
1082 }
1083 }
1084 }
1085 }
1086
1087 struct symbol *
1088 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1089 {
1090 if (!sym)
1091 return NULL;
1092
1093 if (SYMBOL_BFD_SECTION (sym))
1094 return sym;
1095
1096 fixup_section (&sym->ginfo, objfile);
1097
1098 return sym;
1099 }
1100
1101 struct partial_symbol *
1102 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1103 {
1104 if (!psym)
1105 return NULL;
1106
1107 if (SYMBOL_BFD_SECTION (psym))
1108 return psym;
1109
1110 fixup_section (&psym->ginfo, objfile);
1111
1112 return psym;
1113 }
1114
1115 /* Find the definition for a specified symbol name NAME
1116 in domain DOMAIN, visible from lexical block BLOCK.
1117 Returns the struct symbol pointer, or zero if no symbol is found.
1118 If SYMTAB is non-NULL, store the symbol table in which the
1119 symbol was found there, or NULL if not found.
1120 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1121 NAME is a field of the current implied argument `this'. If so set
1122 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1123 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1124 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1125
1126 /* This function has a bunch of loops in it and it would seem to be
1127 attractive to put in some QUIT's (though I'm not really sure
1128 whether it can run long enough to be really important). But there
1129 are a few calls for which it would appear to be bad news to quit
1130 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1131 that there is C++ code below which can error(), but that probably
1132 doesn't affect these calls since they are looking for a known
1133 variable and thus can probably assume it will never hit the C++
1134 code). */
1135
1136 struct symbol *
1137 lookup_symbol_in_language (const char *name, const struct block *block,
1138 const domain_enum domain, enum language lang,
1139 int *is_a_field_of_this,
1140 struct symtab **symtab)
1141 {
1142 char *demangled_name = NULL;
1143 const char *modified_name = NULL;
1144 const char *mangled_name = NULL;
1145 int needtofreename = 0;
1146 struct symbol *returnval;
1147
1148 modified_name = name;
1149
1150 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1151 we can always binary search. */
1152 if (lang == language_cplus)
1153 {
1154 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1155 if (demangled_name)
1156 {
1157 mangled_name = name;
1158 modified_name = demangled_name;
1159 needtofreename = 1;
1160 }
1161 }
1162 else if (lang == language_java)
1163 {
1164 demangled_name = cplus_demangle (name,
1165 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1166 if (demangled_name)
1167 {
1168 mangled_name = name;
1169 modified_name = demangled_name;
1170 needtofreename = 1;
1171 }
1172 }
1173
1174 if (case_sensitivity == case_sensitive_off)
1175 {
1176 char *copy;
1177 int len, i;
1178
1179 len = strlen (name);
1180 copy = (char *) alloca (len + 1);
1181 for (i= 0; i < len; i++)
1182 copy[i] = tolower (name[i]);
1183 copy[len] = 0;
1184 modified_name = copy;
1185 }
1186
1187 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1188 domain, lang,
1189 is_a_field_of_this, symtab);
1190 if (needtofreename)
1191 xfree (demangled_name);
1192
1193 /* Override the returned symtab with the symbol's specific one. */
1194 if (returnval != NULL && symtab != NULL)
1195 *symtab = SYMBOL_SYMTAB (returnval);
1196
1197 return returnval;
1198 }
1199
1200 /* Behave like lookup_symbol_in_language, but performed with the
1201 current language. */
1202
1203 struct symbol *
1204 lookup_symbol (const char *name, const struct block *block,
1205 domain_enum domain, int *is_a_field_of_this,
1206 struct symtab **symtab)
1207 {
1208 return lookup_symbol_in_language (name, block, domain,
1209 current_language->la_language,
1210 is_a_field_of_this, symtab);
1211 }
1212
1213 /* Behave like lookup_symbol except that NAME is the natural name
1214 of the symbol that we're looking for and, if LINKAGE_NAME is
1215 non-NULL, ensure that the symbol's linkage name matches as
1216 well. */
1217
1218 static struct symbol *
1219 lookup_symbol_aux (const char *name, const char *linkage_name,
1220 const struct block *block, const domain_enum domain,
1221 enum language language,
1222 int *is_a_field_of_this, struct symtab **symtab)
1223 {
1224 struct symbol *sym;
1225 const struct language_defn *langdef;
1226
1227 /* Make sure we do something sensible with is_a_field_of_this, since
1228 the callers that set this parameter to some non-null value will
1229 certainly use it later and expect it to be either 0 or 1.
1230 If we don't set it, the contents of is_a_field_of_this are
1231 undefined. */
1232 if (is_a_field_of_this != NULL)
1233 *is_a_field_of_this = 0;
1234
1235 /* Search specified block and its superiors. Don't search
1236 STATIC_BLOCK or GLOBAL_BLOCK. */
1237
1238 sym = lookup_symbol_aux_local (name, linkage_name, block, domain,
1239 symtab);
1240 if (sym != NULL)
1241 return sym;
1242
1243 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1244 check to see if NAME is a field of `this'. */
1245
1246 langdef = language_def (language);
1247
1248 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1249 && block != NULL)
1250 {
1251 struct symbol *sym = NULL;
1252 /* 'this' is only defined in the function's block, so find the
1253 enclosing function block. */
1254 for (; block && !BLOCK_FUNCTION (block);
1255 block = BLOCK_SUPERBLOCK (block));
1256
1257 if (block && !dict_empty (BLOCK_DICT (block)))
1258 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1259 NULL, VAR_DOMAIN);
1260 if (sym)
1261 {
1262 struct type *t = sym->type;
1263
1264 /* I'm not really sure that type of this can ever
1265 be typedefed; just be safe. */
1266 CHECK_TYPEDEF (t);
1267 if (TYPE_CODE (t) == TYPE_CODE_PTR
1268 || TYPE_CODE (t) == TYPE_CODE_REF)
1269 t = TYPE_TARGET_TYPE (t);
1270
1271 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1272 && TYPE_CODE (t) != TYPE_CODE_UNION)
1273 error (_("Internal error: `%s' is not an aggregate"),
1274 langdef->la_name_of_this);
1275
1276 if (check_field (t, name))
1277 {
1278 *is_a_field_of_this = 1;
1279 if (symtab != NULL)
1280 *symtab = NULL;
1281 return NULL;
1282 }
1283 }
1284 }
1285
1286 /* Now do whatever is appropriate for LANGUAGE to look
1287 up static and global variables. */
1288
1289 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name,
1290 block, domain, symtab);
1291 if (sym != NULL)
1292 return sym;
1293
1294 /* Now search all static file-level symbols. Not strictly correct,
1295 but more useful than an error. Do the symtabs first, then check
1296 the psymtabs. If a psymtab indicates the existence of the
1297 desired name as a file-level static, then do psymtab-to-symtab
1298 conversion on the fly and return the found symbol. */
1299
1300 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name,
1301 domain, symtab);
1302 if (sym != NULL)
1303 return sym;
1304
1305 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name,
1306 domain, symtab);
1307 if (sym != NULL)
1308 return sym;
1309
1310 if (symtab != NULL)
1311 *symtab = NULL;
1312 return NULL;
1313 }
1314
1315 /* Check to see if the symbol is defined in BLOCK or its superiors.
1316 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1317
1318 static struct symbol *
1319 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1320 const struct block *block,
1321 const domain_enum domain,
1322 struct symtab **symtab)
1323 {
1324 struct symbol *sym;
1325 const struct block *static_block = block_static_block (block);
1326
1327 /* Check if either no block is specified or it's a global block. */
1328
1329 if (static_block == NULL)
1330 return NULL;
1331
1332 while (block != static_block)
1333 {
1334 sym = lookup_symbol_aux_block (name, linkage_name, block, domain,
1335 symtab);
1336 if (sym != NULL)
1337 return sym;
1338 block = BLOCK_SUPERBLOCK (block);
1339 }
1340
1341 /* We've reached the static block without finding a result. */
1342
1343 return NULL;
1344 }
1345
1346 /* Look up OBJFILE to BLOCK. */
1347
1348 static struct objfile *
1349 lookup_objfile_from_block (const struct block *block)
1350 {
1351 struct objfile *obj;
1352 struct symtab *s;
1353
1354 if (block == NULL)
1355 return NULL;
1356
1357 block = block_global_block (block);
1358 /* Go through SYMTABS. */
1359 ALL_SYMTABS (obj, s)
1360 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1361 return obj;
1362
1363 return NULL;
1364 }
1365
1366 /* Look up a symbol in a block; if found, locate its symtab, fixup the
1367 symbol, and set block_found appropriately. */
1368
1369 struct symbol *
1370 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1371 const struct block *block,
1372 const domain_enum domain,
1373 struct symtab **symtab)
1374 {
1375 struct symbol *sym;
1376 struct objfile *objfile = NULL;
1377 struct blockvector *bv;
1378 struct block *b;
1379 struct symtab *s = NULL;
1380
1381 sym = lookup_block_symbol (block, name, linkage_name, domain);
1382 if (sym)
1383 {
1384 block_found = block;
1385 if (symtab != NULL)
1386 {
1387 /* Search the list of symtabs for one which contains the
1388 address of the start of this block. */
1389 ALL_PRIMARY_SYMTABS (objfile, s)
1390 {
1391 bv = BLOCKVECTOR (s);
1392 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1393 if (BLOCK_START (b) <= BLOCK_START (block)
1394 && BLOCK_END (b) > BLOCK_START (block))
1395 goto found;
1396 }
1397 found:
1398 *symtab = s;
1399 }
1400
1401 return fixup_symbol_section (sym, objfile);
1402 }
1403
1404 return NULL;
1405 }
1406
1407 /* Check all global symbols in OBJFILE in symtabs and
1408 psymtabs. */
1409
1410 struct symbol *
1411 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1412 const char *name,
1413 const char *linkage_name,
1414 const domain_enum domain,
1415 struct symtab **symtab)
1416 {
1417 struct symbol *sym;
1418 struct blockvector *bv;
1419 const struct block *block;
1420 struct symtab *s;
1421 struct partial_symtab *ps;
1422
1423 /* Go through symtabs. */
1424 ALL_OBJFILE_SYMTABS (objfile, s)
1425 {
1426 bv = BLOCKVECTOR (s);
1427 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1428 sym = lookup_block_symbol (block, name, linkage_name, domain);
1429 if (sym)
1430 {
1431 block_found = block;
1432 if (symtab != NULL)
1433 *symtab = s;
1434 return fixup_symbol_section (sym, (struct objfile *)objfile);
1435 }
1436 }
1437
1438 /* Now go through psymtabs. */
1439 ALL_OBJFILE_PSYMTABS (objfile, ps)
1440 {
1441 if (!ps->readin
1442 && lookup_partial_symbol (ps, name, linkage_name,
1443 1, domain))
1444 {
1445 s = PSYMTAB_TO_SYMTAB (ps);
1446 bv = BLOCKVECTOR (s);
1447 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1448 sym = lookup_block_symbol (block, name, linkage_name, domain);
1449 if (symtab != NULL)
1450 *symtab = s;
1451 return fixup_symbol_section (sym, (struct objfile *)objfile);
1452 }
1453 }
1454
1455 if (objfile->separate_debug_objfile)
1456 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1457 name, linkage_name, domain,
1458 symtab);
1459
1460 return NULL;
1461 }
1462
1463 /* Check to see if the symbol is defined in one of the symtabs.
1464 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1465 depending on whether or not we want to search global symbols or
1466 static symbols. */
1467
1468 static struct symbol *
1469 lookup_symbol_aux_symtabs (int block_index,
1470 const char *name, const char *linkage_name,
1471 const domain_enum domain,
1472 struct symtab **symtab)
1473 {
1474 struct symbol *sym;
1475 struct objfile *objfile;
1476 struct blockvector *bv;
1477 const struct block *block;
1478 struct symtab *s;
1479
1480 ALL_PRIMARY_SYMTABS (objfile, s)
1481 {
1482 bv = BLOCKVECTOR (s);
1483 block = BLOCKVECTOR_BLOCK (bv, block_index);
1484 sym = lookup_block_symbol (block, name, linkage_name, domain);
1485 if (sym)
1486 {
1487 block_found = block;
1488 if (symtab != NULL)
1489 *symtab = s;
1490 return fixup_symbol_section (sym, objfile);
1491 }
1492 }
1493
1494 return NULL;
1495 }
1496
1497 /* Check to see if the symbol is defined in one of the partial
1498 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1499 STATIC_BLOCK, depending on whether or not we want to search global
1500 symbols or static symbols. */
1501
1502 static struct symbol *
1503 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1504 const char *linkage_name,
1505 const domain_enum domain,
1506 struct symtab **symtab)
1507 {
1508 struct symbol *sym;
1509 struct objfile *objfile;
1510 struct blockvector *bv;
1511 const struct block *block;
1512 struct partial_symtab *ps;
1513 struct symtab *s;
1514 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1515
1516 ALL_PSYMTABS (objfile, ps)
1517 {
1518 if (!ps->readin
1519 && lookup_partial_symbol (ps, name, linkage_name,
1520 psymtab_index, domain))
1521 {
1522 s = PSYMTAB_TO_SYMTAB (ps);
1523 bv = BLOCKVECTOR (s);
1524 block = BLOCKVECTOR_BLOCK (bv, block_index);
1525 sym = lookup_block_symbol (block, name, linkage_name, domain);
1526 if (!sym)
1527 {
1528 /* This shouldn't be necessary, but as a last resort try
1529 looking in the statics even though the psymtab claimed
1530 the symbol was global, or vice-versa. It's possible
1531 that the psymtab gets it wrong in some cases. */
1532
1533 /* FIXME: carlton/2002-09-30: Should we really do that?
1534 If that happens, isn't it likely to be a GDB error, in
1535 which case we should fix the GDB error rather than
1536 silently dealing with it here? So I'd vote for
1537 removing the check for the symbol in the other
1538 block. */
1539 block = BLOCKVECTOR_BLOCK (bv,
1540 block_index == GLOBAL_BLOCK ?
1541 STATIC_BLOCK : GLOBAL_BLOCK);
1542 sym = lookup_block_symbol (block, name, linkage_name, domain);
1543 if (!sym)
1544 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1545 block_index == GLOBAL_BLOCK ? "global" : "static",
1546 name, ps->filename, name, name);
1547 }
1548 if (symtab != NULL)
1549 *symtab = s;
1550 return fixup_symbol_section (sym, objfile);
1551 }
1552 }
1553
1554 return NULL;
1555 }
1556
1557 /* A default version of lookup_symbol_nonlocal for use by languages
1558 that can't think of anything better to do. This implements the C
1559 lookup rules. */
1560
1561 struct symbol *
1562 basic_lookup_symbol_nonlocal (const char *name,
1563 const char *linkage_name,
1564 const struct block *block,
1565 const domain_enum domain,
1566 struct symtab **symtab)
1567 {
1568 struct symbol *sym;
1569
1570 /* NOTE: carlton/2003-05-19: The comments below were written when
1571 this (or what turned into this) was part of lookup_symbol_aux;
1572 I'm much less worried about these questions now, since these
1573 decisions have turned out well, but I leave these comments here
1574 for posterity. */
1575
1576 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1577 not it would be appropriate to search the current global block
1578 here as well. (That's what this code used to do before the
1579 is_a_field_of_this check was moved up.) On the one hand, it's
1580 redundant with the lookup_symbol_aux_symtabs search that happens
1581 next. On the other hand, if decode_line_1 is passed an argument
1582 like filename:var, then the user presumably wants 'var' to be
1583 searched for in filename. On the third hand, there shouldn't be
1584 multiple global variables all of which are named 'var', and it's
1585 not like decode_line_1 has ever restricted its search to only
1586 global variables in a single filename. All in all, only
1587 searching the static block here seems best: it's correct and it's
1588 cleanest. */
1589
1590 /* NOTE: carlton/2002-12-05: There's also a possible performance
1591 issue here: if you usually search for global symbols in the
1592 current file, then it would be slightly better to search the
1593 current global block before searching all the symtabs. But there
1594 are other factors that have a much greater effect on performance
1595 than that one, so I don't think we should worry about that for
1596 now. */
1597
1598 sym = lookup_symbol_static (name, linkage_name, block, domain, symtab);
1599 if (sym != NULL)
1600 return sym;
1601
1602 return lookup_symbol_global (name, linkage_name, block, domain, symtab);
1603 }
1604
1605 /* Lookup a symbol in the static block associated to BLOCK, if there
1606 is one; do nothing if BLOCK is NULL or a global block. */
1607
1608 struct symbol *
1609 lookup_symbol_static (const char *name,
1610 const char *linkage_name,
1611 const struct block *block,
1612 const domain_enum domain,
1613 struct symtab **symtab)
1614 {
1615 const struct block *static_block = block_static_block (block);
1616
1617 if (static_block != NULL)
1618 return lookup_symbol_aux_block (name, linkage_name, static_block,
1619 domain, symtab);
1620 else
1621 return NULL;
1622 }
1623
1624 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1625 necessary). */
1626
1627 struct symbol *
1628 lookup_symbol_global (const char *name,
1629 const char *linkage_name,
1630 const struct block *block,
1631 const domain_enum domain,
1632 struct symtab **symtab)
1633 {
1634 struct symbol *sym = NULL;
1635 struct objfile *objfile = NULL;
1636
1637 /* Call library-specific lookup procedure. */
1638 objfile = lookup_objfile_from_block (block);
1639 if (objfile != NULL)
1640 sym = solib_global_lookup (objfile, name, linkage_name, domain, symtab);
1641 if (sym != NULL)
1642 return sym;
1643
1644 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name,
1645 domain, symtab);
1646 if (sym != NULL)
1647 return sym;
1648
1649 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name,
1650 domain, symtab);
1651 }
1652
1653 int
1654 symbol_matches_domain (enum language symbol_language,
1655 domain_enum symbol_domain,
1656 domain_enum domain)
1657 {
1658 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1659 A Java class declaration also defines a typedef for the class.
1660 Similarly, any Ada type declaration implicitly defines a typedef. */
1661 if (symbol_language == language_cplus
1662 || symbol_language == language_java
1663 || symbol_language == language_ada)
1664 {
1665 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1666 && symbol_domain == STRUCT_DOMAIN)
1667 return 1;
1668 }
1669 /* For all other languages, strict match is required. */
1670 return (symbol_domain == domain);
1671 }
1672
1673 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1674 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1675 linkage name matches it. Check the global symbols if GLOBAL, the
1676 static symbols if not */
1677
1678 struct partial_symbol *
1679 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1680 const char *linkage_name, int global,
1681 domain_enum domain)
1682 {
1683 struct partial_symbol *temp;
1684 struct partial_symbol **start, **psym;
1685 struct partial_symbol **top, **real_top, **bottom, **center;
1686 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1687 int do_linear_search = 1;
1688
1689 if (length == 0)
1690 {
1691 return (NULL);
1692 }
1693 start = (global ?
1694 pst->objfile->global_psymbols.list + pst->globals_offset :
1695 pst->objfile->static_psymbols.list + pst->statics_offset);
1696
1697 if (global) /* This means we can use a binary search. */
1698 {
1699 do_linear_search = 0;
1700
1701 /* Binary search. This search is guaranteed to end with center
1702 pointing at the earliest partial symbol whose name might be
1703 correct. At that point *all* partial symbols with an
1704 appropriate name will be checked against the correct
1705 domain. */
1706
1707 bottom = start;
1708 top = start + length - 1;
1709 real_top = top;
1710 while (top > bottom)
1711 {
1712 center = bottom + (top - bottom) / 2;
1713 if (!(center < top))
1714 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1715 if (!do_linear_search
1716 && (SYMBOL_LANGUAGE (*center) == language_java))
1717 {
1718 do_linear_search = 1;
1719 }
1720 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1721 {
1722 top = center;
1723 }
1724 else
1725 {
1726 bottom = center + 1;
1727 }
1728 }
1729 if (!(top == bottom))
1730 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1731
1732 while (top <= real_top
1733 && (linkage_name != NULL
1734 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1735 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1736 {
1737 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1738 SYMBOL_DOMAIN (*top), domain))
1739 return (*top);
1740 top++;
1741 }
1742 }
1743
1744 /* Can't use a binary search or else we found during the binary search that
1745 we should also do a linear search. */
1746
1747 if (do_linear_search)
1748 {
1749 for (psym = start; psym < start + length; psym++)
1750 {
1751 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1752 SYMBOL_DOMAIN (*psym), domain))
1753 {
1754 if (linkage_name != NULL
1755 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1756 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1757 {
1758 return (*psym);
1759 }
1760 }
1761 }
1762 }
1763
1764 return (NULL);
1765 }
1766
1767 /* Look up a type named NAME in the struct_domain. The type returned
1768 must not be opaque -- i.e., must have at least one field
1769 defined. */
1770
1771 struct type *
1772 lookup_transparent_type (const char *name)
1773 {
1774 return current_language->la_lookup_transparent_type (name);
1775 }
1776
1777 /* The standard implementation of lookup_transparent_type. This code
1778 was modeled on lookup_symbol -- the parts not relevant to looking
1779 up types were just left out. In particular it's assumed here that
1780 types are available in struct_domain and only at file-static or
1781 global blocks. */
1782
1783 struct type *
1784 basic_lookup_transparent_type (const char *name)
1785 {
1786 struct symbol *sym;
1787 struct symtab *s = NULL;
1788 struct partial_symtab *ps;
1789 struct blockvector *bv;
1790 struct objfile *objfile;
1791 struct block *block;
1792
1793 /* Now search all the global symbols. Do the symtab's first, then
1794 check the psymtab's. If a psymtab indicates the existence
1795 of the desired name as a global, then do psymtab-to-symtab
1796 conversion on the fly and return the found symbol. */
1797
1798 ALL_PRIMARY_SYMTABS (objfile, s)
1799 {
1800 bv = BLOCKVECTOR (s);
1801 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1802 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1803 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1804 {
1805 return SYMBOL_TYPE (sym);
1806 }
1807 }
1808
1809 ALL_PSYMTABS (objfile, ps)
1810 {
1811 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1812 1, STRUCT_DOMAIN))
1813 {
1814 s = PSYMTAB_TO_SYMTAB (ps);
1815 bv = BLOCKVECTOR (s);
1816 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1817 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1818 if (!sym)
1819 {
1820 /* This shouldn't be necessary, but as a last resort
1821 * try looking in the statics even though the psymtab
1822 * claimed the symbol was global. It's possible that
1823 * the psymtab gets it wrong in some cases.
1824 */
1825 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1826 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1827 if (!sym)
1828 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1829 %s may be an inlined function, or may be a template function\n\
1830 (if a template, try specifying an instantiation: %s<type>)."),
1831 name, ps->filename, name, name);
1832 }
1833 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1834 return SYMBOL_TYPE (sym);
1835 }
1836 }
1837
1838 /* Now search the static file-level symbols.
1839 Not strictly correct, but more useful than an error.
1840 Do the symtab's first, then
1841 check the psymtab's. If a psymtab indicates the existence
1842 of the desired name as a file-level static, then do psymtab-to-symtab
1843 conversion on the fly and return the found symbol.
1844 */
1845
1846 ALL_PRIMARY_SYMTABS (objfile, s)
1847 {
1848 bv = BLOCKVECTOR (s);
1849 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1850 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1851 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1852 {
1853 return SYMBOL_TYPE (sym);
1854 }
1855 }
1856
1857 ALL_PSYMTABS (objfile, ps)
1858 {
1859 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1860 {
1861 s = PSYMTAB_TO_SYMTAB (ps);
1862 bv = BLOCKVECTOR (s);
1863 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1864 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1865 if (!sym)
1866 {
1867 /* This shouldn't be necessary, but as a last resort
1868 * try looking in the globals even though the psymtab
1869 * claimed the symbol was static. It's possible that
1870 * the psymtab gets it wrong in some cases.
1871 */
1872 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1873 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1874 if (!sym)
1875 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1876 %s may be an inlined function, or may be a template function\n\
1877 (if a template, try specifying an instantiation: %s<type>)."),
1878 name, ps->filename, name, name);
1879 }
1880 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1881 return SYMBOL_TYPE (sym);
1882 }
1883 }
1884 return (struct type *) 0;
1885 }
1886
1887
1888 /* Find the psymtab containing main(). */
1889 /* FIXME: What about languages without main() or specially linked
1890 executables that have no main() ? */
1891
1892 struct partial_symtab *
1893 find_main_psymtab (void)
1894 {
1895 struct partial_symtab *pst;
1896 struct objfile *objfile;
1897
1898 ALL_PSYMTABS (objfile, pst)
1899 {
1900 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1901 {
1902 return (pst);
1903 }
1904 }
1905 return (NULL);
1906 }
1907
1908 /* Search BLOCK for symbol NAME in DOMAIN.
1909
1910 Note that if NAME is the demangled form of a C++ symbol, we will fail
1911 to find a match during the binary search of the non-encoded names, but
1912 for now we don't worry about the slight inefficiency of looking for
1913 a match we'll never find, since it will go pretty quick. Once the
1914 binary search terminates, we drop through and do a straight linear
1915 search on the symbols. Each symbol which is marked as being a ObjC/C++
1916 symbol (language_cplus or language_objc set) has both the encoded and
1917 non-encoded names tested for a match.
1918
1919 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1920 particular mangled name.
1921 */
1922
1923 struct symbol *
1924 lookup_block_symbol (const struct block *block, const char *name,
1925 const char *linkage_name,
1926 const domain_enum domain)
1927 {
1928 struct dict_iterator iter;
1929 struct symbol *sym;
1930
1931 if (!BLOCK_FUNCTION (block))
1932 {
1933 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1934 sym != NULL;
1935 sym = dict_iter_name_next (name, &iter))
1936 {
1937 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1938 SYMBOL_DOMAIN (sym), domain)
1939 && (linkage_name != NULL
1940 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1941 return sym;
1942 }
1943 return NULL;
1944 }
1945 else
1946 {
1947 /* Note that parameter symbols do not always show up last in the
1948 list; this loop makes sure to take anything else other than
1949 parameter symbols first; it only uses parameter symbols as a
1950 last resort. Note that this only takes up extra computation
1951 time on a match. */
1952
1953 struct symbol *sym_found = NULL;
1954
1955 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1956 sym != NULL;
1957 sym = dict_iter_name_next (name, &iter))
1958 {
1959 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1960 SYMBOL_DOMAIN (sym), domain)
1961 && (linkage_name != NULL
1962 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1963 {
1964 sym_found = sym;
1965 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1966 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1967 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1968 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1969 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1970 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1971 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1972 {
1973 break;
1974 }
1975 }
1976 }
1977 return (sym_found); /* Will be NULL if not found. */
1978 }
1979 }
1980
1981 /* Find the symtab associated with PC and SECTION. Look through the
1982 psymtabs and read in another symtab if necessary. */
1983
1984 struct symtab *
1985 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1986 {
1987 struct block *b;
1988 struct blockvector *bv;
1989 struct symtab *s = NULL;
1990 struct symtab *best_s = NULL;
1991 struct partial_symtab *ps;
1992 struct objfile *objfile;
1993 CORE_ADDR distance = 0;
1994 struct minimal_symbol *msymbol;
1995
1996 /* If we know that this is not a text address, return failure. This is
1997 necessary because we loop based on the block's high and low code
1998 addresses, which do not include the data ranges, and because
1999 we call find_pc_sect_psymtab which has a similar restriction based
2000 on the partial_symtab's texthigh and textlow. */
2001 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2002 if (msymbol
2003 && (msymbol->type == mst_data
2004 || msymbol->type == mst_bss
2005 || msymbol->type == mst_abs
2006 || msymbol->type == mst_file_data
2007 || msymbol->type == mst_file_bss))
2008 return NULL;
2009
2010 /* Search all symtabs for the one whose file contains our address, and which
2011 is the smallest of all the ones containing the address. This is designed
2012 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2013 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2014 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2015
2016 This happens for native ecoff format, where code from included files
2017 gets its own symtab. The symtab for the included file should have
2018 been read in already via the dependency mechanism.
2019 It might be swifter to create several symtabs with the same name
2020 like xcoff does (I'm not sure).
2021
2022 It also happens for objfiles that have their functions reordered.
2023 For these, the symtab we are looking for is not necessarily read in. */
2024
2025 ALL_PRIMARY_SYMTABS (objfile, s)
2026 {
2027 bv = BLOCKVECTOR (s);
2028 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2029
2030 if (BLOCK_START (b) <= pc
2031 && BLOCK_END (b) > pc
2032 && (distance == 0
2033 || BLOCK_END (b) - BLOCK_START (b) < distance))
2034 {
2035 /* For an objfile that has its functions reordered,
2036 find_pc_psymtab will find the proper partial symbol table
2037 and we simply return its corresponding symtab. */
2038 /* In order to better support objfiles that contain both
2039 stabs and coff debugging info, we continue on if a psymtab
2040 can't be found. */
2041 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2042 {
2043 ps = find_pc_sect_psymtab (pc, section);
2044 if (ps)
2045 return PSYMTAB_TO_SYMTAB (ps);
2046 }
2047 if (section != 0)
2048 {
2049 struct dict_iterator iter;
2050 struct symbol *sym = NULL;
2051
2052 ALL_BLOCK_SYMBOLS (b, iter, sym)
2053 {
2054 fixup_symbol_section (sym, objfile);
2055 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
2056 break;
2057 }
2058 if (sym == NULL)
2059 continue; /* no symbol in this symtab matches section */
2060 }
2061 distance = BLOCK_END (b) - BLOCK_START (b);
2062 best_s = s;
2063 }
2064 }
2065
2066 if (best_s != NULL)
2067 return (best_s);
2068
2069 s = NULL;
2070 ps = find_pc_sect_psymtab (pc, section);
2071 if (ps)
2072 {
2073 if (ps->readin)
2074 /* Might want to error() here (in case symtab is corrupt and
2075 will cause a core dump), but maybe we can successfully
2076 continue, so let's not. */
2077 warning (_("\
2078 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2079 paddr_nz (pc));
2080 s = PSYMTAB_TO_SYMTAB (ps);
2081 }
2082 return (s);
2083 }
2084
2085 /* Find the symtab associated with PC. Look through the psymtabs and
2086 read in another symtab if necessary. Backward compatibility, no section */
2087
2088 struct symtab *
2089 find_pc_symtab (CORE_ADDR pc)
2090 {
2091 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2092 }
2093 \f
2094
2095 /* Find the source file and line number for a given PC value and SECTION.
2096 Return a structure containing a symtab pointer, a line number,
2097 and a pc range for the entire source line.
2098 The value's .pc field is NOT the specified pc.
2099 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2100 use the line that ends there. Otherwise, in that case, the line
2101 that begins there is used. */
2102
2103 /* The big complication here is that a line may start in one file, and end just
2104 before the start of another file. This usually occurs when you #include
2105 code in the middle of a subroutine. To properly find the end of a line's PC
2106 range, we must search all symtabs associated with this compilation unit, and
2107 find the one whose first PC is closer than that of the next line in this
2108 symtab. */
2109
2110 /* If it's worth the effort, we could be using a binary search. */
2111
2112 struct symtab_and_line
2113 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2114 {
2115 struct symtab *s;
2116 struct linetable *l;
2117 int len;
2118 int i;
2119 struct linetable_entry *item;
2120 struct symtab_and_line val;
2121 struct blockvector *bv;
2122 struct minimal_symbol *msymbol;
2123 struct minimal_symbol *mfunsym;
2124
2125 /* Info on best line seen so far, and where it starts, and its file. */
2126
2127 struct linetable_entry *best = NULL;
2128 CORE_ADDR best_end = 0;
2129 struct symtab *best_symtab = 0;
2130
2131 /* Store here the first line number
2132 of a file which contains the line at the smallest pc after PC.
2133 If we don't find a line whose range contains PC,
2134 we will use a line one less than this,
2135 with a range from the start of that file to the first line's pc. */
2136 struct linetable_entry *alt = NULL;
2137 struct symtab *alt_symtab = 0;
2138
2139 /* Info on best line seen in this file. */
2140
2141 struct linetable_entry *prev;
2142
2143 /* If this pc is not from the current frame,
2144 it is the address of the end of a call instruction.
2145 Quite likely that is the start of the following statement.
2146 But what we want is the statement containing the instruction.
2147 Fudge the pc to make sure we get that. */
2148
2149 init_sal (&val); /* initialize to zeroes */
2150
2151 /* It's tempting to assume that, if we can't find debugging info for
2152 any function enclosing PC, that we shouldn't search for line
2153 number info, either. However, GAS can emit line number info for
2154 assembly files --- very helpful when debugging hand-written
2155 assembly code. In such a case, we'd have no debug info for the
2156 function, but we would have line info. */
2157
2158 if (notcurrent)
2159 pc -= 1;
2160
2161 /* elz: added this because this function returned the wrong
2162 information if the pc belongs to a stub (import/export)
2163 to call a shlib function. This stub would be anywhere between
2164 two functions in the target, and the line info was erroneously
2165 taken to be the one of the line before the pc.
2166 */
2167 /* RT: Further explanation:
2168
2169 * We have stubs (trampolines) inserted between procedures.
2170 *
2171 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2172 * exists in the main image.
2173 *
2174 * In the minimal symbol table, we have a bunch of symbols
2175 * sorted by start address. The stubs are marked as "trampoline",
2176 * the others appear as text. E.g.:
2177 *
2178 * Minimal symbol table for main image
2179 * main: code for main (text symbol)
2180 * shr1: stub (trampoline symbol)
2181 * foo: code for foo (text symbol)
2182 * ...
2183 * Minimal symbol table for "shr1" image:
2184 * ...
2185 * shr1: code for shr1 (text symbol)
2186 * ...
2187 *
2188 * So the code below is trying to detect if we are in the stub
2189 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2190 * and if found, do the symbolization from the real-code address
2191 * rather than the stub address.
2192 *
2193 * Assumptions being made about the minimal symbol table:
2194 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2195 * if we're really in the trampoline. If we're beyond it (say
2196 * we're in "foo" in the above example), it'll have a closer
2197 * symbol (the "foo" text symbol for example) and will not
2198 * return the trampoline.
2199 * 2. lookup_minimal_symbol_text() will find a real text symbol
2200 * corresponding to the trampoline, and whose address will
2201 * be different than the trampoline address. I put in a sanity
2202 * check for the address being the same, to avoid an
2203 * infinite recursion.
2204 */
2205 msymbol = lookup_minimal_symbol_by_pc (pc);
2206 if (msymbol != NULL)
2207 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2208 {
2209 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2210 NULL);
2211 if (mfunsym == NULL)
2212 /* I eliminated this warning since it is coming out
2213 * in the following situation:
2214 * gdb shmain // test program with shared libraries
2215 * (gdb) break shr1 // function in shared lib
2216 * Warning: In stub for ...
2217 * In the above situation, the shared lib is not loaded yet,
2218 * so of course we can't find the real func/line info,
2219 * but the "break" still works, and the warning is annoying.
2220 * So I commented out the warning. RT */
2221 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2222 /* fall through */
2223 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2224 /* Avoid infinite recursion */
2225 /* See above comment about why warning is commented out */
2226 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2227 /* fall through */
2228 else
2229 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2230 }
2231
2232
2233 s = find_pc_sect_symtab (pc, section);
2234 if (!s)
2235 {
2236 /* if no symbol information, return previous pc */
2237 if (notcurrent)
2238 pc++;
2239 val.pc = pc;
2240 return val;
2241 }
2242
2243 bv = BLOCKVECTOR (s);
2244
2245 /* Look at all the symtabs that share this blockvector.
2246 They all have the same apriori range, that we found was right;
2247 but they have different line tables. */
2248
2249 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2250 {
2251 /* Find the best line in this symtab. */
2252 l = LINETABLE (s);
2253 if (!l)
2254 continue;
2255 len = l->nitems;
2256 if (len <= 0)
2257 {
2258 /* I think len can be zero if the symtab lacks line numbers
2259 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2260 I'm not sure which, and maybe it depends on the symbol
2261 reader). */
2262 continue;
2263 }
2264
2265 prev = NULL;
2266 item = l->item; /* Get first line info */
2267
2268 /* Is this file's first line closer than the first lines of other files?
2269 If so, record this file, and its first line, as best alternate. */
2270 if (item->pc > pc && (!alt || item->pc < alt->pc))
2271 {
2272 alt = item;
2273 alt_symtab = s;
2274 }
2275
2276 for (i = 0; i < len; i++, item++)
2277 {
2278 /* Leave prev pointing to the linetable entry for the last line
2279 that started at or before PC. */
2280 if (item->pc > pc)
2281 break;
2282
2283 prev = item;
2284 }
2285
2286 /* At this point, prev points at the line whose start addr is <= pc, and
2287 item points at the next line. If we ran off the end of the linetable
2288 (pc >= start of the last line), then prev == item. If pc < start of
2289 the first line, prev will not be set. */
2290
2291 /* Is this file's best line closer than the best in the other files?
2292 If so, record this file, and its best line, as best so far. Don't
2293 save prev if it represents the end of a function (i.e. line number
2294 0) instead of a real line. */
2295
2296 if (prev && prev->line && (!best || prev->pc > best->pc))
2297 {
2298 best = prev;
2299 best_symtab = s;
2300
2301 /* Discard BEST_END if it's before the PC of the current BEST. */
2302 if (best_end <= best->pc)
2303 best_end = 0;
2304 }
2305
2306 /* If another line (denoted by ITEM) is in the linetable and its
2307 PC is after BEST's PC, but before the current BEST_END, then
2308 use ITEM's PC as the new best_end. */
2309 if (best && i < len && item->pc > best->pc
2310 && (best_end == 0 || best_end > item->pc))
2311 best_end = item->pc;
2312 }
2313
2314 if (!best_symtab)
2315 {
2316 /* If we didn't find any line number info, just return zeros.
2317 We used to return alt->line - 1 here, but that could be
2318 anywhere; if we don't have line number info for this PC,
2319 don't make some up. */
2320 val.pc = pc;
2321 }
2322 else if (best->line == 0)
2323 {
2324 /* If our best fit is in a range of PC's for which no line
2325 number info is available (line number is zero) then we didn't
2326 find any valid line information. */
2327 val.pc = pc;
2328 }
2329 else
2330 {
2331 val.symtab = best_symtab;
2332 val.line = best->line;
2333 val.pc = best->pc;
2334 if (best_end && (!alt || best_end < alt->pc))
2335 val.end = best_end;
2336 else if (alt)
2337 val.end = alt->pc;
2338 else
2339 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2340 }
2341 val.section = section;
2342 return val;
2343 }
2344
2345 /* Backward compatibility (no section) */
2346
2347 struct symtab_and_line
2348 find_pc_line (CORE_ADDR pc, int notcurrent)
2349 {
2350 asection *section;
2351
2352 section = find_pc_overlay (pc);
2353 if (pc_in_unmapped_range (pc, section))
2354 pc = overlay_mapped_address (pc, section);
2355 return find_pc_sect_line (pc, section, notcurrent);
2356 }
2357 \f
2358 /* Find line number LINE in any symtab whose name is the same as
2359 SYMTAB.
2360
2361 If found, return the symtab that contains the linetable in which it was
2362 found, set *INDEX to the index in the linetable of the best entry
2363 found, and set *EXACT_MATCH nonzero if the value returned is an
2364 exact match.
2365
2366 If not found, return NULL. */
2367
2368 struct symtab *
2369 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2370 {
2371 int exact;
2372
2373 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2374 so far seen. */
2375
2376 int best_index;
2377 struct linetable *best_linetable;
2378 struct symtab *best_symtab;
2379
2380 /* First try looking it up in the given symtab. */
2381 best_linetable = LINETABLE (symtab);
2382 best_symtab = symtab;
2383 best_index = find_line_common (best_linetable, line, &exact);
2384 if (best_index < 0 || !exact)
2385 {
2386 /* Didn't find an exact match. So we better keep looking for
2387 another symtab with the same name. In the case of xcoff,
2388 multiple csects for one source file (produced by IBM's FORTRAN
2389 compiler) produce multiple symtabs (this is unavoidable
2390 assuming csects can be at arbitrary places in memory and that
2391 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2392
2393 /* BEST is the smallest linenumber > LINE so far seen,
2394 or 0 if none has been seen so far.
2395 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2396 int best;
2397
2398 struct objfile *objfile;
2399 struct symtab *s;
2400 struct partial_symtab *p;
2401
2402 if (best_index >= 0)
2403 best = best_linetable->item[best_index].line;
2404 else
2405 best = 0;
2406
2407 ALL_PSYMTABS (objfile, p)
2408 {
2409 if (strcmp (symtab->filename, p->filename) != 0)
2410 continue;
2411 PSYMTAB_TO_SYMTAB (p);
2412 }
2413
2414 ALL_SYMTABS (objfile, s)
2415 {
2416 struct linetable *l;
2417 int ind;
2418
2419 if (strcmp (symtab->filename, s->filename) != 0)
2420 continue;
2421 l = LINETABLE (s);
2422 ind = find_line_common (l, line, &exact);
2423 if (ind >= 0)
2424 {
2425 if (exact)
2426 {
2427 best_index = ind;
2428 best_linetable = l;
2429 best_symtab = s;
2430 goto done;
2431 }
2432 if (best == 0 || l->item[ind].line < best)
2433 {
2434 best = l->item[ind].line;
2435 best_index = ind;
2436 best_linetable = l;
2437 best_symtab = s;
2438 }
2439 }
2440 }
2441 }
2442 done:
2443 if (best_index < 0)
2444 return NULL;
2445
2446 if (index)
2447 *index = best_index;
2448 if (exact_match)
2449 *exact_match = exact;
2450
2451 return best_symtab;
2452 }
2453 \f
2454 /* Set the PC value for a given source file and line number and return true.
2455 Returns zero for invalid line number (and sets the PC to 0).
2456 The source file is specified with a struct symtab. */
2457
2458 int
2459 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2460 {
2461 struct linetable *l;
2462 int ind;
2463
2464 *pc = 0;
2465 if (symtab == 0)
2466 return 0;
2467
2468 symtab = find_line_symtab (symtab, line, &ind, NULL);
2469 if (symtab != NULL)
2470 {
2471 l = LINETABLE (symtab);
2472 *pc = l->item[ind].pc;
2473 return 1;
2474 }
2475 else
2476 return 0;
2477 }
2478
2479 /* Find the range of pc values in a line.
2480 Store the starting pc of the line into *STARTPTR
2481 and the ending pc (start of next line) into *ENDPTR.
2482 Returns 1 to indicate success.
2483 Returns 0 if could not find the specified line. */
2484
2485 int
2486 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2487 CORE_ADDR *endptr)
2488 {
2489 CORE_ADDR startaddr;
2490 struct symtab_and_line found_sal;
2491
2492 startaddr = sal.pc;
2493 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2494 return 0;
2495
2496 /* This whole function is based on address. For example, if line 10 has
2497 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2498 "info line *0x123" should say the line goes from 0x100 to 0x200
2499 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2500 This also insures that we never give a range like "starts at 0x134
2501 and ends at 0x12c". */
2502
2503 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2504 if (found_sal.line != sal.line)
2505 {
2506 /* The specified line (sal) has zero bytes. */
2507 *startptr = found_sal.pc;
2508 *endptr = found_sal.pc;
2509 }
2510 else
2511 {
2512 *startptr = found_sal.pc;
2513 *endptr = found_sal.end;
2514 }
2515 return 1;
2516 }
2517
2518 /* Given a line table and a line number, return the index into the line
2519 table for the pc of the nearest line whose number is >= the specified one.
2520 Return -1 if none is found. The value is >= 0 if it is an index.
2521
2522 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2523
2524 static int
2525 find_line_common (struct linetable *l, int lineno,
2526 int *exact_match)
2527 {
2528 int i;
2529 int len;
2530
2531 /* BEST is the smallest linenumber > LINENO so far seen,
2532 or 0 if none has been seen so far.
2533 BEST_INDEX identifies the item for it. */
2534
2535 int best_index = -1;
2536 int best = 0;
2537
2538 *exact_match = 0;
2539
2540 if (lineno <= 0)
2541 return -1;
2542 if (l == 0)
2543 return -1;
2544
2545 len = l->nitems;
2546 for (i = 0; i < len; i++)
2547 {
2548 struct linetable_entry *item = &(l->item[i]);
2549
2550 if (item->line == lineno)
2551 {
2552 /* Return the first (lowest address) entry which matches. */
2553 *exact_match = 1;
2554 return i;
2555 }
2556
2557 if (item->line > lineno && (best == 0 || item->line < best))
2558 {
2559 best = item->line;
2560 best_index = i;
2561 }
2562 }
2563
2564 /* If we got here, we didn't get an exact match. */
2565 return best_index;
2566 }
2567
2568 int
2569 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2570 {
2571 struct symtab_and_line sal;
2572 sal = find_pc_line (pc, 0);
2573 *startptr = sal.pc;
2574 *endptr = sal.end;
2575 return sal.symtab != 0;
2576 }
2577
2578 /* Given a function start address PC and SECTION, find the first
2579 address after the function prologue. */
2580 CORE_ADDR
2581 find_function_start_pc (struct gdbarch *gdbarch,
2582 CORE_ADDR pc, asection *section)
2583 {
2584 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2585 so that gdbarch_skip_prologue has something unique to work on. */
2586 if (section_is_overlay (section) && !section_is_mapped (section))
2587 pc = overlay_unmapped_address (pc, section);
2588
2589 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2590 pc = gdbarch_skip_prologue (gdbarch, pc);
2591
2592 /* For overlays, map pc back into its mapped VMA range. */
2593 pc = overlay_mapped_address (pc, section);
2594
2595 return pc;
2596 }
2597
2598 /* Given a function symbol SYM, find the symtab and line for the start
2599 of the function.
2600 If the argument FUNFIRSTLINE is nonzero, we want the first line
2601 of real code inside the function. */
2602
2603 struct symtab_and_line
2604 find_function_start_sal (struct symbol *sym, int funfirstline)
2605 {
2606 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2607 struct objfile *objfile = lookup_objfile_from_block (block);
2608 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2609
2610 CORE_ADDR pc;
2611 struct symtab_and_line sal;
2612
2613 pc = BLOCK_START (block);
2614 fixup_symbol_section (sym, objfile);
2615 if (funfirstline)
2616 {
2617 /* Skip "first line" of function (which is actually its prologue). */
2618 pc = find_function_start_pc (gdbarch, pc, SYMBOL_BFD_SECTION (sym));
2619 }
2620 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2621
2622 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2623 line is still part of the same function. */
2624 if (sal.pc != pc
2625 && BLOCK_START (block) <= sal.end
2626 && sal.end < BLOCK_END (block))
2627 {
2628 /* First pc of next line */
2629 pc = sal.end;
2630 /* Recalculate the line number (might not be N+1). */
2631 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2632 }
2633 sal.pc = pc;
2634
2635 return sal;
2636 }
2637
2638 /* If P is of the form "operator[ \t]+..." where `...' is
2639 some legitimate operator text, return a pointer to the
2640 beginning of the substring of the operator text.
2641 Otherwise, return "". */
2642 char *
2643 operator_chars (char *p, char **end)
2644 {
2645 *end = "";
2646 if (strncmp (p, "operator", 8))
2647 return *end;
2648 p += 8;
2649
2650 /* Don't get faked out by `operator' being part of a longer
2651 identifier. */
2652 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2653 return *end;
2654
2655 /* Allow some whitespace between `operator' and the operator symbol. */
2656 while (*p == ' ' || *p == '\t')
2657 p++;
2658
2659 /* Recognize 'operator TYPENAME'. */
2660
2661 if (isalpha (*p) || *p == '_' || *p == '$')
2662 {
2663 char *q = p + 1;
2664 while (isalnum (*q) || *q == '_' || *q == '$')
2665 q++;
2666 *end = q;
2667 return p;
2668 }
2669
2670 while (*p)
2671 switch (*p)
2672 {
2673 case '\\': /* regexp quoting */
2674 if (p[1] == '*')
2675 {
2676 if (p[2] == '=') /* 'operator\*=' */
2677 *end = p + 3;
2678 else /* 'operator\*' */
2679 *end = p + 2;
2680 return p;
2681 }
2682 else if (p[1] == '[')
2683 {
2684 if (p[2] == ']')
2685 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2686 else if (p[2] == '\\' && p[3] == ']')
2687 {
2688 *end = p + 4; /* 'operator\[\]' */
2689 return p;
2690 }
2691 else
2692 error (_("nothing is allowed between '[' and ']'"));
2693 }
2694 else
2695 {
2696 /* Gratuitous qoute: skip it and move on. */
2697 p++;
2698 continue;
2699 }
2700 break;
2701 case '!':
2702 case '=':
2703 case '*':
2704 case '/':
2705 case '%':
2706 case '^':
2707 if (p[1] == '=')
2708 *end = p + 2;
2709 else
2710 *end = p + 1;
2711 return p;
2712 case '<':
2713 case '>':
2714 case '+':
2715 case '-':
2716 case '&':
2717 case '|':
2718 if (p[0] == '-' && p[1] == '>')
2719 {
2720 /* Struct pointer member operator 'operator->'. */
2721 if (p[2] == '*')
2722 {
2723 *end = p + 3; /* 'operator->*' */
2724 return p;
2725 }
2726 else if (p[2] == '\\')
2727 {
2728 *end = p + 4; /* Hopefully 'operator->\*' */
2729 return p;
2730 }
2731 else
2732 {
2733 *end = p + 2; /* 'operator->' */
2734 return p;
2735 }
2736 }
2737 if (p[1] == '=' || p[1] == p[0])
2738 *end = p + 2;
2739 else
2740 *end = p + 1;
2741 return p;
2742 case '~':
2743 case ',':
2744 *end = p + 1;
2745 return p;
2746 case '(':
2747 if (p[1] != ')')
2748 error (_("`operator ()' must be specified without whitespace in `()'"));
2749 *end = p + 2;
2750 return p;
2751 case '?':
2752 if (p[1] != ':')
2753 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2754 *end = p + 2;
2755 return p;
2756 case '[':
2757 if (p[1] != ']')
2758 error (_("`operator []' must be specified without whitespace in `[]'"));
2759 *end = p + 2;
2760 return p;
2761 default:
2762 error (_("`operator %s' not supported"), p);
2763 break;
2764 }
2765
2766 *end = "";
2767 return *end;
2768 }
2769 \f
2770
2771 /* If FILE is not already in the table of files, return zero;
2772 otherwise return non-zero. Optionally add FILE to the table if ADD
2773 is non-zero. If *FIRST is non-zero, forget the old table
2774 contents. */
2775 static int
2776 filename_seen (const char *file, int add, int *first)
2777 {
2778 /* Table of files seen so far. */
2779 static const char **tab = NULL;
2780 /* Allocated size of tab in elements.
2781 Start with one 256-byte block (when using GNU malloc.c).
2782 24 is the malloc overhead when range checking is in effect. */
2783 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2784 /* Current size of tab in elements. */
2785 static int tab_cur_size;
2786 const char **p;
2787
2788 if (*first)
2789 {
2790 if (tab == NULL)
2791 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2792 tab_cur_size = 0;
2793 }
2794
2795 /* Is FILE in tab? */
2796 for (p = tab; p < tab + tab_cur_size; p++)
2797 if (strcmp (*p, file) == 0)
2798 return 1;
2799
2800 /* No; maybe add it to tab. */
2801 if (add)
2802 {
2803 if (tab_cur_size == tab_alloc_size)
2804 {
2805 tab_alloc_size *= 2;
2806 tab = (const char **) xrealloc ((char *) tab,
2807 tab_alloc_size * sizeof (*tab));
2808 }
2809 tab[tab_cur_size++] = file;
2810 }
2811
2812 return 0;
2813 }
2814
2815 /* Slave routine for sources_info. Force line breaks at ,'s.
2816 NAME is the name to print and *FIRST is nonzero if this is the first
2817 name printed. Set *FIRST to zero. */
2818 static void
2819 output_source_filename (const char *name, int *first)
2820 {
2821 /* Since a single source file can result in several partial symbol
2822 tables, we need to avoid printing it more than once. Note: if
2823 some of the psymtabs are read in and some are not, it gets
2824 printed both under "Source files for which symbols have been
2825 read" and "Source files for which symbols will be read in on
2826 demand". I consider this a reasonable way to deal with the
2827 situation. I'm not sure whether this can also happen for
2828 symtabs; it doesn't hurt to check. */
2829
2830 /* Was NAME already seen? */
2831 if (filename_seen (name, 1, first))
2832 {
2833 /* Yes; don't print it again. */
2834 return;
2835 }
2836 /* No; print it and reset *FIRST. */
2837 if (*first)
2838 {
2839 *first = 0;
2840 }
2841 else
2842 {
2843 printf_filtered (", ");
2844 }
2845
2846 wrap_here ("");
2847 fputs_filtered (name, gdb_stdout);
2848 }
2849
2850 static void
2851 sources_info (char *ignore, int from_tty)
2852 {
2853 struct symtab *s;
2854 struct partial_symtab *ps;
2855 struct objfile *objfile;
2856 int first;
2857
2858 if (!have_full_symbols () && !have_partial_symbols ())
2859 {
2860 error (_("No symbol table is loaded. Use the \"file\" command."));
2861 }
2862
2863 printf_filtered ("Source files for which symbols have been read in:\n\n");
2864
2865 first = 1;
2866 ALL_SYMTABS (objfile, s)
2867 {
2868 const char *fullname = symtab_to_fullname (s);
2869 output_source_filename (fullname ? fullname : s->filename, &first);
2870 }
2871 printf_filtered ("\n\n");
2872
2873 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2874
2875 first = 1;
2876 ALL_PSYMTABS (objfile, ps)
2877 {
2878 if (!ps->readin)
2879 {
2880 const char *fullname = psymtab_to_fullname (ps);
2881 output_source_filename (fullname ? fullname : ps->filename, &first);
2882 }
2883 }
2884 printf_filtered ("\n");
2885 }
2886
2887 static int
2888 file_matches (char *file, char *files[], int nfiles)
2889 {
2890 int i;
2891
2892 if (file != NULL && nfiles != 0)
2893 {
2894 for (i = 0; i < nfiles; i++)
2895 {
2896 if (strcmp (files[i], lbasename (file)) == 0)
2897 return 1;
2898 }
2899 }
2900 else if (nfiles == 0)
2901 return 1;
2902 return 0;
2903 }
2904
2905 /* Free any memory associated with a search. */
2906 void
2907 free_search_symbols (struct symbol_search *symbols)
2908 {
2909 struct symbol_search *p;
2910 struct symbol_search *next;
2911
2912 for (p = symbols; p != NULL; p = next)
2913 {
2914 next = p->next;
2915 xfree (p);
2916 }
2917 }
2918
2919 static void
2920 do_free_search_symbols_cleanup (void *symbols)
2921 {
2922 free_search_symbols (symbols);
2923 }
2924
2925 struct cleanup *
2926 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2927 {
2928 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2929 }
2930
2931 /* Helper function for sort_search_symbols and qsort. Can only
2932 sort symbols, not minimal symbols. */
2933 static int
2934 compare_search_syms (const void *sa, const void *sb)
2935 {
2936 struct symbol_search **sym_a = (struct symbol_search **) sa;
2937 struct symbol_search **sym_b = (struct symbol_search **) sb;
2938
2939 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2940 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2941 }
2942
2943 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2944 prevtail where it is, but update its next pointer to point to
2945 the first of the sorted symbols. */
2946 static struct symbol_search *
2947 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2948 {
2949 struct symbol_search **symbols, *symp, *old_next;
2950 int i;
2951
2952 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2953 * nfound);
2954 symp = prevtail->next;
2955 for (i = 0; i < nfound; i++)
2956 {
2957 symbols[i] = symp;
2958 symp = symp->next;
2959 }
2960 /* Generally NULL. */
2961 old_next = symp;
2962
2963 qsort (symbols, nfound, sizeof (struct symbol_search *),
2964 compare_search_syms);
2965
2966 symp = prevtail;
2967 for (i = 0; i < nfound; i++)
2968 {
2969 symp->next = symbols[i];
2970 symp = symp->next;
2971 }
2972 symp->next = old_next;
2973
2974 xfree (symbols);
2975 return symp;
2976 }
2977
2978 /* Search the symbol table for matches to the regular expression REGEXP,
2979 returning the results in *MATCHES.
2980
2981 Only symbols of KIND are searched:
2982 FUNCTIONS_DOMAIN - search all functions
2983 TYPES_DOMAIN - search all type names
2984 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2985 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2986 and constants (enums)
2987
2988 free_search_symbols should be called when *MATCHES is no longer needed.
2989
2990 The results are sorted locally; each symtab's global and static blocks are
2991 separately alphabetized.
2992 */
2993 void
2994 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2995 struct symbol_search **matches)
2996 {
2997 struct symtab *s;
2998 struct partial_symtab *ps;
2999 struct blockvector *bv;
3000 struct block *b;
3001 int i = 0;
3002 struct dict_iterator iter;
3003 struct symbol *sym;
3004 struct partial_symbol **psym;
3005 struct objfile *objfile;
3006 struct minimal_symbol *msymbol;
3007 char *val;
3008 int found_misc = 0;
3009 static enum minimal_symbol_type types[]
3010 =
3011 {mst_data, mst_text, mst_abs, mst_unknown};
3012 static enum minimal_symbol_type types2[]
3013 =
3014 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3015 static enum minimal_symbol_type types3[]
3016 =
3017 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3018 static enum minimal_symbol_type types4[]
3019 =
3020 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3021 enum minimal_symbol_type ourtype;
3022 enum minimal_symbol_type ourtype2;
3023 enum minimal_symbol_type ourtype3;
3024 enum minimal_symbol_type ourtype4;
3025 struct symbol_search *sr;
3026 struct symbol_search *psr;
3027 struct symbol_search *tail;
3028 struct cleanup *old_chain = NULL;
3029
3030 if (kind < VARIABLES_DOMAIN)
3031 error (_("must search on specific domain"));
3032
3033 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3034 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3035 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3036 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3037
3038 sr = *matches = NULL;
3039 tail = NULL;
3040
3041 if (regexp != NULL)
3042 {
3043 /* Make sure spacing is right for C++ operators.
3044 This is just a courtesy to make the matching less sensitive
3045 to how many spaces the user leaves between 'operator'
3046 and <TYPENAME> or <OPERATOR>. */
3047 char *opend;
3048 char *opname = operator_chars (regexp, &opend);
3049 if (*opname)
3050 {
3051 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3052 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3053 {
3054 /* There should 1 space between 'operator' and 'TYPENAME'. */
3055 if (opname[-1] != ' ' || opname[-2] == ' ')
3056 fix = 1;
3057 }
3058 else
3059 {
3060 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3061 if (opname[-1] == ' ')
3062 fix = 0;
3063 }
3064 /* If wrong number of spaces, fix it. */
3065 if (fix >= 0)
3066 {
3067 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3068 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3069 regexp = tmp;
3070 }
3071 }
3072
3073 if (0 != (val = re_comp (regexp)))
3074 error (_("Invalid regexp (%s): %s"), val, regexp);
3075 }
3076
3077 /* Search through the partial symtabs *first* for all symbols
3078 matching the regexp. That way we don't have to reproduce all of
3079 the machinery below. */
3080
3081 ALL_PSYMTABS (objfile, ps)
3082 {
3083 struct partial_symbol **bound, **gbound, **sbound;
3084 int keep_going = 1;
3085
3086 if (ps->readin)
3087 continue;
3088
3089 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3090 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3091 bound = gbound;
3092
3093 /* Go through all of the symbols stored in a partial
3094 symtab in one loop. */
3095 psym = objfile->global_psymbols.list + ps->globals_offset;
3096 while (keep_going)
3097 {
3098 if (psym >= bound)
3099 {
3100 if (bound == gbound && ps->n_static_syms != 0)
3101 {
3102 psym = objfile->static_psymbols.list + ps->statics_offset;
3103 bound = sbound;
3104 }
3105 else
3106 keep_going = 0;
3107 continue;
3108 }
3109 else
3110 {
3111 QUIT;
3112
3113 /* If it would match (logic taken from loop below)
3114 load the file and go on to the next one. We check the
3115 filename here, but that's a bit bogus: we don't know
3116 what file it really comes from until we have full
3117 symtabs. The symbol might be in a header file included by
3118 this psymtab. This only affects Insight. */
3119 if (file_matches (ps->filename, files, nfiles)
3120 && ((regexp == NULL
3121 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3122 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3123 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3124 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3125 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3126 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3127 {
3128 PSYMTAB_TO_SYMTAB (ps);
3129 keep_going = 0;
3130 }
3131 }
3132 psym++;
3133 }
3134 }
3135
3136 /* Here, we search through the minimal symbol tables for functions
3137 and variables that match, and force their symbols to be read.
3138 This is in particular necessary for demangled variable names,
3139 which are no longer put into the partial symbol tables.
3140 The symbol will then be found during the scan of symtabs below.
3141
3142 For functions, find_pc_symtab should succeed if we have debug info
3143 for the function, for variables we have to call lookup_symbol
3144 to determine if the variable has debug info.
3145 If the lookup fails, set found_misc so that we will rescan to print
3146 any matching symbols without debug info.
3147 */
3148
3149 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3150 {
3151 ALL_MSYMBOLS (objfile, msymbol)
3152 {
3153 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3154 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3155 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3156 MSYMBOL_TYPE (msymbol) == ourtype4)
3157 {
3158 if (regexp == NULL
3159 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3160 {
3161 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3162 {
3163 /* FIXME: carlton/2003-02-04: Given that the
3164 semantics of lookup_symbol keeps on changing
3165 slightly, it would be a nice idea if we had a
3166 function lookup_symbol_minsym that found the
3167 symbol associated to a given minimal symbol (if
3168 any). */
3169 if (kind == FUNCTIONS_DOMAIN
3170 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3171 (struct block *) NULL,
3172 VAR_DOMAIN,
3173 0, (struct symtab **) NULL)
3174 == NULL)
3175 found_misc = 1;
3176 }
3177 }
3178 }
3179 }
3180 }
3181
3182 ALL_PRIMARY_SYMTABS (objfile, s)
3183 {
3184 bv = BLOCKVECTOR (s);
3185 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3186 {
3187 struct symbol_search *prevtail = tail;
3188 int nfound = 0;
3189 b = BLOCKVECTOR_BLOCK (bv, i);
3190 ALL_BLOCK_SYMBOLS (b, iter, sym)
3191 {
3192 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3193 QUIT;
3194
3195 if (file_matches (real_symtab->filename, files, nfiles)
3196 && ((regexp == NULL
3197 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3198 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3199 && SYMBOL_CLASS (sym) != LOC_BLOCK
3200 && SYMBOL_CLASS (sym) != LOC_CONST)
3201 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3202 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3203 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3204 {
3205 /* match */
3206 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3207 psr->block = i;
3208 psr->symtab = real_symtab;
3209 psr->symbol = sym;
3210 psr->msymbol = NULL;
3211 psr->next = NULL;
3212 if (tail == NULL)
3213 sr = psr;
3214 else
3215 tail->next = psr;
3216 tail = psr;
3217 nfound ++;
3218 }
3219 }
3220 if (nfound > 0)
3221 {
3222 if (prevtail == NULL)
3223 {
3224 struct symbol_search dummy;
3225
3226 dummy.next = sr;
3227 tail = sort_search_symbols (&dummy, nfound);
3228 sr = dummy.next;
3229
3230 old_chain = make_cleanup_free_search_symbols (sr);
3231 }
3232 else
3233 tail = sort_search_symbols (prevtail, nfound);
3234 }
3235 }
3236 }
3237
3238 /* If there are no eyes, avoid all contact. I mean, if there are
3239 no debug symbols, then print directly from the msymbol_vector. */
3240
3241 if (found_misc || kind != FUNCTIONS_DOMAIN)
3242 {
3243 ALL_MSYMBOLS (objfile, msymbol)
3244 {
3245 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3246 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3247 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3248 MSYMBOL_TYPE (msymbol) == ourtype4)
3249 {
3250 if (regexp == NULL
3251 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3252 {
3253 /* Functions: Look up by address. */
3254 if (kind != FUNCTIONS_DOMAIN ||
3255 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3256 {
3257 /* Variables/Absolutes: Look up by name */
3258 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3259 (struct block *) NULL, VAR_DOMAIN,
3260 0, (struct symtab **) NULL) == NULL)
3261 {
3262 /* match */
3263 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3264 psr->block = i;
3265 psr->msymbol = msymbol;
3266 psr->symtab = NULL;
3267 psr->symbol = NULL;
3268 psr->next = NULL;
3269 if (tail == NULL)
3270 {
3271 sr = psr;
3272 old_chain = make_cleanup_free_search_symbols (sr);
3273 }
3274 else
3275 tail->next = psr;
3276 tail = psr;
3277 }
3278 }
3279 }
3280 }
3281 }
3282 }
3283
3284 *matches = sr;
3285 if (sr != NULL)
3286 discard_cleanups (old_chain);
3287 }
3288
3289 /* Helper function for symtab_symbol_info, this function uses
3290 the data returned from search_symbols() to print information
3291 regarding the match to gdb_stdout.
3292 */
3293 static void
3294 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3295 int block, char *last)
3296 {
3297 if (last == NULL || strcmp (last, s->filename) != 0)
3298 {
3299 fputs_filtered ("\nFile ", gdb_stdout);
3300 fputs_filtered (s->filename, gdb_stdout);
3301 fputs_filtered (":\n", gdb_stdout);
3302 }
3303
3304 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3305 printf_filtered ("static ");
3306
3307 /* Typedef that is not a C++ class */
3308 if (kind == TYPES_DOMAIN
3309 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3310 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3311 /* variable, func, or typedef-that-is-c++-class */
3312 else if (kind < TYPES_DOMAIN ||
3313 (kind == TYPES_DOMAIN &&
3314 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3315 {
3316 type_print (SYMBOL_TYPE (sym),
3317 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3318 ? "" : SYMBOL_PRINT_NAME (sym)),
3319 gdb_stdout, 0);
3320
3321 printf_filtered (";\n");
3322 }
3323 }
3324
3325 /* This help function for symtab_symbol_info() prints information
3326 for non-debugging symbols to gdb_stdout.
3327 */
3328 static void
3329 print_msymbol_info (struct minimal_symbol *msymbol)
3330 {
3331 char *tmp;
3332
3333 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3334 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3335 & (CORE_ADDR) 0xffffffff,
3336 8);
3337 else
3338 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3339 16);
3340 printf_filtered ("%s %s\n",
3341 tmp, SYMBOL_PRINT_NAME (msymbol));
3342 }
3343
3344 /* This is the guts of the commands "info functions", "info types", and
3345 "info variables". It calls search_symbols to find all matches and then
3346 print_[m]symbol_info to print out some useful information about the
3347 matches.
3348 */
3349 static void
3350 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3351 {
3352 static char *classnames[]
3353 =
3354 {"variable", "function", "type", "method"};
3355 struct symbol_search *symbols;
3356 struct symbol_search *p;
3357 struct cleanup *old_chain;
3358 char *last_filename = NULL;
3359 int first = 1;
3360
3361 /* must make sure that if we're interrupted, symbols gets freed */
3362 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3363 old_chain = make_cleanup_free_search_symbols (symbols);
3364
3365 printf_filtered (regexp
3366 ? "All %ss matching regular expression \"%s\":\n"
3367 : "All defined %ss:\n",
3368 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3369
3370 for (p = symbols; p != NULL; p = p->next)
3371 {
3372 QUIT;
3373
3374 if (p->msymbol != NULL)
3375 {
3376 if (first)
3377 {
3378 printf_filtered ("\nNon-debugging symbols:\n");
3379 first = 0;
3380 }
3381 print_msymbol_info (p->msymbol);
3382 }
3383 else
3384 {
3385 print_symbol_info (kind,
3386 p->symtab,
3387 p->symbol,
3388 p->block,
3389 last_filename);
3390 last_filename = p->symtab->filename;
3391 }
3392 }
3393
3394 do_cleanups (old_chain);
3395 }
3396
3397 static void
3398 variables_info (char *regexp, int from_tty)
3399 {
3400 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3401 }
3402
3403 static void
3404 functions_info (char *regexp, int from_tty)
3405 {
3406 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3407 }
3408
3409
3410 static void
3411 types_info (char *regexp, int from_tty)
3412 {
3413 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3414 }
3415
3416 /* Breakpoint all functions matching regular expression. */
3417
3418 void
3419 rbreak_command_wrapper (char *regexp, int from_tty)
3420 {
3421 rbreak_command (regexp, from_tty);
3422 }
3423
3424 static void
3425 rbreak_command (char *regexp, int from_tty)
3426 {
3427 struct symbol_search *ss;
3428 struct symbol_search *p;
3429 struct cleanup *old_chain;
3430
3431 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3432 old_chain = make_cleanup_free_search_symbols (ss);
3433
3434 for (p = ss; p != NULL; p = p->next)
3435 {
3436 if (p->msymbol == NULL)
3437 {
3438 char *string = alloca (strlen (p->symtab->filename)
3439 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3440 + 4);
3441 strcpy (string, p->symtab->filename);
3442 strcat (string, ":'");
3443 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3444 strcat (string, "'");
3445 break_command (string, from_tty);
3446 print_symbol_info (FUNCTIONS_DOMAIN,
3447 p->symtab,
3448 p->symbol,
3449 p->block,
3450 p->symtab->filename);
3451 }
3452 else
3453 {
3454 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3455 + 3);
3456 strcpy (string, "'");
3457 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3458 strcat (string, "'");
3459
3460 break_command (string, from_tty);
3461 printf_filtered ("<function, no debug info> %s;\n",
3462 SYMBOL_PRINT_NAME (p->msymbol));
3463 }
3464 }
3465
3466 do_cleanups (old_chain);
3467 }
3468 \f
3469
3470 /* Helper routine for make_symbol_completion_list. */
3471
3472 static int return_val_size;
3473 static int return_val_index;
3474 static char **return_val;
3475
3476 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3477 completion_list_add_name \
3478 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3479
3480 /* Test to see if the symbol specified by SYMNAME (which is already
3481 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3482 characters. If so, add it to the current completion list. */
3483
3484 static void
3485 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3486 char *text, char *word)
3487 {
3488 int newsize;
3489 int i;
3490
3491 /* clip symbols that cannot match */
3492
3493 if (strncmp (symname, sym_text, sym_text_len) != 0)
3494 {
3495 return;
3496 }
3497
3498 /* We have a match for a completion, so add SYMNAME to the current list
3499 of matches. Note that the name is moved to freshly malloc'd space. */
3500
3501 {
3502 char *new;
3503 if (word == sym_text)
3504 {
3505 new = xmalloc (strlen (symname) + 5);
3506 strcpy (new, symname);
3507 }
3508 else if (word > sym_text)
3509 {
3510 /* Return some portion of symname. */
3511 new = xmalloc (strlen (symname) + 5);
3512 strcpy (new, symname + (word - sym_text));
3513 }
3514 else
3515 {
3516 /* Return some of SYM_TEXT plus symname. */
3517 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3518 strncpy (new, word, sym_text - word);
3519 new[sym_text - word] = '\0';
3520 strcat (new, symname);
3521 }
3522
3523 if (return_val_index + 3 > return_val_size)
3524 {
3525 newsize = (return_val_size *= 2) * sizeof (char *);
3526 return_val = (char **) xrealloc ((char *) return_val, newsize);
3527 }
3528 return_val[return_val_index++] = new;
3529 return_val[return_val_index] = NULL;
3530 }
3531 }
3532
3533 /* ObjC: In case we are completing on a selector, look as the msymbol
3534 again and feed all the selectors into the mill. */
3535
3536 static void
3537 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3538 int sym_text_len, char *text, char *word)
3539 {
3540 static char *tmp = NULL;
3541 static unsigned int tmplen = 0;
3542
3543 char *method, *category, *selector;
3544 char *tmp2 = NULL;
3545
3546 method = SYMBOL_NATURAL_NAME (msymbol);
3547
3548 /* Is it a method? */
3549 if ((method[0] != '-') && (method[0] != '+'))
3550 return;
3551
3552 if (sym_text[0] == '[')
3553 /* Complete on shortened method method. */
3554 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3555
3556 while ((strlen (method) + 1) >= tmplen)
3557 {
3558 if (tmplen == 0)
3559 tmplen = 1024;
3560 else
3561 tmplen *= 2;
3562 tmp = xrealloc (tmp, tmplen);
3563 }
3564 selector = strchr (method, ' ');
3565 if (selector != NULL)
3566 selector++;
3567
3568 category = strchr (method, '(');
3569
3570 if ((category != NULL) && (selector != NULL))
3571 {
3572 memcpy (tmp, method, (category - method));
3573 tmp[category - method] = ' ';
3574 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3575 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3576 if (sym_text[0] == '[')
3577 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3578 }
3579
3580 if (selector != NULL)
3581 {
3582 /* Complete on selector only. */
3583 strcpy (tmp, selector);
3584 tmp2 = strchr (tmp, ']');
3585 if (tmp2 != NULL)
3586 *tmp2 = '\0';
3587
3588 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3589 }
3590 }
3591
3592 /* Break the non-quoted text based on the characters which are in
3593 symbols. FIXME: This should probably be language-specific. */
3594
3595 static char *
3596 language_search_unquoted_string (char *text, char *p)
3597 {
3598 for (; p > text; --p)
3599 {
3600 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3601 continue;
3602 else
3603 {
3604 if ((current_language->la_language == language_objc))
3605 {
3606 if (p[-1] == ':') /* might be part of a method name */
3607 continue;
3608 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3609 p -= 2; /* beginning of a method name */
3610 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3611 { /* might be part of a method name */
3612 char *t = p;
3613
3614 /* Seeing a ' ' or a '(' is not conclusive evidence
3615 that we are in the middle of a method name. However,
3616 finding "-[" or "+[" should be pretty un-ambiguous.
3617 Unfortunately we have to find it now to decide. */
3618
3619 while (t > text)
3620 if (isalnum (t[-1]) || t[-1] == '_' ||
3621 t[-1] == ' ' || t[-1] == ':' ||
3622 t[-1] == '(' || t[-1] == ')')
3623 --t;
3624 else
3625 break;
3626
3627 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3628 p = t - 2; /* method name detected */
3629 /* else we leave with p unchanged */
3630 }
3631 }
3632 break;
3633 }
3634 }
3635 return p;
3636 }
3637
3638 char **
3639 default_make_symbol_completion_list (char *text, char *word)
3640 {
3641 /* Problem: All of the symbols have to be copied because readline
3642 frees them. I'm not going to worry about this; hopefully there
3643 won't be that many. */
3644
3645 struct symbol *sym;
3646 struct symtab *s;
3647 struct partial_symtab *ps;
3648 struct minimal_symbol *msymbol;
3649 struct objfile *objfile;
3650 struct block *b, *surrounding_static_block = 0;
3651 struct dict_iterator iter;
3652 int j;
3653 struct partial_symbol **psym;
3654 /* The symbol we are completing on. Points in same buffer as text. */
3655 char *sym_text;
3656 /* Length of sym_text. */
3657 int sym_text_len;
3658
3659 /* Now look for the symbol we are supposed to complete on. */
3660 {
3661 char *p;
3662 char quote_found;
3663 char *quote_pos = NULL;
3664
3665 /* First see if this is a quoted string. */
3666 quote_found = '\0';
3667 for (p = text; *p != '\0'; ++p)
3668 {
3669 if (quote_found != '\0')
3670 {
3671 if (*p == quote_found)
3672 /* Found close quote. */
3673 quote_found = '\0';
3674 else if (*p == '\\' && p[1] == quote_found)
3675 /* A backslash followed by the quote character
3676 doesn't end the string. */
3677 ++p;
3678 }
3679 else if (*p == '\'' || *p == '"')
3680 {
3681 quote_found = *p;
3682 quote_pos = p;
3683 }
3684 }
3685 if (quote_found == '\'')
3686 /* A string within single quotes can be a symbol, so complete on it. */
3687 sym_text = quote_pos + 1;
3688 else if (quote_found == '"')
3689 /* A double-quoted string is never a symbol, nor does it make sense
3690 to complete it any other way. */
3691 {
3692 return_val = (char **) xmalloc (sizeof (char *));
3693 return_val[0] = NULL;
3694 return return_val;
3695 }
3696 else
3697 {
3698 /* It is not a quoted string. Break it based on the characters
3699 which are in symbols. */
3700 while (p > text)
3701 {
3702 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3703 --p;
3704 else
3705 break;
3706 }
3707 sym_text = p;
3708 }
3709 }
3710
3711 sym_text_len = strlen (sym_text);
3712
3713 return_val_size = 100;
3714 return_val_index = 0;
3715 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3716 return_val[0] = NULL;
3717
3718 /* Look through the partial symtabs for all symbols which begin
3719 by matching SYM_TEXT. Add each one that you find to the list. */
3720
3721 ALL_PSYMTABS (objfile, ps)
3722 {
3723 /* If the psymtab's been read in we'll get it when we search
3724 through the blockvector. */
3725 if (ps->readin)
3726 continue;
3727
3728 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3729 psym < (objfile->global_psymbols.list + ps->globals_offset
3730 + ps->n_global_syms);
3731 psym++)
3732 {
3733 /* If interrupted, then quit. */
3734 QUIT;
3735 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3736 }
3737
3738 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3739 psym < (objfile->static_psymbols.list + ps->statics_offset
3740 + ps->n_static_syms);
3741 psym++)
3742 {
3743 QUIT;
3744 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3745 }
3746 }
3747
3748 /* At this point scan through the misc symbol vectors and add each
3749 symbol you find to the list. Eventually we want to ignore
3750 anything that isn't a text symbol (everything else will be
3751 handled by the psymtab code above). */
3752
3753 ALL_MSYMBOLS (objfile, msymbol)
3754 {
3755 QUIT;
3756 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3757
3758 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3759 }
3760
3761 /* Search upwards from currently selected frame (so that we can
3762 complete on local vars. */
3763
3764 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3765 {
3766 if (!BLOCK_SUPERBLOCK (b))
3767 {
3768 surrounding_static_block = b; /* For elmin of dups */
3769 }
3770
3771 /* Also catch fields of types defined in this places which match our
3772 text string. Only complete on types visible from current context. */
3773
3774 ALL_BLOCK_SYMBOLS (b, iter, sym)
3775 {
3776 QUIT;
3777 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3778 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3779 {
3780 struct type *t = SYMBOL_TYPE (sym);
3781 enum type_code c = TYPE_CODE (t);
3782
3783 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3784 {
3785 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3786 {
3787 if (TYPE_FIELD_NAME (t, j))
3788 {
3789 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3790 sym_text, sym_text_len, text, word);
3791 }
3792 }
3793 }
3794 }
3795 }
3796 }
3797
3798 /* Go through the symtabs and check the externs and statics for
3799 symbols which match. */
3800
3801 ALL_PRIMARY_SYMTABS (objfile, s)
3802 {
3803 QUIT;
3804 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3805 ALL_BLOCK_SYMBOLS (b, iter, sym)
3806 {
3807 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3808 }
3809 }
3810
3811 ALL_PRIMARY_SYMTABS (objfile, s)
3812 {
3813 QUIT;
3814 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3815 /* Don't do this block twice. */
3816 if (b == surrounding_static_block)
3817 continue;
3818 ALL_BLOCK_SYMBOLS (b, iter, sym)
3819 {
3820 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3821 }
3822 }
3823
3824 return (return_val);
3825 }
3826
3827 /* Return a NULL terminated array of all symbols (regardless of class)
3828 which begin by matching TEXT. If the answer is no symbols, then
3829 the return value is an array which contains only a NULL pointer. */
3830
3831 char **
3832 make_symbol_completion_list (char *text, char *word)
3833 {
3834 return current_language->la_make_symbol_completion_list (text, word);
3835 }
3836
3837 /* Like make_symbol_completion_list, but returns a list of symbols
3838 defined in a source file FILE. */
3839
3840 char **
3841 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3842 {
3843 struct symbol *sym;
3844 struct symtab *s;
3845 struct block *b;
3846 struct dict_iterator iter;
3847 /* The symbol we are completing on. Points in same buffer as text. */
3848 char *sym_text;
3849 /* Length of sym_text. */
3850 int sym_text_len;
3851
3852 /* Now look for the symbol we are supposed to complete on.
3853 FIXME: This should be language-specific. */
3854 {
3855 char *p;
3856 char quote_found;
3857 char *quote_pos = NULL;
3858
3859 /* First see if this is a quoted string. */
3860 quote_found = '\0';
3861 for (p = text; *p != '\0'; ++p)
3862 {
3863 if (quote_found != '\0')
3864 {
3865 if (*p == quote_found)
3866 /* Found close quote. */
3867 quote_found = '\0';
3868 else if (*p == '\\' && p[1] == quote_found)
3869 /* A backslash followed by the quote character
3870 doesn't end the string. */
3871 ++p;
3872 }
3873 else if (*p == '\'' || *p == '"')
3874 {
3875 quote_found = *p;
3876 quote_pos = p;
3877 }
3878 }
3879 if (quote_found == '\'')
3880 /* A string within single quotes can be a symbol, so complete on it. */
3881 sym_text = quote_pos + 1;
3882 else if (quote_found == '"')
3883 /* A double-quoted string is never a symbol, nor does it make sense
3884 to complete it any other way. */
3885 {
3886 return_val = (char **) xmalloc (sizeof (char *));
3887 return_val[0] = NULL;
3888 return return_val;
3889 }
3890 else
3891 {
3892 /* Not a quoted string. */
3893 sym_text = language_search_unquoted_string (text, p);
3894 }
3895 }
3896
3897 sym_text_len = strlen (sym_text);
3898
3899 return_val_size = 10;
3900 return_val_index = 0;
3901 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3902 return_val[0] = NULL;
3903
3904 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3905 in). */
3906 s = lookup_symtab (srcfile);
3907 if (s == NULL)
3908 {
3909 /* Maybe they typed the file with leading directories, while the
3910 symbol tables record only its basename. */
3911 const char *tail = lbasename (srcfile);
3912
3913 if (tail > srcfile)
3914 s = lookup_symtab (tail);
3915 }
3916
3917 /* If we have no symtab for that file, return an empty list. */
3918 if (s == NULL)
3919 return (return_val);
3920
3921 /* Go through this symtab and check the externs and statics for
3922 symbols which match. */
3923
3924 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3925 ALL_BLOCK_SYMBOLS (b, iter, sym)
3926 {
3927 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3928 }
3929
3930 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3931 ALL_BLOCK_SYMBOLS (b, iter, sym)
3932 {
3933 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3934 }
3935
3936 return (return_val);
3937 }
3938
3939 /* A helper function for make_source_files_completion_list. It adds
3940 another file name to a list of possible completions, growing the
3941 list as necessary. */
3942
3943 static void
3944 add_filename_to_list (const char *fname, char *text, char *word,
3945 char ***list, int *list_used, int *list_alloced)
3946 {
3947 char *new;
3948 size_t fnlen = strlen (fname);
3949
3950 if (*list_used + 1 >= *list_alloced)
3951 {
3952 *list_alloced *= 2;
3953 *list = (char **) xrealloc ((char *) *list,
3954 *list_alloced * sizeof (char *));
3955 }
3956
3957 if (word == text)
3958 {
3959 /* Return exactly fname. */
3960 new = xmalloc (fnlen + 5);
3961 strcpy (new, fname);
3962 }
3963 else if (word > text)
3964 {
3965 /* Return some portion of fname. */
3966 new = xmalloc (fnlen + 5);
3967 strcpy (new, fname + (word - text));
3968 }
3969 else
3970 {
3971 /* Return some of TEXT plus fname. */
3972 new = xmalloc (fnlen + (text - word) + 5);
3973 strncpy (new, word, text - word);
3974 new[text - word] = '\0';
3975 strcat (new, fname);
3976 }
3977 (*list)[*list_used] = new;
3978 (*list)[++*list_used] = NULL;
3979 }
3980
3981 static int
3982 not_interesting_fname (const char *fname)
3983 {
3984 static const char *illegal_aliens[] = {
3985 "_globals_", /* inserted by coff_symtab_read */
3986 NULL
3987 };
3988 int i;
3989
3990 for (i = 0; illegal_aliens[i]; i++)
3991 {
3992 if (strcmp (fname, illegal_aliens[i]) == 0)
3993 return 1;
3994 }
3995 return 0;
3996 }
3997
3998 /* Return a NULL terminated array of all source files whose names
3999 begin with matching TEXT. The file names are looked up in the
4000 symbol tables of this program. If the answer is no matchess, then
4001 the return value is an array which contains only a NULL pointer. */
4002
4003 char **
4004 make_source_files_completion_list (char *text, char *word)
4005 {
4006 struct symtab *s;
4007 struct partial_symtab *ps;
4008 struct objfile *objfile;
4009 int first = 1;
4010 int list_alloced = 1;
4011 int list_used = 0;
4012 size_t text_len = strlen (text);
4013 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4014 const char *base_name;
4015
4016 list[0] = NULL;
4017
4018 if (!have_full_symbols () && !have_partial_symbols ())
4019 return list;
4020
4021 ALL_SYMTABS (objfile, s)
4022 {
4023 if (not_interesting_fname (s->filename))
4024 continue;
4025 if (!filename_seen (s->filename, 1, &first)
4026 #if HAVE_DOS_BASED_FILE_SYSTEM
4027 && strncasecmp (s->filename, text, text_len) == 0
4028 #else
4029 && strncmp (s->filename, text, text_len) == 0
4030 #endif
4031 )
4032 {
4033 /* This file matches for a completion; add it to the current
4034 list of matches. */
4035 add_filename_to_list (s->filename, text, word,
4036 &list, &list_used, &list_alloced);
4037 }
4038 else
4039 {
4040 /* NOTE: We allow the user to type a base name when the
4041 debug info records leading directories, but not the other
4042 way around. This is what subroutines of breakpoint
4043 command do when they parse file names. */
4044 base_name = lbasename (s->filename);
4045 if (base_name != s->filename
4046 && !filename_seen (base_name, 1, &first)
4047 #if HAVE_DOS_BASED_FILE_SYSTEM
4048 && strncasecmp (base_name, text, text_len) == 0
4049 #else
4050 && strncmp (base_name, text, text_len) == 0
4051 #endif
4052 )
4053 add_filename_to_list (base_name, text, word,
4054 &list, &list_used, &list_alloced);
4055 }
4056 }
4057
4058 ALL_PSYMTABS (objfile, ps)
4059 {
4060 if (not_interesting_fname (ps->filename))
4061 continue;
4062 if (!ps->readin)
4063 {
4064 if (!filename_seen (ps->filename, 1, &first)
4065 #if HAVE_DOS_BASED_FILE_SYSTEM
4066 && strncasecmp (ps->filename, text, text_len) == 0
4067 #else
4068 && strncmp (ps->filename, text, text_len) == 0
4069 #endif
4070 )
4071 {
4072 /* This file matches for a completion; add it to the
4073 current list of matches. */
4074 add_filename_to_list (ps->filename, text, word,
4075 &list, &list_used, &list_alloced);
4076
4077 }
4078 else
4079 {
4080 base_name = lbasename (ps->filename);
4081 if (base_name != ps->filename
4082 && !filename_seen (base_name, 1, &first)
4083 #if HAVE_DOS_BASED_FILE_SYSTEM
4084 && strncasecmp (base_name, text, text_len) == 0
4085 #else
4086 && strncmp (base_name, text, text_len) == 0
4087 #endif
4088 )
4089 add_filename_to_list (base_name, text, word,
4090 &list, &list_used, &list_alloced);
4091 }
4092 }
4093 }
4094
4095 return list;
4096 }
4097
4098 /* Determine if PC is in the prologue of a function. The prologue is the area
4099 between the first instruction of a function, and the first executable line.
4100 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4101
4102 If non-zero, func_start is where we think the prologue starts, possibly
4103 by previous examination of symbol table information.
4104 */
4105
4106 int
4107 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4108 {
4109 struct symtab_and_line sal;
4110 CORE_ADDR func_addr, func_end;
4111
4112 /* We have several sources of information we can consult to figure
4113 this out.
4114 - Compilers usually emit line number info that marks the prologue
4115 as its own "source line". So the ending address of that "line"
4116 is the end of the prologue. If available, this is the most
4117 reliable method.
4118 - The minimal symbols and partial symbols, which can usually tell
4119 us the starting and ending addresses of a function.
4120 - If we know the function's start address, we can call the
4121 architecture-defined gdbarch_skip_prologue function to analyze the
4122 instruction stream and guess where the prologue ends.
4123 - Our `func_start' argument; if non-zero, this is the caller's
4124 best guess as to the function's entry point. At the time of
4125 this writing, handle_inferior_event doesn't get this right, so
4126 it should be our last resort. */
4127
4128 /* Consult the partial symbol table, to find which function
4129 the PC is in. */
4130 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4131 {
4132 CORE_ADDR prologue_end;
4133
4134 /* We don't even have minsym information, so fall back to using
4135 func_start, if given. */
4136 if (! func_start)
4137 return 1; /* We *might* be in a prologue. */
4138
4139 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4140
4141 return func_start <= pc && pc < prologue_end;
4142 }
4143
4144 /* If we have line number information for the function, that's
4145 usually pretty reliable. */
4146 sal = find_pc_line (func_addr, 0);
4147
4148 /* Now sal describes the source line at the function's entry point,
4149 which (by convention) is the prologue. The end of that "line",
4150 sal.end, is the end of the prologue.
4151
4152 Note that, for functions whose source code is all on a single
4153 line, the line number information doesn't always end up this way.
4154 So we must verify that our purported end-of-prologue address is
4155 *within* the function, not at its start or end. */
4156 if (sal.line == 0
4157 || sal.end <= func_addr
4158 || func_end <= sal.end)
4159 {
4160 /* We don't have any good line number info, so use the minsym
4161 information, together with the architecture-specific prologue
4162 scanning code. */
4163 CORE_ADDR prologue_end = gdbarch_skip_prologue
4164 (current_gdbarch, func_addr);
4165
4166 return func_addr <= pc && pc < prologue_end;
4167 }
4168
4169 /* We have line number info, and it looks good. */
4170 return func_addr <= pc && pc < sal.end;
4171 }
4172
4173 /* Given PC at the function's start address, attempt to find the
4174 prologue end using SAL information. Return zero if the skip fails.
4175
4176 A non-optimized prologue traditionally has one SAL for the function
4177 and a second for the function body. A single line function has
4178 them both pointing at the same line.
4179
4180 An optimized prologue is similar but the prologue may contain
4181 instructions (SALs) from the instruction body. Need to skip those
4182 while not getting into the function body.
4183
4184 The functions end point and an increasing SAL line are used as
4185 indicators of the prologue's endpoint.
4186
4187 This code is based on the function refine_prologue_limit (versions
4188 found in both ia64 and ppc). */
4189
4190 CORE_ADDR
4191 skip_prologue_using_sal (CORE_ADDR func_addr)
4192 {
4193 struct symtab_and_line prologue_sal;
4194 CORE_ADDR start_pc;
4195 CORE_ADDR end_pc;
4196
4197 /* Get an initial range for the function. */
4198 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4199 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4200
4201 prologue_sal = find_pc_line (start_pc, 0);
4202 if (prologue_sal.line != 0)
4203 {
4204 /* If there is only one sal that covers the entire function,
4205 then it is probably a single line function, like
4206 "foo(){}". */
4207 if (prologue_sal.end >= end_pc)
4208 return 0;
4209 while (prologue_sal.end < end_pc)
4210 {
4211 struct symtab_and_line sal;
4212
4213 sal = find_pc_line (prologue_sal.end, 0);
4214 if (sal.line == 0)
4215 break;
4216 /* Assume that a consecutive SAL for the same (or larger)
4217 line mark the prologue -> body transition. */
4218 if (sal.line >= prologue_sal.line)
4219 break;
4220 /* The case in which compiler's optimizer/scheduler has
4221 moved instructions into the prologue. We look ahead in
4222 the function looking for address ranges whose
4223 corresponding line number is less the first one that we
4224 found for the function. This is more conservative then
4225 refine_prologue_limit which scans a large number of SALs
4226 looking for any in the prologue */
4227 prologue_sal = sal;
4228 }
4229 }
4230 return prologue_sal.end;
4231 }
4232 \f
4233 struct symtabs_and_lines
4234 decode_line_spec (char *string, int funfirstline)
4235 {
4236 struct symtabs_and_lines sals;
4237 struct symtab_and_line cursal;
4238
4239 if (string == 0)
4240 error (_("Empty line specification."));
4241
4242 /* We use whatever is set as the current source line. We do not try
4243 and get a default or it will recursively call us! */
4244 cursal = get_current_source_symtab_and_line ();
4245
4246 sals = decode_line_1 (&string, funfirstline,
4247 cursal.symtab, cursal.line,
4248 (char ***) NULL, NULL);
4249
4250 if (*string)
4251 error (_("Junk at end of line specification: %s"), string);
4252 return sals;
4253 }
4254
4255 /* Track MAIN */
4256 static char *name_of_main;
4257
4258 void
4259 set_main_name (const char *name)
4260 {
4261 if (name_of_main != NULL)
4262 {
4263 xfree (name_of_main);
4264 name_of_main = NULL;
4265 }
4266 if (name != NULL)
4267 {
4268 name_of_main = xstrdup (name);
4269 }
4270 }
4271
4272 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4273 accordingly. */
4274
4275 static void
4276 find_main_name (void)
4277 {
4278 const char *new_main_name;
4279
4280 /* Try to see if the main procedure is in Ada. */
4281 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4282 be to add a new method in the language vector, and call this
4283 method for each language until one of them returns a non-empty
4284 name. This would allow us to remove this hard-coded call to
4285 an Ada function. It is not clear that this is a better approach
4286 at this point, because all methods need to be written in a way
4287 such that false positives never be returned. For instance, it is
4288 important that a method does not return a wrong name for the main
4289 procedure if the main procedure is actually written in a different
4290 language. It is easy to guaranty this with Ada, since we use a
4291 special symbol generated only when the main in Ada to find the name
4292 of the main procedure. It is difficult however to see how this can
4293 be guarantied for languages such as C, for instance. This suggests
4294 that order of call for these methods becomes important, which means
4295 a more complicated approach. */
4296 new_main_name = ada_main_name ();
4297 if (new_main_name != NULL)
4298 {
4299 set_main_name (new_main_name);
4300 return;
4301 }
4302
4303 new_main_name = pascal_main_name ();
4304 if (new_main_name != NULL)
4305 {
4306 set_main_name (new_main_name);
4307 return;
4308 }
4309
4310 /* The languages above didn't identify the name of the main procedure.
4311 Fallback to "main". */
4312 set_main_name ("main");
4313 }
4314
4315 char *
4316 main_name (void)
4317 {
4318 if (name_of_main == NULL)
4319 find_main_name ();
4320
4321 return name_of_main;
4322 }
4323
4324 /* Handle ``executable_changed'' events for the symtab module. */
4325
4326 static void
4327 symtab_observer_executable_changed (void *unused)
4328 {
4329 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4330 set_main_name (NULL);
4331 }
4332
4333 /* Helper to expand_line_sal below. Appends new sal to SAL,
4334 initializing it from SYMTAB, LINENO and PC. */
4335 static void
4336 append_expanded_sal (struct symtabs_and_lines *sal,
4337 struct symtab *symtab,
4338 int lineno, CORE_ADDR pc)
4339 {
4340 CORE_ADDR func_addr, func_end;
4341
4342 sal->sals = xrealloc (sal->sals,
4343 sizeof (sal->sals[0])
4344 * (sal->nelts + 1));
4345 init_sal (sal->sals + sal->nelts);
4346 sal->sals[sal->nelts].symtab = symtab;
4347 sal->sals[sal->nelts].section = NULL;
4348 sal->sals[sal->nelts].end = 0;
4349 sal->sals[sal->nelts].line = lineno;
4350 sal->sals[sal->nelts].pc = pc;
4351 ++sal->nelts;
4352 }
4353
4354 /* Compute a set of all sals in
4355 the entire program that correspond to same file
4356 and line as SAL and return those. If there
4357 are several sals that belong to the same block,
4358 only one sal for the block is included in results. */
4359
4360 struct symtabs_and_lines
4361 expand_line_sal (struct symtab_and_line sal)
4362 {
4363 struct symtabs_and_lines ret, this_line;
4364 int i, j;
4365 struct objfile *objfile;
4366 struct partial_symtab *psymtab;
4367 struct symtab *symtab;
4368 int lineno;
4369 int deleted = 0;
4370 struct block **blocks = NULL;
4371 int *filter;
4372
4373 ret.nelts = 0;
4374 ret.sals = NULL;
4375
4376 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4377 {
4378 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4379 ret.sals[0] = sal;
4380 ret.nelts = 1;
4381 return ret;
4382 }
4383 else
4384 {
4385 struct linetable_entry *best_item = 0;
4386 struct symtab *best_symtab = 0;
4387 int exact = 0;
4388
4389 lineno = sal.line;
4390
4391 /* We meed to find all symtabs for a file which name
4392 is described by sal. We cannot just directly
4393 iterate over symtabs, since a symtab might not be
4394 yet created. We also cannot iterate over psymtabs,
4395 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4396 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4397 corresponding to an included file. Therefore, we do
4398 first pass over psymtabs, reading in those with
4399 the right name. Then, we iterate over symtabs, knowing
4400 that all symtabs we're interested in are loaded. */
4401
4402 ALL_PSYMTABS (objfile, psymtab)
4403 {
4404 if (strcmp (sal.symtab->filename,
4405 psymtab->filename) == 0)
4406 PSYMTAB_TO_SYMTAB (psymtab);
4407 }
4408
4409
4410 /* For each symtab, we add all pcs to ret.sals. I'm actually
4411 not sure what to do if we have exact match in one symtab,
4412 and non-exact match on another symtab.
4413 */
4414 ALL_SYMTABS (objfile, symtab)
4415 {
4416 if (strcmp (sal.symtab->filename,
4417 symtab->filename) == 0)
4418 {
4419 struct linetable *l;
4420 int len;
4421 l = LINETABLE (symtab);
4422 if (!l)
4423 continue;
4424 len = l->nitems;
4425
4426 for (j = 0; j < len; j++)
4427 {
4428 struct linetable_entry *item = &(l->item[j]);
4429
4430 if (item->line == lineno)
4431 {
4432 exact = 1;
4433 append_expanded_sal (&ret, symtab, lineno, item->pc);
4434 }
4435 else if (!exact && item->line > lineno
4436 && (best_item == NULL || item->line < best_item->line))
4437
4438 {
4439 best_item = item;
4440 best_symtab = symtab;
4441 }
4442 }
4443 }
4444 }
4445 if (!exact && best_item)
4446 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4447 }
4448
4449 /* For optimized code, compiler can scatter one source line accross
4450 disjoint ranges of PC values, even when no duplicate functions
4451 or inline functions are involved. For example, 'for (;;)' inside
4452 non-template non-inline non-ctor-or-dtor function can result
4453 in two PC ranges. In this case, we don't want to set breakpoint
4454 on first PC of each range. To filter such cases, we use containing
4455 blocks -- for each PC found above we see if there are other PCs
4456 that are in the same block. If yes, the other PCs are filtered out. */
4457
4458 filter = xmalloc (ret.nelts * sizeof (int));
4459 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4460 for (i = 0; i < ret.nelts; ++i)
4461 {
4462 filter[i] = 1;
4463 blocks[i] = block_for_pc (ret.sals[i].pc);
4464 }
4465
4466 for (i = 0; i < ret.nelts; ++i)
4467 if (blocks[i] != NULL)
4468 for (j = i+1; j < ret.nelts; ++j)
4469 if (blocks[j] == blocks[i])
4470 {
4471 filter[j] = 0;
4472 ++deleted;
4473 break;
4474 }
4475
4476 {
4477 struct symtab_and_line *final =
4478 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4479
4480 for (i = 0, j = 0; i < ret.nelts; ++i)
4481 if (filter[i])
4482 final[j++] = ret.sals[i];
4483
4484 ret.nelts -= deleted;
4485 xfree (ret.sals);
4486 ret.sals = final;
4487 }
4488
4489 return ret;
4490 }
4491
4492
4493 void
4494 _initialize_symtab (void)
4495 {
4496 add_info ("variables", variables_info, _("\
4497 All global and static variable names, or those matching REGEXP."));
4498 if (dbx_commands)
4499 add_com ("whereis", class_info, variables_info, _("\
4500 All global and static variable names, or those matching REGEXP."));
4501
4502 add_info ("functions", functions_info,
4503 _("All function names, or those matching REGEXP."));
4504
4505
4506 /* FIXME: This command has at least the following problems:
4507 1. It prints builtin types (in a very strange and confusing fashion).
4508 2. It doesn't print right, e.g. with
4509 typedef struct foo *FOO
4510 type_print prints "FOO" when we want to make it (in this situation)
4511 print "struct foo *".
4512 I also think "ptype" or "whatis" is more likely to be useful (but if
4513 there is much disagreement "info types" can be fixed). */
4514 add_info ("types", types_info,
4515 _("All type names, or those matching REGEXP."));
4516
4517 add_info ("sources", sources_info,
4518 _("Source files in the program."));
4519
4520 add_com ("rbreak", class_breakpoint, rbreak_command,
4521 _("Set a breakpoint for all functions matching REGEXP."));
4522
4523 if (xdb_commands)
4524 {
4525 add_com ("lf", class_info, sources_info,
4526 _("Source files in the program"));
4527 add_com ("lg", class_info, variables_info, _("\
4528 All global and static variable names, or those matching REGEXP."));
4529 }
4530
4531 add_setshow_enum_cmd ("multiple-symbols", no_class,
4532 multiple_symbols_modes, &multiple_symbols_mode,
4533 _("\
4534 Set the debugger behavior when more than one symbol are possible matches\n\
4535 in an expression."), _("\
4536 Show how the debugger handles ambiguities in expressions."), _("\
4537 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4538 NULL, NULL, &setlist, &showlist);
4539
4540 /* Initialize the one built-in type that isn't language dependent... */
4541 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4542 "<unknown type>", (struct objfile *) NULL);
4543
4544 observer_attach_executable_changed (symtab_observer_executable_changed);
4545 }
This page took 0.122632 seconds and 4 git commands to generate.