Use a std::vector for ada_exceptions_list
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
68
69 /* Forward declarations for local functions. */
70
71 static void rbreak_command (char *, int);
72
73 static int find_line_common (struct linetable *, int, int *, int);
74
75 static struct block_symbol
76 lookup_symbol_aux (const char *name,
77 const struct block *block,
78 const domain_enum domain,
79 enum language language,
80 struct field_of_this_result *);
81
82 static
83 struct block_symbol lookup_local_symbol (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language);
87
88 static struct block_symbol
89 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
90 const char *name, const domain_enum domain);
91
92 /* See symtab.h. */
93 const struct block_symbol null_block_symbol = { NULL, NULL };
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* Program space key for finding its symbol cache. */
113
114 static const struct program_space_data *symbol_cache_key;
115
116 /* The default symbol cache size.
117 There is no extra cpu cost for large N (except when flushing the cache,
118 which is rare). The value here is just a first attempt. A better default
119 value may be higher or lower. A prime number can make up for a bad hash
120 computation, so that's why the number is what it is. */
121 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
122
123 /* The maximum symbol cache size.
124 There's no method to the decision of what value to use here, other than
125 there's no point in allowing a user typo to make gdb consume all memory. */
126 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
127
128 /* symbol_cache_lookup returns this if a previous lookup failed to find the
129 symbol in any objfile. */
130 #define SYMBOL_LOOKUP_FAILED \
131 ((struct block_symbol) {(struct symbol *) 1, NULL})
132 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
133
134 /* Recording lookups that don't find the symbol is just as important, if not
135 more so, than recording found symbols. */
136
137 enum symbol_cache_slot_state
138 {
139 SYMBOL_SLOT_UNUSED,
140 SYMBOL_SLOT_NOT_FOUND,
141 SYMBOL_SLOT_FOUND
142 };
143
144 struct symbol_cache_slot
145 {
146 enum symbol_cache_slot_state state;
147
148 /* The objfile that was current when the symbol was looked up.
149 This is only needed for global blocks, but for simplicity's sake
150 we allocate the space for both. If data shows the extra space used
151 for static blocks is a problem, we can split things up then.
152
153 Global blocks need cache lookup to include the objfile context because
154 we need to account for gdbarch_iterate_over_objfiles_in_search_order
155 which can traverse objfiles in, effectively, any order, depending on
156 the current objfile, thus affecting which symbol is found. Normally,
157 only the current objfile is searched first, and then the rest are
158 searched in recorded order; but putting cache lookup inside
159 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
160 Instead we just make the current objfile part of the context of
161 cache lookup. This means we can record the same symbol multiple times,
162 each with a different "current objfile" that was in effect when the
163 lookup was saved in the cache, but cache space is pretty cheap. */
164 const struct objfile *objfile_context;
165
166 union
167 {
168 struct block_symbol found;
169 struct
170 {
171 char *name;
172 domain_enum domain;
173 } not_found;
174 } value;
175 };
176
177 /* Symbols don't specify global vs static block.
178 So keep them in separate caches. */
179
180 struct block_symbol_cache
181 {
182 unsigned int hits;
183 unsigned int misses;
184 unsigned int collisions;
185
186 /* SYMBOLS is a variable length array of this size.
187 One can imagine that in general one cache (global/static) should be a
188 fraction of the size of the other, but there's no data at the moment
189 on which to decide. */
190 unsigned int size;
191
192 struct symbol_cache_slot symbols[1];
193 };
194
195 /* The symbol cache.
196
197 Searching for symbols in the static and global blocks over multiple objfiles
198 again and again can be slow, as can searching very big objfiles. This is a
199 simple cache to improve symbol lookup performance, which is critical to
200 overall gdb performance.
201
202 Symbols are hashed on the name, its domain, and block.
203 They are also hashed on their objfile for objfile-specific lookups. */
204
205 struct symbol_cache
206 {
207 struct block_symbol_cache *global_symbols;
208 struct block_symbol_cache *static_symbols;
209 };
210
211 /* When non-zero, print debugging messages related to symtab creation. */
212 unsigned int symtab_create_debug = 0;
213
214 /* When non-zero, print debugging messages related to symbol lookup. */
215 unsigned int symbol_lookup_debug = 0;
216
217 /* The size of the cache is staged here. */
218 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
219
220 /* The current value of the symbol cache size.
221 This is saved so that if the user enters a value too big we can restore
222 the original value from here. */
223 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
224
225 /* Non-zero if a file may be known by two different basenames.
226 This is the uncommon case, and significantly slows down gdb.
227 Default set to "off" to not slow down the common case. */
228 int basenames_may_differ = 0;
229
230 /* Allow the user to configure the debugger behavior with respect
231 to multiple-choice menus when more than one symbol matches during
232 a symbol lookup. */
233
234 const char multiple_symbols_ask[] = "ask";
235 const char multiple_symbols_all[] = "all";
236 const char multiple_symbols_cancel[] = "cancel";
237 static const char *const multiple_symbols_modes[] =
238 {
239 multiple_symbols_ask,
240 multiple_symbols_all,
241 multiple_symbols_cancel,
242 NULL
243 };
244 static const char *multiple_symbols_mode = multiple_symbols_all;
245
246 /* Read-only accessor to AUTO_SELECT_MODE. */
247
248 const char *
249 multiple_symbols_select_mode (void)
250 {
251 return multiple_symbols_mode;
252 }
253
254 /* Return the name of a domain_enum. */
255
256 const char *
257 domain_name (domain_enum e)
258 {
259 switch (e)
260 {
261 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
262 case VAR_DOMAIN: return "VAR_DOMAIN";
263 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
264 case MODULE_DOMAIN: return "MODULE_DOMAIN";
265 case LABEL_DOMAIN: return "LABEL_DOMAIN";
266 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
267 default: gdb_assert_not_reached ("bad domain_enum");
268 }
269 }
270
271 /* Return the name of a search_domain . */
272
273 const char *
274 search_domain_name (enum search_domain e)
275 {
276 switch (e)
277 {
278 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
279 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
280 case TYPES_DOMAIN: return "TYPES_DOMAIN";
281 case ALL_DOMAIN: return "ALL_DOMAIN";
282 default: gdb_assert_not_reached ("bad search_domain");
283 }
284 }
285
286 /* See symtab.h. */
287
288 struct symtab *
289 compunit_primary_filetab (const struct compunit_symtab *cust)
290 {
291 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
292
293 /* The primary file symtab is the first one in the list. */
294 return COMPUNIT_FILETABS (cust);
295 }
296
297 /* See symtab.h. */
298
299 enum language
300 compunit_language (const struct compunit_symtab *cust)
301 {
302 struct symtab *symtab = compunit_primary_filetab (cust);
303
304 /* The language of the compunit symtab is the language of its primary
305 source file. */
306 return SYMTAB_LANGUAGE (symtab);
307 }
308
309 /* See whether FILENAME matches SEARCH_NAME using the rule that we
310 advertise to the user. (The manual's description of linespecs
311 describes what we advertise). Returns true if they match, false
312 otherwise. */
313
314 int
315 compare_filenames_for_search (const char *filename, const char *search_name)
316 {
317 int len = strlen (filename);
318 size_t search_len = strlen (search_name);
319
320 if (len < search_len)
321 return 0;
322
323 /* The tail of FILENAME must match. */
324 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
325 return 0;
326
327 /* Either the names must completely match, or the character
328 preceding the trailing SEARCH_NAME segment of FILENAME must be a
329 directory separator.
330
331 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
332 cannot match FILENAME "/path//dir/file.c" - as user has requested
333 absolute path. The sama applies for "c:\file.c" possibly
334 incorrectly hypothetically matching "d:\dir\c:\file.c".
335
336 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
337 compatible with SEARCH_NAME "file.c". In such case a compiler had
338 to put the "c:file.c" name into debug info. Such compatibility
339 works only on GDB built for DOS host. */
340 return (len == search_len
341 || (!IS_ABSOLUTE_PATH (search_name)
342 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
343 || (HAS_DRIVE_SPEC (filename)
344 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
345 }
346
347 /* Same as compare_filenames_for_search, but for glob-style patterns.
348 Heads up on the order of the arguments. They match the order of
349 compare_filenames_for_search, but it's the opposite of the order of
350 arguments to gdb_filename_fnmatch. */
351
352 int
353 compare_glob_filenames_for_search (const char *filename,
354 const char *search_name)
355 {
356 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
357 all /s have to be explicitly specified. */
358 int file_path_elements = count_path_elements (filename);
359 int search_path_elements = count_path_elements (search_name);
360
361 if (search_path_elements > file_path_elements)
362 return 0;
363
364 if (IS_ABSOLUTE_PATH (search_name))
365 {
366 return (search_path_elements == file_path_elements
367 && gdb_filename_fnmatch (search_name, filename,
368 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
369 }
370
371 {
372 const char *file_to_compare
373 = strip_leading_path_elements (filename,
374 file_path_elements - search_path_elements);
375
376 return gdb_filename_fnmatch (search_name, file_to_compare,
377 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
378 }
379 }
380
381 /* Check for a symtab of a specific name by searching some symtabs.
382 This is a helper function for callbacks of iterate_over_symtabs.
383
384 If NAME is not absolute, then REAL_PATH is NULL
385 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
386
387 The return value, NAME, REAL_PATH and CALLBACK are identical to the
388 `map_symtabs_matching_filename' method of quick_symbol_functions.
389
390 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
391 Each symtab within the specified compunit symtab is also searched.
392 AFTER_LAST is one past the last compunit symtab to search; NULL means to
393 search until the end of the list. */
394
395 bool
396 iterate_over_some_symtabs (const char *name,
397 const char *real_path,
398 struct compunit_symtab *first,
399 struct compunit_symtab *after_last,
400 gdb::function_view<bool (symtab *)> callback)
401 {
402 struct compunit_symtab *cust;
403 struct symtab *s;
404 const char* base_name = lbasename (name);
405
406 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
407 {
408 ALL_COMPUNIT_FILETABS (cust, s)
409 {
410 if (compare_filenames_for_search (s->filename, name))
411 {
412 if (callback (s))
413 return true;
414 continue;
415 }
416
417 /* Before we invoke realpath, which can get expensive when many
418 files are involved, do a quick comparison of the basenames. */
419 if (! basenames_may_differ
420 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
421 continue;
422
423 if (compare_filenames_for_search (symtab_to_fullname (s), name))
424 {
425 if (callback (s))
426 return true;
427 continue;
428 }
429
430 /* If the user gave us an absolute path, try to find the file in
431 this symtab and use its absolute path. */
432 if (real_path != NULL)
433 {
434 const char *fullname = symtab_to_fullname (s);
435
436 gdb_assert (IS_ABSOLUTE_PATH (real_path));
437 gdb_assert (IS_ABSOLUTE_PATH (name));
438 if (FILENAME_CMP (real_path, fullname) == 0)
439 {
440 if (callback (s))
441 return true;
442 continue;
443 }
444 }
445 }
446 }
447
448 return false;
449 }
450
451 /* Check for a symtab of a specific name; first in symtabs, then in
452 psymtabs. *If* there is no '/' in the name, a match after a '/'
453 in the symtab filename will also work.
454
455 Calls CALLBACK with each symtab that is found. If CALLBACK returns
456 true, the search stops. */
457
458 void
459 iterate_over_symtabs (const char *name,
460 gdb::function_view<bool (symtab *)> callback)
461 {
462 struct objfile *objfile;
463 gdb::unique_xmalloc_ptr<char> real_path;
464
465 /* Here we are interested in canonicalizing an absolute path, not
466 absolutizing a relative path. */
467 if (IS_ABSOLUTE_PATH (name))
468 {
469 real_path = gdb_realpath (name);
470 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
471 }
472
473 ALL_OBJFILES (objfile)
474 {
475 if (iterate_over_some_symtabs (name, real_path.get (),
476 objfile->compunit_symtabs, NULL,
477 callback))
478 return;
479 }
480
481 /* Same search rules as above apply here, but now we look thru the
482 psymtabs. */
483
484 ALL_OBJFILES (objfile)
485 {
486 if (objfile->sf
487 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
488 name,
489 real_path.get (),
490 callback))
491 return;
492 }
493 }
494
495 /* A wrapper for iterate_over_symtabs that returns the first matching
496 symtab, or NULL. */
497
498 struct symtab *
499 lookup_symtab (const char *name)
500 {
501 struct symtab *result = NULL;
502
503 iterate_over_symtabs (name, [&] (symtab *symtab)
504 {
505 result = symtab;
506 return true;
507 });
508
509 return result;
510 }
511
512 \f
513 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
514 full method name, which consist of the class name (from T), the unadorned
515 method name from METHOD_ID, and the signature for the specific overload,
516 specified by SIGNATURE_ID. Note that this function is g++ specific. */
517
518 char *
519 gdb_mangle_name (struct type *type, int method_id, int signature_id)
520 {
521 int mangled_name_len;
522 char *mangled_name;
523 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
524 struct fn_field *method = &f[signature_id];
525 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
526 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
527 const char *newname = type_name_no_tag (type);
528
529 /* Does the form of physname indicate that it is the full mangled name
530 of a constructor (not just the args)? */
531 int is_full_physname_constructor;
532
533 int is_constructor;
534 int is_destructor = is_destructor_name (physname);
535 /* Need a new type prefix. */
536 const char *const_prefix = method->is_const ? "C" : "";
537 const char *volatile_prefix = method->is_volatile ? "V" : "";
538 char buf[20];
539 int len = (newname == NULL ? 0 : strlen (newname));
540
541 /* Nothing to do if physname already contains a fully mangled v3 abi name
542 or an operator name. */
543 if ((physname[0] == '_' && physname[1] == 'Z')
544 || is_operator_name (field_name))
545 return xstrdup (physname);
546
547 is_full_physname_constructor = is_constructor_name (physname);
548
549 is_constructor = is_full_physname_constructor
550 || (newname && strcmp (field_name, newname) == 0);
551
552 if (!is_destructor)
553 is_destructor = (startswith (physname, "__dt"));
554
555 if (is_destructor || is_full_physname_constructor)
556 {
557 mangled_name = (char *) xmalloc (strlen (physname) + 1);
558 strcpy (mangled_name, physname);
559 return mangled_name;
560 }
561
562 if (len == 0)
563 {
564 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
565 }
566 else if (physname[0] == 't' || physname[0] == 'Q')
567 {
568 /* The physname for template and qualified methods already includes
569 the class name. */
570 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
571 newname = NULL;
572 len = 0;
573 }
574 else
575 {
576 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
577 volatile_prefix, len);
578 }
579 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
580 + strlen (buf) + len + strlen (physname) + 1);
581
582 mangled_name = (char *) xmalloc (mangled_name_len);
583 if (is_constructor)
584 mangled_name[0] = '\0';
585 else
586 strcpy (mangled_name, field_name);
587
588 strcat (mangled_name, buf);
589 /* If the class doesn't have a name, i.e. newname NULL, then we just
590 mangle it using 0 for the length of the class. Thus it gets mangled
591 as something starting with `::' rather than `classname::'. */
592 if (newname != NULL)
593 strcat (mangled_name, newname);
594
595 strcat (mangled_name, physname);
596 return (mangled_name);
597 }
598
599 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
600 correctly allocated. */
601
602 void
603 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
604 const char *name,
605 struct obstack *obstack)
606 {
607 if (gsymbol->language == language_ada)
608 {
609 if (name == NULL)
610 {
611 gsymbol->ada_mangled = 0;
612 gsymbol->language_specific.obstack = obstack;
613 }
614 else
615 {
616 gsymbol->ada_mangled = 1;
617 gsymbol->language_specific.demangled_name = name;
618 }
619 }
620 else
621 gsymbol->language_specific.demangled_name = name;
622 }
623
624 /* Return the demangled name of GSYMBOL. */
625
626 const char *
627 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
628 {
629 if (gsymbol->language == language_ada)
630 {
631 if (!gsymbol->ada_mangled)
632 return NULL;
633 /* Fall through. */
634 }
635
636 return gsymbol->language_specific.demangled_name;
637 }
638
639 \f
640 /* Initialize the language dependent portion of a symbol
641 depending upon the language for the symbol. */
642
643 void
644 symbol_set_language (struct general_symbol_info *gsymbol,
645 enum language language,
646 struct obstack *obstack)
647 {
648 gsymbol->language = language;
649 if (gsymbol->language == language_cplus
650 || gsymbol->language == language_d
651 || gsymbol->language == language_go
652 || gsymbol->language == language_objc
653 || gsymbol->language == language_fortran)
654 {
655 symbol_set_demangled_name (gsymbol, NULL, obstack);
656 }
657 else if (gsymbol->language == language_ada)
658 {
659 gdb_assert (gsymbol->ada_mangled == 0);
660 gsymbol->language_specific.obstack = obstack;
661 }
662 else
663 {
664 memset (&gsymbol->language_specific, 0,
665 sizeof (gsymbol->language_specific));
666 }
667 }
668
669 /* Functions to initialize a symbol's mangled name. */
670
671 /* Objects of this type are stored in the demangled name hash table. */
672 struct demangled_name_entry
673 {
674 const char *mangled;
675 char demangled[1];
676 };
677
678 /* Hash function for the demangled name hash. */
679
680 static hashval_t
681 hash_demangled_name_entry (const void *data)
682 {
683 const struct demangled_name_entry *e
684 = (const struct demangled_name_entry *) data;
685
686 return htab_hash_string (e->mangled);
687 }
688
689 /* Equality function for the demangled name hash. */
690
691 static int
692 eq_demangled_name_entry (const void *a, const void *b)
693 {
694 const struct demangled_name_entry *da
695 = (const struct demangled_name_entry *) a;
696 const struct demangled_name_entry *db
697 = (const struct demangled_name_entry *) b;
698
699 return strcmp (da->mangled, db->mangled) == 0;
700 }
701
702 /* Create the hash table used for demangled names. Each hash entry is
703 a pair of strings; one for the mangled name and one for the demangled
704 name. The entry is hashed via just the mangled name. */
705
706 static void
707 create_demangled_names_hash (struct objfile *objfile)
708 {
709 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
710 The hash table code will round this up to the next prime number.
711 Choosing a much larger table size wastes memory, and saves only about
712 1% in symbol reading. */
713
714 objfile->per_bfd->demangled_names_hash = htab_create_alloc
715 (256, hash_demangled_name_entry, eq_demangled_name_entry,
716 NULL, xcalloc, xfree);
717 }
718
719 /* Try to determine the demangled name for a symbol, based on the
720 language of that symbol. If the language is set to language_auto,
721 it will attempt to find any demangling algorithm that works and
722 then set the language appropriately. The returned name is allocated
723 by the demangler and should be xfree'd. */
724
725 static char *
726 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
727 const char *mangled)
728 {
729 char *demangled = NULL;
730 int i;
731 int recognized;
732
733 if (gsymbol->language == language_unknown)
734 gsymbol->language = language_auto;
735
736 if (gsymbol->language != language_auto)
737 {
738 const struct language_defn *lang = language_def (gsymbol->language);
739
740 language_sniff_from_mangled_name (lang, mangled, &demangled);
741 return demangled;
742 }
743
744 for (i = language_unknown; i < nr_languages; ++i)
745 {
746 enum language l = (enum language) i;
747 const struct language_defn *lang = language_def (l);
748
749 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
750 {
751 gsymbol->language = l;
752 return demangled;
753 }
754 }
755
756 return NULL;
757 }
758
759 /* Set both the mangled and demangled (if any) names for GSYMBOL based
760 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
761 objfile's obstack; but if COPY_NAME is 0 and if NAME is
762 NUL-terminated, then this function assumes that NAME is already
763 correctly saved (either permanently or with a lifetime tied to the
764 objfile), and it will not be copied.
765
766 The hash table corresponding to OBJFILE is used, and the memory
767 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
768 so the pointer can be discarded after calling this function. */
769
770 void
771 symbol_set_names (struct general_symbol_info *gsymbol,
772 const char *linkage_name, int len, int copy_name,
773 struct objfile *objfile)
774 {
775 struct demangled_name_entry **slot;
776 /* A 0-terminated copy of the linkage name. */
777 const char *linkage_name_copy;
778 struct demangled_name_entry entry;
779 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
780
781 if (gsymbol->language == language_ada)
782 {
783 /* In Ada, we do the symbol lookups using the mangled name, so
784 we can save some space by not storing the demangled name. */
785 if (!copy_name)
786 gsymbol->name = linkage_name;
787 else
788 {
789 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
790 len + 1);
791
792 memcpy (name, linkage_name, len);
793 name[len] = '\0';
794 gsymbol->name = name;
795 }
796 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
797
798 return;
799 }
800
801 if (per_bfd->demangled_names_hash == NULL)
802 create_demangled_names_hash (objfile);
803
804 if (linkage_name[len] != '\0')
805 {
806 char *alloc_name;
807
808 alloc_name = (char *) alloca (len + 1);
809 memcpy (alloc_name, linkage_name, len);
810 alloc_name[len] = '\0';
811
812 linkage_name_copy = alloc_name;
813 }
814 else
815 linkage_name_copy = linkage_name;
816
817 entry.mangled = linkage_name_copy;
818 slot = ((struct demangled_name_entry **)
819 htab_find_slot (per_bfd->demangled_names_hash,
820 &entry, INSERT));
821
822 /* If this name is not in the hash table, add it. */
823 if (*slot == NULL
824 /* A C version of the symbol may have already snuck into the table.
825 This happens to, e.g., main.init (__go_init_main). Cope. */
826 || (gsymbol->language == language_go
827 && (*slot)->demangled[0] == '\0'))
828 {
829 char *demangled_name = symbol_find_demangled_name (gsymbol,
830 linkage_name_copy);
831 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
832
833 /* Suppose we have demangled_name==NULL, copy_name==0, and
834 linkage_name_copy==linkage_name. In this case, we already have the
835 mangled name saved, and we don't have a demangled name. So,
836 you might think we could save a little space by not recording
837 this in the hash table at all.
838
839 It turns out that it is actually important to still save such
840 an entry in the hash table, because storing this name gives
841 us better bcache hit rates for partial symbols. */
842 if (!copy_name && linkage_name_copy == linkage_name)
843 {
844 *slot
845 = ((struct demangled_name_entry *)
846 obstack_alloc (&per_bfd->storage_obstack,
847 offsetof (struct demangled_name_entry, demangled)
848 + demangled_len + 1));
849 (*slot)->mangled = linkage_name;
850 }
851 else
852 {
853 char *mangled_ptr;
854
855 /* If we must copy the mangled name, put it directly after
856 the demangled name so we can have a single
857 allocation. */
858 *slot
859 = ((struct demangled_name_entry *)
860 obstack_alloc (&per_bfd->storage_obstack,
861 offsetof (struct demangled_name_entry, demangled)
862 + len + demangled_len + 2));
863 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
864 strcpy (mangled_ptr, linkage_name_copy);
865 (*slot)->mangled = mangled_ptr;
866 }
867
868 if (demangled_name != NULL)
869 {
870 strcpy ((*slot)->demangled, demangled_name);
871 xfree (demangled_name);
872 }
873 else
874 (*slot)->demangled[0] = '\0';
875 }
876
877 gsymbol->name = (*slot)->mangled;
878 if ((*slot)->demangled[0] != '\0')
879 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
880 &per_bfd->storage_obstack);
881 else
882 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
883 }
884
885 /* Return the source code name of a symbol. In languages where
886 demangling is necessary, this is the demangled name. */
887
888 const char *
889 symbol_natural_name (const struct general_symbol_info *gsymbol)
890 {
891 switch (gsymbol->language)
892 {
893 case language_cplus:
894 case language_d:
895 case language_go:
896 case language_objc:
897 case language_fortran:
898 if (symbol_get_demangled_name (gsymbol) != NULL)
899 return symbol_get_demangled_name (gsymbol);
900 break;
901 case language_ada:
902 return ada_decode_symbol (gsymbol);
903 default:
904 break;
905 }
906 return gsymbol->name;
907 }
908
909 /* Return the demangled name for a symbol based on the language for
910 that symbol. If no demangled name exists, return NULL. */
911
912 const char *
913 symbol_demangled_name (const struct general_symbol_info *gsymbol)
914 {
915 const char *dem_name = NULL;
916
917 switch (gsymbol->language)
918 {
919 case language_cplus:
920 case language_d:
921 case language_go:
922 case language_objc:
923 case language_fortran:
924 dem_name = symbol_get_demangled_name (gsymbol);
925 break;
926 case language_ada:
927 dem_name = ada_decode_symbol (gsymbol);
928 break;
929 default:
930 break;
931 }
932 return dem_name;
933 }
934
935 /* Return the search name of a symbol---generally the demangled or
936 linkage name of the symbol, depending on how it will be searched for.
937 If there is no distinct demangled name, then returns the same value
938 (same pointer) as SYMBOL_LINKAGE_NAME. */
939
940 const char *
941 symbol_search_name (const struct general_symbol_info *gsymbol)
942 {
943 if (gsymbol->language == language_ada)
944 return gsymbol->name;
945 else
946 return symbol_natural_name (gsymbol);
947 }
948 \f
949
950 /* Return 1 if the two sections are the same, or if they could
951 plausibly be copies of each other, one in an original object
952 file and another in a separated debug file. */
953
954 int
955 matching_obj_sections (struct obj_section *obj_first,
956 struct obj_section *obj_second)
957 {
958 asection *first = obj_first? obj_first->the_bfd_section : NULL;
959 asection *second = obj_second? obj_second->the_bfd_section : NULL;
960 struct objfile *obj;
961
962 /* If they're the same section, then they match. */
963 if (first == second)
964 return 1;
965
966 /* If either is NULL, give up. */
967 if (first == NULL || second == NULL)
968 return 0;
969
970 /* This doesn't apply to absolute symbols. */
971 if (first->owner == NULL || second->owner == NULL)
972 return 0;
973
974 /* If they're in the same object file, they must be different sections. */
975 if (first->owner == second->owner)
976 return 0;
977
978 /* Check whether the two sections are potentially corresponding. They must
979 have the same size, address, and name. We can't compare section indexes,
980 which would be more reliable, because some sections may have been
981 stripped. */
982 if (bfd_get_section_size (first) != bfd_get_section_size (second))
983 return 0;
984
985 /* In-memory addresses may start at a different offset, relativize them. */
986 if (bfd_get_section_vma (first->owner, first)
987 - bfd_get_start_address (first->owner)
988 != bfd_get_section_vma (second->owner, second)
989 - bfd_get_start_address (second->owner))
990 return 0;
991
992 if (bfd_get_section_name (first->owner, first) == NULL
993 || bfd_get_section_name (second->owner, second) == NULL
994 || strcmp (bfd_get_section_name (first->owner, first),
995 bfd_get_section_name (second->owner, second)) != 0)
996 return 0;
997
998 /* Otherwise check that they are in corresponding objfiles. */
999
1000 ALL_OBJFILES (obj)
1001 if (obj->obfd == first->owner)
1002 break;
1003 gdb_assert (obj != NULL);
1004
1005 if (obj->separate_debug_objfile != NULL
1006 && obj->separate_debug_objfile->obfd == second->owner)
1007 return 1;
1008 if (obj->separate_debug_objfile_backlink != NULL
1009 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1010 return 1;
1011
1012 return 0;
1013 }
1014
1015 /* See symtab.h. */
1016
1017 void
1018 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1019 {
1020 struct objfile *objfile;
1021 struct bound_minimal_symbol msymbol;
1022
1023 /* If we know that this is not a text address, return failure. This is
1024 necessary because we loop based on texthigh and textlow, which do
1025 not include the data ranges. */
1026 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1027 if (msymbol.minsym
1028 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1029 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1030 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1031 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1032 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1033 return;
1034
1035 ALL_OBJFILES (objfile)
1036 {
1037 struct compunit_symtab *cust = NULL;
1038
1039 if (objfile->sf)
1040 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1041 pc, section, 0);
1042 if (cust)
1043 return;
1044 }
1045 }
1046 \f
1047 /* Hash function for the symbol cache. */
1048
1049 static unsigned int
1050 hash_symbol_entry (const struct objfile *objfile_context,
1051 const char *name, domain_enum domain)
1052 {
1053 unsigned int hash = (uintptr_t) objfile_context;
1054
1055 if (name != NULL)
1056 hash += htab_hash_string (name);
1057
1058 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1059 to map to the same slot. */
1060 if (domain == STRUCT_DOMAIN)
1061 hash += VAR_DOMAIN * 7;
1062 else
1063 hash += domain * 7;
1064
1065 return hash;
1066 }
1067
1068 /* Equality function for the symbol cache. */
1069
1070 static int
1071 eq_symbol_entry (const struct symbol_cache_slot *slot,
1072 const struct objfile *objfile_context,
1073 const char *name, domain_enum domain)
1074 {
1075 const char *slot_name;
1076 domain_enum slot_domain;
1077
1078 if (slot->state == SYMBOL_SLOT_UNUSED)
1079 return 0;
1080
1081 if (slot->objfile_context != objfile_context)
1082 return 0;
1083
1084 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1085 {
1086 slot_name = slot->value.not_found.name;
1087 slot_domain = slot->value.not_found.domain;
1088 }
1089 else
1090 {
1091 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1092 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1093 }
1094
1095 /* NULL names match. */
1096 if (slot_name == NULL && name == NULL)
1097 {
1098 /* But there's no point in calling symbol_matches_domain in the
1099 SYMBOL_SLOT_FOUND case. */
1100 if (slot_domain != domain)
1101 return 0;
1102 }
1103 else if (slot_name != NULL && name != NULL)
1104 {
1105 /* It's important that we use the same comparison that was done the
1106 first time through. If the slot records a found symbol, then this
1107 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1108 It also means using symbol_matches_domain for found symbols.
1109 See block.c.
1110
1111 If the slot records a not-found symbol, then require a precise match.
1112 We could still be lax with whitespace like strcmp_iw though. */
1113
1114 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1115 {
1116 if (strcmp (slot_name, name) != 0)
1117 return 0;
1118 if (slot_domain != domain)
1119 return 0;
1120 }
1121 else
1122 {
1123 struct symbol *sym = slot->value.found.symbol;
1124
1125 if (strcmp_iw (slot_name, name) != 0)
1126 return 0;
1127 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1128 slot_domain, domain))
1129 return 0;
1130 }
1131 }
1132 else
1133 {
1134 /* Only one name is NULL. */
1135 return 0;
1136 }
1137
1138 return 1;
1139 }
1140
1141 /* Given a cache of size SIZE, return the size of the struct (with variable
1142 length array) in bytes. */
1143
1144 static size_t
1145 symbol_cache_byte_size (unsigned int size)
1146 {
1147 return (sizeof (struct block_symbol_cache)
1148 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1149 }
1150
1151 /* Resize CACHE. */
1152
1153 static void
1154 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1155 {
1156 /* If there's no change in size, don't do anything.
1157 All caches have the same size, so we can just compare with the size
1158 of the global symbols cache. */
1159 if ((cache->global_symbols != NULL
1160 && cache->global_symbols->size == new_size)
1161 || (cache->global_symbols == NULL
1162 && new_size == 0))
1163 return;
1164
1165 xfree (cache->global_symbols);
1166 xfree (cache->static_symbols);
1167
1168 if (new_size == 0)
1169 {
1170 cache->global_symbols = NULL;
1171 cache->static_symbols = NULL;
1172 }
1173 else
1174 {
1175 size_t total_size = symbol_cache_byte_size (new_size);
1176
1177 cache->global_symbols
1178 = (struct block_symbol_cache *) xcalloc (1, total_size);
1179 cache->static_symbols
1180 = (struct block_symbol_cache *) xcalloc (1, total_size);
1181 cache->global_symbols->size = new_size;
1182 cache->static_symbols->size = new_size;
1183 }
1184 }
1185
1186 /* Make a symbol cache of size SIZE. */
1187
1188 static struct symbol_cache *
1189 make_symbol_cache (unsigned int size)
1190 {
1191 struct symbol_cache *cache;
1192
1193 cache = XCNEW (struct symbol_cache);
1194 resize_symbol_cache (cache, symbol_cache_size);
1195 return cache;
1196 }
1197
1198 /* Free the space used by CACHE. */
1199
1200 static void
1201 free_symbol_cache (struct symbol_cache *cache)
1202 {
1203 xfree (cache->global_symbols);
1204 xfree (cache->static_symbols);
1205 xfree (cache);
1206 }
1207
1208 /* Return the symbol cache of PSPACE.
1209 Create one if it doesn't exist yet. */
1210
1211 static struct symbol_cache *
1212 get_symbol_cache (struct program_space *pspace)
1213 {
1214 struct symbol_cache *cache
1215 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1216
1217 if (cache == NULL)
1218 {
1219 cache = make_symbol_cache (symbol_cache_size);
1220 set_program_space_data (pspace, symbol_cache_key, cache);
1221 }
1222
1223 return cache;
1224 }
1225
1226 /* Delete the symbol cache of PSPACE.
1227 Called when PSPACE is destroyed. */
1228
1229 static void
1230 symbol_cache_cleanup (struct program_space *pspace, void *data)
1231 {
1232 struct symbol_cache *cache = (struct symbol_cache *) data;
1233
1234 free_symbol_cache (cache);
1235 }
1236
1237 /* Set the size of the symbol cache in all program spaces. */
1238
1239 static void
1240 set_symbol_cache_size (unsigned int new_size)
1241 {
1242 struct program_space *pspace;
1243
1244 ALL_PSPACES (pspace)
1245 {
1246 struct symbol_cache *cache
1247 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1248
1249 /* The pspace could have been created but not have a cache yet. */
1250 if (cache != NULL)
1251 resize_symbol_cache (cache, new_size);
1252 }
1253 }
1254
1255 /* Called when symbol-cache-size is set. */
1256
1257 static void
1258 set_symbol_cache_size_handler (char *args, int from_tty,
1259 struct cmd_list_element *c)
1260 {
1261 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1262 {
1263 /* Restore the previous value.
1264 This is the value the "show" command prints. */
1265 new_symbol_cache_size = symbol_cache_size;
1266
1267 error (_("Symbol cache size is too large, max is %u."),
1268 MAX_SYMBOL_CACHE_SIZE);
1269 }
1270 symbol_cache_size = new_symbol_cache_size;
1271
1272 set_symbol_cache_size (symbol_cache_size);
1273 }
1274
1275 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1276 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1277 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1278 failed (and thus this one will too), or NULL if the symbol is not present
1279 in the cache.
1280 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1281 set to the cache and slot of the symbol to save the result of a full lookup
1282 attempt. */
1283
1284 static struct block_symbol
1285 symbol_cache_lookup (struct symbol_cache *cache,
1286 struct objfile *objfile_context, int block,
1287 const char *name, domain_enum domain,
1288 struct block_symbol_cache **bsc_ptr,
1289 struct symbol_cache_slot **slot_ptr)
1290 {
1291 struct block_symbol_cache *bsc;
1292 unsigned int hash;
1293 struct symbol_cache_slot *slot;
1294
1295 if (block == GLOBAL_BLOCK)
1296 bsc = cache->global_symbols;
1297 else
1298 bsc = cache->static_symbols;
1299 if (bsc == NULL)
1300 {
1301 *bsc_ptr = NULL;
1302 *slot_ptr = NULL;
1303 return (struct block_symbol) {NULL, NULL};
1304 }
1305
1306 hash = hash_symbol_entry (objfile_context, name, domain);
1307 slot = bsc->symbols + hash % bsc->size;
1308
1309 if (eq_symbol_entry (slot, objfile_context, name, domain))
1310 {
1311 if (symbol_lookup_debug)
1312 fprintf_unfiltered (gdb_stdlog,
1313 "%s block symbol cache hit%s for %s, %s\n",
1314 block == GLOBAL_BLOCK ? "Global" : "Static",
1315 slot->state == SYMBOL_SLOT_NOT_FOUND
1316 ? " (not found)" : "",
1317 name, domain_name (domain));
1318 ++bsc->hits;
1319 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1320 return SYMBOL_LOOKUP_FAILED;
1321 return slot->value.found;
1322 }
1323
1324 /* Symbol is not present in the cache. */
1325
1326 *bsc_ptr = bsc;
1327 *slot_ptr = slot;
1328
1329 if (symbol_lookup_debug)
1330 {
1331 fprintf_unfiltered (gdb_stdlog,
1332 "%s block symbol cache miss for %s, %s\n",
1333 block == GLOBAL_BLOCK ? "Global" : "Static",
1334 name, domain_name (domain));
1335 }
1336 ++bsc->misses;
1337 return (struct block_symbol) {NULL, NULL};
1338 }
1339
1340 /* Clear out SLOT. */
1341
1342 static void
1343 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1344 {
1345 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1346 xfree (slot->value.not_found.name);
1347 slot->state = SYMBOL_SLOT_UNUSED;
1348 }
1349
1350 /* Mark SYMBOL as found in SLOT.
1351 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1352 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1353 necessarily the objfile the symbol was found in. */
1354
1355 static void
1356 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1357 struct symbol_cache_slot *slot,
1358 struct objfile *objfile_context,
1359 struct symbol *symbol,
1360 const struct block *block)
1361 {
1362 if (bsc == NULL)
1363 return;
1364 if (slot->state != SYMBOL_SLOT_UNUSED)
1365 {
1366 ++bsc->collisions;
1367 symbol_cache_clear_slot (slot);
1368 }
1369 slot->state = SYMBOL_SLOT_FOUND;
1370 slot->objfile_context = objfile_context;
1371 slot->value.found.symbol = symbol;
1372 slot->value.found.block = block;
1373 }
1374
1375 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1376 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1377 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1378
1379 static void
1380 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1381 struct symbol_cache_slot *slot,
1382 struct objfile *objfile_context,
1383 const char *name, domain_enum domain)
1384 {
1385 if (bsc == NULL)
1386 return;
1387 if (slot->state != SYMBOL_SLOT_UNUSED)
1388 {
1389 ++bsc->collisions;
1390 symbol_cache_clear_slot (slot);
1391 }
1392 slot->state = SYMBOL_SLOT_NOT_FOUND;
1393 slot->objfile_context = objfile_context;
1394 slot->value.not_found.name = xstrdup (name);
1395 slot->value.not_found.domain = domain;
1396 }
1397
1398 /* Flush the symbol cache of PSPACE. */
1399
1400 static void
1401 symbol_cache_flush (struct program_space *pspace)
1402 {
1403 struct symbol_cache *cache
1404 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1405 int pass;
1406
1407 if (cache == NULL)
1408 return;
1409 if (cache->global_symbols == NULL)
1410 {
1411 gdb_assert (symbol_cache_size == 0);
1412 gdb_assert (cache->static_symbols == NULL);
1413 return;
1414 }
1415
1416 /* If the cache is untouched since the last flush, early exit.
1417 This is important for performance during the startup of a program linked
1418 with 100s (or 1000s) of shared libraries. */
1419 if (cache->global_symbols->misses == 0
1420 && cache->static_symbols->misses == 0)
1421 return;
1422
1423 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1424 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1425
1426 for (pass = 0; pass < 2; ++pass)
1427 {
1428 struct block_symbol_cache *bsc
1429 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1430 unsigned int i;
1431
1432 for (i = 0; i < bsc->size; ++i)
1433 symbol_cache_clear_slot (&bsc->symbols[i]);
1434 }
1435
1436 cache->global_symbols->hits = 0;
1437 cache->global_symbols->misses = 0;
1438 cache->global_symbols->collisions = 0;
1439 cache->static_symbols->hits = 0;
1440 cache->static_symbols->misses = 0;
1441 cache->static_symbols->collisions = 0;
1442 }
1443
1444 /* Dump CACHE. */
1445
1446 static void
1447 symbol_cache_dump (const struct symbol_cache *cache)
1448 {
1449 int pass;
1450
1451 if (cache->global_symbols == NULL)
1452 {
1453 printf_filtered (" <disabled>\n");
1454 return;
1455 }
1456
1457 for (pass = 0; pass < 2; ++pass)
1458 {
1459 const struct block_symbol_cache *bsc
1460 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1461 unsigned int i;
1462
1463 if (pass == 0)
1464 printf_filtered ("Global symbols:\n");
1465 else
1466 printf_filtered ("Static symbols:\n");
1467
1468 for (i = 0; i < bsc->size; ++i)
1469 {
1470 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1471
1472 QUIT;
1473
1474 switch (slot->state)
1475 {
1476 case SYMBOL_SLOT_UNUSED:
1477 break;
1478 case SYMBOL_SLOT_NOT_FOUND:
1479 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1480 host_address_to_string (slot->objfile_context),
1481 slot->value.not_found.name,
1482 domain_name (slot->value.not_found.domain));
1483 break;
1484 case SYMBOL_SLOT_FOUND:
1485 {
1486 struct symbol *found = slot->value.found.symbol;
1487 const struct objfile *context = slot->objfile_context;
1488
1489 printf_filtered (" [%4u] = %s, %s %s\n", i,
1490 host_address_to_string (context),
1491 SYMBOL_PRINT_NAME (found),
1492 domain_name (SYMBOL_DOMAIN (found)));
1493 break;
1494 }
1495 }
1496 }
1497 }
1498 }
1499
1500 /* The "mt print symbol-cache" command. */
1501
1502 static void
1503 maintenance_print_symbol_cache (const char *args, int from_tty)
1504 {
1505 struct program_space *pspace;
1506
1507 ALL_PSPACES (pspace)
1508 {
1509 struct symbol_cache *cache;
1510
1511 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1512 pspace->num,
1513 pspace->symfile_object_file != NULL
1514 ? objfile_name (pspace->symfile_object_file)
1515 : "(no object file)");
1516
1517 /* If the cache hasn't been created yet, avoid creating one. */
1518 cache
1519 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1520 if (cache == NULL)
1521 printf_filtered (" <empty>\n");
1522 else
1523 symbol_cache_dump (cache);
1524 }
1525 }
1526
1527 /* The "mt flush-symbol-cache" command. */
1528
1529 static void
1530 maintenance_flush_symbol_cache (const char *args, int from_tty)
1531 {
1532 struct program_space *pspace;
1533
1534 ALL_PSPACES (pspace)
1535 {
1536 symbol_cache_flush (pspace);
1537 }
1538 }
1539
1540 /* Print usage statistics of CACHE. */
1541
1542 static void
1543 symbol_cache_stats (struct symbol_cache *cache)
1544 {
1545 int pass;
1546
1547 if (cache->global_symbols == NULL)
1548 {
1549 printf_filtered (" <disabled>\n");
1550 return;
1551 }
1552
1553 for (pass = 0; pass < 2; ++pass)
1554 {
1555 const struct block_symbol_cache *bsc
1556 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1557
1558 QUIT;
1559
1560 if (pass == 0)
1561 printf_filtered ("Global block cache stats:\n");
1562 else
1563 printf_filtered ("Static block cache stats:\n");
1564
1565 printf_filtered (" size: %u\n", bsc->size);
1566 printf_filtered (" hits: %u\n", bsc->hits);
1567 printf_filtered (" misses: %u\n", bsc->misses);
1568 printf_filtered (" collisions: %u\n", bsc->collisions);
1569 }
1570 }
1571
1572 /* The "mt print symbol-cache-statistics" command. */
1573
1574 static void
1575 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1576 {
1577 struct program_space *pspace;
1578
1579 ALL_PSPACES (pspace)
1580 {
1581 struct symbol_cache *cache;
1582
1583 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1584 pspace->num,
1585 pspace->symfile_object_file != NULL
1586 ? objfile_name (pspace->symfile_object_file)
1587 : "(no object file)");
1588
1589 /* If the cache hasn't been created yet, avoid creating one. */
1590 cache
1591 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1592 if (cache == NULL)
1593 printf_filtered (" empty, no stats available\n");
1594 else
1595 symbol_cache_stats (cache);
1596 }
1597 }
1598
1599 /* This module's 'new_objfile' observer. */
1600
1601 static void
1602 symtab_new_objfile_observer (struct objfile *objfile)
1603 {
1604 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1605 symbol_cache_flush (current_program_space);
1606 }
1607
1608 /* This module's 'free_objfile' observer. */
1609
1610 static void
1611 symtab_free_objfile_observer (struct objfile *objfile)
1612 {
1613 symbol_cache_flush (objfile->pspace);
1614 }
1615 \f
1616 /* Debug symbols usually don't have section information. We need to dig that
1617 out of the minimal symbols and stash that in the debug symbol. */
1618
1619 void
1620 fixup_section (struct general_symbol_info *ginfo,
1621 CORE_ADDR addr, struct objfile *objfile)
1622 {
1623 struct minimal_symbol *msym;
1624
1625 /* First, check whether a minimal symbol with the same name exists
1626 and points to the same address. The address check is required
1627 e.g. on PowerPC64, where the minimal symbol for a function will
1628 point to the function descriptor, while the debug symbol will
1629 point to the actual function code. */
1630 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1631 if (msym)
1632 ginfo->section = MSYMBOL_SECTION (msym);
1633 else
1634 {
1635 /* Static, function-local variables do appear in the linker
1636 (minimal) symbols, but are frequently given names that won't
1637 be found via lookup_minimal_symbol(). E.g., it has been
1638 observed in frv-uclinux (ELF) executables that a static,
1639 function-local variable named "foo" might appear in the
1640 linker symbols as "foo.6" or "foo.3". Thus, there is no
1641 point in attempting to extend the lookup-by-name mechanism to
1642 handle this case due to the fact that there can be multiple
1643 names.
1644
1645 So, instead, search the section table when lookup by name has
1646 failed. The ``addr'' and ``endaddr'' fields may have already
1647 been relocated. If so, the relocation offset (i.e. the
1648 ANOFFSET value) needs to be subtracted from these values when
1649 performing the comparison. We unconditionally subtract it,
1650 because, when no relocation has been performed, the ANOFFSET
1651 value will simply be zero.
1652
1653 The address of the symbol whose section we're fixing up HAS
1654 NOT BEEN adjusted (relocated) yet. It can't have been since
1655 the section isn't yet known and knowing the section is
1656 necessary in order to add the correct relocation value. In
1657 other words, we wouldn't even be in this function (attempting
1658 to compute the section) if it were already known.
1659
1660 Note that it is possible to search the minimal symbols
1661 (subtracting the relocation value if necessary) to find the
1662 matching minimal symbol, but this is overkill and much less
1663 efficient. It is not necessary to find the matching minimal
1664 symbol, only its section.
1665
1666 Note that this technique (of doing a section table search)
1667 can fail when unrelocated section addresses overlap. For
1668 this reason, we still attempt a lookup by name prior to doing
1669 a search of the section table. */
1670
1671 struct obj_section *s;
1672 int fallback = -1;
1673
1674 ALL_OBJFILE_OSECTIONS (objfile, s)
1675 {
1676 int idx = s - objfile->sections;
1677 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1678
1679 if (fallback == -1)
1680 fallback = idx;
1681
1682 if (obj_section_addr (s) - offset <= addr
1683 && addr < obj_section_endaddr (s) - offset)
1684 {
1685 ginfo->section = idx;
1686 return;
1687 }
1688 }
1689
1690 /* If we didn't find the section, assume it is in the first
1691 section. If there is no allocated section, then it hardly
1692 matters what we pick, so just pick zero. */
1693 if (fallback == -1)
1694 ginfo->section = 0;
1695 else
1696 ginfo->section = fallback;
1697 }
1698 }
1699
1700 struct symbol *
1701 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1702 {
1703 CORE_ADDR addr;
1704
1705 if (!sym)
1706 return NULL;
1707
1708 if (!SYMBOL_OBJFILE_OWNED (sym))
1709 return sym;
1710
1711 /* We either have an OBJFILE, or we can get at it from the sym's
1712 symtab. Anything else is a bug. */
1713 gdb_assert (objfile || symbol_symtab (sym));
1714
1715 if (objfile == NULL)
1716 objfile = symbol_objfile (sym);
1717
1718 if (SYMBOL_OBJ_SECTION (objfile, sym))
1719 return sym;
1720
1721 /* We should have an objfile by now. */
1722 gdb_assert (objfile);
1723
1724 switch (SYMBOL_CLASS (sym))
1725 {
1726 case LOC_STATIC:
1727 case LOC_LABEL:
1728 addr = SYMBOL_VALUE_ADDRESS (sym);
1729 break;
1730 case LOC_BLOCK:
1731 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1732 break;
1733
1734 default:
1735 /* Nothing else will be listed in the minsyms -- no use looking
1736 it up. */
1737 return sym;
1738 }
1739
1740 fixup_section (&sym->ginfo, addr, objfile);
1741
1742 return sym;
1743 }
1744
1745 /* Compute the demangled form of NAME as used by the various symbol
1746 lookup functions. The result can either be the input NAME
1747 directly, or a pointer to a buffer owned by the STORAGE object.
1748
1749 For Ada, this function just returns NAME, unmodified.
1750 Normally, Ada symbol lookups are performed using the encoded name
1751 rather than the demangled name, and so it might seem to make sense
1752 for this function to return an encoded version of NAME.
1753 Unfortunately, we cannot do this, because this function is used in
1754 circumstances where it is not appropriate to try to encode NAME.
1755 For instance, when displaying the frame info, we demangle the name
1756 of each parameter, and then perform a symbol lookup inside our
1757 function using that demangled name. In Ada, certain functions
1758 have internally-generated parameters whose name contain uppercase
1759 characters. Encoding those name would result in those uppercase
1760 characters to become lowercase, and thus cause the symbol lookup
1761 to fail. */
1762
1763 const char *
1764 demangle_for_lookup (const char *name, enum language lang,
1765 demangle_result_storage &storage)
1766 {
1767 /* If we are using C++, D, or Go, demangle the name before doing a
1768 lookup, so we can always binary search. */
1769 if (lang == language_cplus)
1770 {
1771 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1772 if (demangled_name != NULL)
1773 return storage.set_malloc_ptr (demangled_name);
1774
1775 /* If we were given a non-mangled name, canonicalize it
1776 according to the language (so far only for C++). */
1777 std::string canon = cp_canonicalize_string (name);
1778 if (!canon.empty ())
1779 return storage.swap_string (canon);
1780 }
1781 else if (lang == language_d)
1782 {
1783 char *demangled_name = d_demangle (name, 0);
1784 if (demangled_name != NULL)
1785 return storage.set_malloc_ptr (demangled_name);
1786 }
1787 else if (lang == language_go)
1788 {
1789 char *demangled_name = go_demangle (name, 0);
1790 if (demangled_name != NULL)
1791 return storage.set_malloc_ptr (demangled_name);
1792 }
1793
1794 return name;
1795 }
1796
1797 /* See symtab.h.
1798
1799 This function (or rather its subordinates) have a bunch of loops and
1800 it would seem to be attractive to put in some QUIT's (though I'm not really
1801 sure whether it can run long enough to be really important). But there
1802 are a few calls for which it would appear to be bad news to quit
1803 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1804 that there is C++ code below which can error(), but that probably
1805 doesn't affect these calls since they are looking for a known
1806 variable and thus can probably assume it will never hit the C++
1807 code). */
1808
1809 struct block_symbol
1810 lookup_symbol_in_language (const char *name, const struct block *block,
1811 const domain_enum domain, enum language lang,
1812 struct field_of_this_result *is_a_field_of_this)
1813 {
1814 demangle_result_storage storage;
1815 const char *modified_name = demangle_for_lookup (name, lang, storage);
1816
1817 return lookup_symbol_aux (modified_name, block, domain, lang,
1818 is_a_field_of_this);
1819 }
1820
1821 /* See symtab.h. */
1822
1823 struct block_symbol
1824 lookup_symbol (const char *name, const struct block *block,
1825 domain_enum domain,
1826 struct field_of_this_result *is_a_field_of_this)
1827 {
1828 return lookup_symbol_in_language (name, block, domain,
1829 current_language->la_language,
1830 is_a_field_of_this);
1831 }
1832
1833 /* See symtab.h. */
1834
1835 struct block_symbol
1836 lookup_language_this (const struct language_defn *lang,
1837 const struct block *block)
1838 {
1839 if (lang->la_name_of_this == NULL || block == NULL)
1840 return (struct block_symbol) {NULL, NULL};
1841
1842 if (symbol_lookup_debug > 1)
1843 {
1844 struct objfile *objfile = lookup_objfile_from_block (block);
1845
1846 fprintf_unfiltered (gdb_stdlog,
1847 "lookup_language_this (%s, %s (objfile %s))",
1848 lang->la_name, host_address_to_string (block),
1849 objfile_debug_name (objfile));
1850 }
1851
1852 while (block)
1853 {
1854 struct symbol *sym;
1855
1856 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1857 if (sym != NULL)
1858 {
1859 if (symbol_lookup_debug > 1)
1860 {
1861 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1862 SYMBOL_PRINT_NAME (sym),
1863 host_address_to_string (sym),
1864 host_address_to_string (block));
1865 }
1866 return (struct block_symbol) {sym, block};
1867 }
1868 if (BLOCK_FUNCTION (block))
1869 break;
1870 block = BLOCK_SUPERBLOCK (block);
1871 }
1872
1873 if (symbol_lookup_debug > 1)
1874 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1875 return (struct block_symbol) {NULL, NULL};
1876 }
1877
1878 /* Given TYPE, a structure/union,
1879 return 1 if the component named NAME from the ultimate target
1880 structure/union is defined, otherwise, return 0. */
1881
1882 static int
1883 check_field (struct type *type, const char *name,
1884 struct field_of_this_result *is_a_field_of_this)
1885 {
1886 int i;
1887
1888 /* The type may be a stub. */
1889 type = check_typedef (type);
1890
1891 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1892 {
1893 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1894
1895 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1896 {
1897 is_a_field_of_this->type = type;
1898 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1899 return 1;
1900 }
1901 }
1902
1903 /* C++: If it was not found as a data field, then try to return it
1904 as a pointer to a method. */
1905
1906 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1907 {
1908 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1909 {
1910 is_a_field_of_this->type = type;
1911 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1912 return 1;
1913 }
1914 }
1915
1916 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1917 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1918 return 1;
1919
1920 return 0;
1921 }
1922
1923 /* Behave like lookup_symbol except that NAME is the natural name
1924 (e.g., demangled name) of the symbol that we're looking for. */
1925
1926 static struct block_symbol
1927 lookup_symbol_aux (const char *name, const struct block *block,
1928 const domain_enum domain, enum language language,
1929 struct field_of_this_result *is_a_field_of_this)
1930 {
1931 struct block_symbol result;
1932 const struct language_defn *langdef;
1933
1934 if (symbol_lookup_debug)
1935 {
1936 struct objfile *objfile = lookup_objfile_from_block (block);
1937
1938 fprintf_unfiltered (gdb_stdlog,
1939 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1940 name, host_address_to_string (block),
1941 objfile != NULL
1942 ? objfile_debug_name (objfile) : "NULL",
1943 domain_name (domain), language_str (language));
1944 }
1945
1946 /* Make sure we do something sensible with is_a_field_of_this, since
1947 the callers that set this parameter to some non-null value will
1948 certainly use it later. If we don't set it, the contents of
1949 is_a_field_of_this are undefined. */
1950 if (is_a_field_of_this != NULL)
1951 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1952
1953 /* Search specified block and its superiors. Don't search
1954 STATIC_BLOCK or GLOBAL_BLOCK. */
1955
1956 result = lookup_local_symbol (name, block, domain, language);
1957 if (result.symbol != NULL)
1958 {
1959 if (symbol_lookup_debug)
1960 {
1961 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1962 host_address_to_string (result.symbol));
1963 }
1964 return result;
1965 }
1966
1967 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1968 check to see if NAME is a field of `this'. */
1969
1970 langdef = language_def (language);
1971
1972 /* Don't do this check if we are searching for a struct. It will
1973 not be found by check_field, but will be found by other
1974 means. */
1975 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1976 {
1977 result = lookup_language_this (langdef, block);
1978
1979 if (result.symbol)
1980 {
1981 struct type *t = result.symbol->type;
1982
1983 /* I'm not really sure that type of this can ever
1984 be typedefed; just be safe. */
1985 t = check_typedef (t);
1986 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1987 t = TYPE_TARGET_TYPE (t);
1988
1989 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1990 && TYPE_CODE (t) != TYPE_CODE_UNION)
1991 error (_("Internal error: `%s' is not an aggregate"),
1992 langdef->la_name_of_this);
1993
1994 if (check_field (t, name, is_a_field_of_this))
1995 {
1996 if (symbol_lookup_debug)
1997 {
1998 fprintf_unfiltered (gdb_stdlog,
1999 "lookup_symbol_aux (...) = NULL\n");
2000 }
2001 return (struct block_symbol) {NULL, NULL};
2002 }
2003 }
2004 }
2005
2006 /* Now do whatever is appropriate for LANGUAGE to look
2007 up static and global variables. */
2008
2009 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2010 if (result.symbol != NULL)
2011 {
2012 if (symbol_lookup_debug)
2013 {
2014 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2015 host_address_to_string (result.symbol));
2016 }
2017 return result;
2018 }
2019
2020 /* Now search all static file-level symbols. Not strictly correct,
2021 but more useful than an error. */
2022
2023 result = lookup_static_symbol (name, domain);
2024 if (symbol_lookup_debug)
2025 {
2026 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2027 result.symbol != NULL
2028 ? host_address_to_string (result.symbol)
2029 : "NULL");
2030 }
2031 return result;
2032 }
2033
2034 /* Check to see if the symbol is defined in BLOCK or its superiors.
2035 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2036
2037 static struct block_symbol
2038 lookup_local_symbol (const char *name, const struct block *block,
2039 const domain_enum domain,
2040 enum language language)
2041 {
2042 struct symbol *sym;
2043 const struct block *static_block = block_static_block (block);
2044 const char *scope = block_scope (block);
2045
2046 /* Check if either no block is specified or it's a global block. */
2047
2048 if (static_block == NULL)
2049 return (struct block_symbol) {NULL, NULL};
2050
2051 while (block != static_block)
2052 {
2053 sym = lookup_symbol_in_block (name, block, domain);
2054 if (sym != NULL)
2055 return (struct block_symbol) {sym, block};
2056
2057 if (language == language_cplus || language == language_fortran)
2058 {
2059 struct block_symbol sym
2060 = cp_lookup_symbol_imports_or_template (scope, name, block,
2061 domain);
2062
2063 if (sym.symbol != NULL)
2064 return sym;
2065 }
2066
2067 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2068 break;
2069 block = BLOCK_SUPERBLOCK (block);
2070 }
2071
2072 /* We've reached the end of the function without finding a result. */
2073
2074 return (struct block_symbol) {NULL, NULL};
2075 }
2076
2077 /* See symtab.h. */
2078
2079 struct objfile *
2080 lookup_objfile_from_block (const struct block *block)
2081 {
2082 struct objfile *obj;
2083 struct compunit_symtab *cust;
2084
2085 if (block == NULL)
2086 return NULL;
2087
2088 block = block_global_block (block);
2089 /* Look through all blockvectors. */
2090 ALL_COMPUNITS (obj, cust)
2091 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2092 GLOBAL_BLOCK))
2093 {
2094 if (obj->separate_debug_objfile_backlink)
2095 obj = obj->separate_debug_objfile_backlink;
2096
2097 return obj;
2098 }
2099
2100 return NULL;
2101 }
2102
2103 /* See symtab.h. */
2104
2105 struct symbol *
2106 lookup_symbol_in_block (const char *name, const struct block *block,
2107 const domain_enum domain)
2108 {
2109 struct symbol *sym;
2110
2111 if (symbol_lookup_debug > 1)
2112 {
2113 struct objfile *objfile = lookup_objfile_from_block (block);
2114
2115 fprintf_unfiltered (gdb_stdlog,
2116 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2117 name, host_address_to_string (block),
2118 objfile_debug_name (objfile),
2119 domain_name (domain));
2120 }
2121
2122 sym = block_lookup_symbol (block, name, domain);
2123 if (sym)
2124 {
2125 if (symbol_lookup_debug > 1)
2126 {
2127 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2128 host_address_to_string (sym));
2129 }
2130 return fixup_symbol_section (sym, NULL);
2131 }
2132
2133 if (symbol_lookup_debug > 1)
2134 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2135 return NULL;
2136 }
2137
2138 /* See symtab.h. */
2139
2140 struct block_symbol
2141 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2142 const char *name,
2143 const domain_enum domain)
2144 {
2145 struct objfile *objfile;
2146
2147 for (objfile = main_objfile;
2148 objfile;
2149 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2150 {
2151 struct block_symbol result
2152 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2153
2154 if (result.symbol != NULL)
2155 return result;
2156 }
2157
2158 return (struct block_symbol) {NULL, NULL};
2159 }
2160
2161 /* Check to see if the symbol is defined in one of the OBJFILE's
2162 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2163 depending on whether or not we want to search global symbols or
2164 static symbols. */
2165
2166 static struct block_symbol
2167 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2168 const char *name, const domain_enum domain)
2169 {
2170 struct compunit_symtab *cust;
2171
2172 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2173
2174 if (symbol_lookup_debug > 1)
2175 {
2176 fprintf_unfiltered (gdb_stdlog,
2177 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2178 objfile_debug_name (objfile),
2179 block_index == GLOBAL_BLOCK
2180 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2181 name, domain_name (domain));
2182 }
2183
2184 ALL_OBJFILE_COMPUNITS (objfile, cust)
2185 {
2186 const struct blockvector *bv;
2187 const struct block *block;
2188 struct block_symbol result;
2189
2190 bv = COMPUNIT_BLOCKVECTOR (cust);
2191 block = BLOCKVECTOR_BLOCK (bv, block_index);
2192 result.symbol = block_lookup_symbol_primary (block, name, domain);
2193 result.block = block;
2194 if (result.symbol != NULL)
2195 {
2196 if (symbol_lookup_debug > 1)
2197 {
2198 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2199 host_address_to_string (result.symbol),
2200 host_address_to_string (block));
2201 }
2202 result.symbol = fixup_symbol_section (result.symbol, objfile);
2203 return result;
2204
2205 }
2206 }
2207
2208 if (symbol_lookup_debug > 1)
2209 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2210 return (struct block_symbol) {NULL, NULL};
2211 }
2212
2213 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2214 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2215 and all associated separate debug objfiles.
2216
2217 Normally we only look in OBJFILE, and not any separate debug objfiles
2218 because the outer loop will cause them to be searched too. This case is
2219 different. Here we're called from search_symbols where it will only
2220 call us for the the objfile that contains a matching minsym. */
2221
2222 static struct block_symbol
2223 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2224 const char *linkage_name,
2225 domain_enum domain)
2226 {
2227 enum language lang = current_language->la_language;
2228 struct objfile *main_objfile, *cur_objfile;
2229
2230 demangle_result_storage storage;
2231 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2232
2233 if (objfile->separate_debug_objfile_backlink)
2234 main_objfile = objfile->separate_debug_objfile_backlink;
2235 else
2236 main_objfile = objfile;
2237
2238 for (cur_objfile = main_objfile;
2239 cur_objfile;
2240 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2241 {
2242 struct block_symbol result;
2243
2244 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2245 modified_name, domain);
2246 if (result.symbol == NULL)
2247 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2248 modified_name, domain);
2249 if (result.symbol != NULL)
2250 return result;
2251 }
2252
2253 return (struct block_symbol) {NULL, NULL};
2254 }
2255
2256 /* A helper function that throws an exception when a symbol was found
2257 in a psymtab but not in a symtab. */
2258
2259 static void ATTRIBUTE_NORETURN
2260 error_in_psymtab_expansion (int block_index, const char *name,
2261 struct compunit_symtab *cust)
2262 {
2263 error (_("\
2264 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2265 %s may be an inlined function, or may be a template function\n \
2266 (if a template, try specifying an instantiation: %s<type>)."),
2267 block_index == GLOBAL_BLOCK ? "global" : "static",
2268 name,
2269 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2270 name, name);
2271 }
2272
2273 /* A helper function for various lookup routines that interfaces with
2274 the "quick" symbol table functions. */
2275
2276 static struct block_symbol
2277 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2278 const char *name, const domain_enum domain)
2279 {
2280 struct compunit_symtab *cust;
2281 const struct blockvector *bv;
2282 const struct block *block;
2283 struct block_symbol result;
2284
2285 if (!objfile->sf)
2286 return (struct block_symbol) {NULL, NULL};
2287
2288 if (symbol_lookup_debug > 1)
2289 {
2290 fprintf_unfiltered (gdb_stdlog,
2291 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2292 objfile_debug_name (objfile),
2293 block_index == GLOBAL_BLOCK
2294 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2295 name, domain_name (domain));
2296 }
2297
2298 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2299 if (cust == NULL)
2300 {
2301 if (symbol_lookup_debug > 1)
2302 {
2303 fprintf_unfiltered (gdb_stdlog,
2304 "lookup_symbol_via_quick_fns (...) = NULL\n");
2305 }
2306 return (struct block_symbol) {NULL, NULL};
2307 }
2308
2309 bv = COMPUNIT_BLOCKVECTOR (cust);
2310 block = BLOCKVECTOR_BLOCK (bv, block_index);
2311 result.symbol = block_lookup_symbol (block, name, domain);
2312 if (result.symbol == NULL)
2313 error_in_psymtab_expansion (block_index, name, cust);
2314
2315 if (symbol_lookup_debug > 1)
2316 {
2317 fprintf_unfiltered (gdb_stdlog,
2318 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2319 host_address_to_string (result.symbol),
2320 host_address_to_string (block));
2321 }
2322
2323 result.symbol = fixup_symbol_section (result.symbol, objfile);
2324 result.block = block;
2325 return result;
2326 }
2327
2328 /* See symtab.h. */
2329
2330 struct block_symbol
2331 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2332 const char *name,
2333 const struct block *block,
2334 const domain_enum domain)
2335 {
2336 struct block_symbol result;
2337
2338 /* NOTE: carlton/2003-05-19: The comments below were written when
2339 this (or what turned into this) was part of lookup_symbol_aux;
2340 I'm much less worried about these questions now, since these
2341 decisions have turned out well, but I leave these comments here
2342 for posterity. */
2343
2344 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2345 not it would be appropriate to search the current global block
2346 here as well. (That's what this code used to do before the
2347 is_a_field_of_this check was moved up.) On the one hand, it's
2348 redundant with the lookup in all objfiles search that happens
2349 next. On the other hand, if decode_line_1 is passed an argument
2350 like filename:var, then the user presumably wants 'var' to be
2351 searched for in filename. On the third hand, there shouldn't be
2352 multiple global variables all of which are named 'var', and it's
2353 not like decode_line_1 has ever restricted its search to only
2354 global variables in a single filename. All in all, only
2355 searching the static block here seems best: it's correct and it's
2356 cleanest. */
2357
2358 /* NOTE: carlton/2002-12-05: There's also a possible performance
2359 issue here: if you usually search for global symbols in the
2360 current file, then it would be slightly better to search the
2361 current global block before searching all the symtabs. But there
2362 are other factors that have a much greater effect on performance
2363 than that one, so I don't think we should worry about that for
2364 now. */
2365
2366 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2367 the current objfile. Searching the current objfile first is useful
2368 for both matching user expectations as well as performance. */
2369
2370 result = lookup_symbol_in_static_block (name, block, domain);
2371 if (result.symbol != NULL)
2372 return result;
2373
2374 /* If we didn't find a definition for a builtin type in the static block,
2375 search for it now. This is actually the right thing to do and can be
2376 a massive performance win. E.g., when debugging a program with lots of
2377 shared libraries we could search all of them only to find out the
2378 builtin type isn't defined in any of them. This is common for types
2379 like "void". */
2380 if (domain == VAR_DOMAIN)
2381 {
2382 struct gdbarch *gdbarch;
2383
2384 if (block == NULL)
2385 gdbarch = target_gdbarch ();
2386 else
2387 gdbarch = block_gdbarch (block);
2388 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2389 gdbarch, name);
2390 result.block = NULL;
2391 if (result.symbol != NULL)
2392 return result;
2393 }
2394
2395 return lookup_global_symbol (name, block, domain);
2396 }
2397
2398 /* See symtab.h. */
2399
2400 struct block_symbol
2401 lookup_symbol_in_static_block (const char *name,
2402 const struct block *block,
2403 const domain_enum domain)
2404 {
2405 const struct block *static_block = block_static_block (block);
2406 struct symbol *sym;
2407
2408 if (static_block == NULL)
2409 return (struct block_symbol) {NULL, NULL};
2410
2411 if (symbol_lookup_debug)
2412 {
2413 struct objfile *objfile = lookup_objfile_from_block (static_block);
2414
2415 fprintf_unfiltered (gdb_stdlog,
2416 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2417 " %s)\n",
2418 name,
2419 host_address_to_string (block),
2420 objfile_debug_name (objfile),
2421 domain_name (domain));
2422 }
2423
2424 sym = lookup_symbol_in_block (name, static_block, domain);
2425 if (symbol_lookup_debug)
2426 {
2427 fprintf_unfiltered (gdb_stdlog,
2428 "lookup_symbol_in_static_block (...) = %s\n",
2429 sym != NULL ? host_address_to_string (sym) : "NULL");
2430 }
2431 return (struct block_symbol) {sym, static_block};
2432 }
2433
2434 /* Perform the standard symbol lookup of NAME in OBJFILE:
2435 1) First search expanded symtabs, and if not found
2436 2) Search the "quick" symtabs (partial or .gdb_index).
2437 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2438
2439 static struct block_symbol
2440 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2441 const char *name, const domain_enum domain)
2442 {
2443 struct block_symbol result;
2444
2445 if (symbol_lookup_debug)
2446 {
2447 fprintf_unfiltered (gdb_stdlog,
2448 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2449 objfile_debug_name (objfile),
2450 block_index == GLOBAL_BLOCK
2451 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2452 name, domain_name (domain));
2453 }
2454
2455 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2456 name, domain);
2457 if (result.symbol != NULL)
2458 {
2459 if (symbol_lookup_debug)
2460 {
2461 fprintf_unfiltered (gdb_stdlog,
2462 "lookup_symbol_in_objfile (...) = %s"
2463 " (in symtabs)\n",
2464 host_address_to_string (result.symbol));
2465 }
2466 return result;
2467 }
2468
2469 result = lookup_symbol_via_quick_fns (objfile, block_index,
2470 name, domain);
2471 if (symbol_lookup_debug)
2472 {
2473 fprintf_unfiltered (gdb_stdlog,
2474 "lookup_symbol_in_objfile (...) = %s%s\n",
2475 result.symbol != NULL
2476 ? host_address_to_string (result.symbol)
2477 : "NULL",
2478 result.symbol != NULL ? " (via quick fns)" : "");
2479 }
2480 return result;
2481 }
2482
2483 /* See symtab.h. */
2484
2485 struct block_symbol
2486 lookup_static_symbol (const char *name, const domain_enum domain)
2487 {
2488 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2489 struct objfile *objfile;
2490 struct block_symbol result;
2491 struct block_symbol_cache *bsc;
2492 struct symbol_cache_slot *slot;
2493
2494 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2495 NULL for OBJFILE_CONTEXT. */
2496 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2497 &bsc, &slot);
2498 if (result.symbol != NULL)
2499 {
2500 if (SYMBOL_LOOKUP_FAILED_P (result))
2501 return (struct block_symbol) {NULL, NULL};
2502 return result;
2503 }
2504
2505 ALL_OBJFILES (objfile)
2506 {
2507 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2508 if (result.symbol != NULL)
2509 {
2510 /* Still pass NULL for OBJFILE_CONTEXT here. */
2511 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2512 result.block);
2513 return result;
2514 }
2515 }
2516
2517 /* Still pass NULL for OBJFILE_CONTEXT here. */
2518 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2519 return (struct block_symbol) {NULL, NULL};
2520 }
2521
2522 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2523
2524 struct global_sym_lookup_data
2525 {
2526 /* The name of the symbol we are searching for. */
2527 const char *name;
2528
2529 /* The domain to use for our search. */
2530 domain_enum domain;
2531
2532 /* The field where the callback should store the symbol if found.
2533 It should be initialized to {NULL, NULL} before the search is started. */
2534 struct block_symbol result;
2535 };
2536
2537 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2538 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2539 OBJFILE. The arguments for the search are passed via CB_DATA,
2540 which in reality is a pointer to struct global_sym_lookup_data. */
2541
2542 static int
2543 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2544 void *cb_data)
2545 {
2546 struct global_sym_lookup_data *data =
2547 (struct global_sym_lookup_data *) cb_data;
2548
2549 gdb_assert (data->result.symbol == NULL
2550 && data->result.block == NULL);
2551
2552 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2553 data->name, data->domain);
2554
2555 /* If we found a match, tell the iterator to stop. Otherwise,
2556 keep going. */
2557 return (data->result.symbol != NULL);
2558 }
2559
2560 /* See symtab.h. */
2561
2562 struct block_symbol
2563 lookup_global_symbol (const char *name,
2564 const struct block *block,
2565 const domain_enum domain)
2566 {
2567 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2568 struct block_symbol result;
2569 struct objfile *objfile;
2570 struct global_sym_lookup_data lookup_data;
2571 struct block_symbol_cache *bsc;
2572 struct symbol_cache_slot *slot;
2573
2574 objfile = lookup_objfile_from_block (block);
2575
2576 /* First see if we can find the symbol in the cache.
2577 This works because we use the current objfile to qualify the lookup. */
2578 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2579 &bsc, &slot);
2580 if (result.symbol != NULL)
2581 {
2582 if (SYMBOL_LOOKUP_FAILED_P (result))
2583 return (struct block_symbol) {NULL, NULL};
2584 return result;
2585 }
2586
2587 /* Call library-specific lookup procedure. */
2588 if (objfile != NULL)
2589 result = solib_global_lookup (objfile, name, domain);
2590
2591 /* If that didn't work go a global search (of global blocks, heh). */
2592 if (result.symbol == NULL)
2593 {
2594 memset (&lookup_data, 0, sizeof (lookup_data));
2595 lookup_data.name = name;
2596 lookup_data.domain = domain;
2597 gdbarch_iterate_over_objfiles_in_search_order
2598 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2599 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2600 result = lookup_data.result;
2601 }
2602
2603 if (result.symbol != NULL)
2604 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2605 else
2606 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2607
2608 return result;
2609 }
2610
2611 int
2612 symbol_matches_domain (enum language symbol_language,
2613 domain_enum symbol_domain,
2614 domain_enum domain)
2615 {
2616 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2617 Similarly, any Ada type declaration implicitly defines a typedef. */
2618 if (symbol_language == language_cplus
2619 || symbol_language == language_d
2620 || symbol_language == language_ada
2621 || symbol_language == language_rust)
2622 {
2623 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2624 && symbol_domain == STRUCT_DOMAIN)
2625 return 1;
2626 }
2627 /* For all other languages, strict match is required. */
2628 return (symbol_domain == domain);
2629 }
2630
2631 /* See symtab.h. */
2632
2633 struct type *
2634 lookup_transparent_type (const char *name)
2635 {
2636 return current_language->la_lookup_transparent_type (name);
2637 }
2638
2639 /* A helper for basic_lookup_transparent_type that interfaces with the
2640 "quick" symbol table functions. */
2641
2642 static struct type *
2643 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2644 const char *name)
2645 {
2646 struct compunit_symtab *cust;
2647 const struct blockvector *bv;
2648 struct block *block;
2649 struct symbol *sym;
2650
2651 if (!objfile->sf)
2652 return NULL;
2653 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2654 STRUCT_DOMAIN);
2655 if (cust == NULL)
2656 return NULL;
2657
2658 bv = COMPUNIT_BLOCKVECTOR (cust);
2659 block = BLOCKVECTOR_BLOCK (bv, block_index);
2660 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2661 block_find_non_opaque_type, NULL);
2662 if (sym == NULL)
2663 error_in_psymtab_expansion (block_index, name, cust);
2664 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2665 return SYMBOL_TYPE (sym);
2666 }
2667
2668 /* Subroutine of basic_lookup_transparent_type to simplify it.
2669 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2670 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2671
2672 static struct type *
2673 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2674 const char *name)
2675 {
2676 const struct compunit_symtab *cust;
2677 const struct blockvector *bv;
2678 const struct block *block;
2679 const struct symbol *sym;
2680
2681 ALL_OBJFILE_COMPUNITS (objfile, cust)
2682 {
2683 bv = COMPUNIT_BLOCKVECTOR (cust);
2684 block = BLOCKVECTOR_BLOCK (bv, block_index);
2685 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2686 block_find_non_opaque_type, NULL);
2687 if (sym != NULL)
2688 {
2689 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2690 return SYMBOL_TYPE (sym);
2691 }
2692 }
2693
2694 return NULL;
2695 }
2696
2697 /* The standard implementation of lookup_transparent_type. This code
2698 was modeled on lookup_symbol -- the parts not relevant to looking
2699 up types were just left out. In particular it's assumed here that
2700 types are available in STRUCT_DOMAIN and only in file-static or
2701 global blocks. */
2702
2703 struct type *
2704 basic_lookup_transparent_type (const char *name)
2705 {
2706 struct objfile *objfile;
2707 struct type *t;
2708
2709 /* Now search all the global symbols. Do the symtab's first, then
2710 check the psymtab's. If a psymtab indicates the existence
2711 of the desired name as a global, then do psymtab-to-symtab
2712 conversion on the fly and return the found symbol. */
2713
2714 ALL_OBJFILES (objfile)
2715 {
2716 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2717 if (t)
2718 return t;
2719 }
2720
2721 ALL_OBJFILES (objfile)
2722 {
2723 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2724 if (t)
2725 return t;
2726 }
2727
2728 /* Now search the static file-level symbols.
2729 Not strictly correct, but more useful than an error.
2730 Do the symtab's first, then
2731 check the psymtab's. If a psymtab indicates the existence
2732 of the desired name as a file-level static, then do psymtab-to-symtab
2733 conversion on the fly and return the found symbol. */
2734
2735 ALL_OBJFILES (objfile)
2736 {
2737 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2738 if (t)
2739 return t;
2740 }
2741
2742 ALL_OBJFILES (objfile)
2743 {
2744 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2745 if (t)
2746 return t;
2747 }
2748
2749 return (struct type *) 0;
2750 }
2751
2752 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2753
2754 For each symbol that matches, CALLBACK is called. The symbol is
2755 passed to the callback.
2756
2757 If CALLBACK returns false, the iteration ends. Otherwise, the
2758 search continues. */
2759
2760 void
2761 iterate_over_symbols (const struct block *block, const char *name,
2762 const domain_enum domain,
2763 gdb::function_view<symbol_found_callback_ftype> callback)
2764 {
2765 struct block_iterator iter;
2766 struct symbol *sym;
2767
2768 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2769 {
2770 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2771 SYMBOL_DOMAIN (sym), domain))
2772 {
2773 if (!callback (sym))
2774 return;
2775 }
2776 }
2777 }
2778
2779 /* Find the compunit symtab associated with PC and SECTION.
2780 This will read in debug info as necessary. */
2781
2782 struct compunit_symtab *
2783 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2784 {
2785 struct compunit_symtab *cust;
2786 struct compunit_symtab *best_cust = NULL;
2787 struct objfile *objfile;
2788 CORE_ADDR distance = 0;
2789 struct bound_minimal_symbol msymbol;
2790
2791 /* If we know that this is not a text address, return failure. This is
2792 necessary because we loop based on the block's high and low code
2793 addresses, which do not include the data ranges, and because
2794 we call find_pc_sect_psymtab which has a similar restriction based
2795 on the partial_symtab's texthigh and textlow. */
2796 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2797 if (msymbol.minsym
2798 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2799 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2800 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2801 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2802 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2803 return NULL;
2804
2805 /* Search all symtabs for the one whose file contains our address, and which
2806 is the smallest of all the ones containing the address. This is designed
2807 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2808 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2809 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2810
2811 This happens for native ecoff format, where code from included files
2812 gets its own symtab. The symtab for the included file should have
2813 been read in already via the dependency mechanism.
2814 It might be swifter to create several symtabs with the same name
2815 like xcoff does (I'm not sure).
2816
2817 It also happens for objfiles that have their functions reordered.
2818 For these, the symtab we are looking for is not necessarily read in. */
2819
2820 ALL_COMPUNITS (objfile, cust)
2821 {
2822 struct block *b;
2823 const struct blockvector *bv;
2824
2825 bv = COMPUNIT_BLOCKVECTOR (cust);
2826 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2827
2828 if (BLOCK_START (b) <= pc
2829 && BLOCK_END (b) > pc
2830 && (distance == 0
2831 || BLOCK_END (b) - BLOCK_START (b) < distance))
2832 {
2833 /* For an objfile that has its functions reordered,
2834 find_pc_psymtab will find the proper partial symbol table
2835 and we simply return its corresponding symtab. */
2836 /* In order to better support objfiles that contain both
2837 stabs and coff debugging info, we continue on if a psymtab
2838 can't be found. */
2839 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2840 {
2841 struct compunit_symtab *result;
2842
2843 result
2844 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2845 msymbol,
2846 pc, section,
2847 0);
2848 if (result != NULL)
2849 return result;
2850 }
2851 if (section != 0)
2852 {
2853 struct block_iterator iter;
2854 struct symbol *sym = NULL;
2855
2856 ALL_BLOCK_SYMBOLS (b, iter, sym)
2857 {
2858 fixup_symbol_section (sym, objfile);
2859 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2860 section))
2861 break;
2862 }
2863 if (sym == NULL)
2864 continue; /* No symbol in this symtab matches
2865 section. */
2866 }
2867 distance = BLOCK_END (b) - BLOCK_START (b);
2868 best_cust = cust;
2869 }
2870 }
2871
2872 if (best_cust != NULL)
2873 return best_cust;
2874
2875 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2876
2877 ALL_OBJFILES (objfile)
2878 {
2879 struct compunit_symtab *result;
2880
2881 if (!objfile->sf)
2882 continue;
2883 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2884 msymbol,
2885 pc, section,
2886 1);
2887 if (result != NULL)
2888 return result;
2889 }
2890
2891 return NULL;
2892 }
2893
2894 /* Find the compunit symtab associated with PC.
2895 This will read in debug info as necessary.
2896 Backward compatibility, no section. */
2897
2898 struct compunit_symtab *
2899 find_pc_compunit_symtab (CORE_ADDR pc)
2900 {
2901 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2902 }
2903 \f
2904
2905 /* Find the source file and line number for a given PC value and SECTION.
2906 Return a structure containing a symtab pointer, a line number,
2907 and a pc range for the entire source line.
2908 The value's .pc field is NOT the specified pc.
2909 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2910 use the line that ends there. Otherwise, in that case, the line
2911 that begins there is used. */
2912
2913 /* The big complication here is that a line may start in one file, and end just
2914 before the start of another file. This usually occurs when you #include
2915 code in the middle of a subroutine. To properly find the end of a line's PC
2916 range, we must search all symtabs associated with this compilation unit, and
2917 find the one whose first PC is closer than that of the next line in this
2918 symtab. */
2919
2920 /* If it's worth the effort, we could be using a binary search. */
2921
2922 struct symtab_and_line
2923 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2924 {
2925 struct compunit_symtab *cust;
2926 struct symtab *iter_s;
2927 struct linetable *l;
2928 int len;
2929 int i;
2930 struct linetable_entry *item;
2931 const struct blockvector *bv;
2932 struct bound_minimal_symbol msymbol;
2933
2934 /* Info on best line seen so far, and where it starts, and its file. */
2935
2936 struct linetable_entry *best = NULL;
2937 CORE_ADDR best_end = 0;
2938 struct symtab *best_symtab = 0;
2939
2940 /* Store here the first line number
2941 of a file which contains the line at the smallest pc after PC.
2942 If we don't find a line whose range contains PC,
2943 we will use a line one less than this,
2944 with a range from the start of that file to the first line's pc. */
2945 struct linetable_entry *alt = NULL;
2946
2947 /* Info on best line seen in this file. */
2948
2949 struct linetable_entry *prev;
2950
2951 /* If this pc is not from the current frame,
2952 it is the address of the end of a call instruction.
2953 Quite likely that is the start of the following statement.
2954 But what we want is the statement containing the instruction.
2955 Fudge the pc to make sure we get that. */
2956
2957 /* It's tempting to assume that, if we can't find debugging info for
2958 any function enclosing PC, that we shouldn't search for line
2959 number info, either. However, GAS can emit line number info for
2960 assembly files --- very helpful when debugging hand-written
2961 assembly code. In such a case, we'd have no debug info for the
2962 function, but we would have line info. */
2963
2964 if (notcurrent)
2965 pc -= 1;
2966
2967 /* elz: added this because this function returned the wrong
2968 information if the pc belongs to a stub (import/export)
2969 to call a shlib function. This stub would be anywhere between
2970 two functions in the target, and the line info was erroneously
2971 taken to be the one of the line before the pc. */
2972
2973 /* RT: Further explanation:
2974
2975 * We have stubs (trampolines) inserted between procedures.
2976 *
2977 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2978 * exists in the main image.
2979 *
2980 * In the minimal symbol table, we have a bunch of symbols
2981 * sorted by start address. The stubs are marked as "trampoline",
2982 * the others appear as text. E.g.:
2983 *
2984 * Minimal symbol table for main image
2985 * main: code for main (text symbol)
2986 * shr1: stub (trampoline symbol)
2987 * foo: code for foo (text symbol)
2988 * ...
2989 * Minimal symbol table for "shr1" image:
2990 * ...
2991 * shr1: code for shr1 (text symbol)
2992 * ...
2993 *
2994 * So the code below is trying to detect if we are in the stub
2995 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2996 * and if found, do the symbolization from the real-code address
2997 * rather than the stub address.
2998 *
2999 * Assumptions being made about the minimal symbol table:
3000 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3001 * if we're really in the trampoline.s If we're beyond it (say
3002 * we're in "foo" in the above example), it'll have a closer
3003 * symbol (the "foo" text symbol for example) and will not
3004 * return the trampoline.
3005 * 2. lookup_minimal_symbol_text() will find a real text symbol
3006 * corresponding to the trampoline, and whose address will
3007 * be different than the trampoline address. I put in a sanity
3008 * check for the address being the same, to avoid an
3009 * infinite recursion.
3010 */
3011 msymbol = lookup_minimal_symbol_by_pc (pc);
3012 if (msymbol.minsym != NULL)
3013 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3014 {
3015 struct bound_minimal_symbol mfunsym
3016 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3017 NULL);
3018
3019 if (mfunsym.minsym == NULL)
3020 /* I eliminated this warning since it is coming out
3021 * in the following situation:
3022 * gdb shmain // test program with shared libraries
3023 * (gdb) break shr1 // function in shared lib
3024 * Warning: In stub for ...
3025 * In the above situation, the shared lib is not loaded yet,
3026 * so of course we can't find the real func/line info,
3027 * but the "break" still works, and the warning is annoying.
3028 * So I commented out the warning. RT */
3029 /* warning ("In stub for %s; unable to find real function/line info",
3030 SYMBOL_LINKAGE_NAME (msymbol)); */
3031 ;
3032 /* fall through */
3033 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3034 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3035 /* Avoid infinite recursion */
3036 /* See above comment about why warning is commented out. */
3037 /* warning ("In stub for %s; unable to find real function/line info",
3038 SYMBOL_LINKAGE_NAME (msymbol)); */
3039 ;
3040 /* fall through */
3041 else
3042 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3043 }
3044
3045 symtab_and_line val;
3046 val.pspace = current_program_space;
3047
3048 cust = find_pc_sect_compunit_symtab (pc, section);
3049 if (cust == NULL)
3050 {
3051 /* If no symbol information, return previous pc. */
3052 if (notcurrent)
3053 pc++;
3054 val.pc = pc;
3055 return val;
3056 }
3057
3058 bv = COMPUNIT_BLOCKVECTOR (cust);
3059
3060 /* Look at all the symtabs that share this blockvector.
3061 They all have the same apriori range, that we found was right;
3062 but they have different line tables. */
3063
3064 ALL_COMPUNIT_FILETABS (cust, iter_s)
3065 {
3066 /* Find the best line in this symtab. */
3067 l = SYMTAB_LINETABLE (iter_s);
3068 if (!l)
3069 continue;
3070 len = l->nitems;
3071 if (len <= 0)
3072 {
3073 /* I think len can be zero if the symtab lacks line numbers
3074 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3075 I'm not sure which, and maybe it depends on the symbol
3076 reader). */
3077 continue;
3078 }
3079
3080 prev = NULL;
3081 item = l->item; /* Get first line info. */
3082
3083 /* Is this file's first line closer than the first lines of other files?
3084 If so, record this file, and its first line, as best alternate. */
3085 if (item->pc > pc && (!alt || item->pc < alt->pc))
3086 alt = item;
3087
3088 for (i = 0; i < len; i++, item++)
3089 {
3090 /* Leave prev pointing to the linetable entry for the last line
3091 that started at or before PC. */
3092 if (item->pc > pc)
3093 break;
3094
3095 prev = item;
3096 }
3097
3098 /* At this point, prev points at the line whose start addr is <= pc, and
3099 item points at the next line. If we ran off the end of the linetable
3100 (pc >= start of the last line), then prev == item. If pc < start of
3101 the first line, prev will not be set. */
3102
3103 /* Is this file's best line closer than the best in the other files?
3104 If so, record this file, and its best line, as best so far. Don't
3105 save prev if it represents the end of a function (i.e. line number
3106 0) instead of a real line. */
3107
3108 if (prev && prev->line && (!best || prev->pc > best->pc))
3109 {
3110 best = prev;
3111 best_symtab = iter_s;
3112
3113 /* Discard BEST_END if it's before the PC of the current BEST. */
3114 if (best_end <= best->pc)
3115 best_end = 0;
3116 }
3117
3118 /* If another line (denoted by ITEM) is in the linetable and its
3119 PC is after BEST's PC, but before the current BEST_END, then
3120 use ITEM's PC as the new best_end. */
3121 if (best && i < len && item->pc > best->pc
3122 && (best_end == 0 || best_end > item->pc))
3123 best_end = item->pc;
3124 }
3125
3126 if (!best_symtab)
3127 {
3128 /* If we didn't find any line number info, just return zeros.
3129 We used to return alt->line - 1 here, but that could be
3130 anywhere; if we don't have line number info for this PC,
3131 don't make some up. */
3132 val.pc = pc;
3133 }
3134 else if (best->line == 0)
3135 {
3136 /* If our best fit is in a range of PC's for which no line
3137 number info is available (line number is zero) then we didn't
3138 find any valid line information. */
3139 val.pc = pc;
3140 }
3141 else
3142 {
3143 val.symtab = best_symtab;
3144 val.line = best->line;
3145 val.pc = best->pc;
3146 if (best_end && (!alt || best_end < alt->pc))
3147 val.end = best_end;
3148 else if (alt)
3149 val.end = alt->pc;
3150 else
3151 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3152 }
3153 val.section = section;
3154 return val;
3155 }
3156
3157 /* Backward compatibility (no section). */
3158
3159 struct symtab_and_line
3160 find_pc_line (CORE_ADDR pc, int notcurrent)
3161 {
3162 struct obj_section *section;
3163
3164 section = find_pc_overlay (pc);
3165 if (pc_in_unmapped_range (pc, section))
3166 pc = overlay_mapped_address (pc, section);
3167 return find_pc_sect_line (pc, section, notcurrent);
3168 }
3169
3170 /* See symtab.h. */
3171
3172 struct symtab *
3173 find_pc_line_symtab (CORE_ADDR pc)
3174 {
3175 struct symtab_and_line sal;
3176
3177 /* This always passes zero for NOTCURRENT to find_pc_line.
3178 There are currently no callers that ever pass non-zero. */
3179 sal = find_pc_line (pc, 0);
3180 return sal.symtab;
3181 }
3182 \f
3183 /* Find line number LINE in any symtab whose name is the same as
3184 SYMTAB.
3185
3186 If found, return the symtab that contains the linetable in which it was
3187 found, set *INDEX to the index in the linetable of the best entry
3188 found, and set *EXACT_MATCH nonzero if the value returned is an
3189 exact match.
3190
3191 If not found, return NULL. */
3192
3193 struct symtab *
3194 find_line_symtab (struct symtab *symtab, int line,
3195 int *index, int *exact_match)
3196 {
3197 int exact = 0; /* Initialized here to avoid a compiler warning. */
3198
3199 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3200 so far seen. */
3201
3202 int best_index;
3203 struct linetable *best_linetable;
3204 struct symtab *best_symtab;
3205
3206 /* First try looking it up in the given symtab. */
3207 best_linetable = SYMTAB_LINETABLE (symtab);
3208 best_symtab = symtab;
3209 best_index = find_line_common (best_linetable, line, &exact, 0);
3210 if (best_index < 0 || !exact)
3211 {
3212 /* Didn't find an exact match. So we better keep looking for
3213 another symtab with the same name. In the case of xcoff,
3214 multiple csects for one source file (produced by IBM's FORTRAN
3215 compiler) produce multiple symtabs (this is unavoidable
3216 assuming csects can be at arbitrary places in memory and that
3217 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3218
3219 /* BEST is the smallest linenumber > LINE so far seen,
3220 or 0 if none has been seen so far.
3221 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3222 int best;
3223
3224 struct objfile *objfile;
3225 struct compunit_symtab *cu;
3226 struct symtab *s;
3227
3228 if (best_index >= 0)
3229 best = best_linetable->item[best_index].line;
3230 else
3231 best = 0;
3232
3233 ALL_OBJFILES (objfile)
3234 {
3235 if (objfile->sf)
3236 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3237 symtab_to_fullname (symtab));
3238 }
3239
3240 ALL_FILETABS (objfile, cu, s)
3241 {
3242 struct linetable *l;
3243 int ind;
3244
3245 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3246 continue;
3247 if (FILENAME_CMP (symtab_to_fullname (symtab),
3248 symtab_to_fullname (s)) != 0)
3249 continue;
3250 l = SYMTAB_LINETABLE (s);
3251 ind = find_line_common (l, line, &exact, 0);
3252 if (ind >= 0)
3253 {
3254 if (exact)
3255 {
3256 best_index = ind;
3257 best_linetable = l;
3258 best_symtab = s;
3259 goto done;
3260 }
3261 if (best == 0 || l->item[ind].line < best)
3262 {
3263 best = l->item[ind].line;
3264 best_index = ind;
3265 best_linetable = l;
3266 best_symtab = s;
3267 }
3268 }
3269 }
3270 }
3271 done:
3272 if (best_index < 0)
3273 return NULL;
3274
3275 if (index)
3276 *index = best_index;
3277 if (exact_match)
3278 *exact_match = exact;
3279
3280 return best_symtab;
3281 }
3282
3283 /* Given SYMTAB, returns all the PCs function in the symtab that
3284 exactly match LINE. Returns an empty vector if there are no exact
3285 matches, but updates BEST_ITEM in this case. */
3286
3287 std::vector<CORE_ADDR>
3288 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3289 struct linetable_entry **best_item)
3290 {
3291 int start = 0;
3292 std::vector<CORE_ADDR> result;
3293
3294 /* First, collect all the PCs that are at this line. */
3295 while (1)
3296 {
3297 int was_exact;
3298 int idx;
3299
3300 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3301 start);
3302 if (idx < 0)
3303 break;
3304
3305 if (!was_exact)
3306 {
3307 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3308
3309 if (*best_item == NULL || item->line < (*best_item)->line)
3310 *best_item = item;
3311
3312 break;
3313 }
3314
3315 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3316 start = idx + 1;
3317 }
3318
3319 return result;
3320 }
3321
3322 \f
3323 /* Set the PC value for a given source file and line number and return true.
3324 Returns zero for invalid line number (and sets the PC to 0).
3325 The source file is specified with a struct symtab. */
3326
3327 int
3328 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3329 {
3330 struct linetable *l;
3331 int ind;
3332
3333 *pc = 0;
3334 if (symtab == 0)
3335 return 0;
3336
3337 symtab = find_line_symtab (symtab, line, &ind, NULL);
3338 if (symtab != NULL)
3339 {
3340 l = SYMTAB_LINETABLE (symtab);
3341 *pc = l->item[ind].pc;
3342 return 1;
3343 }
3344 else
3345 return 0;
3346 }
3347
3348 /* Find the range of pc values in a line.
3349 Store the starting pc of the line into *STARTPTR
3350 and the ending pc (start of next line) into *ENDPTR.
3351 Returns 1 to indicate success.
3352 Returns 0 if could not find the specified line. */
3353
3354 int
3355 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3356 CORE_ADDR *endptr)
3357 {
3358 CORE_ADDR startaddr;
3359 struct symtab_and_line found_sal;
3360
3361 startaddr = sal.pc;
3362 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3363 return 0;
3364
3365 /* This whole function is based on address. For example, if line 10 has
3366 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3367 "info line *0x123" should say the line goes from 0x100 to 0x200
3368 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3369 This also insures that we never give a range like "starts at 0x134
3370 and ends at 0x12c". */
3371
3372 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3373 if (found_sal.line != sal.line)
3374 {
3375 /* The specified line (sal) has zero bytes. */
3376 *startptr = found_sal.pc;
3377 *endptr = found_sal.pc;
3378 }
3379 else
3380 {
3381 *startptr = found_sal.pc;
3382 *endptr = found_sal.end;
3383 }
3384 return 1;
3385 }
3386
3387 /* Given a line table and a line number, return the index into the line
3388 table for the pc of the nearest line whose number is >= the specified one.
3389 Return -1 if none is found. The value is >= 0 if it is an index.
3390 START is the index at which to start searching the line table.
3391
3392 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3393
3394 static int
3395 find_line_common (struct linetable *l, int lineno,
3396 int *exact_match, int start)
3397 {
3398 int i;
3399 int len;
3400
3401 /* BEST is the smallest linenumber > LINENO so far seen,
3402 or 0 if none has been seen so far.
3403 BEST_INDEX identifies the item for it. */
3404
3405 int best_index = -1;
3406 int best = 0;
3407
3408 *exact_match = 0;
3409
3410 if (lineno <= 0)
3411 return -1;
3412 if (l == 0)
3413 return -1;
3414
3415 len = l->nitems;
3416 for (i = start; i < len; i++)
3417 {
3418 struct linetable_entry *item = &(l->item[i]);
3419
3420 if (item->line == lineno)
3421 {
3422 /* Return the first (lowest address) entry which matches. */
3423 *exact_match = 1;
3424 return i;
3425 }
3426
3427 if (item->line > lineno && (best == 0 || item->line < best))
3428 {
3429 best = item->line;
3430 best_index = i;
3431 }
3432 }
3433
3434 /* If we got here, we didn't get an exact match. */
3435 return best_index;
3436 }
3437
3438 int
3439 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3440 {
3441 struct symtab_and_line sal;
3442
3443 sal = find_pc_line (pc, 0);
3444 *startptr = sal.pc;
3445 *endptr = sal.end;
3446 return sal.symtab != 0;
3447 }
3448
3449 /* Given a function symbol SYM, find the symtab and line for the start
3450 of the function.
3451 If the argument FUNFIRSTLINE is nonzero, we want the first line
3452 of real code inside the function.
3453 This function should return SALs matching those from minsym_found,
3454 otherwise false multiple-locations breakpoints could be placed. */
3455
3456 struct symtab_and_line
3457 find_function_start_sal (struct symbol *sym, int funfirstline)
3458 {
3459 fixup_symbol_section (sym, NULL);
3460
3461 obj_section *section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3462 symtab_and_line sal
3463 = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3464 sal.symbol = sym;
3465
3466 if (funfirstline && sal.symtab != NULL
3467 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3468 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3469 {
3470 struct gdbarch *gdbarch = symbol_arch (sym);
3471
3472 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3473 if (gdbarch_skip_entrypoint_p (gdbarch))
3474 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3475 return sal;
3476 }
3477
3478 /* We always should have a line for the function start address.
3479 If we don't, something is odd. Create a plain SAL refering
3480 just the PC and hope that skip_prologue_sal (if requested)
3481 can find a line number for after the prologue. */
3482 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3483 {
3484 sal = {};
3485 sal.pspace = current_program_space;
3486 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3487 sal.section = section;
3488 sal.symbol = sym;
3489 }
3490
3491 if (funfirstline)
3492 skip_prologue_sal (&sal);
3493
3494 return sal;
3495 }
3496
3497 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3498 address for that function that has an entry in SYMTAB's line info
3499 table. If such an entry cannot be found, return FUNC_ADDR
3500 unaltered. */
3501
3502 static CORE_ADDR
3503 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3504 {
3505 CORE_ADDR func_start, func_end;
3506 struct linetable *l;
3507 int i;
3508
3509 /* Give up if this symbol has no lineinfo table. */
3510 l = SYMTAB_LINETABLE (symtab);
3511 if (l == NULL)
3512 return func_addr;
3513
3514 /* Get the range for the function's PC values, or give up if we
3515 cannot, for some reason. */
3516 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3517 return func_addr;
3518
3519 /* Linetable entries are ordered by PC values, see the commentary in
3520 symtab.h where `struct linetable' is defined. Thus, the first
3521 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3522 address we are looking for. */
3523 for (i = 0; i < l->nitems; i++)
3524 {
3525 struct linetable_entry *item = &(l->item[i]);
3526
3527 /* Don't use line numbers of zero, they mark special entries in
3528 the table. See the commentary on symtab.h before the
3529 definition of struct linetable. */
3530 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3531 return item->pc;
3532 }
3533
3534 return func_addr;
3535 }
3536
3537 /* Adjust SAL to the first instruction past the function prologue.
3538 If the PC was explicitly specified, the SAL is not changed.
3539 If the line number was explicitly specified, at most the SAL's PC
3540 is updated. If SAL is already past the prologue, then do nothing. */
3541
3542 void
3543 skip_prologue_sal (struct symtab_and_line *sal)
3544 {
3545 struct symbol *sym;
3546 struct symtab_and_line start_sal;
3547 CORE_ADDR pc, saved_pc;
3548 struct obj_section *section;
3549 const char *name;
3550 struct objfile *objfile;
3551 struct gdbarch *gdbarch;
3552 const struct block *b, *function_block;
3553 int force_skip, skip;
3554
3555 /* Do not change the SAL if PC was specified explicitly. */
3556 if (sal->explicit_pc)
3557 return;
3558
3559 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3560
3561 switch_to_program_space_and_thread (sal->pspace);
3562
3563 sym = find_pc_sect_function (sal->pc, sal->section);
3564 if (sym != NULL)
3565 {
3566 fixup_symbol_section (sym, NULL);
3567
3568 objfile = symbol_objfile (sym);
3569 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3570 section = SYMBOL_OBJ_SECTION (objfile, sym);
3571 name = SYMBOL_LINKAGE_NAME (sym);
3572 }
3573 else
3574 {
3575 struct bound_minimal_symbol msymbol
3576 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3577
3578 if (msymbol.minsym == NULL)
3579 return;
3580
3581 objfile = msymbol.objfile;
3582 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3583 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3584 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3585 }
3586
3587 gdbarch = get_objfile_arch (objfile);
3588
3589 /* Process the prologue in two passes. In the first pass try to skip the
3590 prologue (SKIP is true) and verify there is a real need for it (indicated
3591 by FORCE_SKIP). If no such reason was found run a second pass where the
3592 prologue is not skipped (SKIP is false). */
3593
3594 skip = 1;
3595 force_skip = 1;
3596
3597 /* Be conservative - allow direct PC (without skipping prologue) only if we
3598 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3599 have to be set by the caller so we use SYM instead. */
3600 if (sym != NULL
3601 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3602 force_skip = 0;
3603
3604 saved_pc = pc;
3605 do
3606 {
3607 pc = saved_pc;
3608
3609 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3610 so that gdbarch_skip_prologue has something unique to work on. */
3611 if (section_is_overlay (section) && !section_is_mapped (section))
3612 pc = overlay_unmapped_address (pc, section);
3613
3614 /* Skip "first line" of function (which is actually its prologue). */
3615 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3616 if (gdbarch_skip_entrypoint_p (gdbarch))
3617 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3618 if (skip)
3619 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3620
3621 /* For overlays, map pc back into its mapped VMA range. */
3622 pc = overlay_mapped_address (pc, section);
3623
3624 /* Calculate line number. */
3625 start_sal = find_pc_sect_line (pc, section, 0);
3626
3627 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3628 line is still part of the same function. */
3629 if (skip && start_sal.pc != pc
3630 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3631 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3632 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3633 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3634 {
3635 /* First pc of next line */
3636 pc = start_sal.end;
3637 /* Recalculate the line number (might not be N+1). */
3638 start_sal = find_pc_sect_line (pc, section, 0);
3639 }
3640
3641 /* On targets with executable formats that don't have a concept of
3642 constructors (ELF with .init has, PE doesn't), gcc emits a call
3643 to `__main' in `main' between the prologue and before user
3644 code. */
3645 if (gdbarch_skip_main_prologue_p (gdbarch)
3646 && name && strcmp_iw (name, "main") == 0)
3647 {
3648 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3649 /* Recalculate the line number (might not be N+1). */
3650 start_sal = find_pc_sect_line (pc, section, 0);
3651 force_skip = 1;
3652 }
3653 }
3654 while (!force_skip && skip--);
3655
3656 /* If we still don't have a valid source line, try to find the first
3657 PC in the lineinfo table that belongs to the same function. This
3658 happens with COFF debug info, which does not seem to have an
3659 entry in lineinfo table for the code after the prologue which has
3660 no direct relation to source. For example, this was found to be
3661 the case with the DJGPP target using "gcc -gcoff" when the
3662 compiler inserted code after the prologue to make sure the stack
3663 is aligned. */
3664 if (!force_skip && sym && start_sal.symtab == NULL)
3665 {
3666 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3667 /* Recalculate the line number. */
3668 start_sal = find_pc_sect_line (pc, section, 0);
3669 }
3670
3671 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3672 forward SAL to the end of the prologue. */
3673 if (sal->pc >= pc)
3674 return;
3675
3676 sal->pc = pc;
3677 sal->section = section;
3678
3679 /* Unless the explicit_line flag was set, update the SAL line
3680 and symtab to correspond to the modified PC location. */
3681 if (sal->explicit_line)
3682 return;
3683
3684 sal->symtab = start_sal.symtab;
3685 sal->line = start_sal.line;
3686 sal->end = start_sal.end;
3687
3688 /* Check if we are now inside an inlined function. If we can,
3689 use the call site of the function instead. */
3690 b = block_for_pc_sect (sal->pc, sal->section);
3691 function_block = NULL;
3692 while (b != NULL)
3693 {
3694 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3695 function_block = b;
3696 else if (BLOCK_FUNCTION (b) != NULL)
3697 break;
3698 b = BLOCK_SUPERBLOCK (b);
3699 }
3700 if (function_block != NULL
3701 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3702 {
3703 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3704 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3705 }
3706 }
3707
3708 /* Given PC at the function's start address, attempt to find the
3709 prologue end using SAL information. Return zero if the skip fails.
3710
3711 A non-optimized prologue traditionally has one SAL for the function
3712 and a second for the function body. A single line function has
3713 them both pointing at the same line.
3714
3715 An optimized prologue is similar but the prologue may contain
3716 instructions (SALs) from the instruction body. Need to skip those
3717 while not getting into the function body.
3718
3719 The functions end point and an increasing SAL line are used as
3720 indicators of the prologue's endpoint.
3721
3722 This code is based on the function refine_prologue_limit
3723 (found in ia64). */
3724
3725 CORE_ADDR
3726 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3727 {
3728 struct symtab_and_line prologue_sal;
3729 CORE_ADDR start_pc;
3730 CORE_ADDR end_pc;
3731 const struct block *bl;
3732
3733 /* Get an initial range for the function. */
3734 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3735 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3736
3737 prologue_sal = find_pc_line (start_pc, 0);
3738 if (prologue_sal.line != 0)
3739 {
3740 /* For languages other than assembly, treat two consecutive line
3741 entries at the same address as a zero-instruction prologue.
3742 The GNU assembler emits separate line notes for each instruction
3743 in a multi-instruction macro, but compilers generally will not
3744 do this. */
3745 if (prologue_sal.symtab->language != language_asm)
3746 {
3747 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3748 int idx = 0;
3749
3750 /* Skip any earlier lines, and any end-of-sequence marker
3751 from a previous function. */
3752 while (linetable->item[idx].pc != prologue_sal.pc
3753 || linetable->item[idx].line == 0)
3754 idx++;
3755
3756 if (idx+1 < linetable->nitems
3757 && linetable->item[idx+1].line != 0
3758 && linetable->item[idx+1].pc == start_pc)
3759 return start_pc;
3760 }
3761
3762 /* If there is only one sal that covers the entire function,
3763 then it is probably a single line function, like
3764 "foo(){}". */
3765 if (prologue_sal.end >= end_pc)
3766 return 0;
3767
3768 while (prologue_sal.end < end_pc)
3769 {
3770 struct symtab_and_line sal;
3771
3772 sal = find_pc_line (prologue_sal.end, 0);
3773 if (sal.line == 0)
3774 break;
3775 /* Assume that a consecutive SAL for the same (or larger)
3776 line mark the prologue -> body transition. */
3777 if (sal.line >= prologue_sal.line)
3778 break;
3779 /* Likewise if we are in a different symtab altogether
3780 (e.g. within a file included via #include).  */
3781 if (sal.symtab != prologue_sal.symtab)
3782 break;
3783
3784 /* The line number is smaller. Check that it's from the
3785 same function, not something inlined. If it's inlined,
3786 then there is no point comparing the line numbers. */
3787 bl = block_for_pc (prologue_sal.end);
3788 while (bl)
3789 {
3790 if (block_inlined_p (bl))
3791 break;
3792 if (BLOCK_FUNCTION (bl))
3793 {
3794 bl = NULL;
3795 break;
3796 }
3797 bl = BLOCK_SUPERBLOCK (bl);
3798 }
3799 if (bl != NULL)
3800 break;
3801
3802 /* The case in which compiler's optimizer/scheduler has
3803 moved instructions into the prologue. We look ahead in
3804 the function looking for address ranges whose
3805 corresponding line number is less the first one that we
3806 found for the function. This is more conservative then
3807 refine_prologue_limit which scans a large number of SALs
3808 looking for any in the prologue. */
3809 prologue_sal = sal;
3810 }
3811 }
3812
3813 if (prologue_sal.end < end_pc)
3814 /* Return the end of this line, or zero if we could not find a
3815 line. */
3816 return prologue_sal.end;
3817 else
3818 /* Don't return END_PC, which is past the end of the function. */
3819 return prologue_sal.pc;
3820 }
3821
3822 /* See symtab.h. */
3823
3824 symbol *
3825 find_function_alias_target (bound_minimal_symbol msymbol)
3826 {
3827 if (!msymbol_is_text (msymbol.minsym))
3828 return NULL;
3829
3830 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
3831 symbol *sym = find_pc_function (addr);
3832 if (sym != NULL
3833 && SYMBOL_CLASS (sym) == LOC_BLOCK
3834 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == addr)
3835 return sym;
3836
3837 return NULL;
3838 }
3839
3840 \f
3841 /* If P is of the form "operator[ \t]+..." where `...' is
3842 some legitimate operator text, return a pointer to the
3843 beginning of the substring of the operator text.
3844 Otherwise, return "". */
3845
3846 static const char *
3847 operator_chars (const char *p, const char **end)
3848 {
3849 *end = "";
3850 if (!startswith (p, CP_OPERATOR_STR))
3851 return *end;
3852 p += CP_OPERATOR_LEN;
3853
3854 /* Don't get faked out by `operator' being part of a longer
3855 identifier. */
3856 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3857 return *end;
3858
3859 /* Allow some whitespace between `operator' and the operator symbol. */
3860 while (*p == ' ' || *p == '\t')
3861 p++;
3862
3863 /* Recognize 'operator TYPENAME'. */
3864
3865 if (isalpha (*p) || *p == '_' || *p == '$')
3866 {
3867 const char *q = p + 1;
3868
3869 while (isalnum (*q) || *q == '_' || *q == '$')
3870 q++;
3871 *end = q;
3872 return p;
3873 }
3874
3875 while (*p)
3876 switch (*p)
3877 {
3878 case '\\': /* regexp quoting */
3879 if (p[1] == '*')
3880 {
3881 if (p[2] == '=') /* 'operator\*=' */
3882 *end = p + 3;
3883 else /* 'operator\*' */
3884 *end = p + 2;
3885 return p;
3886 }
3887 else if (p[1] == '[')
3888 {
3889 if (p[2] == ']')
3890 error (_("mismatched quoting on brackets, "
3891 "try 'operator\\[\\]'"));
3892 else if (p[2] == '\\' && p[3] == ']')
3893 {
3894 *end = p + 4; /* 'operator\[\]' */
3895 return p;
3896 }
3897 else
3898 error (_("nothing is allowed between '[' and ']'"));
3899 }
3900 else
3901 {
3902 /* Gratuitous qoute: skip it and move on. */
3903 p++;
3904 continue;
3905 }
3906 break;
3907 case '!':
3908 case '=':
3909 case '*':
3910 case '/':
3911 case '%':
3912 case '^':
3913 if (p[1] == '=')
3914 *end = p + 2;
3915 else
3916 *end = p + 1;
3917 return p;
3918 case '<':
3919 case '>':
3920 case '+':
3921 case '-':
3922 case '&':
3923 case '|':
3924 if (p[0] == '-' && p[1] == '>')
3925 {
3926 /* Struct pointer member operator 'operator->'. */
3927 if (p[2] == '*')
3928 {
3929 *end = p + 3; /* 'operator->*' */
3930 return p;
3931 }
3932 else if (p[2] == '\\')
3933 {
3934 *end = p + 4; /* Hopefully 'operator->\*' */
3935 return p;
3936 }
3937 else
3938 {
3939 *end = p + 2; /* 'operator->' */
3940 return p;
3941 }
3942 }
3943 if (p[1] == '=' || p[1] == p[0])
3944 *end = p + 2;
3945 else
3946 *end = p + 1;
3947 return p;
3948 case '~':
3949 case ',':
3950 *end = p + 1;
3951 return p;
3952 case '(':
3953 if (p[1] != ')')
3954 error (_("`operator ()' must be specified "
3955 "without whitespace in `()'"));
3956 *end = p + 2;
3957 return p;
3958 case '?':
3959 if (p[1] != ':')
3960 error (_("`operator ?:' must be specified "
3961 "without whitespace in `?:'"));
3962 *end = p + 2;
3963 return p;
3964 case '[':
3965 if (p[1] != ']')
3966 error (_("`operator []' must be specified "
3967 "without whitespace in `[]'"));
3968 *end = p + 2;
3969 return p;
3970 default:
3971 error (_("`operator %s' not supported"), p);
3972 break;
3973 }
3974
3975 *end = "";
3976 return *end;
3977 }
3978 \f
3979
3980 /* Data structure to maintain printing state for output_source_filename. */
3981
3982 struct output_source_filename_data
3983 {
3984 /* Cache of what we've seen so far. */
3985 struct filename_seen_cache *filename_seen_cache;
3986
3987 /* Flag of whether we're printing the first one. */
3988 int first;
3989 };
3990
3991 /* Slave routine for sources_info. Force line breaks at ,'s.
3992 NAME is the name to print.
3993 DATA contains the state for printing and watching for duplicates. */
3994
3995 static void
3996 output_source_filename (const char *name,
3997 struct output_source_filename_data *data)
3998 {
3999 /* Since a single source file can result in several partial symbol
4000 tables, we need to avoid printing it more than once. Note: if
4001 some of the psymtabs are read in and some are not, it gets
4002 printed both under "Source files for which symbols have been
4003 read" and "Source files for which symbols will be read in on
4004 demand". I consider this a reasonable way to deal with the
4005 situation. I'm not sure whether this can also happen for
4006 symtabs; it doesn't hurt to check. */
4007
4008 /* Was NAME already seen? */
4009 if (data->filename_seen_cache->seen (name))
4010 {
4011 /* Yes; don't print it again. */
4012 return;
4013 }
4014
4015 /* No; print it and reset *FIRST. */
4016 if (! data->first)
4017 printf_filtered (", ");
4018 data->first = 0;
4019
4020 wrap_here ("");
4021 fputs_filtered (name, gdb_stdout);
4022 }
4023
4024 /* A callback for map_partial_symbol_filenames. */
4025
4026 static void
4027 output_partial_symbol_filename (const char *filename, const char *fullname,
4028 void *data)
4029 {
4030 output_source_filename (fullname ? fullname : filename,
4031 (struct output_source_filename_data *) data);
4032 }
4033
4034 static void
4035 info_sources_command (char *ignore, int from_tty)
4036 {
4037 struct compunit_symtab *cu;
4038 struct symtab *s;
4039 struct objfile *objfile;
4040 struct output_source_filename_data data;
4041
4042 if (!have_full_symbols () && !have_partial_symbols ())
4043 {
4044 error (_("No symbol table is loaded. Use the \"file\" command."));
4045 }
4046
4047 filename_seen_cache filenames_seen;
4048
4049 data.filename_seen_cache = &filenames_seen;
4050
4051 printf_filtered ("Source files for which symbols have been read in:\n\n");
4052
4053 data.first = 1;
4054 ALL_FILETABS (objfile, cu, s)
4055 {
4056 const char *fullname = symtab_to_fullname (s);
4057
4058 output_source_filename (fullname, &data);
4059 }
4060 printf_filtered ("\n\n");
4061
4062 printf_filtered ("Source files for which symbols "
4063 "will be read in on demand:\n\n");
4064
4065 filenames_seen.clear ();
4066 data.first = 1;
4067 map_symbol_filenames (output_partial_symbol_filename, &data,
4068 1 /*need_fullname*/);
4069 printf_filtered ("\n");
4070 }
4071
4072 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4073 non-zero compare only lbasename of FILES. */
4074
4075 static int
4076 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4077 {
4078 int i;
4079
4080 if (file != NULL && nfiles != 0)
4081 {
4082 for (i = 0; i < nfiles; i++)
4083 {
4084 if (compare_filenames_for_search (file, (basenames
4085 ? lbasename (files[i])
4086 : files[i])))
4087 return 1;
4088 }
4089 }
4090 else if (nfiles == 0)
4091 return 1;
4092 return 0;
4093 }
4094
4095 /* Free any memory associated with a search. */
4096
4097 void
4098 free_search_symbols (struct symbol_search *symbols)
4099 {
4100 struct symbol_search *p;
4101 struct symbol_search *next;
4102
4103 for (p = symbols; p != NULL; p = next)
4104 {
4105 next = p->next;
4106 xfree (p);
4107 }
4108 }
4109
4110 static void
4111 do_free_search_symbols_cleanup (void *symbolsp)
4112 {
4113 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4114
4115 free_search_symbols (symbols);
4116 }
4117
4118 struct cleanup *
4119 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4120 {
4121 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4122 }
4123
4124 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4125 sort symbols, not minimal symbols. */
4126
4127 static int
4128 compare_search_syms (const void *sa, const void *sb)
4129 {
4130 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4131 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4132 int c;
4133
4134 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4135 symbol_symtab (sym_b->symbol)->filename);
4136 if (c != 0)
4137 return c;
4138
4139 if (sym_a->block != sym_b->block)
4140 return sym_a->block - sym_b->block;
4141
4142 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4143 SYMBOL_PRINT_NAME (sym_b->symbol));
4144 }
4145
4146 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4147 The duplicates are freed, and the new list is returned in
4148 *NEW_HEAD, *NEW_TAIL. */
4149
4150 static void
4151 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4152 struct symbol_search **new_head,
4153 struct symbol_search **new_tail)
4154 {
4155 struct symbol_search **symbols, *symp;
4156 int i, j, nunique;
4157
4158 gdb_assert (found != NULL && nfound > 0);
4159
4160 /* Build an array out of the list so we can easily sort them. */
4161 symbols = XNEWVEC (struct symbol_search *, nfound);
4162
4163 symp = found;
4164 for (i = 0; i < nfound; i++)
4165 {
4166 gdb_assert (symp != NULL);
4167 gdb_assert (symp->block >= 0 && symp->block <= 1);
4168 symbols[i] = symp;
4169 symp = symp->next;
4170 }
4171 gdb_assert (symp == NULL);
4172
4173 qsort (symbols, nfound, sizeof (struct symbol_search *),
4174 compare_search_syms);
4175
4176 /* Collapse out the dups. */
4177 for (i = 1, j = 1; i < nfound; ++i)
4178 {
4179 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4180 symbols[j++] = symbols[i];
4181 else
4182 xfree (symbols[i]);
4183 }
4184 nunique = j;
4185 symbols[j - 1]->next = NULL;
4186
4187 /* Rebuild the linked list. */
4188 for (i = 0; i < nunique - 1; i++)
4189 symbols[i]->next = symbols[i + 1];
4190 symbols[nunique - 1]->next = NULL;
4191
4192 *new_head = symbols[0];
4193 *new_tail = symbols[nunique - 1];
4194 xfree (symbols);
4195 }
4196
4197 /* Search the symbol table for matches to the regular expression REGEXP,
4198 returning the results in *MATCHES.
4199
4200 Only symbols of KIND are searched:
4201 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4202 and constants (enums)
4203 FUNCTIONS_DOMAIN - search all functions
4204 TYPES_DOMAIN - search all type names
4205 ALL_DOMAIN - an internal error for this function
4206
4207 free_search_symbols should be called when *MATCHES is no longer needed.
4208
4209 Within each file the results are sorted locally; each symtab's global and
4210 static blocks are separately alphabetized.
4211 Duplicate entries are removed. */
4212
4213 void
4214 search_symbols (const char *regexp, enum search_domain kind,
4215 int nfiles, const char *files[],
4216 struct symbol_search **matches)
4217 {
4218 struct compunit_symtab *cust;
4219 const struct blockvector *bv;
4220 struct block *b;
4221 int i = 0;
4222 struct block_iterator iter;
4223 struct symbol *sym;
4224 struct objfile *objfile;
4225 struct minimal_symbol *msymbol;
4226 int found_misc = 0;
4227 static const enum minimal_symbol_type types[]
4228 = {mst_data, mst_text, mst_abs};
4229 static const enum minimal_symbol_type types2[]
4230 = {mst_bss, mst_file_text, mst_abs};
4231 static const enum minimal_symbol_type types3[]
4232 = {mst_file_data, mst_solib_trampoline, mst_abs};
4233 static const enum minimal_symbol_type types4[]
4234 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4235 enum minimal_symbol_type ourtype;
4236 enum minimal_symbol_type ourtype2;
4237 enum minimal_symbol_type ourtype3;
4238 enum minimal_symbol_type ourtype4;
4239 struct symbol_search *found;
4240 struct symbol_search *tail;
4241 int nfound;
4242 gdb::optional<compiled_regex> preg;
4243
4244 gdb_assert (kind <= TYPES_DOMAIN);
4245
4246 ourtype = types[kind];
4247 ourtype2 = types2[kind];
4248 ourtype3 = types3[kind];
4249 ourtype4 = types4[kind];
4250
4251 *matches = NULL;
4252
4253 if (regexp != NULL)
4254 {
4255 /* Make sure spacing is right for C++ operators.
4256 This is just a courtesy to make the matching less sensitive
4257 to how many spaces the user leaves between 'operator'
4258 and <TYPENAME> or <OPERATOR>. */
4259 const char *opend;
4260 const char *opname = operator_chars (regexp, &opend);
4261 int errcode;
4262
4263 if (*opname)
4264 {
4265 int fix = -1; /* -1 means ok; otherwise number of
4266 spaces needed. */
4267
4268 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4269 {
4270 /* There should 1 space between 'operator' and 'TYPENAME'. */
4271 if (opname[-1] != ' ' || opname[-2] == ' ')
4272 fix = 1;
4273 }
4274 else
4275 {
4276 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4277 if (opname[-1] == ' ')
4278 fix = 0;
4279 }
4280 /* If wrong number of spaces, fix it. */
4281 if (fix >= 0)
4282 {
4283 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4284
4285 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4286 regexp = tmp;
4287 }
4288 }
4289
4290 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4291 ? REG_ICASE : 0);
4292 preg.emplace (regexp, cflags, _("Invalid regexp"));
4293 }
4294
4295 /* Search through the partial symtabs *first* for all symbols
4296 matching the regexp. That way we don't have to reproduce all of
4297 the machinery below. */
4298 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4299 {
4300 return file_matches (filename, files, nfiles,
4301 basenames);
4302 },
4303 [&] (const char *symname)
4304 {
4305 return (!preg || preg->exec (symname,
4306 0, NULL, 0) == 0);
4307 },
4308 NULL,
4309 kind);
4310
4311 /* Here, we search through the minimal symbol tables for functions
4312 and variables that match, and force their symbols to be read.
4313 This is in particular necessary for demangled variable names,
4314 which are no longer put into the partial symbol tables.
4315 The symbol will then be found during the scan of symtabs below.
4316
4317 For functions, find_pc_symtab should succeed if we have debug info
4318 for the function, for variables we have to call
4319 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4320 has debug info.
4321 If the lookup fails, set found_misc so that we will rescan to print
4322 any matching symbols without debug info.
4323 We only search the objfile the msymbol came from, we no longer search
4324 all objfiles. In large programs (1000s of shared libs) searching all
4325 objfiles is not worth the pain. */
4326
4327 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4328 {
4329 ALL_MSYMBOLS (objfile, msymbol)
4330 {
4331 QUIT;
4332
4333 if (msymbol->created_by_gdb)
4334 continue;
4335
4336 if (MSYMBOL_TYPE (msymbol) == ourtype
4337 || MSYMBOL_TYPE (msymbol) == ourtype2
4338 || MSYMBOL_TYPE (msymbol) == ourtype3
4339 || MSYMBOL_TYPE (msymbol) == ourtype4)
4340 {
4341 if (!preg
4342 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4343 NULL, 0) == 0)
4344 {
4345 /* Note: An important side-effect of these lookup functions
4346 is to expand the symbol table if msymbol is found, for the
4347 benefit of the next loop on ALL_COMPUNITS. */
4348 if (kind == FUNCTIONS_DOMAIN
4349 ? (find_pc_compunit_symtab
4350 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4351 : (lookup_symbol_in_objfile_from_linkage_name
4352 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4353 .symbol == NULL))
4354 found_misc = 1;
4355 }
4356 }
4357 }
4358 }
4359
4360 found = NULL;
4361 tail = NULL;
4362 nfound = 0;
4363 struct cleanup *retval_chain = make_cleanup_free_search_symbols (&found);
4364
4365 ALL_COMPUNITS (objfile, cust)
4366 {
4367 bv = COMPUNIT_BLOCKVECTOR (cust);
4368 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4369 {
4370 b = BLOCKVECTOR_BLOCK (bv, i);
4371 ALL_BLOCK_SYMBOLS (b, iter, sym)
4372 {
4373 struct symtab *real_symtab = symbol_symtab (sym);
4374
4375 QUIT;
4376
4377 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4378 a substring of symtab_to_fullname as it may contain "./" etc. */
4379 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4380 || ((basenames_may_differ
4381 || file_matches (lbasename (real_symtab->filename),
4382 files, nfiles, 1))
4383 && file_matches (symtab_to_fullname (real_symtab),
4384 files, nfiles, 0)))
4385 && ((!preg
4386 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4387 NULL, 0) == 0)
4388 && ((kind == VARIABLES_DOMAIN
4389 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4390 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4391 && SYMBOL_CLASS (sym) != LOC_BLOCK
4392 /* LOC_CONST can be used for more than just enums,
4393 e.g., c++ static const members.
4394 We only want to skip enums here. */
4395 && !(SYMBOL_CLASS (sym) == LOC_CONST
4396 && (TYPE_CODE (SYMBOL_TYPE (sym))
4397 == TYPE_CODE_ENUM)))
4398 || (kind == FUNCTIONS_DOMAIN
4399 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4400 || (kind == TYPES_DOMAIN
4401 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4402 {
4403 /* match */
4404 struct symbol_search *psr = XCNEW (struct symbol_search);
4405
4406 psr->block = i;
4407 psr->symbol = sym;
4408 psr->next = NULL;
4409 if (tail == NULL)
4410 found = psr;
4411 else
4412 tail->next = psr;
4413 tail = psr;
4414 nfound ++;
4415 }
4416 }
4417 }
4418 }
4419
4420 if (found != NULL)
4421 {
4422 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4423 /* Note: nfound is no longer useful beyond this point. */
4424 }
4425
4426 /* If there are no eyes, avoid all contact. I mean, if there are
4427 no debug symbols, then add matching minsyms. */
4428
4429 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4430 {
4431 ALL_MSYMBOLS (objfile, msymbol)
4432 {
4433 QUIT;
4434
4435 if (msymbol->created_by_gdb)
4436 continue;
4437
4438 if (MSYMBOL_TYPE (msymbol) == ourtype
4439 || MSYMBOL_TYPE (msymbol) == ourtype2
4440 || MSYMBOL_TYPE (msymbol) == ourtype3
4441 || MSYMBOL_TYPE (msymbol) == ourtype4)
4442 {
4443 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4444 NULL, 0) == 0)
4445 {
4446 /* For functions we can do a quick check of whether the
4447 symbol might be found via find_pc_symtab. */
4448 if (kind != FUNCTIONS_DOMAIN
4449 || (find_pc_compunit_symtab
4450 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4451 {
4452 if (lookup_symbol_in_objfile_from_linkage_name
4453 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4454 .symbol == NULL)
4455 {
4456 /* match */
4457 struct symbol_search *psr = XNEW (struct symbol_search);
4458 psr->block = i;
4459 psr->msymbol.minsym = msymbol;
4460 psr->msymbol.objfile = objfile;
4461 psr->symbol = NULL;
4462 psr->next = NULL;
4463 if (tail == NULL)
4464 found = psr;
4465 else
4466 tail->next = psr;
4467 tail = psr;
4468 }
4469 }
4470 }
4471 }
4472 }
4473 }
4474
4475 discard_cleanups (retval_chain);
4476 *matches = found;
4477 }
4478
4479 /* Helper function for symtab_symbol_info, this function uses
4480 the data returned from search_symbols() to print information
4481 regarding the match to gdb_stdout. */
4482
4483 static void
4484 print_symbol_info (enum search_domain kind,
4485 struct symbol *sym,
4486 int block, const char *last)
4487 {
4488 struct symtab *s = symbol_symtab (sym);
4489 const char *s_filename = symtab_to_filename_for_display (s);
4490
4491 if (last == NULL || filename_cmp (last, s_filename) != 0)
4492 {
4493 fputs_filtered ("\nFile ", gdb_stdout);
4494 fputs_filtered (s_filename, gdb_stdout);
4495 fputs_filtered (":\n", gdb_stdout);
4496 }
4497
4498 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4499 printf_filtered ("static ");
4500
4501 /* Typedef that is not a C++ class. */
4502 if (kind == TYPES_DOMAIN
4503 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4504 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4505 /* variable, func, or typedef-that-is-c++-class. */
4506 else if (kind < TYPES_DOMAIN
4507 || (kind == TYPES_DOMAIN
4508 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4509 {
4510 type_print (SYMBOL_TYPE (sym),
4511 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4512 ? "" : SYMBOL_PRINT_NAME (sym)),
4513 gdb_stdout, 0);
4514
4515 printf_filtered (";\n");
4516 }
4517 }
4518
4519 /* This help function for symtab_symbol_info() prints information
4520 for non-debugging symbols to gdb_stdout. */
4521
4522 static void
4523 print_msymbol_info (struct bound_minimal_symbol msymbol)
4524 {
4525 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4526 char *tmp;
4527
4528 if (gdbarch_addr_bit (gdbarch) <= 32)
4529 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4530 & (CORE_ADDR) 0xffffffff,
4531 8);
4532 else
4533 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4534 16);
4535 printf_filtered ("%s %s\n",
4536 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4537 }
4538
4539 /* This is the guts of the commands "info functions", "info types", and
4540 "info variables". It calls search_symbols to find all matches and then
4541 print_[m]symbol_info to print out some useful information about the
4542 matches. */
4543
4544 static void
4545 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4546 {
4547 static const char * const classnames[] =
4548 {"variable", "function", "type"};
4549 struct symbol_search *symbols;
4550 struct symbol_search *p;
4551 struct cleanup *old_chain;
4552 const char *last_filename = NULL;
4553 int first = 1;
4554
4555 gdb_assert (kind <= TYPES_DOMAIN);
4556
4557 /* Must make sure that if we're interrupted, symbols gets freed. */
4558 search_symbols (regexp, kind, 0, NULL, &symbols);
4559 old_chain = make_cleanup_free_search_symbols (&symbols);
4560
4561 if (regexp != NULL)
4562 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4563 classnames[kind], regexp);
4564 else
4565 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4566
4567 for (p = symbols; p != NULL; p = p->next)
4568 {
4569 QUIT;
4570
4571 if (p->msymbol.minsym != NULL)
4572 {
4573 if (first)
4574 {
4575 printf_filtered (_("\nNon-debugging symbols:\n"));
4576 first = 0;
4577 }
4578 print_msymbol_info (p->msymbol);
4579 }
4580 else
4581 {
4582 print_symbol_info (kind,
4583 p->symbol,
4584 p->block,
4585 last_filename);
4586 last_filename
4587 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4588 }
4589 }
4590
4591 do_cleanups (old_chain);
4592 }
4593
4594 static void
4595 info_variables_command (char *regexp, int from_tty)
4596 {
4597 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4598 }
4599
4600 static void
4601 info_functions_command (char *regexp, int from_tty)
4602 {
4603 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4604 }
4605
4606
4607 static void
4608 info_types_command (char *regexp, int from_tty)
4609 {
4610 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4611 }
4612
4613 /* Breakpoint all functions matching regular expression. */
4614
4615 void
4616 rbreak_command_wrapper (char *regexp, int from_tty)
4617 {
4618 rbreak_command (regexp, from_tty);
4619 }
4620
4621 /* A cleanup function that calls end_rbreak_breakpoints. */
4622
4623 static void
4624 do_end_rbreak_breakpoints (void *ignore)
4625 {
4626 end_rbreak_breakpoints ();
4627 }
4628
4629 static void
4630 rbreak_command (char *regexp, int from_tty)
4631 {
4632 struct symbol_search *ss;
4633 struct symbol_search *p;
4634 struct cleanup *old_chain;
4635 char *string = NULL;
4636 int len = 0;
4637 const char **files = NULL;
4638 const char *file_name;
4639 int nfiles = 0;
4640
4641 if (regexp)
4642 {
4643 char *colon = strchr (regexp, ':');
4644
4645 if (colon && *(colon + 1) != ':')
4646 {
4647 int colon_index;
4648 char *local_name;
4649
4650 colon_index = colon - regexp;
4651 local_name = (char *) alloca (colon_index + 1);
4652 memcpy (local_name, regexp, colon_index);
4653 local_name[colon_index--] = 0;
4654 while (isspace (local_name[colon_index]))
4655 local_name[colon_index--] = 0;
4656 file_name = local_name;
4657 files = &file_name;
4658 nfiles = 1;
4659 regexp = skip_spaces (colon + 1);
4660 }
4661 }
4662
4663 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4664 old_chain = make_cleanup_free_search_symbols (&ss);
4665 make_cleanup (free_current_contents, &string);
4666
4667 start_rbreak_breakpoints ();
4668 make_cleanup (do_end_rbreak_breakpoints, NULL);
4669 for (p = ss; p != NULL; p = p->next)
4670 {
4671 if (p->msymbol.minsym == NULL)
4672 {
4673 struct symtab *symtab = symbol_symtab (p->symbol);
4674 const char *fullname = symtab_to_fullname (symtab);
4675
4676 int newlen = (strlen (fullname)
4677 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4678 + 4);
4679
4680 if (newlen > len)
4681 {
4682 string = (char *) xrealloc (string, newlen);
4683 len = newlen;
4684 }
4685 strcpy (string, fullname);
4686 strcat (string, ":'");
4687 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4688 strcat (string, "'");
4689 break_command (string, from_tty);
4690 print_symbol_info (FUNCTIONS_DOMAIN,
4691 p->symbol,
4692 p->block,
4693 symtab_to_filename_for_display (symtab));
4694 }
4695 else
4696 {
4697 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4698
4699 if (newlen > len)
4700 {
4701 string = (char *) xrealloc (string, newlen);
4702 len = newlen;
4703 }
4704 strcpy (string, "'");
4705 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4706 strcat (string, "'");
4707
4708 break_command (string, from_tty);
4709 printf_filtered ("<function, no debug info> %s;\n",
4710 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4711 }
4712 }
4713
4714 do_cleanups (old_chain);
4715 }
4716 \f
4717
4718 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4719
4720 Either sym_text[sym_text_len] != '(' and then we search for any
4721 symbol starting with SYM_TEXT text.
4722
4723 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4724 be terminated at that point. Partial symbol tables do not have parameters
4725 information. */
4726
4727 static int
4728 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4729 {
4730 int (*ncmp) (const char *, const char *, size_t);
4731
4732 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4733
4734 if (ncmp (name, sym_text, sym_text_len) != 0)
4735 return 0;
4736
4737 if (sym_text[sym_text_len] == '(')
4738 {
4739 /* User searches for `name(someth...'. Require NAME to be terminated.
4740 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4741 present but accept even parameters presence. In this case this
4742 function is in fact strcmp_iw but whitespace skipping is not supported
4743 for tab completion. */
4744
4745 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4746 return 0;
4747 }
4748
4749 return 1;
4750 }
4751
4752 /* Test to see if the symbol specified by SYMNAME (which is already
4753 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4754 characters. If so, add it to the current completion list. */
4755
4756 static void
4757 completion_list_add_name (completion_tracker &tracker,
4758 const char *symname,
4759 const char *sym_text, int sym_text_len,
4760 const char *text, const char *word)
4761 {
4762 /* Clip symbols that cannot match. */
4763 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4764 return;
4765
4766 /* We have a match for a completion, so add SYMNAME to the current list
4767 of matches. Note that the name is moved to freshly malloc'd space. */
4768
4769 {
4770 char *newobj;
4771
4772 if (word == sym_text)
4773 {
4774 newobj = (char *) xmalloc (strlen (symname) + 5);
4775 strcpy (newobj, symname);
4776 }
4777 else if (word > sym_text)
4778 {
4779 /* Return some portion of symname. */
4780 newobj = (char *) xmalloc (strlen (symname) + 5);
4781 strcpy (newobj, symname + (word - sym_text));
4782 }
4783 else
4784 {
4785 /* Return some of SYM_TEXT plus symname. */
4786 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4787 strncpy (newobj, word, sym_text - word);
4788 newobj[sym_text - word] = '\0';
4789 strcat (newobj, symname);
4790 }
4791
4792 gdb::unique_xmalloc_ptr<char> completion (newobj);
4793
4794 tracker.add_completion (std::move (completion));
4795 }
4796 }
4797
4798 /* completion_list_add_name wrapper for struct symbol. */
4799
4800 static void
4801 completion_list_add_symbol (completion_tracker &tracker,
4802 symbol *sym,
4803 const char *sym_text, int sym_text_len,
4804 const char *text, const char *word)
4805 {
4806 completion_list_add_name (tracker, SYMBOL_NATURAL_NAME (sym),
4807 sym_text, sym_text_len, text, word);
4808 }
4809
4810 /* completion_list_add_name wrapper for struct minimal_symbol. */
4811
4812 static void
4813 completion_list_add_msymbol (completion_tracker &tracker,
4814 minimal_symbol *sym,
4815 const char *sym_text, int sym_text_len,
4816 const char *text, const char *word)
4817 {
4818 completion_list_add_name (tracker, MSYMBOL_NATURAL_NAME (sym),
4819 sym_text, sym_text_len, text, word);
4820 }
4821
4822 /* ObjC: In case we are completing on a selector, look as the msymbol
4823 again and feed all the selectors into the mill. */
4824
4825 static void
4826 completion_list_objc_symbol (completion_tracker &tracker,
4827 struct minimal_symbol *msymbol,
4828 const char *sym_text, int sym_text_len,
4829 const char *text, const char *word)
4830 {
4831 static char *tmp = NULL;
4832 static unsigned int tmplen = 0;
4833
4834 const char *method, *category, *selector;
4835 char *tmp2 = NULL;
4836
4837 method = MSYMBOL_NATURAL_NAME (msymbol);
4838
4839 /* Is it a method? */
4840 if ((method[0] != '-') && (method[0] != '+'))
4841 return;
4842
4843 if (sym_text[0] == '[')
4844 /* Complete on shortened method method. */
4845 completion_list_add_name (tracker, method + 1,
4846 sym_text, sym_text_len, text, word);
4847
4848 while ((strlen (method) + 1) >= tmplen)
4849 {
4850 if (tmplen == 0)
4851 tmplen = 1024;
4852 else
4853 tmplen *= 2;
4854 tmp = (char *) xrealloc (tmp, tmplen);
4855 }
4856 selector = strchr (method, ' ');
4857 if (selector != NULL)
4858 selector++;
4859
4860 category = strchr (method, '(');
4861
4862 if ((category != NULL) && (selector != NULL))
4863 {
4864 memcpy (tmp, method, (category - method));
4865 tmp[category - method] = ' ';
4866 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4867 completion_list_add_name (tracker, tmp,
4868 sym_text, sym_text_len, text, word);
4869 if (sym_text[0] == '[')
4870 completion_list_add_name (tracker, tmp + 1,
4871 sym_text, sym_text_len, text, word);
4872 }
4873
4874 if (selector != NULL)
4875 {
4876 /* Complete on selector only. */
4877 strcpy (tmp, selector);
4878 tmp2 = strchr (tmp, ']');
4879 if (tmp2 != NULL)
4880 *tmp2 = '\0';
4881
4882 completion_list_add_name (tracker, tmp,
4883 sym_text, sym_text_len, text, word);
4884 }
4885 }
4886
4887 /* Break the non-quoted text based on the characters which are in
4888 symbols. FIXME: This should probably be language-specific. */
4889
4890 static const char *
4891 language_search_unquoted_string (const char *text, const char *p)
4892 {
4893 for (; p > text; --p)
4894 {
4895 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4896 continue;
4897 else
4898 {
4899 if ((current_language->la_language == language_objc))
4900 {
4901 if (p[-1] == ':') /* Might be part of a method name. */
4902 continue;
4903 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4904 p -= 2; /* Beginning of a method name. */
4905 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4906 { /* Might be part of a method name. */
4907 const char *t = p;
4908
4909 /* Seeing a ' ' or a '(' is not conclusive evidence
4910 that we are in the middle of a method name. However,
4911 finding "-[" or "+[" should be pretty un-ambiguous.
4912 Unfortunately we have to find it now to decide. */
4913
4914 while (t > text)
4915 if (isalnum (t[-1]) || t[-1] == '_' ||
4916 t[-1] == ' ' || t[-1] == ':' ||
4917 t[-1] == '(' || t[-1] == ')')
4918 --t;
4919 else
4920 break;
4921
4922 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4923 p = t - 2; /* Method name detected. */
4924 /* Else we leave with p unchanged. */
4925 }
4926 }
4927 break;
4928 }
4929 }
4930 return p;
4931 }
4932
4933 static void
4934 completion_list_add_fields (completion_tracker &tracker,
4935 struct symbol *sym,
4936 const char *sym_text, int sym_text_len,
4937 const char *text, const char *word)
4938 {
4939 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4940 {
4941 struct type *t = SYMBOL_TYPE (sym);
4942 enum type_code c = TYPE_CODE (t);
4943 int j;
4944
4945 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4946 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4947 if (TYPE_FIELD_NAME (t, j))
4948 completion_list_add_name (tracker, TYPE_FIELD_NAME (t, j),
4949 sym_text, sym_text_len, text, word);
4950 }
4951 }
4952
4953 /* Add matching symbols from SYMTAB to the current completion list. */
4954
4955 static void
4956 add_symtab_completions (struct compunit_symtab *cust,
4957 completion_tracker &tracker,
4958 const char *sym_text, int sym_text_len,
4959 const char *text, const char *word,
4960 enum type_code code)
4961 {
4962 struct symbol *sym;
4963 const struct block *b;
4964 struct block_iterator iter;
4965 int i;
4966
4967 if (cust == NULL)
4968 return;
4969
4970 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4971 {
4972 QUIT;
4973 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4974 ALL_BLOCK_SYMBOLS (b, iter, sym)
4975 {
4976 if (code == TYPE_CODE_UNDEF
4977 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4978 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4979 completion_list_add_symbol (tracker, sym,
4980 sym_text, sym_text_len,
4981 text, word);
4982 }
4983 }
4984 }
4985
4986 void
4987 default_collect_symbol_completion_matches_break_on
4988 (completion_tracker &tracker,
4989 complete_symbol_mode mode,
4990 const char *text, const char *word,
4991 const char *break_on, enum type_code code)
4992 {
4993 /* Problem: All of the symbols have to be copied because readline
4994 frees them. I'm not going to worry about this; hopefully there
4995 won't be that many. */
4996
4997 struct symbol *sym;
4998 struct compunit_symtab *cust;
4999 struct minimal_symbol *msymbol;
5000 struct objfile *objfile;
5001 const struct block *b;
5002 const struct block *surrounding_static_block, *surrounding_global_block;
5003 struct block_iterator iter;
5004 /* The symbol we are completing on. Points in same buffer as text. */
5005 const char *sym_text;
5006 /* Length of sym_text. */
5007 int sym_text_len;
5008
5009 /* Now look for the symbol we are supposed to complete on. */
5010 if (mode == complete_symbol_mode::LINESPEC)
5011 sym_text = text;
5012 else
5013 {
5014 const char *p;
5015 char quote_found;
5016 const char *quote_pos = NULL;
5017
5018 /* First see if this is a quoted string. */
5019 quote_found = '\0';
5020 for (p = text; *p != '\0'; ++p)
5021 {
5022 if (quote_found != '\0')
5023 {
5024 if (*p == quote_found)
5025 /* Found close quote. */
5026 quote_found = '\0';
5027 else if (*p == '\\' && p[1] == quote_found)
5028 /* A backslash followed by the quote character
5029 doesn't end the string. */
5030 ++p;
5031 }
5032 else if (*p == '\'' || *p == '"')
5033 {
5034 quote_found = *p;
5035 quote_pos = p;
5036 }
5037 }
5038 if (quote_found == '\'')
5039 /* A string within single quotes can be a symbol, so complete on it. */
5040 sym_text = quote_pos + 1;
5041 else if (quote_found == '"')
5042 /* A double-quoted string is never a symbol, nor does it make sense
5043 to complete it any other way. */
5044 {
5045 return;
5046 }
5047 else
5048 {
5049 /* It is not a quoted string. Break it based on the characters
5050 which are in symbols. */
5051 while (p > text)
5052 {
5053 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5054 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5055 --p;
5056 else
5057 break;
5058 }
5059 sym_text = p;
5060 }
5061 }
5062
5063 sym_text_len = strlen (sym_text);
5064
5065 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5066
5067 if (current_language->la_language == language_cplus
5068 || current_language->la_language == language_fortran)
5069 {
5070 /* These languages may have parameters entered by user but they are never
5071 present in the partial symbol tables. */
5072
5073 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5074
5075 if (cs)
5076 sym_text_len = cs - sym_text;
5077 }
5078 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5079
5080 /* At this point scan through the misc symbol vectors and add each
5081 symbol you find to the list. Eventually we want to ignore
5082 anything that isn't a text symbol (everything else will be
5083 handled by the psymtab code below). */
5084
5085 if (code == TYPE_CODE_UNDEF)
5086 {
5087 ALL_MSYMBOLS (objfile, msymbol)
5088 {
5089 QUIT;
5090
5091 completion_list_add_msymbol (tracker,
5092 msymbol, sym_text, sym_text_len,
5093 text, word);
5094
5095 completion_list_objc_symbol (tracker,
5096 msymbol, sym_text, sym_text_len,
5097 text, word);
5098 }
5099 }
5100
5101 /* Add completions for all currently loaded symbol tables. */
5102 ALL_COMPUNITS (objfile, cust)
5103 add_symtab_completions (cust, tracker,
5104 sym_text, sym_text_len, text, word, code);
5105
5106 /* Look through the partial symtabs for all symbols which begin by
5107 matching SYM_TEXT. Expand all CUs that you find to the list. */
5108 expand_symtabs_matching (NULL,
5109 [&] (const char *name) /* symbol matcher */
5110 {
5111 return compare_symbol_name (name,
5112 sym_text,
5113 sym_text_len);
5114 },
5115 [&] (compunit_symtab *symtab) /* expansion notify */
5116 {
5117 add_symtab_completions (symtab,
5118 tracker,
5119 sym_text, sym_text_len,
5120 text, word, code);
5121 },
5122 ALL_DOMAIN);
5123
5124 /* Search upwards from currently selected frame (so that we can
5125 complete on local vars). Also catch fields of types defined in
5126 this places which match our text string. Only complete on types
5127 visible from current context. */
5128
5129 b = get_selected_block (0);
5130 surrounding_static_block = block_static_block (b);
5131 surrounding_global_block = block_global_block (b);
5132 if (surrounding_static_block != NULL)
5133 while (b != surrounding_static_block)
5134 {
5135 QUIT;
5136
5137 ALL_BLOCK_SYMBOLS (b, iter, sym)
5138 {
5139 if (code == TYPE_CODE_UNDEF)
5140 {
5141 completion_list_add_symbol (tracker, sym,
5142 sym_text, sym_text_len, text,
5143 word);
5144 completion_list_add_fields (tracker, sym,
5145 sym_text, sym_text_len, text,
5146 word);
5147 }
5148 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5149 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5150 completion_list_add_symbol (tracker, sym,
5151 sym_text, sym_text_len, text,
5152 word);
5153 }
5154
5155 /* Stop when we encounter an enclosing function. Do not stop for
5156 non-inlined functions - the locals of the enclosing function
5157 are in scope for a nested function. */
5158 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5159 break;
5160 b = BLOCK_SUPERBLOCK (b);
5161 }
5162
5163 /* Add fields from the file's types; symbols will be added below. */
5164
5165 if (code == TYPE_CODE_UNDEF)
5166 {
5167 if (surrounding_static_block != NULL)
5168 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5169 completion_list_add_fields (tracker, sym,
5170 sym_text, sym_text_len, text, word);
5171
5172 if (surrounding_global_block != NULL)
5173 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5174 completion_list_add_fields (tracker, sym,
5175 sym_text, sym_text_len, text, word);
5176 }
5177
5178 /* Skip macros if we are completing a struct tag -- arguable but
5179 usually what is expected. */
5180 if (current_language->la_macro_expansion == macro_expansion_c
5181 && code == TYPE_CODE_UNDEF)
5182 {
5183 struct macro_scope *scope;
5184
5185 /* This adds a macro's name to the current completion list. */
5186 auto add_macro_name = [&] (const char *macro_name,
5187 const macro_definition *,
5188 macro_source_file *,
5189 int)
5190 {
5191 completion_list_add_name (tracker, macro_name,
5192 sym_text, sym_text_len,
5193 text, word);
5194 };
5195
5196 /* Add any macros visible in the default scope. Note that this
5197 may yield the occasional wrong result, because an expression
5198 might be evaluated in a scope other than the default. For
5199 example, if the user types "break file:line if <TAB>", the
5200 resulting expression will be evaluated at "file:line" -- but
5201 at there does not seem to be a way to detect this at
5202 completion time. */
5203 scope = default_macro_scope ();
5204 if (scope)
5205 {
5206 macro_for_each_in_scope (scope->file, scope->line,
5207 add_macro_name);
5208 xfree (scope);
5209 }
5210
5211 /* User-defined macros are always visible. */
5212 macro_for_each (macro_user_macros, add_macro_name);
5213 }
5214 }
5215
5216 void
5217 default_collect_symbol_completion_matches (completion_tracker &tracker,
5218 complete_symbol_mode mode,
5219 const char *text, const char *word,
5220 enum type_code code)
5221 {
5222 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5223 text, word, "",
5224 code);
5225 }
5226
5227 /* Collect all symbols (regardless of class) which begin by matching
5228 TEXT. */
5229
5230 void
5231 collect_symbol_completion_matches (completion_tracker &tracker,
5232 complete_symbol_mode mode,
5233 const char *text, const char *word)
5234 {
5235 current_language->la_collect_symbol_completion_matches (tracker, mode,
5236 text, word,
5237 TYPE_CODE_UNDEF);
5238 }
5239
5240 /* Like collect_symbol_completion_matches, but only collect
5241 STRUCT_DOMAIN symbols whose type code is CODE. */
5242
5243 void
5244 collect_symbol_completion_matches_type (completion_tracker &tracker,
5245 const char *text, const char *word,
5246 enum type_code code)
5247 {
5248 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5249
5250 gdb_assert (code == TYPE_CODE_UNION
5251 || code == TYPE_CODE_STRUCT
5252 || code == TYPE_CODE_ENUM);
5253 current_language->la_collect_symbol_completion_matches (tracker, mode,
5254 text, word, code);
5255 }
5256
5257 /* Like collect_symbol_completion_matches, but collects a list of
5258 symbols defined in all source files named SRCFILE. */
5259
5260 void
5261 collect_file_symbol_completion_matches (completion_tracker &tracker,
5262 complete_symbol_mode mode,
5263 const char *text, const char *word,
5264 const char *srcfile)
5265 {
5266 /* The symbol we are completing on. Points in same buffer as text. */
5267 const char *sym_text;
5268 /* Length of sym_text. */
5269 int sym_text_len;
5270
5271 /* Now look for the symbol we are supposed to complete on.
5272 FIXME: This should be language-specific. */
5273 if (mode == complete_symbol_mode::LINESPEC)
5274 sym_text = text;
5275 else
5276 {
5277 const char *p;
5278 char quote_found;
5279 const char *quote_pos = NULL;
5280
5281 /* First see if this is a quoted string. */
5282 quote_found = '\0';
5283 for (p = text; *p != '\0'; ++p)
5284 {
5285 if (quote_found != '\0')
5286 {
5287 if (*p == quote_found)
5288 /* Found close quote. */
5289 quote_found = '\0';
5290 else if (*p == '\\' && p[1] == quote_found)
5291 /* A backslash followed by the quote character
5292 doesn't end the string. */
5293 ++p;
5294 }
5295 else if (*p == '\'' || *p == '"')
5296 {
5297 quote_found = *p;
5298 quote_pos = p;
5299 }
5300 }
5301 if (quote_found == '\'')
5302 /* A string within single quotes can be a symbol, so complete on it. */
5303 sym_text = quote_pos + 1;
5304 else if (quote_found == '"')
5305 /* A double-quoted string is never a symbol, nor does it make sense
5306 to complete it any other way. */
5307 {
5308 return;
5309 }
5310 else
5311 {
5312 /* Not a quoted string. */
5313 sym_text = language_search_unquoted_string (text, p);
5314 }
5315 }
5316
5317 sym_text_len = strlen (sym_text);
5318
5319 /* Go through symtabs for SRCFILE and check the externs and statics
5320 for symbols which match. */
5321 iterate_over_symtabs (srcfile, [&] (symtab *s)
5322 {
5323 add_symtab_completions (SYMTAB_COMPUNIT (s),
5324 tracker,
5325 sym_text, sym_text_len,
5326 text, word, TYPE_CODE_UNDEF);
5327 return false;
5328 });
5329 }
5330
5331 /* A helper function for make_source_files_completion_list. It adds
5332 another file name to a list of possible completions, growing the
5333 list as necessary. */
5334
5335 static void
5336 add_filename_to_list (const char *fname, const char *text, const char *word,
5337 completion_list *list)
5338 {
5339 char *newobj;
5340 size_t fnlen = strlen (fname);
5341
5342 if (word == text)
5343 {
5344 /* Return exactly fname. */
5345 newobj = (char *) xmalloc (fnlen + 5);
5346 strcpy (newobj, fname);
5347 }
5348 else if (word > text)
5349 {
5350 /* Return some portion of fname. */
5351 newobj = (char *) xmalloc (fnlen + 5);
5352 strcpy (newobj, fname + (word - text));
5353 }
5354 else
5355 {
5356 /* Return some of TEXT plus fname. */
5357 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5358 strncpy (newobj, word, text - word);
5359 newobj[text - word] = '\0';
5360 strcat (newobj, fname);
5361 }
5362 list->emplace_back (newobj);
5363 }
5364
5365 static int
5366 not_interesting_fname (const char *fname)
5367 {
5368 static const char *illegal_aliens[] = {
5369 "_globals_", /* inserted by coff_symtab_read */
5370 NULL
5371 };
5372 int i;
5373
5374 for (i = 0; illegal_aliens[i]; i++)
5375 {
5376 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5377 return 1;
5378 }
5379 return 0;
5380 }
5381
5382 /* An object of this type is passed as the user_data argument to
5383 map_partial_symbol_filenames. */
5384 struct add_partial_filename_data
5385 {
5386 struct filename_seen_cache *filename_seen_cache;
5387 const char *text;
5388 const char *word;
5389 int text_len;
5390 completion_list *list;
5391 };
5392
5393 /* A callback for map_partial_symbol_filenames. */
5394
5395 static void
5396 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5397 void *user_data)
5398 {
5399 struct add_partial_filename_data *data
5400 = (struct add_partial_filename_data *) user_data;
5401
5402 if (not_interesting_fname (filename))
5403 return;
5404 if (!data->filename_seen_cache->seen (filename)
5405 && filename_ncmp (filename, data->text, data->text_len) == 0)
5406 {
5407 /* This file matches for a completion; add it to the
5408 current list of matches. */
5409 add_filename_to_list (filename, data->text, data->word, data->list);
5410 }
5411 else
5412 {
5413 const char *base_name = lbasename (filename);
5414
5415 if (base_name != filename
5416 && !data->filename_seen_cache->seen (base_name)
5417 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5418 add_filename_to_list (base_name, data->text, data->word, data->list);
5419 }
5420 }
5421
5422 /* Return a list of all source files whose names begin with matching
5423 TEXT. The file names are looked up in the symbol tables of this
5424 program. */
5425
5426 completion_list
5427 make_source_files_completion_list (const char *text, const char *word)
5428 {
5429 struct compunit_symtab *cu;
5430 struct symtab *s;
5431 struct objfile *objfile;
5432 size_t text_len = strlen (text);
5433 completion_list list;
5434 const char *base_name;
5435 struct add_partial_filename_data datum;
5436
5437 if (!have_full_symbols () && !have_partial_symbols ())
5438 return list;
5439
5440 filename_seen_cache filenames_seen;
5441
5442 ALL_FILETABS (objfile, cu, s)
5443 {
5444 if (not_interesting_fname (s->filename))
5445 continue;
5446 if (!filenames_seen.seen (s->filename)
5447 && filename_ncmp (s->filename, text, text_len) == 0)
5448 {
5449 /* This file matches for a completion; add it to the current
5450 list of matches. */
5451 add_filename_to_list (s->filename, text, word, &list);
5452 }
5453 else
5454 {
5455 /* NOTE: We allow the user to type a base name when the
5456 debug info records leading directories, but not the other
5457 way around. This is what subroutines of breakpoint
5458 command do when they parse file names. */
5459 base_name = lbasename (s->filename);
5460 if (base_name != s->filename
5461 && !filenames_seen.seen (base_name)
5462 && filename_ncmp (base_name, text, text_len) == 0)
5463 add_filename_to_list (base_name, text, word, &list);
5464 }
5465 }
5466
5467 datum.filename_seen_cache = &filenames_seen;
5468 datum.text = text;
5469 datum.word = word;
5470 datum.text_len = text_len;
5471 datum.list = &list;
5472 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5473 0 /*need_fullname*/);
5474
5475 return list;
5476 }
5477 \f
5478 /* Track MAIN */
5479
5480 /* Return the "main_info" object for the current program space. If
5481 the object has not yet been created, create it and fill in some
5482 default values. */
5483
5484 static struct main_info *
5485 get_main_info (void)
5486 {
5487 struct main_info *info
5488 = (struct main_info *) program_space_data (current_program_space,
5489 main_progspace_key);
5490
5491 if (info == NULL)
5492 {
5493 /* It may seem strange to store the main name in the progspace
5494 and also in whatever objfile happens to see a main name in
5495 its debug info. The reason for this is mainly historical:
5496 gdb returned "main" as the name even if no function named
5497 "main" was defined the program; and this approach lets us
5498 keep compatibility. */
5499 info = XCNEW (struct main_info);
5500 info->language_of_main = language_unknown;
5501 set_program_space_data (current_program_space, main_progspace_key,
5502 info);
5503 }
5504
5505 return info;
5506 }
5507
5508 /* A cleanup to destroy a struct main_info when a progspace is
5509 destroyed. */
5510
5511 static void
5512 main_info_cleanup (struct program_space *pspace, void *data)
5513 {
5514 struct main_info *info = (struct main_info *) data;
5515
5516 if (info != NULL)
5517 xfree (info->name_of_main);
5518 xfree (info);
5519 }
5520
5521 static void
5522 set_main_name (const char *name, enum language lang)
5523 {
5524 struct main_info *info = get_main_info ();
5525
5526 if (info->name_of_main != NULL)
5527 {
5528 xfree (info->name_of_main);
5529 info->name_of_main = NULL;
5530 info->language_of_main = language_unknown;
5531 }
5532 if (name != NULL)
5533 {
5534 info->name_of_main = xstrdup (name);
5535 info->language_of_main = lang;
5536 }
5537 }
5538
5539 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5540 accordingly. */
5541
5542 static void
5543 find_main_name (void)
5544 {
5545 const char *new_main_name;
5546 struct objfile *objfile;
5547
5548 /* First check the objfiles to see whether a debuginfo reader has
5549 picked up the appropriate main name. Historically the main name
5550 was found in a more or less random way; this approach instead
5551 relies on the order of objfile creation -- which still isn't
5552 guaranteed to get the correct answer, but is just probably more
5553 accurate. */
5554 ALL_OBJFILES (objfile)
5555 {
5556 if (objfile->per_bfd->name_of_main != NULL)
5557 {
5558 set_main_name (objfile->per_bfd->name_of_main,
5559 objfile->per_bfd->language_of_main);
5560 return;
5561 }
5562 }
5563
5564 /* Try to see if the main procedure is in Ada. */
5565 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5566 be to add a new method in the language vector, and call this
5567 method for each language until one of them returns a non-empty
5568 name. This would allow us to remove this hard-coded call to
5569 an Ada function. It is not clear that this is a better approach
5570 at this point, because all methods need to be written in a way
5571 such that false positives never be returned. For instance, it is
5572 important that a method does not return a wrong name for the main
5573 procedure if the main procedure is actually written in a different
5574 language. It is easy to guaranty this with Ada, since we use a
5575 special symbol generated only when the main in Ada to find the name
5576 of the main procedure. It is difficult however to see how this can
5577 be guarantied for languages such as C, for instance. This suggests
5578 that order of call for these methods becomes important, which means
5579 a more complicated approach. */
5580 new_main_name = ada_main_name ();
5581 if (new_main_name != NULL)
5582 {
5583 set_main_name (new_main_name, language_ada);
5584 return;
5585 }
5586
5587 new_main_name = d_main_name ();
5588 if (new_main_name != NULL)
5589 {
5590 set_main_name (new_main_name, language_d);
5591 return;
5592 }
5593
5594 new_main_name = go_main_name ();
5595 if (new_main_name != NULL)
5596 {
5597 set_main_name (new_main_name, language_go);
5598 return;
5599 }
5600
5601 new_main_name = pascal_main_name ();
5602 if (new_main_name != NULL)
5603 {
5604 set_main_name (new_main_name, language_pascal);
5605 return;
5606 }
5607
5608 /* The languages above didn't identify the name of the main procedure.
5609 Fallback to "main". */
5610 set_main_name ("main", language_unknown);
5611 }
5612
5613 char *
5614 main_name (void)
5615 {
5616 struct main_info *info = get_main_info ();
5617
5618 if (info->name_of_main == NULL)
5619 find_main_name ();
5620
5621 return info->name_of_main;
5622 }
5623
5624 /* Return the language of the main function. If it is not known,
5625 return language_unknown. */
5626
5627 enum language
5628 main_language (void)
5629 {
5630 struct main_info *info = get_main_info ();
5631
5632 if (info->name_of_main == NULL)
5633 find_main_name ();
5634
5635 return info->language_of_main;
5636 }
5637
5638 /* Handle ``executable_changed'' events for the symtab module. */
5639
5640 static void
5641 symtab_observer_executable_changed (void)
5642 {
5643 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5644 set_main_name (NULL, language_unknown);
5645 }
5646
5647 /* Return 1 if the supplied producer string matches the ARM RealView
5648 compiler (armcc). */
5649
5650 int
5651 producer_is_realview (const char *producer)
5652 {
5653 static const char *const arm_idents[] = {
5654 "ARM C Compiler, ADS",
5655 "Thumb C Compiler, ADS",
5656 "ARM C++ Compiler, ADS",
5657 "Thumb C++ Compiler, ADS",
5658 "ARM/Thumb C/C++ Compiler, RVCT",
5659 "ARM C/C++ Compiler, RVCT"
5660 };
5661 int i;
5662
5663 if (producer == NULL)
5664 return 0;
5665
5666 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5667 if (startswith (producer, arm_idents[i]))
5668 return 1;
5669
5670 return 0;
5671 }
5672
5673 \f
5674
5675 /* The next index to hand out in response to a registration request. */
5676
5677 static int next_aclass_value = LOC_FINAL_VALUE;
5678
5679 /* The maximum number of "aclass" registrations we support. This is
5680 constant for convenience. */
5681 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5682
5683 /* The objects representing the various "aclass" values. The elements
5684 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5685 elements are those registered at gdb initialization time. */
5686
5687 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5688
5689 /* The globally visible pointer. This is separate from 'symbol_impl'
5690 so that it can be const. */
5691
5692 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5693
5694 /* Make sure we saved enough room in struct symbol. */
5695
5696 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5697
5698 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5699 is the ops vector associated with this index. This returns the new
5700 index, which should be used as the aclass_index field for symbols
5701 of this type. */
5702
5703 int
5704 register_symbol_computed_impl (enum address_class aclass,
5705 const struct symbol_computed_ops *ops)
5706 {
5707 int result = next_aclass_value++;
5708
5709 gdb_assert (aclass == LOC_COMPUTED);
5710 gdb_assert (result < MAX_SYMBOL_IMPLS);
5711 symbol_impl[result].aclass = aclass;
5712 symbol_impl[result].ops_computed = ops;
5713
5714 /* Sanity check OPS. */
5715 gdb_assert (ops != NULL);
5716 gdb_assert (ops->tracepoint_var_ref != NULL);
5717 gdb_assert (ops->describe_location != NULL);
5718 gdb_assert (ops->get_symbol_read_needs != NULL);
5719 gdb_assert (ops->read_variable != NULL);
5720
5721 return result;
5722 }
5723
5724 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5725 OPS is the ops vector associated with this index. This returns the
5726 new index, which should be used as the aclass_index field for symbols
5727 of this type. */
5728
5729 int
5730 register_symbol_block_impl (enum address_class aclass,
5731 const struct symbol_block_ops *ops)
5732 {
5733 int result = next_aclass_value++;
5734
5735 gdb_assert (aclass == LOC_BLOCK);
5736 gdb_assert (result < MAX_SYMBOL_IMPLS);
5737 symbol_impl[result].aclass = aclass;
5738 symbol_impl[result].ops_block = ops;
5739
5740 /* Sanity check OPS. */
5741 gdb_assert (ops != NULL);
5742 gdb_assert (ops->find_frame_base_location != NULL);
5743
5744 return result;
5745 }
5746
5747 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5748 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5749 this index. This returns the new index, which should be used as
5750 the aclass_index field for symbols of this type. */
5751
5752 int
5753 register_symbol_register_impl (enum address_class aclass,
5754 const struct symbol_register_ops *ops)
5755 {
5756 int result = next_aclass_value++;
5757
5758 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5759 gdb_assert (result < MAX_SYMBOL_IMPLS);
5760 symbol_impl[result].aclass = aclass;
5761 symbol_impl[result].ops_register = ops;
5762
5763 return result;
5764 }
5765
5766 /* Initialize elements of 'symbol_impl' for the constants in enum
5767 address_class. */
5768
5769 static void
5770 initialize_ordinary_address_classes (void)
5771 {
5772 int i;
5773
5774 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5775 symbol_impl[i].aclass = (enum address_class) i;
5776 }
5777
5778 \f
5779
5780 /* Helper function to initialize the fields of an objfile-owned symbol.
5781 It assumed that *SYM is already all zeroes. */
5782
5783 static void
5784 initialize_objfile_symbol_1 (struct symbol *sym)
5785 {
5786 SYMBOL_OBJFILE_OWNED (sym) = 1;
5787 SYMBOL_SECTION (sym) = -1;
5788 }
5789
5790 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5791
5792 void
5793 initialize_objfile_symbol (struct symbol *sym)
5794 {
5795 memset (sym, 0, sizeof (*sym));
5796 initialize_objfile_symbol_1 (sym);
5797 }
5798
5799 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5800 obstack. */
5801
5802 struct symbol *
5803 allocate_symbol (struct objfile *objfile)
5804 {
5805 struct symbol *result;
5806
5807 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5808 initialize_objfile_symbol_1 (result);
5809
5810 return result;
5811 }
5812
5813 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5814 obstack. */
5815
5816 struct template_symbol *
5817 allocate_template_symbol (struct objfile *objfile)
5818 {
5819 struct template_symbol *result;
5820
5821 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5822 initialize_objfile_symbol_1 (&result->base);
5823
5824 return result;
5825 }
5826
5827 /* See symtab.h. */
5828
5829 struct objfile *
5830 symbol_objfile (const struct symbol *symbol)
5831 {
5832 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5833 return SYMTAB_OBJFILE (symbol->owner.symtab);
5834 }
5835
5836 /* See symtab.h. */
5837
5838 struct gdbarch *
5839 symbol_arch (const struct symbol *symbol)
5840 {
5841 if (!SYMBOL_OBJFILE_OWNED (symbol))
5842 return symbol->owner.arch;
5843 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5844 }
5845
5846 /* See symtab.h. */
5847
5848 struct symtab *
5849 symbol_symtab (const struct symbol *symbol)
5850 {
5851 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5852 return symbol->owner.symtab;
5853 }
5854
5855 /* See symtab.h. */
5856
5857 void
5858 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5859 {
5860 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5861 symbol->owner.symtab = symtab;
5862 }
5863
5864 \f
5865
5866 void
5867 _initialize_symtab (void)
5868 {
5869 initialize_ordinary_address_classes ();
5870
5871 main_progspace_key
5872 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5873
5874 symbol_cache_key
5875 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5876
5877 add_info ("variables", info_variables_command, _("\
5878 All global and static variable names, or those matching REGEXP."));
5879 if (dbx_commands)
5880 add_com ("whereis", class_info, info_variables_command, _("\
5881 All global and static variable names, or those matching REGEXP."));
5882
5883 add_info ("functions", info_functions_command,
5884 _("All function names, or those matching REGEXP."));
5885
5886 /* FIXME: This command has at least the following problems:
5887 1. It prints builtin types (in a very strange and confusing fashion).
5888 2. It doesn't print right, e.g. with
5889 typedef struct foo *FOO
5890 type_print prints "FOO" when we want to make it (in this situation)
5891 print "struct foo *".
5892 I also think "ptype" or "whatis" is more likely to be useful (but if
5893 there is much disagreement "info types" can be fixed). */
5894 add_info ("types", info_types_command,
5895 _("All type names, or those matching REGEXP."));
5896
5897 add_info ("sources", info_sources_command,
5898 _("Source files in the program."));
5899
5900 add_com ("rbreak", class_breakpoint, rbreak_command,
5901 _("Set a breakpoint for all functions matching REGEXP."));
5902
5903 add_setshow_enum_cmd ("multiple-symbols", no_class,
5904 multiple_symbols_modes, &multiple_symbols_mode,
5905 _("\
5906 Set the debugger behavior when more than one symbol are possible matches\n\
5907 in an expression."), _("\
5908 Show how the debugger handles ambiguities in expressions."), _("\
5909 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5910 NULL, NULL, &setlist, &showlist);
5911
5912 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5913 &basenames_may_differ, _("\
5914 Set whether a source file may have multiple base names."), _("\
5915 Show whether a source file may have multiple base names."), _("\
5916 (A \"base name\" is the name of a file with the directory part removed.\n\
5917 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5918 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5919 before comparing them. Canonicalization is an expensive operation,\n\
5920 but it allows the same file be known by more than one base name.\n\
5921 If not set (the default), all source files are assumed to have just\n\
5922 one base name, and gdb will do file name comparisons more efficiently."),
5923 NULL, NULL,
5924 &setlist, &showlist);
5925
5926 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5927 _("Set debugging of symbol table creation."),
5928 _("Show debugging of symbol table creation."), _("\
5929 When enabled (non-zero), debugging messages are printed when building\n\
5930 symbol tables. A value of 1 (one) normally provides enough information.\n\
5931 A value greater than 1 provides more verbose information."),
5932 NULL,
5933 NULL,
5934 &setdebuglist, &showdebuglist);
5935
5936 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5937 _("\
5938 Set debugging of symbol lookup."), _("\
5939 Show debugging of symbol lookup."), _("\
5940 When enabled (non-zero), symbol lookups are logged."),
5941 NULL, NULL,
5942 &setdebuglist, &showdebuglist);
5943
5944 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5945 &new_symbol_cache_size,
5946 _("Set the size of the symbol cache."),
5947 _("Show the size of the symbol cache."), _("\
5948 The size of the symbol cache.\n\
5949 If zero then the symbol cache is disabled."),
5950 set_symbol_cache_size_handler, NULL,
5951 &maintenance_set_cmdlist,
5952 &maintenance_show_cmdlist);
5953
5954 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5955 _("Dump the symbol cache for each program space."),
5956 &maintenanceprintlist);
5957
5958 add_cmd ("symbol-cache-statistics", class_maintenance,
5959 maintenance_print_symbol_cache_statistics,
5960 _("Print symbol cache statistics for each program space."),
5961 &maintenanceprintlist);
5962
5963 add_cmd ("flush-symbol-cache", class_maintenance,
5964 maintenance_flush_symbol_cache,
5965 _("Flush the symbol cache for each program space."),
5966 &maintenancelist);
5967
5968 observer_attach_executable_changed (symtab_observer_executable_changed);
5969 observer_attach_new_objfile (symtab_new_objfile_observer);
5970 observer_attach_free_objfile (symtab_free_objfile_observer);
5971 }
This page took 0.21049 seconds and 4 git commands to generate.