4e03cb7fbd7a9b6c89aef6815ecda2b9c6fa26d8
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct block_symbol
72 lookup_symbol_aux (const char *name,
73 const struct block *block,
74 const domain_enum domain,
75 enum language language,
76 struct field_of_this_result *);
77
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language);
83
84 static struct block_symbol
85 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 const char *name, const domain_enum domain);
87
88 /* See symtab.h. */
89 const struct block_symbol null_block_symbol = { NULL, NULL };
90
91 extern initialize_file_ftype _initialize_symtab;
92
93 /* Program space key for finding name and language of "main". */
94
95 static const struct program_space_data *main_progspace_key;
96
97 /* Type of the data stored on the program space. */
98
99 struct main_info
100 {
101 /* Name of "main". */
102
103 char *name_of_main;
104
105 /* Language of "main". */
106
107 enum language language_of_main;
108 };
109
110 /* Program space key for finding its symbol cache. */
111
112 static const struct program_space_data *symbol_cache_key;
113
114 /* The default symbol cache size.
115 There is no extra cpu cost for large N (except when flushing the cache,
116 which is rare). The value here is just a first attempt. A better default
117 value may be higher or lower. A prime number can make up for a bad hash
118 computation, so that's why the number is what it is. */
119 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
120
121 /* The maximum symbol cache size.
122 There's no method to the decision of what value to use here, other than
123 there's no point in allowing a user typo to make gdb consume all memory. */
124 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
125
126 /* symbol_cache_lookup returns this if a previous lookup failed to find the
127 symbol in any objfile. */
128 #define SYMBOL_LOOKUP_FAILED \
129 ((struct block_symbol) {(struct symbol *) 1, NULL})
130 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
131
132 /* Recording lookups that don't find the symbol is just as important, if not
133 more so, than recording found symbols. */
134
135 enum symbol_cache_slot_state
136 {
137 SYMBOL_SLOT_UNUSED,
138 SYMBOL_SLOT_NOT_FOUND,
139 SYMBOL_SLOT_FOUND
140 };
141
142 struct symbol_cache_slot
143 {
144 enum symbol_cache_slot_state state;
145
146 /* The objfile that was current when the symbol was looked up.
147 This is only needed for global blocks, but for simplicity's sake
148 we allocate the space for both. If data shows the extra space used
149 for static blocks is a problem, we can split things up then.
150
151 Global blocks need cache lookup to include the objfile context because
152 we need to account for gdbarch_iterate_over_objfiles_in_search_order
153 which can traverse objfiles in, effectively, any order, depending on
154 the current objfile, thus affecting which symbol is found. Normally,
155 only the current objfile is searched first, and then the rest are
156 searched in recorded order; but putting cache lookup inside
157 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
158 Instead we just make the current objfile part of the context of
159 cache lookup. This means we can record the same symbol multiple times,
160 each with a different "current objfile" that was in effect when the
161 lookup was saved in the cache, but cache space is pretty cheap. */
162 const struct objfile *objfile_context;
163
164 union
165 {
166 struct block_symbol found;
167 struct
168 {
169 char *name;
170 domain_enum domain;
171 } not_found;
172 } value;
173 };
174
175 /* Symbols don't specify global vs static block.
176 So keep them in separate caches. */
177
178 struct block_symbol_cache
179 {
180 unsigned int hits;
181 unsigned int misses;
182 unsigned int collisions;
183
184 /* SYMBOLS is a variable length array of this size.
185 One can imagine that in general one cache (global/static) should be a
186 fraction of the size of the other, but there's no data at the moment
187 on which to decide. */
188 unsigned int size;
189
190 struct symbol_cache_slot symbols[1];
191 };
192
193 /* The symbol cache.
194
195 Searching for symbols in the static and global blocks over multiple objfiles
196 again and again can be slow, as can searching very big objfiles. This is a
197 simple cache to improve symbol lookup performance, which is critical to
198 overall gdb performance.
199
200 Symbols are hashed on the name, its domain, and block.
201 They are also hashed on their objfile for objfile-specific lookups. */
202
203 struct symbol_cache
204 {
205 struct block_symbol_cache *global_symbols;
206 struct block_symbol_cache *static_symbols;
207 };
208
209 /* When non-zero, print debugging messages related to symtab creation. */
210 unsigned int symtab_create_debug = 0;
211
212 /* When non-zero, print debugging messages related to symbol lookup. */
213 unsigned int symbol_lookup_debug = 0;
214
215 /* The size of the cache is staged here. */
216 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
217
218 /* The current value of the symbol cache size.
219 This is saved so that if the user enters a value too big we can restore
220 the original value from here. */
221 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222
223 /* Non-zero if a file may be known by two different basenames.
224 This is the uncommon case, and significantly slows down gdb.
225 Default set to "off" to not slow down the common case. */
226 int basenames_may_differ = 0;
227
228 /* Allow the user to configure the debugger behavior with respect
229 to multiple-choice menus when more than one symbol matches during
230 a symbol lookup. */
231
232 const char multiple_symbols_ask[] = "ask";
233 const char multiple_symbols_all[] = "all";
234 const char multiple_symbols_cancel[] = "cancel";
235 static const char *const multiple_symbols_modes[] =
236 {
237 multiple_symbols_ask,
238 multiple_symbols_all,
239 multiple_symbols_cancel,
240 NULL
241 };
242 static const char *multiple_symbols_mode = multiple_symbols_all;
243
244 /* Read-only accessor to AUTO_SELECT_MODE. */
245
246 const char *
247 multiple_symbols_select_mode (void)
248 {
249 return multiple_symbols_mode;
250 }
251
252 /* Return the name of a domain_enum. */
253
254 const char *
255 domain_name (domain_enum e)
256 {
257 switch (e)
258 {
259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
266 }
267 }
268
269 /* Return the name of a search_domain . */
270
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274 switch (e)
275 {
276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN: return "TYPES_DOMAIN";
279 case ALL_DOMAIN: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
281 }
282 }
283
284 /* See symtab.h. */
285
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust);
293 }
294
295 /* See symtab.h. */
296
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300 struct symtab *symtab = compunit_primary_filetab (cust);
301
302 /* The language of the compunit symtab is the language of its primary
303 source file. */
304 return SYMTAB_LANGUAGE (symtab);
305 }
306
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
310 otherwise. */
311
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315 int len = strlen (filename);
316 size_t search_len = strlen (search_name);
317
318 if (len < search_len)
319 return 0;
320
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323 return 0;
324
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
327 directory separator.
328
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
333
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len == search_len
339 || (!IS_ABSOLUTE_PATH (search_name)
340 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 || (HAS_DRIVE_SPEC (filename)
342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344
345 /* Same as compare_filenames_for_search, but for glob-style patterns.
346 Heads up on the order of the arguments. They match the order of
347 compare_filenames_for_search, but it's the opposite of the order of
348 arguments to gdb_filename_fnmatch. */
349
350 int
351 compare_glob_filenames_for_search (const char *filename,
352 const char *search_name)
353 {
354 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
355 all /s have to be explicitly specified. */
356 int file_path_elements = count_path_elements (filename);
357 int search_path_elements = count_path_elements (search_name);
358
359 if (search_path_elements > file_path_elements)
360 return 0;
361
362 if (IS_ABSOLUTE_PATH (search_name))
363 {
364 return (search_path_elements == file_path_elements
365 && gdb_filename_fnmatch (search_name, filename,
366 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
367 }
368
369 {
370 const char *file_to_compare
371 = strip_leading_path_elements (filename,
372 file_path_elements - search_path_elements);
373
374 return gdb_filename_fnmatch (search_name, file_to_compare,
375 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
376 }
377 }
378
379 /* Check for a symtab of a specific name by searching some symtabs.
380 This is a helper function for callbacks of iterate_over_symtabs.
381
382 If NAME is not absolute, then REAL_PATH is NULL
383 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
384
385 The return value, NAME, REAL_PATH, CALLBACK, and DATA
386 are identical to the `map_symtabs_matching_filename' method of
387 quick_symbol_functions.
388
389 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
390 Each symtab within the specified compunit symtab is also searched.
391 AFTER_LAST is one past the last compunit symtab to search; NULL means to
392 search until the end of the list. */
393
394 int
395 iterate_over_some_symtabs (const char *name,
396 const char *real_path,
397 int (*callback) (struct symtab *symtab,
398 void *data),
399 void *data,
400 struct compunit_symtab *first,
401 struct compunit_symtab *after_last)
402 {
403 struct compunit_symtab *cust;
404 struct symtab *s;
405 const char* base_name = lbasename (name);
406
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408 {
409 ALL_COMPUNIT_FILETABS (cust, s)
410 {
411 if (compare_filenames_for_search (s->filename, name))
412 {
413 if (callback (s, data))
414 return 1;
415 continue;
416 }
417
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 continue;
423
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 {
426 if (callback (s, data))
427 return 1;
428 continue;
429 }
430
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
434 {
435 const char *fullname = symtab_to_fullname (s);
436
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
440 {
441 if (callback (s, data))
442 return 1;
443 continue;
444 }
445 }
446 }
447 }
448
449 return 0;
450 }
451
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
455
456 Calls CALLBACK with each symtab that is found and with the supplied
457 DATA. If CALLBACK returns true, the search stops. */
458
459 void
460 iterate_over_symtabs (const char *name,
461 int (*callback) (struct symtab *symtab,
462 void *data),
463 void *data)
464 {
465 struct objfile *objfile;
466 char *real_path = NULL;
467 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
468
469 /* Here we are interested in canonicalizing an absolute path, not
470 absolutizing a relative path. */
471 if (IS_ABSOLUTE_PATH (name))
472 {
473 real_path = gdb_realpath (name);
474 make_cleanup (xfree, real_path);
475 gdb_assert (IS_ABSOLUTE_PATH (real_path));
476 }
477
478 ALL_OBJFILES (objfile)
479 {
480 if (iterate_over_some_symtabs (name, real_path, callback, data,
481 objfile->compunit_symtabs, NULL))
482 {
483 do_cleanups (cleanups);
484 return;
485 }
486 }
487
488 /* Same search rules as above apply here, but now we look thru the
489 psymtabs. */
490
491 ALL_OBJFILES (objfile)
492 {
493 if (objfile->sf
494 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
495 name,
496 real_path,
497 callback,
498 data))
499 {
500 do_cleanups (cleanups);
501 return;
502 }
503 }
504
505 do_cleanups (cleanups);
506 }
507
508 /* The callback function used by lookup_symtab. */
509
510 static int
511 lookup_symtab_callback (struct symtab *symtab, void *data)
512 {
513 struct symtab **result_ptr = (struct symtab **) data;
514
515 *result_ptr = symtab;
516 return 1;
517 }
518
519 /* A wrapper for iterate_over_symtabs that returns the first matching
520 symtab, or NULL. */
521
522 struct symtab *
523 lookup_symtab (const char *name)
524 {
525 struct symtab *result = NULL;
526
527 iterate_over_symtabs (name, lookup_symtab_callback, &result);
528 return result;
529 }
530
531 \f
532 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
533 full method name, which consist of the class name (from T), the unadorned
534 method name from METHOD_ID, and the signature for the specific overload,
535 specified by SIGNATURE_ID. Note that this function is g++ specific. */
536
537 char *
538 gdb_mangle_name (struct type *type, int method_id, int signature_id)
539 {
540 int mangled_name_len;
541 char *mangled_name;
542 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
543 struct fn_field *method = &f[signature_id];
544 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
545 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
546 const char *newname = type_name_no_tag (type);
547
548 /* Does the form of physname indicate that it is the full mangled name
549 of a constructor (not just the args)? */
550 int is_full_physname_constructor;
551
552 int is_constructor;
553 int is_destructor = is_destructor_name (physname);
554 /* Need a new type prefix. */
555 const char *const_prefix = method->is_const ? "C" : "";
556 const char *volatile_prefix = method->is_volatile ? "V" : "";
557 char buf[20];
558 int len = (newname == NULL ? 0 : strlen (newname));
559
560 /* Nothing to do if physname already contains a fully mangled v3 abi name
561 or an operator name. */
562 if ((physname[0] == '_' && physname[1] == 'Z')
563 || is_operator_name (field_name))
564 return xstrdup (physname);
565
566 is_full_physname_constructor = is_constructor_name (physname);
567
568 is_constructor = is_full_physname_constructor
569 || (newname && strcmp (field_name, newname) == 0);
570
571 if (!is_destructor)
572 is_destructor = (startswith (physname, "__dt"));
573
574 if (is_destructor || is_full_physname_constructor)
575 {
576 mangled_name = (char *) xmalloc (strlen (physname) + 1);
577 strcpy (mangled_name, physname);
578 return mangled_name;
579 }
580
581 if (len == 0)
582 {
583 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
584 }
585 else if (physname[0] == 't' || physname[0] == 'Q')
586 {
587 /* The physname for template and qualified methods already includes
588 the class name. */
589 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
590 newname = NULL;
591 len = 0;
592 }
593 else
594 {
595 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
596 volatile_prefix, len);
597 }
598 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
599 + strlen (buf) + len + strlen (physname) + 1);
600
601 mangled_name = (char *) xmalloc (mangled_name_len);
602 if (is_constructor)
603 mangled_name[0] = '\0';
604 else
605 strcpy (mangled_name, field_name);
606
607 strcat (mangled_name, buf);
608 /* If the class doesn't have a name, i.e. newname NULL, then we just
609 mangle it using 0 for the length of the class. Thus it gets mangled
610 as something starting with `::' rather than `classname::'. */
611 if (newname != NULL)
612 strcat (mangled_name, newname);
613
614 strcat (mangled_name, physname);
615 return (mangled_name);
616 }
617
618 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
619 correctly allocated. */
620
621 void
622 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
623 const char *name,
624 struct obstack *obstack)
625 {
626 if (gsymbol->language == language_ada)
627 {
628 if (name == NULL)
629 {
630 gsymbol->ada_mangled = 0;
631 gsymbol->language_specific.obstack = obstack;
632 }
633 else
634 {
635 gsymbol->ada_mangled = 1;
636 gsymbol->language_specific.demangled_name = name;
637 }
638 }
639 else
640 gsymbol->language_specific.demangled_name = name;
641 }
642
643 /* Return the demangled name of GSYMBOL. */
644
645 const char *
646 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
647 {
648 if (gsymbol->language == language_ada)
649 {
650 if (!gsymbol->ada_mangled)
651 return NULL;
652 /* Fall through. */
653 }
654
655 return gsymbol->language_specific.demangled_name;
656 }
657
658 \f
659 /* Initialize the language dependent portion of a symbol
660 depending upon the language for the symbol. */
661
662 void
663 symbol_set_language (struct general_symbol_info *gsymbol,
664 enum language language,
665 struct obstack *obstack)
666 {
667 gsymbol->language = language;
668 if (gsymbol->language == language_cplus
669 || gsymbol->language == language_d
670 || gsymbol->language == language_go
671 || gsymbol->language == language_objc
672 || gsymbol->language == language_fortran)
673 {
674 symbol_set_demangled_name (gsymbol, NULL, obstack);
675 }
676 else if (gsymbol->language == language_ada)
677 {
678 gdb_assert (gsymbol->ada_mangled == 0);
679 gsymbol->language_specific.obstack = obstack;
680 }
681 else
682 {
683 memset (&gsymbol->language_specific, 0,
684 sizeof (gsymbol->language_specific));
685 }
686 }
687
688 /* Functions to initialize a symbol's mangled name. */
689
690 /* Objects of this type are stored in the demangled name hash table. */
691 struct demangled_name_entry
692 {
693 const char *mangled;
694 char demangled[1];
695 };
696
697 /* Hash function for the demangled name hash. */
698
699 static hashval_t
700 hash_demangled_name_entry (const void *data)
701 {
702 const struct demangled_name_entry *e
703 = (const struct demangled_name_entry *) data;
704
705 return htab_hash_string (e->mangled);
706 }
707
708 /* Equality function for the demangled name hash. */
709
710 static int
711 eq_demangled_name_entry (const void *a, const void *b)
712 {
713 const struct demangled_name_entry *da
714 = (const struct demangled_name_entry *) a;
715 const struct demangled_name_entry *db
716 = (const struct demangled_name_entry *) b;
717
718 return strcmp (da->mangled, db->mangled) == 0;
719 }
720
721 /* Create the hash table used for demangled names. Each hash entry is
722 a pair of strings; one for the mangled name and one for the demangled
723 name. The entry is hashed via just the mangled name. */
724
725 static void
726 create_demangled_names_hash (struct objfile *objfile)
727 {
728 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
729 The hash table code will round this up to the next prime number.
730 Choosing a much larger table size wastes memory, and saves only about
731 1% in symbol reading. */
732
733 objfile->per_bfd->demangled_names_hash = htab_create_alloc
734 (256, hash_demangled_name_entry, eq_demangled_name_entry,
735 NULL, xcalloc, xfree);
736 }
737
738 /* Try to determine the demangled name for a symbol, based on the
739 language of that symbol. If the language is set to language_auto,
740 it will attempt to find any demangling algorithm that works and
741 then set the language appropriately. The returned name is allocated
742 by the demangler and should be xfree'd. */
743
744 static char *
745 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
746 const char *mangled)
747 {
748 char *demangled = NULL;
749 int i;
750 int recognized;
751
752 if (gsymbol->language == language_unknown)
753 gsymbol->language = language_auto;
754
755 if (gsymbol->language != language_auto)
756 {
757 const struct language_defn *lang = language_def (gsymbol->language);
758
759 language_sniff_from_mangled_name (lang, mangled, &demangled);
760 return demangled;
761 }
762
763 for (i = language_unknown; i < nr_languages; ++i)
764 {
765 enum language l = (enum language) i;
766 const struct language_defn *lang = language_def (l);
767
768 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
769 {
770 gsymbol->language = l;
771 return demangled;
772 }
773 }
774
775 return NULL;
776 }
777
778 /* Set both the mangled and demangled (if any) names for GSYMBOL based
779 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
780 objfile's obstack; but if COPY_NAME is 0 and if NAME is
781 NUL-terminated, then this function assumes that NAME is already
782 correctly saved (either permanently or with a lifetime tied to the
783 objfile), and it will not be copied.
784
785 The hash table corresponding to OBJFILE is used, and the memory
786 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
787 so the pointer can be discarded after calling this function. */
788
789 void
790 symbol_set_names (struct general_symbol_info *gsymbol,
791 const char *linkage_name, int len, int copy_name,
792 struct objfile *objfile)
793 {
794 struct demangled_name_entry **slot;
795 /* A 0-terminated copy of the linkage name. */
796 const char *linkage_name_copy;
797 struct demangled_name_entry entry;
798 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
799
800 if (gsymbol->language == language_ada)
801 {
802 /* In Ada, we do the symbol lookups using the mangled name, so
803 we can save some space by not storing the demangled name. */
804 if (!copy_name)
805 gsymbol->name = linkage_name;
806 else
807 {
808 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
809 len + 1);
810
811 memcpy (name, linkage_name, len);
812 name[len] = '\0';
813 gsymbol->name = name;
814 }
815 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
816
817 return;
818 }
819
820 if (per_bfd->demangled_names_hash == NULL)
821 create_demangled_names_hash (objfile);
822
823 if (linkage_name[len] != '\0')
824 {
825 char *alloc_name;
826
827 alloc_name = (char *) alloca (len + 1);
828 memcpy (alloc_name, linkage_name, len);
829 alloc_name[len] = '\0';
830
831 linkage_name_copy = alloc_name;
832 }
833 else
834 linkage_name_copy = linkage_name;
835
836 entry.mangled = linkage_name_copy;
837 slot = ((struct demangled_name_entry **)
838 htab_find_slot (per_bfd->demangled_names_hash,
839 &entry, INSERT));
840
841 /* If this name is not in the hash table, add it. */
842 if (*slot == NULL
843 /* A C version of the symbol may have already snuck into the table.
844 This happens to, e.g., main.init (__go_init_main). Cope. */
845 || (gsymbol->language == language_go
846 && (*slot)->demangled[0] == '\0'))
847 {
848 char *demangled_name = symbol_find_demangled_name (gsymbol,
849 linkage_name_copy);
850 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
851
852 /* Suppose we have demangled_name==NULL, copy_name==0, and
853 linkage_name_copy==linkage_name. In this case, we already have the
854 mangled name saved, and we don't have a demangled name. So,
855 you might think we could save a little space by not recording
856 this in the hash table at all.
857
858 It turns out that it is actually important to still save such
859 an entry in the hash table, because storing this name gives
860 us better bcache hit rates for partial symbols. */
861 if (!copy_name && linkage_name_copy == linkage_name)
862 {
863 *slot
864 = ((struct demangled_name_entry *)
865 obstack_alloc (&per_bfd->storage_obstack,
866 offsetof (struct demangled_name_entry, demangled)
867 + demangled_len + 1));
868 (*slot)->mangled = linkage_name;
869 }
870 else
871 {
872 char *mangled_ptr;
873
874 /* If we must copy the mangled name, put it directly after
875 the demangled name so we can have a single
876 allocation. */
877 *slot
878 = ((struct demangled_name_entry *)
879 obstack_alloc (&per_bfd->storage_obstack,
880 offsetof (struct demangled_name_entry, demangled)
881 + len + demangled_len + 2));
882 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
883 strcpy (mangled_ptr, linkage_name_copy);
884 (*slot)->mangled = mangled_ptr;
885 }
886
887 if (demangled_name != NULL)
888 {
889 strcpy ((*slot)->demangled, demangled_name);
890 xfree (demangled_name);
891 }
892 else
893 (*slot)->demangled[0] = '\0';
894 }
895
896 gsymbol->name = (*slot)->mangled;
897 if ((*slot)->demangled[0] != '\0')
898 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
899 &per_bfd->storage_obstack);
900 else
901 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
902 }
903
904 /* Return the source code name of a symbol. In languages where
905 demangling is necessary, this is the demangled name. */
906
907 const char *
908 symbol_natural_name (const struct general_symbol_info *gsymbol)
909 {
910 switch (gsymbol->language)
911 {
912 case language_cplus:
913 case language_d:
914 case language_go:
915 case language_objc:
916 case language_fortran:
917 if (symbol_get_demangled_name (gsymbol) != NULL)
918 return symbol_get_demangled_name (gsymbol);
919 break;
920 case language_ada:
921 return ada_decode_symbol (gsymbol);
922 default:
923 break;
924 }
925 return gsymbol->name;
926 }
927
928 /* Return the demangled name for a symbol based on the language for
929 that symbol. If no demangled name exists, return NULL. */
930
931 const char *
932 symbol_demangled_name (const struct general_symbol_info *gsymbol)
933 {
934 const char *dem_name = NULL;
935
936 switch (gsymbol->language)
937 {
938 case language_cplus:
939 case language_d:
940 case language_go:
941 case language_objc:
942 case language_fortran:
943 dem_name = symbol_get_demangled_name (gsymbol);
944 break;
945 case language_ada:
946 dem_name = ada_decode_symbol (gsymbol);
947 break;
948 default:
949 break;
950 }
951 return dem_name;
952 }
953
954 /* Return the search name of a symbol---generally the demangled or
955 linkage name of the symbol, depending on how it will be searched for.
956 If there is no distinct demangled name, then returns the same value
957 (same pointer) as SYMBOL_LINKAGE_NAME. */
958
959 const char *
960 symbol_search_name (const struct general_symbol_info *gsymbol)
961 {
962 if (gsymbol->language == language_ada)
963 return gsymbol->name;
964 else
965 return symbol_natural_name (gsymbol);
966 }
967
968 /* Initialize the structure fields to zero values. */
969
970 void
971 init_sal (struct symtab_and_line *sal)
972 {
973 memset (sal, 0, sizeof (*sal));
974 }
975 \f
976
977 /* Return 1 if the two sections are the same, or if they could
978 plausibly be copies of each other, one in an original object
979 file and another in a separated debug file. */
980
981 int
982 matching_obj_sections (struct obj_section *obj_first,
983 struct obj_section *obj_second)
984 {
985 asection *first = obj_first? obj_first->the_bfd_section : NULL;
986 asection *second = obj_second? obj_second->the_bfd_section : NULL;
987 struct objfile *obj;
988
989 /* If they're the same section, then they match. */
990 if (first == second)
991 return 1;
992
993 /* If either is NULL, give up. */
994 if (first == NULL || second == NULL)
995 return 0;
996
997 /* This doesn't apply to absolute symbols. */
998 if (first->owner == NULL || second->owner == NULL)
999 return 0;
1000
1001 /* If they're in the same object file, they must be different sections. */
1002 if (first->owner == second->owner)
1003 return 0;
1004
1005 /* Check whether the two sections are potentially corresponding. They must
1006 have the same size, address, and name. We can't compare section indexes,
1007 which would be more reliable, because some sections may have been
1008 stripped. */
1009 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1010 return 0;
1011
1012 /* In-memory addresses may start at a different offset, relativize them. */
1013 if (bfd_get_section_vma (first->owner, first)
1014 - bfd_get_start_address (first->owner)
1015 != bfd_get_section_vma (second->owner, second)
1016 - bfd_get_start_address (second->owner))
1017 return 0;
1018
1019 if (bfd_get_section_name (first->owner, first) == NULL
1020 || bfd_get_section_name (second->owner, second) == NULL
1021 || strcmp (bfd_get_section_name (first->owner, first),
1022 bfd_get_section_name (second->owner, second)) != 0)
1023 return 0;
1024
1025 /* Otherwise check that they are in corresponding objfiles. */
1026
1027 ALL_OBJFILES (obj)
1028 if (obj->obfd == first->owner)
1029 break;
1030 gdb_assert (obj != NULL);
1031
1032 if (obj->separate_debug_objfile != NULL
1033 && obj->separate_debug_objfile->obfd == second->owner)
1034 return 1;
1035 if (obj->separate_debug_objfile_backlink != NULL
1036 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1037 return 1;
1038
1039 return 0;
1040 }
1041
1042 /* See symtab.h. */
1043
1044 void
1045 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1046 {
1047 struct objfile *objfile;
1048 struct bound_minimal_symbol msymbol;
1049
1050 /* If we know that this is not a text address, return failure. This is
1051 necessary because we loop based on texthigh and textlow, which do
1052 not include the data ranges. */
1053 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1054 if (msymbol.minsym
1055 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1056 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1057 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1058 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1059 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1060 return;
1061
1062 ALL_OBJFILES (objfile)
1063 {
1064 struct compunit_symtab *cust = NULL;
1065
1066 if (objfile->sf)
1067 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1068 pc, section, 0);
1069 if (cust)
1070 return;
1071 }
1072 }
1073 \f
1074 /* Hash function for the symbol cache. */
1075
1076 static unsigned int
1077 hash_symbol_entry (const struct objfile *objfile_context,
1078 const char *name, domain_enum domain)
1079 {
1080 unsigned int hash = (uintptr_t) objfile_context;
1081
1082 if (name != NULL)
1083 hash += htab_hash_string (name);
1084
1085 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1086 to map to the same slot. */
1087 if (domain == STRUCT_DOMAIN)
1088 hash += VAR_DOMAIN * 7;
1089 else
1090 hash += domain * 7;
1091
1092 return hash;
1093 }
1094
1095 /* Equality function for the symbol cache. */
1096
1097 static int
1098 eq_symbol_entry (const struct symbol_cache_slot *slot,
1099 const struct objfile *objfile_context,
1100 const char *name, domain_enum domain)
1101 {
1102 const char *slot_name;
1103 domain_enum slot_domain;
1104
1105 if (slot->state == SYMBOL_SLOT_UNUSED)
1106 return 0;
1107
1108 if (slot->objfile_context != objfile_context)
1109 return 0;
1110
1111 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1112 {
1113 slot_name = slot->value.not_found.name;
1114 slot_domain = slot->value.not_found.domain;
1115 }
1116 else
1117 {
1118 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1119 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1120 }
1121
1122 /* NULL names match. */
1123 if (slot_name == NULL && name == NULL)
1124 {
1125 /* But there's no point in calling symbol_matches_domain in the
1126 SYMBOL_SLOT_FOUND case. */
1127 if (slot_domain != domain)
1128 return 0;
1129 }
1130 else if (slot_name != NULL && name != NULL)
1131 {
1132 /* It's important that we use the same comparison that was done the
1133 first time through. If the slot records a found symbol, then this
1134 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1135 It also means using symbol_matches_domain for found symbols.
1136 See block.c.
1137
1138 If the slot records a not-found symbol, then require a precise match.
1139 We could still be lax with whitespace like strcmp_iw though. */
1140
1141 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1142 {
1143 if (strcmp (slot_name, name) != 0)
1144 return 0;
1145 if (slot_domain != domain)
1146 return 0;
1147 }
1148 else
1149 {
1150 struct symbol *sym = slot->value.found.symbol;
1151
1152 if (strcmp_iw (slot_name, name) != 0)
1153 return 0;
1154 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1155 slot_domain, domain))
1156 return 0;
1157 }
1158 }
1159 else
1160 {
1161 /* Only one name is NULL. */
1162 return 0;
1163 }
1164
1165 return 1;
1166 }
1167
1168 /* Given a cache of size SIZE, return the size of the struct (with variable
1169 length array) in bytes. */
1170
1171 static size_t
1172 symbol_cache_byte_size (unsigned int size)
1173 {
1174 return (sizeof (struct block_symbol_cache)
1175 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1176 }
1177
1178 /* Resize CACHE. */
1179
1180 static void
1181 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1182 {
1183 /* If there's no change in size, don't do anything.
1184 All caches have the same size, so we can just compare with the size
1185 of the global symbols cache. */
1186 if ((cache->global_symbols != NULL
1187 && cache->global_symbols->size == new_size)
1188 || (cache->global_symbols == NULL
1189 && new_size == 0))
1190 return;
1191
1192 xfree (cache->global_symbols);
1193 xfree (cache->static_symbols);
1194
1195 if (new_size == 0)
1196 {
1197 cache->global_symbols = NULL;
1198 cache->static_symbols = NULL;
1199 }
1200 else
1201 {
1202 size_t total_size = symbol_cache_byte_size (new_size);
1203
1204 cache->global_symbols
1205 = (struct block_symbol_cache *) xcalloc (1, total_size);
1206 cache->static_symbols
1207 = (struct block_symbol_cache *) xcalloc (1, total_size);
1208 cache->global_symbols->size = new_size;
1209 cache->static_symbols->size = new_size;
1210 }
1211 }
1212
1213 /* Make a symbol cache of size SIZE. */
1214
1215 static struct symbol_cache *
1216 make_symbol_cache (unsigned int size)
1217 {
1218 struct symbol_cache *cache;
1219
1220 cache = XCNEW (struct symbol_cache);
1221 resize_symbol_cache (cache, symbol_cache_size);
1222 return cache;
1223 }
1224
1225 /* Free the space used by CACHE. */
1226
1227 static void
1228 free_symbol_cache (struct symbol_cache *cache)
1229 {
1230 xfree (cache->global_symbols);
1231 xfree (cache->static_symbols);
1232 xfree (cache);
1233 }
1234
1235 /* Return the symbol cache of PSPACE.
1236 Create one if it doesn't exist yet. */
1237
1238 static struct symbol_cache *
1239 get_symbol_cache (struct program_space *pspace)
1240 {
1241 struct symbol_cache *cache
1242 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1243
1244 if (cache == NULL)
1245 {
1246 cache = make_symbol_cache (symbol_cache_size);
1247 set_program_space_data (pspace, symbol_cache_key, cache);
1248 }
1249
1250 return cache;
1251 }
1252
1253 /* Delete the symbol cache of PSPACE.
1254 Called when PSPACE is destroyed. */
1255
1256 static void
1257 symbol_cache_cleanup (struct program_space *pspace, void *data)
1258 {
1259 struct symbol_cache *cache = (struct symbol_cache *) data;
1260
1261 free_symbol_cache (cache);
1262 }
1263
1264 /* Set the size of the symbol cache in all program spaces. */
1265
1266 static void
1267 set_symbol_cache_size (unsigned int new_size)
1268 {
1269 struct program_space *pspace;
1270
1271 ALL_PSPACES (pspace)
1272 {
1273 struct symbol_cache *cache
1274 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1275
1276 /* The pspace could have been created but not have a cache yet. */
1277 if (cache != NULL)
1278 resize_symbol_cache (cache, new_size);
1279 }
1280 }
1281
1282 /* Called when symbol-cache-size is set. */
1283
1284 static void
1285 set_symbol_cache_size_handler (char *args, int from_tty,
1286 struct cmd_list_element *c)
1287 {
1288 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1289 {
1290 /* Restore the previous value.
1291 This is the value the "show" command prints. */
1292 new_symbol_cache_size = symbol_cache_size;
1293
1294 error (_("Symbol cache size is too large, max is %u."),
1295 MAX_SYMBOL_CACHE_SIZE);
1296 }
1297 symbol_cache_size = new_symbol_cache_size;
1298
1299 set_symbol_cache_size (symbol_cache_size);
1300 }
1301
1302 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1303 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1304 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1305 failed (and thus this one will too), or NULL if the symbol is not present
1306 in the cache.
1307 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1308 set to the cache and slot of the symbol to save the result of a full lookup
1309 attempt. */
1310
1311 static struct block_symbol
1312 symbol_cache_lookup (struct symbol_cache *cache,
1313 struct objfile *objfile_context, int block,
1314 const char *name, domain_enum domain,
1315 struct block_symbol_cache **bsc_ptr,
1316 struct symbol_cache_slot **slot_ptr)
1317 {
1318 struct block_symbol_cache *bsc;
1319 unsigned int hash;
1320 struct symbol_cache_slot *slot;
1321
1322 if (block == GLOBAL_BLOCK)
1323 bsc = cache->global_symbols;
1324 else
1325 bsc = cache->static_symbols;
1326 if (bsc == NULL)
1327 {
1328 *bsc_ptr = NULL;
1329 *slot_ptr = NULL;
1330 return (struct block_symbol) {NULL, NULL};
1331 }
1332
1333 hash = hash_symbol_entry (objfile_context, name, domain);
1334 slot = bsc->symbols + hash % bsc->size;
1335
1336 if (eq_symbol_entry (slot, objfile_context, name, domain))
1337 {
1338 if (symbol_lookup_debug)
1339 fprintf_unfiltered (gdb_stdlog,
1340 "%s block symbol cache hit%s for %s, %s\n",
1341 block == GLOBAL_BLOCK ? "Global" : "Static",
1342 slot->state == SYMBOL_SLOT_NOT_FOUND
1343 ? " (not found)" : "",
1344 name, domain_name (domain));
1345 ++bsc->hits;
1346 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1347 return SYMBOL_LOOKUP_FAILED;
1348 return slot->value.found;
1349 }
1350
1351 /* Symbol is not present in the cache. */
1352
1353 *bsc_ptr = bsc;
1354 *slot_ptr = slot;
1355
1356 if (symbol_lookup_debug)
1357 {
1358 fprintf_unfiltered (gdb_stdlog,
1359 "%s block symbol cache miss for %s, %s\n",
1360 block == GLOBAL_BLOCK ? "Global" : "Static",
1361 name, domain_name (domain));
1362 }
1363 ++bsc->misses;
1364 return (struct block_symbol) {NULL, NULL};
1365 }
1366
1367 /* Clear out SLOT. */
1368
1369 static void
1370 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1371 {
1372 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1373 xfree (slot->value.not_found.name);
1374 slot->state = SYMBOL_SLOT_UNUSED;
1375 }
1376
1377 /* Mark SYMBOL as found in SLOT.
1378 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1379 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1380 necessarily the objfile the symbol was found in. */
1381
1382 static void
1383 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1384 struct symbol_cache_slot *slot,
1385 struct objfile *objfile_context,
1386 struct symbol *symbol,
1387 const struct block *block)
1388 {
1389 if (bsc == NULL)
1390 return;
1391 if (slot->state != SYMBOL_SLOT_UNUSED)
1392 {
1393 ++bsc->collisions;
1394 symbol_cache_clear_slot (slot);
1395 }
1396 slot->state = SYMBOL_SLOT_FOUND;
1397 slot->objfile_context = objfile_context;
1398 slot->value.found.symbol = symbol;
1399 slot->value.found.block = block;
1400 }
1401
1402 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1403 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1404 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1405
1406 static void
1407 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1408 struct symbol_cache_slot *slot,
1409 struct objfile *objfile_context,
1410 const char *name, domain_enum domain)
1411 {
1412 if (bsc == NULL)
1413 return;
1414 if (slot->state != SYMBOL_SLOT_UNUSED)
1415 {
1416 ++bsc->collisions;
1417 symbol_cache_clear_slot (slot);
1418 }
1419 slot->state = SYMBOL_SLOT_NOT_FOUND;
1420 slot->objfile_context = objfile_context;
1421 slot->value.not_found.name = xstrdup (name);
1422 slot->value.not_found.domain = domain;
1423 }
1424
1425 /* Flush the symbol cache of PSPACE. */
1426
1427 static void
1428 symbol_cache_flush (struct program_space *pspace)
1429 {
1430 struct symbol_cache *cache
1431 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1432 int pass;
1433
1434 if (cache == NULL)
1435 return;
1436 if (cache->global_symbols == NULL)
1437 {
1438 gdb_assert (symbol_cache_size == 0);
1439 gdb_assert (cache->static_symbols == NULL);
1440 return;
1441 }
1442
1443 /* If the cache is untouched since the last flush, early exit.
1444 This is important for performance during the startup of a program linked
1445 with 100s (or 1000s) of shared libraries. */
1446 if (cache->global_symbols->misses == 0
1447 && cache->static_symbols->misses == 0)
1448 return;
1449
1450 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1451 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1452
1453 for (pass = 0; pass < 2; ++pass)
1454 {
1455 struct block_symbol_cache *bsc
1456 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1457 unsigned int i;
1458
1459 for (i = 0; i < bsc->size; ++i)
1460 symbol_cache_clear_slot (&bsc->symbols[i]);
1461 }
1462
1463 cache->global_symbols->hits = 0;
1464 cache->global_symbols->misses = 0;
1465 cache->global_symbols->collisions = 0;
1466 cache->static_symbols->hits = 0;
1467 cache->static_symbols->misses = 0;
1468 cache->static_symbols->collisions = 0;
1469 }
1470
1471 /* Dump CACHE. */
1472
1473 static void
1474 symbol_cache_dump (const struct symbol_cache *cache)
1475 {
1476 int pass;
1477
1478 if (cache->global_symbols == NULL)
1479 {
1480 printf_filtered (" <disabled>\n");
1481 return;
1482 }
1483
1484 for (pass = 0; pass < 2; ++pass)
1485 {
1486 const struct block_symbol_cache *bsc
1487 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1488 unsigned int i;
1489
1490 if (pass == 0)
1491 printf_filtered ("Global symbols:\n");
1492 else
1493 printf_filtered ("Static symbols:\n");
1494
1495 for (i = 0; i < bsc->size; ++i)
1496 {
1497 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1498
1499 QUIT;
1500
1501 switch (slot->state)
1502 {
1503 case SYMBOL_SLOT_UNUSED:
1504 break;
1505 case SYMBOL_SLOT_NOT_FOUND:
1506 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1507 host_address_to_string (slot->objfile_context),
1508 slot->value.not_found.name,
1509 domain_name (slot->value.not_found.domain));
1510 break;
1511 case SYMBOL_SLOT_FOUND:
1512 {
1513 struct symbol *found = slot->value.found.symbol;
1514 const struct objfile *context = slot->objfile_context;
1515
1516 printf_filtered (" [%4u] = %s, %s %s\n", i,
1517 host_address_to_string (context),
1518 SYMBOL_PRINT_NAME (found),
1519 domain_name (SYMBOL_DOMAIN (found)));
1520 break;
1521 }
1522 }
1523 }
1524 }
1525 }
1526
1527 /* The "mt print symbol-cache" command. */
1528
1529 static void
1530 maintenance_print_symbol_cache (char *args, int from_tty)
1531 {
1532 struct program_space *pspace;
1533
1534 ALL_PSPACES (pspace)
1535 {
1536 struct symbol_cache *cache;
1537
1538 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1539 pspace->num,
1540 pspace->symfile_object_file != NULL
1541 ? objfile_name (pspace->symfile_object_file)
1542 : "(no object file)");
1543
1544 /* If the cache hasn't been created yet, avoid creating one. */
1545 cache
1546 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1547 if (cache == NULL)
1548 printf_filtered (" <empty>\n");
1549 else
1550 symbol_cache_dump (cache);
1551 }
1552 }
1553
1554 /* The "mt flush-symbol-cache" command. */
1555
1556 static void
1557 maintenance_flush_symbol_cache (char *args, int from_tty)
1558 {
1559 struct program_space *pspace;
1560
1561 ALL_PSPACES (pspace)
1562 {
1563 symbol_cache_flush (pspace);
1564 }
1565 }
1566
1567 /* Print usage statistics of CACHE. */
1568
1569 static void
1570 symbol_cache_stats (struct symbol_cache *cache)
1571 {
1572 int pass;
1573
1574 if (cache->global_symbols == NULL)
1575 {
1576 printf_filtered (" <disabled>\n");
1577 return;
1578 }
1579
1580 for (pass = 0; pass < 2; ++pass)
1581 {
1582 const struct block_symbol_cache *bsc
1583 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1584
1585 QUIT;
1586
1587 if (pass == 0)
1588 printf_filtered ("Global block cache stats:\n");
1589 else
1590 printf_filtered ("Static block cache stats:\n");
1591
1592 printf_filtered (" size: %u\n", bsc->size);
1593 printf_filtered (" hits: %u\n", bsc->hits);
1594 printf_filtered (" misses: %u\n", bsc->misses);
1595 printf_filtered (" collisions: %u\n", bsc->collisions);
1596 }
1597 }
1598
1599 /* The "mt print symbol-cache-statistics" command. */
1600
1601 static void
1602 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1603 {
1604 struct program_space *pspace;
1605
1606 ALL_PSPACES (pspace)
1607 {
1608 struct symbol_cache *cache;
1609
1610 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1611 pspace->num,
1612 pspace->symfile_object_file != NULL
1613 ? objfile_name (pspace->symfile_object_file)
1614 : "(no object file)");
1615
1616 /* If the cache hasn't been created yet, avoid creating one. */
1617 cache
1618 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1619 if (cache == NULL)
1620 printf_filtered (" empty, no stats available\n");
1621 else
1622 symbol_cache_stats (cache);
1623 }
1624 }
1625
1626 /* This module's 'new_objfile' observer. */
1627
1628 static void
1629 symtab_new_objfile_observer (struct objfile *objfile)
1630 {
1631 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1632 symbol_cache_flush (current_program_space);
1633 }
1634
1635 /* This module's 'free_objfile' observer. */
1636
1637 static void
1638 symtab_free_objfile_observer (struct objfile *objfile)
1639 {
1640 symbol_cache_flush (objfile->pspace);
1641 }
1642 \f
1643 /* Debug symbols usually don't have section information. We need to dig that
1644 out of the minimal symbols and stash that in the debug symbol. */
1645
1646 void
1647 fixup_section (struct general_symbol_info *ginfo,
1648 CORE_ADDR addr, struct objfile *objfile)
1649 {
1650 struct minimal_symbol *msym;
1651
1652 /* First, check whether a minimal symbol with the same name exists
1653 and points to the same address. The address check is required
1654 e.g. on PowerPC64, where the minimal symbol for a function will
1655 point to the function descriptor, while the debug symbol will
1656 point to the actual function code. */
1657 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1658 if (msym)
1659 ginfo->section = MSYMBOL_SECTION (msym);
1660 else
1661 {
1662 /* Static, function-local variables do appear in the linker
1663 (minimal) symbols, but are frequently given names that won't
1664 be found via lookup_minimal_symbol(). E.g., it has been
1665 observed in frv-uclinux (ELF) executables that a static,
1666 function-local variable named "foo" might appear in the
1667 linker symbols as "foo.6" or "foo.3". Thus, there is no
1668 point in attempting to extend the lookup-by-name mechanism to
1669 handle this case due to the fact that there can be multiple
1670 names.
1671
1672 So, instead, search the section table when lookup by name has
1673 failed. The ``addr'' and ``endaddr'' fields may have already
1674 been relocated. If so, the relocation offset (i.e. the
1675 ANOFFSET value) needs to be subtracted from these values when
1676 performing the comparison. We unconditionally subtract it,
1677 because, when no relocation has been performed, the ANOFFSET
1678 value will simply be zero.
1679
1680 The address of the symbol whose section we're fixing up HAS
1681 NOT BEEN adjusted (relocated) yet. It can't have been since
1682 the section isn't yet known and knowing the section is
1683 necessary in order to add the correct relocation value. In
1684 other words, we wouldn't even be in this function (attempting
1685 to compute the section) if it were already known.
1686
1687 Note that it is possible to search the minimal symbols
1688 (subtracting the relocation value if necessary) to find the
1689 matching minimal symbol, but this is overkill and much less
1690 efficient. It is not necessary to find the matching minimal
1691 symbol, only its section.
1692
1693 Note that this technique (of doing a section table search)
1694 can fail when unrelocated section addresses overlap. For
1695 this reason, we still attempt a lookup by name prior to doing
1696 a search of the section table. */
1697
1698 struct obj_section *s;
1699 int fallback = -1;
1700
1701 ALL_OBJFILE_OSECTIONS (objfile, s)
1702 {
1703 int idx = s - objfile->sections;
1704 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1705
1706 if (fallback == -1)
1707 fallback = idx;
1708
1709 if (obj_section_addr (s) - offset <= addr
1710 && addr < obj_section_endaddr (s) - offset)
1711 {
1712 ginfo->section = idx;
1713 return;
1714 }
1715 }
1716
1717 /* If we didn't find the section, assume it is in the first
1718 section. If there is no allocated section, then it hardly
1719 matters what we pick, so just pick zero. */
1720 if (fallback == -1)
1721 ginfo->section = 0;
1722 else
1723 ginfo->section = fallback;
1724 }
1725 }
1726
1727 struct symbol *
1728 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1729 {
1730 CORE_ADDR addr;
1731
1732 if (!sym)
1733 return NULL;
1734
1735 if (!SYMBOL_OBJFILE_OWNED (sym))
1736 return sym;
1737
1738 /* We either have an OBJFILE, or we can get at it from the sym's
1739 symtab. Anything else is a bug. */
1740 gdb_assert (objfile || symbol_symtab (sym));
1741
1742 if (objfile == NULL)
1743 objfile = symbol_objfile (sym);
1744
1745 if (SYMBOL_OBJ_SECTION (objfile, sym))
1746 return sym;
1747
1748 /* We should have an objfile by now. */
1749 gdb_assert (objfile);
1750
1751 switch (SYMBOL_CLASS (sym))
1752 {
1753 case LOC_STATIC:
1754 case LOC_LABEL:
1755 addr = SYMBOL_VALUE_ADDRESS (sym);
1756 break;
1757 case LOC_BLOCK:
1758 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1759 break;
1760
1761 default:
1762 /* Nothing else will be listed in the minsyms -- no use looking
1763 it up. */
1764 return sym;
1765 }
1766
1767 fixup_section (&sym->ginfo, addr, objfile);
1768
1769 return sym;
1770 }
1771
1772 /* Compute the demangled form of NAME as used by the various symbol
1773 lookup functions. The result is stored in *RESULT_NAME. Returns a
1774 cleanup which can be used to clean up the result.
1775
1776 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1777 Normally, Ada symbol lookups are performed using the encoded name
1778 rather than the demangled name, and so it might seem to make sense
1779 for this function to return an encoded version of NAME.
1780 Unfortunately, we cannot do this, because this function is used in
1781 circumstances where it is not appropriate to try to encode NAME.
1782 For instance, when displaying the frame info, we demangle the name
1783 of each parameter, and then perform a symbol lookup inside our
1784 function using that demangled name. In Ada, certain functions
1785 have internally-generated parameters whose name contain uppercase
1786 characters. Encoding those name would result in those uppercase
1787 characters to become lowercase, and thus cause the symbol lookup
1788 to fail. */
1789
1790 struct cleanup *
1791 demangle_for_lookup (const char *name, enum language lang,
1792 const char **result_name)
1793 {
1794 char *demangled_name = NULL;
1795 const char *modified_name = NULL;
1796 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1797
1798 modified_name = name;
1799
1800 /* If we are using C++, D, or Go, demangle the name before doing a
1801 lookup, so we can always binary search. */
1802 if (lang == language_cplus)
1803 {
1804 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1805 if (demangled_name)
1806 {
1807 modified_name = demangled_name;
1808 make_cleanup (xfree, demangled_name);
1809 }
1810 else
1811 {
1812 /* If we were given a non-mangled name, canonicalize it
1813 according to the language (so far only for C++). */
1814 demangled_name = cp_canonicalize_string (name);
1815 if (demangled_name)
1816 {
1817 modified_name = demangled_name;
1818 make_cleanup (xfree, demangled_name);
1819 }
1820 }
1821 }
1822 else if (lang == language_d)
1823 {
1824 demangled_name = d_demangle (name, 0);
1825 if (demangled_name)
1826 {
1827 modified_name = demangled_name;
1828 make_cleanup (xfree, demangled_name);
1829 }
1830 }
1831 else if (lang == language_go)
1832 {
1833 demangled_name = go_demangle (name, 0);
1834 if (demangled_name)
1835 {
1836 modified_name = demangled_name;
1837 make_cleanup (xfree, demangled_name);
1838 }
1839 }
1840
1841 *result_name = modified_name;
1842 return cleanup;
1843 }
1844
1845 /* See symtab.h.
1846
1847 This function (or rather its subordinates) have a bunch of loops and
1848 it would seem to be attractive to put in some QUIT's (though I'm not really
1849 sure whether it can run long enough to be really important). But there
1850 are a few calls for which it would appear to be bad news to quit
1851 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1852 that there is C++ code below which can error(), but that probably
1853 doesn't affect these calls since they are looking for a known
1854 variable and thus can probably assume it will never hit the C++
1855 code). */
1856
1857 struct block_symbol
1858 lookup_symbol_in_language (const char *name, const struct block *block,
1859 const domain_enum domain, enum language lang,
1860 struct field_of_this_result *is_a_field_of_this)
1861 {
1862 const char *modified_name;
1863 struct block_symbol returnval;
1864 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1865
1866 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1867 is_a_field_of_this);
1868 do_cleanups (cleanup);
1869
1870 return returnval;
1871 }
1872
1873 /* See symtab.h. */
1874
1875 struct block_symbol
1876 lookup_symbol (const char *name, const struct block *block,
1877 domain_enum domain,
1878 struct field_of_this_result *is_a_field_of_this)
1879 {
1880 return lookup_symbol_in_language (name, block, domain,
1881 current_language->la_language,
1882 is_a_field_of_this);
1883 }
1884
1885 /* See symtab.h. */
1886
1887 struct block_symbol
1888 lookup_language_this (const struct language_defn *lang,
1889 const struct block *block)
1890 {
1891 if (lang->la_name_of_this == NULL || block == NULL)
1892 return (struct block_symbol) {NULL, NULL};
1893
1894 if (symbol_lookup_debug > 1)
1895 {
1896 struct objfile *objfile = lookup_objfile_from_block (block);
1897
1898 fprintf_unfiltered (gdb_stdlog,
1899 "lookup_language_this (%s, %s (objfile %s))",
1900 lang->la_name, host_address_to_string (block),
1901 objfile_debug_name (objfile));
1902 }
1903
1904 while (block)
1905 {
1906 struct symbol *sym;
1907
1908 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1909 if (sym != NULL)
1910 {
1911 if (symbol_lookup_debug > 1)
1912 {
1913 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1914 SYMBOL_PRINT_NAME (sym),
1915 host_address_to_string (sym),
1916 host_address_to_string (block));
1917 }
1918 return (struct block_symbol) {sym, block};
1919 }
1920 if (BLOCK_FUNCTION (block))
1921 break;
1922 block = BLOCK_SUPERBLOCK (block);
1923 }
1924
1925 if (symbol_lookup_debug > 1)
1926 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1927 return (struct block_symbol) {NULL, NULL};
1928 }
1929
1930 /* Given TYPE, a structure/union,
1931 return 1 if the component named NAME from the ultimate target
1932 structure/union is defined, otherwise, return 0. */
1933
1934 static int
1935 check_field (struct type *type, const char *name,
1936 struct field_of_this_result *is_a_field_of_this)
1937 {
1938 int i;
1939
1940 /* The type may be a stub. */
1941 type = check_typedef (type);
1942
1943 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1944 {
1945 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1946
1947 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1948 {
1949 is_a_field_of_this->type = type;
1950 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1951 return 1;
1952 }
1953 }
1954
1955 /* C++: If it was not found as a data field, then try to return it
1956 as a pointer to a method. */
1957
1958 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1959 {
1960 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1961 {
1962 is_a_field_of_this->type = type;
1963 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1964 return 1;
1965 }
1966 }
1967
1968 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1969 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1970 return 1;
1971
1972 return 0;
1973 }
1974
1975 /* Behave like lookup_symbol except that NAME is the natural name
1976 (e.g., demangled name) of the symbol that we're looking for. */
1977
1978 static struct block_symbol
1979 lookup_symbol_aux (const char *name, const struct block *block,
1980 const domain_enum domain, enum language language,
1981 struct field_of_this_result *is_a_field_of_this)
1982 {
1983 struct block_symbol result;
1984 const struct language_defn *langdef;
1985
1986 if (symbol_lookup_debug)
1987 {
1988 struct objfile *objfile = lookup_objfile_from_block (block);
1989
1990 fprintf_unfiltered (gdb_stdlog,
1991 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1992 name, host_address_to_string (block),
1993 objfile != NULL
1994 ? objfile_debug_name (objfile) : "NULL",
1995 domain_name (domain), language_str (language));
1996 }
1997
1998 /* Make sure we do something sensible with is_a_field_of_this, since
1999 the callers that set this parameter to some non-null value will
2000 certainly use it later. If we don't set it, the contents of
2001 is_a_field_of_this are undefined. */
2002 if (is_a_field_of_this != NULL)
2003 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2004
2005 /* Search specified block and its superiors. Don't search
2006 STATIC_BLOCK or GLOBAL_BLOCK. */
2007
2008 result = lookup_local_symbol (name, block, domain, language);
2009 if (result.symbol != NULL)
2010 {
2011 if (symbol_lookup_debug)
2012 {
2013 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2014 host_address_to_string (result.symbol));
2015 }
2016 return result;
2017 }
2018
2019 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2020 check to see if NAME is a field of `this'. */
2021
2022 langdef = language_def (language);
2023
2024 /* Don't do this check if we are searching for a struct. It will
2025 not be found by check_field, but will be found by other
2026 means. */
2027 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2028 {
2029 result = lookup_language_this (langdef, block);
2030
2031 if (result.symbol)
2032 {
2033 struct type *t = result.symbol->type;
2034
2035 /* I'm not really sure that type of this can ever
2036 be typedefed; just be safe. */
2037 t = check_typedef (t);
2038 if (TYPE_CODE (t) == TYPE_CODE_PTR
2039 || TYPE_CODE (t) == TYPE_CODE_REF)
2040 t = TYPE_TARGET_TYPE (t);
2041
2042 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2043 && TYPE_CODE (t) != TYPE_CODE_UNION)
2044 error (_("Internal error: `%s' is not an aggregate"),
2045 langdef->la_name_of_this);
2046
2047 if (check_field (t, name, is_a_field_of_this))
2048 {
2049 if (symbol_lookup_debug)
2050 {
2051 fprintf_unfiltered (gdb_stdlog,
2052 "lookup_symbol_aux (...) = NULL\n");
2053 }
2054 return (struct block_symbol) {NULL, NULL};
2055 }
2056 }
2057 }
2058
2059 /* Now do whatever is appropriate for LANGUAGE to look
2060 up static and global variables. */
2061
2062 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2063 if (result.symbol != NULL)
2064 {
2065 if (symbol_lookup_debug)
2066 {
2067 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2068 host_address_to_string (result.symbol));
2069 }
2070 return result;
2071 }
2072
2073 /* Now search all static file-level symbols. Not strictly correct,
2074 but more useful than an error. */
2075
2076 result = lookup_static_symbol (name, domain);
2077 if (symbol_lookup_debug)
2078 {
2079 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2080 result.symbol != NULL
2081 ? host_address_to_string (result.symbol)
2082 : "NULL");
2083 }
2084 return result;
2085 }
2086
2087 /* Check to see if the symbol is defined in BLOCK or its superiors.
2088 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2089
2090 static struct block_symbol
2091 lookup_local_symbol (const char *name, const struct block *block,
2092 const domain_enum domain,
2093 enum language language)
2094 {
2095 struct symbol *sym;
2096 const struct block *static_block = block_static_block (block);
2097 const char *scope = block_scope (block);
2098
2099 /* Check if either no block is specified or it's a global block. */
2100
2101 if (static_block == NULL)
2102 return (struct block_symbol) {NULL, NULL};
2103
2104 while (block != static_block)
2105 {
2106 sym = lookup_symbol_in_block (name, block, domain);
2107 if (sym != NULL)
2108 return (struct block_symbol) {sym, block};
2109
2110 if (language == language_cplus || language == language_fortran)
2111 {
2112 struct block_symbol sym
2113 = cp_lookup_symbol_imports_or_template (scope, name, block,
2114 domain);
2115
2116 if (sym.symbol != NULL)
2117 return sym;
2118 }
2119
2120 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2121 break;
2122 block = BLOCK_SUPERBLOCK (block);
2123 }
2124
2125 /* We've reached the end of the function without finding a result. */
2126
2127 return (struct block_symbol) {NULL, NULL};
2128 }
2129
2130 /* See symtab.h. */
2131
2132 struct objfile *
2133 lookup_objfile_from_block (const struct block *block)
2134 {
2135 struct objfile *obj;
2136 struct compunit_symtab *cust;
2137
2138 if (block == NULL)
2139 return NULL;
2140
2141 block = block_global_block (block);
2142 /* Look through all blockvectors. */
2143 ALL_COMPUNITS (obj, cust)
2144 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2145 GLOBAL_BLOCK))
2146 {
2147 if (obj->separate_debug_objfile_backlink)
2148 obj = obj->separate_debug_objfile_backlink;
2149
2150 return obj;
2151 }
2152
2153 return NULL;
2154 }
2155
2156 /* See symtab.h. */
2157
2158 struct symbol *
2159 lookup_symbol_in_block (const char *name, const struct block *block,
2160 const domain_enum domain)
2161 {
2162 struct symbol *sym;
2163
2164 if (symbol_lookup_debug > 1)
2165 {
2166 struct objfile *objfile = lookup_objfile_from_block (block);
2167
2168 fprintf_unfiltered (gdb_stdlog,
2169 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2170 name, host_address_to_string (block),
2171 objfile_debug_name (objfile),
2172 domain_name (domain));
2173 }
2174
2175 sym = block_lookup_symbol (block, name, domain);
2176 if (sym)
2177 {
2178 if (symbol_lookup_debug > 1)
2179 {
2180 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2181 host_address_to_string (sym));
2182 }
2183 return fixup_symbol_section (sym, NULL);
2184 }
2185
2186 if (symbol_lookup_debug > 1)
2187 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2188 return NULL;
2189 }
2190
2191 /* See symtab.h. */
2192
2193 struct block_symbol
2194 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2195 const char *name,
2196 const domain_enum domain)
2197 {
2198 struct objfile *objfile;
2199
2200 for (objfile = main_objfile;
2201 objfile;
2202 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2203 {
2204 struct block_symbol result
2205 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2206
2207 if (result.symbol != NULL)
2208 return result;
2209 }
2210
2211 return (struct block_symbol) {NULL, NULL};
2212 }
2213
2214 /* Check to see if the symbol is defined in one of the OBJFILE's
2215 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2216 depending on whether or not we want to search global symbols or
2217 static symbols. */
2218
2219 static struct block_symbol
2220 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2221 const char *name, const domain_enum domain)
2222 {
2223 struct compunit_symtab *cust;
2224
2225 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2226
2227 if (symbol_lookup_debug > 1)
2228 {
2229 fprintf_unfiltered (gdb_stdlog,
2230 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2231 objfile_debug_name (objfile),
2232 block_index == GLOBAL_BLOCK
2233 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2234 name, domain_name (domain));
2235 }
2236
2237 ALL_OBJFILE_COMPUNITS (objfile, cust)
2238 {
2239 const struct blockvector *bv;
2240 const struct block *block;
2241 struct block_symbol result;
2242
2243 bv = COMPUNIT_BLOCKVECTOR (cust);
2244 block = BLOCKVECTOR_BLOCK (bv, block_index);
2245 result.symbol = block_lookup_symbol_primary (block, name, domain);
2246 result.block = block;
2247 if (result.symbol != NULL)
2248 {
2249 if (symbol_lookup_debug > 1)
2250 {
2251 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2252 host_address_to_string (result.symbol),
2253 host_address_to_string (block));
2254 }
2255 result.symbol = fixup_symbol_section (result.symbol, objfile);
2256 return result;
2257
2258 }
2259 }
2260
2261 if (symbol_lookup_debug > 1)
2262 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2263 return (struct block_symbol) {NULL, NULL};
2264 }
2265
2266 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2267 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2268 and all associated separate debug objfiles.
2269
2270 Normally we only look in OBJFILE, and not any separate debug objfiles
2271 because the outer loop will cause them to be searched too. This case is
2272 different. Here we're called from search_symbols where it will only
2273 call us for the the objfile that contains a matching minsym. */
2274
2275 static struct block_symbol
2276 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2277 const char *linkage_name,
2278 domain_enum domain)
2279 {
2280 enum language lang = current_language->la_language;
2281 const char *modified_name;
2282 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2283 &modified_name);
2284 struct objfile *main_objfile, *cur_objfile;
2285
2286 if (objfile->separate_debug_objfile_backlink)
2287 main_objfile = objfile->separate_debug_objfile_backlink;
2288 else
2289 main_objfile = objfile;
2290
2291 for (cur_objfile = main_objfile;
2292 cur_objfile;
2293 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2294 {
2295 struct block_symbol result;
2296
2297 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2298 modified_name, domain);
2299 if (result.symbol == NULL)
2300 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2301 modified_name, domain);
2302 if (result.symbol != NULL)
2303 {
2304 do_cleanups (cleanup);
2305 return result;
2306 }
2307 }
2308
2309 do_cleanups (cleanup);
2310 return (struct block_symbol) {NULL, NULL};
2311 }
2312
2313 /* A helper function that throws an exception when a symbol was found
2314 in a psymtab but not in a symtab. */
2315
2316 static void ATTRIBUTE_NORETURN
2317 error_in_psymtab_expansion (int block_index, const char *name,
2318 struct compunit_symtab *cust)
2319 {
2320 error (_("\
2321 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2322 %s may be an inlined function, or may be a template function\n \
2323 (if a template, try specifying an instantiation: %s<type>)."),
2324 block_index == GLOBAL_BLOCK ? "global" : "static",
2325 name,
2326 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2327 name, name);
2328 }
2329
2330 /* A helper function for various lookup routines that interfaces with
2331 the "quick" symbol table functions. */
2332
2333 static struct block_symbol
2334 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2335 const char *name, const domain_enum domain)
2336 {
2337 struct compunit_symtab *cust;
2338 const struct blockvector *bv;
2339 const struct block *block;
2340 struct block_symbol result;
2341
2342 if (!objfile->sf)
2343 return (struct block_symbol) {NULL, NULL};
2344
2345 if (symbol_lookup_debug > 1)
2346 {
2347 fprintf_unfiltered (gdb_stdlog,
2348 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2349 objfile_debug_name (objfile),
2350 block_index == GLOBAL_BLOCK
2351 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2352 name, domain_name (domain));
2353 }
2354
2355 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2356 if (cust == NULL)
2357 {
2358 if (symbol_lookup_debug > 1)
2359 {
2360 fprintf_unfiltered (gdb_stdlog,
2361 "lookup_symbol_via_quick_fns (...) = NULL\n");
2362 }
2363 return (struct block_symbol) {NULL, NULL};
2364 }
2365
2366 bv = COMPUNIT_BLOCKVECTOR (cust);
2367 block = BLOCKVECTOR_BLOCK (bv, block_index);
2368 result.symbol = block_lookup_symbol (block, name, domain);
2369 if (result.symbol == NULL)
2370 error_in_psymtab_expansion (block_index, name, cust);
2371
2372 if (symbol_lookup_debug > 1)
2373 {
2374 fprintf_unfiltered (gdb_stdlog,
2375 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2376 host_address_to_string (result.symbol),
2377 host_address_to_string (block));
2378 }
2379
2380 result.symbol = fixup_symbol_section (result.symbol, objfile);
2381 result.block = block;
2382 return result;
2383 }
2384
2385 /* See symtab.h. */
2386
2387 struct block_symbol
2388 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2389 const char *name,
2390 const struct block *block,
2391 const domain_enum domain)
2392 {
2393 struct block_symbol result;
2394
2395 /* NOTE: carlton/2003-05-19: The comments below were written when
2396 this (or what turned into this) was part of lookup_symbol_aux;
2397 I'm much less worried about these questions now, since these
2398 decisions have turned out well, but I leave these comments here
2399 for posterity. */
2400
2401 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2402 not it would be appropriate to search the current global block
2403 here as well. (That's what this code used to do before the
2404 is_a_field_of_this check was moved up.) On the one hand, it's
2405 redundant with the lookup in all objfiles search that happens
2406 next. On the other hand, if decode_line_1 is passed an argument
2407 like filename:var, then the user presumably wants 'var' to be
2408 searched for in filename. On the third hand, there shouldn't be
2409 multiple global variables all of which are named 'var', and it's
2410 not like decode_line_1 has ever restricted its search to only
2411 global variables in a single filename. All in all, only
2412 searching the static block here seems best: it's correct and it's
2413 cleanest. */
2414
2415 /* NOTE: carlton/2002-12-05: There's also a possible performance
2416 issue here: if you usually search for global symbols in the
2417 current file, then it would be slightly better to search the
2418 current global block before searching all the symtabs. But there
2419 are other factors that have a much greater effect on performance
2420 than that one, so I don't think we should worry about that for
2421 now. */
2422
2423 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2424 the current objfile. Searching the current objfile first is useful
2425 for both matching user expectations as well as performance. */
2426
2427 result = lookup_symbol_in_static_block (name, block, domain);
2428 if (result.symbol != NULL)
2429 return result;
2430
2431 /* If we didn't find a definition for a builtin type in the static block,
2432 search for it now. This is actually the right thing to do and can be
2433 a massive performance win. E.g., when debugging a program with lots of
2434 shared libraries we could search all of them only to find out the
2435 builtin type isn't defined in any of them. This is common for types
2436 like "void". */
2437 if (domain == VAR_DOMAIN)
2438 {
2439 struct gdbarch *gdbarch;
2440
2441 if (block == NULL)
2442 gdbarch = target_gdbarch ();
2443 else
2444 gdbarch = block_gdbarch (block);
2445 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2446 gdbarch, name);
2447 result.block = NULL;
2448 if (result.symbol != NULL)
2449 return result;
2450 }
2451
2452 return lookup_global_symbol (name, block, domain);
2453 }
2454
2455 /* See symtab.h. */
2456
2457 struct block_symbol
2458 lookup_symbol_in_static_block (const char *name,
2459 const struct block *block,
2460 const domain_enum domain)
2461 {
2462 const struct block *static_block = block_static_block (block);
2463 struct symbol *sym;
2464
2465 if (static_block == NULL)
2466 return (struct block_symbol) {NULL, NULL};
2467
2468 if (symbol_lookup_debug)
2469 {
2470 struct objfile *objfile = lookup_objfile_from_block (static_block);
2471
2472 fprintf_unfiltered (gdb_stdlog,
2473 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2474 " %s)\n",
2475 name,
2476 host_address_to_string (block),
2477 objfile_debug_name (objfile),
2478 domain_name (domain));
2479 }
2480
2481 sym = lookup_symbol_in_block (name, static_block, domain);
2482 if (symbol_lookup_debug)
2483 {
2484 fprintf_unfiltered (gdb_stdlog,
2485 "lookup_symbol_in_static_block (...) = %s\n",
2486 sym != NULL ? host_address_to_string (sym) : "NULL");
2487 }
2488 return (struct block_symbol) {sym, static_block};
2489 }
2490
2491 /* Perform the standard symbol lookup of NAME in OBJFILE:
2492 1) First search expanded symtabs, and if not found
2493 2) Search the "quick" symtabs (partial or .gdb_index).
2494 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2495
2496 static struct block_symbol
2497 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2498 const char *name, const domain_enum domain)
2499 {
2500 struct block_symbol result;
2501
2502 if (symbol_lookup_debug)
2503 {
2504 fprintf_unfiltered (gdb_stdlog,
2505 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2506 objfile_debug_name (objfile),
2507 block_index == GLOBAL_BLOCK
2508 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2509 name, domain_name (domain));
2510 }
2511
2512 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2513 name, domain);
2514 if (result.symbol != NULL)
2515 {
2516 if (symbol_lookup_debug)
2517 {
2518 fprintf_unfiltered (gdb_stdlog,
2519 "lookup_symbol_in_objfile (...) = %s"
2520 " (in symtabs)\n",
2521 host_address_to_string (result.symbol));
2522 }
2523 return result;
2524 }
2525
2526 result = lookup_symbol_via_quick_fns (objfile, block_index,
2527 name, domain);
2528 if (symbol_lookup_debug)
2529 {
2530 fprintf_unfiltered (gdb_stdlog,
2531 "lookup_symbol_in_objfile (...) = %s%s\n",
2532 result.symbol != NULL
2533 ? host_address_to_string (result.symbol)
2534 : "NULL",
2535 result.symbol != NULL ? " (via quick fns)" : "");
2536 }
2537 return result;
2538 }
2539
2540 /* See symtab.h. */
2541
2542 struct block_symbol
2543 lookup_static_symbol (const char *name, const domain_enum domain)
2544 {
2545 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2546 struct objfile *objfile;
2547 struct block_symbol result;
2548 struct block_symbol_cache *bsc;
2549 struct symbol_cache_slot *slot;
2550
2551 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2552 NULL for OBJFILE_CONTEXT. */
2553 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2554 &bsc, &slot);
2555 if (result.symbol != NULL)
2556 {
2557 if (SYMBOL_LOOKUP_FAILED_P (result))
2558 return (struct block_symbol) {NULL, NULL};
2559 return result;
2560 }
2561
2562 ALL_OBJFILES (objfile)
2563 {
2564 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2565 if (result.symbol != NULL)
2566 {
2567 /* Still pass NULL for OBJFILE_CONTEXT here. */
2568 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2569 result.block);
2570 return result;
2571 }
2572 }
2573
2574 /* Still pass NULL for OBJFILE_CONTEXT here. */
2575 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2576 return (struct block_symbol) {NULL, NULL};
2577 }
2578
2579 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2580
2581 struct global_sym_lookup_data
2582 {
2583 /* The name of the symbol we are searching for. */
2584 const char *name;
2585
2586 /* The domain to use for our search. */
2587 domain_enum domain;
2588
2589 /* The field where the callback should store the symbol if found.
2590 It should be initialized to {NULL, NULL} before the search is started. */
2591 struct block_symbol result;
2592 };
2593
2594 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2595 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2596 OBJFILE. The arguments for the search are passed via CB_DATA,
2597 which in reality is a pointer to struct global_sym_lookup_data. */
2598
2599 static int
2600 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2601 void *cb_data)
2602 {
2603 struct global_sym_lookup_data *data =
2604 (struct global_sym_lookup_data *) cb_data;
2605
2606 gdb_assert (data->result.symbol == NULL
2607 && data->result.block == NULL);
2608
2609 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2610 data->name, data->domain);
2611
2612 /* If we found a match, tell the iterator to stop. Otherwise,
2613 keep going. */
2614 return (data->result.symbol != NULL);
2615 }
2616
2617 /* See symtab.h. */
2618
2619 struct block_symbol
2620 lookup_global_symbol (const char *name,
2621 const struct block *block,
2622 const domain_enum domain)
2623 {
2624 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2625 struct block_symbol result;
2626 struct objfile *objfile;
2627 struct global_sym_lookup_data lookup_data;
2628 struct block_symbol_cache *bsc;
2629 struct symbol_cache_slot *slot;
2630
2631 objfile = lookup_objfile_from_block (block);
2632
2633 /* First see if we can find the symbol in the cache.
2634 This works because we use the current objfile to qualify the lookup. */
2635 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2636 &bsc, &slot);
2637 if (result.symbol != NULL)
2638 {
2639 if (SYMBOL_LOOKUP_FAILED_P (result))
2640 return (struct block_symbol) {NULL, NULL};
2641 return result;
2642 }
2643
2644 /* Call library-specific lookup procedure. */
2645 if (objfile != NULL)
2646 result = solib_global_lookup (objfile, name, domain);
2647
2648 /* If that didn't work go a global search (of global blocks, heh). */
2649 if (result.symbol == NULL)
2650 {
2651 memset (&lookup_data, 0, sizeof (lookup_data));
2652 lookup_data.name = name;
2653 lookup_data.domain = domain;
2654 gdbarch_iterate_over_objfiles_in_search_order
2655 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2656 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2657 result = lookup_data.result;
2658 }
2659
2660 if (result.symbol != NULL)
2661 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2662 else
2663 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2664
2665 return result;
2666 }
2667
2668 int
2669 symbol_matches_domain (enum language symbol_language,
2670 domain_enum symbol_domain,
2671 domain_enum domain)
2672 {
2673 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2674 Similarly, any Ada type declaration implicitly defines a typedef. */
2675 if (symbol_language == language_cplus
2676 || symbol_language == language_d
2677 || symbol_language == language_ada)
2678 {
2679 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2680 && symbol_domain == STRUCT_DOMAIN)
2681 return 1;
2682 }
2683 /* For all other languages, strict match is required. */
2684 return (symbol_domain == domain);
2685 }
2686
2687 /* See symtab.h. */
2688
2689 struct type *
2690 lookup_transparent_type (const char *name)
2691 {
2692 return current_language->la_lookup_transparent_type (name);
2693 }
2694
2695 /* A helper for basic_lookup_transparent_type that interfaces with the
2696 "quick" symbol table functions. */
2697
2698 static struct type *
2699 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2700 const char *name)
2701 {
2702 struct compunit_symtab *cust;
2703 const struct blockvector *bv;
2704 struct block *block;
2705 struct symbol *sym;
2706
2707 if (!objfile->sf)
2708 return NULL;
2709 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2710 STRUCT_DOMAIN);
2711 if (cust == NULL)
2712 return NULL;
2713
2714 bv = COMPUNIT_BLOCKVECTOR (cust);
2715 block = BLOCKVECTOR_BLOCK (bv, block_index);
2716 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2717 block_find_non_opaque_type, NULL);
2718 if (sym == NULL)
2719 error_in_psymtab_expansion (block_index, name, cust);
2720 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2721 return SYMBOL_TYPE (sym);
2722 }
2723
2724 /* Subroutine of basic_lookup_transparent_type to simplify it.
2725 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2726 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2727
2728 static struct type *
2729 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2730 const char *name)
2731 {
2732 const struct compunit_symtab *cust;
2733 const struct blockvector *bv;
2734 const struct block *block;
2735 const struct symbol *sym;
2736
2737 ALL_OBJFILE_COMPUNITS (objfile, cust)
2738 {
2739 bv = COMPUNIT_BLOCKVECTOR (cust);
2740 block = BLOCKVECTOR_BLOCK (bv, block_index);
2741 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2742 block_find_non_opaque_type, NULL);
2743 if (sym != NULL)
2744 {
2745 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2746 return SYMBOL_TYPE (sym);
2747 }
2748 }
2749
2750 return NULL;
2751 }
2752
2753 /* The standard implementation of lookup_transparent_type. This code
2754 was modeled on lookup_symbol -- the parts not relevant to looking
2755 up types were just left out. In particular it's assumed here that
2756 types are available in STRUCT_DOMAIN and only in file-static or
2757 global blocks. */
2758
2759 struct type *
2760 basic_lookup_transparent_type (const char *name)
2761 {
2762 struct objfile *objfile;
2763 struct type *t;
2764
2765 /* Now search all the global symbols. Do the symtab's first, then
2766 check the psymtab's. If a psymtab indicates the existence
2767 of the desired name as a global, then do psymtab-to-symtab
2768 conversion on the fly and return the found symbol. */
2769
2770 ALL_OBJFILES (objfile)
2771 {
2772 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2773 if (t)
2774 return t;
2775 }
2776
2777 ALL_OBJFILES (objfile)
2778 {
2779 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2780 if (t)
2781 return t;
2782 }
2783
2784 /* Now search the static file-level symbols.
2785 Not strictly correct, but more useful than an error.
2786 Do the symtab's first, then
2787 check the psymtab's. If a psymtab indicates the existence
2788 of the desired name as a file-level static, then do psymtab-to-symtab
2789 conversion on the fly and return the found symbol. */
2790
2791 ALL_OBJFILES (objfile)
2792 {
2793 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2794 if (t)
2795 return t;
2796 }
2797
2798 ALL_OBJFILES (objfile)
2799 {
2800 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2801 if (t)
2802 return t;
2803 }
2804
2805 return (struct type *) 0;
2806 }
2807
2808 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2809
2810 For each symbol that matches, CALLBACK is called. The symbol and
2811 DATA are passed to the callback.
2812
2813 If CALLBACK returns zero, the iteration ends. Otherwise, the
2814 search continues. */
2815
2816 void
2817 iterate_over_symbols (const struct block *block, const char *name,
2818 const domain_enum domain,
2819 symbol_found_callback_ftype *callback,
2820 void *data)
2821 {
2822 struct block_iterator iter;
2823 struct symbol *sym;
2824
2825 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2826 {
2827 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2828 SYMBOL_DOMAIN (sym), domain))
2829 {
2830 if (!callback (sym, data))
2831 return;
2832 }
2833 }
2834 }
2835
2836 /* Find the compunit symtab associated with PC and SECTION.
2837 This will read in debug info as necessary. */
2838
2839 struct compunit_symtab *
2840 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2841 {
2842 struct compunit_symtab *cust;
2843 struct compunit_symtab *best_cust = NULL;
2844 struct objfile *objfile;
2845 CORE_ADDR distance = 0;
2846 struct bound_minimal_symbol msymbol;
2847
2848 /* If we know that this is not a text address, return failure. This is
2849 necessary because we loop based on the block's high and low code
2850 addresses, which do not include the data ranges, and because
2851 we call find_pc_sect_psymtab which has a similar restriction based
2852 on the partial_symtab's texthigh and textlow. */
2853 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2854 if (msymbol.minsym
2855 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2856 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2857 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2858 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2859 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2860 return NULL;
2861
2862 /* Search all symtabs for the one whose file contains our address, and which
2863 is the smallest of all the ones containing the address. This is designed
2864 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2865 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2866 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2867
2868 This happens for native ecoff format, where code from included files
2869 gets its own symtab. The symtab for the included file should have
2870 been read in already via the dependency mechanism.
2871 It might be swifter to create several symtabs with the same name
2872 like xcoff does (I'm not sure).
2873
2874 It also happens for objfiles that have their functions reordered.
2875 For these, the symtab we are looking for is not necessarily read in. */
2876
2877 ALL_COMPUNITS (objfile, cust)
2878 {
2879 struct block *b;
2880 const struct blockvector *bv;
2881
2882 bv = COMPUNIT_BLOCKVECTOR (cust);
2883 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2884
2885 if (BLOCK_START (b) <= pc
2886 && BLOCK_END (b) > pc
2887 && (distance == 0
2888 || BLOCK_END (b) - BLOCK_START (b) < distance))
2889 {
2890 /* For an objfile that has its functions reordered,
2891 find_pc_psymtab will find the proper partial symbol table
2892 and we simply return its corresponding symtab. */
2893 /* In order to better support objfiles that contain both
2894 stabs and coff debugging info, we continue on if a psymtab
2895 can't be found. */
2896 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2897 {
2898 struct compunit_symtab *result;
2899
2900 result
2901 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2902 msymbol,
2903 pc, section,
2904 0);
2905 if (result != NULL)
2906 return result;
2907 }
2908 if (section != 0)
2909 {
2910 struct block_iterator iter;
2911 struct symbol *sym = NULL;
2912
2913 ALL_BLOCK_SYMBOLS (b, iter, sym)
2914 {
2915 fixup_symbol_section (sym, objfile);
2916 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2917 section))
2918 break;
2919 }
2920 if (sym == NULL)
2921 continue; /* No symbol in this symtab matches
2922 section. */
2923 }
2924 distance = BLOCK_END (b) - BLOCK_START (b);
2925 best_cust = cust;
2926 }
2927 }
2928
2929 if (best_cust != NULL)
2930 return best_cust;
2931
2932 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2933
2934 ALL_OBJFILES (objfile)
2935 {
2936 struct compunit_symtab *result;
2937
2938 if (!objfile->sf)
2939 continue;
2940 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2941 msymbol,
2942 pc, section,
2943 1);
2944 if (result != NULL)
2945 return result;
2946 }
2947
2948 return NULL;
2949 }
2950
2951 /* Find the compunit symtab associated with PC.
2952 This will read in debug info as necessary.
2953 Backward compatibility, no section. */
2954
2955 struct compunit_symtab *
2956 find_pc_compunit_symtab (CORE_ADDR pc)
2957 {
2958 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2959 }
2960 \f
2961
2962 /* Find the source file and line number for a given PC value and SECTION.
2963 Return a structure containing a symtab pointer, a line number,
2964 and a pc range for the entire source line.
2965 The value's .pc field is NOT the specified pc.
2966 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2967 use the line that ends there. Otherwise, in that case, the line
2968 that begins there is used. */
2969
2970 /* The big complication here is that a line may start in one file, and end just
2971 before the start of another file. This usually occurs when you #include
2972 code in the middle of a subroutine. To properly find the end of a line's PC
2973 range, we must search all symtabs associated with this compilation unit, and
2974 find the one whose first PC is closer than that of the next line in this
2975 symtab. */
2976
2977 /* If it's worth the effort, we could be using a binary search. */
2978
2979 struct symtab_and_line
2980 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2981 {
2982 struct compunit_symtab *cust;
2983 struct symtab *iter_s;
2984 struct linetable *l;
2985 int len;
2986 int i;
2987 struct linetable_entry *item;
2988 struct symtab_and_line val;
2989 const struct blockvector *bv;
2990 struct bound_minimal_symbol msymbol;
2991
2992 /* Info on best line seen so far, and where it starts, and its file. */
2993
2994 struct linetable_entry *best = NULL;
2995 CORE_ADDR best_end = 0;
2996 struct symtab *best_symtab = 0;
2997
2998 /* Store here the first line number
2999 of a file which contains the line at the smallest pc after PC.
3000 If we don't find a line whose range contains PC,
3001 we will use a line one less than this,
3002 with a range from the start of that file to the first line's pc. */
3003 struct linetable_entry *alt = NULL;
3004
3005 /* Info on best line seen in this file. */
3006
3007 struct linetable_entry *prev;
3008
3009 /* If this pc is not from the current frame,
3010 it is the address of the end of a call instruction.
3011 Quite likely that is the start of the following statement.
3012 But what we want is the statement containing the instruction.
3013 Fudge the pc to make sure we get that. */
3014
3015 init_sal (&val); /* initialize to zeroes */
3016
3017 val.pspace = current_program_space;
3018
3019 /* It's tempting to assume that, if we can't find debugging info for
3020 any function enclosing PC, that we shouldn't search for line
3021 number info, either. However, GAS can emit line number info for
3022 assembly files --- very helpful when debugging hand-written
3023 assembly code. In such a case, we'd have no debug info for the
3024 function, but we would have line info. */
3025
3026 if (notcurrent)
3027 pc -= 1;
3028
3029 /* elz: added this because this function returned the wrong
3030 information if the pc belongs to a stub (import/export)
3031 to call a shlib function. This stub would be anywhere between
3032 two functions in the target, and the line info was erroneously
3033 taken to be the one of the line before the pc. */
3034
3035 /* RT: Further explanation:
3036
3037 * We have stubs (trampolines) inserted between procedures.
3038 *
3039 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3040 * exists in the main image.
3041 *
3042 * In the minimal symbol table, we have a bunch of symbols
3043 * sorted by start address. The stubs are marked as "trampoline",
3044 * the others appear as text. E.g.:
3045 *
3046 * Minimal symbol table for main image
3047 * main: code for main (text symbol)
3048 * shr1: stub (trampoline symbol)
3049 * foo: code for foo (text symbol)
3050 * ...
3051 * Minimal symbol table for "shr1" image:
3052 * ...
3053 * shr1: code for shr1 (text symbol)
3054 * ...
3055 *
3056 * So the code below is trying to detect if we are in the stub
3057 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3058 * and if found, do the symbolization from the real-code address
3059 * rather than the stub address.
3060 *
3061 * Assumptions being made about the minimal symbol table:
3062 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3063 * if we're really in the trampoline.s If we're beyond it (say
3064 * we're in "foo" in the above example), it'll have a closer
3065 * symbol (the "foo" text symbol for example) and will not
3066 * return the trampoline.
3067 * 2. lookup_minimal_symbol_text() will find a real text symbol
3068 * corresponding to the trampoline, and whose address will
3069 * be different than the trampoline address. I put in a sanity
3070 * check for the address being the same, to avoid an
3071 * infinite recursion.
3072 */
3073 msymbol = lookup_minimal_symbol_by_pc (pc);
3074 if (msymbol.minsym != NULL)
3075 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3076 {
3077 struct bound_minimal_symbol mfunsym
3078 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3079 NULL);
3080
3081 if (mfunsym.minsym == NULL)
3082 /* I eliminated this warning since it is coming out
3083 * in the following situation:
3084 * gdb shmain // test program with shared libraries
3085 * (gdb) break shr1 // function in shared lib
3086 * Warning: In stub for ...
3087 * In the above situation, the shared lib is not loaded yet,
3088 * so of course we can't find the real func/line info,
3089 * but the "break" still works, and the warning is annoying.
3090 * So I commented out the warning. RT */
3091 /* warning ("In stub for %s; unable to find real function/line info",
3092 SYMBOL_LINKAGE_NAME (msymbol)); */
3093 ;
3094 /* fall through */
3095 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3096 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3097 /* Avoid infinite recursion */
3098 /* See above comment about why warning is commented out. */
3099 /* warning ("In stub for %s; unable to find real function/line info",
3100 SYMBOL_LINKAGE_NAME (msymbol)); */
3101 ;
3102 /* fall through */
3103 else
3104 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3105 }
3106
3107
3108 cust = find_pc_sect_compunit_symtab (pc, section);
3109 if (cust == NULL)
3110 {
3111 /* If no symbol information, return previous pc. */
3112 if (notcurrent)
3113 pc++;
3114 val.pc = pc;
3115 return val;
3116 }
3117
3118 bv = COMPUNIT_BLOCKVECTOR (cust);
3119
3120 /* Look at all the symtabs that share this blockvector.
3121 They all have the same apriori range, that we found was right;
3122 but they have different line tables. */
3123
3124 ALL_COMPUNIT_FILETABS (cust, iter_s)
3125 {
3126 /* Find the best line in this symtab. */
3127 l = SYMTAB_LINETABLE (iter_s);
3128 if (!l)
3129 continue;
3130 len = l->nitems;
3131 if (len <= 0)
3132 {
3133 /* I think len can be zero if the symtab lacks line numbers
3134 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3135 I'm not sure which, and maybe it depends on the symbol
3136 reader). */
3137 continue;
3138 }
3139
3140 prev = NULL;
3141 item = l->item; /* Get first line info. */
3142
3143 /* Is this file's first line closer than the first lines of other files?
3144 If so, record this file, and its first line, as best alternate. */
3145 if (item->pc > pc && (!alt || item->pc < alt->pc))
3146 alt = item;
3147
3148 for (i = 0; i < len; i++, item++)
3149 {
3150 /* Leave prev pointing to the linetable entry for the last line
3151 that started at or before PC. */
3152 if (item->pc > pc)
3153 break;
3154
3155 prev = item;
3156 }
3157
3158 /* At this point, prev points at the line whose start addr is <= pc, and
3159 item points at the next line. If we ran off the end of the linetable
3160 (pc >= start of the last line), then prev == item. If pc < start of
3161 the first line, prev will not be set. */
3162
3163 /* Is this file's best line closer than the best in the other files?
3164 If so, record this file, and its best line, as best so far. Don't
3165 save prev if it represents the end of a function (i.e. line number
3166 0) instead of a real line. */
3167
3168 if (prev && prev->line && (!best || prev->pc > best->pc))
3169 {
3170 best = prev;
3171 best_symtab = iter_s;
3172
3173 /* Discard BEST_END if it's before the PC of the current BEST. */
3174 if (best_end <= best->pc)
3175 best_end = 0;
3176 }
3177
3178 /* If another line (denoted by ITEM) is in the linetable and its
3179 PC is after BEST's PC, but before the current BEST_END, then
3180 use ITEM's PC as the new best_end. */
3181 if (best && i < len && item->pc > best->pc
3182 && (best_end == 0 || best_end > item->pc))
3183 best_end = item->pc;
3184 }
3185
3186 if (!best_symtab)
3187 {
3188 /* If we didn't find any line number info, just return zeros.
3189 We used to return alt->line - 1 here, but that could be
3190 anywhere; if we don't have line number info for this PC,
3191 don't make some up. */
3192 val.pc = pc;
3193 }
3194 else if (best->line == 0)
3195 {
3196 /* If our best fit is in a range of PC's for which no line
3197 number info is available (line number is zero) then we didn't
3198 find any valid line information. */
3199 val.pc = pc;
3200 }
3201 else
3202 {
3203 val.symtab = best_symtab;
3204 val.line = best->line;
3205 val.pc = best->pc;
3206 if (best_end && (!alt || best_end < alt->pc))
3207 val.end = best_end;
3208 else if (alt)
3209 val.end = alt->pc;
3210 else
3211 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3212 }
3213 val.section = section;
3214 return val;
3215 }
3216
3217 /* Backward compatibility (no section). */
3218
3219 struct symtab_and_line
3220 find_pc_line (CORE_ADDR pc, int notcurrent)
3221 {
3222 struct obj_section *section;
3223
3224 section = find_pc_overlay (pc);
3225 if (pc_in_unmapped_range (pc, section))
3226 pc = overlay_mapped_address (pc, section);
3227 return find_pc_sect_line (pc, section, notcurrent);
3228 }
3229
3230 /* See symtab.h. */
3231
3232 struct symtab *
3233 find_pc_line_symtab (CORE_ADDR pc)
3234 {
3235 struct symtab_and_line sal;
3236
3237 /* This always passes zero for NOTCURRENT to find_pc_line.
3238 There are currently no callers that ever pass non-zero. */
3239 sal = find_pc_line (pc, 0);
3240 return sal.symtab;
3241 }
3242 \f
3243 /* Find line number LINE in any symtab whose name is the same as
3244 SYMTAB.
3245
3246 If found, return the symtab that contains the linetable in which it was
3247 found, set *INDEX to the index in the linetable of the best entry
3248 found, and set *EXACT_MATCH nonzero if the value returned is an
3249 exact match.
3250
3251 If not found, return NULL. */
3252
3253 struct symtab *
3254 find_line_symtab (struct symtab *symtab, int line,
3255 int *index, int *exact_match)
3256 {
3257 int exact = 0; /* Initialized here to avoid a compiler warning. */
3258
3259 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3260 so far seen. */
3261
3262 int best_index;
3263 struct linetable *best_linetable;
3264 struct symtab *best_symtab;
3265
3266 /* First try looking it up in the given symtab. */
3267 best_linetable = SYMTAB_LINETABLE (symtab);
3268 best_symtab = symtab;
3269 best_index = find_line_common (best_linetable, line, &exact, 0);
3270 if (best_index < 0 || !exact)
3271 {
3272 /* Didn't find an exact match. So we better keep looking for
3273 another symtab with the same name. In the case of xcoff,
3274 multiple csects for one source file (produced by IBM's FORTRAN
3275 compiler) produce multiple symtabs (this is unavoidable
3276 assuming csects can be at arbitrary places in memory and that
3277 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3278
3279 /* BEST is the smallest linenumber > LINE so far seen,
3280 or 0 if none has been seen so far.
3281 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3282 int best;
3283
3284 struct objfile *objfile;
3285 struct compunit_symtab *cu;
3286 struct symtab *s;
3287
3288 if (best_index >= 0)
3289 best = best_linetable->item[best_index].line;
3290 else
3291 best = 0;
3292
3293 ALL_OBJFILES (objfile)
3294 {
3295 if (objfile->sf)
3296 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3297 symtab_to_fullname (symtab));
3298 }
3299
3300 ALL_FILETABS (objfile, cu, s)
3301 {
3302 struct linetable *l;
3303 int ind;
3304
3305 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3306 continue;
3307 if (FILENAME_CMP (symtab_to_fullname (symtab),
3308 symtab_to_fullname (s)) != 0)
3309 continue;
3310 l = SYMTAB_LINETABLE (s);
3311 ind = find_line_common (l, line, &exact, 0);
3312 if (ind >= 0)
3313 {
3314 if (exact)
3315 {
3316 best_index = ind;
3317 best_linetable = l;
3318 best_symtab = s;
3319 goto done;
3320 }
3321 if (best == 0 || l->item[ind].line < best)
3322 {
3323 best = l->item[ind].line;
3324 best_index = ind;
3325 best_linetable = l;
3326 best_symtab = s;
3327 }
3328 }
3329 }
3330 }
3331 done:
3332 if (best_index < 0)
3333 return NULL;
3334
3335 if (index)
3336 *index = best_index;
3337 if (exact_match)
3338 *exact_match = exact;
3339
3340 return best_symtab;
3341 }
3342
3343 /* Given SYMTAB, returns all the PCs function in the symtab that
3344 exactly match LINE. Returns NULL if there are no exact matches,
3345 but updates BEST_ITEM in this case. */
3346
3347 VEC (CORE_ADDR) *
3348 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3349 struct linetable_entry **best_item)
3350 {
3351 int start = 0;
3352 VEC (CORE_ADDR) *result = NULL;
3353
3354 /* First, collect all the PCs that are at this line. */
3355 while (1)
3356 {
3357 int was_exact;
3358 int idx;
3359
3360 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3361 start);
3362 if (idx < 0)
3363 break;
3364
3365 if (!was_exact)
3366 {
3367 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3368
3369 if (*best_item == NULL || item->line < (*best_item)->line)
3370 *best_item = item;
3371
3372 break;
3373 }
3374
3375 VEC_safe_push (CORE_ADDR, result,
3376 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3377 start = idx + 1;
3378 }
3379
3380 return result;
3381 }
3382
3383 \f
3384 /* Set the PC value for a given source file and line number and return true.
3385 Returns zero for invalid line number (and sets the PC to 0).
3386 The source file is specified with a struct symtab. */
3387
3388 int
3389 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3390 {
3391 struct linetable *l;
3392 int ind;
3393
3394 *pc = 0;
3395 if (symtab == 0)
3396 return 0;
3397
3398 symtab = find_line_symtab (symtab, line, &ind, NULL);
3399 if (symtab != NULL)
3400 {
3401 l = SYMTAB_LINETABLE (symtab);
3402 *pc = l->item[ind].pc;
3403 return 1;
3404 }
3405 else
3406 return 0;
3407 }
3408
3409 /* Find the range of pc values in a line.
3410 Store the starting pc of the line into *STARTPTR
3411 and the ending pc (start of next line) into *ENDPTR.
3412 Returns 1 to indicate success.
3413 Returns 0 if could not find the specified line. */
3414
3415 int
3416 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3417 CORE_ADDR *endptr)
3418 {
3419 CORE_ADDR startaddr;
3420 struct symtab_and_line found_sal;
3421
3422 startaddr = sal.pc;
3423 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3424 return 0;
3425
3426 /* This whole function is based on address. For example, if line 10 has
3427 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3428 "info line *0x123" should say the line goes from 0x100 to 0x200
3429 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3430 This also insures that we never give a range like "starts at 0x134
3431 and ends at 0x12c". */
3432
3433 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3434 if (found_sal.line != sal.line)
3435 {
3436 /* The specified line (sal) has zero bytes. */
3437 *startptr = found_sal.pc;
3438 *endptr = found_sal.pc;
3439 }
3440 else
3441 {
3442 *startptr = found_sal.pc;
3443 *endptr = found_sal.end;
3444 }
3445 return 1;
3446 }
3447
3448 /* Given a line table and a line number, return the index into the line
3449 table for the pc of the nearest line whose number is >= the specified one.
3450 Return -1 if none is found. The value is >= 0 if it is an index.
3451 START is the index at which to start searching the line table.
3452
3453 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3454
3455 static int
3456 find_line_common (struct linetable *l, int lineno,
3457 int *exact_match, int start)
3458 {
3459 int i;
3460 int len;
3461
3462 /* BEST is the smallest linenumber > LINENO so far seen,
3463 or 0 if none has been seen so far.
3464 BEST_INDEX identifies the item for it. */
3465
3466 int best_index = -1;
3467 int best = 0;
3468
3469 *exact_match = 0;
3470
3471 if (lineno <= 0)
3472 return -1;
3473 if (l == 0)
3474 return -1;
3475
3476 len = l->nitems;
3477 for (i = start; i < len; i++)
3478 {
3479 struct linetable_entry *item = &(l->item[i]);
3480
3481 if (item->line == lineno)
3482 {
3483 /* Return the first (lowest address) entry which matches. */
3484 *exact_match = 1;
3485 return i;
3486 }
3487
3488 if (item->line > lineno && (best == 0 || item->line < best))
3489 {
3490 best = item->line;
3491 best_index = i;
3492 }
3493 }
3494
3495 /* If we got here, we didn't get an exact match. */
3496 return best_index;
3497 }
3498
3499 int
3500 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3501 {
3502 struct symtab_and_line sal;
3503
3504 sal = find_pc_line (pc, 0);
3505 *startptr = sal.pc;
3506 *endptr = sal.end;
3507 return sal.symtab != 0;
3508 }
3509
3510 /* Given a function symbol SYM, find the symtab and line for the start
3511 of the function.
3512 If the argument FUNFIRSTLINE is nonzero, we want the first line
3513 of real code inside the function.
3514 This function should return SALs matching those from minsym_found,
3515 otherwise false multiple-locations breakpoints could be placed. */
3516
3517 struct symtab_and_line
3518 find_function_start_sal (struct symbol *sym, int funfirstline)
3519 {
3520 struct symtab_and_line sal;
3521 struct obj_section *section;
3522
3523 fixup_symbol_section (sym, NULL);
3524 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3525 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3526
3527 if (funfirstline && sal.symtab != NULL
3528 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3529 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3530 {
3531 struct gdbarch *gdbarch = symbol_arch (sym);
3532
3533 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3534 if (gdbarch_skip_entrypoint_p (gdbarch))
3535 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3536 return sal;
3537 }
3538
3539 /* We always should have a line for the function start address.
3540 If we don't, something is odd. Create a plain SAL refering
3541 just the PC and hope that skip_prologue_sal (if requested)
3542 can find a line number for after the prologue. */
3543 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3544 {
3545 init_sal (&sal);
3546 sal.pspace = current_program_space;
3547 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3548 sal.section = section;
3549 }
3550
3551 if (funfirstline)
3552 skip_prologue_sal (&sal);
3553
3554 return sal;
3555 }
3556
3557 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3558 address for that function that has an entry in SYMTAB's line info
3559 table. If such an entry cannot be found, return FUNC_ADDR
3560 unaltered. */
3561
3562 static CORE_ADDR
3563 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3564 {
3565 CORE_ADDR func_start, func_end;
3566 struct linetable *l;
3567 int i;
3568
3569 /* Give up if this symbol has no lineinfo table. */
3570 l = SYMTAB_LINETABLE (symtab);
3571 if (l == NULL)
3572 return func_addr;
3573
3574 /* Get the range for the function's PC values, or give up if we
3575 cannot, for some reason. */
3576 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3577 return func_addr;
3578
3579 /* Linetable entries are ordered by PC values, see the commentary in
3580 symtab.h where `struct linetable' is defined. Thus, the first
3581 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3582 address we are looking for. */
3583 for (i = 0; i < l->nitems; i++)
3584 {
3585 struct linetable_entry *item = &(l->item[i]);
3586
3587 /* Don't use line numbers of zero, they mark special entries in
3588 the table. See the commentary on symtab.h before the
3589 definition of struct linetable. */
3590 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3591 return item->pc;
3592 }
3593
3594 return func_addr;
3595 }
3596
3597 /* Adjust SAL to the first instruction past the function prologue.
3598 If the PC was explicitly specified, the SAL is not changed.
3599 If the line number was explicitly specified, at most the SAL's PC
3600 is updated. If SAL is already past the prologue, then do nothing. */
3601
3602 void
3603 skip_prologue_sal (struct symtab_and_line *sal)
3604 {
3605 struct symbol *sym;
3606 struct symtab_and_line start_sal;
3607 struct cleanup *old_chain;
3608 CORE_ADDR pc, saved_pc;
3609 struct obj_section *section;
3610 const char *name;
3611 struct objfile *objfile;
3612 struct gdbarch *gdbarch;
3613 const struct block *b, *function_block;
3614 int force_skip, skip;
3615
3616 /* Do not change the SAL if PC was specified explicitly. */
3617 if (sal->explicit_pc)
3618 return;
3619
3620 old_chain = save_current_space_and_thread ();
3621 switch_to_program_space_and_thread (sal->pspace);
3622
3623 sym = find_pc_sect_function (sal->pc, sal->section);
3624 if (sym != NULL)
3625 {
3626 fixup_symbol_section (sym, NULL);
3627
3628 objfile = symbol_objfile (sym);
3629 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3630 section = SYMBOL_OBJ_SECTION (objfile, sym);
3631 name = SYMBOL_LINKAGE_NAME (sym);
3632 }
3633 else
3634 {
3635 struct bound_minimal_symbol msymbol
3636 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3637
3638 if (msymbol.minsym == NULL)
3639 {
3640 do_cleanups (old_chain);
3641 return;
3642 }
3643
3644 objfile = msymbol.objfile;
3645 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3646 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3647 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3648 }
3649
3650 gdbarch = get_objfile_arch (objfile);
3651
3652 /* Process the prologue in two passes. In the first pass try to skip the
3653 prologue (SKIP is true) and verify there is a real need for it (indicated
3654 by FORCE_SKIP). If no such reason was found run a second pass where the
3655 prologue is not skipped (SKIP is false). */
3656
3657 skip = 1;
3658 force_skip = 1;
3659
3660 /* Be conservative - allow direct PC (without skipping prologue) only if we
3661 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3662 have to be set by the caller so we use SYM instead. */
3663 if (sym != NULL
3664 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3665 force_skip = 0;
3666
3667 saved_pc = pc;
3668 do
3669 {
3670 pc = saved_pc;
3671
3672 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3673 so that gdbarch_skip_prologue has something unique to work on. */
3674 if (section_is_overlay (section) && !section_is_mapped (section))
3675 pc = overlay_unmapped_address (pc, section);
3676
3677 /* Skip "first line" of function (which is actually its prologue). */
3678 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3679 if (gdbarch_skip_entrypoint_p (gdbarch))
3680 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3681 if (skip)
3682 pc = gdbarch_skip_prologue (gdbarch, pc);
3683
3684 /* For overlays, map pc back into its mapped VMA range. */
3685 pc = overlay_mapped_address (pc, section);
3686
3687 /* Calculate line number. */
3688 start_sal = find_pc_sect_line (pc, section, 0);
3689
3690 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3691 line is still part of the same function. */
3692 if (skip && start_sal.pc != pc
3693 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3694 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3695 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3696 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3697 {
3698 /* First pc of next line */
3699 pc = start_sal.end;
3700 /* Recalculate the line number (might not be N+1). */
3701 start_sal = find_pc_sect_line (pc, section, 0);
3702 }
3703
3704 /* On targets with executable formats that don't have a concept of
3705 constructors (ELF with .init has, PE doesn't), gcc emits a call
3706 to `__main' in `main' between the prologue and before user
3707 code. */
3708 if (gdbarch_skip_main_prologue_p (gdbarch)
3709 && name && strcmp_iw (name, "main") == 0)
3710 {
3711 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3712 /* Recalculate the line number (might not be N+1). */
3713 start_sal = find_pc_sect_line (pc, section, 0);
3714 force_skip = 1;
3715 }
3716 }
3717 while (!force_skip && skip--);
3718
3719 /* If we still don't have a valid source line, try to find the first
3720 PC in the lineinfo table that belongs to the same function. This
3721 happens with COFF debug info, which does not seem to have an
3722 entry in lineinfo table for the code after the prologue which has
3723 no direct relation to source. For example, this was found to be
3724 the case with the DJGPP target using "gcc -gcoff" when the
3725 compiler inserted code after the prologue to make sure the stack
3726 is aligned. */
3727 if (!force_skip && sym && start_sal.symtab == NULL)
3728 {
3729 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3730 /* Recalculate the line number. */
3731 start_sal = find_pc_sect_line (pc, section, 0);
3732 }
3733
3734 do_cleanups (old_chain);
3735
3736 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3737 forward SAL to the end of the prologue. */
3738 if (sal->pc >= pc)
3739 return;
3740
3741 sal->pc = pc;
3742 sal->section = section;
3743
3744 /* Unless the explicit_line flag was set, update the SAL line
3745 and symtab to correspond to the modified PC location. */
3746 if (sal->explicit_line)
3747 return;
3748
3749 sal->symtab = start_sal.symtab;
3750 sal->line = start_sal.line;
3751 sal->end = start_sal.end;
3752
3753 /* Check if we are now inside an inlined function. If we can,
3754 use the call site of the function instead. */
3755 b = block_for_pc_sect (sal->pc, sal->section);
3756 function_block = NULL;
3757 while (b != NULL)
3758 {
3759 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3760 function_block = b;
3761 else if (BLOCK_FUNCTION (b) != NULL)
3762 break;
3763 b = BLOCK_SUPERBLOCK (b);
3764 }
3765 if (function_block != NULL
3766 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3767 {
3768 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3769 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3770 }
3771 }
3772
3773 /* Given PC at the function's start address, attempt to find the
3774 prologue end using SAL information. Return zero if the skip fails.
3775
3776 A non-optimized prologue traditionally has one SAL for the function
3777 and a second for the function body. A single line function has
3778 them both pointing at the same line.
3779
3780 An optimized prologue is similar but the prologue may contain
3781 instructions (SALs) from the instruction body. Need to skip those
3782 while not getting into the function body.
3783
3784 The functions end point and an increasing SAL line are used as
3785 indicators of the prologue's endpoint.
3786
3787 This code is based on the function refine_prologue_limit
3788 (found in ia64). */
3789
3790 CORE_ADDR
3791 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3792 {
3793 struct symtab_and_line prologue_sal;
3794 CORE_ADDR start_pc;
3795 CORE_ADDR end_pc;
3796 const struct block *bl;
3797
3798 /* Get an initial range for the function. */
3799 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3800 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3801
3802 prologue_sal = find_pc_line (start_pc, 0);
3803 if (prologue_sal.line != 0)
3804 {
3805 /* For languages other than assembly, treat two consecutive line
3806 entries at the same address as a zero-instruction prologue.
3807 The GNU assembler emits separate line notes for each instruction
3808 in a multi-instruction macro, but compilers generally will not
3809 do this. */
3810 if (prologue_sal.symtab->language != language_asm)
3811 {
3812 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3813 int idx = 0;
3814
3815 /* Skip any earlier lines, and any end-of-sequence marker
3816 from a previous function. */
3817 while (linetable->item[idx].pc != prologue_sal.pc
3818 || linetable->item[idx].line == 0)
3819 idx++;
3820
3821 if (idx+1 < linetable->nitems
3822 && linetable->item[idx+1].line != 0
3823 && linetable->item[idx+1].pc == start_pc)
3824 return start_pc;
3825 }
3826
3827 /* If there is only one sal that covers the entire function,
3828 then it is probably a single line function, like
3829 "foo(){}". */
3830 if (prologue_sal.end >= end_pc)
3831 return 0;
3832
3833 while (prologue_sal.end < end_pc)
3834 {
3835 struct symtab_and_line sal;
3836
3837 sal = find_pc_line (prologue_sal.end, 0);
3838 if (sal.line == 0)
3839 break;
3840 /* Assume that a consecutive SAL for the same (or larger)
3841 line mark the prologue -> body transition. */
3842 if (sal.line >= prologue_sal.line)
3843 break;
3844 /* Likewise if we are in a different symtab altogether
3845 (e.g. within a file included via #include).  */
3846 if (sal.symtab != prologue_sal.symtab)
3847 break;
3848
3849 /* The line number is smaller. Check that it's from the
3850 same function, not something inlined. If it's inlined,
3851 then there is no point comparing the line numbers. */
3852 bl = block_for_pc (prologue_sal.end);
3853 while (bl)
3854 {
3855 if (block_inlined_p (bl))
3856 break;
3857 if (BLOCK_FUNCTION (bl))
3858 {
3859 bl = NULL;
3860 break;
3861 }
3862 bl = BLOCK_SUPERBLOCK (bl);
3863 }
3864 if (bl != NULL)
3865 break;
3866
3867 /* The case in which compiler's optimizer/scheduler has
3868 moved instructions into the prologue. We look ahead in
3869 the function looking for address ranges whose
3870 corresponding line number is less the first one that we
3871 found for the function. This is more conservative then
3872 refine_prologue_limit which scans a large number of SALs
3873 looking for any in the prologue. */
3874 prologue_sal = sal;
3875 }
3876 }
3877
3878 if (prologue_sal.end < end_pc)
3879 /* Return the end of this line, or zero if we could not find a
3880 line. */
3881 return prologue_sal.end;
3882 else
3883 /* Don't return END_PC, which is past the end of the function. */
3884 return prologue_sal.pc;
3885 }
3886 \f
3887 /* If P is of the form "operator[ \t]+..." where `...' is
3888 some legitimate operator text, return a pointer to the
3889 beginning of the substring of the operator text.
3890 Otherwise, return "". */
3891
3892 static const char *
3893 operator_chars (const char *p, const char **end)
3894 {
3895 *end = "";
3896 if (!startswith (p, "operator"))
3897 return *end;
3898 p += 8;
3899
3900 /* Don't get faked out by `operator' being part of a longer
3901 identifier. */
3902 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3903 return *end;
3904
3905 /* Allow some whitespace between `operator' and the operator symbol. */
3906 while (*p == ' ' || *p == '\t')
3907 p++;
3908
3909 /* Recognize 'operator TYPENAME'. */
3910
3911 if (isalpha (*p) || *p == '_' || *p == '$')
3912 {
3913 const char *q = p + 1;
3914
3915 while (isalnum (*q) || *q == '_' || *q == '$')
3916 q++;
3917 *end = q;
3918 return p;
3919 }
3920
3921 while (*p)
3922 switch (*p)
3923 {
3924 case '\\': /* regexp quoting */
3925 if (p[1] == '*')
3926 {
3927 if (p[2] == '=') /* 'operator\*=' */
3928 *end = p + 3;
3929 else /* 'operator\*' */
3930 *end = p + 2;
3931 return p;
3932 }
3933 else if (p[1] == '[')
3934 {
3935 if (p[2] == ']')
3936 error (_("mismatched quoting on brackets, "
3937 "try 'operator\\[\\]'"));
3938 else if (p[2] == '\\' && p[3] == ']')
3939 {
3940 *end = p + 4; /* 'operator\[\]' */
3941 return p;
3942 }
3943 else
3944 error (_("nothing is allowed between '[' and ']'"));
3945 }
3946 else
3947 {
3948 /* Gratuitous qoute: skip it and move on. */
3949 p++;
3950 continue;
3951 }
3952 break;
3953 case '!':
3954 case '=':
3955 case '*':
3956 case '/':
3957 case '%':
3958 case '^':
3959 if (p[1] == '=')
3960 *end = p + 2;
3961 else
3962 *end = p + 1;
3963 return p;
3964 case '<':
3965 case '>':
3966 case '+':
3967 case '-':
3968 case '&':
3969 case '|':
3970 if (p[0] == '-' && p[1] == '>')
3971 {
3972 /* Struct pointer member operator 'operator->'. */
3973 if (p[2] == '*')
3974 {
3975 *end = p + 3; /* 'operator->*' */
3976 return p;
3977 }
3978 else if (p[2] == '\\')
3979 {
3980 *end = p + 4; /* Hopefully 'operator->\*' */
3981 return p;
3982 }
3983 else
3984 {
3985 *end = p + 2; /* 'operator->' */
3986 return p;
3987 }
3988 }
3989 if (p[1] == '=' || p[1] == p[0])
3990 *end = p + 2;
3991 else
3992 *end = p + 1;
3993 return p;
3994 case '~':
3995 case ',':
3996 *end = p + 1;
3997 return p;
3998 case '(':
3999 if (p[1] != ')')
4000 error (_("`operator ()' must be specified "
4001 "without whitespace in `()'"));
4002 *end = p + 2;
4003 return p;
4004 case '?':
4005 if (p[1] != ':')
4006 error (_("`operator ?:' must be specified "
4007 "without whitespace in `?:'"));
4008 *end = p + 2;
4009 return p;
4010 case '[':
4011 if (p[1] != ']')
4012 error (_("`operator []' must be specified "
4013 "without whitespace in `[]'"));
4014 *end = p + 2;
4015 return p;
4016 default:
4017 error (_("`operator %s' not supported"), p);
4018 break;
4019 }
4020
4021 *end = "";
4022 return *end;
4023 }
4024 \f
4025
4026 /* Cache to watch for file names already seen by filename_seen. */
4027
4028 struct filename_seen_cache
4029 {
4030 /* Table of files seen so far. */
4031 htab_t tab;
4032 /* Initial size of the table. It automagically grows from here. */
4033 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4034 };
4035
4036 /* filename_seen_cache constructor. */
4037
4038 static struct filename_seen_cache *
4039 create_filename_seen_cache (void)
4040 {
4041 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
4042
4043 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4044 filename_hash, filename_eq,
4045 NULL, xcalloc, xfree);
4046
4047 return cache;
4048 }
4049
4050 /* Empty the cache, but do not delete it. */
4051
4052 static void
4053 clear_filename_seen_cache (struct filename_seen_cache *cache)
4054 {
4055 htab_empty (cache->tab);
4056 }
4057
4058 /* filename_seen_cache destructor.
4059 This takes a void * argument as it is generally used as a cleanup. */
4060
4061 static void
4062 delete_filename_seen_cache (void *ptr)
4063 {
4064 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4065
4066 htab_delete (cache->tab);
4067 xfree (cache);
4068 }
4069
4070 /* If FILE is not already in the table of files in CACHE, return zero;
4071 otherwise return non-zero. Optionally add FILE to the table if ADD
4072 is non-zero.
4073
4074 NOTE: We don't manage space for FILE, we assume FILE lives as long
4075 as the caller needs. */
4076
4077 static int
4078 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4079 {
4080 void **slot;
4081
4082 /* Is FILE in tab? */
4083 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4084 if (*slot != NULL)
4085 return 1;
4086
4087 /* No; maybe add it to tab. */
4088 if (add)
4089 *slot = (char *) file;
4090
4091 return 0;
4092 }
4093
4094 /* Data structure to maintain printing state for output_source_filename. */
4095
4096 struct output_source_filename_data
4097 {
4098 /* Cache of what we've seen so far. */
4099 struct filename_seen_cache *filename_seen_cache;
4100
4101 /* Flag of whether we're printing the first one. */
4102 int first;
4103 };
4104
4105 /* Slave routine for sources_info. Force line breaks at ,'s.
4106 NAME is the name to print.
4107 DATA contains the state for printing and watching for duplicates. */
4108
4109 static void
4110 output_source_filename (const char *name,
4111 struct output_source_filename_data *data)
4112 {
4113 /* Since a single source file can result in several partial symbol
4114 tables, we need to avoid printing it more than once. Note: if
4115 some of the psymtabs are read in and some are not, it gets
4116 printed both under "Source files for which symbols have been
4117 read" and "Source files for which symbols will be read in on
4118 demand". I consider this a reasonable way to deal with the
4119 situation. I'm not sure whether this can also happen for
4120 symtabs; it doesn't hurt to check. */
4121
4122 /* Was NAME already seen? */
4123 if (filename_seen (data->filename_seen_cache, name, 1))
4124 {
4125 /* Yes; don't print it again. */
4126 return;
4127 }
4128
4129 /* No; print it and reset *FIRST. */
4130 if (! data->first)
4131 printf_filtered (", ");
4132 data->first = 0;
4133
4134 wrap_here ("");
4135 fputs_filtered (name, gdb_stdout);
4136 }
4137
4138 /* A callback for map_partial_symbol_filenames. */
4139
4140 static void
4141 output_partial_symbol_filename (const char *filename, const char *fullname,
4142 void *data)
4143 {
4144 output_source_filename (fullname ? fullname : filename,
4145 (struct output_source_filename_data *) data);
4146 }
4147
4148 static void
4149 sources_info (char *ignore, int from_tty)
4150 {
4151 struct compunit_symtab *cu;
4152 struct symtab *s;
4153 struct objfile *objfile;
4154 struct output_source_filename_data data;
4155 struct cleanup *cleanups;
4156
4157 if (!have_full_symbols () && !have_partial_symbols ())
4158 {
4159 error (_("No symbol table is loaded. Use the \"file\" command."));
4160 }
4161
4162 data.filename_seen_cache = create_filename_seen_cache ();
4163 cleanups = make_cleanup (delete_filename_seen_cache,
4164 data.filename_seen_cache);
4165
4166 printf_filtered ("Source files for which symbols have been read in:\n\n");
4167
4168 data.first = 1;
4169 ALL_FILETABS (objfile, cu, s)
4170 {
4171 const char *fullname = symtab_to_fullname (s);
4172
4173 output_source_filename (fullname, &data);
4174 }
4175 printf_filtered ("\n\n");
4176
4177 printf_filtered ("Source files for which symbols "
4178 "will be read in on demand:\n\n");
4179
4180 clear_filename_seen_cache (data.filename_seen_cache);
4181 data.first = 1;
4182 map_symbol_filenames (output_partial_symbol_filename, &data,
4183 1 /*need_fullname*/);
4184 printf_filtered ("\n");
4185
4186 do_cleanups (cleanups);
4187 }
4188
4189 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4190 non-zero compare only lbasename of FILES. */
4191
4192 static int
4193 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4194 {
4195 int i;
4196
4197 if (file != NULL && nfiles != 0)
4198 {
4199 for (i = 0; i < nfiles; i++)
4200 {
4201 if (compare_filenames_for_search (file, (basenames
4202 ? lbasename (files[i])
4203 : files[i])))
4204 return 1;
4205 }
4206 }
4207 else if (nfiles == 0)
4208 return 1;
4209 return 0;
4210 }
4211
4212 /* Free any memory associated with a search. */
4213
4214 void
4215 free_search_symbols (struct symbol_search *symbols)
4216 {
4217 struct symbol_search *p;
4218 struct symbol_search *next;
4219
4220 for (p = symbols; p != NULL; p = next)
4221 {
4222 next = p->next;
4223 xfree (p);
4224 }
4225 }
4226
4227 static void
4228 do_free_search_symbols_cleanup (void *symbolsp)
4229 {
4230 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4231
4232 free_search_symbols (symbols);
4233 }
4234
4235 struct cleanup *
4236 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4237 {
4238 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4239 }
4240
4241 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4242 sort symbols, not minimal symbols. */
4243
4244 static int
4245 compare_search_syms (const void *sa, const void *sb)
4246 {
4247 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4248 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4249 int c;
4250
4251 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4252 symbol_symtab (sym_b->symbol)->filename);
4253 if (c != 0)
4254 return c;
4255
4256 if (sym_a->block != sym_b->block)
4257 return sym_a->block - sym_b->block;
4258
4259 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4260 SYMBOL_PRINT_NAME (sym_b->symbol));
4261 }
4262
4263 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4264 The duplicates are freed, and the new list is returned in
4265 *NEW_HEAD, *NEW_TAIL. */
4266
4267 static void
4268 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4269 struct symbol_search **new_head,
4270 struct symbol_search **new_tail)
4271 {
4272 struct symbol_search **symbols, *symp;
4273 int i, j, nunique;
4274
4275 gdb_assert (found != NULL && nfound > 0);
4276
4277 /* Build an array out of the list so we can easily sort them. */
4278 symbols = XNEWVEC (struct symbol_search *, nfound);
4279
4280 symp = found;
4281 for (i = 0; i < nfound; i++)
4282 {
4283 gdb_assert (symp != NULL);
4284 gdb_assert (symp->block >= 0 && symp->block <= 1);
4285 symbols[i] = symp;
4286 symp = symp->next;
4287 }
4288 gdb_assert (symp == NULL);
4289
4290 qsort (symbols, nfound, sizeof (struct symbol_search *),
4291 compare_search_syms);
4292
4293 /* Collapse out the dups. */
4294 for (i = 1, j = 1; i < nfound; ++i)
4295 {
4296 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4297 symbols[j++] = symbols[i];
4298 else
4299 xfree (symbols[i]);
4300 }
4301 nunique = j;
4302 symbols[j - 1]->next = NULL;
4303
4304 /* Rebuild the linked list. */
4305 for (i = 0; i < nunique - 1; i++)
4306 symbols[i]->next = symbols[i + 1];
4307 symbols[nunique - 1]->next = NULL;
4308
4309 *new_head = symbols[0];
4310 *new_tail = symbols[nunique - 1];
4311 xfree (symbols);
4312 }
4313
4314 /* An object of this type is passed as the user_data to the
4315 expand_symtabs_matching method. */
4316 struct search_symbols_data
4317 {
4318 int nfiles;
4319 const char **files;
4320
4321 /* It is true if PREG contains valid data, false otherwise. */
4322 unsigned preg_p : 1;
4323 regex_t preg;
4324 };
4325
4326 /* A callback for expand_symtabs_matching. */
4327
4328 static int
4329 search_symbols_file_matches (const char *filename, void *user_data,
4330 int basenames)
4331 {
4332 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4333
4334 return file_matches (filename, data->files, data->nfiles, basenames);
4335 }
4336
4337 /* A callback for expand_symtabs_matching. */
4338
4339 static int
4340 search_symbols_name_matches (const char *symname, void *user_data)
4341 {
4342 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4343
4344 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4345 }
4346
4347 /* Search the symbol table for matches to the regular expression REGEXP,
4348 returning the results in *MATCHES.
4349
4350 Only symbols of KIND are searched:
4351 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4352 and constants (enums)
4353 FUNCTIONS_DOMAIN - search all functions
4354 TYPES_DOMAIN - search all type names
4355 ALL_DOMAIN - an internal error for this function
4356
4357 free_search_symbols should be called when *MATCHES is no longer needed.
4358
4359 Within each file the results are sorted locally; each symtab's global and
4360 static blocks are separately alphabetized.
4361 Duplicate entries are removed. */
4362
4363 void
4364 search_symbols (const char *regexp, enum search_domain kind,
4365 int nfiles, const char *files[],
4366 struct symbol_search **matches)
4367 {
4368 struct compunit_symtab *cust;
4369 const struct blockvector *bv;
4370 struct block *b;
4371 int i = 0;
4372 struct block_iterator iter;
4373 struct symbol *sym;
4374 struct objfile *objfile;
4375 struct minimal_symbol *msymbol;
4376 int found_misc = 0;
4377 static const enum minimal_symbol_type types[]
4378 = {mst_data, mst_text, mst_abs};
4379 static const enum minimal_symbol_type types2[]
4380 = {mst_bss, mst_file_text, mst_abs};
4381 static const enum minimal_symbol_type types3[]
4382 = {mst_file_data, mst_solib_trampoline, mst_abs};
4383 static const enum minimal_symbol_type types4[]
4384 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4385 enum minimal_symbol_type ourtype;
4386 enum minimal_symbol_type ourtype2;
4387 enum minimal_symbol_type ourtype3;
4388 enum minimal_symbol_type ourtype4;
4389 struct symbol_search *found;
4390 struct symbol_search *tail;
4391 struct search_symbols_data datum;
4392 int nfound;
4393
4394 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4395 CLEANUP_CHAIN is freed only in the case of an error. */
4396 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4397 struct cleanup *retval_chain;
4398
4399 gdb_assert (kind <= TYPES_DOMAIN);
4400
4401 ourtype = types[kind];
4402 ourtype2 = types2[kind];
4403 ourtype3 = types3[kind];
4404 ourtype4 = types4[kind];
4405
4406 *matches = NULL;
4407 datum.preg_p = 0;
4408
4409 if (regexp != NULL)
4410 {
4411 /* Make sure spacing is right for C++ operators.
4412 This is just a courtesy to make the matching less sensitive
4413 to how many spaces the user leaves between 'operator'
4414 and <TYPENAME> or <OPERATOR>. */
4415 const char *opend;
4416 const char *opname = operator_chars (regexp, &opend);
4417 int errcode;
4418
4419 if (*opname)
4420 {
4421 int fix = -1; /* -1 means ok; otherwise number of
4422 spaces needed. */
4423
4424 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4425 {
4426 /* There should 1 space between 'operator' and 'TYPENAME'. */
4427 if (opname[-1] != ' ' || opname[-2] == ' ')
4428 fix = 1;
4429 }
4430 else
4431 {
4432 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4433 if (opname[-1] == ' ')
4434 fix = 0;
4435 }
4436 /* If wrong number of spaces, fix it. */
4437 if (fix >= 0)
4438 {
4439 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4440
4441 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4442 regexp = tmp;
4443 }
4444 }
4445
4446 errcode = regcomp (&datum.preg, regexp,
4447 REG_NOSUB | (case_sensitivity == case_sensitive_off
4448 ? REG_ICASE : 0));
4449 if (errcode != 0)
4450 {
4451 char *err = get_regcomp_error (errcode, &datum.preg);
4452
4453 make_cleanup (xfree, err);
4454 error (_("Invalid regexp (%s): %s"), err, regexp);
4455 }
4456 datum.preg_p = 1;
4457 make_regfree_cleanup (&datum.preg);
4458 }
4459
4460 /* Search through the partial symtabs *first* for all symbols
4461 matching the regexp. That way we don't have to reproduce all of
4462 the machinery below. */
4463
4464 datum.nfiles = nfiles;
4465 datum.files = files;
4466 expand_symtabs_matching ((nfiles == 0
4467 ? NULL
4468 : search_symbols_file_matches),
4469 search_symbols_name_matches,
4470 NULL, kind, &datum);
4471
4472 /* Here, we search through the minimal symbol tables for functions
4473 and variables that match, and force their symbols to be read.
4474 This is in particular necessary for demangled variable names,
4475 which are no longer put into the partial symbol tables.
4476 The symbol will then be found during the scan of symtabs below.
4477
4478 For functions, find_pc_symtab should succeed if we have debug info
4479 for the function, for variables we have to call
4480 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4481 has debug info.
4482 If the lookup fails, set found_misc so that we will rescan to print
4483 any matching symbols without debug info.
4484 We only search the objfile the msymbol came from, we no longer search
4485 all objfiles. In large programs (1000s of shared libs) searching all
4486 objfiles is not worth the pain. */
4487
4488 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4489 {
4490 ALL_MSYMBOLS (objfile, msymbol)
4491 {
4492 QUIT;
4493
4494 if (msymbol->created_by_gdb)
4495 continue;
4496
4497 if (MSYMBOL_TYPE (msymbol) == ourtype
4498 || MSYMBOL_TYPE (msymbol) == ourtype2
4499 || MSYMBOL_TYPE (msymbol) == ourtype3
4500 || MSYMBOL_TYPE (msymbol) == ourtype4)
4501 {
4502 if (!datum.preg_p
4503 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4504 NULL, 0) == 0)
4505 {
4506 /* Note: An important side-effect of these lookup functions
4507 is to expand the symbol table if msymbol is found, for the
4508 benefit of the next loop on ALL_COMPUNITS. */
4509 if (kind == FUNCTIONS_DOMAIN
4510 ? (find_pc_compunit_symtab
4511 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4512 : (lookup_symbol_in_objfile_from_linkage_name
4513 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4514 .symbol == NULL))
4515 found_misc = 1;
4516 }
4517 }
4518 }
4519 }
4520
4521 found = NULL;
4522 tail = NULL;
4523 nfound = 0;
4524 retval_chain = make_cleanup_free_search_symbols (&found);
4525
4526 ALL_COMPUNITS (objfile, cust)
4527 {
4528 bv = COMPUNIT_BLOCKVECTOR (cust);
4529 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4530 {
4531 b = BLOCKVECTOR_BLOCK (bv, i);
4532 ALL_BLOCK_SYMBOLS (b, iter, sym)
4533 {
4534 struct symtab *real_symtab = symbol_symtab (sym);
4535
4536 QUIT;
4537
4538 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4539 a substring of symtab_to_fullname as it may contain "./" etc. */
4540 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4541 || ((basenames_may_differ
4542 || file_matches (lbasename (real_symtab->filename),
4543 files, nfiles, 1))
4544 && file_matches (symtab_to_fullname (real_symtab),
4545 files, nfiles, 0)))
4546 && ((!datum.preg_p
4547 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4548 NULL, 0) == 0)
4549 && ((kind == VARIABLES_DOMAIN
4550 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4551 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4552 && SYMBOL_CLASS (sym) != LOC_BLOCK
4553 /* LOC_CONST can be used for more than just enums,
4554 e.g., c++ static const members.
4555 We only want to skip enums here. */
4556 && !(SYMBOL_CLASS (sym) == LOC_CONST
4557 && (TYPE_CODE (SYMBOL_TYPE (sym))
4558 == TYPE_CODE_ENUM)))
4559 || (kind == FUNCTIONS_DOMAIN
4560 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4561 || (kind == TYPES_DOMAIN
4562 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4563 {
4564 /* match */
4565 struct symbol_search *psr = XCNEW (struct symbol_search);
4566
4567 psr->block = i;
4568 psr->symbol = sym;
4569 psr->next = NULL;
4570 if (tail == NULL)
4571 found = psr;
4572 else
4573 tail->next = psr;
4574 tail = psr;
4575 nfound ++;
4576 }
4577 }
4578 }
4579 }
4580
4581 if (found != NULL)
4582 {
4583 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4584 /* Note: nfound is no longer useful beyond this point. */
4585 }
4586
4587 /* If there are no eyes, avoid all contact. I mean, if there are
4588 no debug symbols, then add matching minsyms. */
4589
4590 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4591 {
4592 ALL_MSYMBOLS (objfile, msymbol)
4593 {
4594 QUIT;
4595
4596 if (msymbol->created_by_gdb)
4597 continue;
4598
4599 if (MSYMBOL_TYPE (msymbol) == ourtype
4600 || MSYMBOL_TYPE (msymbol) == ourtype2
4601 || MSYMBOL_TYPE (msymbol) == ourtype3
4602 || MSYMBOL_TYPE (msymbol) == ourtype4)
4603 {
4604 if (!datum.preg_p
4605 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4606 NULL, 0) == 0)
4607 {
4608 /* For functions we can do a quick check of whether the
4609 symbol might be found via find_pc_symtab. */
4610 if (kind != FUNCTIONS_DOMAIN
4611 || (find_pc_compunit_symtab
4612 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4613 {
4614 if (lookup_symbol_in_objfile_from_linkage_name
4615 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4616 .symbol == NULL)
4617 {
4618 /* match */
4619 struct symbol_search *psr = XNEW (struct symbol_search);
4620 psr->block = i;
4621 psr->msymbol.minsym = msymbol;
4622 psr->msymbol.objfile = objfile;
4623 psr->symbol = NULL;
4624 psr->next = NULL;
4625 if (tail == NULL)
4626 found = psr;
4627 else
4628 tail->next = psr;
4629 tail = psr;
4630 }
4631 }
4632 }
4633 }
4634 }
4635 }
4636
4637 discard_cleanups (retval_chain);
4638 do_cleanups (old_chain);
4639 *matches = found;
4640 }
4641
4642 /* Helper function for symtab_symbol_info, this function uses
4643 the data returned from search_symbols() to print information
4644 regarding the match to gdb_stdout. */
4645
4646 static void
4647 print_symbol_info (enum search_domain kind,
4648 struct symbol *sym,
4649 int block, const char *last)
4650 {
4651 struct symtab *s = symbol_symtab (sym);
4652 const char *s_filename = symtab_to_filename_for_display (s);
4653
4654 if (last == NULL || filename_cmp (last, s_filename) != 0)
4655 {
4656 fputs_filtered ("\nFile ", gdb_stdout);
4657 fputs_filtered (s_filename, gdb_stdout);
4658 fputs_filtered (":\n", gdb_stdout);
4659 }
4660
4661 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4662 printf_filtered ("static ");
4663
4664 /* Typedef that is not a C++ class. */
4665 if (kind == TYPES_DOMAIN
4666 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4667 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4668 /* variable, func, or typedef-that-is-c++-class. */
4669 else if (kind < TYPES_DOMAIN
4670 || (kind == TYPES_DOMAIN
4671 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4672 {
4673 type_print (SYMBOL_TYPE (sym),
4674 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4675 ? "" : SYMBOL_PRINT_NAME (sym)),
4676 gdb_stdout, 0);
4677
4678 printf_filtered (";\n");
4679 }
4680 }
4681
4682 /* This help function for symtab_symbol_info() prints information
4683 for non-debugging symbols to gdb_stdout. */
4684
4685 static void
4686 print_msymbol_info (struct bound_minimal_symbol msymbol)
4687 {
4688 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4689 char *tmp;
4690
4691 if (gdbarch_addr_bit (gdbarch) <= 32)
4692 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4693 & (CORE_ADDR) 0xffffffff,
4694 8);
4695 else
4696 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4697 16);
4698 printf_filtered ("%s %s\n",
4699 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4700 }
4701
4702 /* This is the guts of the commands "info functions", "info types", and
4703 "info variables". It calls search_symbols to find all matches and then
4704 print_[m]symbol_info to print out some useful information about the
4705 matches. */
4706
4707 static void
4708 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4709 {
4710 static const char * const classnames[] =
4711 {"variable", "function", "type"};
4712 struct symbol_search *symbols;
4713 struct symbol_search *p;
4714 struct cleanup *old_chain;
4715 const char *last_filename = NULL;
4716 int first = 1;
4717
4718 gdb_assert (kind <= TYPES_DOMAIN);
4719
4720 /* Must make sure that if we're interrupted, symbols gets freed. */
4721 search_symbols (regexp, kind, 0, NULL, &symbols);
4722 old_chain = make_cleanup_free_search_symbols (&symbols);
4723
4724 if (regexp != NULL)
4725 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4726 classnames[kind], regexp);
4727 else
4728 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4729
4730 for (p = symbols; p != NULL; p = p->next)
4731 {
4732 QUIT;
4733
4734 if (p->msymbol.minsym != NULL)
4735 {
4736 if (first)
4737 {
4738 printf_filtered (_("\nNon-debugging symbols:\n"));
4739 first = 0;
4740 }
4741 print_msymbol_info (p->msymbol);
4742 }
4743 else
4744 {
4745 print_symbol_info (kind,
4746 p->symbol,
4747 p->block,
4748 last_filename);
4749 last_filename
4750 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4751 }
4752 }
4753
4754 do_cleanups (old_chain);
4755 }
4756
4757 static void
4758 variables_info (char *regexp, int from_tty)
4759 {
4760 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4761 }
4762
4763 static void
4764 functions_info (char *regexp, int from_tty)
4765 {
4766 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4767 }
4768
4769
4770 static void
4771 types_info (char *regexp, int from_tty)
4772 {
4773 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4774 }
4775
4776 /* Breakpoint all functions matching regular expression. */
4777
4778 void
4779 rbreak_command_wrapper (char *regexp, int from_tty)
4780 {
4781 rbreak_command (regexp, from_tty);
4782 }
4783
4784 /* A cleanup function that calls end_rbreak_breakpoints. */
4785
4786 static void
4787 do_end_rbreak_breakpoints (void *ignore)
4788 {
4789 end_rbreak_breakpoints ();
4790 }
4791
4792 static void
4793 rbreak_command (char *regexp, int from_tty)
4794 {
4795 struct symbol_search *ss;
4796 struct symbol_search *p;
4797 struct cleanup *old_chain;
4798 char *string = NULL;
4799 int len = 0;
4800 const char **files = NULL;
4801 const char *file_name;
4802 int nfiles = 0;
4803
4804 if (regexp)
4805 {
4806 char *colon = strchr (regexp, ':');
4807
4808 if (colon && *(colon + 1) != ':')
4809 {
4810 int colon_index;
4811 char *local_name;
4812
4813 colon_index = colon - regexp;
4814 local_name = (char *) alloca (colon_index + 1);
4815 memcpy (local_name, regexp, colon_index);
4816 local_name[colon_index--] = 0;
4817 while (isspace (local_name[colon_index]))
4818 local_name[colon_index--] = 0;
4819 file_name = local_name;
4820 files = &file_name;
4821 nfiles = 1;
4822 regexp = skip_spaces (colon + 1);
4823 }
4824 }
4825
4826 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4827 old_chain = make_cleanup_free_search_symbols (&ss);
4828 make_cleanup (free_current_contents, &string);
4829
4830 start_rbreak_breakpoints ();
4831 make_cleanup (do_end_rbreak_breakpoints, NULL);
4832 for (p = ss; p != NULL; p = p->next)
4833 {
4834 if (p->msymbol.minsym == NULL)
4835 {
4836 struct symtab *symtab = symbol_symtab (p->symbol);
4837 const char *fullname = symtab_to_fullname (symtab);
4838
4839 int newlen = (strlen (fullname)
4840 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4841 + 4);
4842
4843 if (newlen > len)
4844 {
4845 string = (char *) xrealloc (string, newlen);
4846 len = newlen;
4847 }
4848 strcpy (string, fullname);
4849 strcat (string, ":'");
4850 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4851 strcat (string, "'");
4852 break_command (string, from_tty);
4853 print_symbol_info (FUNCTIONS_DOMAIN,
4854 p->symbol,
4855 p->block,
4856 symtab_to_filename_for_display (symtab));
4857 }
4858 else
4859 {
4860 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4861
4862 if (newlen > len)
4863 {
4864 string = (char *) xrealloc (string, newlen);
4865 len = newlen;
4866 }
4867 strcpy (string, "'");
4868 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4869 strcat (string, "'");
4870
4871 break_command (string, from_tty);
4872 printf_filtered ("<function, no debug info> %s;\n",
4873 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4874 }
4875 }
4876
4877 do_cleanups (old_chain);
4878 }
4879 \f
4880
4881 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4882
4883 Either sym_text[sym_text_len] != '(' and then we search for any
4884 symbol starting with SYM_TEXT text.
4885
4886 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4887 be terminated at that point. Partial symbol tables do not have parameters
4888 information. */
4889
4890 static int
4891 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4892 {
4893 int (*ncmp) (const char *, const char *, size_t);
4894
4895 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4896
4897 if (ncmp (name, sym_text, sym_text_len) != 0)
4898 return 0;
4899
4900 if (sym_text[sym_text_len] == '(')
4901 {
4902 /* User searches for `name(someth...'. Require NAME to be terminated.
4903 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4904 present but accept even parameters presence. In this case this
4905 function is in fact strcmp_iw but whitespace skipping is not supported
4906 for tab completion. */
4907
4908 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4909 return 0;
4910 }
4911
4912 return 1;
4913 }
4914
4915 /* Free any memory associated with a completion list. */
4916
4917 static void
4918 free_completion_list (VEC (char_ptr) **list_ptr)
4919 {
4920 int i;
4921 char *p;
4922
4923 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4924 xfree (p);
4925 VEC_free (char_ptr, *list_ptr);
4926 }
4927
4928 /* Callback for make_cleanup. */
4929
4930 static void
4931 do_free_completion_list (void *list)
4932 {
4933 free_completion_list ((VEC (char_ptr) **) list);
4934 }
4935
4936 /* Helper routine for make_symbol_completion_list. */
4937
4938 static VEC (char_ptr) *return_val;
4939
4940 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4941 completion_list_add_name \
4942 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4943
4944 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4945 completion_list_add_name \
4946 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4947
4948 /* Tracker for how many unique completions have been generated. Used
4949 to terminate completion list generation early if the list has grown
4950 to a size so large as to be useless. This helps avoid GDB seeming
4951 to lock up in the event the user requests to complete on something
4952 vague that necessitates the time consuming expansion of many symbol
4953 tables. */
4954
4955 static completion_tracker_t completion_tracker;
4956
4957 /* Test to see if the symbol specified by SYMNAME (which is already
4958 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4959 characters. If so, add it to the current completion list. */
4960
4961 static void
4962 completion_list_add_name (const char *symname,
4963 const char *sym_text, int sym_text_len,
4964 const char *text, const char *word)
4965 {
4966 /* Clip symbols that cannot match. */
4967 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4968 return;
4969
4970 /* We have a match for a completion, so add SYMNAME to the current list
4971 of matches. Note that the name is moved to freshly malloc'd space. */
4972
4973 {
4974 char *newobj;
4975 enum maybe_add_completion_enum add_status;
4976
4977 if (word == sym_text)
4978 {
4979 newobj = (char *) xmalloc (strlen (symname) + 5);
4980 strcpy (newobj, symname);
4981 }
4982 else if (word > sym_text)
4983 {
4984 /* Return some portion of symname. */
4985 newobj = (char *) xmalloc (strlen (symname) + 5);
4986 strcpy (newobj, symname + (word - sym_text));
4987 }
4988 else
4989 {
4990 /* Return some of SYM_TEXT plus symname. */
4991 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4992 strncpy (newobj, word, sym_text - word);
4993 newobj[sym_text - word] = '\0';
4994 strcat (newobj, symname);
4995 }
4996
4997 add_status = maybe_add_completion (completion_tracker, newobj);
4998
4999 switch (add_status)
5000 {
5001 case MAYBE_ADD_COMPLETION_OK:
5002 VEC_safe_push (char_ptr, return_val, newobj);
5003 break;
5004 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5005 VEC_safe_push (char_ptr, return_val, newobj);
5006 throw_max_completions_reached_error ();
5007 case MAYBE_ADD_COMPLETION_MAX_REACHED:
5008 xfree (newobj);
5009 throw_max_completions_reached_error ();
5010 case MAYBE_ADD_COMPLETION_DUPLICATE:
5011 xfree (newobj);
5012 break;
5013 }
5014 }
5015 }
5016
5017 /* ObjC: In case we are completing on a selector, look as the msymbol
5018 again and feed all the selectors into the mill. */
5019
5020 static void
5021 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5022 const char *sym_text, int sym_text_len,
5023 const char *text, const char *word)
5024 {
5025 static char *tmp = NULL;
5026 static unsigned int tmplen = 0;
5027
5028 const char *method, *category, *selector;
5029 char *tmp2 = NULL;
5030
5031 method = MSYMBOL_NATURAL_NAME (msymbol);
5032
5033 /* Is it a method? */
5034 if ((method[0] != '-') && (method[0] != '+'))
5035 return;
5036
5037 if (sym_text[0] == '[')
5038 /* Complete on shortened method method. */
5039 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5040
5041 while ((strlen (method) + 1) >= tmplen)
5042 {
5043 if (tmplen == 0)
5044 tmplen = 1024;
5045 else
5046 tmplen *= 2;
5047 tmp = (char *) xrealloc (tmp, tmplen);
5048 }
5049 selector = strchr (method, ' ');
5050 if (selector != NULL)
5051 selector++;
5052
5053 category = strchr (method, '(');
5054
5055 if ((category != NULL) && (selector != NULL))
5056 {
5057 memcpy (tmp, method, (category - method));
5058 tmp[category - method] = ' ';
5059 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5060 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5061 if (sym_text[0] == '[')
5062 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5063 }
5064
5065 if (selector != NULL)
5066 {
5067 /* Complete on selector only. */
5068 strcpy (tmp, selector);
5069 tmp2 = strchr (tmp, ']');
5070 if (tmp2 != NULL)
5071 *tmp2 = '\0';
5072
5073 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5074 }
5075 }
5076
5077 /* Break the non-quoted text based on the characters which are in
5078 symbols. FIXME: This should probably be language-specific. */
5079
5080 static const char *
5081 language_search_unquoted_string (const char *text, const char *p)
5082 {
5083 for (; p > text; --p)
5084 {
5085 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5086 continue;
5087 else
5088 {
5089 if ((current_language->la_language == language_objc))
5090 {
5091 if (p[-1] == ':') /* Might be part of a method name. */
5092 continue;
5093 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5094 p -= 2; /* Beginning of a method name. */
5095 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5096 { /* Might be part of a method name. */
5097 const char *t = p;
5098
5099 /* Seeing a ' ' or a '(' is not conclusive evidence
5100 that we are in the middle of a method name. However,
5101 finding "-[" or "+[" should be pretty un-ambiguous.
5102 Unfortunately we have to find it now to decide. */
5103
5104 while (t > text)
5105 if (isalnum (t[-1]) || t[-1] == '_' ||
5106 t[-1] == ' ' || t[-1] == ':' ||
5107 t[-1] == '(' || t[-1] == ')')
5108 --t;
5109 else
5110 break;
5111
5112 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5113 p = t - 2; /* Method name detected. */
5114 /* Else we leave with p unchanged. */
5115 }
5116 }
5117 break;
5118 }
5119 }
5120 return p;
5121 }
5122
5123 static void
5124 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5125 int sym_text_len, const char *text,
5126 const char *word)
5127 {
5128 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5129 {
5130 struct type *t = SYMBOL_TYPE (sym);
5131 enum type_code c = TYPE_CODE (t);
5132 int j;
5133
5134 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5135 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5136 if (TYPE_FIELD_NAME (t, j))
5137 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5138 sym_text, sym_text_len, text, word);
5139 }
5140 }
5141
5142 /* Type of the user_data argument passed to add_macro_name,
5143 symbol_completion_matcher and symtab_expansion_callback. */
5144
5145 struct add_name_data
5146 {
5147 /* Arguments required by completion_list_add_name. */
5148 const char *sym_text;
5149 int sym_text_len;
5150 const char *text;
5151 const char *word;
5152
5153 /* Extra argument required for add_symtab_completions. */
5154 enum type_code code;
5155 };
5156
5157 /* A callback used with macro_for_each and macro_for_each_in_scope.
5158 This adds a macro's name to the current completion list. */
5159
5160 static void
5161 add_macro_name (const char *name, const struct macro_definition *ignore,
5162 struct macro_source_file *ignore2, int ignore3,
5163 void *user_data)
5164 {
5165 struct add_name_data *datum = (struct add_name_data *) user_data;
5166
5167 completion_list_add_name (name,
5168 datum->sym_text, datum->sym_text_len,
5169 datum->text, datum->word);
5170 }
5171
5172 /* A callback for expand_symtabs_matching. */
5173
5174 static int
5175 symbol_completion_matcher (const char *name, void *user_data)
5176 {
5177 struct add_name_data *datum = (struct add_name_data *) user_data;
5178
5179 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5180 }
5181
5182 /* Add matching symbols from SYMTAB to the current completion list. */
5183
5184 static void
5185 add_symtab_completions (struct compunit_symtab *cust,
5186 const char *sym_text, int sym_text_len,
5187 const char *text, const char *word,
5188 enum type_code code)
5189 {
5190 struct symbol *sym;
5191 const struct block *b;
5192 struct block_iterator iter;
5193 int i;
5194
5195 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5196 {
5197 QUIT;
5198 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5199 ALL_BLOCK_SYMBOLS (b, iter, sym)
5200 {
5201 if (code == TYPE_CODE_UNDEF
5202 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5203 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5204 COMPLETION_LIST_ADD_SYMBOL (sym,
5205 sym_text, sym_text_len,
5206 text, word);
5207 }
5208 }
5209 }
5210
5211 /* Callback to add completions to the current list when symbol tables
5212 are expanded during completion list generation. */
5213
5214 static void
5215 symtab_expansion_callback (struct compunit_symtab *symtab,
5216 void *user_data)
5217 {
5218 struct add_name_data *datum = (struct add_name_data *) user_data;
5219
5220 add_symtab_completions (symtab,
5221 datum->sym_text, datum->sym_text_len,
5222 datum->text, datum->word,
5223 datum->code);
5224 }
5225
5226 static void
5227 default_make_symbol_completion_list_break_on_1 (const char *text,
5228 const char *word,
5229 const char *break_on,
5230 enum type_code code)
5231 {
5232 /* Problem: All of the symbols have to be copied because readline
5233 frees them. I'm not going to worry about this; hopefully there
5234 won't be that many. */
5235
5236 struct symbol *sym;
5237 struct compunit_symtab *cust;
5238 struct minimal_symbol *msymbol;
5239 struct objfile *objfile;
5240 const struct block *b;
5241 const struct block *surrounding_static_block, *surrounding_global_block;
5242 struct block_iterator iter;
5243 /* The symbol we are completing on. Points in same buffer as text. */
5244 const char *sym_text;
5245 /* Length of sym_text. */
5246 int sym_text_len;
5247 struct add_name_data datum;
5248 struct cleanup *cleanups;
5249
5250 /* Now look for the symbol we are supposed to complete on. */
5251 {
5252 const char *p;
5253 char quote_found;
5254 const char *quote_pos = NULL;
5255
5256 /* First see if this is a quoted string. */
5257 quote_found = '\0';
5258 for (p = text; *p != '\0'; ++p)
5259 {
5260 if (quote_found != '\0')
5261 {
5262 if (*p == quote_found)
5263 /* Found close quote. */
5264 quote_found = '\0';
5265 else if (*p == '\\' && p[1] == quote_found)
5266 /* A backslash followed by the quote character
5267 doesn't end the string. */
5268 ++p;
5269 }
5270 else if (*p == '\'' || *p == '"')
5271 {
5272 quote_found = *p;
5273 quote_pos = p;
5274 }
5275 }
5276 if (quote_found == '\'')
5277 /* A string within single quotes can be a symbol, so complete on it. */
5278 sym_text = quote_pos + 1;
5279 else if (quote_found == '"')
5280 /* A double-quoted string is never a symbol, nor does it make sense
5281 to complete it any other way. */
5282 {
5283 return;
5284 }
5285 else
5286 {
5287 /* It is not a quoted string. Break it based on the characters
5288 which are in symbols. */
5289 while (p > text)
5290 {
5291 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5292 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5293 --p;
5294 else
5295 break;
5296 }
5297 sym_text = p;
5298 }
5299 }
5300
5301 sym_text_len = strlen (sym_text);
5302
5303 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5304
5305 if (current_language->la_language == language_cplus
5306 || current_language->la_language == language_fortran)
5307 {
5308 /* These languages may have parameters entered by user but they are never
5309 present in the partial symbol tables. */
5310
5311 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5312
5313 if (cs)
5314 sym_text_len = cs - sym_text;
5315 }
5316 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5317
5318 completion_tracker = new_completion_tracker ();
5319 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5320
5321 datum.sym_text = sym_text;
5322 datum.sym_text_len = sym_text_len;
5323 datum.text = text;
5324 datum.word = word;
5325 datum.code = code;
5326
5327 /* At this point scan through the misc symbol vectors and add each
5328 symbol you find to the list. Eventually we want to ignore
5329 anything that isn't a text symbol (everything else will be
5330 handled by the psymtab code below). */
5331
5332 if (code == TYPE_CODE_UNDEF)
5333 {
5334 ALL_MSYMBOLS (objfile, msymbol)
5335 {
5336 QUIT;
5337 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5338 word);
5339
5340 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5341 word);
5342 }
5343 }
5344
5345 /* Add completions for all currently loaded symbol tables. */
5346 ALL_COMPUNITS (objfile, cust)
5347 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5348 code);
5349
5350 /* Look through the partial symtabs for all symbols which begin
5351 by matching SYM_TEXT. Expand all CUs that you find to the list.
5352 symtab_expansion_callback is called for each expanded symtab,
5353 causing those symtab's completions to be added to the list too. */
5354 expand_symtabs_matching (NULL, symbol_completion_matcher,
5355 symtab_expansion_callback, ALL_DOMAIN,
5356 &datum);
5357
5358 /* Search upwards from currently selected frame (so that we can
5359 complete on local vars). Also catch fields of types defined in
5360 this places which match our text string. Only complete on types
5361 visible from current context. */
5362
5363 b = get_selected_block (0);
5364 surrounding_static_block = block_static_block (b);
5365 surrounding_global_block = block_global_block (b);
5366 if (surrounding_static_block != NULL)
5367 while (b != surrounding_static_block)
5368 {
5369 QUIT;
5370
5371 ALL_BLOCK_SYMBOLS (b, iter, sym)
5372 {
5373 if (code == TYPE_CODE_UNDEF)
5374 {
5375 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5376 word);
5377 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5378 word);
5379 }
5380 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5381 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5382 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5383 word);
5384 }
5385
5386 /* Stop when we encounter an enclosing function. Do not stop for
5387 non-inlined functions - the locals of the enclosing function
5388 are in scope for a nested function. */
5389 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5390 break;
5391 b = BLOCK_SUPERBLOCK (b);
5392 }
5393
5394 /* Add fields from the file's types; symbols will be added below. */
5395
5396 if (code == TYPE_CODE_UNDEF)
5397 {
5398 if (surrounding_static_block != NULL)
5399 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5400 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5401
5402 if (surrounding_global_block != NULL)
5403 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5404 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5405 }
5406
5407 /* Skip macros if we are completing a struct tag -- arguable but
5408 usually what is expected. */
5409 if (current_language->la_macro_expansion == macro_expansion_c
5410 && code == TYPE_CODE_UNDEF)
5411 {
5412 struct macro_scope *scope;
5413
5414 /* Add any macros visible in the default scope. Note that this
5415 may yield the occasional wrong result, because an expression
5416 might be evaluated in a scope other than the default. For
5417 example, if the user types "break file:line if <TAB>", the
5418 resulting expression will be evaluated at "file:line" -- but
5419 at there does not seem to be a way to detect this at
5420 completion time. */
5421 scope = default_macro_scope ();
5422 if (scope)
5423 {
5424 macro_for_each_in_scope (scope->file, scope->line,
5425 add_macro_name, &datum);
5426 xfree (scope);
5427 }
5428
5429 /* User-defined macros are always visible. */
5430 macro_for_each (macro_user_macros, add_macro_name, &datum);
5431 }
5432
5433 do_cleanups (cleanups);
5434 }
5435
5436 VEC (char_ptr) *
5437 default_make_symbol_completion_list_break_on (const char *text,
5438 const char *word,
5439 const char *break_on,
5440 enum type_code code)
5441 {
5442 struct cleanup *back_to;
5443
5444 return_val = NULL;
5445 back_to = make_cleanup (do_free_completion_list, &return_val);
5446
5447 TRY
5448 {
5449 default_make_symbol_completion_list_break_on_1 (text, word,
5450 break_on, code);
5451 }
5452 CATCH (except, RETURN_MASK_ERROR)
5453 {
5454 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5455 throw_exception (except);
5456 }
5457 END_CATCH
5458
5459 discard_cleanups (back_to);
5460 return return_val;
5461 }
5462
5463 VEC (char_ptr) *
5464 default_make_symbol_completion_list (const char *text, const char *word,
5465 enum type_code code)
5466 {
5467 return default_make_symbol_completion_list_break_on (text, word, "", code);
5468 }
5469
5470 /* Return a vector of all symbols (regardless of class) which begin by
5471 matching TEXT. If the answer is no symbols, then the return value
5472 is NULL. */
5473
5474 VEC (char_ptr) *
5475 make_symbol_completion_list (const char *text, const char *word)
5476 {
5477 return current_language->la_make_symbol_completion_list (text, word,
5478 TYPE_CODE_UNDEF);
5479 }
5480
5481 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5482 symbols whose type code is CODE. */
5483
5484 VEC (char_ptr) *
5485 make_symbol_completion_type (const char *text, const char *word,
5486 enum type_code code)
5487 {
5488 gdb_assert (code == TYPE_CODE_UNION
5489 || code == TYPE_CODE_STRUCT
5490 || code == TYPE_CODE_ENUM);
5491 return current_language->la_make_symbol_completion_list (text, word, code);
5492 }
5493
5494 /* Like make_symbol_completion_list, but suitable for use as a
5495 completion function. */
5496
5497 VEC (char_ptr) *
5498 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5499 const char *text, const char *word)
5500 {
5501 return make_symbol_completion_list (text, word);
5502 }
5503
5504 /* Like make_symbol_completion_list, but returns a list of symbols
5505 defined in a source file FILE. */
5506
5507 static VEC (char_ptr) *
5508 make_file_symbol_completion_list_1 (const char *text, const char *word,
5509 const char *srcfile)
5510 {
5511 struct symbol *sym;
5512 struct symtab *s;
5513 struct block *b;
5514 struct block_iterator iter;
5515 /* The symbol we are completing on. Points in same buffer as text. */
5516 const char *sym_text;
5517 /* Length of sym_text. */
5518 int sym_text_len;
5519
5520 /* Now look for the symbol we are supposed to complete on.
5521 FIXME: This should be language-specific. */
5522 {
5523 const char *p;
5524 char quote_found;
5525 const char *quote_pos = NULL;
5526
5527 /* First see if this is a quoted string. */
5528 quote_found = '\0';
5529 for (p = text; *p != '\0'; ++p)
5530 {
5531 if (quote_found != '\0')
5532 {
5533 if (*p == quote_found)
5534 /* Found close quote. */
5535 quote_found = '\0';
5536 else if (*p == '\\' && p[1] == quote_found)
5537 /* A backslash followed by the quote character
5538 doesn't end the string. */
5539 ++p;
5540 }
5541 else if (*p == '\'' || *p == '"')
5542 {
5543 quote_found = *p;
5544 quote_pos = p;
5545 }
5546 }
5547 if (quote_found == '\'')
5548 /* A string within single quotes can be a symbol, so complete on it. */
5549 sym_text = quote_pos + 1;
5550 else if (quote_found == '"')
5551 /* A double-quoted string is never a symbol, nor does it make sense
5552 to complete it any other way. */
5553 {
5554 return NULL;
5555 }
5556 else
5557 {
5558 /* Not a quoted string. */
5559 sym_text = language_search_unquoted_string (text, p);
5560 }
5561 }
5562
5563 sym_text_len = strlen (sym_text);
5564
5565 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5566 in). */
5567 s = lookup_symtab (srcfile);
5568 if (s == NULL)
5569 {
5570 /* Maybe they typed the file with leading directories, while the
5571 symbol tables record only its basename. */
5572 const char *tail = lbasename (srcfile);
5573
5574 if (tail > srcfile)
5575 s = lookup_symtab (tail);
5576 }
5577
5578 /* If we have no symtab for that file, return an empty list. */
5579 if (s == NULL)
5580 return (return_val);
5581
5582 /* Go through this symtab and check the externs and statics for
5583 symbols which match. */
5584
5585 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5586 ALL_BLOCK_SYMBOLS (b, iter, sym)
5587 {
5588 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5589 }
5590
5591 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5592 ALL_BLOCK_SYMBOLS (b, iter, sym)
5593 {
5594 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5595 }
5596
5597 return (return_val);
5598 }
5599
5600 /* Wrapper around make_file_symbol_completion_list_1
5601 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5602
5603 VEC (char_ptr) *
5604 make_file_symbol_completion_list (const char *text, const char *word,
5605 const char *srcfile)
5606 {
5607 struct cleanup *back_to, *cleanups;
5608
5609 completion_tracker = new_completion_tracker ();
5610 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5611 return_val = NULL;
5612 back_to = make_cleanup (do_free_completion_list, &return_val);
5613
5614 TRY
5615 {
5616 make_file_symbol_completion_list_1 (text, word, srcfile);
5617 }
5618 CATCH (except, RETURN_MASK_ERROR)
5619 {
5620 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5621 throw_exception (except);
5622 }
5623 END_CATCH
5624
5625 discard_cleanups (back_to);
5626 do_cleanups (cleanups);
5627 return return_val;
5628 }
5629
5630 /* A helper function for make_source_files_completion_list. It adds
5631 another file name to a list of possible completions, growing the
5632 list as necessary. */
5633
5634 static void
5635 add_filename_to_list (const char *fname, const char *text, const char *word,
5636 VEC (char_ptr) **list)
5637 {
5638 char *newobj;
5639 size_t fnlen = strlen (fname);
5640
5641 if (word == text)
5642 {
5643 /* Return exactly fname. */
5644 newobj = (char *) xmalloc (fnlen + 5);
5645 strcpy (newobj, fname);
5646 }
5647 else if (word > text)
5648 {
5649 /* Return some portion of fname. */
5650 newobj = (char *) xmalloc (fnlen + 5);
5651 strcpy (newobj, fname + (word - text));
5652 }
5653 else
5654 {
5655 /* Return some of TEXT plus fname. */
5656 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5657 strncpy (newobj, word, text - word);
5658 newobj[text - word] = '\0';
5659 strcat (newobj, fname);
5660 }
5661 VEC_safe_push (char_ptr, *list, newobj);
5662 }
5663
5664 static int
5665 not_interesting_fname (const char *fname)
5666 {
5667 static const char *illegal_aliens[] = {
5668 "_globals_", /* inserted by coff_symtab_read */
5669 NULL
5670 };
5671 int i;
5672
5673 for (i = 0; illegal_aliens[i]; i++)
5674 {
5675 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5676 return 1;
5677 }
5678 return 0;
5679 }
5680
5681 /* An object of this type is passed as the user_data argument to
5682 map_partial_symbol_filenames. */
5683 struct add_partial_filename_data
5684 {
5685 struct filename_seen_cache *filename_seen_cache;
5686 const char *text;
5687 const char *word;
5688 int text_len;
5689 VEC (char_ptr) **list;
5690 };
5691
5692 /* A callback for map_partial_symbol_filenames. */
5693
5694 static void
5695 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5696 void *user_data)
5697 {
5698 struct add_partial_filename_data *data
5699 = (struct add_partial_filename_data *) user_data;
5700
5701 if (not_interesting_fname (filename))
5702 return;
5703 if (!filename_seen (data->filename_seen_cache, filename, 1)
5704 && filename_ncmp (filename, data->text, data->text_len) == 0)
5705 {
5706 /* This file matches for a completion; add it to the
5707 current list of matches. */
5708 add_filename_to_list (filename, data->text, data->word, data->list);
5709 }
5710 else
5711 {
5712 const char *base_name = lbasename (filename);
5713
5714 if (base_name != filename
5715 && !filename_seen (data->filename_seen_cache, base_name, 1)
5716 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5717 add_filename_to_list (base_name, data->text, data->word, data->list);
5718 }
5719 }
5720
5721 /* Return a vector of all source files whose names begin with matching
5722 TEXT. The file names are looked up in the symbol tables of this
5723 program. If the answer is no matchess, then the return value is
5724 NULL. */
5725
5726 VEC (char_ptr) *
5727 make_source_files_completion_list (const char *text, const char *word)
5728 {
5729 struct compunit_symtab *cu;
5730 struct symtab *s;
5731 struct objfile *objfile;
5732 size_t text_len = strlen (text);
5733 VEC (char_ptr) *list = NULL;
5734 const char *base_name;
5735 struct add_partial_filename_data datum;
5736 struct filename_seen_cache *filename_seen_cache;
5737 struct cleanup *back_to, *cache_cleanup;
5738
5739 if (!have_full_symbols () && !have_partial_symbols ())
5740 return list;
5741
5742 back_to = make_cleanup (do_free_completion_list, &list);
5743
5744 filename_seen_cache = create_filename_seen_cache ();
5745 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5746 filename_seen_cache);
5747
5748 ALL_FILETABS (objfile, cu, s)
5749 {
5750 if (not_interesting_fname (s->filename))
5751 continue;
5752 if (!filename_seen (filename_seen_cache, s->filename, 1)
5753 && filename_ncmp (s->filename, text, text_len) == 0)
5754 {
5755 /* This file matches for a completion; add it to the current
5756 list of matches. */
5757 add_filename_to_list (s->filename, text, word, &list);
5758 }
5759 else
5760 {
5761 /* NOTE: We allow the user to type a base name when the
5762 debug info records leading directories, but not the other
5763 way around. This is what subroutines of breakpoint
5764 command do when they parse file names. */
5765 base_name = lbasename (s->filename);
5766 if (base_name != s->filename
5767 && !filename_seen (filename_seen_cache, base_name, 1)
5768 && filename_ncmp (base_name, text, text_len) == 0)
5769 add_filename_to_list (base_name, text, word, &list);
5770 }
5771 }
5772
5773 datum.filename_seen_cache = filename_seen_cache;
5774 datum.text = text;
5775 datum.word = word;
5776 datum.text_len = text_len;
5777 datum.list = &list;
5778 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5779 0 /*need_fullname*/);
5780
5781 do_cleanups (cache_cleanup);
5782 discard_cleanups (back_to);
5783
5784 return list;
5785 }
5786 \f
5787 /* Track MAIN */
5788
5789 /* Return the "main_info" object for the current program space. If
5790 the object has not yet been created, create it and fill in some
5791 default values. */
5792
5793 static struct main_info *
5794 get_main_info (void)
5795 {
5796 struct main_info *info
5797 = (struct main_info *) program_space_data (current_program_space,
5798 main_progspace_key);
5799
5800 if (info == NULL)
5801 {
5802 /* It may seem strange to store the main name in the progspace
5803 and also in whatever objfile happens to see a main name in
5804 its debug info. The reason for this is mainly historical:
5805 gdb returned "main" as the name even if no function named
5806 "main" was defined the program; and this approach lets us
5807 keep compatibility. */
5808 info = XCNEW (struct main_info);
5809 info->language_of_main = language_unknown;
5810 set_program_space_data (current_program_space, main_progspace_key,
5811 info);
5812 }
5813
5814 return info;
5815 }
5816
5817 /* A cleanup to destroy a struct main_info when a progspace is
5818 destroyed. */
5819
5820 static void
5821 main_info_cleanup (struct program_space *pspace, void *data)
5822 {
5823 struct main_info *info = (struct main_info *) data;
5824
5825 if (info != NULL)
5826 xfree (info->name_of_main);
5827 xfree (info);
5828 }
5829
5830 static void
5831 set_main_name (const char *name, enum language lang)
5832 {
5833 struct main_info *info = get_main_info ();
5834
5835 if (info->name_of_main != NULL)
5836 {
5837 xfree (info->name_of_main);
5838 info->name_of_main = NULL;
5839 info->language_of_main = language_unknown;
5840 }
5841 if (name != NULL)
5842 {
5843 info->name_of_main = xstrdup (name);
5844 info->language_of_main = lang;
5845 }
5846 }
5847
5848 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5849 accordingly. */
5850
5851 static void
5852 find_main_name (void)
5853 {
5854 const char *new_main_name;
5855 struct objfile *objfile;
5856
5857 /* First check the objfiles to see whether a debuginfo reader has
5858 picked up the appropriate main name. Historically the main name
5859 was found in a more or less random way; this approach instead
5860 relies on the order of objfile creation -- which still isn't
5861 guaranteed to get the correct answer, but is just probably more
5862 accurate. */
5863 ALL_OBJFILES (objfile)
5864 {
5865 if (objfile->per_bfd->name_of_main != NULL)
5866 {
5867 set_main_name (objfile->per_bfd->name_of_main,
5868 objfile->per_bfd->language_of_main);
5869 return;
5870 }
5871 }
5872
5873 /* Try to see if the main procedure is in Ada. */
5874 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5875 be to add a new method in the language vector, and call this
5876 method for each language until one of them returns a non-empty
5877 name. This would allow us to remove this hard-coded call to
5878 an Ada function. It is not clear that this is a better approach
5879 at this point, because all methods need to be written in a way
5880 such that false positives never be returned. For instance, it is
5881 important that a method does not return a wrong name for the main
5882 procedure if the main procedure is actually written in a different
5883 language. It is easy to guaranty this with Ada, since we use a
5884 special symbol generated only when the main in Ada to find the name
5885 of the main procedure. It is difficult however to see how this can
5886 be guarantied for languages such as C, for instance. This suggests
5887 that order of call for these methods becomes important, which means
5888 a more complicated approach. */
5889 new_main_name = ada_main_name ();
5890 if (new_main_name != NULL)
5891 {
5892 set_main_name (new_main_name, language_ada);
5893 return;
5894 }
5895
5896 new_main_name = d_main_name ();
5897 if (new_main_name != NULL)
5898 {
5899 set_main_name (new_main_name, language_d);
5900 return;
5901 }
5902
5903 new_main_name = go_main_name ();
5904 if (new_main_name != NULL)
5905 {
5906 set_main_name (new_main_name, language_go);
5907 return;
5908 }
5909
5910 new_main_name = pascal_main_name ();
5911 if (new_main_name != NULL)
5912 {
5913 set_main_name (new_main_name, language_pascal);
5914 return;
5915 }
5916
5917 /* The languages above didn't identify the name of the main procedure.
5918 Fallback to "main". */
5919 set_main_name ("main", language_unknown);
5920 }
5921
5922 char *
5923 main_name (void)
5924 {
5925 struct main_info *info = get_main_info ();
5926
5927 if (info->name_of_main == NULL)
5928 find_main_name ();
5929
5930 return info->name_of_main;
5931 }
5932
5933 /* Return the language of the main function. If it is not known,
5934 return language_unknown. */
5935
5936 enum language
5937 main_language (void)
5938 {
5939 struct main_info *info = get_main_info ();
5940
5941 if (info->name_of_main == NULL)
5942 find_main_name ();
5943
5944 return info->language_of_main;
5945 }
5946
5947 /* Handle ``executable_changed'' events for the symtab module. */
5948
5949 static void
5950 symtab_observer_executable_changed (void)
5951 {
5952 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5953 set_main_name (NULL, language_unknown);
5954 }
5955
5956 /* Return 1 if the supplied producer string matches the ARM RealView
5957 compiler (armcc). */
5958
5959 int
5960 producer_is_realview (const char *producer)
5961 {
5962 static const char *const arm_idents[] = {
5963 "ARM C Compiler, ADS",
5964 "Thumb C Compiler, ADS",
5965 "ARM C++ Compiler, ADS",
5966 "Thumb C++ Compiler, ADS",
5967 "ARM/Thumb C/C++ Compiler, RVCT",
5968 "ARM C/C++ Compiler, RVCT"
5969 };
5970 int i;
5971
5972 if (producer == NULL)
5973 return 0;
5974
5975 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5976 if (startswith (producer, arm_idents[i]))
5977 return 1;
5978
5979 return 0;
5980 }
5981
5982 \f
5983
5984 /* The next index to hand out in response to a registration request. */
5985
5986 static int next_aclass_value = LOC_FINAL_VALUE;
5987
5988 /* The maximum number of "aclass" registrations we support. This is
5989 constant for convenience. */
5990 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5991
5992 /* The objects representing the various "aclass" values. The elements
5993 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5994 elements are those registered at gdb initialization time. */
5995
5996 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5997
5998 /* The globally visible pointer. This is separate from 'symbol_impl'
5999 so that it can be const. */
6000
6001 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6002
6003 /* Make sure we saved enough room in struct symbol. */
6004
6005 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6006
6007 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6008 is the ops vector associated with this index. This returns the new
6009 index, which should be used as the aclass_index field for symbols
6010 of this type. */
6011
6012 int
6013 register_symbol_computed_impl (enum address_class aclass,
6014 const struct symbol_computed_ops *ops)
6015 {
6016 int result = next_aclass_value++;
6017
6018 gdb_assert (aclass == LOC_COMPUTED);
6019 gdb_assert (result < MAX_SYMBOL_IMPLS);
6020 symbol_impl[result].aclass = aclass;
6021 symbol_impl[result].ops_computed = ops;
6022
6023 /* Sanity check OPS. */
6024 gdb_assert (ops != NULL);
6025 gdb_assert (ops->tracepoint_var_ref != NULL);
6026 gdb_assert (ops->describe_location != NULL);
6027 gdb_assert (ops->get_symbol_read_needs != NULL);
6028 gdb_assert (ops->read_variable != NULL);
6029
6030 return result;
6031 }
6032
6033 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6034 OPS is the ops vector associated with this index. This returns the
6035 new index, which should be used as the aclass_index field for symbols
6036 of this type. */
6037
6038 int
6039 register_symbol_block_impl (enum address_class aclass,
6040 const struct symbol_block_ops *ops)
6041 {
6042 int result = next_aclass_value++;
6043
6044 gdb_assert (aclass == LOC_BLOCK);
6045 gdb_assert (result < MAX_SYMBOL_IMPLS);
6046 symbol_impl[result].aclass = aclass;
6047 symbol_impl[result].ops_block = ops;
6048
6049 /* Sanity check OPS. */
6050 gdb_assert (ops != NULL);
6051 gdb_assert (ops->find_frame_base_location != NULL);
6052
6053 return result;
6054 }
6055
6056 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6057 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6058 this index. This returns the new index, which should be used as
6059 the aclass_index field for symbols of this type. */
6060
6061 int
6062 register_symbol_register_impl (enum address_class aclass,
6063 const struct symbol_register_ops *ops)
6064 {
6065 int result = next_aclass_value++;
6066
6067 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6068 gdb_assert (result < MAX_SYMBOL_IMPLS);
6069 symbol_impl[result].aclass = aclass;
6070 symbol_impl[result].ops_register = ops;
6071
6072 return result;
6073 }
6074
6075 /* Initialize elements of 'symbol_impl' for the constants in enum
6076 address_class. */
6077
6078 static void
6079 initialize_ordinary_address_classes (void)
6080 {
6081 int i;
6082
6083 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6084 symbol_impl[i].aclass = (enum address_class) i;
6085 }
6086
6087 \f
6088
6089 /* Helper function to initialize the fields of an objfile-owned symbol.
6090 It assumed that *SYM is already all zeroes. */
6091
6092 static void
6093 initialize_objfile_symbol_1 (struct symbol *sym)
6094 {
6095 SYMBOL_OBJFILE_OWNED (sym) = 1;
6096 SYMBOL_SECTION (sym) = -1;
6097 }
6098
6099 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6100
6101 void
6102 initialize_objfile_symbol (struct symbol *sym)
6103 {
6104 memset (sym, 0, sizeof (*sym));
6105 initialize_objfile_symbol_1 (sym);
6106 }
6107
6108 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6109 obstack. */
6110
6111 struct symbol *
6112 allocate_symbol (struct objfile *objfile)
6113 {
6114 struct symbol *result;
6115
6116 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6117 initialize_objfile_symbol_1 (result);
6118
6119 return result;
6120 }
6121
6122 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6123 obstack. */
6124
6125 struct template_symbol *
6126 allocate_template_symbol (struct objfile *objfile)
6127 {
6128 struct template_symbol *result;
6129
6130 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6131 initialize_objfile_symbol_1 (&result->base);
6132
6133 return result;
6134 }
6135
6136 /* See symtab.h. */
6137
6138 struct objfile *
6139 symbol_objfile (const struct symbol *symbol)
6140 {
6141 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6142 return SYMTAB_OBJFILE (symbol->owner.symtab);
6143 }
6144
6145 /* See symtab.h. */
6146
6147 struct gdbarch *
6148 symbol_arch (const struct symbol *symbol)
6149 {
6150 if (!SYMBOL_OBJFILE_OWNED (symbol))
6151 return symbol->owner.arch;
6152 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6153 }
6154
6155 /* See symtab.h. */
6156
6157 struct symtab *
6158 symbol_symtab (const struct symbol *symbol)
6159 {
6160 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6161 return symbol->owner.symtab;
6162 }
6163
6164 /* See symtab.h. */
6165
6166 void
6167 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6168 {
6169 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6170 symbol->owner.symtab = symtab;
6171 }
6172
6173 \f
6174
6175 void
6176 _initialize_symtab (void)
6177 {
6178 initialize_ordinary_address_classes ();
6179
6180 main_progspace_key
6181 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6182
6183 symbol_cache_key
6184 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6185
6186 add_info ("variables", variables_info, _("\
6187 All global and static variable names, or those matching REGEXP."));
6188 if (dbx_commands)
6189 add_com ("whereis", class_info, variables_info, _("\
6190 All global and static variable names, or those matching REGEXP."));
6191
6192 add_info ("functions", functions_info,
6193 _("All function names, or those matching REGEXP."));
6194
6195 /* FIXME: This command has at least the following problems:
6196 1. It prints builtin types (in a very strange and confusing fashion).
6197 2. It doesn't print right, e.g. with
6198 typedef struct foo *FOO
6199 type_print prints "FOO" when we want to make it (in this situation)
6200 print "struct foo *".
6201 I also think "ptype" or "whatis" is more likely to be useful (but if
6202 there is much disagreement "info types" can be fixed). */
6203 add_info ("types", types_info,
6204 _("All type names, or those matching REGEXP."));
6205
6206 add_info ("sources", sources_info,
6207 _("Source files in the program."));
6208
6209 add_com ("rbreak", class_breakpoint, rbreak_command,
6210 _("Set a breakpoint for all functions matching REGEXP."));
6211
6212 add_setshow_enum_cmd ("multiple-symbols", no_class,
6213 multiple_symbols_modes, &multiple_symbols_mode,
6214 _("\
6215 Set the debugger behavior when more than one symbol are possible matches\n\
6216 in an expression."), _("\
6217 Show how the debugger handles ambiguities in expressions."), _("\
6218 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6219 NULL, NULL, &setlist, &showlist);
6220
6221 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6222 &basenames_may_differ, _("\
6223 Set whether a source file may have multiple base names."), _("\
6224 Show whether a source file may have multiple base names."), _("\
6225 (A \"base name\" is the name of a file with the directory part removed.\n\
6226 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6227 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6228 before comparing them. Canonicalization is an expensive operation,\n\
6229 but it allows the same file be known by more than one base name.\n\
6230 If not set (the default), all source files are assumed to have just\n\
6231 one base name, and gdb will do file name comparisons more efficiently."),
6232 NULL, NULL,
6233 &setlist, &showlist);
6234
6235 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6236 _("Set debugging of symbol table creation."),
6237 _("Show debugging of symbol table creation."), _("\
6238 When enabled (non-zero), debugging messages are printed when building\n\
6239 symbol tables. A value of 1 (one) normally provides enough information.\n\
6240 A value greater than 1 provides more verbose information."),
6241 NULL,
6242 NULL,
6243 &setdebuglist, &showdebuglist);
6244
6245 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6246 _("\
6247 Set debugging of symbol lookup."), _("\
6248 Show debugging of symbol lookup."), _("\
6249 When enabled (non-zero), symbol lookups are logged."),
6250 NULL, NULL,
6251 &setdebuglist, &showdebuglist);
6252
6253 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6254 &new_symbol_cache_size,
6255 _("Set the size of the symbol cache."),
6256 _("Show the size of the symbol cache."), _("\
6257 The size of the symbol cache.\n\
6258 If zero then the symbol cache is disabled."),
6259 set_symbol_cache_size_handler, NULL,
6260 &maintenance_set_cmdlist,
6261 &maintenance_show_cmdlist);
6262
6263 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6264 _("Dump the symbol cache for each program space."),
6265 &maintenanceprintlist);
6266
6267 add_cmd ("symbol-cache-statistics", class_maintenance,
6268 maintenance_print_symbol_cache_statistics,
6269 _("Print symbol cache statistics for each program space."),
6270 &maintenanceprintlist);
6271
6272 add_cmd ("flush-symbol-cache", class_maintenance,
6273 maintenance_flush_symbol_cache,
6274 _("Flush the symbol cache for each program space."),
6275 &maintenancelist);
6276
6277 observer_attach_executable_changed (symtab_observer_executable_changed);
6278 observer_attach_new_objfile (symtab_new_objfile_observer);
6279 observer_attach_free_objfile (symtab_free_objfile_observer);
6280 }
This page took 0.155905 seconds and 4 git commands to generate.