* infrun.c (follow_fork): Initialize new step_* locals
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 /* Prototypes for local functions */
66
67 static void completion_list_add_name (char *, char *, int, char *, char *);
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static void output_source_filename (const char *, int *);
80
81 static int find_line_common (struct linetable *, int, int *);
82
83 /* This one is used by linespec.c */
84
85 char *operator_chars (char *p, char **end);
86
87 static struct symbol *lookup_symbol_aux (const char *name,
88 const char *linkage_name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language,
92 int *is_a_field_of_this);
93
94 static
95 struct symbol *lookup_symbol_aux_local (const char *name,
96 const char *linkage_name,
97 const struct block *block,
98 const domain_enum domain);
99
100 static
101 struct symbol *lookup_symbol_aux_symtabs (int block_index,
102 const char *name,
103 const char *linkage_name,
104 const domain_enum domain);
105
106 static
107 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain);
111
112 static int file_matches (char *, char **, int);
113
114 static void print_symbol_info (domain_enum,
115 struct symtab *, struct symbol *, int, char *);
116
117 static void print_msymbol_info (struct minimal_symbol *);
118
119 static void symtab_symbol_info (char *, domain_enum, int);
120
121 void _initialize_symtab (void);
122
123 /* */
124
125 /* Allow the user to configure the debugger behavior with respect
126 to multiple-choice menus when more than one symbol matches during
127 a symbol lookup. */
128
129 const char multiple_symbols_ask[] = "ask";
130 const char multiple_symbols_all[] = "all";
131 const char multiple_symbols_cancel[] = "cancel";
132 static const char *multiple_symbols_modes[] =
133 {
134 multiple_symbols_ask,
135 multiple_symbols_all,
136 multiple_symbols_cancel,
137 NULL
138 };
139 static const char *multiple_symbols_mode = multiple_symbols_all;
140
141 /* Read-only accessor to AUTO_SELECT_MODE. */
142
143 const char *
144 multiple_symbols_select_mode (void)
145 {
146 return multiple_symbols_mode;
147 }
148
149 /* The single non-language-specific builtin type */
150 struct type *builtin_type_error;
151
152 /* Block in which the most recently searched-for symbol was found.
153 Might be better to make this a parameter to lookup_symbol and
154 value_of_this. */
155
156 const struct block *block_found;
157
158 /* Check for a symtab of a specific name; first in symtabs, then in
159 psymtabs. *If* there is no '/' in the name, a match after a '/'
160 in the symtab filename will also work. */
161
162 struct symtab *
163 lookup_symtab (const char *name)
164 {
165 struct symtab *s;
166 struct partial_symtab *ps;
167 struct objfile *objfile;
168 char *real_path = NULL;
169 char *full_path = NULL;
170
171 /* Here we are interested in canonicalizing an absolute path, not
172 absolutizing a relative path. */
173 if (IS_ABSOLUTE_PATH (name))
174 {
175 full_path = xfullpath (name);
176 make_cleanup (xfree, full_path);
177 real_path = gdb_realpath (name);
178 make_cleanup (xfree, real_path);
179 }
180
181 got_symtab:
182
183 /* First, search for an exact match */
184
185 ALL_SYMTABS (objfile, s)
186 {
187 if (FILENAME_CMP (name, s->filename) == 0)
188 {
189 return s;
190 }
191
192 /* If the user gave us an absolute path, try to find the file in
193 this symtab and use its absolute path. */
194
195 if (full_path != NULL)
196 {
197 const char *fp = symtab_to_fullname (s);
198 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
199 {
200 return s;
201 }
202 }
203
204 if (real_path != NULL)
205 {
206 char *fullname = symtab_to_fullname (s);
207 if (fullname != NULL)
208 {
209 char *rp = gdb_realpath (fullname);
210 make_cleanup (xfree, rp);
211 if (FILENAME_CMP (real_path, rp) == 0)
212 {
213 return s;
214 }
215 }
216 }
217 }
218
219 /* Now, search for a matching tail (only if name doesn't have any dirs) */
220
221 if (lbasename (name) == name)
222 ALL_SYMTABS (objfile, s)
223 {
224 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
225 return s;
226 }
227
228 /* Same search rules as above apply here, but now we look thru the
229 psymtabs. */
230
231 ps = lookup_partial_symtab (name);
232 if (!ps)
233 return (NULL);
234
235 if (ps->readin)
236 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
237 ps->filename, name);
238
239 s = PSYMTAB_TO_SYMTAB (ps);
240
241 if (s)
242 return s;
243
244 /* At this point, we have located the psymtab for this file, but
245 the conversion to a symtab has failed. This usually happens
246 when we are looking up an include file. In this case,
247 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
248 been created. So, we need to run through the symtabs again in
249 order to find the file.
250 XXX - This is a crock, and should be fixed inside of the the
251 symbol parsing routines. */
252 goto got_symtab;
253 }
254
255 /* Lookup the partial symbol table of a source file named NAME.
256 *If* there is no '/' in the name, a match after a '/'
257 in the psymtab filename will also work. */
258
259 struct partial_symtab *
260 lookup_partial_symtab (const char *name)
261 {
262 struct partial_symtab *pst;
263 struct objfile *objfile;
264 char *full_path = NULL;
265 char *real_path = NULL;
266
267 /* Here we are interested in canonicalizing an absolute path, not
268 absolutizing a relative path. */
269 if (IS_ABSOLUTE_PATH (name))
270 {
271 full_path = xfullpath (name);
272 make_cleanup (xfree, full_path);
273 real_path = gdb_realpath (name);
274 make_cleanup (xfree, real_path);
275 }
276
277 ALL_PSYMTABS (objfile, pst)
278 {
279 if (FILENAME_CMP (name, pst->filename) == 0)
280 {
281 return (pst);
282 }
283
284 /* If the user gave us an absolute path, try to find the file in
285 this symtab and use its absolute path. */
286 if (full_path != NULL)
287 {
288 psymtab_to_fullname (pst);
289 if (pst->fullname != NULL
290 && FILENAME_CMP (full_path, pst->fullname) == 0)
291 {
292 return pst;
293 }
294 }
295
296 if (real_path != NULL)
297 {
298 char *rp = NULL;
299 psymtab_to_fullname (pst);
300 if (pst->fullname != NULL)
301 {
302 rp = gdb_realpath (pst->fullname);
303 make_cleanup (xfree, rp);
304 }
305 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
306 {
307 return pst;
308 }
309 }
310 }
311
312 /* Now, search for a matching tail (only if name doesn't have any dirs) */
313
314 if (lbasename (name) == name)
315 ALL_PSYMTABS (objfile, pst)
316 {
317 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
318 return (pst);
319 }
320
321 return (NULL);
322 }
323 \f
324 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
325 full method name, which consist of the class name (from T), the unadorned
326 method name from METHOD_ID, and the signature for the specific overload,
327 specified by SIGNATURE_ID. Note that this function is g++ specific. */
328
329 char *
330 gdb_mangle_name (struct type *type, int method_id, int signature_id)
331 {
332 int mangled_name_len;
333 char *mangled_name;
334 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
335 struct fn_field *method = &f[signature_id];
336 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
337 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
338 char *newname = type_name_no_tag (type);
339
340 /* Does the form of physname indicate that it is the full mangled name
341 of a constructor (not just the args)? */
342 int is_full_physname_constructor;
343
344 int is_constructor;
345 int is_destructor = is_destructor_name (physname);
346 /* Need a new type prefix. */
347 char *const_prefix = method->is_const ? "C" : "";
348 char *volatile_prefix = method->is_volatile ? "V" : "";
349 char buf[20];
350 int len = (newname == NULL ? 0 : strlen (newname));
351
352 /* Nothing to do if physname already contains a fully mangled v3 abi name
353 or an operator name. */
354 if ((physname[0] == '_' && physname[1] == 'Z')
355 || is_operator_name (field_name))
356 return xstrdup (physname);
357
358 is_full_physname_constructor = is_constructor_name (physname);
359
360 is_constructor =
361 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
362
363 if (!is_destructor)
364 is_destructor = (strncmp (physname, "__dt", 4) == 0);
365
366 if (is_destructor || is_full_physname_constructor)
367 {
368 mangled_name = (char *) xmalloc (strlen (physname) + 1);
369 strcpy (mangled_name, physname);
370 return mangled_name;
371 }
372
373 if (len == 0)
374 {
375 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
376 }
377 else if (physname[0] == 't' || physname[0] == 'Q')
378 {
379 /* The physname for template and qualified methods already includes
380 the class name. */
381 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
382 newname = NULL;
383 len = 0;
384 }
385 else
386 {
387 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
388 }
389 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
390 + strlen (buf) + len + strlen (physname) + 1);
391
392 {
393 mangled_name = (char *) xmalloc (mangled_name_len);
394 if (is_constructor)
395 mangled_name[0] = '\0';
396 else
397 strcpy (mangled_name, field_name);
398 }
399 strcat (mangled_name, buf);
400 /* If the class doesn't have a name, i.e. newname NULL, then we just
401 mangle it using 0 for the length of the class. Thus it gets mangled
402 as something starting with `::' rather than `classname::'. */
403 if (newname != NULL)
404 strcat (mangled_name, newname);
405
406 strcat (mangled_name, physname);
407 return (mangled_name);
408 }
409
410 \f
411 /* Initialize the language dependent portion of a symbol
412 depending upon the language for the symbol. */
413 void
414 symbol_init_language_specific (struct general_symbol_info *gsymbol,
415 enum language language)
416 {
417 gsymbol->language = language;
418 if (gsymbol->language == language_cplus
419 || gsymbol->language == language_java
420 || gsymbol->language == language_objc)
421 {
422 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
423 }
424 else
425 {
426 memset (&gsymbol->language_specific, 0,
427 sizeof (gsymbol->language_specific));
428 }
429 }
430
431 /* Functions to initialize a symbol's mangled name. */
432
433 /* Create the hash table used for demangled names. Each hash entry is
434 a pair of strings; one for the mangled name and one for the demangled
435 name. The entry is hashed via just the mangled name. */
436
437 static void
438 create_demangled_names_hash (struct objfile *objfile)
439 {
440 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
441 The hash table code will round this up to the next prime number.
442 Choosing a much larger table size wastes memory, and saves only about
443 1% in symbol reading. */
444
445 objfile->demangled_names_hash = htab_create_alloc
446 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
447 NULL, xcalloc, xfree);
448 }
449
450 /* Try to determine the demangled name for a symbol, based on the
451 language of that symbol. If the language is set to language_auto,
452 it will attempt to find any demangling algorithm that works and
453 then set the language appropriately. The returned name is allocated
454 by the demangler and should be xfree'd. */
455
456 static char *
457 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
458 const char *mangled)
459 {
460 char *demangled = NULL;
461
462 if (gsymbol->language == language_unknown)
463 gsymbol->language = language_auto;
464
465 if (gsymbol->language == language_objc
466 || gsymbol->language == language_auto)
467 {
468 demangled =
469 objc_demangle (mangled, 0);
470 if (demangled != NULL)
471 {
472 gsymbol->language = language_objc;
473 return demangled;
474 }
475 }
476 if (gsymbol->language == language_cplus
477 || gsymbol->language == language_auto)
478 {
479 demangled =
480 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
481 if (demangled != NULL)
482 {
483 gsymbol->language = language_cplus;
484 return demangled;
485 }
486 }
487 if (gsymbol->language == language_java)
488 {
489 demangled =
490 cplus_demangle (mangled,
491 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
492 if (demangled != NULL)
493 {
494 gsymbol->language = language_java;
495 return demangled;
496 }
497 }
498 return NULL;
499 }
500
501 /* Set both the mangled and demangled (if any) names for GSYMBOL based
502 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
503 is used, and the memory comes from that objfile's objfile_obstack.
504 LINKAGE_NAME is copied, so the pointer can be discarded after
505 calling this function. */
506
507 /* We have to be careful when dealing with Java names: when we run
508 into a Java minimal symbol, we don't know it's a Java symbol, so it
509 gets demangled as a C++ name. This is unfortunate, but there's not
510 much we can do about it: but when demangling partial symbols and
511 regular symbols, we'd better not reuse the wrong demangled name.
512 (See PR gdb/1039.) We solve this by putting a distinctive prefix
513 on Java names when storing them in the hash table. */
514
515 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
516 don't mind the Java prefix so much: different languages have
517 different demangling requirements, so it's only natural that we
518 need to keep language data around in our demangling cache. But
519 it's not good that the minimal symbol has the wrong demangled name.
520 Unfortunately, I can't think of any easy solution to that
521 problem. */
522
523 #define JAVA_PREFIX "##JAVA$$"
524 #define JAVA_PREFIX_LEN 8
525
526 void
527 symbol_set_names (struct general_symbol_info *gsymbol,
528 const char *linkage_name, int len, struct objfile *objfile)
529 {
530 char **slot;
531 /* A 0-terminated copy of the linkage name. */
532 const char *linkage_name_copy;
533 /* A copy of the linkage name that might have a special Java prefix
534 added to it, for use when looking names up in the hash table. */
535 const char *lookup_name;
536 /* The length of lookup_name. */
537 int lookup_len;
538
539 if (objfile->demangled_names_hash == NULL)
540 create_demangled_names_hash (objfile);
541
542 if (gsymbol->language == language_ada)
543 {
544 /* In Ada, we do the symbol lookups using the mangled name, so
545 we can save some space by not storing the demangled name.
546
547 As a side note, we have also observed some overlap between
548 the C++ mangling and Ada mangling, similarly to what has
549 been observed with Java. Because we don't store the demangled
550 name with the symbol, we don't need to use the same trick
551 as Java. */
552 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
553 memcpy (gsymbol->name, linkage_name, len);
554 gsymbol->name[len] = '\0';
555 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
556
557 return;
558 }
559
560 /* The stabs reader generally provides names that are not
561 NUL-terminated; most of the other readers don't do this, so we
562 can just use the given copy, unless we're in the Java case. */
563 if (gsymbol->language == language_java)
564 {
565 char *alloc_name;
566 lookup_len = len + JAVA_PREFIX_LEN;
567
568 alloc_name = alloca (lookup_len + 1);
569 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
570 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
571 alloc_name[lookup_len] = '\0';
572
573 lookup_name = alloc_name;
574 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
575 }
576 else if (linkage_name[len] != '\0')
577 {
578 char *alloc_name;
579 lookup_len = len;
580
581 alloc_name = alloca (lookup_len + 1);
582 memcpy (alloc_name, linkage_name, len);
583 alloc_name[lookup_len] = '\0';
584
585 lookup_name = alloc_name;
586 linkage_name_copy = alloc_name;
587 }
588 else
589 {
590 lookup_len = len;
591 lookup_name = linkage_name;
592 linkage_name_copy = linkage_name;
593 }
594
595 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
596 lookup_name, INSERT);
597
598 /* If this name is not in the hash table, add it. */
599 if (*slot == NULL)
600 {
601 char *demangled_name = symbol_find_demangled_name (gsymbol,
602 linkage_name_copy);
603 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
604
605 /* If there is a demangled name, place it right after the mangled name.
606 Otherwise, just place a second zero byte after the end of the mangled
607 name. */
608 *slot = obstack_alloc (&objfile->objfile_obstack,
609 lookup_len + demangled_len + 2);
610 memcpy (*slot, lookup_name, lookup_len + 1);
611 if (demangled_name != NULL)
612 {
613 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
614 xfree (demangled_name);
615 }
616 else
617 (*slot)[lookup_len + 1] = '\0';
618 }
619
620 gsymbol->name = *slot + lookup_len - len;
621 if ((*slot)[lookup_len + 1] != '\0')
622 gsymbol->language_specific.cplus_specific.demangled_name
623 = &(*slot)[lookup_len + 1];
624 else
625 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
626 }
627
628 /* Return the source code name of a symbol. In languages where
629 demangling is necessary, this is the demangled name. */
630
631 char *
632 symbol_natural_name (const struct general_symbol_info *gsymbol)
633 {
634 switch (gsymbol->language)
635 {
636 case language_cplus:
637 case language_java:
638 case language_objc:
639 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
640 return gsymbol->language_specific.cplus_specific.demangled_name;
641 break;
642 case language_ada:
643 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
644 return gsymbol->language_specific.cplus_specific.demangled_name;
645 else
646 return ada_decode_symbol (gsymbol);
647 break;
648 default:
649 break;
650 }
651 return gsymbol->name;
652 }
653
654 /* Return the demangled name for a symbol based on the language for
655 that symbol. If no demangled name exists, return NULL. */
656 char *
657 symbol_demangled_name (const struct general_symbol_info *gsymbol)
658 {
659 switch (gsymbol->language)
660 {
661 case language_cplus:
662 case language_java:
663 case language_objc:
664 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
665 return gsymbol->language_specific.cplus_specific.demangled_name;
666 break;
667 case language_ada:
668 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
669 return gsymbol->language_specific.cplus_specific.demangled_name;
670 else
671 return ada_decode_symbol (gsymbol);
672 break;
673 default:
674 break;
675 }
676 return NULL;
677 }
678
679 /* Return the search name of a symbol---generally the demangled or
680 linkage name of the symbol, depending on how it will be searched for.
681 If there is no distinct demangled name, then returns the same value
682 (same pointer) as SYMBOL_LINKAGE_NAME. */
683 char *
684 symbol_search_name (const struct general_symbol_info *gsymbol)
685 {
686 if (gsymbol->language == language_ada)
687 return gsymbol->name;
688 else
689 return symbol_natural_name (gsymbol);
690 }
691
692 /* Initialize the structure fields to zero values. */
693 void
694 init_sal (struct symtab_and_line *sal)
695 {
696 sal->symtab = 0;
697 sal->section = 0;
698 sal->line = 0;
699 sal->pc = 0;
700 sal->end = 0;
701 sal->explicit_pc = 0;
702 sal->explicit_line = 0;
703 }
704 \f
705
706 /* Return 1 if the two sections are the same, or if they could
707 plausibly be copies of each other, one in an original object
708 file and another in a separated debug file. */
709
710 int
711 matching_obj_sections (struct obj_section *obj_first,
712 struct obj_section *obj_second)
713 {
714 asection *first = obj_first? obj_first->the_bfd_section : NULL;
715 asection *second = obj_second? obj_second->the_bfd_section : NULL;
716 struct objfile *obj;
717
718 /* If they're the same section, then they match. */
719 if (first == second)
720 return 1;
721
722 /* If either is NULL, give up. */
723 if (first == NULL || second == NULL)
724 return 0;
725
726 /* This doesn't apply to absolute symbols. */
727 if (first->owner == NULL || second->owner == NULL)
728 return 0;
729
730 /* If they're in the same object file, they must be different sections. */
731 if (first->owner == second->owner)
732 return 0;
733
734 /* Check whether the two sections are potentially corresponding. They must
735 have the same size, address, and name. We can't compare section indexes,
736 which would be more reliable, because some sections may have been
737 stripped. */
738 if (bfd_get_section_size (first) != bfd_get_section_size (second))
739 return 0;
740
741 /* In-memory addresses may start at a different offset, relativize them. */
742 if (bfd_get_section_vma (first->owner, first)
743 - bfd_get_start_address (first->owner)
744 != bfd_get_section_vma (second->owner, second)
745 - bfd_get_start_address (second->owner))
746 return 0;
747
748 if (bfd_get_section_name (first->owner, first) == NULL
749 || bfd_get_section_name (second->owner, second) == NULL
750 || strcmp (bfd_get_section_name (first->owner, first),
751 bfd_get_section_name (second->owner, second)) != 0)
752 return 0;
753
754 /* Otherwise check that they are in corresponding objfiles. */
755
756 ALL_OBJFILES (obj)
757 if (obj->obfd == first->owner)
758 break;
759 gdb_assert (obj != NULL);
760
761 if (obj->separate_debug_objfile != NULL
762 && obj->separate_debug_objfile->obfd == second->owner)
763 return 1;
764 if (obj->separate_debug_objfile_backlink != NULL
765 && obj->separate_debug_objfile_backlink->obfd == second->owner)
766 return 1;
767
768 return 0;
769 }
770
771 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
772 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
773
774 static struct partial_symtab *
775 find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
776 struct partial_symtab *pst,
777 struct minimal_symbol *msymbol)
778 {
779 struct objfile *objfile = pst->objfile;
780 struct partial_symtab *tpst;
781 struct partial_symtab *best_pst = pst;
782 CORE_ADDR best_addr = pst->textlow;
783
784 /* An objfile that has its functions reordered might have
785 many partial symbol tables containing the PC, but
786 we want the partial symbol table that contains the
787 function containing the PC. */
788 if (!(objfile->flags & OBJF_REORDERED) &&
789 section == 0) /* can't validate section this way */
790 return pst;
791
792 if (msymbol == NULL)
793 return (pst);
794
795 /* The code range of partial symtabs sometimes overlap, so, in
796 the loop below, we need to check all partial symtabs and
797 find the one that fits better for the given PC address. We
798 select the partial symtab that contains a symbol whose
799 address is closest to the PC address. By closest we mean
800 that find_pc_sect_symbol returns the symbol with address
801 that is closest and still less than the given PC. */
802 for (tpst = pst; tpst != NULL; tpst = tpst->next)
803 {
804 if (pc >= tpst->textlow && pc < tpst->texthigh)
805 {
806 struct partial_symbol *p;
807 CORE_ADDR this_addr;
808
809 /* NOTE: This assumes that every psymbol has a
810 corresponding msymbol, which is not necessarily
811 true; the debug info might be much richer than the
812 object's symbol table. */
813 p = find_pc_sect_psymbol (tpst, pc, section);
814 if (p != NULL
815 && SYMBOL_VALUE_ADDRESS (p)
816 == SYMBOL_VALUE_ADDRESS (msymbol))
817 return tpst;
818
819 /* Also accept the textlow value of a psymtab as a
820 "symbol", to provide some support for partial
821 symbol tables with line information but no debug
822 symbols (e.g. those produced by an assembler). */
823 if (p != NULL)
824 this_addr = SYMBOL_VALUE_ADDRESS (p);
825 else
826 this_addr = tpst->textlow;
827
828 /* Check whether it is closer than our current
829 BEST_ADDR. Since this symbol address is
830 necessarily lower or equal to PC, the symbol closer
831 to PC is the symbol which address is the highest.
832 This way we return the psymtab which contains such
833 best match symbol. This can help in cases where the
834 symbol information/debuginfo is not complete, like
835 for instance on IRIX6 with gcc, where no debug info
836 is emitted for statics. (See also the nodebug.exp
837 testcase.) */
838 if (this_addr > best_addr)
839 {
840 best_addr = this_addr;
841 best_pst = tpst;
842 }
843 }
844 }
845 return best_pst;
846 }
847
848 /* Find which partial symtab contains PC and SECTION. Return 0 if
849 none. We return the psymtab that contains a symbol whose address
850 exactly matches PC, or, if we cannot find an exact match, the
851 psymtab that contains a symbol whose address is closest to PC. */
852 struct partial_symtab *
853 find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
854 {
855 struct objfile *objfile;
856 struct minimal_symbol *msymbol;
857
858 /* If we know that this is not a text address, return failure. This is
859 necessary because we loop based on texthigh and textlow, which do
860 not include the data ranges. */
861 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
862 if (msymbol
863 && (MSYMBOL_TYPE (msymbol) == mst_data
864 || MSYMBOL_TYPE (msymbol) == mst_bss
865 || MSYMBOL_TYPE (msymbol) == mst_abs
866 || MSYMBOL_TYPE (msymbol) == mst_file_data
867 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
868 return NULL;
869
870 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
871 than the later used TEXTLOW/TEXTHIGH one. */
872
873 ALL_OBJFILES (objfile)
874 if (objfile->psymtabs_addrmap != NULL)
875 {
876 struct partial_symtab *pst;
877
878 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
879 if (pst != NULL)
880 {
881 /* FIXME: addrmaps currently do not handle overlayed sections,
882 so fall back to the non-addrmap case if we're debugging
883 overlays and the addrmap returned the wrong section. */
884 if (overlay_debugging && msymbol && section)
885 {
886 struct partial_symbol *p;
887 /* NOTE: This assumes that every psymbol has a
888 corresponding msymbol, which is not necessarily
889 true; the debug info might be much richer than the
890 object's symbol table. */
891 p = find_pc_sect_psymbol (pst, pc, section);
892 if (!p
893 || SYMBOL_VALUE_ADDRESS (p)
894 != SYMBOL_VALUE_ADDRESS (msymbol))
895 continue;
896 }
897
898 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
899 PSYMTABS_ADDRMAP we used has already the best 1-byte
900 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
901 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
902 overlap. */
903
904 return pst;
905 }
906 }
907
908 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
909 which still have no corresponding full SYMTABs read. But it is not
910 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
911 so far. */
912
913 ALL_OBJFILES (objfile)
914 {
915 struct partial_symtab *pst;
916
917 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
918 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
919 debug info type in single OBJFILE. */
920
921 ALL_OBJFILE_PSYMTABS (objfile, pst)
922 if (pc >= pst->textlow && pc < pst->texthigh)
923 {
924 struct partial_symtab *best_pst;
925
926 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
927 msymbol);
928 if (best_pst != NULL)
929 return best_pst;
930 }
931 }
932
933 return NULL;
934 }
935
936 /* Find which partial symtab contains PC. Return 0 if none.
937 Backward compatibility, no section */
938
939 struct partial_symtab *
940 find_pc_psymtab (CORE_ADDR pc)
941 {
942 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
943 }
944
945 /* Find which partial symbol within a psymtab matches PC and SECTION.
946 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
947
948 struct partial_symbol *
949 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
950 struct obj_section *section)
951 {
952 struct partial_symbol *best = NULL, *p, **pp;
953 CORE_ADDR best_pc;
954
955 if (!psymtab)
956 psymtab = find_pc_sect_psymtab (pc, section);
957 if (!psymtab)
958 return 0;
959
960 /* Cope with programs that start at address 0 */
961 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
962
963 /* Search the global symbols as well as the static symbols, so that
964 find_pc_partial_function doesn't use a minimal symbol and thus
965 cache a bad endaddr. */
966 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
967 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
968 < psymtab->n_global_syms);
969 pp++)
970 {
971 p = *pp;
972 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
973 && SYMBOL_CLASS (p) == LOC_BLOCK
974 && pc >= SYMBOL_VALUE_ADDRESS (p)
975 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
976 || (psymtab->textlow == 0
977 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
978 {
979 if (section) /* match on a specific section */
980 {
981 fixup_psymbol_section (p, psymtab->objfile);
982 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
983 continue;
984 }
985 best_pc = SYMBOL_VALUE_ADDRESS (p);
986 best = p;
987 }
988 }
989
990 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
991 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
992 < psymtab->n_static_syms);
993 pp++)
994 {
995 p = *pp;
996 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
997 && SYMBOL_CLASS (p) == LOC_BLOCK
998 && pc >= SYMBOL_VALUE_ADDRESS (p)
999 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1000 || (psymtab->textlow == 0
1001 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1002 {
1003 if (section) /* match on a specific section */
1004 {
1005 fixup_psymbol_section (p, psymtab->objfile);
1006 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1007 continue;
1008 }
1009 best_pc = SYMBOL_VALUE_ADDRESS (p);
1010 best = p;
1011 }
1012 }
1013
1014 return best;
1015 }
1016
1017 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1018 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1019
1020 struct partial_symbol *
1021 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1022 {
1023 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1024 }
1025 \f
1026 /* Debug symbols usually don't have section information. We need to dig that
1027 out of the minimal symbols and stash that in the debug symbol. */
1028
1029 static void
1030 fixup_section (struct general_symbol_info *ginfo,
1031 CORE_ADDR addr, struct objfile *objfile)
1032 {
1033 struct minimal_symbol *msym;
1034
1035 /* First, check whether a minimal symbol with the same name exists
1036 and points to the same address. The address check is required
1037 e.g. on PowerPC64, where the minimal symbol for a function will
1038 point to the function descriptor, while the debug symbol will
1039 point to the actual function code. */
1040 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1041 if (msym)
1042 {
1043 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1044 ginfo->section = SYMBOL_SECTION (msym);
1045 }
1046 else
1047 {
1048 /* Static, function-local variables do appear in the linker
1049 (minimal) symbols, but are frequently given names that won't
1050 be found via lookup_minimal_symbol(). E.g., it has been
1051 observed in frv-uclinux (ELF) executables that a static,
1052 function-local variable named "foo" might appear in the
1053 linker symbols as "foo.6" or "foo.3". Thus, there is no
1054 point in attempting to extend the lookup-by-name mechanism to
1055 handle this case due to the fact that there can be multiple
1056 names.
1057
1058 So, instead, search the section table when lookup by name has
1059 failed. The ``addr'' and ``endaddr'' fields may have already
1060 been relocated. If so, the relocation offset (i.e. the
1061 ANOFFSET value) needs to be subtracted from these values when
1062 performing the comparison. We unconditionally subtract it,
1063 because, when no relocation has been performed, the ANOFFSET
1064 value will simply be zero.
1065
1066 The address of the symbol whose section we're fixing up HAS
1067 NOT BEEN adjusted (relocated) yet. It can't have been since
1068 the section isn't yet known and knowing the section is
1069 necessary in order to add the correct relocation value. In
1070 other words, we wouldn't even be in this function (attempting
1071 to compute the section) if it were already known.
1072
1073 Note that it is possible to search the minimal symbols
1074 (subtracting the relocation value if necessary) to find the
1075 matching minimal symbol, but this is overkill and much less
1076 efficient. It is not necessary to find the matching minimal
1077 symbol, only its section.
1078
1079 Note that this technique (of doing a section table search)
1080 can fail when unrelocated section addresses overlap. For
1081 this reason, we still attempt a lookup by name prior to doing
1082 a search of the section table. */
1083
1084 struct obj_section *s;
1085 ALL_OBJFILE_OSECTIONS (objfile, s)
1086 {
1087 int idx = s->the_bfd_section->index;
1088 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1089
1090 if (obj_section_addr (s) - offset <= addr
1091 && addr < obj_section_endaddr (s) - offset)
1092 {
1093 ginfo->obj_section = s;
1094 ginfo->section = idx;
1095 return;
1096 }
1097 }
1098 }
1099 }
1100
1101 struct symbol *
1102 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1103 {
1104 CORE_ADDR addr;
1105
1106 if (!sym)
1107 return NULL;
1108
1109 if (SYMBOL_OBJ_SECTION (sym))
1110 return sym;
1111
1112 /* We either have an OBJFILE, or we can get at it from the sym's
1113 symtab. Anything else is a bug. */
1114 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1115
1116 if (objfile == NULL)
1117 objfile = SYMBOL_SYMTAB (sym)->objfile;
1118
1119 /* We should have an objfile by now. */
1120 gdb_assert (objfile);
1121
1122 switch (SYMBOL_CLASS (sym))
1123 {
1124 case LOC_STATIC:
1125 case LOC_LABEL:
1126 addr = SYMBOL_VALUE_ADDRESS (sym);
1127 break;
1128 case LOC_BLOCK:
1129 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1130 break;
1131
1132 default:
1133 /* Nothing else will be listed in the minsyms -- no use looking
1134 it up. */
1135 return sym;
1136 }
1137
1138 fixup_section (&sym->ginfo, addr, objfile);
1139
1140 return sym;
1141 }
1142
1143 struct partial_symbol *
1144 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1145 {
1146 CORE_ADDR addr;
1147
1148 if (!psym)
1149 return NULL;
1150
1151 if (SYMBOL_OBJ_SECTION (psym))
1152 return psym;
1153
1154 gdb_assert (objfile);
1155
1156 switch (SYMBOL_CLASS (psym))
1157 {
1158 case LOC_STATIC:
1159 case LOC_LABEL:
1160 case LOC_BLOCK:
1161 addr = SYMBOL_VALUE_ADDRESS (psym);
1162 break;
1163 default:
1164 /* Nothing else will be listed in the minsyms -- no use looking
1165 it up. */
1166 return psym;
1167 }
1168
1169 fixup_section (&psym->ginfo, addr, objfile);
1170
1171 return psym;
1172 }
1173
1174 /* Find the definition for a specified symbol name NAME
1175 in domain DOMAIN, visible from lexical block BLOCK.
1176 Returns the struct symbol pointer, or zero if no symbol is found.
1177 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1178 NAME is a field of the current implied argument `this'. If so set
1179 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1180 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1181 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1182
1183 /* This function has a bunch of loops in it and it would seem to be
1184 attractive to put in some QUIT's (though I'm not really sure
1185 whether it can run long enough to be really important). But there
1186 are a few calls for which it would appear to be bad news to quit
1187 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1188 that there is C++ code below which can error(), but that probably
1189 doesn't affect these calls since they are looking for a known
1190 variable and thus can probably assume it will never hit the C++
1191 code). */
1192
1193 struct symbol *
1194 lookup_symbol_in_language (const char *name, const struct block *block,
1195 const domain_enum domain, enum language lang,
1196 int *is_a_field_of_this)
1197 {
1198 char *demangled_name = NULL;
1199 const char *modified_name = NULL;
1200 const char *mangled_name = NULL;
1201 struct symbol *returnval;
1202 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1203
1204 modified_name = name;
1205
1206 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1207 we can always binary search. */
1208 if (lang == language_cplus)
1209 {
1210 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1211 if (demangled_name)
1212 {
1213 mangled_name = name;
1214 modified_name = demangled_name;
1215 make_cleanup (xfree, demangled_name);
1216 }
1217 else
1218 {
1219 /* If we were given a non-mangled name, canonicalize it
1220 according to the language (so far only for C++). */
1221 demangled_name = cp_canonicalize_string (name);
1222 if (demangled_name)
1223 {
1224 modified_name = demangled_name;
1225 make_cleanup (xfree, demangled_name);
1226 }
1227 }
1228 }
1229 else if (lang == language_java)
1230 {
1231 demangled_name = cplus_demangle (name,
1232 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1233 if (demangled_name)
1234 {
1235 mangled_name = name;
1236 modified_name = demangled_name;
1237 make_cleanup (xfree, demangled_name);
1238 }
1239 }
1240
1241 if (case_sensitivity == case_sensitive_off)
1242 {
1243 char *copy;
1244 int len, i;
1245
1246 len = strlen (name);
1247 copy = (char *) alloca (len + 1);
1248 for (i= 0; i < len; i++)
1249 copy[i] = tolower (name[i]);
1250 copy[len] = 0;
1251 modified_name = copy;
1252 }
1253
1254 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1255 domain, lang, is_a_field_of_this);
1256 do_cleanups (cleanup);
1257
1258 return returnval;
1259 }
1260
1261 /* Behave like lookup_symbol_in_language, but performed with the
1262 current language. */
1263
1264 struct symbol *
1265 lookup_symbol (const char *name, const struct block *block,
1266 domain_enum domain, int *is_a_field_of_this)
1267 {
1268 return lookup_symbol_in_language (name, block, domain,
1269 current_language->la_language,
1270 is_a_field_of_this);
1271 }
1272
1273 /* Behave like lookup_symbol except that NAME is the natural name
1274 of the symbol that we're looking for and, if LINKAGE_NAME is
1275 non-NULL, ensure that the symbol's linkage name matches as
1276 well. */
1277
1278 static struct symbol *
1279 lookup_symbol_aux (const char *name, const char *linkage_name,
1280 const struct block *block, const domain_enum domain,
1281 enum language language, int *is_a_field_of_this)
1282 {
1283 struct symbol *sym;
1284 const struct language_defn *langdef;
1285
1286 /* Make sure we do something sensible with is_a_field_of_this, since
1287 the callers that set this parameter to some non-null value will
1288 certainly use it later and expect it to be either 0 or 1.
1289 If we don't set it, the contents of is_a_field_of_this are
1290 undefined. */
1291 if (is_a_field_of_this != NULL)
1292 *is_a_field_of_this = 0;
1293
1294 /* Search specified block and its superiors. Don't search
1295 STATIC_BLOCK or GLOBAL_BLOCK. */
1296
1297 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1298 if (sym != NULL)
1299 return sym;
1300
1301 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1302 check to see if NAME is a field of `this'. */
1303
1304 langdef = language_def (language);
1305
1306 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1307 && block != NULL)
1308 {
1309 struct symbol *sym = NULL;
1310 /* 'this' is only defined in the function's block, so find the
1311 enclosing function block. */
1312 for (; block && !BLOCK_FUNCTION (block);
1313 block = BLOCK_SUPERBLOCK (block));
1314
1315 if (block && !dict_empty (BLOCK_DICT (block)))
1316 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1317 NULL, VAR_DOMAIN);
1318 if (sym)
1319 {
1320 struct type *t = sym->type;
1321
1322 /* I'm not really sure that type of this can ever
1323 be typedefed; just be safe. */
1324 CHECK_TYPEDEF (t);
1325 if (TYPE_CODE (t) == TYPE_CODE_PTR
1326 || TYPE_CODE (t) == TYPE_CODE_REF)
1327 t = TYPE_TARGET_TYPE (t);
1328
1329 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1330 && TYPE_CODE (t) != TYPE_CODE_UNION)
1331 error (_("Internal error: `%s' is not an aggregate"),
1332 langdef->la_name_of_this);
1333
1334 if (check_field (t, name))
1335 {
1336 *is_a_field_of_this = 1;
1337 return NULL;
1338 }
1339 }
1340 }
1341
1342 /* Now do whatever is appropriate for LANGUAGE to look
1343 up static and global variables. */
1344
1345 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1346 if (sym != NULL)
1347 return sym;
1348
1349 /* Now search all static file-level symbols. Not strictly correct,
1350 but more useful than an error. Do the symtabs first, then check
1351 the psymtabs. If a psymtab indicates the existence of the
1352 desired name as a file-level static, then do psymtab-to-symtab
1353 conversion on the fly and return the found symbol. */
1354
1355 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1356 if (sym != NULL)
1357 return sym;
1358
1359 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1360 if (sym != NULL)
1361 return sym;
1362
1363 return NULL;
1364 }
1365
1366 /* Check to see if the symbol is defined in BLOCK or its superiors.
1367 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1368
1369 static struct symbol *
1370 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1371 const struct block *block,
1372 const domain_enum domain)
1373 {
1374 struct symbol *sym;
1375 const struct block *static_block = block_static_block (block);
1376
1377 /* Check if either no block is specified or it's a global block. */
1378
1379 if (static_block == NULL)
1380 return NULL;
1381
1382 while (block != static_block)
1383 {
1384 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1385 if (sym != NULL)
1386 return sym;
1387 block = BLOCK_SUPERBLOCK (block);
1388 }
1389
1390 /* We've reached the static block without finding a result. */
1391
1392 return NULL;
1393 }
1394
1395 /* Look up OBJFILE to BLOCK. */
1396
1397 static struct objfile *
1398 lookup_objfile_from_block (const struct block *block)
1399 {
1400 struct objfile *obj;
1401 struct symtab *s;
1402
1403 if (block == NULL)
1404 return NULL;
1405
1406 block = block_global_block (block);
1407 /* Go through SYMTABS. */
1408 ALL_SYMTABS (obj, s)
1409 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1410 return obj;
1411
1412 return NULL;
1413 }
1414
1415 /* Look up a symbol in a block; if found, fixup the symbol, and set
1416 block_found appropriately. */
1417
1418 struct symbol *
1419 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1420 const struct block *block,
1421 const domain_enum domain)
1422 {
1423 struct symbol *sym;
1424
1425 sym = lookup_block_symbol (block, name, linkage_name, domain);
1426 if (sym)
1427 {
1428 block_found = block;
1429 return fixup_symbol_section (sym, NULL);
1430 }
1431
1432 return NULL;
1433 }
1434
1435 /* Check all global symbols in OBJFILE in symtabs and
1436 psymtabs. */
1437
1438 struct symbol *
1439 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1440 const char *name,
1441 const char *linkage_name,
1442 const domain_enum domain)
1443 {
1444 struct symbol *sym;
1445 struct blockvector *bv;
1446 const struct block *block;
1447 struct symtab *s;
1448 struct partial_symtab *ps;
1449
1450 /* Go through symtabs. */
1451 ALL_OBJFILE_SYMTABS (objfile, s)
1452 {
1453 bv = BLOCKVECTOR (s);
1454 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1455 sym = lookup_block_symbol (block, name, linkage_name, domain);
1456 if (sym)
1457 {
1458 block_found = block;
1459 return fixup_symbol_section (sym, (struct objfile *)objfile);
1460 }
1461 }
1462
1463 /* Now go through psymtabs. */
1464 ALL_OBJFILE_PSYMTABS (objfile, ps)
1465 {
1466 if (!ps->readin
1467 && lookup_partial_symbol (ps, name, linkage_name,
1468 1, domain))
1469 {
1470 s = PSYMTAB_TO_SYMTAB (ps);
1471 bv = BLOCKVECTOR (s);
1472 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1473 sym = lookup_block_symbol (block, name, linkage_name, domain);
1474 return fixup_symbol_section (sym, (struct objfile *)objfile);
1475 }
1476 }
1477
1478 if (objfile->separate_debug_objfile)
1479 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1480 name, linkage_name, domain);
1481
1482 return NULL;
1483 }
1484
1485 /* Check to see if the symbol is defined in one of the symtabs.
1486 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1487 depending on whether or not we want to search global symbols or
1488 static symbols. */
1489
1490 static struct symbol *
1491 lookup_symbol_aux_symtabs (int block_index,
1492 const char *name, const char *linkage_name,
1493 const domain_enum domain)
1494 {
1495 struct symbol *sym;
1496 struct objfile *objfile;
1497 struct blockvector *bv;
1498 const struct block *block;
1499 struct symtab *s;
1500
1501 ALL_PRIMARY_SYMTABS (objfile, s)
1502 {
1503 bv = BLOCKVECTOR (s);
1504 block = BLOCKVECTOR_BLOCK (bv, block_index);
1505 sym = lookup_block_symbol (block, name, linkage_name, domain);
1506 if (sym)
1507 {
1508 block_found = block;
1509 return fixup_symbol_section (sym, objfile);
1510 }
1511 }
1512
1513 return NULL;
1514 }
1515
1516 /* Check to see if the symbol is defined in one of the partial
1517 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1518 STATIC_BLOCK, depending on whether or not we want to search global
1519 symbols or static symbols. */
1520
1521 static struct symbol *
1522 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1523 const char *linkage_name,
1524 const domain_enum domain)
1525 {
1526 struct symbol *sym;
1527 struct objfile *objfile;
1528 struct blockvector *bv;
1529 const struct block *block;
1530 struct partial_symtab *ps;
1531 struct symtab *s;
1532 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1533
1534 ALL_PSYMTABS (objfile, ps)
1535 {
1536 if (!ps->readin
1537 && lookup_partial_symbol (ps, name, linkage_name,
1538 psymtab_index, domain))
1539 {
1540 s = PSYMTAB_TO_SYMTAB (ps);
1541 bv = BLOCKVECTOR (s);
1542 block = BLOCKVECTOR_BLOCK (bv, block_index);
1543 sym = lookup_block_symbol (block, name, linkage_name, domain);
1544 if (!sym)
1545 {
1546 /* This shouldn't be necessary, but as a last resort try
1547 looking in the statics even though the psymtab claimed
1548 the symbol was global, or vice-versa. It's possible
1549 that the psymtab gets it wrong in some cases. */
1550
1551 /* FIXME: carlton/2002-09-30: Should we really do that?
1552 If that happens, isn't it likely to be a GDB error, in
1553 which case we should fix the GDB error rather than
1554 silently dealing with it here? So I'd vote for
1555 removing the check for the symbol in the other
1556 block. */
1557 block = BLOCKVECTOR_BLOCK (bv,
1558 block_index == GLOBAL_BLOCK ?
1559 STATIC_BLOCK : GLOBAL_BLOCK);
1560 sym = lookup_block_symbol (block, name, linkage_name, domain);
1561 if (!sym)
1562 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1563 block_index == GLOBAL_BLOCK ? "global" : "static",
1564 name, ps->filename, name, name);
1565 }
1566 return fixup_symbol_section (sym, objfile);
1567 }
1568 }
1569
1570 return NULL;
1571 }
1572
1573 /* A default version of lookup_symbol_nonlocal for use by languages
1574 that can't think of anything better to do. This implements the C
1575 lookup rules. */
1576
1577 struct symbol *
1578 basic_lookup_symbol_nonlocal (const char *name,
1579 const char *linkage_name,
1580 const struct block *block,
1581 const domain_enum domain)
1582 {
1583 struct symbol *sym;
1584
1585 /* NOTE: carlton/2003-05-19: The comments below were written when
1586 this (or what turned into this) was part of lookup_symbol_aux;
1587 I'm much less worried about these questions now, since these
1588 decisions have turned out well, but I leave these comments here
1589 for posterity. */
1590
1591 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1592 not it would be appropriate to search the current global block
1593 here as well. (That's what this code used to do before the
1594 is_a_field_of_this check was moved up.) On the one hand, it's
1595 redundant with the lookup_symbol_aux_symtabs search that happens
1596 next. On the other hand, if decode_line_1 is passed an argument
1597 like filename:var, then the user presumably wants 'var' to be
1598 searched for in filename. On the third hand, there shouldn't be
1599 multiple global variables all of which are named 'var', and it's
1600 not like decode_line_1 has ever restricted its search to only
1601 global variables in a single filename. All in all, only
1602 searching the static block here seems best: it's correct and it's
1603 cleanest. */
1604
1605 /* NOTE: carlton/2002-12-05: There's also a possible performance
1606 issue here: if you usually search for global symbols in the
1607 current file, then it would be slightly better to search the
1608 current global block before searching all the symtabs. But there
1609 are other factors that have a much greater effect on performance
1610 than that one, so I don't think we should worry about that for
1611 now. */
1612
1613 sym = lookup_symbol_static (name, linkage_name, block, domain);
1614 if (sym != NULL)
1615 return sym;
1616
1617 return lookup_symbol_global (name, linkage_name, block, domain);
1618 }
1619
1620 /* Lookup a symbol in the static block associated to BLOCK, if there
1621 is one; do nothing if BLOCK is NULL or a global block. */
1622
1623 struct symbol *
1624 lookup_symbol_static (const char *name,
1625 const char *linkage_name,
1626 const struct block *block,
1627 const domain_enum domain)
1628 {
1629 const struct block *static_block = block_static_block (block);
1630
1631 if (static_block != NULL)
1632 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1633 else
1634 return NULL;
1635 }
1636
1637 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1638 necessary). */
1639
1640 struct symbol *
1641 lookup_symbol_global (const char *name,
1642 const char *linkage_name,
1643 const struct block *block,
1644 const domain_enum domain)
1645 {
1646 struct symbol *sym = NULL;
1647 struct objfile *objfile = NULL;
1648
1649 /* Call library-specific lookup procedure. */
1650 objfile = lookup_objfile_from_block (block);
1651 if (objfile != NULL)
1652 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1653 if (sym != NULL)
1654 return sym;
1655
1656 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1657 if (sym != NULL)
1658 return sym;
1659
1660 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1661 }
1662
1663 int
1664 symbol_matches_domain (enum language symbol_language,
1665 domain_enum symbol_domain,
1666 domain_enum domain)
1667 {
1668 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1669 A Java class declaration also defines a typedef for the class.
1670 Similarly, any Ada type declaration implicitly defines a typedef. */
1671 if (symbol_language == language_cplus
1672 || symbol_language == language_java
1673 || symbol_language == language_ada)
1674 {
1675 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1676 && symbol_domain == STRUCT_DOMAIN)
1677 return 1;
1678 }
1679 /* For all other languages, strict match is required. */
1680 return (symbol_domain == domain);
1681 }
1682
1683 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1684 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1685 linkage name matches it. Check the global symbols if GLOBAL, the
1686 static symbols if not */
1687
1688 struct partial_symbol *
1689 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1690 const char *linkage_name, int global,
1691 domain_enum domain)
1692 {
1693 struct partial_symbol *temp;
1694 struct partial_symbol **start, **psym;
1695 struct partial_symbol **top, **real_top, **bottom, **center;
1696 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1697 int do_linear_search = 1;
1698
1699 if (length == 0)
1700 {
1701 return (NULL);
1702 }
1703 start = (global ?
1704 pst->objfile->global_psymbols.list + pst->globals_offset :
1705 pst->objfile->static_psymbols.list + pst->statics_offset);
1706
1707 if (global) /* This means we can use a binary search. */
1708 {
1709 do_linear_search = 0;
1710
1711 /* Binary search. This search is guaranteed to end with center
1712 pointing at the earliest partial symbol whose name might be
1713 correct. At that point *all* partial symbols with an
1714 appropriate name will be checked against the correct
1715 domain. */
1716
1717 bottom = start;
1718 top = start + length - 1;
1719 real_top = top;
1720 while (top > bottom)
1721 {
1722 center = bottom + (top - bottom) / 2;
1723 if (!(center < top))
1724 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1725 if (!do_linear_search
1726 && (SYMBOL_LANGUAGE (*center) == language_java))
1727 {
1728 do_linear_search = 1;
1729 }
1730 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1731 {
1732 top = center;
1733 }
1734 else
1735 {
1736 bottom = center + 1;
1737 }
1738 }
1739 if (!(top == bottom))
1740 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1741
1742 while (top <= real_top
1743 && (linkage_name != NULL
1744 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1745 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1746 {
1747 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1748 SYMBOL_DOMAIN (*top), domain))
1749 return (*top);
1750 top++;
1751 }
1752 }
1753
1754 /* Can't use a binary search or else we found during the binary search that
1755 we should also do a linear search. */
1756
1757 if (do_linear_search)
1758 {
1759 for (psym = start; psym < start + length; psym++)
1760 {
1761 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1762 SYMBOL_DOMAIN (*psym), domain))
1763 {
1764 if (linkage_name != NULL
1765 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1766 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1767 {
1768 return (*psym);
1769 }
1770 }
1771 }
1772 }
1773
1774 return (NULL);
1775 }
1776
1777 /* Look up a type named NAME in the struct_domain. The type returned
1778 must not be opaque -- i.e., must have at least one field
1779 defined. */
1780
1781 struct type *
1782 lookup_transparent_type (const char *name)
1783 {
1784 return current_language->la_lookup_transparent_type (name);
1785 }
1786
1787 /* The standard implementation of lookup_transparent_type. This code
1788 was modeled on lookup_symbol -- the parts not relevant to looking
1789 up types were just left out. In particular it's assumed here that
1790 types are available in struct_domain and only at file-static or
1791 global blocks. */
1792
1793 struct type *
1794 basic_lookup_transparent_type (const char *name)
1795 {
1796 struct symbol *sym;
1797 struct symtab *s = NULL;
1798 struct partial_symtab *ps;
1799 struct blockvector *bv;
1800 struct objfile *objfile;
1801 struct block *block;
1802
1803 /* Now search all the global symbols. Do the symtab's first, then
1804 check the psymtab's. If a psymtab indicates the existence
1805 of the desired name as a global, then do psymtab-to-symtab
1806 conversion on the fly and return the found symbol. */
1807
1808 ALL_PRIMARY_SYMTABS (objfile, s)
1809 {
1810 bv = BLOCKVECTOR (s);
1811 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1812 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1813 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1814 {
1815 return SYMBOL_TYPE (sym);
1816 }
1817 }
1818
1819 ALL_PSYMTABS (objfile, ps)
1820 {
1821 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1822 1, STRUCT_DOMAIN))
1823 {
1824 s = PSYMTAB_TO_SYMTAB (ps);
1825 bv = BLOCKVECTOR (s);
1826 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1827 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1828 if (!sym)
1829 {
1830 /* This shouldn't be necessary, but as a last resort
1831 * try looking in the statics even though the psymtab
1832 * claimed the symbol was global. It's possible that
1833 * the psymtab gets it wrong in some cases.
1834 */
1835 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1836 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1837 if (!sym)
1838 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1839 %s may be an inlined function, or may be a template function\n\
1840 (if a template, try specifying an instantiation: %s<type>)."),
1841 name, ps->filename, name, name);
1842 }
1843 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1844 return SYMBOL_TYPE (sym);
1845 }
1846 }
1847
1848 /* Now search the static file-level symbols.
1849 Not strictly correct, but more useful than an error.
1850 Do the symtab's first, then
1851 check the psymtab's. If a psymtab indicates the existence
1852 of the desired name as a file-level static, then do psymtab-to-symtab
1853 conversion on the fly and return the found symbol.
1854 */
1855
1856 ALL_PRIMARY_SYMTABS (objfile, s)
1857 {
1858 bv = BLOCKVECTOR (s);
1859 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1860 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1861 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1862 {
1863 return SYMBOL_TYPE (sym);
1864 }
1865 }
1866
1867 ALL_PSYMTABS (objfile, ps)
1868 {
1869 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1870 {
1871 s = PSYMTAB_TO_SYMTAB (ps);
1872 bv = BLOCKVECTOR (s);
1873 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1874 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1875 if (!sym)
1876 {
1877 /* This shouldn't be necessary, but as a last resort
1878 * try looking in the globals even though the psymtab
1879 * claimed the symbol was static. It's possible that
1880 * the psymtab gets it wrong in some cases.
1881 */
1882 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1883 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1884 if (!sym)
1885 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1886 %s may be an inlined function, or may be a template function\n\
1887 (if a template, try specifying an instantiation: %s<type>)."),
1888 name, ps->filename, name, name);
1889 }
1890 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1891 return SYMBOL_TYPE (sym);
1892 }
1893 }
1894 return (struct type *) 0;
1895 }
1896
1897
1898 /* Find the psymtab containing main(). */
1899 /* FIXME: What about languages without main() or specially linked
1900 executables that have no main() ? */
1901
1902 struct partial_symtab *
1903 find_main_psymtab (void)
1904 {
1905 struct partial_symtab *pst;
1906 struct objfile *objfile;
1907
1908 ALL_PSYMTABS (objfile, pst)
1909 {
1910 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1911 {
1912 return (pst);
1913 }
1914 }
1915 return (NULL);
1916 }
1917
1918 /* Search BLOCK for symbol NAME in DOMAIN.
1919
1920 Note that if NAME is the demangled form of a C++ symbol, we will fail
1921 to find a match during the binary search of the non-encoded names, but
1922 for now we don't worry about the slight inefficiency of looking for
1923 a match we'll never find, since it will go pretty quick. Once the
1924 binary search terminates, we drop through and do a straight linear
1925 search on the symbols. Each symbol which is marked as being a ObjC/C++
1926 symbol (language_cplus or language_objc set) has both the encoded and
1927 non-encoded names tested for a match.
1928
1929 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1930 particular mangled name.
1931 */
1932
1933 struct symbol *
1934 lookup_block_symbol (const struct block *block, const char *name,
1935 const char *linkage_name,
1936 const domain_enum domain)
1937 {
1938 struct dict_iterator iter;
1939 struct symbol *sym;
1940
1941 if (!BLOCK_FUNCTION (block))
1942 {
1943 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1944 sym != NULL;
1945 sym = dict_iter_name_next (name, &iter))
1946 {
1947 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1948 SYMBOL_DOMAIN (sym), domain)
1949 && (linkage_name != NULL
1950 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1951 return sym;
1952 }
1953 return NULL;
1954 }
1955 else
1956 {
1957 /* Note that parameter symbols do not always show up last in the
1958 list; this loop makes sure to take anything else other than
1959 parameter symbols first; it only uses parameter symbols as a
1960 last resort. Note that this only takes up extra computation
1961 time on a match. */
1962
1963 struct symbol *sym_found = NULL;
1964
1965 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1966 sym != NULL;
1967 sym = dict_iter_name_next (name, &iter))
1968 {
1969 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1970 SYMBOL_DOMAIN (sym), domain)
1971 && (linkage_name != NULL
1972 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1973 {
1974 sym_found = sym;
1975 if (!SYMBOL_IS_ARGUMENT (sym))
1976 {
1977 break;
1978 }
1979 }
1980 }
1981 return (sym_found); /* Will be NULL if not found. */
1982 }
1983 }
1984
1985 /* Find the symtab associated with PC and SECTION. Look through the
1986 psymtabs and read in another symtab if necessary. */
1987
1988 struct symtab *
1989 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1990 {
1991 struct block *b;
1992 struct blockvector *bv;
1993 struct symtab *s = NULL;
1994 struct symtab *best_s = NULL;
1995 struct partial_symtab *ps;
1996 struct objfile *objfile;
1997 CORE_ADDR distance = 0;
1998 struct minimal_symbol *msymbol;
1999
2000 /* If we know that this is not a text address, return failure. This is
2001 necessary because we loop based on the block's high and low code
2002 addresses, which do not include the data ranges, and because
2003 we call find_pc_sect_psymtab which has a similar restriction based
2004 on the partial_symtab's texthigh and textlow. */
2005 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2006 if (msymbol
2007 && (MSYMBOL_TYPE (msymbol) == mst_data
2008 || MSYMBOL_TYPE (msymbol) == mst_bss
2009 || MSYMBOL_TYPE (msymbol) == mst_abs
2010 || MSYMBOL_TYPE (msymbol) == mst_file_data
2011 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2012 return NULL;
2013
2014 /* Search all symtabs for the one whose file contains our address, and which
2015 is the smallest of all the ones containing the address. This is designed
2016 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2017 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2018 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2019
2020 This happens for native ecoff format, where code from included files
2021 gets its own symtab. The symtab for the included file should have
2022 been read in already via the dependency mechanism.
2023 It might be swifter to create several symtabs with the same name
2024 like xcoff does (I'm not sure).
2025
2026 It also happens for objfiles that have their functions reordered.
2027 For these, the symtab we are looking for is not necessarily read in. */
2028
2029 ALL_PRIMARY_SYMTABS (objfile, s)
2030 {
2031 bv = BLOCKVECTOR (s);
2032 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2033
2034 if (BLOCK_START (b) <= pc
2035 && BLOCK_END (b) > pc
2036 && (distance == 0
2037 || BLOCK_END (b) - BLOCK_START (b) < distance))
2038 {
2039 /* For an objfile that has its functions reordered,
2040 find_pc_psymtab will find the proper partial symbol table
2041 and we simply return its corresponding symtab. */
2042 /* In order to better support objfiles that contain both
2043 stabs and coff debugging info, we continue on if a psymtab
2044 can't be found. */
2045 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2046 {
2047 ps = find_pc_sect_psymtab (pc, section);
2048 if (ps)
2049 return PSYMTAB_TO_SYMTAB (ps);
2050 }
2051 if (section != 0)
2052 {
2053 struct dict_iterator iter;
2054 struct symbol *sym = NULL;
2055
2056 ALL_BLOCK_SYMBOLS (b, iter, sym)
2057 {
2058 fixup_symbol_section (sym, objfile);
2059 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2060 break;
2061 }
2062 if (sym == NULL)
2063 continue; /* no symbol in this symtab matches section */
2064 }
2065 distance = BLOCK_END (b) - BLOCK_START (b);
2066 best_s = s;
2067 }
2068 }
2069
2070 if (best_s != NULL)
2071 return (best_s);
2072
2073 s = NULL;
2074 ps = find_pc_sect_psymtab (pc, section);
2075 if (ps)
2076 {
2077 if (ps->readin)
2078 /* Might want to error() here (in case symtab is corrupt and
2079 will cause a core dump), but maybe we can successfully
2080 continue, so let's not. */
2081 warning (_("\
2082 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2083 paddr_nz (pc));
2084 s = PSYMTAB_TO_SYMTAB (ps);
2085 }
2086 return (s);
2087 }
2088
2089 /* Find the symtab associated with PC. Look through the psymtabs and
2090 read in another symtab if necessary. Backward compatibility, no section */
2091
2092 struct symtab *
2093 find_pc_symtab (CORE_ADDR pc)
2094 {
2095 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2096 }
2097 \f
2098
2099 /* Find the source file and line number for a given PC value and SECTION.
2100 Return a structure containing a symtab pointer, a line number,
2101 and a pc range for the entire source line.
2102 The value's .pc field is NOT the specified pc.
2103 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2104 use the line that ends there. Otherwise, in that case, the line
2105 that begins there is used. */
2106
2107 /* The big complication here is that a line may start in one file, and end just
2108 before the start of another file. This usually occurs when you #include
2109 code in the middle of a subroutine. To properly find the end of a line's PC
2110 range, we must search all symtabs associated with this compilation unit, and
2111 find the one whose first PC is closer than that of the next line in this
2112 symtab. */
2113
2114 /* If it's worth the effort, we could be using a binary search. */
2115
2116 struct symtab_and_line
2117 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2118 {
2119 struct symtab *s;
2120 struct linetable *l;
2121 int len;
2122 int i;
2123 struct linetable_entry *item;
2124 struct symtab_and_line val;
2125 struct blockvector *bv;
2126 struct minimal_symbol *msymbol;
2127 struct minimal_symbol *mfunsym;
2128
2129 /* Info on best line seen so far, and where it starts, and its file. */
2130
2131 struct linetable_entry *best = NULL;
2132 CORE_ADDR best_end = 0;
2133 struct symtab *best_symtab = 0;
2134
2135 /* Store here the first line number
2136 of a file which contains the line at the smallest pc after PC.
2137 If we don't find a line whose range contains PC,
2138 we will use a line one less than this,
2139 with a range from the start of that file to the first line's pc. */
2140 struct linetable_entry *alt = NULL;
2141 struct symtab *alt_symtab = 0;
2142
2143 /* Info on best line seen in this file. */
2144
2145 struct linetable_entry *prev;
2146
2147 /* If this pc is not from the current frame,
2148 it is the address of the end of a call instruction.
2149 Quite likely that is the start of the following statement.
2150 But what we want is the statement containing the instruction.
2151 Fudge the pc to make sure we get that. */
2152
2153 init_sal (&val); /* initialize to zeroes */
2154
2155 /* It's tempting to assume that, if we can't find debugging info for
2156 any function enclosing PC, that we shouldn't search for line
2157 number info, either. However, GAS can emit line number info for
2158 assembly files --- very helpful when debugging hand-written
2159 assembly code. In such a case, we'd have no debug info for the
2160 function, but we would have line info. */
2161
2162 if (notcurrent)
2163 pc -= 1;
2164
2165 /* elz: added this because this function returned the wrong
2166 information if the pc belongs to a stub (import/export)
2167 to call a shlib function. This stub would be anywhere between
2168 two functions in the target, and the line info was erroneously
2169 taken to be the one of the line before the pc.
2170 */
2171 /* RT: Further explanation:
2172
2173 * We have stubs (trampolines) inserted between procedures.
2174 *
2175 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2176 * exists in the main image.
2177 *
2178 * In the minimal symbol table, we have a bunch of symbols
2179 * sorted by start address. The stubs are marked as "trampoline",
2180 * the others appear as text. E.g.:
2181 *
2182 * Minimal symbol table for main image
2183 * main: code for main (text symbol)
2184 * shr1: stub (trampoline symbol)
2185 * foo: code for foo (text symbol)
2186 * ...
2187 * Minimal symbol table for "shr1" image:
2188 * ...
2189 * shr1: code for shr1 (text symbol)
2190 * ...
2191 *
2192 * So the code below is trying to detect if we are in the stub
2193 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2194 * and if found, do the symbolization from the real-code address
2195 * rather than the stub address.
2196 *
2197 * Assumptions being made about the minimal symbol table:
2198 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2199 * if we're really in the trampoline. If we're beyond it (say
2200 * we're in "foo" in the above example), it'll have a closer
2201 * symbol (the "foo" text symbol for example) and will not
2202 * return the trampoline.
2203 * 2. lookup_minimal_symbol_text() will find a real text symbol
2204 * corresponding to the trampoline, and whose address will
2205 * be different than the trampoline address. I put in a sanity
2206 * check for the address being the same, to avoid an
2207 * infinite recursion.
2208 */
2209 msymbol = lookup_minimal_symbol_by_pc (pc);
2210 if (msymbol != NULL)
2211 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2212 {
2213 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2214 NULL);
2215 if (mfunsym == NULL)
2216 /* I eliminated this warning since it is coming out
2217 * in the following situation:
2218 * gdb shmain // test program with shared libraries
2219 * (gdb) break shr1 // function in shared lib
2220 * Warning: In stub for ...
2221 * In the above situation, the shared lib is not loaded yet,
2222 * so of course we can't find the real func/line info,
2223 * but the "break" still works, and the warning is annoying.
2224 * So I commented out the warning. RT */
2225 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2226 /* fall through */
2227 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2228 /* Avoid infinite recursion */
2229 /* See above comment about why warning is commented out */
2230 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2231 /* fall through */
2232 else
2233 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2234 }
2235
2236
2237 s = find_pc_sect_symtab (pc, section);
2238 if (!s)
2239 {
2240 /* if no symbol information, return previous pc */
2241 if (notcurrent)
2242 pc++;
2243 val.pc = pc;
2244 return val;
2245 }
2246
2247 bv = BLOCKVECTOR (s);
2248
2249 /* Look at all the symtabs that share this blockvector.
2250 They all have the same apriori range, that we found was right;
2251 but they have different line tables. */
2252
2253 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2254 {
2255 /* Find the best line in this symtab. */
2256 l = LINETABLE (s);
2257 if (!l)
2258 continue;
2259 len = l->nitems;
2260 if (len <= 0)
2261 {
2262 /* I think len can be zero if the symtab lacks line numbers
2263 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2264 I'm not sure which, and maybe it depends on the symbol
2265 reader). */
2266 continue;
2267 }
2268
2269 prev = NULL;
2270 item = l->item; /* Get first line info */
2271
2272 /* Is this file's first line closer than the first lines of other files?
2273 If so, record this file, and its first line, as best alternate. */
2274 if (item->pc > pc && (!alt || item->pc < alt->pc))
2275 {
2276 alt = item;
2277 alt_symtab = s;
2278 }
2279
2280 for (i = 0; i < len; i++, item++)
2281 {
2282 /* Leave prev pointing to the linetable entry for the last line
2283 that started at or before PC. */
2284 if (item->pc > pc)
2285 break;
2286
2287 prev = item;
2288 }
2289
2290 /* At this point, prev points at the line whose start addr is <= pc, and
2291 item points at the next line. If we ran off the end of the linetable
2292 (pc >= start of the last line), then prev == item. If pc < start of
2293 the first line, prev will not be set. */
2294
2295 /* Is this file's best line closer than the best in the other files?
2296 If so, record this file, and its best line, as best so far. Don't
2297 save prev if it represents the end of a function (i.e. line number
2298 0) instead of a real line. */
2299
2300 if (prev && prev->line && (!best || prev->pc > best->pc))
2301 {
2302 best = prev;
2303 best_symtab = s;
2304
2305 /* Discard BEST_END if it's before the PC of the current BEST. */
2306 if (best_end <= best->pc)
2307 best_end = 0;
2308 }
2309
2310 /* If another line (denoted by ITEM) is in the linetable and its
2311 PC is after BEST's PC, but before the current BEST_END, then
2312 use ITEM's PC as the new best_end. */
2313 if (best && i < len && item->pc > best->pc
2314 && (best_end == 0 || best_end > item->pc))
2315 best_end = item->pc;
2316 }
2317
2318 if (!best_symtab)
2319 {
2320 /* If we didn't find any line number info, just return zeros.
2321 We used to return alt->line - 1 here, but that could be
2322 anywhere; if we don't have line number info for this PC,
2323 don't make some up. */
2324 val.pc = pc;
2325 }
2326 else if (best->line == 0)
2327 {
2328 /* If our best fit is in a range of PC's for which no line
2329 number info is available (line number is zero) then we didn't
2330 find any valid line information. */
2331 val.pc = pc;
2332 }
2333 else
2334 {
2335 val.symtab = best_symtab;
2336 val.line = best->line;
2337 val.pc = best->pc;
2338 if (best_end && (!alt || best_end < alt->pc))
2339 val.end = best_end;
2340 else if (alt)
2341 val.end = alt->pc;
2342 else
2343 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2344 }
2345 val.section = section;
2346 return val;
2347 }
2348
2349 /* Backward compatibility (no section) */
2350
2351 struct symtab_and_line
2352 find_pc_line (CORE_ADDR pc, int notcurrent)
2353 {
2354 struct obj_section *section;
2355
2356 section = find_pc_overlay (pc);
2357 if (pc_in_unmapped_range (pc, section))
2358 pc = overlay_mapped_address (pc, section);
2359 return find_pc_sect_line (pc, section, notcurrent);
2360 }
2361 \f
2362 /* Find line number LINE in any symtab whose name is the same as
2363 SYMTAB.
2364
2365 If found, return the symtab that contains the linetable in which it was
2366 found, set *INDEX to the index in the linetable of the best entry
2367 found, and set *EXACT_MATCH nonzero if the value returned is an
2368 exact match.
2369
2370 If not found, return NULL. */
2371
2372 struct symtab *
2373 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2374 {
2375 int exact = 0; /* Initialized here to avoid a compiler warning. */
2376
2377 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2378 so far seen. */
2379
2380 int best_index;
2381 struct linetable *best_linetable;
2382 struct symtab *best_symtab;
2383
2384 /* First try looking it up in the given symtab. */
2385 best_linetable = LINETABLE (symtab);
2386 best_symtab = symtab;
2387 best_index = find_line_common (best_linetable, line, &exact);
2388 if (best_index < 0 || !exact)
2389 {
2390 /* Didn't find an exact match. So we better keep looking for
2391 another symtab with the same name. In the case of xcoff,
2392 multiple csects for one source file (produced by IBM's FORTRAN
2393 compiler) produce multiple symtabs (this is unavoidable
2394 assuming csects can be at arbitrary places in memory and that
2395 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2396
2397 /* BEST is the smallest linenumber > LINE so far seen,
2398 or 0 if none has been seen so far.
2399 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2400 int best;
2401
2402 struct objfile *objfile;
2403 struct symtab *s;
2404 struct partial_symtab *p;
2405
2406 if (best_index >= 0)
2407 best = best_linetable->item[best_index].line;
2408 else
2409 best = 0;
2410
2411 ALL_PSYMTABS (objfile, p)
2412 {
2413 if (strcmp (symtab->filename, p->filename) != 0)
2414 continue;
2415 PSYMTAB_TO_SYMTAB (p);
2416 }
2417
2418 ALL_SYMTABS (objfile, s)
2419 {
2420 struct linetable *l;
2421 int ind;
2422
2423 if (strcmp (symtab->filename, s->filename) != 0)
2424 continue;
2425 l = LINETABLE (s);
2426 ind = find_line_common (l, line, &exact);
2427 if (ind >= 0)
2428 {
2429 if (exact)
2430 {
2431 best_index = ind;
2432 best_linetable = l;
2433 best_symtab = s;
2434 goto done;
2435 }
2436 if (best == 0 || l->item[ind].line < best)
2437 {
2438 best = l->item[ind].line;
2439 best_index = ind;
2440 best_linetable = l;
2441 best_symtab = s;
2442 }
2443 }
2444 }
2445 }
2446 done:
2447 if (best_index < 0)
2448 return NULL;
2449
2450 if (index)
2451 *index = best_index;
2452 if (exact_match)
2453 *exact_match = exact;
2454
2455 return best_symtab;
2456 }
2457 \f
2458 /* Set the PC value for a given source file and line number and return true.
2459 Returns zero for invalid line number (and sets the PC to 0).
2460 The source file is specified with a struct symtab. */
2461
2462 int
2463 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2464 {
2465 struct linetable *l;
2466 int ind;
2467
2468 *pc = 0;
2469 if (symtab == 0)
2470 return 0;
2471
2472 symtab = find_line_symtab (symtab, line, &ind, NULL);
2473 if (symtab != NULL)
2474 {
2475 l = LINETABLE (symtab);
2476 *pc = l->item[ind].pc;
2477 return 1;
2478 }
2479 else
2480 return 0;
2481 }
2482
2483 /* Find the range of pc values in a line.
2484 Store the starting pc of the line into *STARTPTR
2485 and the ending pc (start of next line) into *ENDPTR.
2486 Returns 1 to indicate success.
2487 Returns 0 if could not find the specified line. */
2488
2489 int
2490 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2491 CORE_ADDR *endptr)
2492 {
2493 CORE_ADDR startaddr;
2494 struct symtab_and_line found_sal;
2495
2496 startaddr = sal.pc;
2497 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2498 return 0;
2499
2500 /* This whole function is based on address. For example, if line 10 has
2501 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2502 "info line *0x123" should say the line goes from 0x100 to 0x200
2503 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2504 This also insures that we never give a range like "starts at 0x134
2505 and ends at 0x12c". */
2506
2507 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2508 if (found_sal.line != sal.line)
2509 {
2510 /* The specified line (sal) has zero bytes. */
2511 *startptr = found_sal.pc;
2512 *endptr = found_sal.pc;
2513 }
2514 else
2515 {
2516 *startptr = found_sal.pc;
2517 *endptr = found_sal.end;
2518 }
2519 return 1;
2520 }
2521
2522 /* Given a line table and a line number, return the index into the line
2523 table for the pc of the nearest line whose number is >= the specified one.
2524 Return -1 if none is found. The value is >= 0 if it is an index.
2525
2526 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2527
2528 static int
2529 find_line_common (struct linetable *l, int lineno,
2530 int *exact_match)
2531 {
2532 int i;
2533 int len;
2534
2535 /* BEST is the smallest linenumber > LINENO so far seen,
2536 or 0 if none has been seen so far.
2537 BEST_INDEX identifies the item for it. */
2538
2539 int best_index = -1;
2540 int best = 0;
2541
2542 *exact_match = 0;
2543
2544 if (lineno <= 0)
2545 return -1;
2546 if (l == 0)
2547 return -1;
2548
2549 len = l->nitems;
2550 for (i = 0; i < len; i++)
2551 {
2552 struct linetable_entry *item = &(l->item[i]);
2553
2554 if (item->line == lineno)
2555 {
2556 /* Return the first (lowest address) entry which matches. */
2557 *exact_match = 1;
2558 return i;
2559 }
2560
2561 if (item->line > lineno && (best == 0 || item->line < best))
2562 {
2563 best = item->line;
2564 best_index = i;
2565 }
2566 }
2567
2568 /* If we got here, we didn't get an exact match. */
2569 return best_index;
2570 }
2571
2572 int
2573 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2574 {
2575 struct symtab_and_line sal;
2576 sal = find_pc_line (pc, 0);
2577 *startptr = sal.pc;
2578 *endptr = sal.end;
2579 return sal.symtab != 0;
2580 }
2581
2582 /* Given a function start address PC and SECTION, find the first
2583 address after the function prologue. */
2584 CORE_ADDR
2585 find_function_start_pc (struct gdbarch *gdbarch,
2586 CORE_ADDR pc, struct obj_section *section)
2587 {
2588 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2589 so that gdbarch_skip_prologue has something unique to work on. */
2590 if (section_is_overlay (section) && !section_is_mapped (section))
2591 pc = overlay_unmapped_address (pc, section);
2592
2593 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2594 pc = gdbarch_skip_prologue (gdbarch, pc);
2595
2596 /* For overlays, map pc back into its mapped VMA range. */
2597 pc = overlay_mapped_address (pc, section);
2598
2599 return pc;
2600 }
2601
2602 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2603 address for that function that has an entry in SYMTAB's line info
2604 table. If such an entry cannot be found, return FUNC_ADDR
2605 unaltered. */
2606 CORE_ADDR
2607 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2608 {
2609 CORE_ADDR func_start, func_end;
2610 struct linetable *l;
2611 int ind, i, len;
2612 int best_lineno = 0;
2613 CORE_ADDR best_pc = func_addr;
2614
2615 /* Give up if this symbol has no lineinfo table. */
2616 l = LINETABLE (symtab);
2617 if (l == NULL)
2618 return func_addr;
2619
2620 /* Get the range for the function's PC values, or give up if we
2621 cannot, for some reason. */
2622 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2623 return func_addr;
2624
2625 /* Linetable entries are ordered by PC values, see the commentary in
2626 symtab.h where `struct linetable' is defined. Thus, the first
2627 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2628 address we are looking for. */
2629 for (i = 0; i < l->nitems; i++)
2630 {
2631 struct linetable_entry *item = &(l->item[i]);
2632
2633 /* Don't use line numbers of zero, they mark special entries in
2634 the table. See the commentary on symtab.h before the
2635 definition of struct linetable. */
2636 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2637 return item->pc;
2638 }
2639
2640 return func_addr;
2641 }
2642
2643 /* Given a function symbol SYM, find the symtab and line for the start
2644 of the function.
2645 If the argument FUNFIRSTLINE is nonzero, we want the first line
2646 of real code inside the function. */
2647
2648 struct symtab_and_line
2649 find_function_start_sal (struct symbol *sym, int funfirstline)
2650 {
2651 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2652 struct objfile *objfile = lookup_objfile_from_block (block);
2653 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2654
2655 CORE_ADDR pc;
2656 struct symtab_and_line sal;
2657
2658 pc = BLOCK_START (block);
2659 fixup_symbol_section (sym, objfile);
2660 if (funfirstline)
2661 {
2662 /* Skip "first line" of function (which is actually its prologue). */
2663 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2664 }
2665 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2666
2667 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2668 line is still part of the same function. */
2669 if (sal.pc != pc
2670 && BLOCK_START (block) <= sal.end
2671 && sal.end < BLOCK_END (block))
2672 {
2673 /* First pc of next line */
2674 pc = sal.end;
2675 /* Recalculate the line number (might not be N+1). */
2676 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2677 }
2678
2679 /* On targets with executable formats that don't have a concept of
2680 constructors (ELF with .init has, PE doesn't), gcc emits a call
2681 to `__main' in `main' between the prologue and before user
2682 code. */
2683 if (funfirstline
2684 && gdbarch_skip_main_prologue_p (current_gdbarch)
2685 && SYMBOL_LINKAGE_NAME (sym)
2686 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2687 {
2688 pc = gdbarch_skip_main_prologue (current_gdbarch, pc);
2689 /* Recalculate the line number (might not be N+1). */
2690 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2691 }
2692
2693 /* If we still don't have a valid source line, try to find the first
2694 PC in the lineinfo table that belongs to the same function. This
2695 happens with COFF debug info, which does not seem to have an
2696 entry in lineinfo table for the code after the prologue which has
2697 no direct relation to source. For example, this was found to be
2698 the case with the DJGPP target using "gcc -gcoff" when the
2699 compiler inserted code after the prologue to make sure the stack
2700 is aligned. */
2701 if (funfirstline && sal.symtab == NULL)
2702 {
2703 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2704 /* Recalculate the line number. */
2705 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2706 }
2707
2708 sal.pc = pc;
2709
2710 return sal;
2711 }
2712
2713 /* If P is of the form "operator[ \t]+..." where `...' is
2714 some legitimate operator text, return a pointer to the
2715 beginning of the substring of the operator text.
2716 Otherwise, return "". */
2717 char *
2718 operator_chars (char *p, char **end)
2719 {
2720 *end = "";
2721 if (strncmp (p, "operator", 8))
2722 return *end;
2723 p += 8;
2724
2725 /* Don't get faked out by `operator' being part of a longer
2726 identifier. */
2727 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2728 return *end;
2729
2730 /* Allow some whitespace between `operator' and the operator symbol. */
2731 while (*p == ' ' || *p == '\t')
2732 p++;
2733
2734 /* Recognize 'operator TYPENAME'. */
2735
2736 if (isalpha (*p) || *p == '_' || *p == '$')
2737 {
2738 char *q = p + 1;
2739 while (isalnum (*q) || *q == '_' || *q == '$')
2740 q++;
2741 *end = q;
2742 return p;
2743 }
2744
2745 while (*p)
2746 switch (*p)
2747 {
2748 case '\\': /* regexp quoting */
2749 if (p[1] == '*')
2750 {
2751 if (p[2] == '=') /* 'operator\*=' */
2752 *end = p + 3;
2753 else /* 'operator\*' */
2754 *end = p + 2;
2755 return p;
2756 }
2757 else if (p[1] == '[')
2758 {
2759 if (p[2] == ']')
2760 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2761 else if (p[2] == '\\' && p[3] == ']')
2762 {
2763 *end = p + 4; /* 'operator\[\]' */
2764 return p;
2765 }
2766 else
2767 error (_("nothing is allowed between '[' and ']'"));
2768 }
2769 else
2770 {
2771 /* Gratuitous qoute: skip it and move on. */
2772 p++;
2773 continue;
2774 }
2775 break;
2776 case '!':
2777 case '=':
2778 case '*':
2779 case '/':
2780 case '%':
2781 case '^':
2782 if (p[1] == '=')
2783 *end = p + 2;
2784 else
2785 *end = p + 1;
2786 return p;
2787 case '<':
2788 case '>':
2789 case '+':
2790 case '-':
2791 case '&':
2792 case '|':
2793 if (p[0] == '-' && p[1] == '>')
2794 {
2795 /* Struct pointer member operator 'operator->'. */
2796 if (p[2] == '*')
2797 {
2798 *end = p + 3; /* 'operator->*' */
2799 return p;
2800 }
2801 else if (p[2] == '\\')
2802 {
2803 *end = p + 4; /* Hopefully 'operator->\*' */
2804 return p;
2805 }
2806 else
2807 {
2808 *end = p + 2; /* 'operator->' */
2809 return p;
2810 }
2811 }
2812 if (p[1] == '=' || p[1] == p[0])
2813 *end = p + 2;
2814 else
2815 *end = p + 1;
2816 return p;
2817 case '~':
2818 case ',':
2819 *end = p + 1;
2820 return p;
2821 case '(':
2822 if (p[1] != ')')
2823 error (_("`operator ()' must be specified without whitespace in `()'"));
2824 *end = p + 2;
2825 return p;
2826 case '?':
2827 if (p[1] != ':')
2828 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2829 *end = p + 2;
2830 return p;
2831 case '[':
2832 if (p[1] != ']')
2833 error (_("`operator []' must be specified without whitespace in `[]'"));
2834 *end = p + 2;
2835 return p;
2836 default:
2837 error (_("`operator %s' not supported"), p);
2838 break;
2839 }
2840
2841 *end = "";
2842 return *end;
2843 }
2844 \f
2845
2846 /* If FILE is not already in the table of files, return zero;
2847 otherwise return non-zero. Optionally add FILE to the table if ADD
2848 is non-zero. If *FIRST is non-zero, forget the old table
2849 contents. */
2850 static int
2851 filename_seen (const char *file, int add, int *first)
2852 {
2853 /* Table of files seen so far. */
2854 static const char **tab = NULL;
2855 /* Allocated size of tab in elements.
2856 Start with one 256-byte block (when using GNU malloc.c).
2857 24 is the malloc overhead when range checking is in effect. */
2858 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2859 /* Current size of tab in elements. */
2860 static int tab_cur_size;
2861 const char **p;
2862
2863 if (*first)
2864 {
2865 if (tab == NULL)
2866 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2867 tab_cur_size = 0;
2868 }
2869
2870 /* Is FILE in tab? */
2871 for (p = tab; p < tab + tab_cur_size; p++)
2872 if (strcmp (*p, file) == 0)
2873 return 1;
2874
2875 /* No; maybe add it to tab. */
2876 if (add)
2877 {
2878 if (tab_cur_size == tab_alloc_size)
2879 {
2880 tab_alloc_size *= 2;
2881 tab = (const char **) xrealloc ((char *) tab,
2882 tab_alloc_size * sizeof (*tab));
2883 }
2884 tab[tab_cur_size++] = file;
2885 }
2886
2887 return 0;
2888 }
2889
2890 /* Slave routine for sources_info. Force line breaks at ,'s.
2891 NAME is the name to print and *FIRST is nonzero if this is the first
2892 name printed. Set *FIRST to zero. */
2893 static void
2894 output_source_filename (const char *name, int *first)
2895 {
2896 /* Since a single source file can result in several partial symbol
2897 tables, we need to avoid printing it more than once. Note: if
2898 some of the psymtabs are read in and some are not, it gets
2899 printed both under "Source files for which symbols have been
2900 read" and "Source files for which symbols will be read in on
2901 demand". I consider this a reasonable way to deal with the
2902 situation. I'm not sure whether this can also happen for
2903 symtabs; it doesn't hurt to check. */
2904
2905 /* Was NAME already seen? */
2906 if (filename_seen (name, 1, first))
2907 {
2908 /* Yes; don't print it again. */
2909 return;
2910 }
2911 /* No; print it and reset *FIRST. */
2912 if (*first)
2913 {
2914 *first = 0;
2915 }
2916 else
2917 {
2918 printf_filtered (", ");
2919 }
2920
2921 wrap_here ("");
2922 fputs_filtered (name, gdb_stdout);
2923 }
2924
2925 static void
2926 sources_info (char *ignore, int from_tty)
2927 {
2928 struct symtab *s;
2929 struct partial_symtab *ps;
2930 struct objfile *objfile;
2931 int first;
2932
2933 if (!have_full_symbols () && !have_partial_symbols ())
2934 {
2935 error (_("No symbol table is loaded. Use the \"file\" command."));
2936 }
2937
2938 printf_filtered ("Source files for which symbols have been read in:\n\n");
2939
2940 first = 1;
2941 ALL_SYMTABS (objfile, s)
2942 {
2943 const char *fullname = symtab_to_fullname (s);
2944 output_source_filename (fullname ? fullname : s->filename, &first);
2945 }
2946 printf_filtered ("\n\n");
2947
2948 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2949
2950 first = 1;
2951 ALL_PSYMTABS (objfile, ps)
2952 {
2953 if (!ps->readin)
2954 {
2955 const char *fullname = psymtab_to_fullname (ps);
2956 output_source_filename (fullname ? fullname : ps->filename, &first);
2957 }
2958 }
2959 printf_filtered ("\n");
2960 }
2961
2962 static int
2963 file_matches (char *file, char *files[], int nfiles)
2964 {
2965 int i;
2966
2967 if (file != NULL && nfiles != 0)
2968 {
2969 for (i = 0; i < nfiles; i++)
2970 {
2971 if (strcmp (files[i], lbasename (file)) == 0)
2972 return 1;
2973 }
2974 }
2975 else if (nfiles == 0)
2976 return 1;
2977 return 0;
2978 }
2979
2980 /* Free any memory associated with a search. */
2981 void
2982 free_search_symbols (struct symbol_search *symbols)
2983 {
2984 struct symbol_search *p;
2985 struct symbol_search *next;
2986
2987 for (p = symbols; p != NULL; p = next)
2988 {
2989 next = p->next;
2990 xfree (p);
2991 }
2992 }
2993
2994 static void
2995 do_free_search_symbols_cleanup (void *symbols)
2996 {
2997 free_search_symbols (symbols);
2998 }
2999
3000 struct cleanup *
3001 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3002 {
3003 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3004 }
3005
3006 /* Helper function for sort_search_symbols and qsort. Can only
3007 sort symbols, not minimal symbols. */
3008 static int
3009 compare_search_syms (const void *sa, const void *sb)
3010 {
3011 struct symbol_search **sym_a = (struct symbol_search **) sa;
3012 struct symbol_search **sym_b = (struct symbol_search **) sb;
3013
3014 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3015 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3016 }
3017
3018 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3019 prevtail where it is, but update its next pointer to point to
3020 the first of the sorted symbols. */
3021 static struct symbol_search *
3022 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3023 {
3024 struct symbol_search **symbols, *symp, *old_next;
3025 int i;
3026
3027 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3028 * nfound);
3029 symp = prevtail->next;
3030 for (i = 0; i < nfound; i++)
3031 {
3032 symbols[i] = symp;
3033 symp = symp->next;
3034 }
3035 /* Generally NULL. */
3036 old_next = symp;
3037
3038 qsort (symbols, nfound, sizeof (struct symbol_search *),
3039 compare_search_syms);
3040
3041 symp = prevtail;
3042 for (i = 0; i < nfound; i++)
3043 {
3044 symp->next = symbols[i];
3045 symp = symp->next;
3046 }
3047 symp->next = old_next;
3048
3049 xfree (symbols);
3050 return symp;
3051 }
3052
3053 /* Search the symbol table for matches to the regular expression REGEXP,
3054 returning the results in *MATCHES.
3055
3056 Only symbols of KIND are searched:
3057 FUNCTIONS_DOMAIN - search all functions
3058 TYPES_DOMAIN - search all type names
3059 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3060 and constants (enums)
3061
3062 free_search_symbols should be called when *MATCHES is no longer needed.
3063
3064 The results are sorted locally; each symtab's global and static blocks are
3065 separately alphabetized.
3066 */
3067 void
3068 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3069 struct symbol_search **matches)
3070 {
3071 struct symtab *s;
3072 struct partial_symtab *ps;
3073 struct blockvector *bv;
3074 struct block *b;
3075 int i = 0;
3076 struct dict_iterator iter;
3077 struct symbol *sym;
3078 struct partial_symbol **psym;
3079 struct objfile *objfile;
3080 struct minimal_symbol *msymbol;
3081 char *val;
3082 int found_misc = 0;
3083 static enum minimal_symbol_type types[]
3084 =
3085 {mst_data, mst_text, mst_abs, mst_unknown};
3086 static enum minimal_symbol_type types2[]
3087 =
3088 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3089 static enum minimal_symbol_type types3[]
3090 =
3091 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3092 static enum minimal_symbol_type types4[]
3093 =
3094 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3095 enum minimal_symbol_type ourtype;
3096 enum minimal_symbol_type ourtype2;
3097 enum minimal_symbol_type ourtype3;
3098 enum minimal_symbol_type ourtype4;
3099 struct symbol_search *sr;
3100 struct symbol_search *psr;
3101 struct symbol_search *tail;
3102 struct cleanup *old_chain = NULL;
3103
3104 if (kind < VARIABLES_DOMAIN)
3105 error (_("must search on specific domain"));
3106
3107 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3108 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3109 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3110 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3111
3112 sr = *matches = NULL;
3113 tail = NULL;
3114
3115 if (regexp != NULL)
3116 {
3117 /* Make sure spacing is right for C++ operators.
3118 This is just a courtesy to make the matching less sensitive
3119 to how many spaces the user leaves between 'operator'
3120 and <TYPENAME> or <OPERATOR>. */
3121 char *opend;
3122 char *opname = operator_chars (regexp, &opend);
3123 if (*opname)
3124 {
3125 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3126 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3127 {
3128 /* There should 1 space between 'operator' and 'TYPENAME'. */
3129 if (opname[-1] != ' ' || opname[-2] == ' ')
3130 fix = 1;
3131 }
3132 else
3133 {
3134 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3135 if (opname[-1] == ' ')
3136 fix = 0;
3137 }
3138 /* If wrong number of spaces, fix it. */
3139 if (fix >= 0)
3140 {
3141 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3142 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3143 regexp = tmp;
3144 }
3145 }
3146
3147 if (0 != (val = re_comp (regexp)))
3148 error (_("Invalid regexp (%s): %s"), val, regexp);
3149 }
3150
3151 /* Search through the partial symtabs *first* for all symbols
3152 matching the regexp. That way we don't have to reproduce all of
3153 the machinery below. */
3154
3155 ALL_PSYMTABS (objfile, ps)
3156 {
3157 struct partial_symbol **bound, **gbound, **sbound;
3158 int keep_going = 1;
3159
3160 if (ps->readin)
3161 continue;
3162
3163 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3164 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3165 bound = gbound;
3166
3167 /* Go through all of the symbols stored in a partial
3168 symtab in one loop. */
3169 psym = objfile->global_psymbols.list + ps->globals_offset;
3170 while (keep_going)
3171 {
3172 if (psym >= bound)
3173 {
3174 if (bound == gbound && ps->n_static_syms != 0)
3175 {
3176 psym = objfile->static_psymbols.list + ps->statics_offset;
3177 bound = sbound;
3178 }
3179 else
3180 keep_going = 0;
3181 continue;
3182 }
3183 else
3184 {
3185 QUIT;
3186
3187 /* If it would match (logic taken from loop below)
3188 load the file and go on to the next one. We check the
3189 filename here, but that's a bit bogus: we don't know
3190 what file it really comes from until we have full
3191 symtabs. The symbol might be in a header file included by
3192 this psymtab. This only affects Insight. */
3193 if (file_matches (ps->filename, files, nfiles)
3194 && ((regexp == NULL
3195 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3196 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3197 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3198 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3199 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
3200 {
3201 PSYMTAB_TO_SYMTAB (ps);
3202 keep_going = 0;
3203 }
3204 }
3205 psym++;
3206 }
3207 }
3208
3209 /* Here, we search through the minimal symbol tables for functions
3210 and variables that match, and force their symbols to be read.
3211 This is in particular necessary for demangled variable names,
3212 which are no longer put into the partial symbol tables.
3213 The symbol will then be found during the scan of symtabs below.
3214
3215 For functions, find_pc_symtab should succeed if we have debug info
3216 for the function, for variables we have to call lookup_symbol
3217 to determine if the variable has debug info.
3218 If the lookup fails, set found_misc so that we will rescan to print
3219 any matching symbols without debug info.
3220 */
3221
3222 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3223 {
3224 ALL_MSYMBOLS (objfile, msymbol)
3225 {
3226 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3227 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3228 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3229 MSYMBOL_TYPE (msymbol) == ourtype4)
3230 {
3231 if (regexp == NULL
3232 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3233 {
3234 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3235 {
3236 /* FIXME: carlton/2003-02-04: Given that the
3237 semantics of lookup_symbol keeps on changing
3238 slightly, it would be a nice idea if we had a
3239 function lookup_symbol_minsym that found the
3240 symbol associated to a given minimal symbol (if
3241 any). */
3242 if (kind == FUNCTIONS_DOMAIN
3243 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3244 (struct block *) NULL,
3245 VAR_DOMAIN, 0)
3246 == NULL)
3247 found_misc = 1;
3248 }
3249 }
3250 }
3251 }
3252 }
3253
3254 ALL_PRIMARY_SYMTABS (objfile, s)
3255 {
3256 bv = BLOCKVECTOR (s);
3257 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3258 {
3259 struct symbol_search *prevtail = tail;
3260 int nfound = 0;
3261 b = BLOCKVECTOR_BLOCK (bv, i);
3262 ALL_BLOCK_SYMBOLS (b, iter, sym)
3263 {
3264 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3265 QUIT;
3266
3267 if (file_matches (real_symtab->filename, files, nfiles)
3268 && ((regexp == NULL
3269 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3270 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3271 && SYMBOL_CLASS (sym) != LOC_BLOCK
3272 && SYMBOL_CLASS (sym) != LOC_CONST)
3273 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3274 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3275 {
3276 /* match */
3277 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3278 psr->block = i;
3279 psr->symtab = real_symtab;
3280 psr->symbol = sym;
3281 psr->msymbol = NULL;
3282 psr->next = NULL;
3283 if (tail == NULL)
3284 sr = psr;
3285 else
3286 tail->next = psr;
3287 tail = psr;
3288 nfound ++;
3289 }
3290 }
3291 if (nfound > 0)
3292 {
3293 if (prevtail == NULL)
3294 {
3295 struct symbol_search dummy;
3296
3297 dummy.next = sr;
3298 tail = sort_search_symbols (&dummy, nfound);
3299 sr = dummy.next;
3300
3301 old_chain = make_cleanup_free_search_symbols (sr);
3302 }
3303 else
3304 tail = sort_search_symbols (prevtail, nfound);
3305 }
3306 }
3307 }
3308
3309 /* If there are no eyes, avoid all contact. I mean, if there are
3310 no debug symbols, then print directly from the msymbol_vector. */
3311
3312 if (found_misc || kind != FUNCTIONS_DOMAIN)
3313 {
3314 ALL_MSYMBOLS (objfile, msymbol)
3315 {
3316 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3317 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3318 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3319 MSYMBOL_TYPE (msymbol) == ourtype4)
3320 {
3321 if (regexp == NULL
3322 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3323 {
3324 /* Functions: Look up by address. */
3325 if (kind != FUNCTIONS_DOMAIN ||
3326 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3327 {
3328 /* Variables/Absolutes: Look up by name */
3329 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3330 (struct block *) NULL, VAR_DOMAIN, 0)
3331 == NULL)
3332 {
3333 /* match */
3334 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3335 psr->block = i;
3336 psr->msymbol = msymbol;
3337 psr->symtab = NULL;
3338 psr->symbol = NULL;
3339 psr->next = NULL;
3340 if (tail == NULL)
3341 {
3342 sr = psr;
3343 old_chain = make_cleanup_free_search_symbols (sr);
3344 }
3345 else
3346 tail->next = psr;
3347 tail = psr;
3348 }
3349 }
3350 }
3351 }
3352 }
3353 }
3354
3355 *matches = sr;
3356 if (sr != NULL)
3357 discard_cleanups (old_chain);
3358 }
3359
3360 /* Helper function for symtab_symbol_info, this function uses
3361 the data returned from search_symbols() to print information
3362 regarding the match to gdb_stdout.
3363 */
3364 static void
3365 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3366 int block, char *last)
3367 {
3368 if (last == NULL || strcmp (last, s->filename) != 0)
3369 {
3370 fputs_filtered ("\nFile ", gdb_stdout);
3371 fputs_filtered (s->filename, gdb_stdout);
3372 fputs_filtered (":\n", gdb_stdout);
3373 }
3374
3375 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3376 printf_filtered ("static ");
3377
3378 /* Typedef that is not a C++ class */
3379 if (kind == TYPES_DOMAIN
3380 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3381 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3382 /* variable, func, or typedef-that-is-c++-class */
3383 else if (kind < TYPES_DOMAIN ||
3384 (kind == TYPES_DOMAIN &&
3385 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3386 {
3387 type_print (SYMBOL_TYPE (sym),
3388 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3389 ? "" : SYMBOL_PRINT_NAME (sym)),
3390 gdb_stdout, 0);
3391
3392 printf_filtered (";\n");
3393 }
3394 }
3395
3396 /* This help function for symtab_symbol_info() prints information
3397 for non-debugging symbols to gdb_stdout.
3398 */
3399 static void
3400 print_msymbol_info (struct minimal_symbol *msymbol)
3401 {
3402 char *tmp;
3403
3404 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3405 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3406 & (CORE_ADDR) 0xffffffff,
3407 8);
3408 else
3409 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3410 16);
3411 printf_filtered ("%s %s\n",
3412 tmp, SYMBOL_PRINT_NAME (msymbol));
3413 }
3414
3415 /* This is the guts of the commands "info functions", "info types", and
3416 "info variables". It calls search_symbols to find all matches and then
3417 print_[m]symbol_info to print out some useful information about the
3418 matches.
3419 */
3420 static void
3421 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3422 {
3423 static char *classnames[]
3424 =
3425 {"variable", "function", "type", "method"};
3426 struct symbol_search *symbols;
3427 struct symbol_search *p;
3428 struct cleanup *old_chain;
3429 char *last_filename = NULL;
3430 int first = 1;
3431
3432 /* must make sure that if we're interrupted, symbols gets freed */
3433 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3434 old_chain = make_cleanup_free_search_symbols (symbols);
3435
3436 printf_filtered (regexp
3437 ? "All %ss matching regular expression \"%s\":\n"
3438 : "All defined %ss:\n",
3439 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3440
3441 for (p = symbols; p != NULL; p = p->next)
3442 {
3443 QUIT;
3444
3445 if (p->msymbol != NULL)
3446 {
3447 if (first)
3448 {
3449 printf_filtered ("\nNon-debugging symbols:\n");
3450 first = 0;
3451 }
3452 print_msymbol_info (p->msymbol);
3453 }
3454 else
3455 {
3456 print_symbol_info (kind,
3457 p->symtab,
3458 p->symbol,
3459 p->block,
3460 last_filename);
3461 last_filename = p->symtab->filename;
3462 }
3463 }
3464
3465 do_cleanups (old_chain);
3466 }
3467
3468 static void
3469 variables_info (char *regexp, int from_tty)
3470 {
3471 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3472 }
3473
3474 static void
3475 functions_info (char *regexp, int from_tty)
3476 {
3477 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3478 }
3479
3480
3481 static void
3482 types_info (char *regexp, int from_tty)
3483 {
3484 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3485 }
3486
3487 /* Breakpoint all functions matching regular expression. */
3488
3489 void
3490 rbreak_command_wrapper (char *regexp, int from_tty)
3491 {
3492 rbreak_command (regexp, from_tty);
3493 }
3494
3495 static void
3496 rbreak_command (char *regexp, int from_tty)
3497 {
3498 struct symbol_search *ss;
3499 struct symbol_search *p;
3500 struct cleanup *old_chain;
3501
3502 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3503 old_chain = make_cleanup_free_search_symbols (ss);
3504
3505 for (p = ss; p != NULL; p = p->next)
3506 {
3507 if (p->msymbol == NULL)
3508 {
3509 char *string = alloca (strlen (p->symtab->filename)
3510 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3511 + 4);
3512 strcpy (string, p->symtab->filename);
3513 strcat (string, ":'");
3514 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3515 strcat (string, "'");
3516 break_command (string, from_tty);
3517 print_symbol_info (FUNCTIONS_DOMAIN,
3518 p->symtab,
3519 p->symbol,
3520 p->block,
3521 p->symtab->filename);
3522 }
3523 else
3524 {
3525 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3526 + 3);
3527 strcpy (string, "'");
3528 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3529 strcat (string, "'");
3530
3531 break_command (string, from_tty);
3532 printf_filtered ("<function, no debug info> %s;\n",
3533 SYMBOL_PRINT_NAME (p->msymbol));
3534 }
3535 }
3536
3537 do_cleanups (old_chain);
3538 }
3539 \f
3540
3541 /* Helper routine for make_symbol_completion_list. */
3542
3543 static int return_val_size;
3544 static int return_val_index;
3545 static char **return_val;
3546
3547 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3548 completion_list_add_name \
3549 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3550
3551 /* Test to see if the symbol specified by SYMNAME (which is already
3552 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3553 characters. If so, add it to the current completion list. */
3554
3555 static void
3556 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3557 char *text, char *word)
3558 {
3559 int newsize;
3560 int i;
3561
3562 /* clip symbols that cannot match */
3563
3564 if (strncmp (symname, sym_text, sym_text_len) != 0)
3565 {
3566 return;
3567 }
3568
3569 /* We have a match for a completion, so add SYMNAME to the current list
3570 of matches. Note that the name is moved to freshly malloc'd space. */
3571
3572 {
3573 char *new;
3574 if (word == sym_text)
3575 {
3576 new = xmalloc (strlen (symname) + 5);
3577 strcpy (new, symname);
3578 }
3579 else if (word > sym_text)
3580 {
3581 /* Return some portion of symname. */
3582 new = xmalloc (strlen (symname) + 5);
3583 strcpy (new, symname + (word - sym_text));
3584 }
3585 else
3586 {
3587 /* Return some of SYM_TEXT plus symname. */
3588 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3589 strncpy (new, word, sym_text - word);
3590 new[sym_text - word] = '\0';
3591 strcat (new, symname);
3592 }
3593
3594 if (return_val_index + 3 > return_val_size)
3595 {
3596 newsize = (return_val_size *= 2) * sizeof (char *);
3597 return_val = (char **) xrealloc ((char *) return_val, newsize);
3598 }
3599 return_val[return_val_index++] = new;
3600 return_val[return_val_index] = NULL;
3601 }
3602 }
3603
3604 /* ObjC: In case we are completing on a selector, look as the msymbol
3605 again and feed all the selectors into the mill. */
3606
3607 static void
3608 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3609 int sym_text_len, char *text, char *word)
3610 {
3611 static char *tmp = NULL;
3612 static unsigned int tmplen = 0;
3613
3614 char *method, *category, *selector;
3615 char *tmp2 = NULL;
3616
3617 method = SYMBOL_NATURAL_NAME (msymbol);
3618
3619 /* Is it a method? */
3620 if ((method[0] != '-') && (method[0] != '+'))
3621 return;
3622
3623 if (sym_text[0] == '[')
3624 /* Complete on shortened method method. */
3625 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3626
3627 while ((strlen (method) + 1) >= tmplen)
3628 {
3629 if (tmplen == 0)
3630 tmplen = 1024;
3631 else
3632 tmplen *= 2;
3633 tmp = xrealloc (tmp, tmplen);
3634 }
3635 selector = strchr (method, ' ');
3636 if (selector != NULL)
3637 selector++;
3638
3639 category = strchr (method, '(');
3640
3641 if ((category != NULL) && (selector != NULL))
3642 {
3643 memcpy (tmp, method, (category - method));
3644 tmp[category - method] = ' ';
3645 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3646 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3647 if (sym_text[0] == '[')
3648 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3649 }
3650
3651 if (selector != NULL)
3652 {
3653 /* Complete on selector only. */
3654 strcpy (tmp, selector);
3655 tmp2 = strchr (tmp, ']');
3656 if (tmp2 != NULL)
3657 *tmp2 = '\0';
3658
3659 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3660 }
3661 }
3662
3663 /* Break the non-quoted text based on the characters which are in
3664 symbols. FIXME: This should probably be language-specific. */
3665
3666 static char *
3667 language_search_unquoted_string (char *text, char *p)
3668 {
3669 for (; p > text; --p)
3670 {
3671 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3672 continue;
3673 else
3674 {
3675 if ((current_language->la_language == language_objc))
3676 {
3677 if (p[-1] == ':') /* might be part of a method name */
3678 continue;
3679 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3680 p -= 2; /* beginning of a method name */
3681 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3682 { /* might be part of a method name */
3683 char *t = p;
3684
3685 /* Seeing a ' ' or a '(' is not conclusive evidence
3686 that we are in the middle of a method name. However,
3687 finding "-[" or "+[" should be pretty un-ambiguous.
3688 Unfortunately we have to find it now to decide. */
3689
3690 while (t > text)
3691 if (isalnum (t[-1]) || t[-1] == '_' ||
3692 t[-1] == ' ' || t[-1] == ':' ||
3693 t[-1] == '(' || t[-1] == ')')
3694 --t;
3695 else
3696 break;
3697
3698 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3699 p = t - 2; /* method name detected */
3700 /* else we leave with p unchanged */
3701 }
3702 }
3703 break;
3704 }
3705 }
3706 return p;
3707 }
3708
3709 /* Type of the user_data argument passed to add_macro_name. The
3710 contents are simply whatever is needed by
3711 completion_list_add_name. */
3712 struct add_macro_name_data
3713 {
3714 char *sym_text;
3715 int sym_text_len;
3716 char *text;
3717 char *word;
3718 };
3719
3720 /* A callback used with macro_for_each and macro_for_each_in_scope.
3721 This adds a macro's name to the current completion list. */
3722 static void
3723 add_macro_name (const char *name, const struct macro_definition *ignore,
3724 void *user_data)
3725 {
3726 struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3727 completion_list_add_name ((char *) name,
3728 datum->sym_text, datum->sym_text_len,
3729 datum->text, datum->word);
3730 }
3731
3732 char **
3733 default_make_symbol_completion_list (char *text, char *word)
3734 {
3735 /* Problem: All of the symbols have to be copied because readline
3736 frees them. I'm not going to worry about this; hopefully there
3737 won't be that many. */
3738
3739 struct symbol *sym;
3740 struct symtab *s;
3741 struct partial_symtab *ps;
3742 struct minimal_symbol *msymbol;
3743 struct objfile *objfile;
3744 struct block *b, *surrounding_static_block = 0;
3745 struct dict_iterator iter;
3746 int j;
3747 struct partial_symbol **psym;
3748 /* The symbol we are completing on. Points in same buffer as text. */
3749 char *sym_text;
3750 /* Length of sym_text. */
3751 int sym_text_len;
3752
3753 /* Now look for the symbol we are supposed to complete on. */
3754 {
3755 char *p;
3756 char quote_found;
3757 char *quote_pos = NULL;
3758
3759 /* First see if this is a quoted string. */
3760 quote_found = '\0';
3761 for (p = text; *p != '\0'; ++p)
3762 {
3763 if (quote_found != '\0')
3764 {
3765 if (*p == quote_found)
3766 /* Found close quote. */
3767 quote_found = '\0';
3768 else if (*p == '\\' && p[1] == quote_found)
3769 /* A backslash followed by the quote character
3770 doesn't end the string. */
3771 ++p;
3772 }
3773 else if (*p == '\'' || *p == '"')
3774 {
3775 quote_found = *p;
3776 quote_pos = p;
3777 }
3778 }
3779 if (quote_found == '\'')
3780 /* A string within single quotes can be a symbol, so complete on it. */
3781 sym_text = quote_pos + 1;
3782 else if (quote_found == '"')
3783 /* A double-quoted string is never a symbol, nor does it make sense
3784 to complete it any other way. */
3785 {
3786 return_val = (char **) xmalloc (sizeof (char *));
3787 return_val[0] = NULL;
3788 return return_val;
3789 }
3790 else
3791 {
3792 /* It is not a quoted string. Break it based on the characters
3793 which are in symbols. */
3794 while (p > text)
3795 {
3796 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3797 --p;
3798 else
3799 break;
3800 }
3801 sym_text = p;
3802 }
3803 }
3804
3805 sym_text_len = strlen (sym_text);
3806
3807 return_val_size = 100;
3808 return_val_index = 0;
3809 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3810 return_val[0] = NULL;
3811
3812 /* Look through the partial symtabs for all symbols which begin
3813 by matching SYM_TEXT. Add each one that you find to the list. */
3814
3815 ALL_PSYMTABS (objfile, ps)
3816 {
3817 /* If the psymtab's been read in we'll get it when we search
3818 through the blockvector. */
3819 if (ps->readin)
3820 continue;
3821
3822 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3823 psym < (objfile->global_psymbols.list + ps->globals_offset
3824 + ps->n_global_syms);
3825 psym++)
3826 {
3827 /* If interrupted, then quit. */
3828 QUIT;
3829 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3830 }
3831
3832 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3833 psym < (objfile->static_psymbols.list + ps->statics_offset
3834 + ps->n_static_syms);
3835 psym++)
3836 {
3837 QUIT;
3838 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3839 }
3840 }
3841
3842 /* At this point scan through the misc symbol vectors and add each
3843 symbol you find to the list. Eventually we want to ignore
3844 anything that isn't a text symbol (everything else will be
3845 handled by the psymtab code above). */
3846
3847 ALL_MSYMBOLS (objfile, msymbol)
3848 {
3849 QUIT;
3850 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3851
3852 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3853 }
3854
3855 /* Search upwards from currently selected frame (so that we can
3856 complete on local vars. */
3857
3858 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3859 {
3860 if (!BLOCK_SUPERBLOCK (b))
3861 {
3862 surrounding_static_block = b; /* For elmin of dups */
3863 }
3864
3865 /* Also catch fields of types defined in this places which match our
3866 text string. Only complete on types visible from current context. */
3867
3868 ALL_BLOCK_SYMBOLS (b, iter, sym)
3869 {
3870 QUIT;
3871 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3872 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3873 {
3874 struct type *t = SYMBOL_TYPE (sym);
3875 enum type_code c = TYPE_CODE (t);
3876
3877 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3878 {
3879 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3880 {
3881 if (TYPE_FIELD_NAME (t, j))
3882 {
3883 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3884 sym_text, sym_text_len, text, word);
3885 }
3886 }
3887 }
3888 }
3889 }
3890 }
3891
3892 /* Go through the symtabs and check the externs and statics for
3893 symbols which match. */
3894
3895 ALL_PRIMARY_SYMTABS (objfile, s)
3896 {
3897 QUIT;
3898 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3899 ALL_BLOCK_SYMBOLS (b, iter, sym)
3900 {
3901 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3902 }
3903 }
3904
3905 ALL_PRIMARY_SYMTABS (objfile, s)
3906 {
3907 QUIT;
3908 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3909 /* Don't do this block twice. */
3910 if (b == surrounding_static_block)
3911 continue;
3912 ALL_BLOCK_SYMBOLS (b, iter, sym)
3913 {
3914 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3915 }
3916 }
3917
3918 if (current_language->la_macro_expansion == macro_expansion_c)
3919 {
3920 struct macro_scope *scope;
3921 struct add_macro_name_data datum;
3922
3923 datum.sym_text = sym_text;
3924 datum.sym_text_len = sym_text_len;
3925 datum.text = text;
3926 datum.word = word;
3927
3928 /* Add any macros visible in the default scope. Note that this
3929 may yield the occasional wrong result, because an expression
3930 might be evaluated in a scope other than the default. For
3931 example, if the user types "break file:line if <TAB>", the
3932 resulting expression will be evaluated at "file:line" -- but
3933 at there does not seem to be a way to detect this at
3934 completion time. */
3935 scope = default_macro_scope ();
3936 if (scope)
3937 {
3938 macro_for_each_in_scope (scope->file, scope->line,
3939 add_macro_name, &datum);
3940 xfree (scope);
3941 }
3942
3943 /* User-defined macros are always visible. */
3944 macro_for_each (macro_user_macros, add_macro_name, &datum);
3945 }
3946
3947 return (return_val);
3948 }
3949
3950 /* Return a NULL terminated array of all symbols (regardless of class)
3951 which begin by matching TEXT. If the answer is no symbols, then
3952 the return value is an array which contains only a NULL pointer. */
3953
3954 char **
3955 make_symbol_completion_list (char *text, char *word)
3956 {
3957 return current_language->la_make_symbol_completion_list (text, word);
3958 }
3959
3960 /* Like make_symbol_completion_list, but suitable for use as a
3961 completion function. */
3962
3963 char **
3964 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3965 char *text, char *word)
3966 {
3967 return make_symbol_completion_list (text, word);
3968 }
3969
3970 /* Like make_symbol_completion_list, but returns a list of symbols
3971 defined in a source file FILE. */
3972
3973 char **
3974 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3975 {
3976 struct symbol *sym;
3977 struct symtab *s;
3978 struct block *b;
3979 struct dict_iterator iter;
3980 /* The symbol we are completing on. Points in same buffer as text. */
3981 char *sym_text;
3982 /* Length of sym_text. */
3983 int sym_text_len;
3984
3985 /* Now look for the symbol we are supposed to complete on.
3986 FIXME: This should be language-specific. */
3987 {
3988 char *p;
3989 char quote_found;
3990 char *quote_pos = NULL;
3991
3992 /* First see if this is a quoted string. */
3993 quote_found = '\0';
3994 for (p = text; *p != '\0'; ++p)
3995 {
3996 if (quote_found != '\0')
3997 {
3998 if (*p == quote_found)
3999 /* Found close quote. */
4000 quote_found = '\0';
4001 else if (*p == '\\' && p[1] == quote_found)
4002 /* A backslash followed by the quote character
4003 doesn't end the string. */
4004 ++p;
4005 }
4006 else if (*p == '\'' || *p == '"')
4007 {
4008 quote_found = *p;
4009 quote_pos = p;
4010 }
4011 }
4012 if (quote_found == '\'')
4013 /* A string within single quotes can be a symbol, so complete on it. */
4014 sym_text = quote_pos + 1;
4015 else if (quote_found == '"')
4016 /* A double-quoted string is never a symbol, nor does it make sense
4017 to complete it any other way. */
4018 {
4019 return_val = (char **) xmalloc (sizeof (char *));
4020 return_val[0] = NULL;
4021 return return_val;
4022 }
4023 else
4024 {
4025 /* Not a quoted string. */
4026 sym_text = language_search_unquoted_string (text, p);
4027 }
4028 }
4029
4030 sym_text_len = strlen (sym_text);
4031
4032 return_val_size = 10;
4033 return_val_index = 0;
4034 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4035 return_val[0] = NULL;
4036
4037 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4038 in). */
4039 s = lookup_symtab (srcfile);
4040 if (s == NULL)
4041 {
4042 /* Maybe they typed the file with leading directories, while the
4043 symbol tables record only its basename. */
4044 const char *tail = lbasename (srcfile);
4045
4046 if (tail > srcfile)
4047 s = lookup_symtab (tail);
4048 }
4049
4050 /* If we have no symtab for that file, return an empty list. */
4051 if (s == NULL)
4052 return (return_val);
4053
4054 /* Go through this symtab and check the externs and statics for
4055 symbols which match. */
4056
4057 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4058 ALL_BLOCK_SYMBOLS (b, iter, sym)
4059 {
4060 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4061 }
4062
4063 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4064 ALL_BLOCK_SYMBOLS (b, iter, sym)
4065 {
4066 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4067 }
4068
4069 return (return_val);
4070 }
4071
4072 /* A helper function for make_source_files_completion_list. It adds
4073 another file name to a list of possible completions, growing the
4074 list as necessary. */
4075
4076 static void
4077 add_filename_to_list (const char *fname, char *text, char *word,
4078 char ***list, int *list_used, int *list_alloced)
4079 {
4080 char *new;
4081 size_t fnlen = strlen (fname);
4082
4083 if (*list_used + 1 >= *list_alloced)
4084 {
4085 *list_alloced *= 2;
4086 *list = (char **) xrealloc ((char *) *list,
4087 *list_alloced * sizeof (char *));
4088 }
4089
4090 if (word == text)
4091 {
4092 /* Return exactly fname. */
4093 new = xmalloc (fnlen + 5);
4094 strcpy (new, fname);
4095 }
4096 else if (word > text)
4097 {
4098 /* Return some portion of fname. */
4099 new = xmalloc (fnlen + 5);
4100 strcpy (new, fname + (word - text));
4101 }
4102 else
4103 {
4104 /* Return some of TEXT plus fname. */
4105 new = xmalloc (fnlen + (text - word) + 5);
4106 strncpy (new, word, text - word);
4107 new[text - word] = '\0';
4108 strcat (new, fname);
4109 }
4110 (*list)[*list_used] = new;
4111 (*list)[++*list_used] = NULL;
4112 }
4113
4114 static int
4115 not_interesting_fname (const char *fname)
4116 {
4117 static const char *illegal_aliens[] = {
4118 "_globals_", /* inserted by coff_symtab_read */
4119 NULL
4120 };
4121 int i;
4122
4123 for (i = 0; illegal_aliens[i]; i++)
4124 {
4125 if (strcmp (fname, illegal_aliens[i]) == 0)
4126 return 1;
4127 }
4128 return 0;
4129 }
4130
4131 /* Return a NULL terminated array of all source files whose names
4132 begin with matching TEXT. The file names are looked up in the
4133 symbol tables of this program. If the answer is no matchess, then
4134 the return value is an array which contains only a NULL pointer. */
4135
4136 char **
4137 make_source_files_completion_list (char *text, char *word)
4138 {
4139 struct symtab *s;
4140 struct partial_symtab *ps;
4141 struct objfile *objfile;
4142 int first = 1;
4143 int list_alloced = 1;
4144 int list_used = 0;
4145 size_t text_len = strlen (text);
4146 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4147 const char *base_name;
4148
4149 list[0] = NULL;
4150
4151 if (!have_full_symbols () && !have_partial_symbols ())
4152 return list;
4153
4154 ALL_SYMTABS (objfile, s)
4155 {
4156 if (not_interesting_fname (s->filename))
4157 continue;
4158 if (!filename_seen (s->filename, 1, &first)
4159 #if HAVE_DOS_BASED_FILE_SYSTEM
4160 && strncasecmp (s->filename, text, text_len) == 0
4161 #else
4162 && strncmp (s->filename, text, text_len) == 0
4163 #endif
4164 )
4165 {
4166 /* This file matches for a completion; add it to the current
4167 list of matches. */
4168 add_filename_to_list (s->filename, text, word,
4169 &list, &list_used, &list_alloced);
4170 }
4171 else
4172 {
4173 /* NOTE: We allow the user to type a base name when the
4174 debug info records leading directories, but not the other
4175 way around. This is what subroutines of breakpoint
4176 command do when they parse file names. */
4177 base_name = lbasename (s->filename);
4178 if (base_name != s->filename
4179 && !filename_seen (base_name, 1, &first)
4180 #if HAVE_DOS_BASED_FILE_SYSTEM
4181 && strncasecmp (base_name, text, text_len) == 0
4182 #else
4183 && strncmp (base_name, text, text_len) == 0
4184 #endif
4185 )
4186 add_filename_to_list (base_name, text, word,
4187 &list, &list_used, &list_alloced);
4188 }
4189 }
4190
4191 ALL_PSYMTABS (objfile, ps)
4192 {
4193 if (not_interesting_fname (ps->filename))
4194 continue;
4195 if (!ps->readin)
4196 {
4197 if (!filename_seen (ps->filename, 1, &first)
4198 #if HAVE_DOS_BASED_FILE_SYSTEM
4199 && strncasecmp (ps->filename, text, text_len) == 0
4200 #else
4201 && strncmp (ps->filename, text, text_len) == 0
4202 #endif
4203 )
4204 {
4205 /* This file matches for a completion; add it to the
4206 current list of matches. */
4207 add_filename_to_list (ps->filename, text, word,
4208 &list, &list_used, &list_alloced);
4209
4210 }
4211 else
4212 {
4213 base_name = lbasename (ps->filename);
4214 if (base_name != ps->filename
4215 && !filename_seen (base_name, 1, &first)
4216 #if HAVE_DOS_BASED_FILE_SYSTEM
4217 && strncasecmp (base_name, text, text_len) == 0
4218 #else
4219 && strncmp (base_name, text, text_len) == 0
4220 #endif
4221 )
4222 add_filename_to_list (base_name, text, word,
4223 &list, &list_used, &list_alloced);
4224 }
4225 }
4226 }
4227
4228 return list;
4229 }
4230
4231 /* Determine if PC is in the prologue of a function. The prologue is the area
4232 between the first instruction of a function, and the first executable line.
4233 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4234
4235 If non-zero, func_start is where we think the prologue starts, possibly
4236 by previous examination of symbol table information.
4237 */
4238
4239 int
4240 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4241 {
4242 struct symtab_and_line sal;
4243 CORE_ADDR func_addr, func_end;
4244
4245 /* We have several sources of information we can consult to figure
4246 this out.
4247 - Compilers usually emit line number info that marks the prologue
4248 as its own "source line". So the ending address of that "line"
4249 is the end of the prologue. If available, this is the most
4250 reliable method.
4251 - The minimal symbols and partial symbols, which can usually tell
4252 us the starting and ending addresses of a function.
4253 - If we know the function's start address, we can call the
4254 architecture-defined gdbarch_skip_prologue function to analyze the
4255 instruction stream and guess where the prologue ends.
4256 - Our `func_start' argument; if non-zero, this is the caller's
4257 best guess as to the function's entry point. At the time of
4258 this writing, handle_inferior_event doesn't get this right, so
4259 it should be our last resort. */
4260
4261 /* Consult the partial symbol table, to find which function
4262 the PC is in. */
4263 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4264 {
4265 CORE_ADDR prologue_end;
4266
4267 /* We don't even have minsym information, so fall back to using
4268 func_start, if given. */
4269 if (! func_start)
4270 return 1; /* We *might* be in a prologue. */
4271
4272 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4273
4274 return func_start <= pc && pc < prologue_end;
4275 }
4276
4277 /* If we have line number information for the function, that's
4278 usually pretty reliable. */
4279 sal = find_pc_line (func_addr, 0);
4280
4281 /* Now sal describes the source line at the function's entry point,
4282 which (by convention) is the prologue. The end of that "line",
4283 sal.end, is the end of the prologue.
4284
4285 Note that, for functions whose source code is all on a single
4286 line, the line number information doesn't always end up this way.
4287 So we must verify that our purported end-of-prologue address is
4288 *within* the function, not at its start or end. */
4289 if (sal.line == 0
4290 || sal.end <= func_addr
4291 || func_end <= sal.end)
4292 {
4293 /* We don't have any good line number info, so use the minsym
4294 information, together with the architecture-specific prologue
4295 scanning code. */
4296 CORE_ADDR prologue_end = gdbarch_skip_prologue
4297 (current_gdbarch, func_addr);
4298
4299 return func_addr <= pc && pc < prologue_end;
4300 }
4301
4302 /* We have line number info, and it looks good. */
4303 return func_addr <= pc && pc < sal.end;
4304 }
4305
4306 /* Given PC at the function's start address, attempt to find the
4307 prologue end using SAL information. Return zero if the skip fails.
4308
4309 A non-optimized prologue traditionally has one SAL for the function
4310 and a second for the function body. A single line function has
4311 them both pointing at the same line.
4312
4313 An optimized prologue is similar but the prologue may contain
4314 instructions (SALs) from the instruction body. Need to skip those
4315 while not getting into the function body.
4316
4317 The functions end point and an increasing SAL line are used as
4318 indicators of the prologue's endpoint.
4319
4320 This code is based on the function refine_prologue_limit (versions
4321 found in both ia64 and ppc). */
4322
4323 CORE_ADDR
4324 skip_prologue_using_sal (CORE_ADDR func_addr)
4325 {
4326 struct symtab_and_line prologue_sal;
4327 CORE_ADDR start_pc;
4328 CORE_ADDR end_pc;
4329 struct block *bl;
4330
4331 /* Get an initial range for the function. */
4332 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4333 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4334
4335 prologue_sal = find_pc_line (start_pc, 0);
4336 if (prologue_sal.line != 0)
4337 {
4338 /* For langauges other than assembly, treat two consecutive line
4339 entries at the same address as a zero-instruction prologue.
4340 The GNU assembler emits separate line notes for each instruction
4341 in a multi-instruction macro, but compilers generally will not
4342 do this. */
4343 if (prologue_sal.symtab->language != language_asm)
4344 {
4345 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4346 int exact;
4347 int idx = 0;
4348
4349 /* Skip any earlier lines, and any end-of-sequence marker
4350 from a previous function. */
4351 while (linetable->item[idx].pc != prologue_sal.pc
4352 || linetable->item[idx].line == 0)
4353 idx++;
4354
4355 if (idx+1 < linetable->nitems
4356 && linetable->item[idx+1].line != 0
4357 && linetable->item[idx+1].pc == start_pc)
4358 return start_pc;
4359 }
4360
4361 /* If there is only one sal that covers the entire function,
4362 then it is probably a single line function, like
4363 "foo(){}". */
4364 if (prologue_sal.end >= end_pc)
4365 return 0;
4366
4367 while (prologue_sal.end < end_pc)
4368 {
4369 struct symtab_and_line sal;
4370
4371 sal = find_pc_line (prologue_sal.end, 0);
4372 if (sal.line == 0)
4373 break;
4374 /* Assume that a consecutive SAL for the same (or larger)
4375 line mark the prologue -> body transition. */
4376 if (sal.line >= prologue_sal.line)
4377 break;
4378 /* The case in which compiler's optimizer/scheduler has
4379 moved instructions into the prologue. We look ahead in
4380 the function looking for address ranges whose
4381 corresponding line number is less the first one that we
4382 found for the function. This is more conservative then
4383 refine_prologue_limit which scans a large number of SALs
4384 looking for any in the prologue */
4385 prologue_sal = sal;
4386 }
4387 }
4388
4389 if (prologue_sal.end < end_pc)
4390 /* Return the end of this line, or zero if we could not find a
4391 line. */
4392 return prologue_sal.end;
4393 else
4394 /* Don't return END_PC, which is past the end of the function. */
4395 return prologue_sal.pc;
4396 }
4397 \f
4398 struct symtabs_and_lines
4399 decode_line_spec (char *string, int funfirstline)
4400 {
4401 struct symtabs_and_lines sals;
4402 struct symtab_and_line cursal;
4403
4404 if (string == 0)
4405 error (_("Empty line specification."));
4406
4407 /* We use whatever is set as the current source line. We do not try
4408 and get a default or it will recursively call us! */
4409 cursal = get_current_source_symtab_and_line ();
4410
4411 sals = decode_line_1 (&string, funfirstline,
4412 cursal.symtab, cursal.line,
4413 (char ***) NULL, NULL);
4414
4415 if (*string)
4416 error (_("Junk at end of line specification: %s"), string);
4417 return sals;
4418 }
4419
4420 /* Track MAIN */
4421 static char *name_of_main;
4422
4423 void
4424 set_main_name (const char *name)
4425 {
4426 if (name_of_main != NULL)
4427 {
4428 xfree (name_of_main);
4429 name_of_main = NULL;
4430 }
4431 if (name != NULL)
4432 {
4433 name_of_main = xstrdup (name);
4434 }
4435 }
4436
4437 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4438 accordingly. */
4439
4440 static void
4441 find_main_name (void)
4442 {
4443 const char *new_main_name;
4444
4445 /* Try to see if the main procedure is in Ada. */
4446 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4447 be to add a new method in the language vector, and call this
4448 method for each language until one of them returns a non-empty
4449 name. This would allow us to remove this hard-coded call to
4450 an Ada function. It is not clear that this is a better approach
4451 at this point, because all methods need to be written in a way
4452 such that false positives never be returned. For instance, it is
4453 important that a method does not return a wrong name for the main
4454 procedure if the main procedure is actually written in a different
4455 language. It is easy to guaranty this with Ada, since we use a
4456 special symbol generated only when the main in Ada to find the name
4457 of the main procedure. It is difficult however to see how this can
4458 be guarantied for languages such as C, for instance. This suggests
4459 that order of call for these methods becomes important, which means
4460 a more complicated approach. */
4461 new_main_name = ada_main_name ();
4462 if (new_main_name != NULL)
4463 {
4464 set_main_name (new_main_name);
4465 return;
4466 }
4467
4468 new_main_name = pascal_main_name ();
4469 if (new_main_name != NULL)
4470 {
4471 set_main_name (new_main_name);
4472 return;
4473 }
4474
4475 /* The languages above didn't identify the name of the main procedure.
4476 Fallback to "main". */
4477 set_main_name ("main");
4478 }
4479
4480 char *
4481 main_name (void)
4482 {
4483 if (name_of_main == NULL)
4484 find_main_name ();
4485
4486 return name_of_main;
4487 }
4488
4489 /* Handle ``executable_changed'' events for the symtab module. */
4490
4491 static void
4492 symtab_observer_executable_changed (void)
4493 {
4494 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4495 set_main_name (NULL);
4496 }
4497
4498 /* Helper to expand_line_sal below. Appends new sal to SAL,
4499 initializing it from SYMTAB, LINENO and PC. */
4500 static void
4501 append_expanded_sal (struct symtabs_and_lines *sal,
4502 struct symtab *symtab,
4503 int lineno, CORE_ADDR pc)
4504 {
4505 CORE_ADDR func_addr, func_end;
4506
4507 sal->sals = xrealloc (sal->sals,
4508 sizeof (sal->sals[0])
4509 * (sal->nelts + 1));
4510 init_sal (sal->sals + sal->nelts);
4511 sal->sals[sal->nelts].symtab = symtab;
4512 sal->sals[sal->nelts].section = NULL;
4513 sal->sals[sal->nelts].end = 0;
4514 sal->sals[sal->nelts].line = lineno;
4515 sal->sals[sal->nelts].pc = pc;
4516 ++sal->nelts;
4517 }
4518
4519 /* Helper to expand_line_sal below. Search in the symtabs for any
4520 linetable entry that exactly matches FILENAME and LINENO and append
4521 them to RET. If there is at least one match, return 1; otherwise,
4522 return 0, and return the best choice in BEST_ITEM and BEST_SYMTAB. */
4523
4524 static int
4525 append_exact_match_to_sals (char *filename, int lineno,
4526 struct symtabs_and_lines *ret,
4527 struct linetable_entry **best_item,
4528 struct symtab **best_symtab)
4529 {
4530 struct objfile *objfile;
4531 struct symtab *symtab;
4532 int exact = 0;
4533 int j;
4534 *best_item = 0;
4535 *best_symtab = 0;
4536
4537 ALL_SYMTABS (objfile, symtab)
4538 {
4539 if (strcmp (filename, symtab->filename) == 0)
4540 {
4541 struct linetable *l;
4542 int len;
4543 l = LINETABLE (symtab);
4544 if (!l)
4545 continue;
4546 len = l->nitems;
4547
4548 for (j = 0; j < len; j++)
4549 {
4550 struct linetable_entry *item = &(l->item[j]);
4551
4552 if (item->line == lineno)
4553 {
4554 exact = 1;
4555 append_expanded_sal (ret, symtab, lineno, item->pc);
4556 }
4557 else if (!exact && item->line > lineno
4558 && (*best_item == NULL
4559 || item->line < (*best_item)->line))
4560 {
4561 *best_item = item;
4562 *best_symtab = symtab;
4563 }
4564 }
4565 }
4566 }
4567 return exact;
4568 }
4569
4570 /* Compute a set of all sals in
4571 the entire program that correspond to same file
4572 and line as SAL and return those. If there
4573 are several sals that belong to the same block,
4574 only one sal for the block is included in results. */
4575
4576 struct symtabs_and_lines
4577 expand_line_sal (struct symtab_and_line sal)
4578 {
4579 struct symtabs_and_lines ret, this_line;
4580 int i, j;
4581 struct objfile *objfile;
4582 struct partial_symtab *psymtab;
4583 struct symtab *symtab;
4584 int lineno;
4585 int deleted = 0;
4586 struct block **blocks = NULL;
4587 int *filter;
4588
4589 ret.nelts = 0;
4590 ret.sals = NULL;
4591
4592 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4593 {
4594 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4595 ret.sals[0] = sal;
4596 ret.nelts = 1;
4597 return ret;
4598 }
4599 else
4600 {
4601 struct linetable_entry *best_item = 0;
4602 struct symtab *best_symtab = 0;
4603 int exact = 0;
4604
4605 lineno = sal.line;
4606
4607 /* We need to find all symtabs for a file which name
4608 is described by sal. We cannot just directly
4609 iterate over symtabs, since a symtab might not be
4610 yet created. We also cannot iterate over psymtabs,
4611 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4612 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4613 corresponding to an included file. Therefore, we do
4614 first pass over psymtabs, reading in those with
4615 the right name. Then, we iterate over symtabs, knowing
4616 that all symtabs we're interested in are loaded. */
4617
4618 ALL_PSYMTABS (objfile, psymtab)
4619 {
4620 if (strcmp (sal.symtab->filename,
4621 psymtab->filename) == 0)
4622 PSYMTAB_TO_SYMTAB (psymtab);
4623 }
4624
4625 /* Now search the symtab for exact matches and append them. If
4626 none is found, append the best_item and all its exact
4627 matches. */
4628 exact = append_exact_match_to_sals (sal.symtab->filename, lineno,
4629 &ret, &best_item, &best_symtab);
4630 if (!exact && best_item)
4631 append_exact_match_to_sals (best_symtab->filename, best_item->line,
4632 &ret, &best_item, &best_symtab);
4633 }
4634
4635 /* For optimized code, compiler can scatter one source line accross
4636 disjoint ranges of PC values, even when no duplicate functions
4637 or inline functions are involved. For example, 'for (;;)' inside
4638 non-template non-inline non-ctor-or-dtor function can result
4639 in two PC ranges. In this case, we don't want to set breakpoint
4640 on first PC of each range. To filter such cases, we use containing
4641 blocks -- for each PC found above we see if there are other PCs
4642 that are in the same block. If yes, the other PCs are filtered out. */
4643
4644 filter = alloca (ret.nelts * sizeof (int));
4645 blocks = alloca (ret.nelts * sizeof (struct block *));
4646 for (i = 0; i < ret.nelts; ++i)
4647 {
4648 filter[i] = 1;
4649 blocks[i] = block_for_pc (ret.sals[i].pc);
4650 }
4651
4652 for (i = 0; i < ret.nelts; ++i)
4653 if (blocks[i] != NULL)
4654 for (j = i+1; j < ret.nelts; ++j)
4655 if (blocks[j] == blocks[i])
4656 {
4657 filter[j] = 0;
4658 ++deleted;
4659 break;
4660 }
4661
4662 {
4663 struct symtab_and_line *final =
4664 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4665
4666 for (i = 0, j = 0; i < ret.nelts; ++i)
4667 if (filter[i])
4668 final[j++] = ret.sals[i];
4669
4670 ret.nelts -= deleted;
4671 xfree (ret.sals);
4672 ret.sals = final;
4673 }
4674
4675 return ret;
4676 }
4677
4678
4679 void
4680 _initialize_symtab (void)
4681 {
4682 add_info ("variables", variables_info, _("\
4683 All global and static variable names, or those matching REGEXP."));
4684 if (dbx_commands)
4685 add_com ("whereis", class_info, variables_info, _("\
4686 All global and static variable names, or those matching REGEXP."));
4687
4688 add_info ("functions", functions_info,
4689 _("All function names, or those matching REGEXP."));
4690
4691 /* FIXME: This command has at least the following problems:
4692 1. It prints builtin types (in a very strange and confusing fashion).
4693 2. It doesn't print right, e.g. with
4694 typedef struct foo *FOO
4695 type_print prints "FOO" when we want to make it (in this situation)
4696 print "struct foo *".
4697 I also think "ptype" or "whatis" is more likely to be useful (but if
4698 there is much disagreement "info types" can be fixed). */
4699 add_info ("types", types_info,
4700 _("All type names, or those matching REGEXP."));
4701
4702 add_info ("sources", sources_info,
4703 _("Source files in the program."));
4704
4705 add_com ("rbreak", class_breakpoint, rbreak_command,
4706 _("Set a breakpoint for all functions matching REGEXP."));
4707
4708 if (xdb_commands)
4709 {
4710 add_com ("lf", class_info, sources_info,
4711 _("Source files in the program"));
4712 add_com ("lg", class_info, variables_info, _("\
4713 All global and static variable names, or those matching REGEXP."));
4714 }
4715
4716 add_setshow_enum_cmd ("multiple-symbols", no_class,
4717 multiple_symbols_modes, &multiple_symbols_mode,
4718 _("\
4719 Set the debugger behavior when more than one symbol are possible matches\n\
4720 in an expression."), _("\
4721 Show how the debugger handles ambiguities in expressions."), _("\
4722 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4723 NULL, NULL, &setlist, &showlist);
4724
4725 /* Initialize the one built-in type that isn't language dependent... */
4726 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4727 "<unknown type>", (struct objfile *) NULL);
4728
4729 observer_attach_executable_changed (symtab_observer_executable_changed);
4730 }
This page took 0.128614 seconds and 4 git commands to generate.