* symtab.c (symbol_set_names): Fix typo.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
195 {
196 return s;
197 }
198 }
199
200 if (real_path != NULL)
201 {
202 char *fullname = symtab_to_fullname (s);
203 if (fullname != NULL)
204 {
205 char *rp = gdb_realpath (fullname);
206 make_cleanup (xfree, rp);
207 if (FILENAME_CMP (real_path, rp) == 0)
208 {
209 return s;
210 }
211 }
212 }
213 }
214
215 /* Now, search for a matching tail (only if name doesn't have any dirs) */
216
217 if (lbasename (name) == name)
218 ALL_SYMTABS (objfile, s)
219 {
220 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
221 return s;
222 }
223
224 /* Same search rules as above apply here, but now we look thru the
225 psymtabs. */
226
227 found = 0;
228 ALL_OBJFILES (objfile)
229 {
230 if (objfile->sf
231 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
232 &s))
233 {
234 found = 1;
235 break;
236 }
237 }
238
239 if (s != NULL)
240 return s;
241 if (!found)
242 return NULL;
243
244 /* At this point, we have located the psymtab for this file, but
245 the conversion to a symtab has failed. This usually happens
246 when we are looking up an include file. In this case,
247 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
248 been created. So, we need to run through the symtabs again in
249 order to find the file.
250 XXX - This is a crock, and should be fixed inside of the the
251 symbol parsing routines. */
252 goto got_symtab;
253 }
254 \f
255 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
256 full method name, which consist of the class name (from T), the unadorned
257 method name from METHOD_ID, and the signature for the specific overload,
258 specified by SIGNATURE_ID. Note that this function is g++ specific. */
259
260 char *
261 gdb_mangle_name (struct type *type, int method_id, int signature_id)
262 {
263 int mangled_name_len;
264 char *mangled_name;
265 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
266 struct fn_field *method = &f[signature_id];
267 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
268 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
269 char *newname = type_name_no_tag (type);
270
271 /* Does the form of physname indicate that it is the full mangled name
272 of a constructor (not just the args)? */
273 int is_full_physname_constructor;
274
275 int is_constructor;
276 int is_destructor = is_destructor_name (physname);
277 /* Need a new type prefix. */
278 char *const_prefix = method->is_const ? "C" : "";
279 char *volatile_prefix = method->is_volatile ? "V" : "";
280 char buf[20];
281 int len = (newname == NULL ? 0 : strlen (newname));
282
283 /* Nothing to do if physname already contains a fully mangled v3 abi name
284 or an operator name. */
285 if ((physname[0] == '_' && physname[1] == 'Z')
286 || is_operator_name (field_name))
287 return xstrdup (physname);
288
289 is_full_physname_constructor = is_constructor_name (physname);
290
291 is_constructor =
292 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
293
294 if (!is_destructor)
295 is_destructor = (strncmp (physname, "__dt", 4) == 0);
296
297 if (is_destructor || is_full_physname_constructor)
298 {
299 mangled_name = (char *) xmalloc (strlen (physname) + 1);
300 strcpy (mangled_name, physname);
301 return mangled_name;
302 }
303
304 if (len == 0)
305 {
306 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
307 }
308 else if (physname[0] == 't' || physname[0] == 'Q')
309 {
310 /* The physname for template and qualified methods already includes
311 the class name. */
312 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
313 newname = NULL;
314 len = 0;
315 }
316 else
317 {
318 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
319 }
320 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
321 + strlen (buf) + len + strlen (physname) + 1);
322
323 {
324 mangled_name = (char *) xmalloc (mangled_name_len);
325 if (is_constructor)
326 mangled_name[0] = '\0';
327 else
328 strcpy (mangled_name, field_name);
329 }
330 strcat (mangled_name, buf);
331 /* If the class doesn't have a name, i.e. newname NULL, then we just
332 mangle it using 0 for the length of the class. Thus it gets mangled
333 as something starting with `::' rather than `classname::'. */
334 if (newname != NULL)
335 strcat (mangled_name, newname);
336
337 strcat (mangled_name, physname);
338 return (mangled_name);
339 }
340
341 \f
342 /* Initialize the language dependent portion of a symbol
343 depending upon the language for the symbol. */
344 void
345 symbol_init_language_specific (struct general_symbol_info *gsymbol,
346 enum language language)
347 {
348 gsymbol->language = language;
349 if (gsymbol->language == language_cplus
350 || gsymbol->language == language_d
351 || gsymbol->language == language_java
352 || gsymbol->language == language_objc)
353 {
354 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
355 }
356 else
357 {
358 memset (&gsymbol->language_specific, 0,
359 sizeof (gsymbol->language_specific));
360 }
361 }
362
363 /* Functions to initialize a symbol's mangled name. */
364
365 /* Objects of this type are stored in the demangled name hash table. */
366 struct demangled_name_entry
367 {
368 char *mangled;
369 char demangled[1];
370 };
371
372 /* Hash function for the demangled name hash. */
373 static hashval_t
374 hash_demangled_name_entry (const void *data)
375 {
376 const struct demangled_name_entry *e = data;
377 return htab_hash_string (e->mangled);
378 }
379
380 /* Equality function for the demangled name hash. */
381 static int
382 eq_demangled_name_entry (const void *a, const void *b)
383 {
384 const struct demangled_name_entry *da = a;
385 const struct demangled_name_entry *db = b;
386 return strcmp (da->mangled, db->mangled) == 0;
387 }
388
389 /* Create the hash table used for demangled names. Each hash entry is
390 a pair of strings; one for the mangled name and one for the demangled
391 name. The entry is hashed via just the mangled name. */
392
393 static void
394 create_demangled_names_hash (struct objfile *objfile)
395 {
396 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
397 The hash table code will round this up to the next prime number.
398 Choosing a much larger table size wastes memory, and saves only about
399 1% in symbol reading. */
400
401 objfile->demangled_names_hash = htab_create_alloc
402 (256, hash_demangled_name_entry, eq_demangled_name_entry,
403 NULL, xcalloc, xfree);
404 }
405
406 /* Try to determine the demangled name for a symbol, based on the
407 language of that symbol. If the language is set to language_auto,
408 it will attempt to find any demangling algorithm that works and
409 then set the language appropriately. The returned name is allocated
410 by the demangler and should be xfree'd. */
411
412 static char *
413 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
414 const char *mangled)
415 {
416 char *demangled = NULL;
417
418 if (gsymbol->language == language_unknown)
419 gsymbol->language = language_auto;
420
421 if (gsymbol->language == language_objc
422 || gsymbol->language == language_auto)
423 {
424 demangled =
425 objc_demangle (mangled, 0);
426 if (demangled != NULL)
427 {
428 gsymbol->language = language_objc;
429 return demangled;
430 }
431 }
432 if (gsymbol->language == language_cplus
433 || gsymbol->language == language_auto)
434 {
435 demangled =
436 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
437 if (demangled != NULL)
438 {
439 gsymbol->language = language_cplus;
440 return demangled;
441 }
442 }
443 if (gsymbol->language == language_java)
444 {
445 demangled =
446 cplus_demangle (mangled,
447 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
448 if (demangled != NULL)
449 {
450 gsymbol->language = language_java;
451 return demangled;
452 }
453 }
454 if (gsymbol->language == language_d
455 || gsymbol->language == language_auto)
456 {
457 demangled = d_demangle(mangled, 0);
458 if (demangled != NULL)
459 {
460 gsymbol->language = language_d;
461 return demangled;
462 }
463 }
464 return NULL;
465 }
466
467 /* Set both the mangled and demangled (if any) names for GSYMBOL based
468 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
469 objfile's obstack; but if COPY_NAME is 0 and if NAME is
470 NUL-terminated, then this function assumes that NAME is already
471 correctly saved (either permanently or with a lifetime tied to the
472 objfile), and it will not be copied.
473
474 The hash table corresponding to OBJFILE is used, and the memory
475 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
476 so the pointer can be discarded after calling this function. */
477
478 /* We have to be careful when dealing with Java names: when we run
479 into a Java minimal symbol, we don't know it's a Java symbol, so it
480 gets demangled as a C++ name. This is unfortunate, but there's not
481 much we can do about it: but when demangling partial symbols and
482 regular symbols, we'd better not reuse the wrong demangled name.
483 (See PR gdb/1039.) We solve this by putting a distinctive prefix
484 on Java names when storing them in the hash table. */
485
486 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
487 don't mind the Java prefix so much: different languages have
488 different demangling requirements, so it's only natural that we
489 need to keep language data around in our demangling cache. But
490 it's not good that the minimal symbol has the wrong demangled name.
491 Unfortunately, I can't think of any easy solution to that
492 problem. */
493
494 #define JAVA_PREFIX "##JAVA$$"
495 #define JAVA_PREFIX_LEN 8
496
497 void
498 symbol_set_names (struct general_symbol_info *gsymbol,
499 const char *linkage_name, int len, int copy_name,
500 struct objfile *objfile)
501 {
502 struct demangled_name_entry **slot;
503 /* A 0-terminated copy of the linkage name. */
504 const char *linkage_name_copy;
505 /* A copy of the linkage name that might have a special Java prefix
506 added to it, for use when looking names up in the hash table. */
507 const char *lookup_name;
508 /* The length of lookup_name. */
509 int lookup_len;
510 struct demangled_name_entry entry;
511
512 if (gsymbol->language == language_ada)
513 {
514 /* In Ada, we do the symbol lookups using the mangled name, so
515 we can save some space by not storing the demangled name.
516
517 As a side note, we have also observed some overlap between
518 the C++ mangling and Ada mangling, similarly to what has
519 been observed with Java. Because we don't store the demangled
520 name with the symbol, we don't need to use the same trick
521 as Java. */
522 if (!copy_name)
523 gsymbol->name = (char *) linkage_name;
524 else
525 {
526 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
527 memcpy (gsymbol->name, linkage_name, len);
528 gsymbol->name[len] = '\0';
529 }
530 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
531
532 return;
533 }
534
535 if (objfile->demangled_names_hash == NULL)
536 create_demangled_names_hash (objfile);
537
538 /* The stabs reader generally provides names that are not
539 NUL-terminated; most of the other readers don't do this, so we
540 can just use the given copy, unless we're in the Java case. */
541 if (gsymbol->language == language_java)
542 {
543 char *alloc_name;
544 lookup_len = len + JAVA_PREFIX_LEN;
545
546 alloc_name = alloca (lookup_len + 1);
547 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
548 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
549 alloc_name[lookup_len] = '\0';
550
551 lookup_name = alloc_name;
552 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
553 }
554 else if (linkage_name[len] != '\0')
555 {
556 char *alloc_name;
557 lookup_len = len;
558
559 alloc_name = alloca (lookup_len + 1);
560 memcpy (alloc_name, linkage_name, len);
561 alloc_name[lookup_len] = '\0';
562
563 lookup_name = alloc_name;
564 linkage_name_copy = alloc_name;
565 }
566 else
567 {
568 lookup_len = len;
569 lookup_name = linkage_name;
570 linkage_name_copy = linkage_name;
571 }
572
573 entry.mangled = (char *) lookup_name;
574 slot = ((struct demangled_name_entry **)
575 htab_find_slot (objfile->demangled_names_hash,
576 &entry, INSERT));
577
578 /* If this name is not in the hash table, add it. */
579 if (*slot == NULL)
580 {
581 char *demangled_name = symbol_find_demangled_name (gsymbol,
582 linkage_name_copy);
583 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
584
585 /* Suppose we have demangled_name==NULL, copy_name==0, and
586 lookup_name==linkage_name. In this case, we already have the
587 mangled name saved, and we don't have a demangled name. So,
588 you might think we could save a little space by not recording
589 this in the hash table at all.
590
591 It turns out that it is actually important to still save such
592 an entry in the hash table, because storing this name gives
593 us better bcache hit rates for partial symbols. */
594 if (!copy_name && lookup_name == linkage_name)
595 {
596 *slot = obstack_alloc (&objfile->objfile_obstack,
597 offsetof (struct demangled_name_entry,
598 demangled)
599 + demangled_len + 1);
600 (*slot)->mangled = (char *) lookup_name;
601 }
602 else
603 {
604 /* If we must copy the mangled name, put it directly after
605 the demangled name so we can have a single
606 allocation. */
607 *slot = obstack_alloc (&objfile->objfile_obstack,
608 offsetof (struct demangled_name_entry,
609 demangled)
610 + lookup_len + demangled_len + 2);
611 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
612 strcpy ((*slot)->mangled, lookup_name);
613 }
614
615 if (demangled_name != NULL)
616 {
617 strcpy ((*slot)->demangled, demangled_name);
618 xfree (demangled_name);
619 }
620 else
621 (*slot)->demangled[0] = '\0';
622 }
623
624 gsymbol->name = (*slot)->mangled + lookup_len - len;
625 if ((*slot)->demangled[0] != '\0')
626 gsymbol->language_specific.cplus_specific.demangled_name
627 = (*slot)->demangled;
628 else
629 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
630 }
631
632 /* Return the source code name of a symbol. In languages where
633 demangling is necessary, this is the demangled name. */
634
635 char *
636 symbol_natural_name (const struct general_symbol_info *gsymbol)
637 {
638 switch (gsymbol->language)
639 {
640 case language_cplus:
641 case language_d:
642 case language_java:
643 case language_objc:
644 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
645 return gsymbol->language_specific.cplus_specific.demangled_name;
646 break;
647 case language_ada:
648 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
649 return gsymbol->language_specific.cplus_specific.demangled_name;
650 else
651 return ada_decode_symbol (gsymbol);
652 break;
653 default:
654 break;
655 }
656 return gsymbol->name;
657 }
658
659 /* Return the demangled name for a symbol based on the language for
660 that symbol. If no demangled name exists, return NULL. */
661 char *
662 symbol_demangled_name (const struct general_symbol_info *gsymbol)
663 {
664 switch (gsymbol->language)
665 {
666 case language_cplus:
667 case language_d:
668 case language_java:
669 case language_objc:
670 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
671 return gsymbol->language_specific.cplus_specific.demangled_name;
672 break;
673 case language_ada:
674 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
675 return gsymbol->language_specific.cplus_specific.demangled_name;
676 else
677 return ada_decode_symbol (gsymbol);
678 break;
679 default:
680 break;
681 }
682 return NULL;
683 }
684
685 /* Return the search name of a symbol---generally the demangled or
686 linkage name of the symbol, depending on how it will be searched for.
687 If there is no distinct demangled name, then returns the same value
688 (same pointer) as SYMBOL_LINKAGE_NAME. */
689 char *
690 symbol_search_name (const struct general_symbol_info *gsymbol)
691 {
692 if (gsymbol->language == language_ada)
693 return gsymbol->name;
694 else
695 return symbol_natural_name (gsymbol);
696 }
697
698 /* Initialize the structure fields to zero values. */
699 void
700 init_sal (struct symtab_and_line *sal)
701 {
702 sal->pspace = NULL;
703 sal->symtab = 0;
704 sal->section = 0;
705 sal->line = 0;
706 sal->pc = 0;
707 sal->end = 0;
708 sal->explicit_pc = 0;
709 sal->explicit_line = 0;
710 }
711 \f
712
713 /* Return 1 if the two sections are the same, or if they could
714 plausibly be copies of each other, one in an original object
715 file and another in a separated debug file. */
716
717 int
718 matching_obj_sections (struct obj_section *obj_first,
719 struct obj_section *obj_second)
720 {
721 asection *first = obj_first? obj_first->the_bfd_section : NULL;
722 asection *second = obj_second? obj_second->the_bfd_section : NULL;
723 struct objfile *obj;
724
725 /* If they're the same section, then they match. */
726 if (first == second)
727 return 1;
728
729 /* If either is NULL, give up. */
730 if (first == NULL || second == NULL)
731 return 0;
732
733 /* This doesn't apply to absolute symbols. */
734 if (first->owner == NULL || second->owner == NULL)
735 return 0;
736
737 /* If they're in the same object file, they must be different sections. */
738 if (first->owner == second->owner)
739 return 0;
740
741 /* Check whether the two sections are potentially corresponding. They must
742 have the same size, address, and name. We can't compare section indexes,
743 which would be more reliable, because some sections may have been
744 stripped. */
745 if (bfd_get_section_size (first) != bfd_get_section_size (second))
746 return 0;
747
748 /* In-memory addresses may start at a different offset, relativize them. */
749 if (bfd_get_section_vma (first->owner, first)
750 - bfd_get_start_address (first->owner)
751 != bfd_get_section_vma (second->owner, second)
752 - bfd_get_start_address (second->owner))
753 return 0;
754
755 if (bfd_get_section_name (first->owner, first) == NULL
756 || bfd_get_section_name (second->owner, second) == NULL
757 || strcmp (bfd_get_section_name (first->owner, first),
758 bfd_get_section_name (second->owner, second)) != 0)
759 return 0;
760
761 /* Otherwise check that they are in corresponding objfiles. */
762
763 ALL_OBJFILES (obj)
764 if (obj->obfd == first->owner)
765 break;
766 gdb_assert (obj != NULL);
767
768 if (obj->separate_debug_objfile != NULL
769 && obj->separate_debug_objfile->obfd == second->owner)
770 return 1;
771 if (obj->separate_debug_objfile_backlink != NULL
772 && obj->separate_debug_objfile_backlink->obfd == second->owner)
773 return 1;
774
775 return 0;
776 }
777
778 struct symtab *
779 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
780 {
781 struct objfile *objfile;
782 struct minimal_symbol *msymbol;
783
784 /* If we know that this is not a text address, return failure. This is
785 necessary because we loop based on texthigh and textlow, which do
786 not include the data ranges. */
787 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
788 if (msymbol
789 && (MSYMBOL_TYPE (msymbol) == mst_data
790 || MSYMBOL_TYPE (msymbol) == mst_bss
791 || MSYMBOL_TYPE (msymbol) == mst_abs
792 || MSYMBOL_TYPE (msymbol) == mst_file_data
793 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
794 return NULL;
795
796 ALL_OBJFILES (objfile)
797 {
798 struct symtab *result = NULL;
799 if (objfile->sf)
800 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
801 pc, section, 0);
802 if (result)
803 return result;
804 }
805
806 return NULL;
807 }
808 \f
809 /* Debug symbols usually don't have section information. We need to dig that
810 out of the minimal symbols and stash that in the debug symbol. */
811
812 void
813 fixup_section (struct general_symbol_info *ginfo,
814 CORE_ADDR addr, struct objfile *objfile)
815 {
816 struct minimal_symbol *msym;
817
818 /* First, check whether a minimal symbol with the same name exists
819 and points to the same address. The address check is required
820 e.g. on PowerPC64, where the minimal symbol for a function will
821 point to the function descriptor, while the debug symbol will
822 point to the actual function code. */
823 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
824 if (msym)
825 {
826 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
827 ginfo->section = SYMBOL_SECTION (msym);
828 }
829 else
830 {
831 /* Static, function-local variables do appear in the linker
832 (minimal) symbols, but are frequently given names that won't
833 be found via lookup_minimal_symbol(). E.g., it has been
834 observed in frv-uclinux (ELF) executables that a static,
835 function-local variable named "foo" might appear in the
836 linker symbols as "foo.6" or "foo.3". Thus, there is no
837 point in attempting to extend the lookup-by-name mechanism to
838 handle this case due to the fact that there can be multiple
839 names.
840
841 So, instead, search the section table when lookup by name has
842 failed. The ``addr'' and ``endaddr'' fields may have already
843 been relocated. If so, the relocation offset (i.e. the
844 ANOFFSET value) needs to be subtracted from these values when
845 performing the comparison. We unconditionally subtract it,
846 because, when no relocation has been performed, the ANOFFSET
847 value will simply be zero.
848
849 The address of the symbol whose section we're fixing up HAS
850 NOT BEEN adjusted (relocated) yet. It can't have been since
851 the section isn't yet known and knowing the section is
852 necessary in order to add the correct relocation value. In
853 other words, we wouldn't even be in this function (attempting
854 to compute the section) if it were already known.
855
856 Note that it is possible to search the minimal symbols
857 (subtracting the relocation value if necessary) to find the
858 matching minimal symbol, but this is overkill and much less
859 efficient. It is not necessary to find the matching minimal
860 symbol, only its section.
861
862 Note that this technique (of doing a section table search)
863 can fail when unrelocated section addresses overlap. For
864 this reason, we still attempt a lookup by name prior to doing
865 a search of the section table. */
866
867 struct obj_section *s;
868 ALL_OBJFILE_OSECTIONS (objfile, s)
869 {
870 int idx = s->the_bfd_section->index;
871 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
872
873 if (obj_section_addr (s) - offset <= addr
874 && addr < obj_section_endaddr (s) - offset)
875 {
876 ginfo->obj_section = s;
877 ginfo->section = idx;
878 return;
879 }
880 }
881 }
882 }
883
884 struct symbol *
885 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
886 {
887 CORE_ADDR addr;
888
889 if (!sym)
890 return NULL;
891
892 if (SYMBOL_OBJ_SECTION (sym))
893 return sym;
894
895 /* We either have an OBJFILE, or we can get at it from the sym's
896 symtab. Anything else is a bug. */
897 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
898
899 if (objfile == NULL)
900 objfile = SYMBOL_SYMTAB (sym)->objfile;
901
902 /* We should have an objfile by now. */
903 gdb_assert (objfile);
904
905 switch (SYMBOL_CLASS (sym))
906 {
907 case LOC_STATIC:
908 case LOC_LABEL:
909 addr = SYMBOL_VALUE_ADDRESS (sym);
910 break;
911 case LOC_BLOCK:
912 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
913 break;
914
915 default:
916 /* Nothing else will be listed in the minsyms -- no use looking
917 it up. */
918 return sym;
919 }
920
921 fixup_section (&sym->ginfo, addr, objfile);
922
923 return sym;
924 }
925
926 /* Find the definition for a specified symbol name NAME
927 in domain DOMAIN, visible from lexical block BLOCK.
928 Returns the struct symbol pointer, or zero if no symbol is found.
929 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
930 NAME is a field of the current implied argument `this'. If so set
931 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
932 BLOCK_FOUND is set to the block in which NAME is found (in the case of
933 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
934
935 /* This function has a bunch of loops in it and it would seem to be
936 attractive to put in some QUIT's (though I'm not really sure
937 whether it can run long enough to be really important). But there
938 are a few calls for which it would appear to be bad news to quit
939 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
940 that there is C++ code below which can error(), but that probably
941 doesn't affect these calls since they are looking for a known
942 variable and thus can probably assume it will never hit the C++
943 code). */
944
945 struct symbol *
946 lookup_symbol_in_language (const char *name, const struct block *block,
947 const domain_enum domain, enum language lang,
948 int *is_a_field_of_this)
949 {
950 char *demangled_name = NULL;
951 const char *modified_name = NULL;
952 struct symbol *returnval;
953 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
954
955 modified_name = name;
956
957 /* If we are using C++, D, or Java, demangle the name before doing a lookup, so
958 we can always binary search. */
959 if (lang == language_cplus)
960 {
961 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
962 if (demangled_name)
963 {
964 modified_name = demangled_name;
965 make_cleanup (xfree, demangled_name);
966 }
967 else
968 {
969 /* If we were given a non-mangled name, canonicalize it
970 according to the language (so far only for C++). */
971 demangled_name = cp_canonicalize_string (name);
972 if (demangled_name)
973 {
974 modified_name = demangled_name;
975 make_cleanup (xfree, demangled_name);
976 }
977 }
978 }
979 else if (lang == language_java)
980 {
981 demangled_name = cplus_demangle (name,
982 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
983 if (demangled_name)
984 {
985 modified_name = demangled_name;
986 make_cleanup (xfree, demangled_name);
987 }
988 }
989 else if (lang == language_d)
990 {
991 demangled_name = d_demangle (name, 0);
992 if (demangled_name)
993 {
994 modified_name = demangled_name;
995 make_cleanup (xfree, demangled_name);
996 }
997 }
998
999 if (case_sensitivity == case_sensitive_off)
1000 {
1001 char *copy;
1002 int len, i;
1003
1004 len = strlen (name);
1005 copy = (char *) alloca (len + 1);
1006 for (i= 0; i < len; i++)
1007 copy[i] = tolower (name[i]);
1008 copy[len] = 0;
1009 modified_name = copy;
1010 }
1011
1012 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1013 is_a_field_of_this);
1014 do_cleanups (cleanup);
1015
1016 return returnval;
1017 }
1018
1019 /* Behave like lookup_symbol_in_language, but performed with the
1020 current language. */
1021
1022 struct symbol *
1023 lookup_symbol (const char *name, const struct block *block,
1024 domain_enum domain, int *is_a_field_of_this)
1025 {
1026 return lookup_symbol_in_language (name, block, domain,
1027 current_language->la_language,
1028 is_a_field_of_this);
1029 }
1030
1031 /* Behave like lookup_symbol except that NAME is the natural name
1032 of the symbol that we're looking for and, if LINKAGE_NAME is
1033 non-NULL, ensure that the symbol's linkage name matches as
1034 well. */
1035
1036 static struct symbol *
1037 lookup_symbol_aux (const char *name, const struct block *block,
1038 const domain_enum domain, enum language language,
1039 int *is_a_field_of_this)
1040 {
1041 struct symbol *sym;
1042 const struct language_defn *langdef;
1043 struct objfile *objfile;
1044
1045 /* Make sure we do something sensible with is_a_field_of_this, since
1046 the callers that set this parameter to some non-null value will
1047 certainly use it later and expect it to be either 0 or 1.
1048 If we don't set it, the contents of is_a_field_of_this are
1049 undefined. */
1050 if (is_a_field_of_this != NULL)
1051 *is_a_field_of_this = 0;
1052
1053 /* Search specified block and its superiors. Don't search
1054 STATIC_BLOCK or GLOBAL_BLOCK. */
1055
1056 sym = lookup_symbol_aux_local (name, block, domain, language);
1057 if (sym != NULL)
1058 return sym;
1059
1060 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1061 check to see if NAME is a field of `this'. */
1062
1063 langdef = language_def (language);
1064
1065 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1066 && block != NULL)
1067 {
1068 struct symbol *sym = NULL;
1069 const struct block *function_block = block;
1070 /* 'this' is only defined in the function's block, so find the
1071 enclosing function block. */
1072 for (; function_block && !BLOCK_FUNCTION (function_block);
1073 function_block = BLOCK_SUPERBLOCK (function_block));
1074
1075 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1076 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1077 VAR_DOMAIN);
1078 if (sym)
1079 {
1080 struct type *t = sym->type;
1081
1082 /* I'm not really sure that type of this can ever
1083 be typedefed; just be safe. */
1084 CHECK_TYPEDEF (t);
1085 if (TYPE_CODE (t) == TYPE_CODE_PTR
1086 || TYPE_CODE (t) == TYPE_CODE_REF)
1087 t = TYPE_TARGET_TYPE (t);
1088
1089 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1090 && TYPE_CODE (t) != TYPE_CODE_UNION)
1091 error (_("Internal error: `%s' is not an aggregate"),
1092 langdef->la_name_of_this);
1093
1094 if (check_field (t, name))
1095 {
1096 *is_a_field_of_this = 1;
1097 return NULL;
1098 }
1099 }
1100 }
1101
1102 /* Now do whatever is appropriate for LANGUAGE to look
1103 up static and global variables. */
1104
1105 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1106 if (sym != NULL)
1107 return sym;
1108
1109 /* Now search all static file-level symbols. Not strictly correct,
1110 but more useful than an error. Do the symtabs first, then check
1111 the psymtabs. If a psymtab indicates the existence of the
1112 desired name as a file-level static, then do psymtab-to-symtab
1113 conversion on the fly and return the found symbol. */
1114
1115 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1116 if (sym != NULL)
1117 return sym;
1118
1119 ALL_OBJFILES (objfile)
1120 {
1121 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1122 if (sym != NULL)
1123 return sym;
1124 }
1125
1126 return NULL;
1127 }
1128
1129 /* Check to see if the symbol is defined in BLOCK or its superiors.
1130 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1131
1132 static struct symbol *
1133 lookup_symbol_aux_local (const char *name, const struct block *block,
1134 const domain_enum domain,
1135 enum language language)
1136 {
1137 struct symbol *sym;
1138 const struct block *static_block = block_static_block (block);
1139 const char *scope = block_scope (block);
1140
1141 /* Check if either no block is specified or it's a global block. */
1142
1143 if (static_block == NULL)
1144 return NULL;
1145
1146 while (block != static_block)
1147 {
1148 sym = lookup_symbol_aux_block (name, block, domain);
1149 if (sym != NULL)
1150 return sym;
1151
1152 if (language == language_cplus)
1153 {
1154 sym = cp_lookup_symbol_imports (scope,
1155 name,
1156 block,
1157 domain,
1158 1,
1159 1);
1160 if (sym != NULL)
1161 return sym;
1162 }
1163
1164 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1165 break;
1166 block = BLOCK_SUPERBLOCK (block);
1167 }
1168
1169 /* We've reached the edge of the function without finding a result. */
1170
1171 return NULL;
1172 }
1173
1174 /* Look up OBJFILE to BLOCK. */
1175
1176 struct objfile *
1177 lookup_objfile_from_block (const struct block *block)
1178 {
1179 struct objfile *obj;
1180 struct symtab *s;
1181
1182 if (block == NULL)
1183 return NULL;
1184
1185 block = block_global_block (block);
1186 /* Go through SYMTABS. */
1187 ALL_SYMTABS (obj, s)
1188 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1189 {
1190 if (obj->separate_debug_objfile_backlink)
1191 obj = obj->separate_debug_objfile_backlink;
1192
1193 return obj;
1194 }
1195
1196 return NULL;
1197 }
1198
1199 /* Look up a symbol in a block; if found, fixup the symbol, and set
1200 block_found appropriately. */
1201
1202 struct symbol *
1203 lookup_symbol_aux_block (const char *name, const struct block *block,
1204 const domain_enum domain)
1205 {
1206 struct symbol *sym;
1207
1208 sym = lookup_block_symbol (block, name, domain);
1209 if (sym)
1210 {
1211 block_found = block;
1212 return fixup_symbol_section (sym, NULL);
1213 }
1214
1215 return NULL;
1216 }
1217
1218 /* Check all global symbols in OBJFILE in symtabs and
1219 psymtabs. */
1220
1221 struct symbol *
1222 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1223 const char *name,
1224 const domain_enum domain)
1225 {
1226 const struct objfile *objfile;
1227 struct symbol *sym;
1228 struct blockvector *bv;
1229 const struct block *block;
1230 struct symtab *s;
1231
1232 for (objfile = main_objfile;
1233 objfile;
1234 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1235 {
1236 /* Go through symtabs. */
1237 ALL_OBJFILE_SYMTABS (objfile, s)
1238 {
1239 bv = BLOCKVECTOR (s);
1240 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1241 sym = lookup_block_symbol (block, name, domain);
1242 if (sym)
1243 {
1244 block_found = block;
1245 return fixup_symbol_section (sym, (struct objfile *)objfile);
1246 }
1247 }
1248
1249 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1250 name, domain);
1251 if (sym)
1252 return sym;
1253 }
1254
1255 return NULL;
1256 }
1257
1258 /* Check to see if the symbol is defined in one of the symtabs.
1259 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1260 depending on whether or not we want to search global symbols or
1261 static symbols. */
1262
1263 static struct symbol *
1264 lookup_symbol_aux_symtabs (int block_index, const char *name,
1265 const domain_enum domain)
1266 {
1267 struct symbol *sym;
1268 struct objfile *objfile;
1269 struct blockvector *bv;
1270 const struct block *block;
1271 struct symtab *s;
1272
1273 ALL_PRIMARY_SYMTABS (objfile, s)
1274 {
1275 bv = BLOCKVECTOR (s);
1276 block = BLOCKVECTOR_BLOCK (bv, block_index);
1277 sym = lookup_block_symbol (block, name, domain);
1278 if (sym)
1279 {
1280 block_found = block;
1281 return fixup_symbol_section (sym, objfile);
1282 }
1283 }
1284
1285 return NULL;
1286 }
1287
1288 /* A helper function for lookup_symbol_aux that interfaces with the
1289 "quick" symbol table functions. */
1290
1291 static struct symbol *
1292 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1293 const char *name, const domain_enum domain)
1294 {
1295 struct symtab *symtab;
1296 struct blockvector *bv;
1297 const struct block *block;
1298 struct partial_symtab *ps;
1299 struct symbol *sym;
1300
1301 if (!objfile->sf)
1302 return NULL;
1303 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1304 if (!symtab)
1305 return NULL;
1306
1307 bv = BLOCKVECTOR (symtab);
1308 block = BLOCKVECTOR_BLOCK (bv, kind);
1309 sym = lookup_block_symbol (block, name, domain);
1310 if (!sym)
1311 {
1312 /* This shouldn't be necessary, but as a last resort try
1313 looking in the statics even though the psymtab claimed
1314 the symbol was global, or vice-versa. It's possible
1315 that the psymtab gets it wrong in some cases. */
1316
1317 /* FIXME: carlton/2002-09-30: Should we really do that?
1318 If that happens, isn't it likely to be a GDB error, in
1319 which case we should fix the GDB error rather than
1320 silently dealing with it here? So I'd vote for
1321 removing the check for the symbol in the other
1322 block. */
1323 block = BLOCKVECTOR_BLOCK (bv,
1324 kind == GLOBAL_BLOCK ?
1325 STATIC_BLOCK : GLOBAL_BLOCK);
1326 sym = lookup_block_symbol (block, name, domain);
1327 if (!sym)
1328 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1329 kind == GLOBAL_BLOCK ? "global" : "static",
1330 name, symtab->filename, name, name);
1331 }
1332 return fixup_symbol_section (sym, objfile);
1333 }
1334
1335 /* A default version of lookup_symbol_nonlocal for use by languages
1336 that can't think of anything better to do. This implements the C
1337 lookup rules. */
1338
1339 struct symbol *
1340 basic_lookup_symbol_nonlocal (const char *name,
1341 const struct block *block,
1342 const domain_enum domain)
1343 {
1344 struct symbol *sym;
1345
1346 /* NOTE: carlton/2003-05-19: The comments below were written when
1347 this (or what turned into this) was part of lookup_symbol_aux;
1348 I'm much less worried about these questions now, since these
1349 decisions have turned out well, but I leave these comments here
1350 for posterity. */
1351
1352 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1353 not it would be appropriate to search the current global block
1354 here as well. (That's what this code used to do before the
1355 is_a_field_of_this check was moved up.) On the one hand, it's
1356 redundant with the lookup_symbol_aux_symtabs search that happens
1357 next. On the other hand, if decode_line_1 is passed an argument
1358 like filename:var, then the user presumably wants 'var' to be
1359 searched for in filename. On the third hand, there shouldn't be
1360 multiple global variables all of which are named 'var', and it's
1361 not like decode_line_1 has ever restricted its search to only
1362 global variables in a single filename. All in all, only
1363 searching the static block here seems best: it's correct and it's
1364 cleanest. */
1365
1366 /* NOTE: carlton/2002-12-05: There's also a possible performance
1367 issue here: if you usually search for global symbols in the
1368 current file, then it would be slightly better to search the
1369 current global block before searching all the symtabs. But there
1370 are other factors that have a much greater effect on performance
1371 than that one, so I don't think we should worry about that for
1372 now. */
1373
1374 sym = lookup_symbol_static (name, block, domain);
1375 if (sym != NULL)
1376 return sym;
1377
1378 return lookup_symbol_global (name, block, domain);
1379 }
1380
1381 /* Lookup a symbol in the static block associated to BLOCK, if there
1382 is one; do nothing if BLOCK is NULL or a global block. */
1383
1384 struct symbol *
1385 lookup_symbol_static (const char *name,
1386 const struct block *block,
1387 const domain_enum domain)
1388 {
1389 const struct block *static_block = block_static_block (block);
1390
1391 if (static_block != NULL)
1392 return lookup_symbol_aux_block (name, static_block, domain);
1393 else
1394 return NULL;
1395 }
1396
1397 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1398 necessary). */
1399
1400 struct symbol *
1401 lookup_symbol_global (const char *name,
1402 const struct block *block,
1403 const domain_enum domain)
1404 {
1405 struct symbol *sym = NULL;
1406 struct objfile *objfile = NULL;
1407
1408 /* Call library-specific lookup procedure. */
1409 objfile = lookup_objfile_from_block (block);
1410 if (objfile != NULL)
1411 sym = solib_global_lookup (objfile, name, domain);
1412 if (sym != NULL)
1413 return sym;
1414
1415 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1416 if (sym != NULL)
1417 return sym;
1418
1419 ALL_OBJFILES (objfile)
1420 {
1421 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1422 if (sym)
1423 return sym;
1424 }
1425
1426 return NULL;
1427 }
1428
1429 int
1430 symbol_matches_domain (enum language symbol_language,
1431 domain_enum symbol_domain,
1432 domain_enum domain)
1433 {
1434 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1435 A Java class declaration also defines a typedef for the class.
1436 Similarly, any Ada type declaration implicitly defines a typedef. */
1437 if (symbol_language == language_cplus
1438 || symbol_language == language_d
1439 || symbol_language == language_java
1440 || symbol_language == language_ada)
1441 {
1442 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1443 && symbol_domain == STRUCT_DOMAIN)
1444 return 1;
1445 }
1446 /* For all other languages, strict match is required. */
1447 return (symbol_domain == domain);
1448 }
1449
1450 /* Look up a type named NAME in the struct_domain. The type returned
1451 must not be opaque -- i.e., must have at least one field
1452 defined. */
1453
1454 struct type *
1455 lookup_transparent_type (const char *name)
1456 {
1457 return current_language->la_lookup_transparent_type (name);
1458 }
1459
1460 /* A helper for basic_lookup_transparent_type that interfaces with the
1461 "quick" symbol table functions. */
1462
1463 static struct type *
1464 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1465 const char *name)
1466 {
1467 struct symtab *symtab;
1468 struct blockvector *bv;
1469 struct block *block;
1470 struct symbol *sym;
1471
1472 if (!objfile->sf)
1473 return NULL;
1474 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1475 if (!symtab)
1476 return NULL;
1477
1478 bv = BLOCKVECTOR (symtab);
1479 block = BLOCKVECTOR_BLOCK (bv, kind);
1480 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1481 if (!sym)
1482 {
1483 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1484
1485 /* This shouldn't be necessary, but as a last resort
1486 * try looking in the 'other kind' even though the psymtab
1487 * claimed the symbol was one thing. It's possible that
1488 * the psymtab gets it wrong in some cases.
1489 */
1490 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1491 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1492 if (!sym)
1493 /* FIXME; error is wrong in one case */
1494 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1495 %s may be an inlined function, or may be a template function\n\
1496 (if a template, try specifying an instantiation: %s<type>)."),
1497 name, symtab->filename, name, name);
1498 }
1499 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1500 return SYMBOL_TYPE (sym);
1501
1502 return NULL;
1503 }
1504
1505 /* The standard implementation of lookup_transparent_type. This code
1506 was modeled on lookup_symbol -- the parts not relevant to looking
1507 up types were just left out. In particular it's assumed here that
1508 types are available in struct_domain and only at file-static or
1509 global blocks. */
1510
1511 struct type *
1512 basic_lookup_transparent_type (const char *name)
1513 {
1514 struct symbol *sym;
1515 struct symtab *s = NULL;
1516 struct blockvector *bv;
1517 struct objfile *objfile;
1518 struct block *block;
1519 struct type *t;
1520
1521 /* Now search all the global symbols. Do the symtab's first, then
1522 check the psymtab's. If a psymtab indicates the existence
1523 of the desired name as a global, then do psymtab-to-symtab
1524 conversion on the fly and return the found symbol. */
1525
1526 ALL_PRIMARY_SYMTABS (objfile, s)
1527 {
1528 bv = BLOCKVECTOR (s);
1529 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1530 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1531 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1532 {
1533 return SYMBOL_TYPE (sym);
1534 }
1535 }
1536
1537 ALL_OBJFILES (objfile)
1538 {
1539 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1540 if (t)
1541 return t;
1542 }
1543
1544 /* Now search the static file-level symbols.
1545 Not strictly correct, but more useful than an error.
1546 Do the symtab's first, then
1547 check the psymtab's. If a psymtab indicates the existence
1548 of the desired name as a file-level static, then do psymtab-to-symtab
1549 conversion on the fly and return the found symbol.
1550 */
1551
1552 ALL_PRIMARY_SYMTABS (objfile, s)
1553 {
1554 bv = BLOCKVECTOR (s);
1555 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1556 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1557 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1558 {
1559 return SYMBOL_TYPE (sym);
1560 }
1561 }
1562
1563 ALL_OBJFILES (objfile)
1564 {
1565 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1566 if (t)
1567 return t;
1568 }
1569
1570 return (struct type *) 0;
1571 }
1572
1573
1574 /* Find the name of the file containing main(). */
1575 /* FIXME: What about languages without main() or specially linked
1576 executables that have no main() ? */
1577
1578 char *
1579 find_main_filename (void)
1580 {
1581 struct objfile *objfile;
1582 char *result, *name = main_name ();
1583
1584 ALL_OBJFILES (objfile)
1585 {
1586 if (!objfile->sf)
1587 continue;
1588 result = objfile->sf->qf->find_symbol_file (objfile, name);
1589 if (result)
1590 return result;
1591 }
1592 return (NULL);
1593 }
1594
1595 /* Search BLOCK for symbol NAME in DOMAIN.
1596
1597 Note that if NAME is the demangled form of a C++ symbol, we will fail
1598 to find a match during the binary search of the non-encoded names, but
1599 for now we don't worry about the slight inefficiency of looking for
1600 a match we'll never find, since it will go pretty quick. Once the
1601 binary search terminates, we drop through and do a straight linear
1602 search on the symbols. Each symbol which is marked as being a ObjC/C++
1603 symbol (language_cplus or language_objc set) has both the encoded and
1604 non-encoded names tested for a match.
1605 */
1606
1607 struct symbol *
1608 lookup_block_symbol (const struct block *block, const char *name,
1609 const domain_enum domain)
1610 {
1611 struct dict_iterator iter;
1612 struct symbol *sym;
1613
1614 if (!BLOCK_FUNCTION (block))
1615 {
1616 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1617 sym != NULL;
1618 sym = dict_iter_name_next (name, &iter))
1619 {
1620 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1621 SYMBOL_DOMAIN (sym), domain))
1622 return sym;
1623 }
1624 return NULL;
1625 }
1626 else
1627 {
1628 /* Note that parameter symbols do not always show up last in the
1629 list; this loop makes sure to take anything else other than
1630 parameter symbols first; it only uses parameter symbols as a
1631 last resort. Note that this only takes up extra computation
1632 time on a match. */
1633
1634 struct symbol *sym_found = NULL;
1635
1636 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1637 sym != NULL;
1638 sym = dict_iter_name_next (name, &iter))
1639 {
1640 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1641 SYMBOL_DOMAIN (sym), domain))
1642 {
1643 sym_found = sym;
1644 if (!SYMBOL_IS_ARGUMENT (sym))
1645 {
1646 break;
1647 }
1648 }
1649 }
1650 return (sym_found); /* Will be NULL if not found. */
1651 }
1652 }
1653
1654 /* Find the symtab associated with PC and SECTION. Look through the
1655 psymtabs and read in another symtab if necessary. */
1656
1657 struct symtab *
1658 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1659 {
1660 struct block *b;
1661 struct blockvector *bv;
1662 struct symtab *s = NULL;
1663 struct symtab *best_s = NULL;
1664 struct partial_symtab *ps;
1665 struct objfile *objfile;
1666 struct program_space *pspace;
1667 CORE_ADDR distance = 0;
1668 struct minimal_symbol *msymbol;
1669
1670 pspace = current_program_space;
1671
1672 /* If we know that this is not a text address, return failure. This is
1673 necessary because we loop based on the block's high and low code
1674 addresses, which do not include the data ranges, and because
1675 we call find_pc_sect_psymtab which has a similar restriction based
1676 on the partial_symtab's texthigh and textlow. */
1677 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1678 if (msymbol
1679 && (MSYMBOL_TYPE (msymbol) == mst_data
1680 || MSYMBOL_TYPE (msymbol) == mst_bss
1681 || MSYMBOL_TYPE (msymbol) == mst_abs
1682 || MSYMBOL_TYPE (msymbol) == mst_file_data
1683 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1684 return NULL;
1685
1686 /* Search all symtabs for the one whose file contains our address, and which
1687 is the smallest of all the ones containing the address. This is designed
1688 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1689 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1690 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1691
1692 This happens for native ecoff format, where code from included files
1693 gets its own symtab. The symtab for the included file should have
1694 been read in already via the dependency mechanism.
1695 It might be swifter to create several symtabs with the same name
1696 like xcoff does (I'm not sure).
1697
1698 It also happens for objfiles that have their functions reordered.
1699 For these, the symtab we are looking for is not necessarily read in. */
1700
1701 ALL_PRIMARY_SYMTABS (objfile, s)
1702 {
1703 bv = BLOCKVECTOR (s);
1704 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1705
1706 if (BLOCK_START (b) <= pc
1707 && BLOCK_END (b) > pc
1708 && (distance == 0
1709 || BLOCK_END (b) - BLOCK_START (b) < distance))
1710 {
1711 /* For an objfile that has its functions reordered,
1712 find_pc_psymtab will find the proper partial symbol table
1713 and we simply return its corresponding symtab. */
1714 /* In order to better support objfiles that contain both
1715 stabs and coff debugging info, we continue on if a psymtab
1716 can't be found. */
1717 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1718 {
1719 struct symtab *result;
1720 result
1721 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1722 msymbol,
1723 pc, section,
1724 0);
1725 if (result)
1726 return result;
1727 }
1728 if (section != 0)
1729 {
1730 struct dict_iterator iter;
1731 struct symbol *sym = NULL;
1732
1733 ALL_BLOCK_SYMBOLS (b, iter, sym)
1734 {
1735 fixup_symbol_section (sym, objfile);
1736 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1737 break;
1738 }
1739 if (sym == NULL)
1740 continue; /* no symbol in this symtab matches section */
1741 }
1742 distance = BLOCK_END (b) - BLOCK_START (b);
1743 best_s = s;
1744 }
1745 }
1746
1747 if (best_s != NULL)
1748 return (best_s);
1749
1750 ALL_OBJFILES (objfile)
1751 {
1752 struct symtab *result;
1753 if (!objfile->sf)
1754 continue;
1755 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1756 msymbol,
1757 pc, section,
1758 1);
1759 if (result)
1760 return result;
1761 }
1762
1763 return NULL;
1764 }
1765
1766 /* Find the symtab associated with PC. Look through the psymtabs and
1767 read in another symtab if necessary. Backward compatibility, no section */
1768
1769 struct symtab *
1770 find_pc_symtab (CORE_ADDR pc)
1771 {
1772 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1773 }
1774 \f
1775
1776 /* Find the source file and line number for a given PC value and SECTION.
1777 Return a structure containing a symtab pointer, a line number,
1778 and a pc range for the entire source line.
1779 The value's .pc field is NOT the specified pc.
1780 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1781 use the line that ends there. Otherwise, in that case, the line
1782 that begins there is used. */
1783
1784 /* The big complication here is that a line may start in one file, and end just
1785 before the start of another file. This usually occurs when you #include
1786 code in the middle of a subroutine. To properly find the end of a line's PC
1787 range, we must search all symtabs associated with this compilation unit, and
1788 find the one whose first PC is closer than that of the next line in this
1789 symtab. */
1790
1791 /* If it's worth the effort, we could be using a binary search. */
1792
1793 struct symtab_and_line
1794 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1795 {
1796 struct symtab *s;
1797 struct linetable *l;
1798 int len;
1799 int i;
1800 struct linetable_entry *item;
1801 struct symtab_and_line val;
1802 struct blockvector *bv;
1803 struct minimal_symbol *msymbol;
1804 struct minimal_symbol *mfunsym;
1805
1806 /* Info on best line seen so far, and where it starts, and its file. */
1807
1808 struct linetable_entry *best = NULL;
1809 CORE_ADDR best_end = 0;
1810 struct symtab *best_symtab = 0;
1811
1812 /* Store here the first line number
1813 of a file which contains the line at the smallest pc after PC.
1814 If we don't find a line whose range contains PC,
1815 we will use a line one less than this,
1816 with a range from the start of that file to the first line's pc. */
1817 struct linetable_entry *alt = NULL;
1818 struct symtab *alt_symtab = 0;
1819
1820 /* Info on best line seen in this file. */
1821
1822 struct linetable_entry *prev;
1823
1824 /* If this pc is not from the current frame,
1825 it is the address of the end of a call instruction.
1826 Quite likely that is the start of the following statement.
1827 But what we want is the statement containing the instruction.
1828 Fudge the pc to make sure we get that. */
1829
1830 init_sal (&val); /* initialize to zeroes */
1831
1832 val.pspace = current_program_space;
1833
1834 /* It's tempting to assume that, if we can't find debugging info for
1835 any function enclosing PC, that we shouldn't search for line
1836 number info, either. However, GAS can emit line number info for
1837 assembly files --- very helpful when debugging hand-written
1838 assembly code. In such a case, we'd have no debug info for the
1839 function, but we would have line info. */
1840
1841 if (notcurrent)
1842 pc -= 1;
1843
1844 /* elz: added this because this function returned the wrong
1845 information if the pc belongs to a stub (import/export)
1846 to call a shlib function. This stub would be anywhere between
1847 two functions in the target, and the line info was erroneously
1848 taken to be the one of the line before the pc.
1849 */
1850 /* RT: Further explanation:
1851
1852 * We have stubs (trampolines) inserted between procedures.
1853 *
1854 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1855 * exists in the main image.
1856 *
1857 * In the minimal symbol table, we have a bunch of symbols
1858 * sorted by start address. The stubs are marked as "trampoline",
1859 * the others appear as text. E.g.:
1860 *
1861 * Minimal symbol table for main image
1862 * main: code for main (text symbol)
1863 * shr1: stub (trampoline symbol)
1864 * foo: code for foo (text symbol)
1865 * ...
1866 * Minimal symbol table for "shr1" image:
1867 * ...
1868 * shr1: code for shr1 (text symbol)
1869 * ...
1870 *
1871 * So the code below is trying to detect if we are in the stub
1872 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1873 * and if found, do the symbolization from the real-code address
1874 * rather than the stub address.
1875 *
1876 * Assumptions being made about the minimal symbol table:
1877 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1878 * if we're really in the trampoline. If we're beyond it (say
1879 * we're in "foo" in the above example), it'll have a closer
1880 * symbol (the "foo" text symbol for example) and will not
1881 * return the trampoline.
1882 * 2. lookup_minimal_symbol_text() will find a real text symbol
1883 * corresponding to the trampoline, and whose address will
1884 * be different than the trampoline address. I put in a sanity
1885 * check for the address being the same, to avoid an
1886 * infinite recursion.
1887 */
1888 msymbol = lookup_minimal_symbol_by_pc (pc);
1889 if (msymbol != NULL)
1890 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1891 {
1892 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1893 NULL);
1894 if (mfunsym == NULL)
1895 /* I eliminated this warning since it is coming out
1896 * in the following situation:
1897 * gdb shmain // test program with shared libraries
1898 * (gdb) break shr1 // function in shared lib
1899 * Warning: In stub for ...
1900 * In the above situation, the shared lib is not loaded yet,
1901 * so of course we can't find the real func/line info,
1902 * but the "break" still works, and the warning is annoying.
1903 * So I commented out the warning. RT */
1904 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1905 /* fall through */
1906 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
1907 /* Avoid infinite recursion */
1908 /* See above comment about why warning is commented out */
1909 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1910 /* fall through */
1911 else
1912 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
1913 }
1914
1915
1916 s = find_pc_sect_symtab (pc, section);
1917 if (!s)
1918 {
1919 /* if no symbol information, return previous pc */
1920 if (notcurrent)
1921 pc++;
1922 val.pc = pc;
1923 return val;
1924 }
1925
1926 bv = BLOCKVECTOR (s);
1927
1928 /* Look at all the symtabs that share this blockvector.
1929 They all have the same apriori range, that we found was right;
1930 but they have different line tables. */
1931
1932 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1933 {
1934 /* Find the best line in this symtab. */
1935 l = LINETABLE (s);
1936 if (!l)
1937 continue;
1938 len = l->nitems;
1939 if (len <= 0)
1940 {
1941 /* I think len can be zero if the symtab lacks line numbers
1942 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1943 I'm not sure which, and maybe it depends on the symbol
1944 reader). */
1945 continue;
1946 }
1947
1948 prev = NULL;
1949 item = l->item; /* Get first line info */
1950
1951 /* Is this file's first line closer than the first lines of other files?
1952 If so, record this file, and its first line, as best alternate. */
1953 if (item->pc > pc && (!alt || item->pc < alt->pc))
1954 {
1955 alt = item;
1956 alt_symtab = s;
1957 }
1958
1959 for (i = 0; i < len; i++, item++)
1960 {
1961 /* Leave prev pointing to the linetable entry for the last line
1962 that started at or before PC. */
1963 if (item->pc > pc)
1964 break;
1965
1966 prev = item;
1967 }
1968
1969 /* At this point, prev points at the line whose start addr is <= pc, and
1970 item points at the next line. If we ran off the end of the linetable
1971 (pc >= start of the last line), then prev == item. If pc < start of
1972 the first line, prev will not be set. */
1973
1974 /* Is this file's best line closer than the best in the other files?
1975 If so, record this file, and its best line, as best so far. Don't
1976 save prev if it represents the end of a function (i.e. line number
1977 0) instead of a real line. */
1978
1979 if (prev && prev->line && (!best || prev->pc > best->pc))
1980 {
1981 best = prev;
1982 best_symtab = s;
1983
1984 /* Discard BEST_END if it's before the PC of the current BEST. */
1985 if (best_end <= best->pc)
1986 best_end = 0;
1987 }
1988
1989 /* If another line (denoted by ITEM) is in the linetable and its
1990 PC is after BEST's PC, but before the current BEST_END, then
1991 use ITEM's PC as the new best_end. */
1992 if (best && i < len && item->pc > best->pc
1993 && (best_end == 0 || best_end > item->pc))
1994 best_end = item->pc;
1995 }
1996
1997 if (!best_symtab)
1998 {
1999 /* If we didn't find any line number info, just return zeros.
2000 We used to return alt->line - 1 here, but that could be
2001 anywhere; if we don't have line number info for this PC,
2002 don't make some up. */
2003 val.pc = pc;
2004 }
2005 else if (best->line == 0)
2006 {
2007 /* If our best fit is in a range of PC's for which no line
2008 number info is available (line number is zero) then we didn't
2009 find any valid line information. */
2010 val.pc = pc;
2011 }
2012 else
2013 {
2014 val.symtab = best_symtab;
2015 val.line = best->line;
2016 val.pc = best->pc;
2017 if (best_end && (!alt || best_end < alt->pc))
2018 val.end = best_end;
2019 else if (alt)
2020 val.end = alt->pc;
2021 else
2022 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2023 }
2024 val.section = section;
2025 return val;
2026 }
2027
2028 /* Backward compatibility (no section) */
2029
2030 struct symtab_and_line
2031 find_pc_line (CORE_ADDR pc, int notcurrent)
2032 {
2033 struct obj_section *section;
2034
2035 section = find_pc_overlay (pc);
2036 if (pc_in_unmapped_range (pc, section))
2037 pc = overlay_mapped_address (pc, section);
2038 return find_pc_sect_line (pc, section, notcurrent);
2039 }
2040 \f
2041 /* Find line number LINE in any symtab whose name is the same as
2042 SYMTAB.
2043
2044 If found, return the symtab that contains the linetable in which it was
2045 found, set *INDEX to the index in the linetable of the best entry
2046 found, and set *EXACT_MATCH nonzero if the value returned is an
2047 exact match.
2048
2049 If not found, return NULL. */
2050
2051 struct symtab *
2052 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2053 {
2054 int exact = 0; /* Initialized here to avoid a compiler warning. */
2055
2056 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2057 so far seen. */
2058
2059 int best_index;
2060 struct linetable *best_linetable;
2061 struct symtab *best_symtab;
2062
2063 /* First try looking it up in the given symtab. */
2064 best_linetable = LINETABLE (symtab);
2065 best_symtab = symtab;
2066 best_index = find_line_common (best_linetable, line, &exact);
2067 if (best_index < 0 || !exact)
2068 {
2069 /* Didn't find an exact match. So we better keep looking for
2070 another symtab with the same name. In the case of xcoff,
2071 multiple csects for one source file (produced by IBM's FORTRAN
2072 compiler) produce multiple symtabs (this is unavoidable
2073 assuming csects can be at arbitrary places in memory and that
2074 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2075
2076 /* BEST is the smallest linenumber > LINE so far seen,
2077 or 0 if none has been seen so far.
2078 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2079 int best;
2080
2081 struct objfile *objfile;
2082 struct symtab *s;
2083
2084 if (best_index >= 0)
2085 best = best_linetable->item[best_index].line;
2086 else
2087 best = 0;
2088
2089 ALL_OBJFILES (objfile)
2090 {
2091 if (objfile->sf)
2092 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2093 symtab->filename);
2094 }
2095
2096 /* Get symbol full file name if possible. */
2097 symtab_to_fullname (symtab);
2098
2099 ALL_SYMTABS (objfile, s)
2100 {
2101 struct linetable *l;
2102 int ind;
2103
2104 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2105 continue;
2106 if (symtab->fullname != NULL
2107 && symtab_to_fullname (s) != NULL
2108 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2109 continue;
2110 l = LINETABLE (s);
2111 ind = find_line_common (l, line, &exact);
2112 if (ind >= 0)
2113 {
2114 if (exact)
2115 {
2116 best_index = ind;
2117 best_linetable = l;
2118 best_symtab = s;
2119 goto done;
2120 }
2121 if (best == 0 || l->item[ind].line < best)
2122 {
2123 best = l->item[ind].line;
2124 best_index = ind;
2125 best_linetable = l;
2126 best_symtab = s;
2127 }
2128 }
2129 }
2130 }
2131 done:
2132 if (best_index < 0)
2133 return NULL;
2134
2135 if (index)
2136 *index = best_index;
2137 if (exact_match)
2138 *exact_match = exact;
2139
2140 return best_symtab;
2141 }
2142 \f
2143 /* Set the PC value for a given source file and line number and return true.
2144 Returns zero for invalid line number (and sets the PC to 0).
2145 The source file is specified with a struct symtab. */
2146
2147 int
2148 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2149 {
2150 struct linetable *l;
2151 int ind;
2152
2153 *pc = 0;
2154 if (symtab == 0)
2155 return 0;
2156
2157 symtab = find_line_symtab (symtab, line, &ind, NULL);
2158 if (symtab != NULL)
2159 {
2160 l = LINETABLE (symtab);
2161 *pc = l->item[ind].pc;
2162 return 1;
2163 }
2164 else
2165 return 0;
2166 }
2167
2168 /* Find the range of pc values in a line.
2169 Store the starting pc of the line into *STARTPTR
2170 and the ending pc (start of next line) into *ENDPTR.
2171 Returns 1 to indicate success.
2172 Returns 0 if could not find the specified line. */
2173
2174 int
2175 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2176 CORE_ADDR *endptr)
2177 {
2178 CORE_ADDR startaddr;
2179 struct symtab_and_line found_sal;
2180
2181 startaddr = sal.pc;
2182 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2183 return 0;
2184
2185 /* This whole function is based on address. For example, if line 10 has
2186 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2187 "info line *0x123" should say the line goes from 0x100 to 0x200
2188 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2189 This also insures that we never give a range like "starts at 0x134
2190 and ends at 0x12c". */
2191
2192 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2193 if (found_sal.line != sal.line)
2194 {
2195 /* The specified line (sal) has zero bytes. */
2196 *startptr = found_sal.pc;
2197 *endptr = found_sal.pc;
2198 }
2199 else
2200 {
2201 *startptr = found_sal.pc;
2202 *endptr = found_sal.end;
2203 }
2204 return 1;
2205 }
2206
2207 /* Given a line table and a line number, return the index into the line
2208 table for the pc of the nearest line whose number is >= the specified one.
2209 Return -1 if none is found. The value is >= 0 if it is an index.
2210
2211 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2212
2213 static int
2214 find_line_common (struct linetable *l, int lineno,
2215 int *exact_match)
2216 {
2217 int i;
2218 int len;
2219
2220 /* BEST is the smallest linenumber > LINENO so far seen,
2221 or 0 if none has been seen so far.
2222 BEST_INDEX identifies the item for it. */
2223
2224 int best_index = -1;
2225 int best = 0;
2226
2227 *exact_match = 0;
2228
2229 if (lineno <= 0)
2230 return -1;
2231 if (l == 0)
2232 return -1;
2233
2234 len = l->nitems;
2235 for (i = 0; i < len; i++)
2236 {
2237 struct linetable_entry *item = &(l->item[i]);
2238
2239 if (item->line == lineno)
2240 {
2241 /* Return the first (lowest address) entry which matches. */
2242 *exact_match = 1;
2243 return i;
2244 }
2245
2246 if (item->line > lineno && (best == 0 || item->line < best))
2247 {
2248 best = item->line;
2249 best_index = i;
2250 }
2251 }
2252
2253 /* If we got here, we didn't get an exact match. */
2254 return best_index;
2255 }
2256
2257 int
2258 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2259 {
2260 struct symtab_and_line sal;
2261 sal = find_pc_line (pc, 0);
2262 *startptr = sal.pc;
2263 *endptr = sal.end;
2264 return sal.symtab != 0;
2265 }
2266
2267 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2268 address for that function that has an entry in SYMTAB's line info
2269 table. If such an entry cannot be found, return FUNC_ADDR
2270 unaltered. */
2271 CORE_ADDR
2272 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2273 {
2274 CORE_ADDR func_start, func_end;
2275 struct linetable *l;
2276 int ind, i, len;
2277 int best_lineno = 0;
2278 CORE_ADDR best_pc = func_addr;
2279
2280 /* Give up if this symbol has no lineinfo table. */
2281 l = LINETABLE (symtab);
2282 if (l == NULL)
2283 return func_addr;
2284
2285 /* Get the range for the function's PC values, or give up if we
2286 cannot, for some reason. */
2287 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2288 return func_addr;
2289
2290 /* Linetable entries are ordered by PC values, see the commentary in
2291 symtab.h where `struct linetable' is defined. Thus, the first
2292 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2293 address we are looking for. */
2294 for (i = 0; i < l->nitems; i++)
2295 {
2296 struct linetable_entry *item = &(l->item[i]);
2297
2298 /* Don't use line numbers of zero, they mark special entries in
2299 the table. See the commentary on symtab.h before the
2300 definition of struct linetable. */
2301 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2302 return item->pc;
2303 }
2304
2305 return func_addr;
2306 }
2307
2308 /* Given a function symbol SYM, find the symtab and line for the start
2309 of the function.
2310 If the argument FUNFIRSTLINE is nonzero, we want the first line
2311 of real code inside the function. */
2312
2313 struct symtab_and_line
2314 find_function_start_sal (struct symbol *sym, int funfirstline)
2315 {
2316 struct symtab_and_line sal;
2317
2318 fixup_symbol_section (sym, NULL);
2319 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2320 SYMBOL_OBJ_SECTION (sym), 0);
2321
2322 /* We always should have a line for the function start address.
2323 If we don't, something is odd. Create a plain SAL refering
2324 just the PC and hope that skip_prologue_sal (if requested)
2325 can find a line number for after the prologue. */
2326 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2327 {
2328 init_sal (&sal);
2329 sal.pspace = current_program_space;
2330 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2331 sal.section = SYMBOL_OBJ_SECTION (sym);
2332 }
2333
2334 if (funfirstline)
2335 skip_prologue_sal (&sal);
2336
2337 return sal;
2338 }
2339
2340 /* Adjust SAL to the first instruction past the function prologue.
2341 If the PC was explicitly specified, the SAL is not changed.
2342 If the line number was explicitly specified, at most the SAL's PC
2343 is updated. If SAL is already past the prologue, then do nothing. */
2344 void
2345 skip_prologue_sal (struct symtab_and_line *sal)
2346 {
2347 struct symbol *sym;
2348 struct symtab_and_line start_sal;
2349 struct cleanup *old_chain;
2350 CORE_ADDR pc;
2351 struct obj_section *section;
2352 const char *name;
2353 struct objfile *objfile;
2354 struct gdbarch *gdbarch;
2355 struct block *b, *function_block;
2356
2357 /* Do not change the SAL is PC was specified explicitly. */
2358 if (sal->explicit_pc)
2359 return;
2360
2361 old_chain = save_current_space_and_thread ();
2362 switch_to_program_space_and_thread (sal->pspace);
2363
2364 sym = find_pc_sect_function (sal->pc, sal->section);
2365 if (sym != NULL)
2366 {
2367 fixup_symbol_section (sym, NULL);
2368
2369 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2370 section = SYMBOL_OBJ_SECTION (sym);
2371 name = SYMBOL_LINKAGE_NAME (sym);
2372 objfile = SYMBOL_SYMTAB (sym)->objfile;
2373 }
2374 else
2375 {
2376 struct minimal_symbol *msymbol
2377 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2378 if (msymbol == NULL)
2379 {
2380 do_cleanups (old_chain);
2381 return;
2382 }
2383
2384 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2385 section = SYMBOL_OBJ_SECTION (msymbol);
2386 name = SYMBOL_LINKAGE_NAME (msymbol);
2387 objfile = msymbol_objfile (msymbol);
2388 }
2389
2390 gdbarch = get_objfile_arch (objfile);
2391
2392 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2393 so that gdbarch_skip_prologue has something unique to work on. */
2394 if (section_is_overlay (section) && !section_is_mapped (section))
2395 pc = overlay_unmapped_address (pc, section);
2396
2397 /* Skip "first line" of function (which is actually its prologue). */
2398 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2399 pc = gdbarch_skip_prologue (gdbarch, pc);
2400
2401 /* For overlays, map pc back into its mapped VMA range. */
2402 pc = overlay_mapped_address (pc, section);
2403
2404 /* Calculate line number. */
2405 start_sal = find_pc_sect_line (pc, section, 0);
2406
2407 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2408 line is still part of the same function. */
2409 if (start_sal.pc != pc
2410 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2411 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2412 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2413 == lookup_minimal_symbol_by_pc_section (pc, section))))
2414 {
2415 /* First pc of next line */
2416 pc = start_sal.end;
2417 /* Recalculate the line number (might not be N+1). */
2418 start_sal = find_pc_sect_line (pc, section, 0);
2419 }
2420
2421 /* On targets with executable formats that don't have a concept of
2422 constructors (ELF with .init has, PE doesn't), gcc emits a call
2423 to `__main' in `main' between the prologue and before user
2424 code. */
2425 if (gdbarch_skip_main_prologue_p (gdbarch)
2426 && name && strcmp (name, "main") == 0)
2427 {
2428 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2429 /* Recalculate the line number (might not be N+1). */
2430 start_sal = find_pc_sect_line (pc, section, 0);
2431 }
2432
2433 /* If we still don't have a valid source line, try to find the first
2434 PC in the lineinfo table that belongs to the same function. This
2435 happens with COFF debug info, which does not seem to have an
2436 entry in lineinfo table for the code after the prologue which has
2437 no direct relation to source. For example, this was found to be
2438 the case with the DJGPP target using "gcc -gcoff" when the
2439 compiler inserted code after the prologue to make sure the stack
2440 is aligned. */
2441 if (sym && start_sal.symtab == NULL)
2442 {
2443 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2444 /* Recalculate the line number. */
2445 start_sal = find_pc_sect_line (pc, section, 0);
2446 }
2447
2448 do_cleanups (old_chain);
2449
2450 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2451 forward SAL to the end of the prologue. */
2452 if (sal->pc >= pc)
2453 return;
2454
2455 sal->pc = pc;
2456 sal->section = section;
2457
2458 /* Unless the explicit_line flag was set, update the SAL line
2459 and symtab to correspond to the modified PC location. */
2460 if (sal->explicit_line)
2461 return;
2462
2463 sal->symtab = start_sal.symtab;
2464 sal->line = start_sal.line;
2465 sal->end = start_sal.end;
2466
2467 /* Check if we are now inside an inlined function. If we can,
2468 use the call site of the function instead. */
2469 b = block_for_pc_sect (sal->pc, sal->section);
2470 function_block = NULL;
2471 while (b != NULL)
2472 {
2473 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2474 function_block = b;
2475 else if (BLOCK_FUNCTION (b) != NULL)
2476 break;
2477 b = BLOCK_SUPERBLOCK (b);
2478 }
2479 if (function_block != NULL
2480 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2481 {
2482 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2483 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2484 }
2485 }
2486
2487 /* If P is of the form "operator[ \t]+..." where `...' is
2488 some legitimate operator text, return a pointer to the
2489 beginning of the substring of the operator text.
2490 Otherwise, return "". */
2491 char *
2492 operator_chars (char *p, char **end)
2493 {
2494 *end = "";
2495 if (strncmp (p, "operator", 8))
2496 return *end;
2497 p += 8;
2498
2499 /* Don't get faked out by `operator' being part of a longer
2500 identifier. */
2501 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2502 return *end;
2503
2504 /* Allow some whitespace between `operator' and the operator symbol. */
2505 while (*p == ' ' || *p == '\t')
2506 p++;
2507
2508 /* Recognize 'operator TYPENAME'. */
2509
2510 if (isalpha (*p) || *p == '_' || *p == '$')
2511 {
2512 char *q = p + 1;
2513 while (isalnum (*q) || *q == '_' || *q == '$')
2514 q++;
2515 *end = q;
2516 return p;
2517 }
2518
2519 while (*p)
2520 switch (*p)
2521 {
2522 case '\\': /* regexp quoting */
2523 if (p[1] == '*')
2524 {
2525 if (p[2] == '=') /* 'operator\*=' */
2526 *end = p + 3;
2527 else /* 'operator\*' */
2528 *end = p + 2;
2529 return p;
2530 }
2531 else if (p[1] == '[')
2532 {
2533 if (p[2] == ']')
2534 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2535 else if (p[2] == '\\' && p[3] == ']')
2536 {
2537 *end = p + 4; /* 'operator\[\]' */
2538 return p;
2539 }
2540 else
2541 error (_("nothing is allowed between '[' and ']'"));
2542 }
2543 else
2544 {
2545 /* Gratuitous qoute: skip it and move on. */
2546 p++;
2547 continue;
2548 }
2549 break;
2550 case '!':
2551 case '=':
2552 case '*':
2553 case '/':
2554 case '%':
2555 case '^':
2556 if (p[1] == '=')
2557 *end = p + 2;
2558 else
2559 *end = p + 1;
2560 return p;
2561 case '<':
2562 case '>':
2563 case '+':
2564 case '-':
2565 case '&':
2566 case '|':
2567 if (p[0] == '-' && p[1] == '>')
2568 {
2569 /* Struct pointer member operator 'operator->'. */
2570 if (p[2] == '*')
2571 {
2572 *end = p + 3; /* 'operator->*' */
2573 return p;
2574 }
2575 else if (p[2] == '\\')
2576 {
2577 *end = p + 4; /* Hopefully 'operator->\*' */
2578 return p;
2579 }
2580 else
2581 {
2582 *end = p + 2; /* 'operator->' */
2583 return p;
2584 }
2585 }
2586 if (p[1] == '=' || p[1] == p[0])
2587 *end = p + 2;
2588 else
2589 *end = p + 1;
2590 return p;
2591 case '~':
2592 case ',':
2593 *end = p + 1;
2594 return p;
2595 case '(':
2596 if (p[1] != ')')
2597 error (_("`operator ()' must be specified without whitespace in `()'"));
2598 *end = p + 2;
2599 return p;
2600 case '?':
2601 if (p[1] != ':')
2602 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2603 *end = p + 2;
2604 return p;
2605 case '[':
2606 if (p[1] != ']')
2607 error (_("`operator []' must be specified without whitespace in `[]'"));
2608 *end = p + 2;
2609 return p;
2610 default:
2611 error (_("`operator %s' not supported"), p);
2612 break;
2613 }
2614
2615 *end = "";
2616 return *end;
2617 }
2618 \f
2619
2620 /* If FILE is not already in the table of files, return zero;
2621 otherwise return non-zero. Optionally add FILE to the table if ADD
2622 is non-zero. If *FIRST is non-zero, forget the old table
2623 contents. */
2624 static int
2625 filename_seen (const char *file, int add, int *first)
2626 {
2627 /* Table of files seen so far. */
2628 static const char **tab = NULL;
2629 /* Allocated size of tab in elements.
2630 Start with one 256-byte block (when using GNU malloc.c).
2631 24 is the malloc overhead when range checking is in effect. */
2632 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2633 /* Current size of tab in elements. */
2634 static int tab_cur_size;
2635 const char **p;
2636
2637 if (*first)
2638 {
2639 if (tab == NULL)
2640 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2641 tab_cur_size = 0;
2642 }
2643
2644 /* Is FILE in tab? */
2645 for (p = tab; p < tab + tab_cur_size; p++)
2646 if (strcmp (*p, file) == 0)
2647 return 1;
2648
2649 /* No; maybe add it to tab. */
2650 if (add)
2651 {
2652 if (tab_cur_size == tab_alloc_size)
2653 {
2654 tab_alloc_size *= 2;
2655 tab = (const char **) xrealloc ((char *) tab,
2656 tab_alloc_size * sizeof (*tab));
2657 }
2658 tab[tab_cur_size++] = file;
2659 }
2660
2661 return 0;
2662 }
2663
2664 /* Slave routine for sources_info. Force line breaks at ,'s.
2665 NAME is the name to print and *FIRST is nonzero if this is the first
2666 name printed. Set *FIRST to zero. */
2667 static void
2668 output_source_filename (const char *name, int *first)
2669 {
2670 /* Since a single source file can result in several partial symbol
2671 tables, we need to avoid printing it more than once. Note: if
2672 some of the psymtabs are read in and some are not, it gets
2673 printed both under "Source files for which symbols have been
2674 read" and "Source files for which symbols will be read in on
2675 demand". I consider this a reasonable way to deal with the
2676 situation. I'm not sure whether this can also happen for
2677 symtabs; it doesn't hurt to check. */
2678
2679 /* Was NAME already seen? */
2680 if (filename_seen (name, 1, first))
2681 {
2682 /* Yes; don't print it again. */
2683 return;
2684 }
2685 /* No; print it and reset *FIRST. */
2686 if (*first)
2687 {
2688 *first = 0;
2689 }
2690 else
2691 {
2692 printf_filtered (", ");
2693 }
2694
2695 wrap_here ("");
2696 fputs_filtered (name, gdb_stdout);
2697 }
2698
2699 /* A callback for map_partial_symbol_filenames. */
2700 static void
2701 output_partial_symbol_filename (const char *fullname, const char *filename,
2702 void *data)
2703 {
2704 output_source_filename (fullname ? fullname : filename, data);
2705 }
2706
2707 static void
2708 sources_info (char *ignore, int from_tty)
2709 {
2710 struct symtab *s;
2711 struct partial_symtab *ps;
2712 struct objfile *objfile;
2713 int first;
2714
2715 if (!have_full_symbols () && !have_partial_symbols ())
2716 {
2717 error (_("No symbol table is loaded. Use the \"file\" command."));
2718 }
2719
2720 printf_filtered ("Source files for which symbols have been read in:\n\n");
2721
2722 first = 1;
2723 ALL_SYMTABS (objfile, s)
2724 {
2725 const char *fullname = symtab_to_fullname (s);
2726 output_source_filename (fullname ? fullname : s->filename, &first);
2727 }
2728 printf_filtered ("\n\n");
2729
2730 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2731
2732 first = 1;
2733 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2734 printf_filtered ("\n");
2735 }
2736
2737 static int
2738 file_matches (const char *file, char *files[], int nfiles)
2739 {
2740 int i;
2741
2742 if (file != NULL && nfiles != 0)
2743 {
2744 for (i = 0; i < nfiles; i++)
2745 {
2746 if (strcmp (files[i], lbasename (file)) == 0)
2747 return 1;
2748 }
2749 }
2750 else if (nfiles == 0)
2751 return 1;
2752 return 0;
2753 }
2754
2755 /* Free any memory associated with a search. */
2756 void
2757 free_search_symbols (struct symbol_search *symbols)
2758 {
2759 struct symbol_search *p;
2760 struct symbol_search *next;
2761
2762 for (p = symbols; p != NULL; p = next)
2763 {
2764 next = p->next;
2765 xfree (p);
2766 }
2767 }
2768
2769 static void
2770 do_free_search_symbols_cleanup (void *symbols)
2771 {
2772 free_search_symbols (symbols);
2773 }
2774
2775 struct cleanup *
2776 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2777 {
2778 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2779 }
2780
2781 /* Helper function for sort_search_symbols and qsort. Can only
2782 sort symbols, not minimal symbols. */
2783 static int
2784 compare_search_syms (const void *sa, const void *sb)
2785 {
2786 struct symbol_search **sym_a = (struct symbol_search **) sa;
2787 struct symbol_search **sym_b = (struct symbol_search **) sb;
2788
2789 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2790 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2791 }
2792
2793 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2794 prevtail where it is, but update its next pointer to point to
2795 the first of the sorted symbols. */
2796 static struct symbol_search *
2797 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2798 {
2799 struct symbol_search **symbols, *symp, *old_next;
2800 int i;
2801
2802 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2803 * nfound);
2804 symp = prevtail->next;
2805 for (i = 0; i < nfound; i++)
2806 {
2807 symbols[i] = symp;
2808 symp = symp->next;
2809 }
2810 /* Generally NULL. */
2811 old_next = symp;
2812
2813 qsort (symbols, nfound, sizeof (struct symbol_search *),
2814 compare_search_syms);
2815
2816 symp = prevtail;
2817 for (i = 0; i < nfound; i++)
2818 {
2819 symp->next = symbols[i];
2820 symp = symp->next;
2821 }
2822 symp->next = old_next;
2823
2824 xfree (symbols);
2825 return symp;
2826 }
2827
2828 /* An object of this type is passed as the user_data to the
2829 expand_symtabs_matching method. */
2830 struct search_symbols_data
2831 {
2832 int nfiles;
2833 char **files;
2834 char *regexp;
2835 };
2836
2837 /* A callback for expand_symtabs_matching. */
2838 static int
2839 search_symbols_file_matches (const char *filename, void *user_data)
2840 {
2841 struct search_symbols_data *data = user_data;
2842 return file_matches (filename, data->files, data->nfiles);
2843 }
2844
2845 /* A callback for expand_symtabs_matching. */
2846 static int
2847 search_symbols_name_matches (const char *symname, void *user_data)
2848 {
2849 struct search_symbols_data *data = user_data;
2850 return data->regexp == NULL || re_exec (symname);
2851 }
2852
2853 /* Search the symbol table for matches to the regular expression REGEXP,
2854 returning the results in *MATCHES.
2855
2856 Only symbols of KIND are searched:
2857 FUNCTIONS_DOMAIN - search all functions
2858 TYPES_DOMAIN - search all type names
2859 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2860 and constants (enums)
2861
2862 free_search_symbols should be called when *MATCHES is no longer needed.
2863
2864 The results are sorted locally; each symtab's global and static blocks are
2865 separately alphabetized.
2866 */
2867 void
2868 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2869 struct symbol_search **matches)
2870 {
2871 struct symtab *s;
2872 struct blockvector *bv;
2873 struct block *b;
2874 int i = 0;
2875 struct dict_iterator iter;
2876 struct symbol *sym;
2877 struct objfile *objfile;
2878 struct minimal_symbol *msymbol;
2879 char *val;
2880 int found_misc = 0;
2881 static enum minimal_symbol_type types[]
2882 =
2883 {mst_data, mst_text, mst_abs, mst_unknown};
2884 static enum minimal_symbol_type types2[]
2885 =
2886 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2887 static enum minimal_symbol_type types3[]
2888 =
2889 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2890 static enum minimal_symbol_type types4[]
2891 =
2892 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2893 enum minimal_symbol_type ourtype;
2894 enum minimal_symbol_type ourtype2;
2895 enum minimal_symbol_type ourtype3;
2896 enum minimal_symbol_type ourtype4;
2897 struct symbol_search *sr;
2898 struct symbol_search *psr;
2899 struct symbol_search *tail;
2900 struct cleanup *old_chain = NULL;
2901 struct search_symbols_data datum;
2902
2903 if (kind < VARIABLES_DOMAIN)
2904 error (_("must search on specific domain"));
2905
2906 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2907 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2908 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2909 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2910
2911 sr = *matches = NULL;
2912 tail = NULL;
2913
2914 if (regexp != NULL)
2915 {
2916 /* Make sure spacing is right for C++ operators.
2917 This is just a courtesy to make the matching less sensitive
2918 to how many spaces the user leaves between 'operator'
2919 and <TYPENAME> or <OPERATOR>. */
2920 char *opend;
2921 char *opname = operator_chars (regexp, &opend);
2922 if (*opname)
2923 {
2924 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2925 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2926 {
2927 /* There should 1 space between 'operator' and 'TYPENAME'. */
2928 if (opname[-1] != ' ' || opname[-2] == ' ')
2929 fix = 1;
2930 }
2931 else
2932 {
2933 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2934 if (opname[-1] == ' ')
2935 fix = 0;
2936 }
2937 /* If wrong number of spaces, fix it. */
2938 if (fix >= 0)
2939 {
2940 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2941 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2942 regexp = tmp;
2943 }
2944 }
2945
2946 if (0 != (val = re_comp (regexp)))
2947 error (_("Invalid regexp (%s): %s"), val, regexp);
2948 }
2949
2950 /* Search through the partial symtabs *first* for all symbols
2951 matching the regexp. That way we don't have to reproduce all of
2952 the machinery below. */
2953
2954 datum.nfiles = nfiles;
2955 datum.files = files;
2956 datum.regexp = regexp;
2957 ALL_OBJFILES (objfile)
2958 {
2959 if (objfile->sf)
2960 objfile->sf->qf->expand_symtabs_matching (objfile,
2961 search_symbols_file_matches,
2962 search_symbols_name_matches,
2963 kind,
2964 &datum);
2965 }
2966
2967 /* Here, we search through the minimal symbol tables for functions
2968 and variables that match, and force their symbols to be read.
2969 This is in particular necessary for demangled variable names,
2970 which are no longer put into the partial symbol tables.
2971 The symbol will then be found during the scan of symtabs below.
2972
2973 For functions, find_pc_symtab should succeed if we have debug info
2974 for the function, for variables we have to call lookup_symbol
2975 to determine if the variable has debug info.
2976 If the lookup fails, set found_misc so that we will rescan to print
2977 any matching symbols without debug info.
2978 */
2979
2980 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
2981 {
2982 ALL_MSYMBOLS (objfile, msymbol)
2983 {
2984 QUIT;
2985
2986 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2987 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2988 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2989 MSYMBOL_TYPE (msymbol) == ourtype4)
2990 {
2991 if (regexp == NULL
2992 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
2993 {
2994 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
2995 {
2996 /* FIXME: carlton/2003-02-04: Given that the
2997 semantics of lookup_symbol keeps on changing
2998 slightly, it would be a nice idea if we had a
2999 function lookup_symbol_minsym that found the
3000 symbol associated to a given minimal symbol (if
3001 any). */
3002 if (kind == FUNCTIONS_DOMAIN
3003 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3004 (struct block *) NULL,
3005 VAR_DOMAIN, 0)
3006 == NULL)
3007 found_misc = 1;
3008 }
3009 }
3010 }
3011 }
3012 }
3013
3014 ALL_PRIMARY_SYMTABS (objfile, s)
3015 {
3016 bv = BLOCKVECTOR (s);
3017 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3018 {
3019 struct symbol_search *prevtail = tail;
3020 int nfound = 0;
3021 b = BLOCKVECTOR_BLOCK (bv, i);
3022 ALL_BLOCK_SYMBOLS (b, iter, sym)
3023 {
3024 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3025 QUIT;
3026
3027 if (file_matches (real_symtab->filename, files, nfiles)
3028 && ((regexp == NULL
3029 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3030 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3031 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3032 && SYMBOL_CLASS (sym) != LOC_BLOCK
3033 && SYMBOL_CLASS (sym) != LOC_CONST)
3034 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3035 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3036 {
3037 /* match */
3038 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3039 psr->block = i;
3040 psr->symtab = real_symtab;
3041 psr->symbol = sym;
3042 psr->msymbol = NULL;
3043 psr->next = NULL;
3044 if (tail == NULL)
3045 sr = psr;
3046 else
3047 tail->next = psr;
3048 tail = psr;
3049 nfound ++;
3050 }
3051 }
3052 if (nfound > 0)
3053 {
3054 if (prevtail == NULL)
3055 {
3056 struct symbol_search dummy;
3057
3058 dummy.next = sr;
3059 tail = sort_search_symbols (&dummy, nfound);
3060 sr = dummy.next;
3061
3062 old_chain = make_cleanup_free_search_symbols (sr);
3063 }
3064 else
3065 tail = sort_search_symbols (prevtail, nfound);
3066 }
3067 }
3068 }
3069
3070 /* If there are no eyes, avoid all contact. I mean, if there are
3071 no debug symbols, then print directly from the msymbol_vector. */
3072
3073 if (found_misc || kind != FUNCTIONS_DOMAIN)
3074 {
3075 ALL_MSYMBOLS (objfile, msymbol)
3076 {
3077 QUIT;
3078
3079 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3080 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3081 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3082 MSYMBOL_TYPE (msymbol) == ourtype4)
3083 {
3084 if (regexp == NULL
3085 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3086 {
3087 /* Functions: Look up by address. */
3088 if (kind != FUNCTIONS_DOMAIN ||
3089 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3090 {
3091 /* Variables/Absolutes: Look up by name */
3092 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3093 (struct block *) NULL, VAR_DOMAIN, 0)
3094 == NULL)
3095 {
3096 /* match */
3097 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3098 psr->block = i;
3099 psr->msymbol = msymbol;
3100 psr->symtab = NULL;
3101 psr->symbol = NULL;
3102 psr->next = NULL;
3103 if (tail == NULL)
3104 {
3105 sr = psr;
3106 old_chain = make_cleanup_free_search_symbols (sr);
3107 }
3108 else
3109 tail->next = psr;
3110 tail = psr;
3111 }
3112 }
3113 }
3114 }
3115 }
3116 }
3117
3118 *matches = sr;
3119 if (sr != NULL)
3120 discard_cleanups (old_chain);
3121 }
3122
3123 /* Helper function for symtab_symbol_info, this function uses
3124 the data returned from search_symbols() to print information
3125 regarding the match to gdb_stdout.
3126 */
3127 static void
3128 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3129 int block, char *last)
3130 {
3131 if (last == NULL || strcmp (last, s->filename) != 0)
3132 {
3133 fputs_filtered ("\nFile ", gdb_stdout);
3134 fputs_filtered (s->filename, gdb_stdout);
3135 fputs_filtered (":\n", gdb_stdout);
3136 }
3137
3138 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3139 printf_filtered ("static ");
3140
3141 /* Typedef that is not a C++ class */
3142 if (kind == TYPES_DOMAIN
3143 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3144 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3145 /* variable, func, or typedef-that-is-c++-class */
3146 else if (kind < TYPES_DOMAIN ||
3147 (kind == TYPES_DOMAIN &&
3148 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3149 {
3150 type_print (SYMBOL_TYPE (sym),
3151 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3152 ? "" : SYMBOL_PRINT_NAME (sym)),
3153 gdb_stdout, 0);
3154
3155 printf_filtered (";\n");
3156 }
3157 }
3158
3159 /* This help function for symtab_symbol_info() prints information
3160 for non-debugging symbols to gdb_stdout.
3161 */
3162 static void
3163 print_msymbol_info (struct minimal_symbol *msymbol)
3164 {
3165 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3166 char *tmp;
3167
3168 if (gdbarch_addr_bit (gdbarch) <= 32)
3169 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3170 & (CORE_ADDR) 0xffffffff,
3171 8);
3172 else
3173 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3174 16);
3175 printf_filtered ("%s %s\n",
3176 tmp, SYMBOL_PRINT_NAME (msymbol));
3177 }
3178
3179 /* This is the guts of the commands "info functions", "info types", and
3180 "info variables". It calls search_symbols to find all matches and then
3181 print_[m]symbol_info to print out some useful information about the
3182 matches.
3183 */
3184 static void
3185 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3186 {
3187 static char *classnames[]
3188 =
3189 {"variable", "function", "type", "method"};
3190 struct symbol_search *symbols;
3191 struct symbol_search *p;
3192 struct cleanup *old_chain;
3193 char *last_filename = NULL;
3194 int first = 1;
3195
3196 /* must make sure that if we're interrupted, symbols gets freed */
3197 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3198 old_chain = make_cleanup_free_search_symbols (symbols);
3199
3200 printf_filtered (regexp
3201 ? "All %ss matching regular expression \"%s\":\n"
3202 : "All defined %ss:\n",
3203 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3204
3205 for (p = symbols; p != NULL; p = p->next)
3206 {
3207 QUIT;
3208
3209 if (p->msymbol != NULL)
3210 {
3211 if (first)
3212 {
3213 printf_filtered ("\nNon-debugging symbols:\n");
3214 first = 0;
3215 }
3216 print_msymbol_info (p->msymbol);
3217 }
3218 else
3219 {
3220 print_symbol_info (kind,
3221 p->symtab,
3222 p->symbol,
3223 p->block,
3224 last_filename);
3225 last_filename = p->symtab->filename;
3226 }
3227 }
3228
3229 do_cleanups (old_chain);
3230 }
3231
3232 static void
3233 variables_info (char *regexp, int from_tty)
3234 {
3235 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3236 }
3237
3238 static void
3239 functions_info (char *regexp, int from_tty)
3240 {
3241 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3242 }
3243
3244
3245 static void
3246 types_info (char *regexp, int from_tty)
3247 {
3248 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3249 }
3250
3251 /* Breakpoint all functions matching regular expression. */
3252
3253 void
3254 rbreak_command_wrapper (char *regexp, int from_tty)
3255 {
3256 rbreak_command (regexp, from_tty);
3257 }
3258
3259 /* A cleanup function that calls end_rbreak_breakpoints. */
3260
3261 static void
3262 do_end_rbreak_breakpoints (void *ignore)
3263 {
3264 end_rbreak_breakpoints ();
3265 }
3266
3267 static void
3268 rbreak_command (char *regexp, int from_tty)
3269 {
3270 struct symbol_search *ss;
3271 struct symbol_search *p;
3272 struct cleanup *old_chain;
3273 char *string = NULL;
3274 int len = 0;
3275 char **files = NULL;
3276 int nfiles = 0;
3277
3278 if (regexp)
3279 {
3280 char *colon = strchr (regexp, ':');
3281 if (colon && *(colon + 1) != ':')
3282 {
3283 int colon_index;
3284 char * file_name;
3285
3286 colon_index = colon - regexp;
3287 file_name = alloca (colon_index + 1);
3288 memcpy (file_name, regexp, colon_index);
3289 file_name[colon_index--] = 0;
3290 while (isspace (file_name[colon_index]))
3291 file_name[colon_index--] = 0;
3292 files = &file_name;
3293 nfiles = 1;
3294 regexp = colon + 1;
3295 while (isspace (*regexp)) regexp++;
3296 }
3297 }
3298
3299 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3300 old_chain = make_cleanup_free_search_symbols (ss);
3301 make_cleanup (free_current_contents, &string);
3302
3303 start_rbreak_breakpoints ();
3304 make_cleanup (do_end_rbreak_breakpoints, NULL);
3305 for (p = ss; p != NULL; p = p->next)
3306 {
3307 if (p->msymbol == NULL)
3308 {
3309 int newlen = (strlen (p->symtab->filename)
3310 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3311 + 4);
3312 if (newlen > len)
3313 {
3314 string = xrealloc (string, newlen);
3315 len = newlen;
3316 }
3317 strcpy (string, p->symtab->filename);
3318 strcat (string, ":'");
3319 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3320 strcat (string, "'");
3321 break_command (string, from_tty);
3322 print_symbol_info (FUNCTIONS_DOMAIN,
3323 p->symtab,
3324 p->symbol,
3325 p->block,
3326 p->symtab->filename);
3327 }
3328 else
3329 {
3330 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3331 + 3);
3332 if (newlen > len)
3333 {
3334 string = xrealloc (string, newlen);
3335 len = newlen;
3336 }
3337 strcpy (string, "'");
3338 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3339 strcat (string, "'");
3340
3341 break_command (string, from_tty);
3342 printf_filtered ("<function, no debug info> %s;\n",
3343 SYMBOL_PRINT_NAME (p->msymbol));
3344 }
3345 }
3346
3347 do_cleanups (old_chain);
3348 }
3349 \f
3350
3351 /* Helper routine for make_symbol_completion_list. */
3352
3353 static int return_val_size;
3354 static int return_val_index;
3355 static char **return_val;
3356
3357 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3358 completion_list_add_name \
3359 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3360
3361 /* Test to see if the symbol specified by SYMNAME (which is already
3362 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3363 characters. If so, add it to the current completion list. */
3364
3365 static void
3366 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3367 char *text, char *word)
3368 {
3369 int newsize;
3370 int i;
3371
3372 /* clip symbols that cannot match */
3373
3374 if (strncmp (symname, sym_text, sym_text_len) != 0)
3375 {
3376 return;
3377 }
3378
3379 /* We have a match for a completion, so add SYMNAME to the current list
3380 of matches. Note that the name is moved to freshly malloc'd space. */
3381
3382 {
3383 char *new;
3384 if (word == sym_text)
3385 {
3386 new = xmalloc (strlen (symname) + 5);
3387 strcpy (new, symname);
3388 }
3389 else if (word > sym_text)
3390 {
3391 /* Return some portion of symname. */
3392 new = xmalloc (strlen (symname) + 5);
3393 strcpy (new, symname + (word - sym_text));
3394 }
3395 else
3396 {
3397 /* Return some of SYM_TEXT plus symname. */
3398 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3399 strncpy (new, word, sym_text - word);
3400 new[sym_text - word] = '\0';
3401 strcat (new, symname);
3402 }
3403
3404 if (return_val_index + 3 > return_val_size)
3405 {
3406 newsize = (return_val_size *= 2) * sizeof (char *);
3407 return_val = (char **) xrealloc ((char *) return_val, newsize);
3408 }
3409 return_val[return_val_index++] = new;
3410 return_val[return_val_index] = NULL;
3411 }
3412 }
3413
3414 /* ObjC: In case we are completing on a selector, look as the msymbol
3415 again and feed all the selectors into the mill. */
3416
3417 static void
3418 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3419 int sym_text_len, char *text, char *word)
3420 {
3421 static char *tmp = NULL;
3422 static unsigned int tmplen = 0;
3423
3424 char *method, *category, *selector;
3425 char *tmp2 = NULL;
3426
3427 method = SYMBOL_NATURAL_NAME (msymbol);
3428
3429 /* Is it a method? */
3430 if ((method[0] != '-') && (method[0] != '+'))
3431 return;
3432
3433 if (sym_text[0] == '[')
3434 /* Complete on shortened method method. */
3435 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3436
3437 while ((strlen (method) + 1) >= tmplen)
3438 {
3439 if (tmplen == 0)
3440 tmplen = 1024;
3441 else
3442 tmplen *= 2;
3443 tmp = xrealloc (tmp, tmplen);
3444 }
3445 selector = strchr (method, ' ');
3446 if (selector != NULL)
3447 selector++;
3448
3449 category = strchr (method, '(');
3450
3451 if ((category != NULL) && (selector != NULL))
3452 {
3453 memcpy (tmp, method, (category - method));
3454 tmp[category - method] = ' ';
3455 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3456 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3457 if (sym_text[0] == '[')
3458 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3459 }
3460
3461 if (selector != NULL)
3462 {
3463 /* Complete on selector only. */
3464 strcpy (tmp, selector);
3465 tmp2 = strchr (tmp, ']');
3466 if (tmp2 != NULL)
3467 *tmp2 = '\0';
3468
3469 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3470 }
3471 }
3472
3473 /* Break the non-quoted text based on the characters which are in
3474 symbols. FIXME: This should probably be language-specific. */
3475
3476 static char *
3477 language_search_unquoted_string (char *text, char *p)
3478 {
3479 for (; p > text; --p)
3480 {
3481 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3482 continue;
3483 else
3484 {
3485 if ((current_language->la_language == language_objc))
3486 {
3487 if (p[-1] == ':') /* might be part of a method name */
3488 continue;
3489 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3490 p -= 2; /* beginning of a method name */
3491 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3492 { /* might be part of a method name */
3493 char *t = p;
3494
3495 /* Seeing a ' ' or a '(' is not conclusive evidence
3496 that we are in the middle of a method name. However,
3497 finding "-[" or "+[" should be pretty un-ambiguous.
3498 Unfortunately we have to find it now to decide. */
3499
3500 while (t > text)
3501 if (isalnum (t[-1]) || t[-1] == '_' ||
3502 t[-1] == ' ' || t[-1] == ':' ||
3503 t[-1] == '(' || t[-1] == ')')
3504 --t;
3505 else
3506 break;
3507
3508 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3509 p = t - 2; /* method name detected */
3510 /* else we leave with p unchanged */
3511 }
3512 }
3513 break;
3514 }
3515 }
3516 return p;
3517 }
3518
3519 static void
3520 completion_list_add_fields (struct symbol *sym, char *sym_text,
3521 int sym_text_len, char *text, char *word)
3522 {
3523 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3524 {
3525 struct type *t = SYMBOL_TYPE (sym);
3526 enum type_code c = TYPE_CODE (t);
3527 int j;
3528
3529 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3530 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3531 if (TYPE_FIELD_NAME (t, j))
3532 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3533 sym_text, sym_text_len, text, word);
3534 }
3535 }
3536
3537 /* Type of the user_data argument passed to add_macro_name or
3538 add_partial_symbol_name. The contents are simply whatever is
3539 needed by completion_list_add_name. */
3540 struct add_name_data
3541 {
3542 char *sym_text;
3543 int sym_text_len;
3544 char *text;
3545 char *word;
3546 };
3547
3548 /* A callback used with macro_for_each and macro_for_each_in_scope.
3549 This adds a macro's name to the current completion list. */
3550 static void
3551 add_macro_name (const char *name, const struct macro_definition *ignore,
3552 void *user_data)
3553 {
3554 struct add_name_data *datum = (struct add_name_data *) user_data;
3555 completion_list_add_name ((char *) name,
3556 datum->sym_text, datum->sym_text_len,
3557 datum->text, datum->word);
3558 }
3559
3560 /* A callback for map_partial_symbol_names. */
3561 static void
3562 add_partial_symbol_name (const char *name, void *user_data)
3563 {
3564 struct add_name_data *datum = (struct add_name_data *) user_data;
3565 completion_list_add_name ((char *) name,
3566 datum->sym_text, datum->sym_text_len,
3567 datum->text, datum->word);
3568 }
3569
3570 char **
3571 default_make_symbol_completion_list (char *text, char *word)
3572 {
3573 /* Problem: All of the symbols have to be copied because readline
3574 frees them. I'm not going to worry about this; hopefully there
3575 won't be that many. */
3576
3577 struct symbol *sym;
3578 struct symtab *s;
3579 struct minimal_symbol *msymbol;
3580 struct objfile *objfile;
3581 struct block *b;
3582 const struct block *surrounding_static_block, *surrounding_global_block;
3583 struct dict_iterator iter;
3584 /* The symbol we are completing on. Points in same buffer as text. */
3585 char *sym_text;
3586 /* Length of sym_text. */
3587 int sym_text_len;
3588 struct add_name_data datum;
3589
3590 /* Now look for the symbol we are supposed to complete on. */
3591 {
3592 char *p;
3593 char quote_found;
3594 char *quote_pos = NULL;
3595
3596 /* First see if this is a quoted string. */
3597 quote_found = '\0';
3598 for (p = text; *p != '\0'; ++p)
3599 {
3600 if (quote_found != '\0')
3601 {
3602 if (*p == quote_found)
3603 /* Found close quote. */
3604 quote_found = '\0';
3605 else if (*p == '\\' && p[1] == quote_found)
3606 /* A backslash followed by the quote character
3607 doesn't end the string. */
3608 ++p;
3609 }
3610 else if (*p == '\'' || *p == '"')
3611 {
3612 quote_found = *p;
3613 quote_pos = p;
3614 }
3615 }
3616 if (quote_found == '\'')
3617 /* A string within single quotes can be a symbol, so complete on it. */
3618 sym_text = quote_pos + 1;
3619 else if (quote_found == '"')
3620 /* A double-quoted string is never a symbol, nor does it make sense
3621 to complete it any other way. */
3622 {
3623 return_val = (char **) xmalloc (sizeof (char *));
3624 return_val[0] = NULL;
3625 return return_val;
3626 }
3627 else
3628 {
3629 /* It is not a quoted string. Break it based on the characters
3630 which are in symbols. */
3631 while (p > text)
3632 {
3633 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3634 || p[-1] == ':')
3635 --p;
3636 else
3637 break;
3638 }
3639 sym_text = p;
3640 }
3641 }
3642
3643 sym_text_len = strlen (sym_text);
3644
3645 return_val_size = 100;
3646 return_val_index = 0;
3647 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3648 return_val[0] = NULL;
3649
3650 datum.sym_text = sym_text;
3651 datum.sym_text_len = sym_text_len;
3652 datum.text = text;
3653 datum.word = word;
3654
3655 /* Look through the partial symtabs for all symbols which begin
3656 by matching SYM_TEXT. Add each one that you find to the list. */
3657 map_partial_symbol_names (add_partial_symbol_name, &datum);
3658
3659 /* At this point scan through the misc symbol vectors and add each
3660 symbol you find to the list. Eventually we want to ignore
3661 anything that isn't a text symbol (everything else will be
3662 handled by the psymtab code above). */
3663
3664 ALL_MSYMBOLS (objfile, msymbol)
3665 {
3666 QUIT;
3667 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3668
3669 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3670 }
3671
3672 /* Search upwards from currently selected frame (so that we can
3673 complete on local vars). Also catch fields of types defined in
3674 this places which match our text string. Only complete on types
3675 visible from current context. */
3676
3677 b = get_selected_block (0);
3678 surrounding_static_block = block_static_block (b);
3679 surrounding_global_block = block_global_block (b);
3680 if (surrounding_static_block != NULL)
3681 while (b != surrounding_static_block)
3682 {
3683 QUIT;
3684
3685 ALL_BLOCK_SYMBOLS (b, iter, sym)
3686 {
3687 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3688 word);
3689 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3690 word);
3691 }
3692
3693 /* Stop when we encounter an enclosing function. Do not stop for
3694 non-inlined functions - the locals of the enclosing function
3695 are in scope for a nested function. */
3696 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3697 break;
3698 b = BLOCK_SUPERBLOCK (b);
3699 }
3700
3701 /* Add fields from the file's types; symbols will be added below. */
3702
3703 if (surrounding_static_block != NULL)
3704 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3705 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3706
3707 if (surrounding_global_block != NULL)
3708 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3709 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3710
3711 /* Go through the symtabs and check the externs and statics for
3712 symbols which match. */
3713
3714 ALL_PRIMARY_SYMTABS (objfile, s)
3715 {
3716 QUIT;
3717 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3718 ALL_BLOCK_SYMBOLS (b, iter, sym)
3719 {
3720 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3721 }
3722 }
3723
3724 ALL_PRIMARY_SYMTABS (objfile, s)
3725 {
3726 QUIT;
3727 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3728 ALL_BLOCK_SYMBOLS (b, iter, sym)
3729 {
3730 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3731 }
3732 }
3733
3734 if (current_language->la_macro_expansion == macro_expansion_c)
3735 {
3736 struct macro_scope *scope;
3737
3738 /* Add any macros visible in the default scope. Note that this
3739 may yield the occasional wrong result, because an expression
3740 might be evaluated in a scope other than the default. For
3741 example, if the user types "break file:line if <TAB>", the
3742 resulting expression will be evaluated at "file:line" -- but
3743 at there does not seem to be a way to detect this at
3744 completion time. */
3745 scope = default_macro_scope ();
3746 if (scope)
3747 {
3748 macro_for_each_in_scope (scope->file, scope->line,
3749 add_macro_name, &datum);
3750 xfree (scope);
3751 }
3752
3753 /* User-defined macros are always visible. */
3754 macro_for_each (macro_user_macros, add_macro_name, &datum);
3755 }
3756
3757 return (return_val);
3758 }
3759
3760 /* Return a NULL terminated array of all symbols (regardless of class)
3761 which begin by matching TEXT. If the answer is no symbols, then
3762 the return value is an array which contains only a NULL pointer. */
3763
3764 char **
3765 make_symbol_completion_list (char *text, char *word)
3766 {
3767 return current_language->la_make_symbol_completion_list (text, word);
3768 }
3769
3770 /* Like make_symbol_completion_list, but suitable for use as a
3771 completion function. */
3772
3773 char **
3774 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3775 char *text, char *word)
3776 {
3777 return make_symbol_completion_list (text, word);
3778 }
3779
3780 /* Like make_symbol_completion_list, but returns a list of symbols
3781 defined in a source file FILE. */
3782
3783 char **
3784 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3785 {
3786 struct symbol *sym;
3787 struct symtab *s;
3788 struct block *b;
3789 struct dict_iterator iter;
3790 /* The symbol we are completing on. Points in same buffer as text. */
3791 char *sym_text;
3792 /* Length of sym_text. */
3793 int sym_text_len;
3794
3795 /* Now look for the symbol we are supposed to complete on.
3796 FIXME: This should be language-specific. */
3797 {
3798 char *p;
3799 char quote_found;
3800 char *quote_pos = NULL;
3801
3802 /* First see if this is a quoted string. */
3803 quote_found = '\0';
3804 for (p = text; *p != '\0'; ++p)
3805 {
3806 if (quote_found != '\0')
3807 {
3808 if (*p == quote_found)
3809 /* Found close quote. */
3810 quote_found = '\0';
3811 else if (*p == '\\' && p[1] == quote_found)
3812 /* A backslash followed by the quote character
3813 doesn't end the string. */
3814 ++p;
3815 }
3816 else if (*p == '\'' || *p == '"')
3817 {
3818 quote_found = *p;
3819 quote_pos = p;
3820 }
3821 }
3822 if (quote_found == '\'')
3823 /* A string within single quotes can be a symbol, so complete on it. */
3824 sym_text = quote_pos + 1;
3825 else if (quote_found == '"')
3826 /* A double-quoted string is never a symbol, nor does it make sense
3827 to complete it any other way. */
3828 {
3829 return_val = (char **) xmalloc (sizeof (char *));
3830 return_val[0] = NULL;
3831 return return_val;
3832 }
3833 else
3834 {
3835 /* Not a quoted string. */
3836 sym_text = language_search_unquoted_string (text, p);
3837 }
3838 }
3839
3840 sym_text_len = strlen (sym_text);
3841
3842 return_val_size = 10;
3843 return_val_index = 0;
3844 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3845 return_val[0] = NULL;
3846
3847 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3848 in). */
3849 s = lookup_symtab (srcfile);
3850 if (s == NULL)
3851 {
3852 /* Maybe they typed the file with leading directories, while the
3853 symbol tables record only its basename. */
3854 const char *tail = lbasename (srcfile);
3855
3856 if (tail > srcfile)
3857 s = lookup_symtab (tail);
3858 }
3859
3860 /* If we have no symtab for that file, return an empty list. */
3861 if (s == NULL)
3862 return (return_val);
3863
3864 /* Go through this symtab and check the externs and statics for
3865 symbols which match. */
3866
3867 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3868 ALL_BLOCK_SYMBOLS (b, iter, sym)
3869 {
3870 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3871 }
3872
3873 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3874 ALL_BLOCK_SYMBOLS (b, iter, sym)
3875 {
3876 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3877 }
3878
3879 return (return_val);
3880 }
3881
3882 /* A helper function for make_source_files_completion_list. It adds
3883 another file name to a list of possible completions, growing the
3884 list as necessary. */
3885
3886 static void
3887 add_filename_to_list (const char *fname, char *text, char *word,
3888 char ***list, int *list_used, int *list_alloced)
3889 {
3890 char *new;
3891 size_t fnlen = strlen (fname);
3892
3893 if (*list_used + 1 >= *list_alloced)
3894 {
3895 *list_alloced *= 2;
3896 *list = (char **) xrealloc ((char *) *list,
3897 *list_alloced * sizeof (char *));
3898 }
3899
3900 if (word == text)
3901 {
3902 /* Return exactly fname. */
3903 new = xmalloc (fnlen + 5);
3904 strcpy (new, fname);
3905 }
3906 else if (word > text)
3907 {
3908 /* Return some portion of fname. */
3909 new = xmalloc (fnlen + 5);
3910 strcpy (new, fname + (word - text));
3911 }
3912 else
3913 {
3914 /* Return some of TEXT plus fname. */
3915 new = xmalloc (fnlen + (text - word) + 5);
3916 strncpy (new, word, text - word);
3917 new[text - word] = '\0';
3918 strcat (new, fname);
3919 }
3920 (*list)[*list_used] = new;
3921 (*list)[++*list_used] = NULL;
3922 }
3923
3924 static int
3925 not_interesting_fname (const char *fname)
3926 {
3927 static const char *illegal_aliens[] = {
3928 "_globals_", /* inserted by coff_symtab_read */
3929 NULL
3930 };
3931 int i;
3932
3933 for (i = 0; illegal_aliens[i]; i++)
3934 {
3935 if (strcmp (fname, illegal_aliens[i]) == 0)
3936 return 1;
3937 }
3938 return 0;
3939 }
3940
3941 /* An object of this type is passed as the user_data argument to
3942 map_partial_symbol_filenames. */
3943 struct add_partial_filename_data
3944 {
3945 int *first;
3946 char *text;
3947 char *word;
3948 int text_len;
3949 char ***list;
3950 int *list_used;
3951 int *list_alloced;
3952 };
3953
3954 /* A callback for map_partial_symbol_filenames. */
3955 static void
3956 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
3957 void *user_data)
3958 {
3959 struct add_partial_filename_data *data = user_data;
3960
3961 if (not_interesting_fname (filename))
3962 return;
3963 if (!filename_seen (filename, 1, data->first)
3964 #if HAVE_DOS_BASED_FILE_SYSTEM
3965 && strncasecmp (filename, data->text, data->text_len) == 0
3966 #else
3967 && strncmp (filename, data->text, data->text_len) == 0
3968 #endif
3969 )
3970 {
3971 /* This file matches for a completion; add it to the
3972 current list of matches. */
3973 add_filename_to_list (filename, data->text, data->word,
3974 data->list, data->list_used, data->list_alloced);
3975 }
3976 else
3977 {
3978 const char *base_name = lbasename (filename);
3979 if (base_name != filename
3980 && !filename_seen (base_name, 1, data->first)
3981 #if HAVE_DOS_BASED_FILE_SYSTEM
3982 && strncasecmp (base_name, data->text, data->text_len) == 0
3983 #else
3984 && strncmp (base_name, data->text, data->text_len) == 0
3985 #endif
3986 )
3987 add_filename_to_list (base_name, data->text, data->word,
3988 data->list, data->list_used, data->list_alloced);
3989 }
3990 }
3991
3992 /* Return a NULL terminated array of all source files whose names
3993 begin with matching TEXT. The file names are looked up in the
3994 symbol tables of this program. If the answer is no matchess, then
3995 the return value is an array which contains only a NULL pointer. */
3996
3997 char **
3998 make_source_files_completion_list (char *text, char *word)
3999 {
4000 struct symtab *s;
4001 struct objfile *objfile;
4002 int first = 1;
4003 int list_alloced = 1;
4004 int list_used = 0;
4005 size_t text_len = strlen (text);
4006 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4007 const char *base_name;
4008 struct add_partial_filename_data datum;
4009
4010 list[0] = NULL;
4011
4012 if (!have_full_symbols () && !have_partial_symbols ())
4013 return list;
4014
4015 ALL_SYMTABS (objfile, s)
4016 {
4017 if (not_interesting_fname (s->filename))
4018 continue;
4019 if (!filename_seen (s->filename, 1, &first)
4020 #if HAVE_DOS_BASED_FILE_SYSTEM
4021 && strncasecmp (s->filename, text, text_len) == 0
4022 #else
4023 && strncmp (s->filename, text, text_len) == 0
4024 #endif
4025 )
4026 {
4027 /* This file matches for a completion; add it to the current
4028 list of matches. */
4029 add_filename_to_list (s->filename, text, word,
4030 &list, &list_used, &list_alloced);
4031 }
4032 else
4033 {
4034 /* NOTE: We allow the user to type a base name when the
4035 debug info records leading directories, but not the other
4036 way around. This is what subroutines of breakpoint
4037 command do when they parse file names. */
4038 base_name = lbasename (s->filename);
4039 if (base_name != s->filename
4040 && !filename_seen (base_name, 1, &first)
4041 #if HAVE_DOS_BASED_FILE_SYSTEM
4042 && strncasecmp (base_name, text, text_len) == 0
4043 #else
4044 && strncmp (base_name, text, text_len) == 0
4045 #endif
4046 )
4047 add_filename_to_list (base_name, text, word,
4048 &list, &list_used, &list_alloced);
4049 }
4050 }
4051
4052 datum.first = &first;
4053 datum.text = text;
4054 datum.word = word;
4055 datum.text_len = text_len;
4056 datum.list = &list;
4057 datum.list_used = &list_used;
4058 datum.list_alloced = &list_alloced;
4059 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4060
4061 return list;
4062 }
4063
4064 /* Determine if PC is in the prologue of a function. The prologue is the area
4065 between the first instruction of a function, and the first executable line.
4066 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4067
4068 If non-zero, func_start is where we think the prologue starts, possibly
4069 by previous examination of symbol table information.
4070 */
4071
4072 int
4073 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4074 {
4075 struct symtab_and_line sal;
4076 CORE_ADDR func_addr, func_end;
4077
4078 /* We have several sources of information we can consult to figure
4079 this out.
4080 - Compilers usually emit line number info that marks the prologue
4081 as its own "source line". So the ending address of that "line"
4082 is the end of the prologue. If available, this is the most
4083 reliable method.
4084 - The minimal symbols and partial symbols, which can usually tell
4085 us the starting and ending addresses of a function.
4086 - If we know the function's start address, we can call the
4087 architecture-defined gdbarch_skip_prologue function to analyze the
4088 instruction stream and guess where the prologue ends.
4089 - Our `func_start' argument; if non-zero, this is the caller's
4090 best guess as to the function's entry point. At the time of
4091 this writing, handle_inferior_event doesn't get this right, so
4092 it should be our last resort. */
4093
4094 /* Consult the partial symbol table, to find which function
4095 the PC is in. */
4096 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4097 {
4098 CORE_ADDR prologue_end;
4099
4100 /* We don't even have minsym information, so fall back to using
4101 func_start, if given. */
4102 if (! func_start)
4103 return 1; /* We *might* be in a prologue. */
4104
4105 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4106
4107 return func_start <= pc && pc < prologue_end;
4108 }
4109
4110 /* If we have line number information for the function, that's
4111 usually pretty reliable. */
4112 sal = find_pc_line (func_addr, 0);
4113
4114 /* Now sal describes the source line at the function's entry point,
4115 which (by convention) is the prologue. The end of that "line",
4116 sal.end, is the end of the prologue.
4117
4118 Note that, for functions whose source code is all on a single
4119 line, the line number information doesn't always end up this way.
4120 So we must verify that our purported end-of-prologue address is
4121 *within* the function, not at its start or end. */
4122 if (sal.line == 0
4123 || sal.end <= func_addr
4124 || func_end <= sal.end)
4125 {
4126 /* We don't have any good line number info, so use the minsym
4127 information, together with the architecture-specific prologue
4128 scanning code. */
4129 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4130
4131 return func_addr <= pc && pc < prologue_end;
4132 }
4133
4134 /* We have line number info, and it looks good. */
4135 return func_addr <= pc && pc < sal.end;
4136 }
4137
4138 /* Given PC at the function's start address, attempt to find the
4139 prologue end using SAL information. Return zero if the skip fails.
4140
4141 A non-optimized prologue traditionally has one SAL for the function
4142 and a second for the function body. A single line function has
4143 them both pointing at the same line.
4144
4145 An optimized prologue is similar but the prologue may contain
4146 instructions (SALs) from the instruction body. Need to skip those
4147 while not getting into the function body.
4148
4149 The functions end point and an increasing SAL line are used as
4150 indicators of the prologue's endpoint.
4151
4152 This code is based on the function refine_prologue_limit (versions
4153 found in both ia64 and ppc). */
4154
4155 CORE_ADDR
4156 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4157 {
4158 struct symtab_and_line prologue_sal;
4159 CORE_ADDR start_pc;
4160 CORE_ADDR end_pc;
4161 struct block *bl;
4162
4163 /* Get an initial range for the function. */
4164 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4165 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4166
4167 prologue_sal = find_pc_line (start_pc, 0);
4168 if (prologue_sal.line != 0)
4169 {
4170 /* For langauges other than assembly, treat two consecutive line
4171 entries at the same address as a zero-instruction prologue.
4172 The GNU assembler emits separate line notes for each instruction
4173 in a multi-instruction macro, but compilers generally will not
4174 do this. */
4175 if (prologue_sal.symtab->language != language_asm)
4176 {
4177 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4178 int exact;
4179 int idx = 0;
4180
4181 /* Skip any earlier lines, and any end-of-sequence marker
4182 from a previous function. */
4183 while (linetable->item[idx].pc != prologue_sal.pc
4184 || linetable->item[idx].line == 0)
4185 idx++;
4186
4187 if (idx+1 < linetable->nitems
4188 && linetable->item[idx+1].line != 0
4189 && linetable->item[idx+1].pc == start_pc)
4190 return start_pc;
4191 }
4192
4193 /* If there is only one sal that covers the entire function,
4194 then it is probably a single line function, like
4195 "foo(){}". */
4196 if (prologue_sal.end >= end_pc)
4197 return 0;
4198
4199 while (prologue_sal.end < end_pc)
4200 {
4201 struct symtab_and_line sal;
4202
4203 sal = find_pc_line (prologue_sal.end, 0);
4204 if (sal.line == 0)
4205 break;
4206 /* Assume that a consecutive SAL for the same (or larger)
4207 line mark the prologue -> body transition. */
4208 if (sal.line >= prologue_sal.line)
4209 break;
4210
4211 /* The line number is smaller. Check that it's from the
4212 same function, not something inlined. If it's inlined,
4213 then there is no point comparing the line numbers. */
4214 bl = block_for_pc (prologue_sal.end);
4215 while (bl)
4216 {
4217 if (block_inlined_p (bl))
4218 break;
4219 if (BLOCK_FUNCTION (bl))
4220 {
4221 bl = NULL;
4222 break;
4223 }
4224 bl = BLOCK_SUPERBLOCK (bl);
4225 }
4226 if (bl != NULL)
4227 break;
4228
4229 /* The case in which compiler's optimizer/scheduler has
4230 moved instructions into the prologue. We look ahead in
4231 the function looking for address ranges whose
4232 corresponding line number is less the first one that we
4233 found for the function. This is more conservative then
4234 refine_prologue_limit which scans a large number of SALs
4235 looking for any in the prologue */
4236 prologue_sal = sal;
4237 }
4238 }
4239
4240 if (prologue_sal.end < end_pc)
4241 /* Return the end of this line, or zero if we could not find a
4242 line. */
4243 return prologue_sal.end;
4244 else
4245 /* Don't return END_PC, which is past the end of the function. */
4246 return prologue_sal.pc;
4247 }
4248 \f
4249 struct symtabs_and_lines
4250 decode_line_spec (char *string, int funfirstline)
4251 {
4252 struct symtabs_and_lines sals;
4253 struct symtab_and_line cursal;
4254
4255 if (string == 0)
4256 error (_("Empty line specification."));
4257
4258 /* We use whatever is set as the current source line. We do not try
4259 and get a default or it will recursively call us! */
4260 cursal = get_current_source_symtab_and_line ();
4261
4262 sals = decode_line_1 (&string, funfirstline,
4263 cursal.symtab, cursal.line,
4264 (char ***) NULL, NULL);
4265
4266 if (*string)
4267 error (_("Junk at end of line specification: %s"), string);
4268 return sals;
4269 }
4270
4271 /* Track MAIN */
4272 static char *name_of_main;
4273
4274 void
4275 set_main_name (const char *name)
4276 {
4277 if (name_of_main != NULL)
4278 {
4279 xfree (name_of_main);
4280 name_of_main = NULL;
4281 }
4282 if (name != NULL)
4283 {
4284 name_of_main = xstrdup (name);
4285 }
4286 }
4287
4288 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4289 accordingly. */
4290
4291 static void
4292 find_main_name (void)
4293 {
4294 const char *new_main_name;
4295
4296 /* Try to see if the main procedure is in Ada. */
4297 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4298 be to add a new method in the language vector, and call this
4299 method for each language until one of them returns a non-empty
4300 name. This would allow us to remove this hard-coded call to
4301 an Ada function. It is not clear that this is a better approach
4302 at this point, because all methods need to be written in a way
4303 such that false positives never be returned. For instance, it is
4304 important that a method does not return a wrong name for the main
4305 procedure if the main procedure is actually written in a different
4306 language. It is easy to guaranty this with Ada, since we use a
4307 special symbol generated only when the main in Ada to find the name
4308 of the main procedure. It is difficult however to see how this can
4309 be guarantied for languages such as C, for instance. This suggests
4310 that order of call for these methods becomes important, which means
4311 a more complicated approach. */
4312 new_main_name = ada_main_name ();
4313 if (new_main_name != NULL)
4314 {
4315 set_main_name (new_main_name);
4316 return;
4317 }
4318
4319 new_main_name = pascal_main_name ();
4320 if (new_main_name != NULL)
4321 {
4322 set_main_name (new_main_name);
4323 return;
4324 }
4325
4326 /* The languages above didn't identify the name of the main procedure.
4327 Fallback to "main". */
4328 set_main_name ("main");
4329 }
4330
4331 char *
4332 main_name (void)
4333 {
4334 if (name_of_main == NULL)
4335 find_main_name ();
4336
4337 return name_of_main;
4338 }
4339
4340 /* Handle ``executable_changed'' events for the symtab module. */
4341
4342 static void
4343 symtab_observer_executable_changed (void)
4344 {
4345 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4346 set_main_name (NULL);
4347 }
4348
4349 /* Helper to expand_line_sal below. Appends new sal to SAL,
4350 initializing it from SYMTAB, LINENO and PC. */
4351 static void
4352 append_expanded_sal (struct symtabs_and_lines *sal,
4353 struct program_space *pspace,
4354 struct symtab *symtab,
4355 int lineno, CORE_ADDR pc)
4356 {
4357 sal->sals = xrealloc (sal->sals,
4358 sizeof (sal->sals[0])
4359 * (sal->nelts + 1));
4360 init_sal (sal->sals + sal->nelts);
4361 sal->sals[sal->nelts].pspace = pspace;
4362 sal->sals[sal->nelts].symtab = symtab;
4363 sal->sals[sal->nelts].section = NULL;
4364 sal->sals[sal->nelts].end = 0;
4365 sal->sals[sal->nelts].line = lineno;
4366 sal->sals[sal->nelts].pc = pc;
4367 ++sal->nelts;
4368 }
4369
4370 /* Helper to expand_line_sal below. Search in the symtabs for any
4371 linetable entry that exactly matches FULLNAME and LINENO and append
4372 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4373 use FILENAME and LINENO instead. If there is at least one match,
4374 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4375 and BEST_SYMTAB. */
4376
4377 static int
4378 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4379 struct symtabs_and_lines *ret,
4380 struct linetable_entry **best_item,
4381 struct symtab **best_symtab)
4382 {
4383 struct program_space *pspace;
4384 struct objfile *objfile;
4385 struct symtab *symtab;
4386 int exact = 0;
4387 int j;
4388 *best_item = 0;
4389 *best_symtab = 0;
4390
4391 ALL_PSPACES (pspace)
4392 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4393 {
4394 if (FILENAME_CMP (filename, symtab->filename) == 0)
4395 {
4396 struct linetable *l;
4397 int len;
4398 if (fullname != NULL
4399 && symtab_to_fullname (symtab) != NULL
4400 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4401 continue;
4402 l = LINETABLE (symtab);
4403 if (!l)
4404 continue;
4405 len = l->nitems;
4406
4407 for (j = 0; j < len; j++)
4408 {
4409 struct linetable_entry *item = &(l->item[j]);
4410
4411 if (item->line == lineno)
4412 {
4413 exact = 1;
4414 append_expanded_sal (ret, objfile->pspace,
4415 symtab, lineno, item->pc);
4416 }
4417 else if (!exact && item->line > lineno
4418 && (*best_item == NULL
4419 || item->line < (*best_item)->line))
4420 {
4421 *best_item = item;
4422 *best_symtab = symtab;
4423 }
4424 }
4425 }
4426 }
4427 return exact;
4428 }
4429
4430 /* Compute a set of all sals in all program spaces that correspond to
4431 same file and line as SAL and return those. If there are several
4432 sals that belong to the same block, only one sal for the block is
4433 included in results. */
4434
4435 struct symtabs_and_lines
4436 expand_line_sal (struct symtab_and_line sal)
4437 {
4438 struct symtabs_and_lines ret, this_line;
4439 int i, j;
4440 struct objfile *objfile;
4441 struct partial_symtab *psymtab;
4442 struct symtab *symtab;
4443 int lineno;
4444 int deleted = 0;
4445 struct block **blocks = NULL;
4446 int *filter;
4447 struct cleanup *old_chain;
4448
4449 ret.nelts = 0;
4450 ret.sals = NULL;
4451
4452 /* Only expand sals that represent file.c:line. */
4453 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4454 {
4455 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4456 ret.sals[0] = sal;
4457 ret.nelts = 1;
4458 return ret;
4459 }
4460 else
4461 {
4462 struct program_space *pspace;
4463 struct linetable_entry *best_item = 0;
4464 struct symtab *best_symtab = 0;
4465 int exact = 0;
4466 char *match_filename;
4467
4468 lineno = sal.line;
4469 match_filename = sal.symtab->filename;
4470
4471 /* We need to find all symtabs for a file which name
4472 is described by sal. We cannot just directly
4473 iterate over symtabs, since a symtab might not be
4474 yet created. We also cannot iterate over psymtabs,
4475 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4476 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4477 corresponding to an included file. Therefore, we do
4478 first pass over psymtabs, reading in those with
4479 the right name. Then, we iterate over symtabs, knowing
4480 that all symtabs we're interested in are loaded. */
4481
4482 old_chain = save_current_program_space ();
4483 ALL_PSPACES (pspace)
4484 {
4485 set_current_program_space (pspace);
4486 ALL_PSPACE_OBJFILES (pspace, objfile)
4487 {
4488 if (objfile->sf)
4489 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4490 sal.symtab->filename);
4491 }
4492 }
4493 do_cleanups (old_chain);
4494
4495 /* Now search the symtab for exact matches and append them. If
4496 none is found, append the best_item and all its exact
4497 matches. */
4498 symtab_to_fullname (sal.symtab);
4499 exact = append_exact_match_to_sals (sal.symtab->filename,
4500 sal.symtab->fullname, lineno,
4501 &ret, &best_item, &best_symtab);
4502 if (!exact && best_item)
4503 append_exact_match_to_sals (best_symtab->filename,
4504 best_symtab->fullname, best_item->line,
4505 &ret, &best_item, &best_symtab);
4506 }
4507
4508 /* For optimized code, compiler can scatter one source line accross
4509 disjoint ranges of PC values, even when no duplicate functions
4510 or inline functions are involved. For example, 'for (;;)' inside
4511 non-template non-inline non-ctor-or-dtor function can result
4512 in two PC ranges. In this case, we don't want to set breakpoint
4513 on first PC of each range. To filter such cases, we use containing
4514 blocks -- for each PC found above we see if there are other PCs
4515 that are in the same block. If yes, the other PCs are filtered out. */
4516
4517 old_chain = save_current_program_space ();
4518 filter = alloca (ret.nelts * sizeof (int));
4519 blocks = alloca (ret.nelts * sizeof (struct block *));
4520 for (i = 0; i < ret.nelts; ++i)
4521 {
4522 struct blockvector *bl;
4523 struct block *b;
4524
4525 set_current_program_space (ret.sals[i].pspace);
4526
4527 filter[i] = 1;
4528 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4529
4530 }
4531 do_cleanups (old_chain);
4532
4533 for (i = 0; i < ret.nelts; ++i)
4534 if (blocks[i] != NULL)
4535 for (j = i+1; j < ret.nelts; ++j)
4536 if (blocks[j] == blocks[i])
4537 {
4538 filter[j] = 0;
4539 ++deleted;
4540 break;
4541 }
4542
4543 {
4544 struct symtab_and_line *final =
4545 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4546
4547 for (i = 0, j = 0; i < ret.nelts; ++i)
4548 if (filter[i])
4549 final[j++] = ret.sals[i];
4550
4551 ret.nelts -= deleted;
4552 xfree (ret.sals);
4553 ret.sals = final;
4554 }
4555
4556 return ret;
4557 }
4558
4559 /* Return 1 if the supplied producer string matches the ARM RealView
4560 compiler (armcc). */
4561
4562 int
4563 producer_is_realview (const char *producer)
4564 {
4565 static const char *const arm_idents[] = {
4566 "ARM C Compiler, ADS",
4567 "Thumb C Compiler, ADS",
4568 "ARM C++ Compiler, ADS",
4569 "Thumb C++ Compiler, ADS",
4570 "ARM/Thumb C/C++ Compiler, RVCT",
4571 "ARM C/C++ Compiler, RVCT"
4572 };
4573 int i;
4574
4575 if (producer == NULL)
4576 return 0;
4577
4578 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4579 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4580 return 1;
4581
4582 return 0;
4583 }
4584
4585 void
4586 _initialize_symtab (void)
4587 {
4588 add_info ("variables", variables_info, _("\
4589 All global and static variable names, or those matching REGEXP."));
4590 if (dbx_commands)
4591 add_com ("whereis", class_info, variables_info, _("\
4592 All global and static variable names, or those matching REGEXP."));
4593
4594 add_info ("functions", functions_info,
4595 _("All function names, or those matching REGEXP."));
4596
4597 /* FIXME: This command has at least the following problems:
4598 1. It prints builtin types (in a very strange and confusing fashion).
4599 2. It doesn't print right, e.g. with
4600 typedef struct foo *FOO
4601 type_print prints "FOO" when we want to make it (in this situation)
4602 print "struct foo *".
4603 I also think "ptype" or "whatis" is more likely to be useful (but if
4604 there is much disagreement "info types" can be fixed). */
4605 add_info ("types", types_info,
4606 _("All type names, or those matching REGEXP."));
4607
4608 add_info ("sources", sources_info,
4609 _("Source files in the program."));
4610
4611 add_com ("rbreak", class_breakpoint, rbreak_command,
4612 _("Set a breakpoint for all functions matching REGEXP."));
4613
4614 if (xdb_commands)
4615 {
4616 add_com ("lf", class_info, sources_info,
4617 _("Source files in the program"));
4618 add_com ("lg", class_info, variables_info, _("\
4619 All global and static variable names, or those matching REGEXP."));
4620 }
4621
4622 add_setshow_enum_cmd ("multiple-symbols", no_class,
4623 multiple_symbols_modes, &multiple_symbols_mode,
4624 _("\
4625 Set the debugger behavior when more than one symbol are possible matches\n\
4626 in an expression."), _("\
4627 Show how the debugger handles ambiguities in expressions."), _("\
4628 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4629 NULL, NULL, &setlist, &showlist);
4630
4631 observer_attach_executable_changed (symtab_observer_executable_changed);
4632 }
This page took 0.123458 seconds and 4 git commands to generate.