Support x32 siginfo
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "linespec.h"
37 #include "source.h"
38 #include "filenames.h" /* for FILENAME_CMP */
39 #include "objc-lang.h"
40 #include "d-lang.h"
41 #include "ada-lang.h"
42 #include "go-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "psymtab.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static void output_source_filename (const char *, int *);
80
81 static int find_line_common (struct linetable *, int, int *, int);
82
83 static struct symbol *lookup_symbol_aux (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 int *is_a_field_of_this);
88
89 static
90 struct symbol *lookup_symbol_aux_local (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language);
94
95 static
96 struct symbol *lookup_symbol_aux_symtabs (int block_index,
97 const char *name,
98 const domain_enum domain);
99
100 static
101 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
102 int block_index,
103 const char *name,
104 const domain_enum domain);
105
106 static void print_msymbol_info (struct minimal_symbol *);
107
108 void _initialize_symtab (void);
109
110 /* */
111
112 /* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115 int basenames_may_differ = 0;
116
117 /* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121 const char multiple_symbols_ask[] = "ask";
122 const char multiple_symbols_all[] = "all";
123 const char multiple_symbols_cancel[] = "cancel";
124 static const char *const multiple_symbols_modes[] =
125 {
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130 };
131 static const char *multiple_symbols_mode = multiple_symbols_all;
132
133 /* Read-only accessor to AUTO_SELECT_MODE. */
134
135 const char *
136 multiple_symbols_select_mode (void)
137 {
138 return multiple_symbols_mode;
139 }
140
141 /* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145 const struct block *block_found;
146
147 /* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). SEARCH_LEN is the length of
150 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
151 Returns true if they match, false otherwise. */
152
153 int
154 compare_filenames_for_search (const char *filename, const char *search_name,
155 int search_len)
156 {
157 int len = strlen (filename);
158
159 if (len < search_len)
160 return 0;
161
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
165
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator. */
169 return (len == search_len
170 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
171 || (HAS_DRIVE_SPEC (filename)
172 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
173 }
174
175 /* Check for a symtab of a specific name by searching some symtabs.
176 This is a helper function for callbacks of iterate_over_symtabs.
177
178 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
179 are identical to the `map_symtabs_matching_filename' method of
180 quick_symbol_functions.
181
182 FIRST and AFTER_LAST indicate the range of symtabs to search.
183 AFTER_LAST is one past the last symtab to search; NULL means to
184 search until the end of the list. */
185
186 int
187 iterate_over_some_symtabs (const char *name,
188 const char *full_path,
189 const char *real_path,
190 int (*callback) (struct symtab *symtab,
191 void *data),
192 void *data,
193 struct symtab *first,
194 struct symtab *after_last)
195 {
196 struct symtab *s = NULL;
197 const char* base_name = lbasename (name);
198 int name_len = strlen (name);
199 int is_abs = IS_ABSOLUTE_PATH (name);
200
201 for (s = first; s != NULL && s != after_last; s = s->next)
202 {
203 /* Exact match is always ok. */
204 if (FILENAME_CMP (name, s->filename) == 0)
205 {
206 if (callback (s, data))
207 return 1;
208 }
209
210 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
211 {
212 if (callback (s, data))
213 return 1;
214 }
215
216 /* Before we invoke realpath, which can get expensive when many
217 files are involved, do a quick comparison of the basenames. */
218 if (! basenames_may_differ
219 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
220 continue;
221
222 /* If the user gave us an absolute path, try to find the file in
223 this symtab and use its absolute path. */
224
225 if (full_path != NULL)
226 {
227 const char *fp = symtab_to_fullname (s);
228
229 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
230 {
231 if (callback (s, data))
232 return 1;
233 }
234
235 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
236 name_len))
237 {
238 if (callback (s, data))
239 return 1;
240 }
241 }
242
243 if (real_path != NULL)
244 {
245 char *fullname = symtab_to_fullname (s);
246
247 if (fullname != NULL)
248 {
249 char *rp = gdb_realpath (fullname);
250
251 make_cleanup (xfree, rp);
252 if (FILENAME_CMP (real_path, rp) == 0)
253 {
254 if (callback (s, data))
255 return 1;
256 }
257
258 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
259 {
260 if (callback (s, data))
261 return 1;
262 }
263 }
264 }
265 }
266
267 return 0;
268 }
269
270 /* Check for a symtab of a specific name; first in symtabs, then in
271 psymtabs. *If* there is no '/' in the name, a match after a '/'
272 in the symtab filename will also work.
273
274 Calls CALLBACK with each symtab that is found and with the supplied
275 DATA. If CALLBACK returns true, the search stops. */
276
277 void
278 iterate_over_symtabs (const char *name,
279 int (*callback) (struct symtab *symtab,
280 void *data),
281 void *data)
282 {
283 struct symtab *s = NULL;
284 struct objfile *objfile;
285 char *real_path = NULL;
286 char *full_path = NULL;
287 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
288
289 /* Here we are interested in canonicalizing an absolute path, not
290 absolutizing a relative path. */
291 if (IS_ABSOLUTE_PATH (name))
292 {
293 full_path = xfullpath (name);
294 make_cleanup (xfree, full_path);
295 real_path = gdb_realpath (name);
296 make_cleanup (xfree, real_path);
297 }
298
299 ALL_OBJFILES (objfile)
300 {
301 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
302 objfile->symtabs, NULL))
303 {
304 do_cleanups (cleanups);
305 return;
306 }
307 }
308
309 /* Same search rules as above apply here, but now we look thru the
310 psymtabs. */
311
312 ALL_OBJFILES (objfile)
313 {
314 if (objfile->sf
315 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
316 name,
317 full_path,
318 real_path,
319 callback,
320 data))
321 {
322 do_cleanups (cleanups);
323 return;
324 }
325 }
326
327 do_cleanups (cleanups);
328 }
329
330 /* The callback function used by lookup_symtab. */
331
332 static int
333 lookup_symtab_callback (struct symtab *symtab, void *data)
334 {
335 struct symtab **result_ptr = data;
336
337 *result_ptr = symtab;
338 return 1;
339 }
340
341 /* A wrapper for iterate_over_symtabs that returns the first matching
342 symtab, or NULL. */
343
344 struct symtab *
345 lookup_symtab (const char *name)
346 {
347 struct symtab *result = NULL;
348
349 iterate_over_symtabs (name, lookup_symtab_callback, &result);
350 return result;
351 }
352
353 \f
354 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
355 full method name, which consist of the class name (from T), the unadorned
356 method name from METHOD_ID, and the signature for the specific overload,
357 specified by SIGNATURE_ID. Note that this function is g++ specific. */
358
359 char *
360 gdb_mangle_name (struct type *type, int method_id, int signature_id)
361 {
362 int mangled_name_len;
363 char *mangled_name;
364 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
365 struct fn_field *method = &f[signature_id];
366 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
367 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
368 const char *newname = type_name_no_tag (type);
369
370 /* Does the form of physname indicate that it is the full mangled name
371 of a constructor (not just the args)? */
372 int is_full_physname_constructor;
373
374 int is_constructor;
375 int is_destructor = is_destructor_name (physname);
376 /* Need a new type prefix. */
377 char *const_prefix = method->is_const ? "C" : "";
378 char *volatile_prefix = method->is_volatile ? "V" : "";
379 char buf[20];
380 int len = (newname == NULL ? 0 : strlen (newname));
381
382 /* Nothing to do if physname already contains a fully mangled v3 abi name
383 or an operator name. */
384 if ((physname[0] == '_' && physname[1] == 'Z')
385 || is_operator_name (field_name))
386 return xstrdup (physname);
387
388 is_full_physname_constructor = is_constructor_name (physname);
389
390 is_constructor = is_full_physname_constructor
391 || (newname && strcmp (field_name, newname) == 0);
392
393 if (!is_destructor)
394 is_destructor = (strncmp (physname, "__dt", 4) == 0);
395
396 if (is_destructor || is_full_physname_constructor)
397 {
398 mangled_name = (char *) xmalloc (strlen (physname) + 1);
399 strcpy (mangled_name, physname);
400 return mangled_name;
401 }
402
403 if (len == 0)
404 {
405 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
406 }
407 else if (physname[0] == 't' || physname[0] == 'Q')
408 {
409 /* The physname for template and qualified methods already includes
410 the class name. */
411 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
412 newname = NULL;
413 len = 0;
414 }
415 else
416 {
417 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
418 }
419 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
420 + strlen (buf) + len + strlen (physname) + 1);
421
422 mangled_name = (char *) xmalloc (mangled_name_len);
423 if (is_constructor)
424 mangled_name[0] = '\0';
425 else
426 strcpy (mangled_name, field_name);
427
428 strcat (mangled_name, buf);
429 /* If the class doesn't have a name, i.e. newname NULL, then we just
430 mangle it using 0 for the length of the class. Thus it gets mangled
431 as something starting with `::' rather than `classname::'. */
432 if (newname != NULL)
433 strcat (mangled_name, newname);
434
435 strcat (mangled_name, physname);
436 return (mangled_name);
437 }
438
439 /* Initialize the cplus_specific structure. 'cplus_specific' should
440 only be allocated for use with cplus symbols. */
441
442 static void
443 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
444 struct objfile *objfile)
445 {
446 /* A language_specific structure should not have been previously
447 initialized. */
448 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
449 gdb_assert (objfile != NULL);
450
451 gsymbol->language_specific.cplus_specific =
452 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
453 }
454
455 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
456 correctly allocated. For C++ symbols a cplus_specific struct is
457 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
458 OBJFILE can be NULL. */
459
460 void
461 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
462 char *name,
463 struct objfile *objfile)
464 {
465 if (gsymbol->language == language_cplus)
466 {
467 if (gsymbol->language_specific.cplus_specific == NULL)
468 symbol_init_cplus_specific (gsymbol, objfile);
469
470 gsymbol->language_specific.cplus_specific->demangled_name = name;
471 }
472 else
473 gsymbol->language_specific.mangled_lang.demangled_name = name;
474 }
475
476 /* Return the demangled name of GSYMBOL. */
477
478 const char *
479 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
480 {
481 if (gsymbol->language == language_cplus)
482 {
483 if (gsymbol->language_specific.cplus_specific != NULL)
484 return gsymbol->language_specific.cplus_specific->demangled_name;
485 else
486 return NULL;
487 }
488 else
489 return gsymbol->language_specific.mangled_lang.demangled_name;
490 }
491
492 \f
493 /* Initialize the language dependent portion of a symbol
494 depending upon the language for the symbol. */
495
496 void
497 symbol_set_language (struct general_symbol_info *gsymbol,
498 enum language language)
499 {
500 gsymbol->language = language;
501 if (gsymbol->language == language_d
502 || gsymbol->language == language_go
503 || gsymbol->language == language_java
504 || gsymbol->language == language_objc
505 || gsymbol->language == language_fortran)
506 {
507 symbol_set_demangled_name (gsymbol, NULL, NULL);
508 }
509 else if (gsymbol->language == language_cplus)
510 gsymbol->language_specific.cplus_specific = NULL;
511 else
512 {
513 memset (&gsymbol->language_specific, 0,
514 sizeof (gsymbol->language_specific));
515 }
516 }
517
518 /* Functions to initialize a symbol's mangled name. */
519
520 /* Objects of this type are stored in the demangled name hash table. */
521 struct demangled_name_entry
522 {
523 char *mangled;
524 char demangled[1];
525 };
526
527 /* Hash function for the demangled name hash. */
528
529 static hashval_t
530 hash_demangled_name_entry (const void *data)
531 {
532 const struct demangled_name_entry *e = data;
533
534 return htab_hash_string (e->mangled);
535 }
536
537 /* Equality function for the demangled name hash. */
538
539 static int
540 eq_demangled_name_entry (const void *a, const void *b)
541 {
542 const struct demangled_name_entry *da = a;
543 const struct demangled_name_entry *db = b;
544
545 return strcmp (da->mangled, db->mangled) == 0;
546 }
547
548 /* Create the hash table used for demangled names. Each hash entry is
549 a pair of strings; one for the mangled name and one for the demangled
550 name. The entry is hashed via just the mangled name. */
551
552 static void
553 create_demangled_names_hash (struct objfile *objfile)
554 {
555 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
556 The hash table code will round this up to the next prime number.
557 Choosing a much larger table size wastes memory, and saves only about
558 1% in symbol reading. */
559
560 objfile->demangled_names_hash = htab_create_alloc
561 (256, hash_demangled_name_entry, eq_demangled_name_entry,
562 NULL, xcalloc, xfree);
563 }
564
565 /* Try to determine the demangled name for a symbol, based on the
566 language of that symbol. If the language is set to language_auto,
567 it will attempt to find any demangling algorithm that works and
568 then set the language appropriately. The returned name is allocated
569 by the demangler and should be xfree'd. */
570
571 static char *
572 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
573 const char *mangled)
574 {
575 char *demangled = NULL;
576
577 if (gsymbol->language == language_unknown)
578 gsymbol->language = language_auto;
579
580 if (gsymbol->language == language_objc
581 || gsymbol->language == language_auto)
582 {
583 demangled =
584 objc_demangle (mangled, 0);
585 if (demangled != NULL)
586 {
587 gsymbol->language = language_objc;
588 return demangled;
589 }
590 }
591 if (gsymbol->language == language_cplus
592 || gsymbol->language == language_auto)
593 {
594 demangled =
595 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
596 if (demangled != NULL)
597 {
598 gsymbol->language = language_cplus;
599 return demangled;
600 }
601 }
602 if (gsymbol->language == language_java)
603 {
604 demangled =
605 cplus_demangle (mangled,
606 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
607 if (demangled != NULL)
608 {
609 gsymbol->language = language_java;
610 return demangled;
611 }
612 }
613 if (gsymbol->language == language_d
614 || gsymbol->language == language_auto)
615 {
616 demangled = d_demangle(mangled, 0);
617 if (demangled != NULL)
618 {
619 gsymbol->language = language_d;
620 return demangled;
621 }
622 }
623 /* FIXME(dje): Continually adding languages here is clumsy.
624 Better to just call la_demangle if !auto, and if auto then call
625 a utility routine that tries successive languages in turn and reports
626 which one it finds. I realize the la_demangle options may be different
627 for different languages but there's already a FIXME for that. */
628 if (gsymbol->language == language_go
629 || gsymbol->language == language_auto)
630 {
631 demangled = go_demangle (mangled, 0);
632 if (demangled != NULL)
633 {
634 gsymbol->language = language_go;
635 return demangled;
636 }
637 }
638
639 /* We could support `gsymbol->language == language_fortran' here to provide
640 module namespaces also for inferiors with only minimal symbol table (ELF
641 symbols). Just the mangling standard is not standardized across compilers
642 and there is no DW_AT_producer available for inferiors with only the ELF
643 symbols to check the mangling kind. */
644 return NULL;
645 }
646
647 /* Set both the mangled and demangled (if any) names for GSYMBOL based
648 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
649 objfile's obstack; but if COPY_NAME is 0 and if NAME is
650 NUL-terminated, then this function assumes that NAME is already
651 correctly saved (either permanently or with a lifetime tied to the
652 objfile), and it will not be copied.
653
654 The hash table corresponding to OBJFILE is used, and the memory
655 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
656 so the pointer can be discarded after calling this function. */
657
658 /* We have to be careful when dealing with Java names: when we run
659 into a Java minimal symbol, we don't know it's a Java symbol, so it
660 gets demangled as a C++ name. This is unfortunate, but there's not
661 much we can do about it: but when demangling partial symbols and
662 regular symbols, we'd better not reuse the wrong demangled name.
663 (See PR gdb/1039.) We solve this by putting a distinctive prefix
664 on Java names when storing them in the hash table. */
665
666 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
667 don't mind the Java prefix so much: different languages have
668 different demangling requirements, so it's only natural that we
669 need to keep language data around in our demangling cache. But
670 it's not good that the minimal symbol has the wrong demangled name.
671 Unfortunately, I can't think of any easy solution to that
672 problem. */
673
674 #define JAVA_PREFIX "##JAVA$$"
675 #define JAVA_PREFIX_LEN 8
676
677 void
678 symbol_set_names (struct general_symbol_info *gsymbol,
679 const char *linkage_name, int len, int copy_name,
680 struct objfile *objfile)
681 {
682 struct demangled_name_entry **slot;
683 /* A 0-terminated copy of the linkage name. */
684 const char *linkage_name_copy;
685 /* A copy of the linkage name that might have a special Java prefix
686 added to it, for use when looking names up in the hash table. */
687 const char *lookup_name;
688 /* The length of lookup_name. */
689 int lookup_len;
690 struct demangled_name_entry entry;
691
692 if (gsymbol->language == language_ada)
693 {
694 /* In Ada, we do the symbol lookups using the mangled name, so
695 we can save some space by not storing the demangled name.
696
697 As a side note, we have also observed some overlap between
698 the C++ mangling and Ada mangling, similarly to what has
699 been observed with Java. Because we don't store the demangled
700 name with the symbol, we don't need to use the same trick
701 as Java. */
702 if (!copy_name)
703 gsymbol->name = linkage_name;
704 else
705 {
706 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
707
708 memcpy (name, linkage_name, len);
709 name[len] = '\0';
710 gsymbol->name = name;
711 }
712 symbol_set_demangled_name (gsymbol, NULL, NULL);
713
714 return;
715 }
716
717 if (objfile->demangled_names_hash == NULL)
718 create_demangled_names_hash (objfile);
719
720 /* The stabs reader generally provides names that are not
721 NUL-terminated; most of the other readers don't do this, so we
722 can just use the given copy, unless we're in the Java case. */
723 if (gsymbol->language == language_java)
724 {
725 char *alloc_name;
726
727 lookup_len = len + JAVA_PREFIX_LEN;
728 alloc_name = alloca (lookup_len + 1);
729 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
730 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
731 alloc_name[lookup_len] = '\0';
732
733 lookup_name = alloc_name;
734 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
735 }
736 else if (linkage_name[len] != '\0')
737 {
738 char *alloc_name;
739
740 lookup_len = len;
741 alloc_name = alloca (lookup_len + 1);
742 memcpy (alloc_name, linkage_name, len);
743 alloc_name[lookup_len] = '\0';
744
745 lookup_name = alloc_name;
746 linkage_name_copy = alloc_name;
747 }
748 else
749 {
750 lookup_len = len;
751 lookup_name = linkage_name;
752 linkage_name_copy = linkage_name;
753 }
754
755 entry.mangled = (char *) lookup_name;
756 slot = ((struct demangled_name_entry **)
757 htab_find_slot (objfile->demangled_names_hash,
758 &entry, INSERT));
759
760 /* If this name is not in the hash table, add it. */
761 if (*slot == NULL
762 /* A C version of the symbol may have already snuck into the table.
763 This happens to, e.g., main.init (__go_init_main). Cope. */
764 || (gsymbol->language == language_go
765 && (*slot)->demangled[0] == '\0'))
766 {
767 char *demangled_name = symbol_find_demangled_name (gsymbol,
768 linkage_name_copy);
769 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
770
771 /* Suppose we have demangled_name==NULL, copy_name==0, and
772 lookup_name==linkage_name. In this case, we already have the
773 mangled name saved, and we don't have a demangled name. So,
774 you might think we could save a little space by not recording
775 this in the hash table at all.
776
777 It turns out that it is actually important to still save such
778 an entry in the hash table, because storing this name gives
779 us better bcache hit rates for partial symbols. */
780 if (!copy_name && lookup_name == linkage_name)
781 {
782 *slot = obstack_alloc (&objfile->objfile_obstack,
783 offsetof (struct demangled_name_entry,
784 demangled)
785 + demangled_len + 1);
786 (*slot)->mangled = (char *) lookup_name;
787 }
788 else
789 {
790 /* If we must copy the mangled name, put it directly after
791 the demangled name so we can have a single
792 allocation. */
793 *slot = obstack_alloc (&objfile->objfile_obstack,
794 offsetof (struct demangled_name_entry,
795 demangled)
796 + lookup_len + demangled_len + 2);
797 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
798 strcpy ((*slot)->mangled, lookup_name);
799 }
800
801 if (demangled_name != NULL)
802 {
803 strcpy ((*slot)->demangled, demangled_name);
804 xfree (demangled_name);
805 }
806 else
807 (*slot)->demangled[0] = '\0';
808 }
809
810 gsymbol->name = (*slot)->mangled + lookup_len - len;
811 if ((*slot)->demangled[0] != '\0')
812 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
813 else
814 symbol_set_demangled_name (gsymbol, NULL, objfile);
815 }
816
817 /* Return the source code name of a symbol. In languages where
818 demangling is necessary, this is the demangled name. */
819
820 const char *
821 symbol_natural_name (const struct general_symbol_info *gsymbol)
822 {
823 switch (gsymbol->language)
824 {
825 case language_cplus:
826 case language_d:
827 case language_go:
828 case language_java:
829 case language_objc:
830 case language_fortran:
831 if (symbol_get_demangled_name (gsymbol) != NULL)
832 return symbol_get_demangled_name (gsymbol);
833 break;
834 case language_ada:
835 if (symbol_get_demangled_name (gsymbol) != NULL)
836 return symbol_get_demangled_name (gsymbol);
837 else
838 return ada_decode_symbol (gsymbol);
839 break;
840 default:
841 break;
842 }
843 return gsymbol->name;
844 }
845
846 /* Return the demangled name for a symbol based on the language for
847 that symbol. If no demangled name exists, return NULL. */
848
849 const char *
850 symbol_demangled_name (const struct general_symbol_info *gsymbol)
851 {
852 const char *dem_name = NULL;
853
854 switch (gsymbol->language)
855 {
856 case language_cplus:
857 case language_d:
858 case language_go:
859 case language_java:
860 case language_objc:
861 case language_fortran:
862 dem_name = symbol_get_demangled_name (gsymbol);
863 break;
864 case language_ada:
865 dem_name = symbol_get_demangled_name (gsymbol);
866 if (dem_name == NULL)
867 dem_name = ada_decode_symbol (gsymbol);
868 break;
869 default:
870 break;
871 }
872 return dem_name;
873 }
874
875 /* Return the search name of a symbol---generally the demangled or
876 linkage name of the symbol, depending on how it will be searched for.
877 If there is no distinct demangled name, then returns the same value
878 (same pointer) as SYMBOL_LINKAGE_NAME. */
879
880 const char *
881 symbol_search_name (const struct general_symbol_info *gsymbol)
882 {
883 if (gsymbol->language == language_ada)
884 return gsymbol->name;
885 else
886 return symbol_natural_name (gsymbol);
887 }
888
889 /* Initialize the structure fields to zero values. */
890
891 void
892 init_sal (struct symtab_and_line *sal)
893 {
894 sal->pspace = NULL;
895 sal->symtab = 0;
896 sal->section = 0;
897 sal->line = 0;
898 sal->pc = 0;
899 sal->end = 0;
900 sal->explicit_pc = 0;
901 sal->explicit_line = 0;
902 sal->probe = NULL;
903 }
904 \f
905
906 /* Return 1 if the two sections are the same, or if they could
907 plausibly be copies of each other, one in an original object
908 file and another in a separated debug file. */
909
910 int
911 matching_obj_sections (struct obj_section *obj_first,
912 struct obj_section *obj_second)
913 {
914 asection *first = obj_first? obj_first->the_bfd_section : NULL;
915 asection *second = obj_second? obj_second->the_bfd_section : NULL;
916 struct objfile *obj;
917
918 /* If they're the same section, then they match. */
919 if (first == second)
920 return 1;
921
922 /* If either is NULL, give up. */
923 if (first == NULL || second == NULL)
924 return 0;
925
926 /* This doesn't apply to absolute symbols. */
927 if (first->owner == NULL || second->owner == NULL)
928 return 0;
929
930 /* If they're in the same object file, they must be different sections. */
931 if (first->owner == second->owner)
932 return 0;
933
934 /* Check whether the two sections are potentially corresponding. They must
935 have the same size, address, and name. We can't compare section indexes,
936 which would be more reliable, because some sections may have been
937 stripped. */
938 if (bfd_get_section_size (first) != bfd_get_section_size (second))
939 return 0;
940
941 /* In-memory addresses may start at a different offset, relativize them. */
942 if (bfd_get_section_vma (first->owner, first)
943 - bfd_get_start_address (first->owner)
944 != bfd_get_section_vma (second->owner, second)
945 - bfd_get_start_address (second->owner))
946 return 0;
947
948 if (bfd_get_section_name (first->owner, first) == NULL
949 || bfd_get_section_name (second->owner, second) == NULL
950 || strcmp (bfd_get_section_name (first->owner, first),
951 bfd_get_section_name (second->owner, second)) != 0)
952 return 0;
953
954 /* Otherwise check that they are in corresponding objfiles. */
955
956 ALL_OBJFILES (obj)
957 if (obj->obfd == first->owner)
958 break;
959 gdb_assert (obj != NULL);
960
961 if (obj->separate_debug_objfile != NULL
962 && obj->separate_debug_objfile->obfd == second->owner)
963 return 1;
964 if (obj->separate_debug_objfile_backlink != NULL
965 && obj->separate_debug_objfile_backlink->obfd == second->owner)
966 return 1;
967
968 return 0;
969 }
970
971 struct symtab *
972 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
973 {
974 struct objfile *objfile;
975 struct minimal_symbol *msymbol;
976
977 /* If we know that this is not a text address, return failure. This is
978 necessary because we loop based on texthigh and textlow, which do
979 not include the data ranges. */
980 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
981 if (msymbol
982 && (MSYMBOL_TYPE (msymbol) == mst_data
983 || MSYMBOL_TYPE (msymbol) == mst_bss
984 || MSYMBOL_TYPE (msymbol) == mst_abs
985 || MSYMBOL_TYPE (msymbol) == mst_file_data
986 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
987 return NULL;
988
989 ALL_OBJFILES (objfile)
990 {
991 struct symtab *result = NULL;
992
993 if (objfile->sf)
994 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
995 pc, section, 0);
996 if (result)
997 return result;
998 }
999
1000 return NULL;
1001 }
1002 \f
1003 /* Debug symbols usually don't have section information. We need to dig that
1004 out of the minimal symbols and stash that in the debug symbol. */
1005
1006 void
1007 fixup_section (struct general_symbol_info *ginfo,
1008 CORE_ADDR addr, struct objfile *objfile)
1009 {
1010 struct minimal_symbol *msym;
1011
1012 /* First, check whether a minimal symbol with the same name exists
1013 and points to the same address. The address check is required
1014 e.g. on PowerPC64, where the minimal symbol for a function will
1015 point to the function descriptor, while the debug symbol will
1016 point to the actual function code. */
1017 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1018 if (msym)
1019 {
1020 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1021 ginfo->section = SYMBOL_SECTION (msym);
1022 }
1023 else
1024 {
1025 /* Static, function-local variables do appear in the linker
1026 (minimal) symbols, but are frequently given names that won't
1027 be found via lookup_minimal_symbol(). E.g., it has been
1028 observed in frv-uclinux (ELF) executables that a static,
1029 function-local variable named "foo" might appear in the
1030 linker symbols as "foo.6" or "foo.3". Thus, there is no
1031 point in attempting to extend the lookup-by-name mechanism to
1032 handle this case due to the fact that there can be multiple
1033 names.
1034
1035 So, instead, search the section table when lookup by name has
1036 failed. The ``addr'' and ``endaddr'' fields may have already
1037 been relocated. If so, the relocation offset (i.e. the
1038 ANOFFSET value) needs to be subtracted from these values when
1039 performing the comparison. We unconditionally subtract it,
1040 because, when no relocation has been performed, the ANOFFSET
1041 value will simply be zero.
1042
1043 The address of the symbol whose section we're fixing up HAS
1044 NOT BEEN adjusted (relocated) yet. It can't have been since
1045 the section isn't yet known and knowing the section is
1046 necessary in order to add the correct relocation value. In
1047 other words, we wouldn't even be in this function (attempting
1048 to compute the section) if it were already known.
1049
1050 Note that it is possible to search the minimal symbols
1051 (subtracting the relocation value if necessary) to find the
1052 matching minimal symbol, but this is overkill and much less
1053 efficient. It is not necessary to find the matching minimal
1054 symbol, only its section.
1055
1056 Note that this technique (of doing a section table search)
1057 can fail when unrelocated section addresses overlap. For
1058 this reason, we still attempt a lookup by name prior to doing
1059 a search of the section table. */
1060
1061 struct obj_section *s;
1062
1063 ALL_OBJFILE_OSECTIONS (objfile, s)
1064 {
1065 int idx = s->the_bfd_section->index;
1066 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1067
1068 if (obj_section_addr (s) - offset <= addr
1069 && addr < obj_section_endaddr (s) - offset)
1070 {
1071 ginfo->obj_section = s;
1072 ginfo->section = idx;
1073 return;
1074 }
1075 }
1076 }
1077 }
1078
1079 struct symbol *
1080 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1081 {
1082 CORE_ADDR addr;
1083
1084 if (!sym)
1085 return NULL;
1086
1087 if (SYMBOL_OBJ_SECTION (sym))
1088 return sym;
1089
1090 /* We either have an OBJFILE, or we can get at it from the sym's
1091 symtab. Anything else is a bug. */
1092 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1093
1094 if (objfile == NULL)
1095 objfile = SYMBOL_SYMTAB (sym)->objfile;
1096
1097 /* We should have an objfile by now. */
1098 gdb_assert (objfile);
1099
1100 switch (SYMBOL_CLASS (sym))
1101 {
1102 case LOC_STATIC:
1103 case LOC_LABEL:
1104 addr = SYMBOL_VALUE_ADDRESS (sym);
1105 break;
1106 case LOC_BLOCK:
1107 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1108 break;
1109
1110 default:
1111 /* Nothing else will be listed in the minsyms -- no use looking
1112 it up. */
1113 return sym;
1114 }
1115
1116 fixup_section (&sym->ginfo, addr, objfile);
1117
1118 return sym;
1119 }
1120
1121 /* Compute the demangled form of NAME as used by the various symbol
1122 lookup functions. The result is stored in *RESULT_NAME. Returns a
1123 cleanup which can be used to clean up the result.
1124
1125 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1126 Normally, Ada symbol lookups are performed using the encoded name
1127 rather than the demangled name, and so it might seem to make sense
1128 for this function to return an encoded version of NAME.
1129 Unfortunately, we cannot do this, because this function is used in
1130 circumstances where it is not appropriate to try to encode NAME.
1131 For instance, when displaying the frame info, we demangle the name
1132 of each parameter, and then perform a symbol lookup inside our
1133 function using that demangled name. In Ada, certain functions
1134 have internally-generated parameters whose name contain uppercase
1135 characters. Encoding those name would result in those uppercase
1136 characters to become lowercase, and thus cause the symbol lookup
1137 to fail. */
1138
1139 struct cleanup *
1140 demangle_for_lookup (const char *name, enum language lang,
1141 const char **result_name)
1142 {
1143 char *demangled_name = NULL;
1144 const char *modified_name = NULL;
1145 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1146
1147 modified_name = name;
1148
1149 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1150 lookup, so we can always binary search. */
1151 if (lang == language_cplus)
1152 {
1153 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1154 if (demangled_name)
1155 {
1156 modified_name = demangled_name;
1157 make_cleanup (xfree, demangled_name);
1158 }
1159 else
1160 {
1161 /* If we were given a non-mangled name, canonicalize it
1162 according to the language (so far only for C++). */
1163 demangled_name = cp_canonicalize_string (name);
1164 if (demangled_name)
1165 {
1166 modified_name = demangled_name;
1167 make_cleanup (xfree, demangled_name);
1168 }
1169 }
1170 }
1171 else if (lang == language_java)
1172 {
1173 demangled_name = cplus_demangle (name,
1174 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1175 if (demangled_name)
1176 {
1177 modified_name = demangled_name;
1178 make_cleanup (xfree, demangled_name);
1179 }
1180 }
1181 else if (lang == language_d)
1182 {
1183 demangled_name = d_demangle (name, 0);
1184 if (demangled_name)
1185 {
1186 modified_name = demangled_name;
1187 make_cleanup (xfree, demangled_name);
1188 }
1189 }
1190 else if (lang == language_go)
1191 {
1192 demangled_name = go_demangle (name, 0);
1193 if (demangled_name)
1194 {
1195 modified_name = demangled_name;
1196 make_cleanup (xfree, demangled_name);
1197 }
1198 }
1199
1200 *result_name = modified_name;
1201 return cleanup;
1202 }
1203
1204 /* Find the definition for a specified symbol name NAME
1205 in domain DOMAIN, visible from lexical block BLOCK.
1206 Returns the struct symbol pointer, or zero if no symbol is found.
1207 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1208 NAME is a field of the current implied argument `this'. If so set
1209 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1210 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1211 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1212
1213 /* This function (or rather its subordinates) have a bunch of loops and
1214 it would seem to be attractive to put in some QUIT's (though I'm not really
1215 sure whether it can run long enough to be really important). But there
1216 are a few calls for which it would appear to be bad news to quit
1217 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1218 that there is C++ code below which can error(), but that probably
1219 doesn't affect these calls since they are looking for a known
1220 variable and thus can probably assume it will never hit the C++
1221 code). */
1222
1223 struct symbol *
1224 lookup_symbol_in_language (const char *name, const struct block *block,
1225 const domain_enum domain, enum language lang,
1226 int *is_a_field_of_this)
1227 {
1228 const char *modified_name;
1229 struct symbol *returnval;
1230 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1231
1232 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1233 is_a_field_of_this);
1234 do_cleanups (cleanup);
1235
1236 return returnval;
1237 }
1238
1239 /* Behave like lookup_symbol_in_language, but performed with the
1240 current language. */
1241
1242 struct symbol *
1243 lookup_symbol (const char *name, const struct block *block,
1244 domain_enum domain, int *is_a_field_of_this)
1245 {
1246 return lookup_symbol_in_language (name, block, domain,
1247 current_language->la_language,
1248 is_a_field_of_this);
1249 }
1250
1251 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1252 found, or NULL if not found. */
1253
1254 struct symbol *
1255 lookup_language_this (const struct language_defn *lang,
1256 const struct block *block)
1257 {
1258 if (lang->la_name_of_this == NULL || block == NULL)
1259 return NULL;
1260
1261 while (block)
1262 {
1263 struct symbol *sym;
1264
1265 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1266 if (sym != NULL)
1267 {
1268 block_found = block;
1269 return sym;
1270 }
1271 if (BLOCK_FUNCTION (block))
1272 break;
1273 block = BLOCK_SUPERBLOCK (block);
1274 }
1275
1276 return NULL;
1277 }
1278
1279 /* Behave like lookup_symbol except that NAME is the natural name
1280 (e.g., demangled name) of the symbol that we're looking for. */
1281
1282 static struct symbol *
1283 lookup_symbol_aux (const char *name, const struct block *block,
1284 const domain_enum domain, enum language language,
1285 int *is_a_field_of_this)
1286 {
1287 struct symbol *sym;
1288 const struct language_defn *langdef;
1289
1290 /* Make sure we do something sensible with is_a_field_of_this, since
1291 the callers that set this parameter to some non-null value will
1292 certainly use it later and expect it to be either 0 or 1.
1293 If we don't set it, the contents of is_a_field_of_this are
1294 undefined. */
1295 if (is_a_field_of_this != NULL)
1296 *is_a_field_of_this = 0;
1297
1298 /* Search specified block and its superiors. Don't search
1299 STATIC_BLOCK or GLOBAL_BLOCK. */
1300
1301 sym = lookup_symbol_aux_local (name, block, domain, language);
1302 if (sym != NULL)
1303 return sym;
1304
1305 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1306 check to see if NAME is a field of `this'. */
1307
1308 langdef = language_def (language);
1309
1310 if (is_a_field_of_this != NULL)
1311 {
1312 struct symbol *sym = lookup_language_this (langdef, block);
1313
1314 if (sym)
1315 {
1316 struct type *t = sym->type;
1317
1318 /* I'm not really sure that type of this can ever
1319 be typedefed; just be safe. */
1320 CHECK_TYPEDEF (t);
1321 if (TYPE_CODE (t) == TYPE_CODE_PTR
1322 || TYPE_CODE (t) == TYPE_CODE_REF)
1323 t = TYPE_TARGET_TYPE (t);
1324
1325 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1326 && TYPE_CODE (t) != TYPE_CODE_UNION)
1327 error (_("Internal error: `%s' is not an aggregate"),
1328 langdef->la_name_of_this);
1329
1330 if (check_field (t, name))
1331 {
1332 *is_a_field_of_this = 1;
1333 return NULL;
1334 }
1335 }
1336 }
1337
1338 /* Now do whatever is appropriate for LANGUAGE to look
1339 up static and global variables. */
1340
1341 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1342 if (sym != NULL)
1343 return sym;
1344
1345 /* Now search all static file-level symbols. Not strictly correct,
1346 but more useful than an error. */
1347
1348 return lookup_static_symbol_aux (name, domain);
1349 }
1350
1351 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1352 first, then check the psymtabs. If a psymtab indicates the existence of the
1353 desired name as a file-level static, then do psymtab-to-symtab conversion on
1354 the fly and return the found symbol. */
1355
1356 struct symbol *
1357 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1358 {
1359 struct objfile *objfile;
1360 struct symbol *sym;
1361
1362 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1363 if (sym != NULL)
1364 return sym;
1365
1366 ALL_OBJFILES (objfile)
1367 {
1368 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1369 if (sym != NULL)
1370 return sym;
1371 }
1372
1373 return NULL;
1374 }
1375
1376 /* Check to see if the symbol is defined in BLOCK or its superiors.
1377 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1378
1379 static struct symbol *
1380 lookup_symbol_aux_local (const char *name, const struct block *block,
1381 const domain_enum domain,
1382 enum language language)
1383 {
1384 struct symbol *sym;
1385 const struct block *static_block = block_static_block (block);
1386 const char *scope = block_scope (block);
1387
1388 /* Check if either no block is specified or it's a global block. */
1389
1390 if (static_block == NULL)
1391 return NULL;
1392
1393 while (block != static_block)
1394 {
1395 sym = lookup_symbol_aux_block (name, block, domain);
1396 if (sym != NULL)
1397 return sym;
1398
1399 if (language == language_cplus || language == language_fortran)
1400 {
1401 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1402 domain);
1403 if (sym != NULL)
1404 return sym;
1405 }
1406
1407 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1408 break;
1409 block = BLOCK_SUPERBLOCK (block);
1410 }
1411
1412 /* We've reached the edge of the function without finding a result. */
1413
1414 return NULL;
1415 }
1416
1417 /* Look up OBJFILE to BLOCK. */
1418
1419 struct objfile *
1420 lookup_objfile_from_block (const struct block *block)
1421 {
1422 struct objfile *obj;
1423 struct symtab *s;
1424
1425 if (block == NULL)
1426 return NULL;
1427
1428 block = block_global_block (block);
1429 /* Go through SYMTABS. */
1430 ALL_SYMTABS (obj, s)
1431 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1432 {
1433 if (obj->separate_debug_objfile_backlink)
1434 obj = obj->separate_debug_objfile_backlink;
1435
1436 return obj;
1437 }
1438
1439 return NULL;
1440 }
1441
1442 /* Look up a symbol in a block; if found, fixup the symbol, and set
1443 block_found appropriately. */
1444
1445 struct symbol *
1446 lookup_symbol_aux_block (const char *name, const struct block *block,
1447 const domain_enum domain)
1448 {
1449 struct symbol *sym;
1450
1451 sym = lookup_block_symbol (block, name, domain);
1452 if (sym)
1453 {
1454 block_found = block;
1455 return fixup_symbol_section (sym, NULL);
1456 }
1457
1458 return NULL;
1459 }
1460
1461 /* Check all global symbols in OBJFILE in symtabs and
1462 psymtabs. */
1463
1464 struct symbol *
1465 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1466 const char *name,
1467 const domain_enum domain)
1468 {
1469 const struct objfile *objfile;
1470 struct symbol *sym;
1471 struct blockvector *bv;
1472 const struct block *block;
1473 struct symtab *s;
1474
1475 for (objfile = main_objfile;
1476 objfile;
1477 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1478 {
1479 /* Go through symtabs. */
1480 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1481 {
1482 bv = BLOCKVECTOR (s);
1483 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1484 sym = lookup_block_symbol (block, name, domain);
1485 if (sym)
1486 {
1487 block_found = block;
1488 return fixup_symbol_section (sym, (struct objfile *)objfile);
1489 }
1490 }
1491
1492 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1493 name, domain);
1494 if (sym)
1495 return sym;
1496 }
1497
1498 return NULL;
1499 }
1500
1501 /* Check to see if the symbol is defined in one of the OBJFILE's
1502 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1503 depending on whether or not we want to search global symbols or
1504 static symbols. */
1505
1506 static struct symbol *
1507 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1508 const char *name, const domain_enum domain)
1509 {
1510 struct symbol *sym = NULL;
1511 struct blockvector *bv;
1512 const struct block *block;
1513 struct symtab *s;
1514
1515 if (objfile->sf)
1516 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1517 name, domain);
1518
1519 ALL_OBJFILE_SYMTABS (objfile, s)
1520 if (s->primary)
1521 {
1522 bv = BLOCKVECTOR (s);
1523 block = BLOCKVECTOR_BLOCK (bv, block_index);
1524 sym = lookup_block_symbol (block, name, domain);
1525 if (sym)
1526 {
1527 block_found = block;
1528 return fixup_symbol_section (sym, objfile);
1529 }
1530 }
1531
1532 return NULL;
1533 }
1534
1535 /* Same as lookup_symbol_aux_objfile, except that it searches all
1536 objfiles. Return the first match found. */
1537
1538 static struct symbol *
1539 lookup_symbol_aux_symtabs (int block_index, const char *name,
1540 const domain_enum domain)
1541 {
1542 struct symbol *sym;
1543 struct objfile *objfile;
1544
1545 ALL_OBJFILES (objfile)
1546 {
1547 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1548 if (sym)
1549 return sym;
1550 }
1551
1552 return NULL;
1553 }
1554
1555 /* A helper function for lookup_symbol_aux that interfaces with the
1556 "quick" symbol table functions. */
1557
1558 static struct symbol *
1559 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1560 const char *name, const domain_enum domain)
1561 {
1562 struct symtab *symtab;
1563 struct blockvector *bv;
1564 const struct block *block;
1565 struct symbol *sym;
1566
1567 if (!objfile->sf)
1568 return NULL;
1569 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1570 if (!symtab)
1571 return NULL;
1572
1573 bv = BLOCKVECTOR (symtab);
1574 block = BLOCKVECTOR_BLOCK (bv, kind);
1575 sym = lookup_block_symbol (block, name, domain);
1576 if (!sym)
1577 {
1578 /* This shouldn't be necessary, but as a last resort try
1579 looking in the statics even though the psymtab claimed
1580 the symbol was global, or vice-versa. It's possible
1581 that the psymtab gets it wrong in some cases. */
1582
1583 /* FIXME: carlton/2002-09-30: Should we really do that?
1584 If that happens, isn't it likely to be a GDB error, in
1585 which case we should fix the GDB error rather than
1586 silently dealing with it here? So I'd vote for
1587 removing the check for the symbol in the other
1588 block. */
1589 block = BLOCKVECTOR_BLOCK (bv,
1590 kind == GLOBAL_BLOCK ?
1591 STATIC_BLOCK : GLOBAL_BLOCK);
1592 sym = lookup_block_symbol (block, name, domain);
1593 if (!sym)
1594 error (_("\
1595 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1596 %s may be an inlined function, or may be a template function\n\
1597 (if a template, try specifying an instantiation: %s<type>)."),
1598 kind == GLOBAL_BLOCK ? "global" : "static",
1599 name, symtab->filename, name, name);
1600 }
1601 return fixup_symbol_section (sym, objfile);
1602 }
1603
1604 /* A default version of lookup_symbol_nonlocal for use by languages
1605 that can't think of anything better to do. This implements the C
1606 lookup rules. */
1607
1608 struct symbol *
1609 basic_lookup_symbol_nonlocal (const char *name,
1610 const struct block *block,
1611 const domain_enum domain)
1612 {
1613 struct symbol *sym;
1614
1615 /* NOTE: carlton/2003-05-19: The comments below were written when
1616 this (or what turned into this) was part of lookup_symbol_aux;
1617 I'm much less worried about these questions now, since these
1618 decisions have turned out well, but I leave these comments here
1619 for posterity. */
1620
1621 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1622 not it would be appropriate to search the current global block
1623 here as well. (That's what this code used to do before the
1624 is_a_field_of_this check was moved up.) On the one hand, it's
1625 redundant with the lookup_symbol_aux_symtabs search that happens
1626 next. On the other hand, if decode_line_1 is passed an argument
1627 like filename:var, then the user presumably wants 'var' to be
1628 searched for in filename. On the third hand, there shouldn't be
1629 multiple global variables all of which are named 'var', and it's
1630 not like decode_line_1 has ever restricted its search to only
1631 global variables in a single filename. All in all, only
1632 searching the static block here seems best: it's correct and it's
1633 cleanest. */
1634
1635 /* NOTE: carlton/2002-12-05: There's also a possible performance
1636 issue here: if you usually search for global symbols in the
1637 current file, then it would be slightly better to search the
1638 current global block before searching all the symtabs. But there
1639 are other factors that have a much greater effect on performance
1640 than that one, so I don't think we should worry about that for
1641 now. */
1642
1643 sym = lookup_symbol_static (name, block, domain);
1644 if (sym != NULL)
1645 return sym;
1646
1647 return lookup_symbol_global (name, block, domain);
1648 }
1649
1650 /* Lookup a symbol in the static block associated to BLOCK, if there
1651 is one; do nothing if BLOCK is NULL or a global block. */
1652
1653 struct symbol *
1654 lookup_symbol_static (const char *name,
1655 const struct block *block,
1656 const domain_enum domain)
1657 {
1658 const struct block *static_block = block_static_block (block);
1659
1660 if (static_block != NULL)
1661 return lookup_symbol_aux_block (name, static_block, domain);
1662 else
1663 return NULL;
1664 }
1665
1666 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1667
1668 struct global_sym_lookup_data
1669 {
1670 /* The name of the symbol we are searching for. */
1671 const char *name;
1672
1673 /* The domain to use for our search. */
1674 domain_enum domain;
1675
1676 /* The field where the callback should store the symbol if found.
1677 It should be initialized to NULL before the search is started. */
1678 struct symbol *result;
1679 };
1680
1681 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1682 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1683 OBJFILE. The arguments for the search are passed via CB_DATA,
1684 which in reality is a pointer to struct global_sym_lookup_data. */
1685
1686 static int
1687 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1688 void *cb_data)
1689 {
1690 struct global_sym_lookup_data *data =
1691 (struct global_sym_lookup_data *) cb_data;
1692
1693 gdb_assert (data->result == NULL);
1694
1695 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1696 data->name, data->domain);
1697 if (data->result == NULL)
1698 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1699 data->name, data->domain);
1700
1701 /* If we found a match, tell the iterator to stop. Otherwise,
1702 keep going. */
1703 return (data->result != NULL);
1704 }
1705
1706 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1707 necessary). */
1708
1709 struct symbol *
1710 lookup_symbol_global (const char *name,
1711 const struct block *block,
1712 const domain_enum domain)
1713 {
1714 struct symbol *sym = NULL;
1715 struct objfile *objfile = NULL;
1716 struct global_sym_lookup_data lookup_data;
1717
1718 /* Call library-specific lookup procedure. */
1719 objfile = lookup_objfile_from_block (block);
1720 if (objfile != NULL)
1721 sym = solib_global_lookup (objfile, name, domain);
1722 if (sym != NULL)
1723 return sym;
1724
1725 memset (&lookup_data, 0, sizeof (lookup_data));
1726 lookup_data.name = name;
1727 lookup_data.domain = domain;
1728 gdbarch_iterate_over_objfiles_in_search_order
1729 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch,
1730 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1731
1732 return lookup_data.result;
1733 }
1734
1735 int
1736 symbol_matches_domain (enum language symbol_language,
1737 domain_enum symbol_domain,
1738 domain_enum domain)
1739 {
1740 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1741 A Java class declaration also defines a typedef for the class.
1742 Similarly, any Ada type declaration implicitly defines a typedef. */
1743 if (symbol_language == language_cplus
1744 || symbol_language == language_d
1745 || symbol_language == language_java
1746 || symbol_language == language_ada)
1747 {
1748 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1749 && symbol_domain == STRUCT_DOMAIN)
1750 return 1;
1751 }
1752 /* For all other languages, strict match is required. */
1753 return (symbol_domain == domain);
1754 }
1755
1756 /* Look up a type named NAME in the struct_domain. The type returned
1757 must not be opaque -- i.e., must have at least one field
1758 defined. */
1759
1760 struct type *
1761 lookup_transparent_type (const char *name)
1762 {
1763 return current_language->la_lookup_transparent_type (name);
1764 }
1765
1766 /* A helper for basic_lookup_transparent_type that interfaces with the
1767 "quick" symbol table functions. */
1768
1769 static struct type *
1770 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1771 const char *name)
1772 {
1773 struct symtab *symtab;
1774 struct blockvector *bv;
1775 struct block *block;
1776 struct symbol *sym;
1777
1778 if (!objfile->sf)
1779 return NULL;
1780 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1781 if (!symtab)
1782 return NULL;
1783
1784 bv = BLOCKVECTOR (symtab);
1785 block = BLOCKVECTOR_BLOCK (bv, kind);
1786 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1787 if (!sym)
1788 {
1789 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1790
1791 /* This shouldn't be necessary, but as a last resort
1792 * try looking in the 'other kind' even though the psymtab
1793 * claimed the symbol was one thing. It's possible that
1794 * the psymtab gets it wrong in some cases.
1795 */
1796 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1797 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1798 if (!sym)
1799 /* FIXME; error is wrong in one case. */
1800 error (_("\
1801 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1802 %s may be an inlined function, or may be a template function\n\
1803 (if a template, try specifying an instantiation: %s<type>)."),
1804 name, symtab->filename, name, name);
1805 }
1806 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1807 return SYMBOL_TYPE (sym);
1808
1809 return NULL;
1810 }
1811
1812 /* The standard implementation of lookup_transparent_type. This code
1813 was modeled on lookup_symbol -- the parts not relevant to looking
1814 up types were just left out. In particular it's assumed here that
1815 types are available in struct_domain and only at file-static or
1816 global blocks. */
1817
1818 struct type *
1819 basic_lookup_transparent_type (const char *name)
1820 {
1821 struct symbol *sym;
1822 struct symtab *s = NULL;
1823 struct blockvector *bv;
1824 struct objfile *objfile;
1825 struct block *block;
1826 struct type *t;
1827
1828 /* Now search all the global symbols. Do the symtab's first, then
1829 check the psymtab's. If a psymtab indicates the existence
1830 of the desired name as a global, then do psymtab-to-symtab
1831 conversion on the fly and return the found symbol. */
1832
1833 ALL_OBJFILES (objfile)
1834 {
1835 if (objfile->sf)
1836 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1837 GLOBAL_BLOCK,
1838 name, STRUCT_DOMAIN);
1839
1840 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1841 {
1842 bv = BLOCKVECTOR (s);
1843 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1844 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1845 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1846 {
1847 return SYMBOL_TYPE (sym);
1848 }
1849 }
1850 }
1851
1852 ALL_OBJFILES (objfile)
1853 {
1854 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1855 if (t)
1856 return t;
1857 }
1858
1859 /* Now search the static file-level symbols.
1860 Not strictly correct, but more useful than an error.
1861 Do the symtab's first, then
1862 check the psymtab's. If a psymtab indicates the existence
1863 of the desired name as a file-level static, then do psymtab-to-symtab
1864 conversion on the fly and return the found symbol. */
1865
1866 ALL_OBJFILES (objfile)
1867 {
1868 if (objfile->sf)
1869 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1870 name, STRUCT_DOMAIN);
1871
1872 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1873 {
1874 bv = BLOCKVECTOR (s);
1875 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1876 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1877 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1878 {
1879 return SYMBOL_TYPE (sym);
1880 }
1881 }
1882 }
1883
1884 ALL_OBJFILES (objfile)
1885 {
1886 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1887 if (t)
1888 return t;
1889 }
1890
1891 return (struct type *) 0;
1892 }
1893
1894 /* Find the name of the file containing main(). */
1895 /* FIXME: What about languages without main() or specially linked
1896 executables that have no main() ? */
1897
1898 const char *
1899 find_main_filename (void)
1900 {
1901 struct objfile *objfile;
1902 char *name = main_name ();
1903
1904 ALL_OBJFILES (objfile)
1905 {
1906 const char *result;
1907
1908 if (!objfile->sf)
1909 continue;
1910 result = objfile->sf->qf->find_symbol_file (objfile, name);
1911 if (result)
1912 return result;
1913 }
1914 return (NULL);
1915 }
1916
1917 /* Search BLOCK for symbol NAME in DOMAIN.
1918
1919 Note that if NAME is the demangled form of a C++ symbol, we will fail
1920 to find a match during the binary search of the non-encoded names, but
1921 for now we don't worry about the slight inefficiency of looking for
1922 a match we'll never find, since it will go pretty quick. Once the
1923 binary search terminates, we drop through and do a straight linear
1924 search on the symbols. Each symbol which is marked as being a ObjC/C++
1925 symbol (language_cplus or language_objc set) has both the encoded and
1926 non-encoded names tested for a match. */
1927
1928 struct symbol *
1929 lookup_block_symbol (const struct block *block, const char *name,
1930 const domain_enum domain)
1931 {
1932 struct block_iterator iter;
1933 struct symbol *sym;
1934
1935 if (!BLOCK_FUNCTION (block))
1936 {
1937 for (sym = block_iter_name_first (block, name, &iter);
1938 sym != NULL;
1939 sym = block_iter_name_next (name, &iter))
1940 {
1941 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1942 SYMBOL_DOMAIN (sym), domain))
1943 return sym;
1944 }
1945 return NULL;
1946 }
1947 else
1948 {
1949 /* Note that parameter symbols do not always show up last in the
1950 list; this loop makes sure to take anything else other than
1951 parameter symbols first; it only uses parameter symbols as a
1952 last resort. Note that this only takes up extra computation
1953 time on a match. */
1954
1955 struct symbol *sym_found = NULL;
1956
1957 for (sym = block_iter_name_first (block, name, &iter);
1958 sym != NULL;
1959 sym = block_iter_name_next (name, &iter))
1960 {
1961 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1962 SYMBOL_DOMAIN (sym), domain))
1963 {
1964 sym_found = sym;
1965 if (!SYMBOL_IS_ARGUMENT (sym))
1966 {
1967 break;
1968 }
1969 }
1970 }
1971 return (sym_found); /* Will be NULL if not found. */
1972 }
1973 }
1974
1975 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
1976 BLOCK.
1977
1978 For each symbol that matches, CALLBACK is called. The symbol and
1979 DATA are passed to the callback.
1980
1981 If CALLBACK returns zero, the iteration ends. Otherwise, the
1982 search continues. This function iterates upward through blocks.
1983 When the outermost block has been finished, the function
1984 returns. */
1985
1986 void
1987 iterate_over_symbols (const struct block *block, const char *name,
1988 const domain_enum domain,
1989 symbol_found_callback_ftype *callback,
1990 void *data)
1991 {
1992 while (block)
1993 {
1994 struct block_iterator iter;
1995 struct symbol *sym;
1996
1997 for (sym = block_iter_name_first (block, name, &iter);
1998 sym != NULL;
1999 sym = block_iter_name_next (name, &iter))
2000 {
2001 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2002 SYMBOL_DOMAIN (sym), domain))
2003 {
2004 if (!callback (sym, data))
2005 return;
2006 }
2007 }
2008
2009 block = BLOCK_SUPERBLOCK (block);
2010 }
2011 }
2012
2013 /* Find the symtab associated with PC and SECTION. Look through the
2014 psymtabs and read in another symtab if necessary. */
2015
2016 struct symtab *
2017 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2018 {
2019 struct block *b;
2020 struct blockvector *bv;
2021 struct symtab *s = NULL;
2022 struct symtab *best_s = NULL;
2023 struct objfile *objfile;
2024 struct program_space *pspace;
2025 CORE_ADDR distance = 0;
2026 struct minimal_symbol *msymbol;
2027
2028 pspace = current_program_space;
2029
2030 /* If we know that this is not a text address, return failure. This is
2031 necessary because we loop based on the block's high and low code
2032 addresses, which do not include the data ranges, and because
2033 we call find_pc_sect_psymtab which has a similar restriction based
2034 on the partial_symtab's texthigh and textlow. */
2035 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2036 if (msymbol
2037 && (MSYMBOL_TYPE (msymbol) == mst_data
2038 || MSYMBOL_TYPE (msymbol) == mst_bss
2039 || MSYMBOL_TYPE (msymbol) == mst_abs
2040 || MSYMBOL_TYPE (msymbol) == mst_file_data
2041 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2042 return NULL;
2043
2044 /* Search all symtabs for the one whose file contains our address, and which
2045 is the smallest of all the ones containing the address. This is designed
2046 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2047 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2048 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2049
2050 This happens for native ecoff format, where code from included files
2051 gets its own symtab. The symtab for the included file should have
2052 been read in already via the dependency mechanism.
2053 It might be swifter to create several symtabs with the same name
2054 like xcoff does (I'm not sure).
2055
2056 It also happens for objfiles that have their functions reordered.
2057 For these, the symtab we are looking for is not necessarily read in. */
2058
2059 ALL_PRIMARY_SYMTABS (objfile, s)
2060 {
2061 bv = BLOCKVECTOR (s);
2062 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2063
2064 if (BLOCK_START (b) <= pc
2065 && BLOCK_END (b) > pc
2066 && (distance == 0
2067 || BLOCK_END (b) - BLOCK_START (b) < distance))
2068 {
2069 /* For an objfile that has its functions reordered,
2070 find_pc_psymtab will find the proper partial symbol table
2071 and we simply return its corresponding symtab. */
2072 /* In order to better support objfiles that contain both
2073 stabs and coff debugging info, we continue on if a psymtab
2074 can't be found. */
2075 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2076 {
2077 struct symtab *result;
2078
2079 result
2080 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2081 msymbol,
2082 pc, section,
2083 0);
2084 if (result)
2085 return result;
2086 }
2087 if (section != 0)
2088 {
2089 struct block_iterator iter;
2090 struct symbol *sym = NULL;
2091
2092 ALL_BLOCK_SYMBOLS (b, iter, sym)
2093 {
2094 fixup_symbol_section (sym, objfile);
2095 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2096 break;
2097 }
2098 if (sym == NULL)
2099 continue; /* No symbol in this symtab matches
2100 section. */
2101 }
2102 distance = BLOCK_END (b) - BLOCK_START (b);
2103 best_s = s;
2104 }
2105 }
2106
2107 if (best_s != NULL)
2108 return (best_s);
2109
2110 ALL_OBJFILES (objfile)
2111 {
2112 struct symtab *result;
2113
2114 if (!objfile->sf)
2115 continue;
2116 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2117 msymbol,
2118 pc, section,
2119 1);
2120 if (result)
2121 return result;
2122 }
2123
2124 return NULL;
2125 }
2126
2127 /* Find the symtab associated with PC. Look through the psymtabs and read
2128 in another symtab if necessary. Backward compatibility, no section. */
2129
2130 struct symtab *
2131 find_pc_symtab (CORE_ADDR pc)
2132 {
2133 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2134 }
2135 \f
2136
2137 /* Find the source file and line number for a given PC value and SECTION.
2138 Return a structure containing a symtab pointer, a line number,
2139 and a pc range for the entire source line.
2140 The value's .pc field is NOT the specified pc.
2141 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2142 use the line that ends there. Otherwise, in that case, the line
2143 that begins there is used. */
2144
2145 /* The big complication here is that a line may start in one file, and end just
2146 before the start of another file. This usually occurs when you #include
2147 code in the middle of a subroutine. To properly find the end of a line's PC
2148 range, we must search all symtabs associated with this compilation unit, and
2149 find the one whose first PC is closer than that of the next line in this
2150 symtab. */
2151
2152 /* If it's worth the effort, we could be using a binary search. */
2153
2154 struct symtab_and_line
2155 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2156 {
2157 struct symtab *s;
2158 struct linetable *l;
2159 int len;
2160 int i;
2161 struct linetable_entry *item;
2162 struct symtab_and_line val;
2163 struct blockvector *bv;
2164 struct minimal_symbol *msymbol;
2165 struct minimal_symbol *mfunsym;
2166 struct objfile *objfile;
2167
2168 /* Info on best line seen so far, and where it starts, and its file. */
2169
2170 struct linetable_entry *best = NULL;
2171 CORE_ADDR best_end = 0;
2172 struct symtab *best_symtab = 0;
2173
2174 /* Store here the first line number
2175 of a file which contains the line at the smallest pc after PC.
2176 If we don't find a line whose range contains PC,
2177 we will use a line one less than this,
2178 with a range from the start of that file to the first line's pc. */
2179 struct linetable_entry *alt = NULL;
2180 struct symtab *alt_symtab = 0;
2181
2182 /* Info on best line seen in this file. */
2183
2184 struct linetable_entry *prev;
2185
2186 /* If this pc is not from the current frame,
2187 it is the address of the end of a call instruction.
2188 Quite likely that is the start of the following statement.
2189 But what we want is the statement containing the instruction.
2190 Fudge the pc to make sure we get that. */
2191
2192 init_sal (&val); /* initialize to zeroes */
2193
2194 val.pspace = current_program_space;
2195
2196 /* It's tempting to assume that, if we can't find debugging info for
2197 any function enclosing PC, that we shouldn't search for line
2198 number info, either. However, GAS can emit line number info for
2199 assembly files --- very helpful when debugging hand-written
2200 assembly code. In such a case, we'd have no debug info for the
2201 function, but we would have line info. */
2202
2203 if (notcurrent)
2204 pc -= 1;
2205
2206 /* elz: added this because this function returned the wrong
2207 information if the pc belongs to a stub (import/export)
2208 to call a shlib function. This stub would be anywhere between
2209 two functions in the target, and the line info was erroneously
2210 taken to be the one of the line before the pc. */
2211
2212 /* RT: Further explanation:
2213
2214 * We have stubs (trampolines) inserted between procedures.
2215 *
2216 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2217 * exists in the main image.
2218 *
2219 * In the minimal symbol table, we have a bunch of symbols
2220 * sorted by start address. The stubs are marked as "trampoline",
2221 * the others appear as text. E.g.:
2222 *
2223 * Minimal symbol table for main image
2224 * main: code for main (text symbol)
2225 * shr1: stub (trampoline symbol)
2226 * foo: code for foo (text symbol)
2227 * ...
2228 * Minimal symbol table for "shr1" image:
2229 * ...
2230 * shr1: code for shr1 (text symbol)
2231 * ...
2232 *
2233 * So the code below is trying to detect if we are in the stub
2234 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2235 * and if found, do the symbolization from the real-code address
2236 * rather than the stub address.
2237 *
2238 * Assumptions being made about the minimal symbol table:
2239 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2240 * if we're really in the trampoline.s If we're beyond it (say
2241 * we're in "foo" in the above example), it'll have a closer
2242 * symbol (the "foo" text symbol for example) and will not
2243 * return the trampoline.
2244 * 2. lookup_minimal_symbol_text() will find a real text symbol
2245 * corresponding to the trampoline, and whose address will
2246 * be different than the trampoline address. I put in a sanity
2247 * check for the address being the same, to avoid an
2248 * infinite recursion.
2249 */
2250 msymbol = lookup_minimal_symbol_by_pc (pc);
2251 if (msymbol != NULL)
2252 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2253 {
2254 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2255 NULL);
2256 if (mfunsym == NULL)
2257 /* I eliminated this warning since it is coming out
2258 * in the following situation:
2259 * gdb shmain // test program with shared libraries
2260 * (gdb) break shr1 // function in shared lib
2261 * Warning: In stub for ...
2262 * In the above situation, the shared lib is not loaded yet,
2263 * so of course we can't find the real func/line info,
2264 * but the "break" still works, and the warning is annoying.
2265 * So I commented out the warning. RT */
2266 /* warning ("In stub for %s; unable to find real function/line info",
2267 SYMBOL_LINKAGE_NAME (msymbol)); */
2268 ;
2269 /* fall through */
2270 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2271 == SYMBOL_VALUE_ADDRESS (msymbol))
2272 /* Avoid infinite recursion */
2273 /* See above comment about why warning is commented out. */
2274 /* warning ("In stub for %s; unable to find real function/line info",
2275 SYMBOL_LINKAGE_NAME (msymbol)); */
2276 ;
2277 /* fall through */
2278 else
2279 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2280 }
2281
2282
2283 s = find_pc_sect_symtab (pc, section);
2284 if (!s)
2285 {
2286 /* If no symbol information, return previous pc. */
2287 if (notcurrent)
2288 pc++;
2289 val.pc = pc;
2290 return val;
2291 }
2292
2293 bv = BLOCKVECTOR (s);
2294 objfile = s->objfile;
2295
2296 /* Look at all the symtabs that share this blockvector.
2297 They all have the same apriori range, that we found was right;
2298 but they have different line tables. */
2299
2300 ALL_OBJFILE_SYMTABS (objfile, s)
2301 {
2302 if (BLOCKVECTOR (s) != bv)
2303 continue;
2304
2305 /* Find the best line in this symtab. */
2306 l = LINETABLE (s);
2307 if (!l)
2308 continue;
2309 len = l->nitems;
2310 if (len <= 0)
2311 {
2312 /* I think len can be zero if the symtab lacks line numbers
2313 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2314 I'm not sure which, and maybe it depends on the symbol
2315 reader). */
2316 continue;
2317 }
2318
2319 prev = NULL;
2320 item = l->item; /* Get first line info. */
2321
2322 /* Is this file's first line closer than the first lines of other files?
2323 If so, record this file, and its first line, as best alternate. */
2324 if (item->pc > pc && (!alt || item->pc < alt->pc))
2325 {
2326 alt = item;
2327 alt_symtab = s;
2328 }
2329
2330 for (i = 0; i < len; i++, item++)
2331 {
2332 /* Leave prev pointing to the linetable entry for the last line
2333 that started at or before PC. */
2334 if (item->pc > pc)
2335 break;
2336
2337 prev = item;
2338 }
2339
2340 /* At this point, prev points at the line whose start addr is <= pc, and
2341 item points at the next line. If we ran off the end of the linetable
2342 (pc >= start of the last line), then prev == item. If pc < start of
2343 the first line, prev will not be set. */
2344
2345 /* Is this file's best line closer than the best in the other files?
2346 If so, record this file, and its best line, as best so far. Don't
2347 save prev if it represents the end of a function (i.e. line number
2348 0) instead of a real line. */
2349
2350 if (prev && prev->line && (!best || prev->pc > best->pc))
2351 {
2352 best = prev;
2353 best_symtab = s;
2354
2355 /* Discard BEST_END if it's before the PC of the current BEST. */
2356 if (best_end <= best->pc)
2357 best_end = 0;
2358 }
2359
2360 /* If another line (denoted by ITEM) is in the linetable and its
2361 PC is after BEST's PC, but before the current BEST_END, then
2362 use ITEM's PC as the new best_end. */
2363 if (best && i < len && item->pc > best->pc
2364 && (best_end == 0 || best_end > item->pc))
2365 best_end = item->pc;
2366 }
2367
2368 if (!best_symtab)
2369 {
2370 /* If we didn't find any line number info, just return zeros.
2371 We used to return alt->line - 1 here, but that could be
2372 anywhere; if we don't have line number info for this PC,
2373 don't make some up. */
2374 val.pc = pc;
2375 }
2376 else if (best->line == 0)
2377 {
2378 /* If our best fit is in a range of PC's for which no line
2379 number info is available (line number is zero) then we didn't
2380 find any valid line information. */
2381 val.pc = pc;
2382 }
2383 else
2384 {
2385 val.symtab = best_symtab;
2386 val.line = best->line;
2387 val.pc = best->pc;
2388 if (best_end && (!alt || best_end < alt->pc))
2389 val.end = best_end;
2390 else if (alt)
2391 val.end = alt->pc;
2392 else
2393 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2394 }
2395 val.section = section;
2396 return val;
2397 }
2398
2399 /* Backward compatibility (no section). */
2400
2401 struct symtab_and_line
2402 find_pc_line (CORE_ADDR pc, int notcurrent)
2403 {
2404 struct obj_section *section;
2405
2406 section = find_pc_overlay (pc);
2407 if (pc_in_unmapped_range (pc, section))
2408 pc = overlay_mapped_address (pc, section);
2409 return find_pc_sect_line (pc, section, notcurrent);
2410 }
2411 \f
2412 /* Find line number LINE in any symtab whose name is the same as
2413 SYMTAB.
2414
2415 If found, return the symtab that contains the linetable in which it was
2416 found, set *INDEX to the index in the linetable of the best entry
2417 found, and set *EXACT_MATCH nonzero if the value returned is an
2418 exact match.
2419
2420 If not found, return NULL. */
2421
2422 struct symtab *
2423 find_line_symtab (struct symtab *symtab, int line,
2424 int *index, int *exact_match)
2425 {
2426 int exact = 0; /* Initialized here to avoid a compiler warning. */
2427
2428 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2429 so far seen. */
2430
2431 int best_index;
2432 struct linetable *best_linetable;
2433 struct symtab *best_symtab;
2434
2435 /* First try looking it up in the given symtab. */
2436 best_linetable = LINETABLE (symtab);
2437 best_symtab = symtab;
2438 best_index = find_line_common (best_linetable, line, &exact, 0);
2439 if (best_index < 0 || !exact)
2440 {
2441 /* Didn't find an exact match. So we better keep looking for
2442 another symtab with the same name. In the case of xcoff,
2443 multiple csects for one source file (produced by IBM's FORTRAN
2444 compiler) produce multiple symtabs (this is unavoidable
2445 assuming csects can be at arbitrary places in memory and that
2446 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2447
2448 /* BEST is the smallest linenumber > LINE so far seen,
2449 or 0 if none has been seen so far.
2450 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2451 int best;
2452
2453 struct objfile *objfile;
2454 struct symtab *s;
2455
2456 if (best_index >= 0)
2457 best = best_linetable->item[best_index].line;
2458 else
2459 best = 0;
2460
2461 ALL_OBJFILES (objfile)
2462 {
2463 if (objfile->sf)
2464 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2465 symtab->filename);
2466 }
2467
2468 /* Get symbol full file name if possible. */
2469 symtab_to_fullname (symtab);
2470
2471 ALL_SYMTABS (objfile, s)
2472 {
2473 struct linetable *l;
2474 int ind;
2475
2476 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2477 continue;
2478 if (symtab->fullname != NULL
2479 && symtab_to_fullname (s) != NULL
2480 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2481 continue;
2482 l = LINETABLE (s);
2483 ind = find_line_common (l, line, &exact, 0);
2484 if (ind >= 0)
2485 {
2486 if (exact)
2487 {
2488 best_index = ind;
2489 best_linetable = l;
2490 best_symtab = s;
2491 goto done;
2492 }
2493 if (best == 0 || l->item[ind].line < best)
2494 {
2495 best = l->item[ind].line;
2496 best_index = ind;
2497 best_linetable = l;
2498 best_symtab = s;
2499 }
2500 }
2501 }
2502 }
2503 done:
2504 if (best_index < 0)
2505 return NULL;
2506
2507 if (index)
2508 *index = best_index;
2509 if (exact_match)
2510 *exact_match = exact;
2511
2512 return best_symtab;
2513 }
2514
2515 /* Given SYMTAB, returns all the PCs function in the symtab that
2516 exactly match LINE. Returns NULL if there are no exact matches,
2517 but updates BEST_ITEM in this case. */
2518
2519 VEC (CORE_ADDR) *
2520 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2521 struct linetable_entry **best_item)
2522 {
2523 int start = 0, ix;
2524 struct symbol *previous_function = NULL;
2525 VEC (CORE_ADDR) *result = NULL;
2526
2527 /* First, collect all the PCs that are at this line. */
2528 while (1)
2529 {
2530 int was_exact;
2531 int idx;
2532
2533 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2534 if (idx < 0)
2535 break;
2536
2537 if (!was_exact)
2538 {
2539 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2540
2541 if (*best_item == NULL || item->line < (*best_item)->line)
2542 *best_item = item;
2543
2544 break;
2545 }
2546
2547 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2548 start = idx + 1;
2549 }
2550
2551 return result;
2552 }
2553
2554 \f
2555 /* Set the PC value for a given source file and line number and return true.
2556 Returns zero for invalid line number (and sets the PC to 0).
2557 The source file is specified with a struct symtab. */
2558
2559 int
2560 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2561 {
2562 struct linetable *l;
2563 int ind;
2564
2565 *pc = 0;
2566 if (symtab == 0)
2567 return 0;
2568
2569 symtab = find_line_symtab (symtab, line, &ind, NULL);
2570 if (symtab != NULL)
2571 {
2572 l = LINETABLE (symtab);
2573 *pc = l->item[ind].pc;
2574 return 1;
2575 }
2576 else
2577 return 0;
2578 }
2579
2580 /* Find the range of pc values in a line.
2581 Store the starting pc of the line into *STARTPTR
2582 and the ending pc (start of next line) into *ENDPTR.
2583 Returns 1 to indicate success.
2584 Returns 0 if could not find the specified line. */
2585
2586 int
2587 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2588 CORE_ADDR *endptr)
2589 {
2590 CORE_ADDR startaddr;
2591 struct symtab_and_line found_sal;
2592
2593 startaddr = sal.pc;
2594 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2595 return 0;
2596
2597 /* This whole function is based on address. For example, if line 10 has
2598 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2599 "info line *0x123" should say the line goes from 0x100 to 0x200
2600 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2601 This also insures that we never give a range like "starts at 0x134
2602 and ends at 0x12c". */
2603
2604 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2605 if (found_sal.line != sal.line)
2606 {
2607 /* The specified line (sal) has zero bytes. */
2608 *startptr = found_sal.pc;
2609 *endptr = found_sal.pc;
2610 }
2611 else
2612 {
2613 *startptr = found_sal.pc;
2614 *endptr = found_sal.end;
2615 }
2616 return 1;
2617 }
2618
2619 /* Given a line table and a line number, return the index into the line
2620 table for the pc of the nearest line whose number is >= the specified one.
2621 Return -1 if none is found. The value is >= 0 if it is an index.
2622 START is the index at which to start searching the line table.
2623
2624 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2625
2626 static int
2627 find_line_common (struct linetable *l, int lineno,
2628 int *exact_match, int start)
2629 {
2630 int i;
2631 int len;
2632
2633 /* BEST is the smallest linenumber > LINENO so far seen,
2634 or 0 if none has been seen so far.
2635 BEST_INDEX identifies the item for it. */
2636
2637 int best_index = -1;
2638 int best = 0;
2639
2640 *exact_match = 0;
2641
2642 if (lineno <= 0)
2643 return -1;
2644 if (l == 0)
2645 return -1;
2646
2647 len = l->nitems;
2648 for (i = start; i < len; i++)
2649 {
2650 struct linetable_entry *item = &(l->item[i]);
2651
2652 if (item->line == lineno)
2653 {
2654 /* Return the first (lowest address) entry which matches. */
2655 *exact_match = 1;
2656 return i;
2657 }
2658
2659 if (item->line > lineno && (best == 0 || item->line < best))
2660 {
2661 best = item->line;
2662 best_index = i;
2663 }
2664 }
2665
2666 /* If we got here, we didn't get an exact match. */
2667 return best_index;
2668 }
2669
2670 int
2671 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2672 {
2673 struct symtab_and_line sal;
2674
2675 sal = find_pc_line (pc, 0);
2676 *startptr = sal.pc;
2677 *endptr = sal.end;
2678 return sal.symtab != 0;
2679 }
2680
2681 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2682 address for that function that has an entry in SYMTAB's line info
2683 table. If such an entry cannot be found, return FUNC_ADDR
2684 unaltered. */
2685
2686 static CORE_ADDR
2687 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2688 {
2689 CORE_ADDR func_start, func_end;
2690 struct linetable *l;
2691 int i;
2692
2693 /* Give up if this symbol has no lineinfo table. */
2694 l = LINETABLE (symtab);
2695 if (l == NULL)
2696 return func_addr;
2697
2698 /* Get the range for the function's PC values, or give up if we
2699 cannot, for some reason. */
2700 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2701 return func_addr;
2702
2703 /* Linetable entries are ordered by PC values, see the commentary in
2704 symtab.h where `struct linetable' is defined. Thus, the first
2705 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2706 address we are looking for. */
2707 for (i = 0; i < l->nitems; i++)
2708 {
2709 struct linetable_entry *item = &(l->item[i]);
2710
2711 /* Don't use line numbers of zero, they mark special entries in
2712 the table. See the commentary on symtab.h before the
2713 definition of struct linetable. */
2714 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2715 return item->pc;
2716 }
2717
2718 return func_addr;
2719 }
2720
2721 /* Given a function symbol SYM, find the symtab and line for the start
2722 of the function.
2723 If the argument FUNFIRSTLINE is nonzero, we want the first line
2724 of real code inside the function. */
2725
2726 struct symtab_and_line
2727 find_function_start_sal (struct symbol *sym, int funfirstline)
2728 {
2729 struct symtab_and_line sal;
2730
2731 fixup_symbol_section (sym, NULL);
2732 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2733 SYMBOL_OBJ_SECTION (sym), 0);
2734
2735 /* We always should have a line for the function start address.
2736 If we don't, something is odd. Create a plain SAL refering
2737 just the PC and hope that skip_prologue_sal (if requested)
2738 can find a line number for after the prologue. */
2739 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2740 {
2741 init_sal (&sal);
2742 sal.pspace = current_program_space;
2743 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2744 sal.section = SYMBOL_OBJ_SECTION (sym);
2745 }
2746
2747 if (funfirstline)
2748 skip_prologue_sal (&sal);
2749
2750 return sal;
2751 }
2752
2753 /* Adjust SAL to the first instruction past the function prologue.
2754 If the PC was explicitly specified, the SAL is not changed.
2755 If the line number was explicitly specified, at most the SAL's PC
2756 is updated. If SAL is already past the prologue, then do nothing. */
2757
2758 void
2759 skip_prologue_sal (struct symtab_and_line *sal)
2760 {
2761 struct symbol *sym;
2762 struct symtab_and_line start_sal;
2763 struct cleanup *old_chain;
2764 CORE_ADDR pc, saved_pc;
2765 struct obj_section *section;
2766 const char *name;
2767 struct objfile *objfile;
2768 struct gdbarch *gdbarch;
2769 struct block *b, *function_block;
2770 int force_skip, skip;
2771
2772 /* Do not change the SAL is PC was specified explicitly. */
2773 if (sal->explicit_pc)
2774 return;
2775
2776 old_chain = save_current_space_and_thread ();
2777 switch_to_program_space_and_thread (sal->pspace);
2778
2779 sym = find_pc_sect_function (sal->pc, sal->section);
2780 if (sym != NULL)
2781 {
2782 fixup_symbol_section (sym, NULL);
2783
2784 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2785 section = SYMBOL_OBJ_SECTION (sym);
2786 name = SYMBOL_LINKAGE_NAME (sym);
2787 objfile = SYMBOL_SYMTAB (sym)->objfile;
2788 }
2789 else
2790 {
2791 struct minimal_symbol *msymbol
2792 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2793
2794 if (msymbol == NULL)
2795 {
2796 do_cleanups (old_chain);
2797 return;
2798 }
2799
2800 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2801 section = SYMBOL_OBJ_SECTION (msymbol);
2802 name = SYMBOL_LINKAGE_NAME (msymbol);
2803 objfile = msymbol_objfile (msymbol);
2804 }
2805
2806 gdbarch = get_objfile_arch (objfile);
2807
2808 /* Process the prologue in two passes. In the first pass try to skip the
2809 prologue (SKIP is true) and verify there is a real need for it (indicated
2810 by FORCE_SKIP). If no such reason was found run a second pass where the
2811 prologue is not skipped (SKIP is false). */
2812
2813 skip = 1;
2814 force_skip = 1;
2815
2816 /* Be conservative - allow direct PC (without skipping prologue) only if we
2817 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2818 have to be set by the caller so we use SYM instead. */
2819 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2820 force_skip = 0;
2821
2822 saved_pc = pc;
2823 do
2824 {
2825 pc = saved_pc;
2826
2827 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2828 so that gdbarch_skip_prologue has something unique to work on. */
2829 if (section_is_overlay (section) && !section_is_mapped (section))
2830 pc = overlay_unmapped_address (pc, section);
2831
2832 /* Skip "first line" of function (which is actually its prologue). */
2833 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2834 if (skip)
2835 pc = gdbarch_skip_prologue (gdbarch, pc);
2836
2837 /* For overlays, map pc back into its mapped VMA range. */
2838 pc = overlay_mapped_address (pc, section);
2839
2840 /* Calculate line number. */
2841 start_sal = find_pc_sect_line (pc, section, 0);
2842
2843 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2844 line is still part of the same function. */
2845 if (skip && start_sal.pc != pc
2846 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2847 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2848 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2849 == lookup_minimal_symbol_by_pc_section (pc, section))))
2850 {
2851 /* First pc of next line */
2852 pc = start_sal.end;
2853 /* Recalculate the line number (might not be N+1). */
2854 start_sal = find_pc_sect_line (pc, section, 0);
2855 }
2856
2857 /* On targets with executable formats that don't have a concept of
2858 constructors (ELF with .init has, PE doesn't), gcc emits a call
2859 to `__main' in `main' between the prologue and before user
2860 code. */
2861 if (gdbarch_skip_main_prologue_p (gdbarch)
2862 && name && strcmp_iw (name, "main") == 0)
2863 {
2864 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2865 /* Recalculate the line number (might not be N+1). */
2866 start_sal = find_pc_sect_line (pc, section, 0);
2867 force_skip = 1;
2868 }
2869 }
2870 while (!force_skip && skip--);
2871
2872 /* If we still don't have a valid source line, try to find the first
2873 PC in the lineinfo table that belongs to the same function. This
2874 happens with COFF debug info, which does not seem to have an
2875 entry in lineinfo table for the code after the prologue which has
2876 no direct relation to source. For example, this was found to be
2877 the case with the DJGPP target using "gcc -gcoff" when the
2878 compiler inserted code after the prologue to make sure the stack
2879 is aligned. */
2880 if (!force_skip && sym && start_sal.symtab == NULL)
2881 {
2882 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2883 /* Recalculate the line number. */
2884 start_sal = find_pc_sect_line (pc, section, 0);
2885 }
2886
2887 do_cleanups (old_chain);
2888
2889 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2890 forward SAL to the end of the prologue. */
2891 if (sal->pc >= pc)
2892 return;
2893
2894 sal->pc = pc;
2895 sal->section = section;
2896
2897 /* Unless the explicit_line flag was set, update the SAL line
2898 and symtab to correspond to the modified PC location. */
2899 if (sal->explicit_line)
2900 return;
2901
2902 sal->symtab = start_sal.symtab;
2903 sal->line = start_sal.line;
2904 sal->end = start_sal.end;
2905
2906 /* Check if we are now inside an inlined function. If we can,
2907 use the call site of the function instead. */
2908 b = block_for_pc_sect (sal->pc, sal->section);
2909 function_block = NULL;
2910 while (b != NULL)
2911 {
2912 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2913 function_block = b;
2914 else if (BLOCK_FUNCTION (b) != NULL)
2915 break;
2916 b = BLOCK_SUPERBLOCK (b);
2917 }
2918 if (function_block != NULL
2919 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2920 {
2921 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2922 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2923 }
2924 }
2925
2926 /* If P is of the form "operator[ \t]+..." where `...' is
2927 some legitimate operator text, return a pointer to the
2928 beginning of the substring of the operator text.
2929 Otherwise, return "". */
2930
2931 static char *
2932 operator_chars (char *p, char **end)
2933 {
2934 *end = "";
2935 if (strncmp (p, "operator", 8))
2936 return *end;
2937 p += 8;
2938
2939 /* Don't get faked out by `operator' being part of a longer
2940 identifier. */
2941 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2942 return *end;
2943
2944 /* Allow some whitespace between `operator' and the operator symbol. */
2945 while (*p == ' ' || *p == '\t')
2946 p++;
2947
2948 /* Recognize 'operator TYPENAME'. */
2949
2950 if (isalpha (*p) || *p == '_' || *p == '$')
2951 {
2952 char *q = p + 1;
2953
2954 while (isalnum (*q) || *q == '_' || *q == '$')
2955 q++;
2956 *end = q;
2957 return p;
2958 }
2959
2960 while (*p)
2961 switch (*p)
2962 {
2963 case '\\': /* regexp quoting */
2964 if (p[1] == '*')
2965 {
2966 if (p[2] == '=') /* 'operator\*=' */
2967 *end = p + 3;
2968 else /* 'operator\*' */
2969 *end = p + 2;
2970 return p;
2971 }
2972 else if (p[1] == '[')
2973 {
2974 if (p[2] == ']')
2975 error (_("mismatched quoting on brackets, "
2976 "try 'operator\\[\\]'"));
2977 else if (p[2] == '\\' && p[3] == ']')
2978 {
2979 *end = p + 4; /* 'operator\[\]' */
2980 return p;
2981 }
2982 else
2983 error (_("nothing is allowed between '[' and ']'"));
2984 }
2985 else
2986 {
2987 /* Gratuitous qoute: skip it and move on. */
2988 p++;
2989 continue;
2990 }
2991 break;
2992 case '!':
2993 case '=':
2994 case '*':
2995 case '/':
2996 case '%':
2997 case '^':
2998 if (p[1] == '=')
2999 *end = p + 2;
3000 else
3001 *end = p + 1;
3002 return p;
3003 case '<':
3004 case '>':
3005 case '+':
3006 case '-':
3007 case '&':
3008 case '|':
3009 if (p[0] == '-' && p[1] == '>')
3010 {
3011 /* Struct pointer member operator 'operator->'. */
3012 if (p[2] == '*')
3013 {
3014 *end = p + 3; /* 'operator->*' */
3015 return p;
3016 }
3017 else if (p[2] == '\\')
3018 {
3019 *end = p + 4; /* Hopefully 'operator->\*' */
3020 return p;
3021 }
3022 else
3023 {
3024 *end = p + 2; /* 'operator->' */
3025 return p;
3026 }
3027 }
3028 if (p[1] == '=' || p[1] == p[0])
3029 *end = p + 2;
3030 else
3031 *end = p + 1;
3032 return p;
3033 case '~':
3034 case ',':
3035 *end = p + 1;
3036 return p;
3037 case '(':
3038 if (p[1] != ')')
3039 error (_("`operator ()' must be specified "
3040 "without whitespace in `()'"));
3041 *end = p + 2;
3042 return p;
3043 case '?':
3044 if (p[1] != ':')
3045 error (_("`operator ?:' must be specified "
3046 "without whitespace in `?:'"));
3047 *end = p + 2;
3048 return p;
3049 case '[':
3050 if (p[1] != ']')
3051 error (_("`operator []' must be specified "
3052 "without whitespace in `[]'"));
3053 *end = p + 2;
3054 return p;
3055 default:
3056 error (_("`operator %s' not supported"), p);
3057 break;
3058 }
3059
3060 *end = "";
3061 return *end;
3062 }
3063 \f
3064
3065 /* If FILE is not already in the table of files, return zero;
3066 otherwise return non-zero. Optionally add FILE to the table if ADD
3067 is non-zero. If *FIRST is non-zero, forget the old table
3068 contents. */
3069
3070 static int
3071 filename_seen (const char *file, int add, int *first)
3072 {
3073 /* Table of files seen so far. */
3074 static const char **tab = NULL;
3075 /* Allocated size of tab in elements.
3076 Start with one 256-byte block (when using GNU malloc.c).
3077 24 is the malloc overhead when range checking is in effect. */
3078 static int tab_alloc_size = (256 - 24) / sizeof (char *);
3079 /* Current size of tab in elements. */
3080 static int tab_cur_size;
3081 const char **p;
3082
3083 if (*first)
3084 {
3085 if (tab == NULL)
3086 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3087 tab_cur_size = 0;
3088 }
3089
3090 /* Is FILE in tab? */
3091 for (p = tab; p < tab + tab_cur_size; p++)
3092 if (filename_cmp (*p, file) == 0)
3093 return 1;
3094
3095 /* No; maybe add it to tab. */
3096 if (add)
3097 {
3098 if (tab_cur_size == tab_alloc_size)
3099 {
3100 tab_alloc_size *= 2;
3101 tab = (const char **) xrealloc ((char *) tab,
3102 tab_alloc_size * sizeof (*tab));
3103 }
3104 tab[tab_cur_size++] = file;
3105 }
3106
3107 return 0;
3108 }
3109
3110 /* Slave routine for sources_info. Force line breaks at ,'s.
3111 NAME is the name to print and *FIRST is nonzero if this is the first
3112 name printed. Set *FIRST to zero. */
3113
3114 static void
3115 output_source_filename (const char *name, int *first)
3116 {
3117 /* Since a single source file can result in several partial symbol
3118 tables, we need to avoid printing it more than once. Note: if
3119 some of the psymtabs are read in and some are not, it gets
3120 printed both under "Source files for which symbols have been
3121 read" and "Source files for which symbols will be read in on
3122 demand". I consider this a reasonable way to deal with the
3123 situation. I'm not sure whether this can also happen for
3124 symtabs; it doesn't hurt to check. */
3125
3126 /* Was NAME already seen? */
3127 if (filename_seen (name, 1, first))
3128 {
3129 /* Yes; don't print it again. */
3130 return;
3131 }
3132 /* No; print it and reset *FIRST. */
3133 if (*first)
3134 {
3135 *first = 0;
3136 }
3137 else
3138 {
3139 printf_filtered (", ");
3140 }
3141
3142 wrap_here ("");
3143 fputs_filtered (name, gdb_stdout);
3144 }
3145
3146 /* A callback for map_partial_symbol_filenames. */
3147
3148 static void
3149 output_partial_symbol_filename (const char *filename, const char *fullname,
3150 void *data)
3151 {
3152 output_source_filename (fullname ? fullname : filename, data);
3153 }
3154
3155 static void
3156 sources_info (char *ignore, int from_tty)
3157 {
3158 struct symtab *s;
3159 struct objfile *objfile;
3160 int first;
3161
3162 if (!have_full_symbols () && !have_partial_symbols ())
3163 {
3164 error (_("No symbol table is loaded. Use the \"file\" command."));
3165 }
3166
3167 printf_filtered ("Source files for which symbols have been read in:\n\n");
3168
3169 first = 1;
3170 ALL_SYMTABS (objfile, s)
3171 {
3172 const char *fullname = symtab_to_fullname (s);
3173
3174 output_source_filename (fullname ? fullname : s->filename, &first);
3175 }
3176 printf_filtered ("\n\n");
3177
3178 printf_filtered ("Source files for which symbols "
3179 "will be read in on demand:\n\n");
3180
3181 first = 1;
3182 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3183 1 /*need_fullname*/);
3184 printf_filtered ("\n");
3185 }
3186
3187 static int
3188 file_matches (const char *file, char *files[], int nfiles)
3189 {
3190 int i;
3191
3192 if (file != NULL && nfiles != 0)
3193 {
3194 for (i = 0; i < nfiles; i++)
3195 {
3196 if (filename_cmp (files[i], lbasename (file)) == 0)
3197 return 1;
3198 }
3199 }
3200 else if (nfiles == 0)
3201 return 1;
3202 return 0;
3203 }
3204
3205 /* Free any memory associated with a search. */
3206
3207 void
3208 free_search_symbols (struct symbol_search *symbols)
3209 {
3210 struct symbol_search *p;
3211 struct symbol_search *next;
3212
3213 for (p = symbols; p != NULL; p = next)
3214 {
3215 next = p->next;
3216 xfree (p);
3217 }
3218 }
3219
3220 static void
3221 do_free_search_symbols_cleanup (void *symbols)
3222 {
3223 free_search_symbols (symbols);
3224 }
3225
3226 struct cleanup *
3227 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3228 {
3229 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3230 }
3231
3232 /* Helper function for sort_search_symbols and qsort. Can only
3233 sort symbols, not minimal symbols. */
3234
3235 static int
3236 compare_search_syms (const void *sa, const void *sb)
3237 {
3238 struct symbol_search **sym_a = (struct symbol_search **) sa;
3239 struct symbol_search **sym_b = (struct symbol_search **) sb;
3240
3241 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3242 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3243 }
3244
3245 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3246 prevtail where it is, but update its next pointer to point to
3247 the first of the sorted symbols. */
3248
3249 static struct symbol_search *
3250 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3251 {
3252 struct symbol_search **symbols, *symp, *old_next;
3253 int i;
3254
3255 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3256 * nfound);
3257 symp = prevtail->next;
3258 for (i = 0; i < nfound; i++)
3259 {
3260 symbols[i] = symp;
3261 symp = symp->next;
3262 }
3263 /* Generally NULL. */
3264 old_next = symp;
3265
3266 qsort (symbols, nfound, sizeof (struct symbol_search *),
3267 compare_search_syms);
3268
3269 symp = prevtail;
3270 for (i = 0; i < nfound; i++)
3271 {
3272 symp->next = symbols[i];
3273 symp = symp->next;
3274 }
3275 symp->next = old_next;
3276
3277 xfree (symbols);
3278 return symp;
3279 }
3280
3281 /* An object of this type is passed as the user_data to the
3282 expand_symtabs_matching method. */
3283 struct search_symbols_data
3284 {
3285 int nfiles;
3286 char **files;
3287
3288 /* It is true if PREG contains valid data, false otherwise. */
3289 unsigned preg_p : 1;
3290 regex_t preg;
3291 };
3292
3293 /* A callback for expand_symtabs_matching. */
3294
3295 static int
3296 search_symbols_file_matches (const char *filename, void *user_data)
3297 {
3298 struct search_symbols_data *data = user_data;
3299
3300 return file_matches (filename, data->files, data->nfiles);
3301 }
3302
3303 /* A callback for expand_symtabs_matching. */
3304
3305 static int
3306 search_symbols_name_matches (const char *symname, void *user_data)
3307 {
3308 struct search_symbols_data *data = user_data;
3309
3310 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3311 }
3312
3313 /* Search the symbol table for matches to the regular expression REGEXP,
3314 returning the results in *MATCHES.
3315
3316 Only symbols of KIND are searched:
3317 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3318 and constants (enums)
3319 FUNCTIONS_DOMAIN - search all functions
3320 TYPES_DOMAIN - search all type names
3321 ALL_DOMAIN - an internal error for this function
3322
3323 free_search_symbols should be called when *MATCHES is no longer needed.
3324
3325 The results are sorted locally; each symtab's global and static blocks are
3326 separately alphabetized. */
3327
3328 void
3329 search_symbols (char *regexp, enum search_domain kind,
3330 int nfiles, char *files[],
3331 struct symbol_search **matches)
3332 {
3333 struct symtab *s;
3334 struct blockvector *bv;
3335 struct block *b;
3336 int i = 0;
3337 struct block_iterator iter;
3338 struct symbol *sym;
3339 struct objfile *objfile;
3340 struct minimal_symbol *msymbol;
3341 int found_misc = 0;
3342 static const enum minimal_symbol_type types[]
3343 = {mst_data, mst_text, mst_abs};
3344 static const enum minimal_symbol_type types2[]
3345 = {mst_bss, mst_file_text, mst_abs};
3346 static const enum minimal_symbol_type types3[]
3347 = {mst_file_data, mst_solib_trampoline, mst_abs};
3348 static const enum minimal_symbol_type types4[]
3349 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3350 enum minimal_symbol_type ourtype;
3351 enum minimal_symbol_type ourtype2;
3352 enum minimal_symbol_type ourtype3;
3353 enum minimal_symbol_type ourtype4;
3354 struct symbol_search *sr;
3355 struct symbol_search *psr;
3356 struct symbol_search *tail;
3357 struct search_symbols_data datum;
3358
3359 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3360 CLEANUP_CHAIN is freed only in the case of an error. */
3361 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3362 struct cleanup *retval_chain;
3363
3364 gdb_assert (kind <= TYPES_DOMAIN);
3365
3366 ourtype = types[kind];
3367 ourtype2 = types2[kind];
3368 ourtype3 = types3[kind];
3369 ourtype4 = types4[kind];
3370
3371 sr = *matches = NULL;
3372 tail = NULL;
3373 datum.preg_p = 0;
3374
3375 if (regexp != NULL)
3376 {
3377 /* Make sure spacing is right for C++ operators.
3378 This is just a courtesy to make the matching less sensitive
3379 to how many spaces the user leaves between 'operator'
3380 and <TYPENAME> or <OPERATOR>. */
3381 char *opend;
3382 char *opname = operator_chars (regexp, &opend);
3383 int errcode;
3384
3385 if (*opname)
3386 {
3387 int fix = -1; /* -1 means ok; otherwise number of
3388 spaces needed. */
3389
3390 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3391 {
3392 /* There should 1 space between 'operator' and 'TYPENAME'. */
3393 if (opname[-1] != ' ' || opname[-2] == ' ')
3394 fix = 1;
3395 }
3396 else
3397 {
3398 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3399 if (opname[-1] == ' ')
3400 fix = 0;
3401 }
3402 /* If wrong number of spaces, fix it. */
3403 if (fix >= 0)
3404 {
3405 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3406
3407 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3408 regexp = tmp;
3409 }
3410 }
3411
3412 errcode = regcomp (&datum.preg, regexp,
3413 REG_NOSUB | (case_sensitivity == case_sensitive_off
3414 ? REG_ICASE : 0));
3415 if (errcode != 0)
3416 {
3417 char *err = get_regcomp_error (errcode, &datum.preg);
3418
3419 make_cleanup (xfree, err);
3420 error (_("Invalid regexp (%s): %s"), err, regexp);
3421 }
3422 datum.preg_p = 1;
3423 make_regfree_cleanup (&datum.preg);
3424 }
3425
3426 /* Search through the partial symtabs *first* for all symbols
3427 matching the regexp. That way we don't have to reproduce all of
3428 the machinery below. */
3429
3430 datum.nfiles = nfiles;
3431 datum.files = files;
3432 ALL_OBJFILES (objfile)
3433 {
3434 if (objfile->sf)
3435 objfile->sf->qf->expand_symtabs_matching (objfile,
3436 (nfiles == 0
3437 ? NULL
3438 : search_symbols_file_matches),
3439 search_symbols_name_matches,
3440 kind,
3441 &datum);
3442 }
3443
3444 retval_chain = old_chain;
3445
3446 /* Here, we search through the minimal symbol tables for functions
3447 and variables that match, and force their symbols to be read.
3448 This is in particular necessary for demangled variable names,
3449 which are no longer put into the partial symbol tables.
3450 The symbol will then be found during the scan of symtabs below.
3451
3452 For functions, find_pc_symtab should succeed if we have debug info
3453 for the function, for variables we have to call lookup_symbol
3454 to determine if the variable has debug info.
3455 If the lookup fails, set found_misc so that we will rescan to print
3456 any matching symbols without debug info. */
3457
3458 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3459 {
3460 ALL_MSYMBOLS (objfile, msymbol)
3461 {
3462 QUIT;
3463
3464 if (MSYMBOL_TYPE (msymbol) == ourtype
3465 || MSYMBOL_TYPE (msymbol) == ourtype2
3466 || MSYMBOL_TYPE (msymbol) == ourtype3
3467 || MSYMBOL_TYPE (msymbol) == ourtype4)
3468 {
3469 if (!datum.preg_p
3470 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3471 NULL, 0) == 0)
3472 {
3473 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3474 {
3475 /* FIXME: carlton/2003-02-04: Given that the
3476 semantics of lookup_symbol keeps on changing
3477 slightly, it would be a nice idea if we had a
3478 function lookup_symbol_minsym that found the
3479 symbol associated to a given minimal symbol (if
3480 any). */
3481 if (kind == FUNCTIONS_DOMAIN
3482 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3483 (struct block *) NULL,
3484 VAR_DOMAIN, 0)
3485 == NULL)
3486 found_misc = 1;
3487 }
3488 }
3489 }
3490 }
3491 }
3492
3493 ALL_PRIMARY_SYMTABS (objfile, s)
3494 {
3495 bv = BLOCKVECTOR (s);
3496 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3497 {
3498 struct symbol_search *prevtail = tail;
3499 int nfound = 0;
3500
3501 b = BLOCKVECTOR_BLOCK (bv, i);
3502 ALL_BLOCK_SYMBOLS (b, iter, sym)
3503 {
3504 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3505
3506 QUIT;
3507
3508 if (file_matches (real_symtab->filename, files, nfiles)
3509 && ((!datum.preg_p
3510 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3511 NULL, 0) == 0)
3512 && ((kind == VARIABLES_DOMAIN
3513 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3514 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3515 && SYMBOL_CLASS (sym) != LOC_BLOCK
3516 /* LOC_CONST can be used for more than just enums,
3517 e.g., c++ static const members.
3518 We only want to skip enums here. */
3519 && !(SYMBOL_CLASS (sym) == LOC_CONST
3520 && TYPE_CODE (SYMBOL_TYPE (sym))
3521 == TYPE_CODE_ENUM))
3522 || (kind == FUNCTIONS_DOMAIN
3523 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3524 || (kind == TYPES_DOMAIN
3525 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3526 {
3527 /* match */
3528 psr = (struct symbol_search *)
3529 xmalloc (sizeof (struct symbol_search));
3530 psr->block = i;
3531 psr->symtab = real_symtab;
3532 psr->symbol = sym;
3533 psr->msymbol = NULL;
3534 psr->next = NULL;
3535 if (tail == NULL)
3536 sr = psr;
3537 else
3538 tail->next = psr;
3539 tail = psr;
3540 nfound ++;
3541 }
3542 }
3543 if (nfound > 0)
3544 {
3545 if (prevtail == NULL)
3546 {
3547 struct symbol_search dummy;
3548
3549 dummy.next = sr;
3550 tail = sort_search_symbols (&dummy, nfound);
3551 sr = dummy.next;
3552
3553 make_cleanup_free_search_symbols (sr);
3554 }
3555 else
3556 tail = sort_search_symbols (prevtail, nfound);
3557 }
3558 }
3559 }
3560
3561 /* If there are no eyes, avoid all contact. I mean, if there are
3562 no debug symbols, then print directly from the msymbol_vector. */
3563
3564 if (found_misc || kind != FUNCTIONS_DOMAIN)
3565 {
3566 ALL_MSYMBOLS (objfile, msymbol)
3567 {
3568 QUIT;
3569
3570 if (MSYMBOL_TYPE (msymbol) == ourtype
3571 || MSYMBOL_TYPE (msymbol) == ourtype2
3572 || MSYMBOL_TYPE (msymbol) == ourtype3
3573 || MSYMBOL_TYPE (msymbol) == ourtype4)
3574 {
3575 if (!datum.preg_p
3576 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3577 NULL, 0) == 0)
3578 {
3579 /* Functions: Look up by address. */
3580 if (kind != FUNCTIONS_DOMAIN ||
3581 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3582 {
3583 /* Variables/Absolutes: Look up by name. */
3584 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3585 (struct block *) NULL, VAR_DOMAIN, 0)
3586 == NULL)
3587 {
3588 /* match */
3589 psr = (struct symbol_search *)
3590 xmalloc (sizeof (struct symbol_search));
3591 psr->block = i;
3592 psr->msymbol = msymbol;
3593 psr->symtab = NULL;
3594 psr->symbol = NULL;
3595 psr->next = NULL;
3596 if (tail == NULL)
3597 {
3598 sr = psr;
3599 make_cleanup_free_search_symbols (sr);
3600 }
3601 else
3602 tail->next = psr;
3603 tail = psr;
3604 }
3605 }
3606 }
3607 }
3608 }
3609 }
3610
3611 discard_cleanups (retval_chain);
3612 do_cleanups (old_chain);
3613 *matches = sr;
3614 }
3615
3616 /* Helper function for symtab_symbol_info, this function uses
3617 the data returned from search_symbols() to print information
3618 regarding the match to gdb_stdout. */
3619
3620 static void
3621 print_symbol_info (enum search_domain kind,
3622 struct symtab *s, struct symbol *sym,
3623 int block, char *last)
3624 {
3625 if (last == NULL || filename_cmp (last, s->filename) != 0)
3626 {
3627 fputs_filtered ("\nFile ", gdb_stdout);
3628 fputs_filtered (s->filename, gdb_stdout);
3629 fputs_filtered (":\n", gdb_stdout);
3630 }
3631
3632 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3633 printf_filtered ("static ");
3634
3635 /* Typedef that is not a C++ class. */
3636 if (kind == TYPES_DOMAIN
3637 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3638 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3639 /* variable, func, or typedef-that-is-c++-class. */
3640 else if (kind < TYPES_DOMAIN
3641 || (kind == TYPES_DOMAIN
3642 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3643 {
3644 type_print (SYMBOL_TYPE (sym),
3645 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3646 ? "" : SYMBOL_PRINT_NAME (sym)),
3647 gdb_stdout, 0);
3648
3649 printf_filtered (";\n");
3650 }
3651 }
3652
3653 /* This help function for symtab_symbol_info() prints information
3654 for non-debugging symbols to gdb_stdout. */
3655
3656 static void
3657 print_msymbol_info (struct minimal_symbol *msymbol)
3658 {
3659 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3660 char *tmp;
3661
3662 if (gdbarch_addr_bit (gdbarch) <= 32)
3663 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3664 & (CORE_ADDR) 0xffffffff,
3665 8);
3666 else
3667 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3668 16);
3669 printf_filtered ("%s %s\n",
3670 tmp, SYMBOL_PRINT_NAME (msymbol));
3671 }
3672
3673 /* This is the guts of the commands "info functions", "info types", and
3674 "info variables". It calls search_symbols to find all matches and then
3675 print_[m]symbol_info to print out some useful information about the
3676 matches. */
3677
3678 static void
3679 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3680 {
3681 static const char * const classnames[] =
3682 {"variable", "function", "type"};
3683 struct symbol_search *symbols;
3684 struct symbol_search *p;
3685 struct cleanup *old_chain;
3686 char *last_filename = NULL;
3687 int first = 1;
3688
3689 gdb_assert (kind <= TYPES_DOMAIN);
3690
3691 /* Must make sure that if we're interrupted, symbols gets freed. */
3692 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3693 old_chain = make_cleanup_free_search_symbols (symbols);
3694
3695 printf_filtered (regexp
3696 ? "All %ss matching regular expression \"%s\":\n"
3697 : "All defined %ss:\n",
3698 classnames[kind], regexp);
3699
3700 for (p = symbols; p != NULL; p = p->next)
3701 {
3702 QUIT;
3703
3704 if (p->msymbol != NULL)
3705 {
3706 if (first)
3707 {
3708 printf_filtered ("\nNon-debugging symbols:\n");
3709 first = 0;
3710 }
3711 print_msymbol_info (p->msymbol);
3712 }
3713 else
3714 {
3715 print_symbol_info (kind,
3716 p->symtab,
3717 p->symbol,
3718 p->block,
3719 last_filename);
3720 last_filename = p->symtab->filename;
3721 }
3722 }
3723
3724 do_cleanups (old_chain);
3725 }
3726
3727 static void
3728 variables_info (char *regexp, int from_tty)
3729 {
3730 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3731 }
3732
3733 static void
3734 functions_info (char *regexp, int from_tty)
3735 {
3736 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3737 }
3738
3739
3740 static void
3741 types_info (char *regexp, int from_tty)
3742 {
3743 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3744 }
3745
3746 /* Breakpoint all functions matching regular expression. */
3747
3748 void
3749 rbreak_command_wrapper (char *regexp, int from_tty)
3750 {
3751 rbreak_command (regexp, from_tty);
3752 }
3753
3754 /* A cleanup function that calls end_rbreak_breakpoints. */
3755
3756 static void
3757 do_end_rbreak_breakpoints (void *ignore)
3758 {
3759 end_rbreak_breakpoints ();
3760 }
3761
3762 static void
3763 rbreak_command (char *regexp, int from_tty)
3764 {
3765 struct symbol_search *ss;
3766 struct symbol_search *p;
3767 struct cleanup *old_chain;
3768 char *string = NULL;
3769 int len = 0;
3770 char **files = NULL, *file_name;
3771 int nfiles = 0;
3772
3773 if (regexp)
3774 {
3775 char *colon = strchr (regexp, ':');
3776
3777 if (colon && *(colon + 1) != ':')
3778 {
3779 int colon_index;
3780
3781 colon_index = colon - regexp;
3782 file_name = alloca (colon_index + 1);
3783 memcpy (file_name, regexp, colon_index);
3784 file_name[colon_index--] = 0;
3785 while (isspace (file_name[colon_index]))
3786 file_name[colon_index--] = 0;
3787 files = &file_name;
3788 nfiles = 1;
3789 regexp = colon + 1;
3790 while (isspace (*regexp)) regexp++;
3791 }
3792 }
3793
3794 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3795 old_chain = make_cleanup_free_search_symbols (ss);
3796 make_cleanup (free_current_contents, &string);
3797
3798 start_rbreak_breakpoints ();
3799 make_cleanup (do_end_rbreak_breakpoints, NULL);
3800 for (p = ss; p != NULL; p = p->next)
3801 {
3802 if (p->msymbol == NULL)
3803 {
3804 int newlen = (strlen (p->symtab->filename)
3805 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3806 + 4);
3807
3808 if (newlen > len)
3809 {
3810 string = xrealloc (string, newlen);
3811 len = newlen;
3812 }
3813 strcpy (string, p->symtab->filename);
3814 strcat (string, ":'");
3815 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3816 strcat (string, "'");
3817 break_command (string, from_tty);
3818 print_symbol_info (FUNCTIONS_DOMAIN,
3819 p->symtab,
3820 p->symbol,
3821 p->block,
3822 p->symtab->filename);
3823 }
3824 else
3825 {
3826 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3827
3828 if (newlen > len)
3829 {
3830 string = xrealloc (string, newlen);
3831 len = newlen;
3832 }
3833 strcpy (string, "'");
3834 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3835 strcat (string, "'");
3836
3837 break_command (string, from_tty);
3838 printf_filtered ("<function, no debug info> %s;\n",
3839 SYMBOL_PRINT_NAME (p->msymbol));
3840 }
3841 }
3842
3843 do_cleanups (old_chain);
3844 }
3845 \f
3846
3847 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3848
3849 Either sym_text[sym_text_len] != '(' and then we search for any
3850 symbol starting with SYM_TEXT text.
3851
3852 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3853 be terminated at that point. Partial symbol tables do not have parameters
3854 information. */
3855
3856 static int
3857 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3858 {
3859 int (*ncmp) (const char *, const char *, size_t);
3860
3861 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3862
3863 if (ncmp (name, sym_text, sym_text_len) != 0)
3864 return 0;
3865
3866 if (sym_text[sym_text_len] == '(')
3867 {
3868 /* User searches for `name(someth...'. Require NAME to be terminated.
3869 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3870 present but accept even parameters presence. In this case this
3871 function is in fact strcmp_iw but whitespace skipping is not supported
3872 for tab completion. */
3873
3874 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3875 return 0;
3876 }
3877
3878 return 1;
3879 }
3880
3881 /* Free any memory associated with a completion list. */
3882
3883 static void
3884 free_completion_list (VEC (char_ptr) **list_ptr)
3885 {
3886 int i;
3887 char *p;
3888
3889 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3890 xfree (p);
3891 VEC_free (char_ptr, *list_ptr);
3892 }
3893
3894 /* Callback for make_cleanup. */
3895
3896 static void
3897 do_free_completion_list (void *list)
3898 {
3899 free_completion_list (list);
3900 }
3901
3902 /* Helper routine for make_symbol_completion_list. */
3903
3904 static VEC (char_ptr) *return_val;
3905
3906 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3907 completion_list_add_name \
3908 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3909
3910 /* Test to see if the symbol specified by SYMNAME (which is already
3911 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3912 characters. If so, add it to the current completion list. */
3913
3914 static void
3915 completion_list_add_name (const char *symname,
3916 const char *sym_text, int sym_text_len,
3917 const char *text, const char *word)
3918 {
3919 int newsize;
3920
3921 /* Clip symbols that cannot match. */
3922 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3923 return;
3924
3925 /* We have a match for a completion, so add SYMNAME to the current list
3926 of matches. Note that the name is moved to freshly malloc'd space. */
3927
3928 {
3929 char *new;
3930
3931 if (word == sym_text)
3932 {
3933 new = xmalloc (strlen (symname) + 5);
3934 strcpy (new, symname);
3935 }
3936 else if (word > sym_text)
3937 {
3938 /* Return some portion of symname. */
3939 new = xmalloc (strlen (symname) + 5);
3940 strcpy (new, symname + (word - sym_text));
3941 }
3942 else
3943 {
3944 /* Return some of SYM_TEXT plus symname. */
3945 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3946 strncpy (new, word, sym_text - word);
3947 new[sym_text - word] = '\0';
3948 strcat (new, symname);
3949 }
3950
3951 VEC_safe_push (char_ptr, return_val, new);
3952 }
3953 }
3954
3955 /* ObjC: In case we are completing on a selector, look as the msymbol
3956 again and feed all the selectors into the mill. */
3957
3958 static void
3959 completion_list_objc_symbol (struct minimal_symbol *msymbol,
3960 const char *sym_text, int sym_text_len,
3961 const char *text, const char *word)
3962 {
3963 static char *tmp = NULL;
3964 static unsigned int tmplen = 0;
3965
3966 const char *method, *category, *selector;
3967 char *tmp2 = NULL;
3968
3969 method = SYMBOL_NATURAL_NAME (msymbol);
3970
3971 /* Is it a method? */
3972 if ((method[0] != '-') && (method[0] != '+'))
3973 return;
3974
3975 if (sym_text[0] == '[')
3976 /* Complete on shortened method method. */
3977 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3978
3979 while ((strlen (method) + 1) >= tmplen)
3980 {
3981 if (tmplen == 0)
3982 tmplen = 1024;
3983 else
3984 tmplen *= 2;
3985 tmp = xrealloc (tmp, tmplen);
3986 }
3987 selector = strchr (method, ' ');
3988 if (selector != NULL)
3989 selector++;
3990
3991 category = strchr (method, '(');
3992
3993 if ((category != NULL) && (selector != NULL))
3994 {
3995 memcpy (tmp, method, (category - method));
3996 tmp[category - method] = ' ';
3997 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3998 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3999 if (sym_text[0] == '[')
4000 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4001 }
4002
4003 if (selector != NULL)
4004 {
4005 /* Complete on selector only. */
4006 strcpy (tmp, selector);
4007 tmp2 = strchr (tmp, ']');
4008 if (tmp2 != NULL)
4009 *tmp2 = '\0';
4010
4011 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4012 }
4013 }
4014
4015 /* Break the non-quoted text based on the characters which are in
4016 symbols. FIXME: This should probably be language-specific. */
4017
4018 static char *
4019 language_search_unquoted_string (char *text, char *p)
4020 {
4021 for (; p > text; --p)
4022 {
4023 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4024 continue;
4025 else
4026 {
4027 if ((current_language->la_language == language_objc))
4028 {
4029 if (p[-1] == ':') /* Might be part of a method name. */
4030 continue;
4031 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4032 p -= 2; /* Beginning of a method name. */
4033 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4034 { /* Might be part of a method name. */
4035 char *t = p;
4036
4037 /* Seeing a ' ' or a '(' is not conclusive evidence
4038 that we are in the middle of a method name. However,
4039 finding "-[" or "+[" should be pretty un-ambiguous.
4040 Unfortunately we have to find it now to decide. */
4041
4042 while (t > text)
4043 if (isalnum (t[-1]) || t[-1] == '_' ||
4044 t[-1] == ' ' || t[-1] == ':' ||
4045 t[-1] == '(' || t[-1] == ')')
4046 --t;
4047 else
4048 break;
4049
4050 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4051 p = t - 2; /* Method name detected. */
4052 /* Else we leave with p unchanged. */
4053 }
4054 }
4055 break;
4056 }
4057 }
4058 return p;
4059 }
4060
4061 static void
4062 completion_list_add_fields (struct symbol *sym, char *sym_text,
4063 int sym_text_len, char *text, char *word)
4064 {
4065 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4066 {
4067 struct type *t = SYMBOL_TYPE (sym);
4068 enum type_code c = TYPE_CODE (t);
4069 int j;
4070
4071 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4072 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4073 if (TYPE_FIELD_NAME (t, j))
4074 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4075 sym_text, sym_text_len, text, word);
4076 }
4077 }
4078
4079 /* Type of the user_data argument passed to add_macro_name or
4080 expand_partial_symbol_name. The contents are simply whatever is
4081 needed by completion_list_add_name. */
4082 struct add_name_data
4083 {
4084 char *sym_text;
4085 int sym_text_len;
4086 char *text;
4087 char *word;
4088 };
4089
4090 /* A callback used with macro_for_each and macro_for_each_in_scope.
4091 This adds a macro's name to the current completion list. */
4092
4093 static void
4094 add_macro_name (const char *name, const struct macro_definition *ignore,
4095 struct macro_source_file *ignore2, int ignore3,
4096 void *user_data)
4097 {
4098 struct add_name_data *datum = (struct add_name_data *) user_data;
4099
4100 completion_list_add_name ((char *) name,
4101 datum->sym_text, datum->sym_text_len,
4102 datum->text, datum->word);
4103 }
4104
4105 /* A callback for expand_partial_symbol_names. */
4106
4107 static int
4108 expand_partial_symbol_name (const char *name, void *user_data)
4109 {
4110 struct add_name_data *datum = (struct add_name_data *) user_data;
4111
4112 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4113 }
4114
4115 VEC (char_ptr) *
4116 default_make_symbol_completion_list_break_on (char *text, char *word,
4117 const char *break_on)
4118 {
4119 /* Problem: All of the symbols have to be copied because readline
4120 frees them. I'm not going to worry about this; hopefully there
4121 won't be that many. */
4122
4123 struct symbol *sym;
4124 struct symtab *s;
4125 struct minimal_symbol *msymbol;
4126 struct objfile *objfile;
4127 struct block *b;
4128 const struct block *surrounding_static_block, *surrounding_global_block;
4129 struct block_iterator iter;
4130 /* The symbol we are completing on. Points in same buffer as text. */
4131 char *sym_text;
4132 /* Length of sym_text. */
4133 int sym_text_len;
4134 struct add_name_data datum;
4135 struct cleanup *back_to;
4136
4137 /* Now look for the symbol we are supposed to complete on. */
4138 {
4139 char *p;
4140 char quote_found;
4141 char *quote_pos = NULL;
4142
4143 /* First see if this is a quoted string. */
4144 quote_found = '\0';
4145 for (p = text; *p != '\0'; ++p)
4146 {
4147 if (quote_found != '\0')
4148 {
4149 if (*p == quote_found)
4150 /* Found close quote. */
4151 quote_found = '\0';
4152 else if (*p == '\\' && p[1] == quote_found)
4153 /* A backslash followed by the quote character
4154 doesn't end the string. */
4155 ++p;
4156 }
4157 else if (*p == '\'' || *p == '"')
4158 {
4159 quote_found = *p;
4160 quote_pos = p;
4161 }
4162 }
4163 if (quote_found == '\'')
4164 /* A string within single quotes can be a symbol, so complete on it. */
4165 sym_text = quote_pos + 1;
4166 else if (quote_found == '"')
4167 /* A double-quoted string is never a symbol, nor does it make sense
4168 to complete it any other way. */
4169 {
4170 return NULL;
4171 }
4172 else
4173 {
4174 /* It is not a quoted string. Break it based on the characters
4175 which are in symbols. */
4176 while (p > text)
4177 {
4178 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4179 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4180 --p;
4181 else
4182 break;
4183 }
4184 sym_text = p;
4185 }
4186 }
4187
4188 sym_text_len = strlen (sym_text);
4189
4190 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4191
4192 if (current_language->la_language == language_cplus
4193 || current_language->la_language == language_java
4194 || current_language->la_language == language_fortran)
4195 {
4196 /* These languages may have parameters entered by user but they are never
4197 present in the partial symbol tables. */
4198
4199 const char *cs = memchr (sym_text, '(', sym_text_len);
4200
4201 if (cs)
4202 sym_text_len = cs - sym_text;
4203 }
4204 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4205
4206 return_val = NULL;
4207 back_to = make_cleanup (do_free_completion_list, &return_val);
4208
4209 datum.sym_text = sym_text;
4210 datum.sym_text_len = sym_text_len;
4211 datum.text = text;
4212 datum.word = word;
4213
4214 /* Look through the partial symtabs for all symbols which begin
4215 by matching SYM_TEXT. Expand all CUs that you find to the list.
4216 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4217 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4218
4219 /* At this point scan through the misc symbol vectors and add each
4220 symbol you find to the list. Eventually we want to ignore
4221 anything that isn't a text symbol (everything else will be
4222 handled by the psymtab code above). */
4223
4224 ALL_MSYMBOLS (objfile, msymbol)
4225 {
4226 QUIT;
4227 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4228
4229 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4230 }
4231
4232 /* Search upwards from currently selected frame (so that we can
4233 complete on local vars). Also catch fields of types defined in
4234 this places which match our text string. Only complete on types
4235 visible from current context. */
4236
4237 b = get_selected_block (0);
4238 surrounding_static_block = block_static_block (b);
4239 surrounding_global_block = block_global_block (b);
4240 if (surrounding_static_block != NULL)
4241 while (b != surrounding_static_block)
4242 {
4243 QUIT;
4244
4245 ALL_BLOCK_SYMBOLS (b, iter, sym)
4246 {
4247 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4248 word);
4249 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4250 word);
4251 }
4252
4253 /* Stop when we encounter an enclosing function. Do not stop for
4254 non-inlined functions - the locals of the enclosing function
4255 are in scope for a nested function. */
4256 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4257 break;
4258 b = BLOCK_SUPERBLOCK (b);
4259 }
4260
4261 /* Add fields from the file's types; symbols will be added below. */
4262
4263 if (surrounding_static_block != NULL)
4264 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4265 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4266
4267 if (surrounding_global_block != NULL)
4268 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4269 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4270
4271 /* Go through the symtabs and check the externs and statics for
4272 symbols which match. */
4273
4274 ALL_PRIMARY_SYMTABS (objfile, s)
4275 {
4276 QUIT;
4277 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4278 ALL_BLOCK_SYMBOLS (b, iter, sym)
4279 {
4280 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4281 }
4282 }
4283
4284 ALL_PRIMARY_SYMTABS (objfile, s)
4285 {
4286 QUIT;
4287 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4288 ALL_BLOCK_SYMBOLS (b, iter, sym)
4289 {
4290 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4291 }
4292 }
4293
4294 if (current_language->la_macro_expansion == macro_expansion_c)
4295 {
4296 struct macro_scope *scope;
4297
4298 /* Add any macros visible in the default scope. Note that this
4299 may yield the occasional wrong result, because an expression
4300 might be evaluated in a scope other than the default. For
4301 example, if the user types "break file:line if <TAB>", the
4302 resulting expression will be evaluated at "file:line" -- but
4303 at there does not seem to be a way to detect this at
4304 completion time. */
4305 scope = default_macro_scope ();
4306 if (scope)
4307 {
4308 macro_for_each_in_scope (scope->file, scope->line,
4309 add_macro_name, &datum);
4310 xfree (scope);
4311 }
4312
4313 /* User-defined macros are always visible. */
4314 macro_for_each (macro_user_macros, add_macro_name, &datum);
4315 }
4316
4317 discard_cleanups (back_to);
4318 return (return_val);
4319 }
4320
4321 VEC (char_ptr) *
4322 default_make_symbol_completion_list (char *text, char *word)
4323 {
4324 return default_make_symbol_completion_list_break_on (text, word, "");
4325 }
4326
4327 /* Return a vector of all symbols (regardless of class) which begin by
4328 matching TEXT. If the answer is no symbols, then the return value
4329 is NULL. */
4330
4331 VEC (char_ptr) *
4332 make_symbol_completion_list (char *text, char *word)
4333 {
4334 return current_language->la_make_symbol_completion_list (text, word);
4335 }
4336
4337 /* Like make_symbol_completion_list, but suitable for use as a
4338 completion function. */
4339
4340 VEC (char_ptr) *
4341 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4342 char *text, char *word)
4343 {
4344 return make_symbol_completion_list (text, word);
4345 }
4346
4347 /* Like make_symbol_completion_list, but returns a list of symbols
4348 defined in a source file FILE. */
4349
4350 VEC (char_ptr) *
4351 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4352 {
4353 struct symbol *sym;
4354 struct symtab *s;
4355 struct block *b;
4356 struct block_iterator iter;
4357 /* The symbol we are completing on. Points in same buffer as text. */
4358 char *sym_text;
4359 /* Length of sym_text. */
4360 int sym_text_len;
4361
4362 /* Now look for the symbol we are supposed to complete on.
4363 FIXME: This should be language-specific. */
4364 {
4365 char *p;
4366 char quote_found;
4367 char *quote_pos = NULL;
4368
4369 /* First see if this is a quoted string. */
4370 quote_found = '\0';
4371 for (p = text; *p != '\0'; ++p)
4372 {
4373 if (quote_found != '\0')
4374 {
4375 if (*p == quote_found)
4376 /* Found close quote. */
4377 quote_found = '\0';
4378 else if (*p == '\\' && p[1] == quote_found)
4379 /* A backslash followed by the quote character
4380 doesn't end the string. */
4381 ++p;
4382 }
4383 else if (*p == '\'' || *p == '"')
4384 {
4385 quote_found = *p;
4386 quote_pos = p;
4387 }
4388 }
4389 if (quote_found == '\'')
4390 /* A string within single quotes can be a symbol, so complete on it. */
4391 sym_text = quote_pos + 1;
4392 else if (quote_found == '"')
4393 /* A double-quoted string is never a symbol, nor does it make sense
4394 to complete it any other way. */
4395 {
4396 return NULL;
4397 }
4398 else
4399 {
4400 /* Not a quoted string. */
4401 sym_text = language_search_unquoted_string (text, p);
4402 }
4403 }
4404
4405 sym_text_len = strlen (sym_text);
4406
4407 return_val = NULL;
4408
4409 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4410 in). */
4411 s = lookup_symtab (srcfile);
4412 if (s == NULL)
4413 {
4414 /* Maybe they typed the file with leading directories, while the
4415 symbol tables record only its basename. */
4416 const char *tail = lbasename (srcfile);
4417
4418 if (tail > srcfile)
4419 s = lookup_symtab (tail);
4420 }
4421
4422 /* If we have no symtab for that file, return an empty list. */
4423 if (s == NULL)
4424 return (return_val);
4425
4426 /* Go through this symtab and check the externs and statics for
4427 symbols which match. */
4428
4429 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4430 ALL_BLOCK_SYMBOLS (b, iter, sym)
4431 {
4432 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4433 }
4434
4435 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4436 ALL_BLOCK_SYMBOLS (b, iter, sym)
4437 {
4438 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4439 }
4440
4441 return (return_val);
4442 }
4443
4444 /* A helper function for make_source_files_completion_list. It adds
4445 another file name to a list of possible completions, growing the
4446 list as necessary. */
4447
4448 static void
4449 add_filename_to_list (const char *fname, char *text, char *word,
4450 VEC (char_ptr) **list)
4451 {
4452 char *new;
4453 size_t fnlen = strlen (fname);
4454
4455 if (word == text)
4456 {
4457 /* Return exactly fname. */
4458 new = xmalloc (fnlen + 5);
4459 strcpy (new, fname);
4460 }
4461 else if (word > text)
4462 {
4463 /* Return some portion of fname. */
4464 new = xmalloc (fnlen + 5);
4465 strcpy (new, fname + (word - text));
4466 }
4467 else
4468 {
4469 /* Return some of TEXT plus fname. */
4470 new = xmalloc (fnlen + (text - word) + 5);
4471 strncpy (new, word, text - word);
4472 new[text - word] = '\0';
4473 strcat (new, fname);
4474 }
4475 VEC_safe_push (char_ptr, *list, new);
4476 }
4477
4478 static int
4479 not_interesting_fname (const char *fname)
4480 {
4481 static const char *illegal_aliens[] = {
4482 "_globals_", /* inserted by coff_symtab_read */
4483 NULL
4484 };
4485 int i;
4486
4487 for (i = 0; illegal_aliens[i]; i++)
4488 {
4489 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4490 return 1;
4491 }
4492 return 0;
4493 }
4494
4495 /* An object of this type is passed as the user_data argument to
4496 map_partial_symbol_filenames. */
4497 struct add_partial_filename_data
4498 {
4499 int *first;
4500 char *text;
4501 char *word;
4502 int text_len;
4503 VEC (char_ptr) **list;
4504 };
4505
4506 /* A callback for map_partial_symbol_filenames. */
4507
4508 static void
4509 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4510 void *user_data)
4511 {
4512 struct add_partial_filename_data *data = user_data;
4513
4514 if (not_interesting_fname (filename))
4515 return;
4516 if (!filename_seen (filename, 1, data->first)
4517 && filename_ncmp (filename, data->text, data->text_len) == 0)
4518 {
4519 /* This file matches for a completion; add it to the
4520 current list of matches. */
4521 add_filename_to_list (filename, data->text, data->word, data->list);
4522 }
4523 else
4524 {
4525 const char *base_name = lbasename (filename);
4526
4527 if (base_name != filename
4528 && !filename_seen (base_name, 1, data->first)
4529 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4530 add_filename_to_list (base_name, data->text, data->word, data->list);
4531 }
4532 }
4533
4534 /* Return a vector of all source files whose names begin with matching
4535 TEXT. The file names are looked up in the symbol tables of this
4536 program. If the answer is no matchess, then the return value is
4537 NULL. */
4538
4539 VEC (char_ptr) *
4540 make_source_files_completion_list (char *text, char *word)
4541 {
4542 struct symtab *s;
4543 struct objfile *objfile;
4544 int first = 1;
4545 size_t text_len = strlen (text);
4546 VEC (char_ptr) *list = NULL;
4547 const char *base_name;
4548 struct add_partial_filename_data datum;
4549 struct cleanup *back_to;
4550
4551 if (!have_full_symbols () && !have_partial_symbols ())
4552 return list;
4553
4554 back_to = make_cleanup (do_free_completion_list, &list);
4555
4556 ALL_SYMTABS (objfile, s)
4557 {
4558 if (not_interesting_fname (s->filename))
4559 continue;
4560 if (!filename_seen (s->filename, 1, &first)
4561 && filename_ncmp (s->filename, text, text_len) == 0)
4562 {
4563 /* This file matches for a completion; add it to the current
4564 list of matches. */
4565 add_filename_to_list (s->filename, text, word, &list);
4566 }
4567 else
4568 {
4569 /* NOTE: We allow the user to type a base name when the
4570 debug info records leading directories, but not the other
4571 way around. This is what subroutines of breakpoint
4572 command do when they parse file names. */
4573 base_name = lbasename (s->filename);
4574 if (base_name != s->filename
4575 && !filename_seen (base_name, 1, &first)
4576 && filename_ncmp (base_name, text, text_len) == 0)
4577 add_filename_to_list (base_name, text, word, &list);
4578 }
4579 }
4580
4581 datum.first = &first;
4582 datum.text = text;
4583 datum.word = word;
4584 datum.text_len = text_len;
4585 datum.list = &list;
4586 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4587 0 /*need_fullname*/);
4588 discard_cleanups (back_to);
4589
4590 return list;
4591 }
4592
4593 /* Determine if PC is in the prologue of a function. The prologue is the area
4594 between the first instruction of a function, and the first executable line.
4595 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4596
4597 If non-zero, func_start is where we think the prologue starts, possibly
4598 by previous examination of symbol table information. */
4599
4600 int
4601 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4602 {
4603 struct symtab_and_line sal;
4604 CORE_ADDR func_addr, func_end;
4605
4606 /* We have several sources of information we can consult to figure
4607 this out.
4608 - Compilers usually emit line number info that marks the prologue
4609 as its own "source line". So the ending address of that "line"
4610 is the end of the prologue. If available, this is the most
4611 reliable method.
4612 - The minimal symbols and partial symbols, which can usually tell
4613 us the starting and ending addresses of a function.
4614 - If we know the function's start address, we can call the
4615 architecture-defined gdbarch_skip_prologue function to analyze the
4616 instruction stream and guess where the prologue ends.
4617 - Our `func_start' argument; if non-zero, this is the caller's
4618 best guess as to the function's entry point. At the time of
4619 this writing, handle_inferior_event doesn't get this right, so
4620 it should be our last resort. */
4621
4622 /* Consult the partial symbol table, to find which function
4623 the PC is in. */
4624 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4625 {
4626 CORE_ADDR prologue_end;
4627
4628 /* We don't even have minsym information, so fall back to using
4629 func_start, if given. */
4630 if (! func_start)
4631 return 1; /* We *might* be in a prologue. */
4632
4633 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4634
4635 return func_start <= pc && pc < prologue_end;
4636 }
4637
4638 /* If we have line number information for the function, that's
4639 usually pretty reliable. */
4640 sal = find_pc_line (func_addr, 0);
4641
4642 /* Now sal describes the source line at the function's entry point,
4643 which (by convention) is the prologue. The end of that "line",
4644 sal.end, is the end of the prologue.
4645
4646 Note that, for functions whose source code is all on a single
4647 line, the line number information doesn't always end up this way.
4648 So we must verify that our purported end-of-prologue address is
4649 *within* the function, not at its start or end. */
4650 if (sal.line == 0
4651 || sal.end <= func_addr
4652 || func_end <= sal.end)
4653 {
4654 /* We don't have any good line number info, so use the minsym
4655 information, together with the architecture-specific prologue
4656 scanning code. */
4657 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4658
4659 return func_addr <= pc && pc < prologue_end;
4660 }
4661
4662 /* We have line number info, and it looks good. */
4663 return func_addr <= pc && pc < sal.end;
4664 }
4665
4666 /* Given PC at the function's start address, attempt to find the
4667 prologue end using SAL information. Return zero if the skip fails.
4668
4669 A non-optimized prologue traditionally has one SAL for the function
4670 and a second for the function body. A single line function has
4671 them both pointing at the same line.
4672
4673 An optimized prologue is similar but the prologue may contain
4674 instructions (SALs) from the instruction body. Need to skip those
4675 while not getting into the function body.
4676
4677 The functions end point and an increasing SAL line are used as
4678 indicators of the prologue's endpoint.
4679
4680 This code is based on the function refine_prologue_limit
4681 (found in ia64). */
4682
4683 CORE_ADDR
4684 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4685 {
4686 struct symtab_and_line prologue_sal;
4687 CORE_ADDR start_pc;
4688 CORE_ADDR end_pc;
4689 struct block *bl;
4690
4691 /* Get an initial range for the function. */
4692 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4693 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4694
4695 prologue_sal = find_pc_line (start_pc, 0);
4696 if (prologue_sal.line != 0)
4697 {
4698 /* For languages other than assembly, treat two consecutive line
4699 entries at the same address as a zero-instruction prologue.
4700 The GNU assembler emits separate line notes for each instruction
4701 in a multi-instruction macro, but compilers generally will not
4702 do this. */
4703 if (prologue_sal.symtab->language != language_asm)
4704 {
4705 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4706 int idx = 0;
4707
4708 /* Skip any earlier lines, and any end-of-sequence marker
4709 from a previous function. */
4710 while (linetable->item[idx].pc != prologue_sal.pc
4711 || linetable->item[idx].line == 0)
4712 idx++;
4713
4714 if (idx+1 < linetable->nitems
4715 && linetable->item[idx+1].line != 0
4716 && linetable->item[idx+1].pc == start_pc)
4717 return start_pc;
4718 }
4719
4720 /* If there is only one sal that covers the entire function,
4721 then it is probably a single line function, like
4722 "foo(){}". */
4723 if (prologue_sal.end >= end_pc)
4724 return 0;
4725
4726 while (prologue_sal.end < end_pc)
4727 {
4728 struct symtab_and_line sal;
4729
4730 sal = find_pc_line (prologue_sal.end, 0);
4731 if (sal.line == 0)
4732 break;
4733 /* Assume that a consecutive SAL for the same (or larger)
4734 line mark the prologue -> body transition. */
4735 if (sal.line >= prologue_sal.line)
4736 break;
4737
4738 /* The line number is smaller. Check that it's from the
4739 same function, not something inlined. If it's inlined,
4740 then there is no point comparing the line numbers. */
4741 bl = block_for_pc (prologue_sal.end);
4742 while (bl)
4743 {
4744 if (block_inlined_p (bl))
4745 break;
4746 if (BLOCK_FUNCTION (bl))
4747 {
4748 bl = NULL;
4749 break;
4750 }
4751 bl = BLOCK_SUPERBLOCK (bl);
4752 }
4753 if (bl != NULL)
4754 break;
4755
4756 /* The case in which compiler's optimizer/scheduler has
4757 moved instructions into the prologue. We look ahead in
4758 the function looking for address ranges whose
4759 corresponding line number is less the first one that we
4760 found for the function. This is more conservative then
4761 refine_prologue_limit which scans a large number of SALs
4762 looking for any in the prologue. */
4763 prologue_sal = sal;
4764 }
4765 }
4766
4767 if (prologue_sal.end < end_pc)
4768 /* Return the end of this line, or zero if we could not find a
4769 line. */
4770 return prologue_sal.end;
4771 else
4772 /* Don't return END_PC, which is past the end of the function. */
4773 return prologue_sal.pc;
4774 }
4775 \f
4776 struct symtabs_and_lines
4777 decode_line_spec (char *string, int flags)
4778 {
4779 struct symtabs_and_lines sals;
4780 struct symtab_and_line cursal;
4781
4782 if (string == 0)
4783 error (_("Empty line specification."));
4784
4785 /* We use whatever is set as the current source line. We do not try
4786 and get a default or it will recursively call us! */
4787 cursal = get_current_source_symtab_and_line ();
4788
4789 sals = decode_line_1 (&string, flags,
4790 cursal.symtab, cursal.line);
4791
4792 if (*string)
4793 error (_("Junk at end of line specification: %s"), string);
4794 return sals;
4795 }
4796
4797 /* Track MAIN */
4798 static char *name_of_main;
4799 enum language language_of_main = language_unknown;
4800
4801 void
4802 set_main_name (const char *name)
4803 {
4804 if (name_of_main != NULL)
4805 {
4806 xfree (name_of_main);
4807 name_of_main = NULL;
4808 language_of_main = language_unknown;
4809 }
4810 if (name != NULL)
4811 {
4812 name_of_main = xstrdup (name);
4813 language_of_main = language_unknown;
4814 }
4815 }
4816
4817 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4818 accordingly. */
4819
4820 static void
4821 find_main_name (void)
4822 {
4823 const char *new_main_name;
4824
4825 /* Try to see if the main procedure is in Ada. */
4826 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4827 be to add a new method in the language vector, and call this
4828 method for each language until one of them returns a non-empty
4829 name. This would allow us to remove this hard-coded call to
4830 an Ada function. It is not clear that this is a better approach
4831 at this point, because all methods need to be written in a way
4832 such that false positives never be returned. For instance, it is
4833 important that a method does not return a wrong name for the main
4834 procedure if the main procedure is actually written in a different
4835 language. It is easy to guaranty this with Ada, since we use a
4836 special symbol generated only when the main in Ada to find the name
4837 of the main procedure. It is difficult however to see how this can
4838 be guarantied for languages such as C, for instance. This suggests
4839 that order of call for these methods becomes important, which means
4840 a more complicated approach. */
4841 new_main_name = ada_main_name ();
4842 if (new_main_name != NULL)
4843 {
4844 set_main_name (new_main_name);
4845 return;
4846 }
4847
4848 new_main_name = go_main_name ();
4849 if (new_main_name != NULL)
4850 {
4851 set_main_name (new_main_name);
4852 return;
4853 }
4854
4855 new_main_name = pascal_main_name ();
4856 if (new_main_name != NULL)
4857 {
4858 set_main_name (new_main_name);
4859 return;
4860 }
4861
4862 /* The languages above didn't identify the name of the main procedure.
4863 Fallback to "main". */
4864 set_main_name ("main");
4865 }
4866
4867 char *
4868 main_name (void)
4869 {
4870 if (name_of_main == NULL)
4871 find_main_name ();
4872
4873 return name_of_main;
4874 }
4875
4876 /* Handle ``executable_changed'' events for the symtab module. */
4877
4878 static void
4879 symtab_observer_executable_changed (void)
4880 {
4881 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4882 set_main_name (NULL);
4883 }
4884
4885 /* Return 1 if the supplied producer string matches the ARM RealView
4886 compiler (armcc). */
4887
4888 int
4889 producer_is_realview (const char *producer)
4890 {
4891 static const char *const arm_idents[] = {
4892 "ARM C Compiler, ADS",
4893 "Thumb C Compiler, ADS",
4894 "ARM C++ Compiler, ADS",
4895 "Thumb C++ Compiler, ADS",
4896 "ARM/Thumb C/C++ Compiler, RVCT",
4897 "ARM C/C++ Compiler, RVCT"
4898 };
4899 int i;
4900
4901 if (producer == NULL)
4902 return 0;
4903
4904 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4905 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4906 return 1;
4907
4908 return 0;
4909 }
4910
4911 void
4912 _initialize_symtab (void)
4913 {
4914 add_info ("variables", variables_info, _("\
4915 All global and static variable names, or those matching REGEXP."));
4916 if (dbx_commands)
4917 add_com ("whereis", class_info, variables_info, _("\
4918 All global and static variable names, or those matching REGEXP."));
4919
4920 add_info ("functions", functions_info,
4921 _("All function names, or those matching REGEXP."));
4922
4923 /* FIXME: This command has at least the following problems:
4924 1. It prints builtin types (in a very strange and confusing fashion).
4925 2. It doesn't print right, e.g. with
4926 typedef struct foo *FOO
4927 type_print prints "FOO" when we want to make it (in this situation)
4928 print "struct foo *".
4929 I also think "ptype" or "whatis" is more likely to be useful (but if
4930 there is much disagreement "info types" can be fixed). */
4931 add_info ("types", types_info,
4932 _("All type names, or those matching REGEXP."));
4933
4934 add_info ("sources", sources_info,
4935 _("Source files in the program."));
4936
4937 add_com ("rbreak", class_breakpoint, rbreak_command,
4938 _("Set a breakpoint for all functions matching REGEXP."));
4939
4940 if (xdb_commands)
4941 {
4942 add_com ("lf", class_info, sources_info,
4943 _("Source files in the program"));
4944 add_com ("lg", class_info, variables_info, _("\
4945 All global and static variable names, or those matching REGEXP."));
4946 }
4947
4948 add_setshow_enum_cmd ("multiple-symbols", no_class,
4949 multiple_symbols_modes, &multiple_symbols_mode,
4950 _("\
4951 Set the debugger behavior when more than one symbol are possible matches\n\
4952 in an expression."), _("\
4953 Show how the debugger handles ambiguities in expressions."), _("\
4954 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4955 NULL, NULL, &setlist, &showlist);
4956
4957 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4958 &basenames_may_differ, _("\
4959 Set whether a source file may have multiple base names."), _("\
4960 Show whether a source file may have multiple base names."), _("\
4961 (A \"base name\" is the name of a file with the directory part removed.\n\
4962 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4963 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4964 before comparing them. Canonicalization is an expensive operation,\n\
4965 but it allows the same file be known by more than one base name.\n\
4966 If not set (the default), all source files are assumed to have just\n\
4967 one base name, and gdb will do file name comparisons more efficiently."),
4968 NULL, NULL,
4969 &setlist, &showlist);
4970
4971 observer_attach_executable_changed (symtab_observer_executable_changed);
4972 }
This page took 0.130043 seconds and 4 git commands to generate.