*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbcmd.h"
34 #include "call-cmds.h"
35 #include "gdb_regex.h"
36 #include "expression.h"
37 #include "language.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "linespec.h"
41 #include "source.h"
42 #include "filenames.h" /* for FILENAME_CMP */
43 #include "objc-lang.h"
44 #include "ada-lang.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60
61 /* Prototypes for local functions */
62
63 static void completion_list_add_name (char *, char *, int, char *, char *);
64
65 static void rbreak_command (char *, int);
66
67 static void types_info (char *, int);
68
69 static void functions_info (char *, int);
70
71 static void variables_info (char *, int);
72
73 static void sources_info (char *, int);
74
75 static void output_source_filename (const char *, int *);
76
77 static int find_line_common (struct linetable *, int, int *);
78
79 /* This one is used by linespec.c */
80
81 char *operator_chars (char *p, char **end);
82
83 static struct symbol *lookup_symbol_aux (const char *name,
84 const char *linkage_name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 int *is_a_field_of_this,
89 struct symtab **symtab);
90
91 static
92 struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain,
96 struct symtab **symtab);
97
98 static
99 struct symbol *lookup_symbol_aux_symtabs (int block_index,
100 const char *name,
101 const char *linkage_name,
102 const domain_enum domain,
103 struct symtab **symtab);
104
105 static
106 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
107 const char *name,
108 const char *linkage_name,
109 const domain_enum domain,
110 struct symtab **symtab);
111
112 #if 0
113 static
114 struct symbol *lookup_symbol_aux_minsyms (const char *name,
115 const char *linkage_name,
116 const domain_enum domain,
117 int *is_a_field_of_this,
118 struct symtab **symtab);
119 #endif
120
121 static void fixup_section (struct general_symbol_info *, struct objfile *);
122
123 static int file_matches (char *, char **, int);
124
125 static void print_symbol_info (domain_enum,
126 struct symtab *, struct symbol *, int, char *);
127
128 static void print_msymbol_info (struct minimal_symbol *);
129
130 static void symtab_symbol_info (char *, domain_enum, int);
131
132 void _initialize_symtab (void);
133
134 /* */
135
136 /* The single non-language-specific builtin type */
137 struct type *builtin_type_error;
138
139 /* Block in which the most recently searched-for symbol was found.
140 Might be better to make this a parameter to lookup_symbol and
141 value_of_this. */
142
143 const struct block *block_found;
144
145 /* Check for a symtab of a specific name; first in symtabs, then in
146 psymtabs. *If* there is no '/' in the name, a match after a '/'
147 in the symtab filename will also work. */
148
149 struct symtab *
150 lookup_symtab (const char *name)
151 {
152 struct symtab *s;
153 struct partial_symtab *ps;
154 struct objfile *objfile;
155 char *real_path = NULL;
156 char *full_path = NULL;
157
158 /* Here we are interested in canonicalizing an absolute path, not
159 absolutizing a relative path. */
160 if (IS_ABSOLUTE_PATH (name))
161 {
162 full_path = xfullpath (name);
163 make_cleanup (xfree, full_path);
164 real_path = gdb_realpath (name);
165 make_cleanup (xfree, real_path);
166 }
167
168 got_symtab:
169
170 /* First, search for an exact match */
171
172 ALL_SYMTABS (objfile, s)
173 {
174 if (FILENAME_CMP (name, s->filename) == 0)
175 {
176 return s;
177 }
178
179 /* If the user gave us an absolute path, try to find the file in
180 this symtab and use its absolute path. */
181
182 if (full_path != NULL)
183 {
184 const char *fp = symtab_to_fullname (s);
185 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
186 {
187 return s;
188 }
189 }
190
191 if (real_path != NULL)
192 {
193 char *fullname = symtab_to_fullname (s);
194 if (fullname != NULL)
195 {
196 char *rp = gdb_realpath (fullname);
197 make_cleanup (xfree, rp);
198 if (FILENAME_CMP (real_path, rp) == 0)
199 {
200 return s;
201 }
202 }
203 }
204 }
205
206 /* Now, search for a matching tail (only if name doesn't have any dirs) */
207
208 if (lbasename (name) == name)
209 ALL_SYMTABS (objfile, s)
210 {
211 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
212 return s;
213 }
214
215 /* Same search rules as above apply here, but now we look thru the
216 psymtabs. */
217
218 ps = lookup_partial_symtab (name);
219 if (!ps)
220 return (NULL);
221
222 if (ps->readin)
223 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
224 ps->filename, name);
225
226 s = PSYMTAB_TO_SYMTAB (ps);
227
228 if (s)
229 return s;
230
231 /* At this point, we have located the psymtab for this file, but
232 the conversion to a symtab has failed. This usually happens
233 when we are looking up an include file. In this case,
234 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
235 been created. So, we need to run through the symtabs again in
236 order to find the file.
237 XXX - This is a crock, and should be fixed inside of the the
238 symbol parsing routines. */
239 goto got_symtab;
240 }
241
242 /* Lookup the partial symbol table of a source file named NAME.
243 *If* there is no '/' in the name, a match after a '/'
244 in the psymtab filename will also work. */
245
246 struct partial_symtab *
247 lookup_partial_symtab (const char *name)
248 {
249 struct partial_symtab *pst;
250 struct objfile *objfile;
251 char *full_path = NULL;
252 char *real_path = NULL;
253
254 /* Here we are interested in canonicalizing an absolute path, not
255 absolutizing a relative path. */
256 if (IS_ABSOLUTE_PATH (name))
257 {
258 full_path = xfullpath (name);
259 make_cleanup (xfree, full_path);
260 real_path = gdb_realpath (name);
261 make_cleanup (xfree, real_path);
262 }
263
264 ALL_PSYMTABS (objfile, pst)
265 {
266 if (FILENAME_CMP (name, pst->filename) == 0)
267 {
268 return (pst);
269 }
270
271 /* If the user gave us an absolute path, try to find the file in
272 this symtab and use its absolute path. */
273 if (full_path != NULL)
274 {
275 psymtab_to_fullname (pst);
276 if (pst->fullname != NULL
277 && FILENAME_CMP (full_path, pst->fullname) == 0)
278 {
279 return pst;
280 }
281 }
282
283 if (real_path != NULL)
284 {
285 char *rp = NULL;
286 psymtab_to_fullname (pst);
287 if (pst->fullname != NULL)
288 {
289 rp = gdb_realpath (pst->fullname);
290 make_cleanup (xfree, rp);
291 }
292 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
293 {
294 return pst;
295 }
296 }
297 }
298
299 /* Now, search for a matching tail (only if name doesn't have any dirs) */
300
301 if (lbasename (name) == name)
302 ALL_PSYMTABS (objfile, pst)
303 {
304 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
305 return (pst);
306 }
307
308 return (NULL);
309 }
310 \f
311 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
312 full method name, which consist of the class name (from T), the unadorned
313 method name from METHOD_ID, and the signature for the specific overload,
314 specified by SIGNATURE_ID. Note that this function is g++ specific. */
315
316 char *
317 gdb_mangle_name (struct type *type, int method_id, int signature_id)
318 {
319 int mangled_name_len;
320 char *mangled_name;
321 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
322 struct fn_field *method = &f[signature_id];
323 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
324 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
325 char *newname = type_name_no_tag (type);
326
327 /* Does the form of physname indicate that it is the full mangled name
328 of a constructor (not just the args)? */
329 int is_full_physname_constructor;
330
331 int is_constructor;
332 int is_destructor = is_destructor_name (physname);
333 /* Need a new type prefix. */
334 char *const_prefix = method->is_const ? "C" : "";
335 char *volatile_prefix = method->is_volatile ? "V" : "";
336 char buf[20];
337 int len = (newname == NULL ? 0 : strlen (newname));
338
339 /* Nothing to do if physname already contains a fully mangled v3 abi name
340 or an operator name. */
341 if ((physname[0] == '_' && physname[1] == 'Z')
342 || is_operator_name (field_name))
343 return xstrdup (physname);
344
345 is_full_physname_constructor = is_constructor_name (physname);
346
347 is_constructor =
348 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
349
350 if (!is_destructor)
351 is_destructor = (strncmp (physname, "__dt", 4) == 0);
352
353 if (is_destructor || is_full_physname_constructor)
354 {
355 mangled_name = (char *) xmalloc (strlen (physname) + 1);
356 strcpy (mangled_name, physname);
357 return mangled_name;
358 }
359
360 if (len == 0)
361 {
362 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
363 }
364 else if (physname[0] == 't' || physname[0] == 'Q')
365 {
366 /* The physname for template and qualified methods already includes
367 the class name. */
368 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
369 newname = NULL;
370 len = 0;
371 }
372 else
373 {
374 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
375 }
376 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
377 + strlen (buf) + len + strlen (physname) + 1);
378
379 {
380 mangled_name = (char *) xmalloc (mangled_name_len);
381 if (is_constructor)
382 mangled_name[0] = '\0';
383 else
384 strcpy (mangled_name, field_name);
385 }
386 strcat (mangled_name, buf);
387 /* If the class doesn't have a name, i.e. newname NULL, then we just
388 mangle it using 0 for the length of the class. Thus it gets mangled
389 as something starting with `::' rather than `classname::'. */
390 if (newname != NULL)
391 strcat (mangled_name, newname);
392
393 strcat (mangled_name, physname);
394 return (mangled_name);
395 }
396
397 \f
398 /* Initialize the language dependent portion of a symbol
399 depending upon the language for the symbol. */
400 void
401 symbol_init_language_specific (struct general_symbol_info *gsymbol,
402 enum language language)
403 {
404 gsymbol->language = language;
405 if (gsymbol->language == language_cplus
406 || gsymbol->language == language_java
407 || gsymbol->language == language_objc)
408 {
409 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
410 }
411 else
412 {
413 memset (&gsymbol->language_specific, 0,
414 sizeof (gsymbol->language_specific));
415 }
416 }
417
418 /* Functions to initialize a symbol's mangled name. */
419
420 /* Create the hash table used for demangled names. Each hash entry is
421 a pair of strings; one for the mangled name and one for the demangled
422 name. The entry is hashed via just the mangled name. */
423
424 static void
425 create_demangled_names_hash (struct objfile *objfile)
426 {
427 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
428 The hash table code will round this up to the next prime number.
429 Choosing a much larger table size wastes memory, and saves only about
430 1% in symbol reading. */
431
432 objfile->demangled_names_hash = htab_create_alloc
433 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
434 NULL, xcalloc, xfree);
435 }
436
437 /* Try to determine the demangled name for a symbol, based on the
438 language of that symbol. If the language is set to language_auto,
439 it will attempt to find any demangling algorithm that works and
440 then set the language appropriately. The returned name is allocated
441 by the demangler and should be xfree'd. */
442
443 static char *
444 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
445 const char *mangled)
446 {
447 char *demangled = NULL;
448
449 if (gsymbol->language == language_unknown)
450 gsymbol->language = language_auto;
451
452 if (gsymbol->language == language_objc
453 || gsymbol->language == language_auto)
454 {
455 demangled =
456 objc_demangle (mangled, 0);
457 if (demangled != NULL)
458 {
459 gsymbol->language = language_objc;
460 return demangled;
461 }
462 }
463 if (gsymbol->language == language_cplus
464 || gsymbol->language == language_auto)
465 {
466 demangled =
467 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
468 if (demangled != NULL)
469 {
470 gsymbol->language = language_cplus;
471 return demangled;
472 }
473 }
474 if (gsymbol->language == language_java)
475 {
476 demangled =
477 cplus_demangle (mangled,
478 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
479 if (demangled != NULL)
480 {
481 gsymbol->language = language_java;
482 return demangled;
483 }
484 }
485 return NULL;
486 }
487
488 /* Set both the mangled and demangled (if any) names for GSYMBOL based
489 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
490 is used, and the memory comes from that objfile's objfile_obstack.
491 LINKAGE_NAME is copied, so the pointer can be discarded after
492 calling this function. */
493
494 /* We have to be careful when dealing with Java names: when we run
495 into a Java minimal symbol, we don't know it's a Java symbol, so it
496 gets demangled as a C++ name. This is unfortunate, but there's not
497 much we can do about it: but when demangling partial symbols and
498 regular symbols, we'd better not reuse the wrong demangled name.
499 (See PR gdb/1039.) We solve this by putting a distinctive prefix
500 on Java names when storing them in the hash table. */
501
502 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
503 don't mind the Java prefix so much: different languages have
504 different demangling requirements, so it's only natural that we
505 need to keep language data around in our demangling cache. But
506 it's not good that the minimal symbol has the wrong demangled name.
507 Unfortunately, I can't think of any easy solution to that
508 problem. */
509
510 #define JAVA_PREFIX "##JAVA$$"
511 #define JAVA_PREFIX_LEN 8
512
513 void
514 symbol_set_names (struct general_symbol_info *gsymbol,
515 const char *linkage_name, int len, struct objfile *objfile)
516 {
517 char **slot;
518 /* A 0-terminated copy of the linkage name. */
519 const char *linkage_name_copy;
520 /* A copy of the linkage name that might have a special Java prefix
521 added to it, for use when looking names up in the hash table. */
522 const char *lookup_name;
523 /* The length of lookup_name. */
524 int lookup_len;
525
526 if (objfile->demangled_names_hash == NULL)
527 create_demangled_names_hash (objfile);
528
529 /* The stabs reader generally provides names that are not
530 NUL-terminated; most of the other readers don't do this, so we
531 can just use the given copy, unless we're in the Java case. */
532 if (gsymbol->language == language_java)
533 {
534 char *alloc_name;
535 lookup_len = len + JAVA_PREFIX_LEN;
536
537 alloc_name = alloca (lookup_len + 1);
538 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
539 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
540 alloc_name[lookup_len] = '\0';
541
542 lookup_name = alloc_name;
543 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
544 }
545 else if (linkage_name[len] != '\0')
546 {
547 char *alloc_name;
548 lookup_len = len;
549
550 alloc_name = alloca (lookup_len + 1);
551 memcpy (alloc_name, linkage_name, len);
552 alloc_name[lookup_len] = '\0';
553
554 lookup_name = alloc_name;
555 linkage_name_copy = alloc_name;
556 }
557 else
558 {
559 lookup_len = len;
560 lookup_name = linkage_name;
561 linkage_name_copy = linkage_name;
562 }
563
564 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
565 lookup_name, INSERT);
566
567 /* If this name is not in the hash table, add it. */
568 if (*slot == NULL)
569 {
570 char *demangled_name = symbol_find_demangled_name (gsymbol,
571 linkage_name_copy);
572 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
573
574 /* If there is a demangled name, place it right after the mangled name.
575 Otherwise, just place a second zero byte after the end of the mangled
576 name. */
577 *slot = obstack_alloc (&objfile->objfile_obstack,
578 lookup_len + demangled_len + 2);
579 memcpy (*slot, lookup_name, lookup_len + 1);
580 if (demangled_name != NULL)
581 {
582 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
583 xfree (demangled_name);
584 }
585 else
586 (*slot)[lookup_len + 1] = '\0';
587 }
588
589 gsymbol->name = *slot + lookup_len - len;
590 if ((*slot)[lookup_len + 1] != '\0')
591 gsymbol->language_specific.cplus_specific.demangled_name
592 = &(*slot)[lookup_len + 1];
593 else
594 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
595 }
596
597 /* Initialize the demangled name of GSYMBOL if possible. Any required space
598 to store the name is obtained from the specified obstack. The function
599 symbol_set_names, above, should be used instead where possible for more
600 efficient memory usage. */
601
602 void
603 symbol_init_demangled_name (struct general_symbol_info *gsymbol,
604 struct obstack *obstack)
605 {
606 char *mangled = gsymbol->name;
607 char *demangled = NULL;
608
609 demangled = symbol_find_demangled_name (gsymbol, mangled);
610 if (gsymbol->language == language_cplus
611 || gsymbol->language == language_java
612 || gsymbol->language == language_objc)
613 {
614 if (demangled)
615 {
616 gsymbol->language_specific.cplus_specific.demangled_name
617 = obsavestring (demangled, strlen (demangled), obstack);
618 xfree (demangled);
619 }
620 else
621 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
622 }
623 else
624 {
625 /* Unknown language; just clean up quietly. */
626 if (demangled)
627 xfree (demangled);
628 }
629 }
630
631 /* Return the source code name of a symbol. In languages where
632 demangling is necessary, this is the demangled name. */
633
634 char *
635 symbol_natural_name (const struct general_symbol_info *gsymbol)
636 {
637 switch (gsymbol->language)
638 {
639 case language_cplus:
640 case language_java:
641 case language_objc:
642 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
643 return gsymbol->language_specific.cplus_specific.demangled_name;
644 break;
645 case language_ada:
646 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
647 return gsymbol->language_specific.cplus_specific.demangled_name;
648 else
649 return ada_decode_symbol (gsymbol);
650 break;
651 default:
652 break;
653 }
654 return gsymbol->name;
655 }
656
657 /* Return the demangled name for a symbol based on the language for
658 that symbol. If no demangled name exists, return NULL. */
659 char *
660 symbol_demangled_name (struct general_symbol_info *gsymbol)
661 {
662 switch (gsymbol->language)
663 {
664 case language_cplus:
665 case language_java:
666 case language_objc:
667 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
668 return gsymbol->language_specific.cplus_specific.demangled_name;
669 break;
670 case language_ada:
671 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
672 return gsymbol->language_specific.cplus_specific.demangled_name;
673 else
674 return ada_decode_symbol (gsymbol);
675 break;
676 default:
677 break;
678 }
679 return NULL;
680 }
681
682 /* Return the search name of a symbol---generally the demangled or
683 linkage name of the symbol, depending on how it will be searched for.
684 If there is no distinct demangled name, then returns the same value
685 (same pointer) as SYMBOL_LINKAGE_NAME. */
686 char *
687 symbol_search_name (const struct general_symbol_info *gsymbol)
688 {
689 if (gsymbol->language == language_ada)
690 return gsymbol->name;
691 else
692 return symbol_natural_name (gsymbol);
693 }
694
695 /* Initialize the structure fields to zero values. */
696 void
697 init_sal (struct symtab_and_line *sal)
698 {
699 sal->symtab = 0;
700 sal->section = 0;
701 sal->line = 0;
702 sal->pc = 0;
703 sal->end = 0;
704 }
705 \f
706
707 /* Return 1 if the two sections are the same, or if they could
708 plausibly be copies of each other, one in an original object
709 file and another in a separated debug file. */
710
711 int
712 matching_bfd_sections (asection *first, asection *second)
713 {
714 struct objfile *obj;
715
716 /* If they're the same section, then they match. */
717 if (first == second)
718 return 1;
719
720 /* If either is NULL, give up. */
721 if (first == NULL || second == NULL)
722 return 0;
723
724 /* This doesn't apply to absolute symbols. */
725 if (first->owner == NULL || second->owner == NULL)
726 return 0;
727
728 /* If they're in the same object file, they must be different sections. */
729 if (first->owner == second->owner)
730 return 0;
731
732 /* Check whether the two sections are potentially corresponding. They must
733 have the same size, address, and name. We can't compare section indexes,
734 which would be more reliable, because some sections may have been
735 stripped. */
736 if (bfd_get_section_size (first) != bfd_get_section_size (second))
737 return 0;
738
739 /* In-memory addresses may start at a different offset, relativize them. */
740 if (bfd_get_section_vma (first->owner, first)
741 - bfd_get_start_address (first->owner)
742 != bfd_get_section_vma (second->owner, second)
743 - bfd_get_start_address (second->owner))
744 return 0;
745
746 if (bfd_get_section_name (first->owner, first) == NULL
747 || bfd_get_section_name (second->owner, second) == NULL
748 || strcmp (bfd_get_section_name (first->owner, first),
749 bfd_get_section_name (second->owner, second)) != 0)
750 return 0;
751
752 /* Otherwise check that they are in corresponding objfiles. */
753
754 ALL_OBJFILES (obj)
755 if (obj->obfd == first->owner)
756 break;
757 gdb_assert (obj != NULL);
758
759 if (obj->separate_debug_objfile != NULL
760 && obj->separate_debug_objfile->obfd == second->owner)
761 return 1;
762 if (obj->separate_debug_objfile_backlink != NULL
763 && obj->separate_debug_objfile_backlink->obfd == second->owner)
764 return 1;
765
766 return 0;
767 }
768
769 /* Find which partial symtab contains PC and SECTION. Return 0 if
770 none. We return the psymtab that contains a symbol whose address
771 exactly matches PC, or, if we cannot find an exact match, the
772 psymtab that contains a symbol whose address is closest to PC. */
773 struct partial_symtab *
774 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
775 {
776 struct partial_symtab *pst;
777 struct objfile *objfile;
778 struct minimal_symbol *msymbol;
779
780 /* If we know that this is not a text address, return failure. This is
781 necessary because we loop based on texthigh and textlow, which do
782 not include the data ranges. */
783 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
784 if (msymbol
785 && (msymbol->type == mst_data
786 || msymbol->type == mst_bss
787 || msymbol->type == mst_abs
788 || msymbol->type == mst_file_data
789 || msymbol->type == mst_file_bss))
790 return NULL;
791
792 ALL_PSYMTABS (objfile, pst)
793 {
794 if (pc >= pst->textlow && pc < pst->texthigh)
795 {
796 struct partial_symtab *tpst;
797 struct partial_symtab *best_pst = pst;
798 CORE_ADDR best_addr = pst->textlow;
799
800 /* An objfile that has its functions reordered might have
801 many partial symbol tables containing the PC, but
802 we want the partial symbol table that contains the
803 function containing the PC. */
804 if (!(objfile->flags & OBJF_REORDERED) &&
805 section == 0) /* can't validate section this way */
806 return (pst);
807
808 if (msymbol == NULL)
809 return (pst);
810
811 /* The code range of partial symtabs sometimes overlap, so, in
812 the loop below, we need to check all partial symtabs and
813 find the one that fits better for the given PC address. We
814 select the partial symtab that contains a symbol whose
815 address is closest to the PC address. By closest we mean
816 that find_pc_sect_symbol returns the symbol with address
817 that is closest and still less than the given PC. */
818 for (tpst = pst; tpst != NULL; tpst = tpst->next)
819 {
820 if (pc >= tpst->textlow && pc < tpst->texthigh)
821 {
822 struct partial_symbol *p;
823 CORE_ADDR this_addr;
824
825 /* NOTE: This assumes that every psymbol has a
826 corresponding msymbol, which is not necessarily
827 true; the debug info might be much richer than the
828 object's symbol table. */
829 p = find_pc_sect_psymbol (tpst, pc, section);
830 if (p != NULL
831 && SYMBOL_VALUE_ADDRESS (p)
832 == SYMBOL_VALUE_ADDRESS (msymbol))
833 return (tpst);
834
835 /* Also accept the textlow value of a psymtab as a
836 "symbol", to provide some support for partial
837 symbol tables with line information but no debug
838 symbols (e.g. those produced by an assembler). */
839 if (p != NULL)
840 this_addr = SYMBOL_VALUE_ADDRESS (p);
841 else
842 this_addr = tpst->textlow;
843
844 /* Check whether it is closer than our current
845 BEST_ADDR. Since this symbol address is
846 necessarily lower or equal to PC, the symbol closer
847 to PC is the symbol which address is the highest.
848 This way we return the psymtab which contains such
849 best match symbol. This can help in cases where the
850 symbol information/debuginfo is not complete, like
851 for instance on IRIX6 with gcc, where no debug info
852 is emitted for statics. (See also the nodebug.exp
853 testcase.) */
854 if (this_addr > best_addr)
855 {
856 best_addr = this_addr;
857 best_pst = tpst;
858 }
859 }
860 }
861 return (best_pst);
862 }
863 }
864 return (NULL);
865 }
866
867 /* Find which partial symtab contains PC. Return 0 if none.
868 Backward compatibility, no section */
869
870 struct partial_symtab *
871 find_pc_psymtab (CORE_ADDR pc)
872 {
873 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
874 }
875
876 /* Find which partial symbol within a psymtab matches PC and SECTION.
877 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
878
879 struct partial_symbol *
880 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
881 asection *section)
882 {
883 struct partial_symbol *best = NULL, *p, **pp;
884 CORE_ADDR best_pc;
885
886 if (!psymtab)
887 psymtab = find_pc_sect_psymtab (pc, section);
888 if (!psymtab)
889 return 0;
890
891 /* Cope with programs that start at address 0 */
892 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
893
894 /* Search the global symbols as well as the static symbols, so that
895 find_pc_partial_function doesn't use a minimal symbol and thus
896 cache a bad endaddr. */
897 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
898 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
899 < psymtab->n_global_syms);
900 pp++)
901 {
902 p = *pp;
903 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
904 && SYMBOL_CLASS (p) == LOC_BLOCK
905 && pc >= SYMBOL_VALUE_ADDRESS (p)
906 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
907 || (psymtab->textlow == 0
908 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
909 {
910 if (section) /* match on a specific section */
911 {
912 fixup_psymbol_section (p, psymtab->objfile);
913 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
914 continue;
915 }
916 best_pc = SYMBOL_VALUE_ADDRESS (p);
917 best = p;
918 }
919 }
920
921 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
922 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
923 < psymtab->n_static_syms);
924 pp++)
925 {
926 p = *pp;
927 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
928 && SYMBOL_CLASS (p) == LOC_BLOCK
929 && pc >= SYMBOL_VALUE_ADDRESS (p)
930 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
931 || (psymtab->textlow == 0
932 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
933 {
934 if (section) /* match on a specific section */
935 {
936 fixup_psymbol_section (p, psymtab->objfile);
937 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
938 continue;
939 }
940 best_pc = SYMBOL_VALUE_ADDRESS (p);
941 best = p;
942 }
943 }
944
945 return best;
946 }
947
948 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
949 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
950
951 struct partial_symbol *
952 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
953 {
954 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
955 }
956 \f
957 /* Debug symbols usually don't have section information. We need to dig that
958 out of the minimal symbols and stash that in the debug symbol. */
959
960 static void
961 fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
962 {
963 struct minimal_symbol *msym;
964 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
965
966 if (msym)
967 {
968 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
969 ginfo->section = SYMBOL_SECTION (msym);
970 }
971 else if (objfile)
972 {
973 /* Static, function-local variables do appear in the linker
974 (minimal) symbols, but are frequently given names that won't
975 be found via lookup_minimal_symbol(). E.g., it has been
976 observed in frv-uclinux (ELF) executables that a static,
977 function-local variable named "foo" might appear in the
978 linker symbols as "foo.6" or "foo.3". Thus, there is no
979 point in attempting to extend the lookup-by-name mechanism to
980 handle this case due to the fact that there can be multiple
981 names.
982
983 So, instead, search the section table when lookup by name has
984 failed. The ``addr'' and ``endaddr'' fields may have already
985 been relocated. If so, the relocation offset (i.e. the
986 ANOFFSET value) needs to be subtracted from these values when
987 performing the comparison. We unconditionally subtract it,
988 because, when no relocation has been performed, the ANOFFSET
989 value will simply be zero.
990
991 The address of the symbol whose section we're fixing up HAS
992 NOT BEEN adjusted (relocated) yet. It can't have been since
993 the section isn't yet known and knowing the section is
994 necessary in order to add the correct relocation value. In
995 other words, we wouldn't even be in this function (attempting
996 to compute the section) if it were already known.
997
998 Note that it is possible to search the minimal symbols
999 (subtracting the relocation value if necessary) to find the
1000 matching minimal symbol, but this is overkill and much less
1001 efficient. It is not necessary to find the matching minimal
1002 symbol, only its section.
1003
1004 Note that this technique (of doing a section table search)
1005 can fail when unrelocated section addresses overlap. For
1006 this reason, we still attempt a lookup by name prior to doing
1007 a search of the section table. */
1008
1009 CORE_ADDR addr;
1010 struct obj_section *s;
1011
1012 addr = ginfo->value.address;
1013
1014 ALL_OBJFILE_OSECTIONS (objfile, s)
1015 {
1016 int idx = s->the_bfd_section->index;
1017 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1018
1019 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1020 {
1021 ginfo->bfd_section = s->the_bfd_section;
1022 ginfo->section = idx;
1023 return;
1024 }
1025 }
1026 }
1027 }
1028
1029 struct symbol *
1030 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1031 {
1032 if (!sym)
1033 return NULL;
1034
1035 if (SYMBOL_BFD_SECTION (sym))
1036 return sym;
1037
1038 fixup_section (&sym->ginfo, objfile);
1039
1040 return sym;
1041 }
1042
1043 struct partial_symbol *
1044 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1045 {
1046 if (!psym)
1047 return NULL;
1048
1049 if (SYMBOL_BFD_SECTION (psym))
1050 return psym;
1051
1052 fixup_section (&psym->ginfo, objfile);
1053
1054 return psym;
1055 }
1056
1057 /* Find the definition for a specified symbol name NAME
1058 in domain DOMAIN, visible from lexical block BLOCK.
1059 Returns the struct symbol pointer, or zero if no symbol is found.
1060 If SYMTAB is non-NULL, store the symbol table in which the
1061 symbol was found there, or NULL if not found.
1062 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1063 NAME is a field of the current implied argument `this'. If so set
1064 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1065 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1066 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1067
1068 /* This function has a bunch of loops in it and it would seem to be
1069 attractive to put in some QUIT's (though I'm not really sure
1070 whether it can run long enough to be really important). But there
1071 are a few calls for which it would appear to be bad news to quit
1072 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1073 that there is C++ code below which can error(), but that probably
1074 doesn't affect these calls since they are looking for a known
1075 variable and thus can probably assume it will never hit the C++
1076 code). */
1077
1078 struct symbol *
1079 lookup_symbol_in_language (const char *name, const struct block *block,
1080 const domain_enum domain, enum language lang,
1081 int *is_a_field_of_this,
1082 struct symtab **symtab)
1083 {
1084 char *demangled_name = NULL;
1085 const char *modified_name = NULL;
1086 const char *mangled_name = NULL;
1087 int needtofreename = 0;
1088 struct symbol *returnval;
1089
1090 modified_name = name;
1091
1092 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1093 we can always binary search. */
1094 if (lang == language_cplus)
1095 {
1096 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1097 if (demangled_name)
1098 {
1099 mangled_name = name;
1100 modified_name = demangled_name;
1101 needtofreename = 1;
1102 }
1103 }
1104 else if (lang == language_java)
1105 {
1106 demangled_name = cplus_demangle (name,
1107 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1108 if (demangled_name)
1109 {
1110 mangled_name = name;
1111 modified_name = demangled_name;
1112 needtofreename = 1;
1113 }
1114 }
1115
1116 if (case_sensitivity == case_sensitive_off)
1117 {
1118 char *copy;
1119 int len, i;
1120
1121 len = strlen (name);
1122 copy = (char *) alloca (len + 1);
1123 for (i= 0; i < len; i++)
1124 copy[i] = tolower (name[i]);
1125 copy[len] = 0;
1126 modified_name = copy;
1127 }
1128
1129 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1130 domain, lang,
1131 is_a_field_of_this, symtab);
1132 if (needtofreename)
1133 xfree (demangled_name);
1134
1135 /* Override the returned symtab with the symbol's specific one. */
1136 if (returnval != NULL && symtab != NULL)
1137 *symtab = SYMBOL_SYMTAB (returnval);
1138
1139 return returnval;
1140 }
1141
1142 /* Behave like lookup_symbol_in_language, but performed with the
1143 current language. */
1144
1145 struct symbol *
1146 lookup_symbol (const char *name, const struct block *block,
1147 domain_enum domain, int *is_a_field_of_this,
1148 struct symtab **symtab)
1149 {
1150 return lookup_symbol_in_language (name, block, domain,
1151 current_language->la_language,
1152 is_a_field_of_this, symtab);
1153 }
1154
1155 /* Behave like lookup_symbol except that NAME is the natural name
1156 of the symbol that we're looking for and, if LINKAGE_NAME is
1157 non-NULL, ensure that the symbol's linkage name matches as
1158 well. */
1159
1160 static struct symbol *
1161 lookup_symbol_aux (const char *name, const char *linkage_name,
1162 const struct block *block, const domain_enum domain,
1163 enum language language,
1164 int *is_a_field_of_this, struct symtab **symtab)
1165 {
1166 struct symbol *sym;
1167 const struct language_defn *langdef;
1168
1169 /* Make sure we do something sensible with is_a_field_of_this, since
1170 the callers that set this parameter to some non-null value will
1171 certainly use it later and expect it to be either 0 or 1.
1172 If we don't set it, the contents of is_a_field_of_this are
1173 undefined. */
1174 if (is_a_field_of_this != NULL)
1175 *is_a_field_of_this = 0;
1176
1177 /* Search specified block and its superiors. Don't search
1178 STATIC_BLOCK or GLOBAL_BLOCK. */
1179
1180 sym = lookup_symbol_aux_local (name, linkage_name, block, domain,
1181 symtab);
1182 if (sym != NULL)
1183 return sym;
1184
1185 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1186 check to see if NAME is a field of `this'. */
1187
1188 langdef = language_def (language);
1189
1190 if (langdef->la_value_of_this != NULL
1191 && is_a_field_of_this != NULL)
1192 {
1193 struct value *v = langdef->la_value_of_this (0);
1194
1195 if (v && check_field (v, name))
1196 {
1197 *is_a_field_of_this = 1;
1198 if (symtab != NULL)
1199 *symtab = NULL;
1200 return NULL;
1201 }
1202 }
1203
1204 /* Now do whatever is appropriate for LANGUAGE to look
1205 up static and global variables. */
1206
1207 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name,
1208 block, domain, symtab);
1209 if (sym != NULL)
1210 return sym;
1211
1212 /* Now search all static file-level symbols. Not strictly correct,
1213 but more useful than an error. Do the symtabs first, then check
1214 the psymtabs. If a psymtab indicates the existence of the
1215 desired name as a file-level static, then do psymtab-to-symtab
1216 conversion on the fly and return the found symbol. */
1217
1218 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name,
1219 domain, symtab);
1220 if (sym != NULL)
1221 return sym;
1222
1223 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name,
1224 domain, symtab);
1225 if (sym != NULL)
1226 return sym;
1227
1228 if (symtab != NULL)
1229 *symtab = NULL;
1230 return NULL;
1231 }
1232
1233 /* Check to see if the symbol is defined in BLOCK or its superiors.
1234 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1235
1236 static struct symbol *
1237 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1238 const struct block *block,
1239 const domain_enum domain,
1240 struct symtab **symtab)
1241 {
1242 struct symbol *sym;
1243 const struct block *static_block = block_static_block (block);
1244
1245 /* Check if either no block is specified or it's a global block. */
1246
1247 if (static_block == NULL)
1248 return NULL;
1249
1250 while (block != static_block)
1251 {
1252 sym = lookup_symbol_aux_block (name, linkage_name, block, domain,
1253 symtab);
1254 if (sym != NULL)
1255 return sym;
1256 block = BLOCK_SUPERBLOCK (block);
1257 }
1258
1259 /* We've reached the static block without finding a result. */
1260
1261 return NULL;
1262 }
1263
1264 /* Look up a symbol in a block; if found, locate its symtab, fixup the
1265 symbol, and set block_found appropriately. */
1266
1267 struct symbol *
1268 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1269 const struct block *block,
1270 const domain_enum domain,
1271 struct symtab **symtab)
1272 {
1273 struct symbol *sym;
1274 struct objfile *objfile = NULL;
1275 struct blockvector *bv;
1276 struct block *b;
1277 struct symtab *s = NULL;
1278
1279 sym = lookup_block_symbol (block, name, linkage_name, domain);
1280 if (sym)
1281 {
1282 block_found = block;
1283 if (symtab != NULL)
1284 {
1285 /* Search the list of symtabs for one which contains the
1286 address of the start of this block. */
1287 ALL_PRIMARY_SYMTABS (objfile, s)
1288 {
1289 bv = BLOCKVECTOR (s);
1290 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1291 if (BLOCK_START (b) <= BLOCK_START (block)
1292 && BLOCK_END (b) > BLOCK_START (block))
1293 goto found;
1294 }
1295 found:
1296 *symtab = s;
1297 }
1298
1299 return fixup_symbol_section (sym, objfile);
1300 }
1301
1302 return NULL;
1303 }
1304
1305 /* Check to see if the symbol is defined in one of the symtabs.
1306 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1307 depending on whether or not we want to search global symbols or
1308 static symbols. */
1309
1310 static struct symbol *
1311 lookup_symbol_aux_symtabs (int block_index,
1312 const char *name, const char *linkage_name,
1313 const domain_enum domain,
1314 struct symtab **symtab)
1315 {
1316 struct symbol *sym;
1317 struct objfile *objfile;
1318 struct blockvector *bv;
1319 const struct block *block;
1320 struct symtab *s;
1321
1322 ALL_PRIMARY_SYMTABS (objfile, s)
1323 {
1324 bv = BLOCKVECTOR (s);
1325 block = BLOCKVECTOR_BLOCK (bv, block_index);
1326 sym = lookup_block_symbol (block, name, linkage_name, domain);
1327 if (sym)
1328 {
1329 block_found = block;
1330 if (symtab != NULL)
1331 *symtab = s;
1332 return fixup_symbol_section (sym, objfile);
1333 }
1334 }
1335
1336 return NULL;
1337 }
1338
1339 /* Check to see if the symbol is defined in one of the partial
1340 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1341 STATIC_BLOCK, depending on whether or not we want to search global
1342 symbols or static symbols. */
1343
1344 static struct symbol *
1345 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1346 const char *linkage_name,
1347 const domain_enum domain,
1348 struct symtab **symtab)
1349 {
1350 struct symbol *sym;
1351 struct objfile *objfile;
1352 struct blockvector *bv;
1353 const struct block *block;
1354 struct partial_symtab *ps;
1355 struct symtab *s;
1356 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1357
1358 ALL_PSYMTABS (objfile, ps)
1359 {
1360 if (!ps->readin
1361 && lookup_partial_symbol (ps, name, linkage_name,
1362 psymtab_index, domain))
1363 {
1364 s = PSYMTAB_TO_SYMTAB (ps);
1365 bv = BLOCKVECTOR (s);
1366 block = BLOCKVECTOR_BLOCK (bv, block_index);
1367 sym = lookup_block_symbol (block, name, linkage_name, domain);
1368 if (!sym)
1369 {
1370 /* This shouldn't be necessary, but as a last resort try
1371 looking in the statics even though the psymtab claimed
1372 the symbol was global, or vice-versa. It's possible
1373 that the psymtab gets it wrong in some cases. */
1374
1375 /* FIXME: carlton/2002-09-30: Should we really do that?
1376 If that happens, isn't it likely to be a GDB error, in
1377 which case we should fix the GDB error rather than
1378 silently dealing with it here? So I'd vote for
1379 removing the check for the symbol in the other
1380 block. */
1381 block = BLOCKVECTOR_BLOCK (bv,
1382 block_index == GLOBAL_BLOCK ?
1383 STATIC_BLOCK : GLOBAL_BLOCK);
1384 sym = lookup_block_symbol (block, name, linkage_name, domain);
1385 if (!sym)
1386 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1387 block_index == GLOBAL_BLOCK ? "global" : "static",
1388 name, ps->filename, name, name);
1389 }
1390 if (symtab != NULL)
1391 *symtab = s;
1392 return fixup_symbol_section (sym, objfile);
1393 }
1394 }
1395
1396 return NULL;
1397 }
1398
1399 #if 0
1400 /* Check for the possibility of the symbol being a function or a
1401 mangled variable that is stored in one of the minimal symbol
1402 tables. Eventually, all global symbols might be resolved in this
1403 way. */
1404
1405 /* NOTE: carlton/2002-12-05: At one point, this function was part of
1406 lookup_symbol_aux, and what are now 'return' statements within
1407 lookup_symbol_aux_minsyms returned from lookup_symbol_aux, even if
1408 sym was NULL. As far as I can tell, this was basically accidental;
1409 it didn't happen every time that msymbol was non-NULL, but only if
1410 some additional conditions held as well, and it caused problems
1411 with HP-generated symbol tables. */
1412
1413 /* NOTE: carlton/2003-05-14: This function was once used as part of
1414 lookup_symbol. It is currently unnecessary for correctness
1415 reasons, however, and using it doesn't seem to be any faster than
1416 using lookup_symbol_aux_psymtabs, so I'm commenting it out. */
1417
1418 static struct symbol *
1419 lookup_symbol_aux_minsyms (const char *name,
1420 const char *linkage_name,
1421 const domain_enum domain,
1422 int *is_a_field_of_this,
1423 struct symtab **symtab)
1424 {
1425 struct symbol *sym;
1426 struct blockvector *bv;
1427 const struct block *block;
1428 struct minimal_symbol *msymbol;
1429 struct symtab *s;
1430
1431 if (domain == VAR_DOMAIN)
1432 {
1433 msymbol = lookup_minimal_symbol (name, NULL, NULL);
1434
1435 if (msymbol != NULL)
1436 {
1437 /* OK, we found a minimal symbol in spite of not finding any
1438 symbol. There are various possible explanations for
1439 this. One possibility is the symbol exists in code not
1440 compiled -g. Another possibility is that the 'psymtab'
1441 isn't doing its job. A third possibility, related to #2,
1442 is that we were confused by name-mangling. For instance,
1443 maybe the psymtab isn't doing its job because it only
1444 know about demangled names, but we were given a mangled
1445 name... */
1446
1447 /* We first use the address in the msymbol to try to locate
1448 the appropriate symtab. Note that find_pc_sect_symtab()
1449 has a side-effect of doing psymtab-to-symtab expansion,
1450 for the found symtab. */
1451 s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol),
1452 SYMBOL_BFD_SECTION (msymbol));
1453 if (s != NULL)
1454 {
1455 /* This is a function which has a symtab for its address. */
1456 bv = BLOCKVECTOR (s);
1457 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1458
1459 /* This call used to pass `SYMBOL_LINKAGE_NAME (msymbol)' as the
1460 `name' argument to lookup_block_symbol. But the name
1461 of a minimal symbol is always mangled, so that seems
1462 to be clearly the wrong thing to pass as the
1463 unmangled name. */
1464 sym =
1465 lookup_block_symbol (block, name, linkage_name, domain);
1466 /* We kept static functions in minimal symbol table as well as
1467 in static scope. We want to find them in the symbol table. */
1468 if (!sym)
1469 {
1470 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1471 sym = lookup_block_symbol (block, name,
1472 linkage_name, domain);
1473 }
1474
1475 /* NOTE: carlton/2002-12-04: The following comment was
1476 taken from a time when two versions of this function
1477 were part of the body of lookup_symbol_aux: this
1478 comment was taken from the version of the function
1479 that was #ifdef HPUXHPPA, and the comment was right
1480 before the 'return NULL' part of lookup_symbol_aux.
1481 (Hence the "Fall through and return 0" comment.)
1482 Elena did some digging into the situation for
1483 Fortran, and she reports:
1484
1485 "I asked around (thanks to Jeff Knaggs), and I think
1486 the story for Fortran goes like this:
1487
1488 "Apparently, in older Fortrans, '_' was not part of
1489 the user namespace. g77 attached a final '_' to
1490 procedure names as the exported symbols for linkage
1491 (foo_) , but the symbols went in the debug info just
1492 like 'foo'. The rationale behind this is not
1493 completely clear, and maybe it was done to other
1494 symbols as well, not just procedures." */
1495
1496 /* If we get here with sym == 0, the symbol was
1497 found in the minimal symbol table
1498 but not in the symtab.
1499 Fall through and return 0 to use the msymbol
1500 definition of "foo_".
1501 (Note that outer code generally follows up a call
1502 to this routine with a call to lookup_minimal_symbol(),
1503 so a 0 return means we'll just flow into that other routine).
1504
1505 This happens for Fortran "foo_" symbols,
1506 which are "foo" in the symtab.
1507
1508 This can also happen if "asm" is used to make a
1509 regular symbol but not a debugging symbol, e.g.
1510 asm(".globl _main");
1511 asm("_main:");
1512 */
1513
1514 if (symtab != NULL && sym != NULL)
1515 *symtab = s;
1516 return fixup_symbol_section (sym, s->objfile);
1517 }
1518 }
1519 }
1520
1521 return NULL;
1522 }
1523 #endif /* 0 */
1524
1525 /* A default version of lookup_symbol_nonlocal for use by languages
1526 that can't think of anything better to do. This implements the C
1527 lookup rules. */
1528
1529 struct symbol *
1530 basic_lookup_symbol_nonlocal (const char *name,
1531 const char *linkage_name,
1532 const struct block *block,
1533 const domain_enum domain,
1534 struct symtab **symtab)
1535 {
1536 struct symbol *sym;
1537
1538 /* NOTE: carlton/2003-05-19: The comments below were written when
1539 this (or what turned into this) was part of lookup_symbol_aux;
1540 I'm much less worried about these questions now, since these
1541 decisions have turned out well, but I leave these comments here
1542 for posterity. */
1543
1544 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1545 not it would be appropriate to search the current global block
1546 here as well. (That's what this code used to do before the
1547 is_a_field_of_this check was moved up.) On the one hand, it's
1548 redundant with the lookup_symbol_aux_symtabs search that happens
1549 next. On the other hand, if decode_line_1 is passed an argument
1550 like filename:var, then the user presumably wants 'var' to be
1551 searched for in filename. On the third hand, there shouldn't be
1552 multiple global variables all of which are named 'var', and it's
1553 not like decode_line_1 has ever restricted its search to only
1554 global variables in a single filename. All in all, only
1555 searching the static block here seems best: it's correct and it's
1556 cleanest. */
1557
1558 /* NOTE: carlton/2002-12-05: There's also a possible performance
1559 issue here: if you usually search for global symbols in the
1560 current file, then it would be slightly better to search the
1561 current global block before searching all the symtabs. But there
1562 are other factors that have a much greater effect on performance
1563 than that one, so I don't think we should worry about that for
1564 now. */
1565
1566 sym = lookup_symbol_static (name, linkage_name, block, domain, symtab);
1567 if (sym != NULL)
1568 return sym;
1569
1570 return lookup_symbol_global (name, linkage_name, domain, symtab);
1571 }
1572
1573 /* Lookup a symbol in the static block associated to BLOCK, if there
1574 is one; do nothing if BLOCK is NULL or a global block. */
1575
1576 struct symbol *
1577 lookup_symbol_static (const char *name,
1578 const char *linkage_name,
1579 const struct block *block,
1580 const domain_enum domain,
1581 struct symtab **symtab)
1582 {
1583 const struct block *static_block = block_static_block (block);
1584
1585 if (static_block != NULL)
1586 return lookup_symbol_aux_block (name, linkage_name, static_block,
1587 domain, symtab);
1588 else
1589 return NULL;
1590 }
1591
1592 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1593 necessary). */
1594
1595 struct symbol *
1596 lookup_symbol_global (const char *name,
1597 const char *linkage_name,
1598 const domain_enum domain,
1599 struct symtab **symtab)
1600 {
1601 struct symbol *sym;
1602
1603 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name,
1604 domain, symtab);
1605 if (sym != NULL)
1606 return sym;
1607
1608 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name,
1609 domain, symtab);
1610 }
1611
1612 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1613 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1614 linkage name matches it. Check the global symbols if GLOBAL, the
1615 static symbols if not */
1616
1617 struct partial_symbol *
1618 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1619 const char *linkage_name, int global,
1620 domain_enum domain)
1621 {
1622 struct partial_symbol *temp;
1623 struct partial_symbol **start, **psym;
1624 struct partial_symbol **top, **real_top, **bottom, **center;
1625 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1626 int do_linear_search = 1;
1627
1628 if (length == 0)
1629 {
1630 return (NULL);
1631 }
1632 start = (global ?
1633 pst->objfile->global_psymbols.list + pst->globals_offset :
1634 pst->objfile->static_psymbols.list + pst->statics_offset);
1635
1636 if (global) /* This means we can use a binary search. */
1637 {
1638 do_linear_search = 0;
1639
1640 /* Binary search. This search is guaranteed to end with center
1641 pointing at the earliest partial symbol whose name might be
1642 correct. At that point *all* partial symbols with an
1643 appropriate name will be checked against the correct
1644 domain. */
1645
1646 bottom = start;
1647 top = start + length - 1;
1648 real_top = top;
1649 while (top > bottom)
1650 {
1651 center = bottom + (top - bottom) / 2;
1652 if (!(center < top))
1653 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1654 if (!do_linear_search
1655 && (SYMBOL_LANGUAGE (*center) == language_java))
1656 {
1657 do_linear_search = 1;
1658 }
1659 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1660 {
1661 top = center;
1662 }
1663 else
1664 {
1665 bottom = center + 1;
1666 }
1667 }
1668 if (!(top == bottom))
1669 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1670
1671 while (top <= real_top
1672 && (linkage_name != NULL
1673 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1674 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1675 {
1676 if (SYMBOL_DOMAIN (*top) == domain)
1677 {
1678 return (*top);
1679 }
1680 top++;
1681 }
1682 }
1683
1684 /* Can't use a binary search or else we found during the binary search that
1685 we should also do a linear search. */
1686
1687 if (do_linear_search)
1688 {
1689 for (psym = start; psym < start + length; psym++)
1690 {
1691 if (domain == SYMBOL_DOMAIN (*psym))
1692 {
1693 if (linkage_name != NULL
1694 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1695 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1696 {
1697 return (*psym);
1698 }
1699 }
1700 }
1701 }
1702
1703 return (NULL);
1704 }
1705
1706 /* Look up a type named NAME in the struct_domain. The type returned
1707 must not be opaque -- i.e., must have at least one field
1708 defined. */
1709
1710 struct type *
1711 lookup_transparent_type (const char *name)
1712 {
1713 return current_language->la_lookup_transparent_type (name);
1714 }
1715
1716 /* The standard implementation of lookup_transparent_type. This code
1717 was modeled on lookup_symbol -- the parts not relevant to looking
1718 up types were just left out. In particular it's assumed here that
1719 types are available in struct_domain and only at file-static or
1720 global blocks. */
1721
1722 struct type *
1723 basic_lookup_transparent_type (const char *name)
1724 {
1725 struct symbol *sym;
1726 struct symtab *s = NULL;
1727 struct partial_symtab *ps;
1728 struct blockvector *bv;
1729 struct objfile *objfile;
1730 struct block *block;
1731
1732 /* Now search all the global symbols. Do the symtab's first, then
1733 check the psymtab's. If a psymtab indicates the existence
1734 of the desired name as a global, then do psymtab-to-symtab
1735 conversion on the fly and return the found symbol. */
1736
1737 ALL_PRIMARY_SYMTABS (objfile, s)
1738 {
1739 bv = BLOCKVECTOR (s);
1740 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1741 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1742 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1743 {
1744 return SYMBOL_TYPE (sym);
1745 }
1746 }
1747
1748 ALL_PSYMTABS (objfile, ps)
1749 {
1750 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1751 1, STRUCT_DOMAIN))
1752 {
1753 s = PSYMTAB_TO_SYMTAB (ps);
1754 bv = BLOCKVECTOR (s);
1755 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1756 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1757 if (!sym)
1758 {
1759 /* This shouldn't be necessary, but as a last resort
1760 * try looking in the statics even though the psymtab
1761 * claimed the symbol was global. It's possible that
1762 * the psymtab gets it wrong in some cases.
1763 */
1764 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1765 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1766 if (!sym)
1767 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1768 %s may be an inlined function, or may be a template function\n\
1769 (if a template, try specifying an instantiation: %s<type>)."),
1770 name, ps->filename, name, name);
1771 }
1772 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1773 return SYMBOL_TYPE (sym);
1774 }
1775 }
1776
1777 /* Now search the static file-level symbols.
1778 Not strictly correct, but more useful than an error.
1779 Do the symtab's first, then
1780 check the psymtab's. If a psymtab indicates the existence
1781 of the desired name as a file-level static, then do psymtab-to-symtab
1782 conversion on the fly and return the found symbol.
1783 */
1784
1785 ALL_PRIMARY_SYMTABS (objfile, s)
1786 {
1787 bv = BLOCKVECTOR (s);
1788 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1789 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1790 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1791 {
1792 return SYMBOL_TYPE (sym);
1793 }
1794 }
1795
1796 ALL_PSYMTABS (objfile, ps)
1797 {
1798 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1799 {
1800 s = PSYMTAB_TO_SYMTAB (ps);
1801 bv = BLOCKVECTOR (s);
1802 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1803 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1804 if (!sym)
1805 {
1806 /* This shouldn't be necessary, but as a last resort
1807 * try looking in the globals even though the psymtab
1808 * claimed the symbol was static. It's possible that
1809 * the psymtab gets it wrong in some cases.
1810 */
1811 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1812 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1813 if (!sym)
1814 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1815 %s may be an inlined function, or may be a template function\n\
1816 (if a template, try specifying an instantiation: %s<type>)."),
1817 name, ps->filename, name, name);
1818 }
1819 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1820 return SYMBOL_TYPE (sym);
1821 }
1822 }
1823 return (struct type *) 0;
1824 }
1825
1826
1827 /* Find the psymtab containing main(). */
1828 /* FIXME: What about languages without main() or specially linked
1829 executables that have no main() ? */
1830
1831 struct partial_symtab *
1832 find_main_psymtab (void)
1833 {
1834 struct partial_symtab *pst;
1835 struct objfile *objfile;
1836
1837 ALL_PSYMTABS (objfile, pst)
1838 {
1839 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1840 {
1841 return (pst);
1842 }
1843 }
1844 return (NULL);
1845 }
1846
1847 /* Search BLOCK for symbol NAME in DOMAIN.
1848
1849 Note that if NAME is the demangled form of a C++ symbol, we will fail
1850 to find a match during the binary search of the non-encoded names, but
1851 for now we don't worry about the slight inefficiency of looking for
1852 a match we'll never find, since it will go pretty quick. Once the
1853 binary search terminates, we drop through and do a straight linear
1854 search on the symbols. Each symbol which is marked as being a ObjC/C++
1855 symbol (language_cplus or language_objc set) has both the encoded and
1856 non-encoded names tested for a match.
1857
1858 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1859 particular mangled name.
1860 */
1861
1862 struct symbol *
1863 lookup_block_symbol (const struct block *block, const char *name,
1864 const char *linkage_name,
1865 const domain_enum domain)
1866 {
1867 struct dict_iterator iter;
1868 struct symbol *sym;
1869
1870 if (!BLOCK_FUNCTION (block))
1871 {
1872 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1873 sym != NULL;
1874 sym = dict_iter_name_next (name, &iter))
1875 {
1876 if (SYMBOL_DOMAIN (sym) == domain
1877 && (linkage_name != NULL
1878 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1879 return sym;
1880 }
1881 return NULL;
1882 }
1883 else
1884 {
1885 /* Note that parameter symbols do not always show up last in the
1886 list; this loop makes sure to take anything else other than
1887 parameter symbols first; it only uses parameter symbols as a
1888 last resort. Note that this only takes up extra computation
1889 time on a match. */
1890
1891 struct symbol *sym_found = NULL;
1892
1893 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1894 sym != NULL;
1895 sym = dict_iter_name_next (name, &iter))
1896 {
1897 if (SYMBOL_DOMAIN (sym) == domain
1898 && (linkage_name != NULL
1899 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1900 {
1901 sym_found = sym;
1902 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1903 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1904 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1905 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1906 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1907 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1908 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1909 {
1910 break;
1911 }
1912 }
1913 }
1914 return (sym_found); /* Will be NULL if not found. */
1915 }
1916 }
1917
1918 /* Find the symtab associated with PC and SECTION. Look through the
1919 psymtabs and read in another symtab if necessary. */
1920
1921 struct symtab *
1922 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1923 {
1924 struct block *b;
1925 struct blockvector *bv;
1926 struct symtab *s = NULL;
1927 struct symtab *best_s = NULL;
1928 struct partial_symtab *ps;
1929 struct objfile *objfile;
1930 CORE_ADDR distance = 0;
1931 struct minimal_symbol *msymbol;
1932
1933 /* If we know that this is not a text address, return failure. This is
1934 necessary because we loop based on the block's high and low code
1935 addresses, which do not include the data ranges, and because
1936 we call find_pc_sect_psymtab which has a similar restriction based
1937 on the partial_symtab's texthigh and textlow. */
1938 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1939 if (msymbol
1940 && (msymbol->type == mst_data
1941 || msymbol->type == mst_bss
1942 || msymbol->type == mst_abs
1943 || msymbol->type == mst_file_data
1944 || msymbol->type == mst_file_bss))
1945 return NULL;
1946
1947 /* Search all symtabs for the one whose file contains our address, and which
1948 is the smallest of all the ones containing the address. This is designed
1949 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1950 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1951 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1952
1953 This happens for native ecoff format, where code from included files
1954 gets its own symtab. The symtab for the included file should have
1955 been read in already via the dependency mechanism.
1956 It might be swifter to create several symtabs with the same name
1957 like xcoff does (I'm not sure).
1958
1959 It also happens for objfiles that have their functions reordered.
1960 For these, the symtab we are looking for is not necessarily read in. */
1961
1962 ALL_PRIMARY_SYMTABS (objfile, s)
1963 {
1964 bv = BLOCKVECTOR (s);
1965 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1966
1967 if (BLOCK_START (b) <= pc
1968 && BLOCK_END (b) > pc
1969 && (distance == 0
1970 || BLOCK_END (b) - BLOCK_START (b) < distance))
1971 {
1972 /* For an objfile that has its functions reordered,
1973 find_pc_psymtab will find the proper partial symbol table
1974 and we simply return its corresponding symtab. */
1975 /* In order to better support objfiles that contain both
1976 stabs and coff debugging info, we continue on if a psymtab
1977 can't be found. */
1978 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
1979 {
1980 ps = find_pc_sect_psymtab (pc, section);
1981 if (ps)
1982 return PSYMTAB_TO_SYMTAB (ps);
1983 }
1984 if (section != 0)
1985 {
1986 struct dict_iterator iter;
1987 struct symbol *sym = NULL;
1988
1989 ALL_BLOCK_SYMBOLS (b, iter, sym)
1990 {
1991 fixup_symbol_section (sym, objfile);
1992 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
1993 break;
1994 }
1995 if (sym == NULL)
1996 continue; /* no symbol in this symtab matches section */
1997 }
1998 distance = BLOCK_END (b) - BLOCK_START (b);
1999 best_s = s;
2000 }
2001 }
2002
2003 if (best_s != NULL)
2004 return (best_s);
2005
2006 s = NULL;
2007 ps = find_pc_sect_psymtab (pc, section);
2008 if (ps)
2009 {
2010 if (ps->readin)
2011 /* Might want to error() here (in case symtab is corrupt and
2012 will cause a core dump), but maybe we can successfully
2013 continue, so let's not. */
2014 warning (_("\
2015 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2016 paddr_nz (pc));
2017 s = PSYMTAB_TO_SYMTAB (ps);
2018 }
2019 return (s);
2020 }
2021
2022 /* Find the symtab associated with PC. Look through the psymtabs and
2023 read in another symtab if necessary. Backward compatibility, no section */
2024
2025 struct symtab *
2026 find_pc_symtab (CORE_ADDR pc)
2027 {
2028 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2029 }
2030 \f
2031
2032 /* Find the source file and line number for a given PC value and SECTION.
2033 Return a structure containing a symtab pointer, a line number,
2034 and a pc range for the entire source line.
2035 The value's .pc field is NOT the specified pc.
2036 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2037 use the line that ends there. Otherwise, in that case, the line
2038 that begins there is used. */
2039
2040 /* The big complication here is that a line may start in one file, and end just
2041 before the start of another file. This usually occurs when you #include
2042 code in the middle of a subroutine. To properly find the end of a line's PC
2043 range, we must search all symtabs associated with this compilation unit, and
2044 find the one whose first PC is closer than that of the next line in this
2045 symtab. */
2046
2047 /* If it's worth the effort, we could be using a binary search. */
2048
2049 struct symtab_and_line
2050 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2051 {
2052 struct symtab *s;
2053 struct linetable *l;
2054 int len;
2055 int i;
2056 struct linetable_entry *item;
2057 struct symtab_and_line val;
2058 struct blockvector *bv;
2059 struct minimal_symbol *msymbol;
2060 struct minimal_symbol *mfunsym;
2061
2062 /* Info on best line seen so far, and where it starts, and its file. */
2063
2064 struct linetable_entry *best = NULL;
2065 CORE_ADDR best_end = 0;
2066 struct symtab *best_symtab = 0;
2067
2068 /* Store here the first line number
2069 of a file which contains the line at the smallest pc after PC.
2070 If we don't find a line whose range contains PC,
2071 we will use a line one less than this,
2072 with a range from the start of that file to the first line's pc. */
2073 struct linetable_entry *alt = NULL;
2074 struct symtab *alt_symtab = 0;
2075
2076 /* Info on best line seen in this file. */
2077
2078 struct linetable_entry *prev;
2079
2080 /* If this pc is not from the current frame,
2081 it is the address of the end of a call instruction.
2082 Quite likely that is the start of the following statement.
2083 But what we want is the statement containing the instruction.
2084 Fudge the pc to make sure we get that. */
2085
2086 init_sal (&val); /* initialize to zeroes */
2087
2088 /* It's tempting to assume that, if we can't find debugging info for
2089 any function enclosing PC, that we shouldn't search for line
2090 number info, either. However, GAS can emit line number info for
2091 assembly files --- very helpful when debugging hand-written
2092 assembly code. In such a case, we'd have no debug info for the
2093 function, but we would have line info. */
2094
2095 if (notcurrent)
2096 pc -= 1;
2097
2098 /* elz: added this because this function returned the wrong
2099 information if the pc belongs to a stub (import/export)
2100 to call a shlib function. This stub would be anywhere between
2101 two functions in the target, and the line info was erroneously
2102 taken to be the one of the line before the pc.
2103 */
2104 /* RT: Further explanation:
2105
2106 * We have stubs (trampolines) inserted between procedures.
2107 *
2108 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2109 * exists in the main image.
2110 *
2111 * In the minimal symbol table, we have a bunch of symbols
2112 * sorted by start address. The stubs are marked as "trampoline",
2113 * the others appear as text. E.g.:
2114 *
2115 * Minimal symbol table for main image
2116 * main: code for main (text symbol)
2117 * shr1: stub (trampoline symbol)
2118 * foo: code for foo (text symbol)
2119 * ...
2120 * Minimal symbol table for "shr1" image:
2121 * ...
2122 * shr1: code for shr1 (text symbol)
2123 * ...
2124 *
2125 * So the code below is trying to detect if we are in the stub
2126 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2127 * and if found, do the symbolization from the real-code address
2128 * rather than the stub address.
2129 *
2130 * Assumptions being made about the minimal symbol table:
2131 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2132 * if we're really in the trampoline. If we're beyond it (say
2133 * we're in "foo" in the above example), it'll have a closer
2134 * symbol (the "foo" text symbol for example) and will not
2135 * return the trampoline.
2136 * 2. lookup_minimal_symbol_text() will find a real text symbol
2137 * corresponding to the trampoline, and whose address will
2138 * be different than the trampoline address. I put in a sanity
2139 * check for the address being the same, to avoid an
2140 * infinite recursion.
2141 */
2142 msymbol = lookup_minimal_symbol_by_pc (pc);
2143 if (msymbol != NULL)
2144 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2145 {
2146 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2147 NULL);
2148 if (mfunsym == NULL)
2149 /* I eliminated this warning since it is coming out
2150 * in the following situation:
2151 * gdb shmain // test program with shared libraries
2152 * (gdb) break shr1 // function in shared lib
2153 * Warning: In stub for ...
2154 * In the above situation, the shared lib is not loaded yet,
2155 * so of course we can't find the real func/line info,
2156 * but the "break" still works, and the warning is annoying.
2157 * So I commented out the warning. RT */
2158 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2159 /* fall through */
2160 else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol))
2161 /* Avoid infinite recursion */
2162 /* See above comment about why warning is commented out */
2163 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2164 /* fall through */
2165 else
2166 return find_pc_line (SYMBOL_VALUE (mfunsym), 0);
2167 }
2168
2169
2170 s = find_pc_sect_symtab (pc, section);
2171 if (!s)
2172 {
2173 /* if no symbol information, return previous pc */
2174 if (notcurrent)
2175 pc++;
2176 val.pc = pc;
2177 return val;
2178 }
2179
2180 bv = BLOCKVECTOR (s);
2181
2182 /* Look at all the symtabs that share this blockvector.
2183 They all have the same apriori range, that we found was right;
2184 but they have different line tables. */
2185
2186 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2187 {
2188 /* Find the best line in this symtab. */
2189 l = LINETABLE (s);
2190 if (!l)
2191 continue;
2192 len = l->nitems;
2193 if (len <= 0)
2194 {
2195 /* I think len can be zero if the symtab lacks line numbers
2196 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2197 I'm not sure which, and maybe it depends on the symbol
2198 reader). */
2199 continue;
2200 }
2201
2202 prev = NULL;
2203 item = l->item; /* Get first line info */
2204
2205 /* Is this file's first line closer than the first lines of other files?
2206 If so, record this file, and its first line, as best alternate. */
2207 if (item->pc > pc && (!alt || item->pc < alt->pc))
2208 {
2209 alt = item;
2210 alt_symtab = s;
2211 }
2212
2213 for (i = 0; i < len; i++, item++)
2214 {
2215 /* Leave prev pointing to the linetable entry for the last line
2216 that started at or before PC. */
2217 if (item->pc > pc)
2218 break;
2219
2220 prev = item;
2221 }
2222
2223 /* At this point, prev points at the line whose start addr is <= pc, and
2224 item points at the next line. If we ran off the end of the linetable
2225 (pc >= start of the last line), then prev == item. If pc < start of
2226 the first line, prev will not be set. */
2227
2228 /* Is this file's best line closer than the best in the other files?
2229 If so, record this file, and its best line, as best so far. Don't
2230 save prev if it represents the end of a function (i.e. line number
2231 0) instead of a real line. */
2232
2233 if (prev && prev->line && (!best || prev->pc > best->pc))
2234 {
2235 best = prev;
2236 best_symtab = s;
2237
2238 /* Discard BEST_END if it's before the PC of the current BEST. */
2239 if (best_end <= best->pc)
2240 best_end = 0;
2241 }
2242
2243 /* If another line (denoted by ITEM) is in the linetable and its
2244 PC is after BEST's PC, but before the current BEST_END, then
2245 use ITEM's PC as the new best_end. */
2246 if (best && i < len && item->pc > best->pc
2247 && (best_end == 0 || best_end > item->pc))
2248 best_end = item->pc;
2249 }
2250
2251 if (!best_symtab)
2252 {
2253 /* If we didn't find any line number info, just return zeros.
2254 We used to return alt->line - 1 here, but that could be
2255 anywhere; if we don't have line number info for this PC,
2256 don't make some up. */
2257 val.pc = pc;
2258 }
2259 else if (best->line == 0)
2260 {
2261 /* If our best fit is in a range of PC's for which no line
2262 number info is available (line number is zero) then we didn't
2263 find any valid line information. */
2264 val.pc = pc;
2265 }
2266 else
2267 {
2268 val.symtab = best_symtab;
2269 val.line = best->line;
2270 val.pc = best->pc;
2271 if (best_end && (!alt || best_end < alt->pc))
2272 val.end = best_end;
2273 else if (alt)
2274 val.end = alt->pc;
2275 else
2276 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2277 }
2278 val.section = section;
2279 return val;
2280 }
2281
2282 /* Backward compatibility (no section) */
2283
2284 struct symtab_and_line
2285 find_pc_line (CORE_ADDR pc, int notcurrent)
2286 {
2287 asection *section;
2288
2289 section = find_pc_overlay (pc);
2290 if (pc_in_unmapped_range (pc, section))
2291 pc = overlay_mapped_address (pc, section);
2292 return find_pc_sect_line (pc, section, notcurrent);
2293 }
2294 \f
2295 /* Find line number LINE in any symtab whose name is the same as
2296 SYMTAB.
2297
2298 If found, return the symtab that contains the linetable in which it was
2299 found, set *INDEX to the index in the linetable of the best entry
2300 found, and set *EXACT_MATCH nonzero if the value returned is an
2301 exact match.
2302
2303 If not found, return NULL. */
2304
2305 struct symtab *
2306 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2307 {
2308 int exact;
2309
2310 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2311 so far seen. */
2312
2313 int best_index;
2314 struct linetable *best_linetable;
2315 struct symtab *best_symtab;
2316
2317 /* First try looking it up in the given symtab. */
2318 best_linetable = LINETABLE (symtab);
2319 best_symtab = symtab;
2320 best_index = find_line_common (best_linetable, line, &exact);
2321 if (best_index < 0 || !exact)
2322 {
2323 /* Didn't find an exact match. So we better keep looking for
2324 another symtab with the same name. In the case of xcoff,
2325 multiple csects for one source file (produced by IBM's FORTRAN
2326 compiler) produce multiple symtabs (this is unavoidable
2327 assuming csects can be at arbitrary places in memory and that
2328 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2329
2330 /* BEST is the smallest linenumber > LINE so far seen,
2331 or 0 if none has been seen so far.
2332 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2333 int best;
2334
2335 struct objfile *objfile;
2336 struct symtab *s;
2337
2338 if (best_index >= 0)
2339 best = best_linetable->item[best_index].line;
2340 else
2341 best = 0;
2342
2343 ALL_SYMTABS (objfile, s)
2344 {
2345 struct linetable *l;
2346 int ind;
2347
2348 if (strcmp (symtab->filename, s->filename) != 0)
2349 continue;
2350 l = LINETABLE (s);
2351 ind = find_line_common (l, line, &exact);
2352 if (ind >= 0)
2353 {
2354 if (exact)
2355 {
2356 best_index = ind;
2357 best_linetable = l;
2358 best_symtab = s;
2359 goto done;
2360 }
2361 if (best == 0 || l->item[ind].line < best)
2362 {
2363 best = l->item[ind].line;
2364 best_index = ind;
2365 best_linetable = l;
2366 best_symtab = s;
2367 }
2368 }
2369 }
2370 }
2371 done:
2372 if (best_index < 0)
2373 return NULL;
2374
2375 if (index)
2376 *index = best_index;
2377 if (exact_match)
2378 *exact_match = exact;
2379
2380 return best_symtab;
2381 }
2382 \f
2383 /* Set the PC value for a given source file and line number and return true.
2384 Returns zero for invalid line number (and sets the PC to 0).
2385 The source file is specified with a struct symtab. */
2386
2387 int
2388 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2389 {
2390 struct linetable *l;
2391 int ind;
2392
2393 *pc = 0;
2394 if (symtab == 0)
2395 return 0;
2396
2397 symtab = find_line_symtab (symtab, line, &ind, NULL);
2398 if (symtab != NULL)
2399 {
2400 l = LINETABLE (symtab);
2401 *pc = l->item[ind].pc;
2402 return 1;
2403 }
2404 else
2405 return 0;
2406 }
2407
2408 /* Find the range of pc values in a line.
2409 Store the starting pc of the line into *STARTPTR
2410 and the ending pc (start of next line) into *ENDPTR.
2411 Returns 1 to indicate success.
2412 Returns 0 if could not find the specified line. */
2413
2414 int
2415 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2416 CORE_ADDR *endptr)
2417 {
2418 CORE_ADDR startaddr;
2419 struct symtab_and_line found_sal;
2420
2421 startaddr = sal.pc;
2422 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2423 return 0;
2424
2425 /* This whole function is based on address. For example, if line 10 has
2426 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2427 "info line *0x123" should say the line goes from 0x100 to 0x200
2428 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2429 This also insures that we never give a range like "starts at 0x134
2430 and ends at 0x12c". */
2431
2432 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2433 if (found_sal.line != sal.line)
2434 {
2435 /* The specified line (sal) has zero bytes. */
2436 *startptr = found_sal.pc;
2437 *endptr = found_sal.pc;
2438 }
2439 else
2440 {
2441 *startptr = found_sal.pc;
2442 *endptr = found_sal.end;
2443 }
2444 return 1;
2445 }
2446
2447 /* Given a line table and a line number, return the index into the line
2448 table for the pc of the nearest line whose number is >= the specified one.
2449 Return -1 if none is found. The value is >= 0 if it is an index.
2450
2451 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2452
2453 static int
2454 find_line_common (struct linetable *l, int lineno,
2455 int *exact_match)
2456 {
2457 int i;
2458 int len;
2459
2460 /* BEST is the smallest linenumber > LINENO so far seen,
2461 or 0 if none has been seen so far.
2462 BEST_INDEX identifies the item for it. */
2463
2464 int best_index = -1;
2465 int best = 0;
2466
2467 if (lineno <= 0)
2468 return -1;
2469 if (l == 0)
2470 return -1;
2471
2472 len = l->nitems;
2473 for (i = 0; i < len; i++)
2474 {
2475 struct linetable_entry *item = &(l->item[i]);
2476
2477 if (item->line == lineno)
2478 {
2479 /* Return the first (lowest address) entry which matches. */
2480 *exact_match = 1;
2481 return i;
2482 }
2483
2484 if (item->line > lineno && (best == 0 || item->line < best))
2485 {
2486 best = item->line;
2487 best_index = i;
2488 }
2489 }
2490
2491 /* If we got here, we didn't get an exact match. */
2492
2493 *exact_match = 0;
2494 return best_index;
2495 }
2496
2497 int
2498 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2499 {
2500 struct symtab_and_line sal;
2501 sal = find_pc_line (pc, 0);
2502 *startptr = sal.pc;
2503 *endptr = sal.end;
2504 return sal.symtab != 0;
2505 }
2506
2507 /* Given a function symbol SYM, find the symtab and line for the start
2508 of the function.
2509 If the argument FUNFIRSTLINE is nonzero, we want the first line
2510 of real code inside the function. */
2511
2512 struct symtab_and_line
2513 find_function_start_sal (struct symbol *sym, int funfirstline)
2514 {
2515 CORE_ADDR pc;
2516 struct symtab_and_line sal;
2517
2518 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2519 fixup_symbol_section (sym, NULL);
2520 if (funfirstline)
2521 { /* skip "first line" of function (which is actually its prologue) */
2522 asection *section = SYMBOL_BFD_SECTION (sym);
2523 /* If function is in an unmapped overlay, use its unmapped LMA
2524 address, so that gdbarch_skip_prologue has something unique to work
2525 on */
2526 if (section_is_overlay (section) &&
2527 !section_is_mapped (section))
2528 pc = overlay_unmapped_address (pc, section);
2529
2530 pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
2531 pc = gdbarch_skip_prologue (current_gdbarch, pc);
2532
2533 /* For overlays, map pc back into its mapped VMA range */
2534 pc = overlay_mapped_address (pc, section);
2535 }
2536 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2537
2538 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2539 line is still part of the same function. */
2540 if (sal.pc != pc
2541 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end
2542 && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2543 {
2544 /* First pc of next line */
2545 pc = sal.end;
2546 /* Recalculate the line number (might not be N+1). */
2547 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2548 }
2549 sal.pc = pc;
2550
2551 return sal;
2552 }
2553
2554 /* If P is of the form "operator[ \t]+..." where `...' is
2555 some legitimate operator text, return a pointer to the
2556 beginning of the substring of the operator text.
2557 Otherwise, return "". */
2558 char *
2559 operator_chars (char *p, char **end)
2560 {
2561 *end = "";
2562 if (strncmp (p, "operator", 8))
2563 return *end;
2564 p += 8;
2565
2566 /* Don't get faked out by `operator' being part of a longer
2567 identifier. */
2568 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2569 return *end;
2570
2571 /* Allow some whitespace between `operator' and the operator symbol. */
2572 while (*p == ' ' || *p == '\t')
2573 p++;
2574
2575 /* Recognize 'operator TYPENAME'. */
2576
2577 if (isalpha (*p) || *p == '_' || *p == '$')
2578 {
2579 char *q = p + 1;
2580 while (isalnum (*q) || *q == '_' || *q == '$')
2581 q++;
2582 *end = q;
2583 return p;
2584 }
2585
2586 while (*p)
2587 switch (*p)
2588 {
2589 case '\\': /* regexp quoting */
2590 if (p[1] == '*')
2591 {
2592 if (p[2] == '=') /* 'operator\*=' */
2593 *end = p + 3;
2594 else /* 'operator\*' */
2595 *end = p + 2;
2596 return p;
2597 }
2598 else if (p[1] == '[')
2599 {
2600 if (p[2] == ']')
2601 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2602 else if (p[2] == '\\' && p[3] == ']')
2603 {
2604 *end = p + 4; /* 'operator\[\]' */
2605 return p;
2606 }
2607 else
2608 error (_("nothing is allowed between '[' and ']'"));
2609 }
2610 else
2611 {
2612 /* Gratuitous qoute: skip it and move on. */
2613 p++;
2614 continue;
2615 }
2616 break;
2617 case '!':
2618 case '=':
2619 case '*':
2620 case '/':
2621 case '%':
2622 case '^':
2623 if (p[1] == '=')
2624 *end = p + 2;
2625 else
2626 *end = p + 1;
2627 return p;
2628 case '<':
2629 case '>':
2630 case '+':
2631 case '-':
2632 case '&':
2633 case '|':
2634 if (p[0] == '-' && p[1] == '>')
2635 {
2636 /* Struct pointer member operator 'operator->'. */
2637 if (p[2] == '*')
2638 {
2639 *end = p + 3; /* 'operator->*' */
2640 return p;
2641 }
2642 else if (p[2] == '\\')
2643 {
2644 *end = p + 4; /* Hopefully 'operator->\*' */
2645 return p;
2646 }
2647 else
2648 {
2649 *end = p + 2; /* 'operator->' */
2650 return p;
2651 }
2652 }
2653 if (p[1] == '=' || p[1] == p[0])
2654 *end = p + 2;
2655 else
2656 *end = p + 1;
2657 return p;
2658 case '~':
2659 case ',':
2660 *end = p + 1;
2661 return p;
2662 case '(':
2663 if (p[1] != ')')
2664 error (_("`operator ()' must be specified without whitespace in `()'"));
2665 *end = p + 2;
2666 return p;
2667 case '?':
2668 if (p[1] != ':')
2669 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2670 *end = p + 2;
2671 return p;
2672 case '[':
2673 if (p[1] != ']')
2674 error (_("`operator []' must be specified without whitespace in `[]'"));
2675 *end = p + 2;
2676 return p;
2677 default:
2678 error (_("`operator %s' not supported"), p);
2679 break;
2680 }
2681
2682 *end = "";
2683 return *end;
2684 }
2685 \f
2686
2687 /* If FILE is not already in the table of files, return zero;
2688 otherwise return non-zero. Optionally add FILE to the table if ADD
2689 is non-zero. If *FIRST is non-zero, forget the old table
2690 contents. */
2691 static int
2692 filename_seen (const char *file, int add, int *first)
2693 {
2694 /* Table of files seen so far. */
2695 static const char **tab = NULL;
2696 /* Allocated size of tab in elements.
2697 Start with one 256-byte block (when using GNU malloc.c).
2698 24 is the malloc overhead when range checking is in effect. */
2699 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2700 /* Current size of tab in elements. */
2701 static int tab_cur_size;
2702 const char **p;
2703
2704 if (*first)
2705 {
2706 if (tab == NULL)
2707 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2708 tab_cur_size = 0;
2709 }
2710
2711 /* Is FILE in tab? */
2712 for (p = tab; p < tab + tab_cur_size; p++)
2713 if (strcmp (*p, file) == 0)
2714 return 1;
2715
2716 /* No; maybe add it to tab. */
2717 if (add)
2718 {
2719 if (tab_cur_size == tab_alloc_size)
2720 {
2721 tab_alloc_size *= 2;
2722 tab = (const char **) xrealloc ((char *) tab,
2723 tab_alloc_size * sizeof (*tab));
2724 }
2725 tab[tab_cur_size++] = file;
2726 }
2727
2728 return 0;
2729 }
2730
2731 /* Slave routine for sources_info. Force line breaks at ,'s.
2732 NAME is the name to print and *FIRST is nonzero if this is the first
2733 name printed. Set *FIRST to zero. */
2734 static void
2735 output_source_filename (const char *name, int *first)
2736 {
2737 /* Since a single source file can result in several partial symbol
2738 tables, we need to avoid printing it more than once. Note: if
2739 some of the psymtabs are read in and some are not, it gets
2740 printed both under "Source files for which symbols have been
2741 read" and "Source files for which symbols will be read in on
2742 demand". I consider this a reasonable way to deal with the
2743 situation. I'm not sure whether this can also happen for
2744 symtabs; it doesn't hurt to check. */
2745
2746 /* Was NAME already seen? */
2747 if (filename_seen (name, 1, first))
2748 {
2749 /* Yes; don't print it again. */
2750 return;
2751 }
2752 /* No; print it and reset *FIRST. */
2753 if (*first)
2754 {
2755 *first = 0;
2756 }
2757 else
2758 {
2759 printf_filtered (", ");
2760 }
2761
2762 wrap_here ("");
2763 fputs_filtered (name, gdb_stdout);
2764 }
2765
2766 static void
2767 sources_info (char *ignore, int from_tty)
2768 {
2769 struct symtab *s;
2770 struct partial_symtab *ps;
2771 struct objfile *objfile;
2772 int first;
2773
2774 if (!have_full_symbols () && !have_partial_symbols ())
2775 {
2776 error (_("No symbol table is loaded. Use the \"file\" command."));
2777 }
2778
2779 printf_filtered ("Source files for which symbols have been read in:\n\n");
2780
2781 first = 1;
2782 ALL_SYMTABS (objfile, s)
2783 {
2784 const char *fullname = symtab_to_fullname (s);
2785 output_source_filename (fullname ? fullname : s->filename, &first);
2786 }
2787 printf_filtered ("\n\n");
2788
2789 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2790
2791 first = 1;
2792 ALL_PSYMTABS (objfile, ps)
2793 {
2794 if (!ps->readin)
2795 {
2796 const char *fullname = psymtab_to_fullname (ps);
2797 output_source_filename (fullname ? fullname : ps->filename, &first);
2798 }
2799 }
2800 printf_filtered ("\n");
2801 }
2802
2803 static int
2804 file_matches (char *file, char *files[], int nfiles)
2805 {
2806 int i;
2807
2808 if (file != NULL && nfiles != 0)
2809 {
2810 for (i = 0; i < nfiles; i++)
2811 {
2812 if (strcmp (files[i], lbasename (file)) == 0)
2813 return 1;
2814 }
2815 }
2816 else if (nfiles == 0)
2817 return 1;
2818 return 0;
2819 }
2820
2821 /* Free any memory associated with a search. */
2822 void
2823 free_search_symbols (struct symbol_search *symbols)
2824 {
2825 struct symbol_search *p;
2826 struct symbol_search *next;
2827
2828 for (p = symbols; p != NULL; p = next)
2829 {
2830 next = p->next;
2831 xfree (p);
2832 }
2833 }
2834
2835 static void
2836 do_free_search_symbols_cleanup (void *symbols)
2837 {
2838 free_search_symbols (symbols);
2839 }
2840
2841 struct cleanup *
2842 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2843 {
2844 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2845 }
2846
2847 /* Helper function for sort_search_symbols and qsort. Can only
2848 sort symbols, not minimal symbols. */
2849 static int
2850 compare_search_syms (const void *sa, const void *sb)
2851 {
2852 struct symbol_search **sym_a = (struct symbol_search **) sa;
2853 struct symbol_search **sym_b = (struct symbol_search **) sb;
2854
2855 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2856 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2857 }
2858
2859 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2860 prevtail where it is, but update its next pointer to point to
2861 the first of the sorted symbols. */
2862 static struct symbol_search *
2863 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2864 {
2865 struct symbol_search **symbols, *symp, *old_next;
2866 int i;
2867
2868 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2869 * nfound);
2870 symp = prevtail->next;
2871 for (i = 0; i < nfound; i++)
2872 {
2873 symbols[i] = symp;
2874 symp = symp->next;
2875 }
2876 /* Generally NULL. */
2877 old_next = symp;
2878
2879 qsort (symbols, nfound, sizeof (struct symbol_search *),
2880 compare_search_syms);
2881
2882 symp = prevtail;
2883 for (i = 0; i < nfound; i++)
2884 {
2885 symp->next = symbols[i];
2886 symp = symp->next;
2887 }
2888 symp->next = old_next;
2889
2890 xfree (symbols);
2891 return symp;
2892 }
2893
2894 /* Search the symbol table for matches to the regular expression REGEXP,
2895 returning the results in *MATCHES.
2896
2897 Only symbols of KIND are searched:
2898 FUNCTIONS_DOMAIN - search all functions
2899 TYPES_DOMAIN - search all type names
2900 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2901 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2902 and constants (enums)
2903
2904 free_search_symbols should be called when *MATCHES is no longer needed.
2905
2906 The results are sorted locally; each symtab's global and static blocks are
2907 separately alphabetized.
2908 */
2909 void
2910 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2911 struct symbol_search **matches)
2912 {
2913 struct symtab *s;
2914 struct partial_symtab *ps;
2915 struct blockvector *bv;
2916 struct block *b;
2917 int i = 0;
2918 struct dict_iterator iter;
2919 struct symbol *sym;
2920 struct partial_symbol **psym;
2921 struct objfile *objfile;
2922 struct minimal_symbol *msymbol;
2923 char *val;
2924 int found_misc = 0;
2925 static enum minimal_symbol_type types[]
2926 =
2927 {mst_data, mst_text, mst_abs, mst_unknown};
2928 static enum minimal_symbol_type types2[]
2929 =
2930 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2931 static enum minimal_symbol_type types3[]
2932 =
2933 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2934 static enum minimal_symbol_type types4[]
2935 =
2936 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2937 enum minimal_symbol_type ourtype;
2938 enum minimal_symbol_type ourtype2;
2939 enum minimal_symbol_type ourtype3;
2940 enum minimal_symbol_type ourtype4;
2941 struct symbol_search *sr;
2942 struct symbol_search *psr;
2943 struct symbol_search *tail;
2944 struct cleanup *old_chain = NULL;
2945
2946 if (kind < VARIABLES_DOMAIN)
2947 error (_("must search on specific domain"));
2948
2949 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2950 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2951 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2952 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2953
2954 sr = *matches = NULL;
2955 tail = NULL;
2956
2957 if (regexp != NULL)
2958 {
2959 /* Make sure spacing is right for C++ operators.
2960 This is just a courtesy to make the matching less sensitive
2961 to how many spaces the user leaves between 'operator'
2962 and <TYPENAME> or <OPERATOR>. */
2963 char *opend;
2964 char *opname = operator_chars (regexp, &opend);
2965 if (*opname)
2966 {
2967 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2968 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2969 {
2970 /* There should 1 space between 'operator' and 'TYPENAME'. */
2971 if (opname[-1] != ' ' || opname[-2] == ' ')
2972 fix = 1;
2973 }
2974 else
2975 {
2976 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2977 if (opname[-1] == ' ')
2978 fix = 0;
2979 }
2980 /* If wrong number of spaces, fix it. */
2981 if (fix >= 0)
2982 {
2983 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2984 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2985 regexp = tmp;
2986 }
2987 }
2988
2989 if (0 != (val = re_comp (regexp)))
2990 error (_("Invalid regexp (%s): %s"), val, regexp);
2991 }
2992
2993 /* Search through the partial symtabs *first* for all symbols
2994 matching the regexp. That way we don't have to reproduce all of
2995 the machinery below. */
2996
2997 ALL_PSYMTABS (objfile, ps)
2998 {
2999 struct partial_symbol **bound, **gbound, **sbound;
3000 int keep_going = 1;
3001
3002 if (ps->readin)
3003 continue;
3004
3005 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3006 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3007 bound = gbound;
3008
3009 /* Go through all of the symbols stored in a partial
3010 symtab in one loop. */
3011 psym = objfile->global_psymbols.list + ps->globals_offset;
3012 while (keep_going)
3013 {
3014 if (psym >= bound)
3015 {
3016 if (bound == gbound && ps->n_static_syms != 0)
3017 {
3018 psym = objfile->static_psymbols.list + ps->statics_offset;
3019 bound = sbound;
3020 }
3021 else
3022 keep_going = 0;
3023 continue;
3024 }
3025 else
3026 {
3027 QUIT;
3028
3029 /* If it would match (logic taken from loop below)
3030 load the file and go on to the next one. We check the
3031 filename here, but that's a bit bogus: we don't know
3032 what file it really comes from until we have full
3033 symtabs. The symbol might be in a header file included by
3034 this psymtab. This only affects Insight. */
3035 if (file_matches (ps->filename, files, nfiles)
3036 && ((regexp == NULL
3037 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3038 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3039 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3040 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3041 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3042 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3043 {
3044 PSYMTAB_TO_SYMTAB (ps);
3045 keep_going = 0;
3046 }
3047 }
3048 psym++;
3049 }
3050 }
3051
3052 /* Here, we search through the minimal symbol tables for functions
3053 and variables that match, and force their symbols to be read.
3054 This is in particular necessary for demangled variable names,
3055 which are no longer put into the partial symbol tables.
3056 The symbol will then be found during the scan of symtabs below.
3057
3058 For functions, find_pc_symtab should succeed if we have debug info
3059 for the function, for variables we have to call lookup_symbol
3060 to determine if the variable has debug info.
3061 If the lookup fails, set found_misc so that we will rescan to print
3062 any matching symbols without debug info.
3063 */
3064
3065 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3066 {
3067 ALL_MSYMBOLS (objfile, msymbol)
3068 {
3069 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3070 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3071 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3072 MSYMBOL_TYPE (msymbol) == ourtype4)
3073 {
3074 if (regexp == NULL
3075 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3076 {
3077 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3078 {
3079 /* FIXME: carlton/2003-02-04: Given that the
3080 semantics of lookup_symbol keeps on changing
3081 slightly, it would be a nice idea if we had a
3082 function lookup_symbol_minsym that found the
3083 symbol associated to a given minimal symbol (if
3084 any). */
3085 if (kind == FUNCTIONS_DOMAIN
3086 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3087 (struct block *) NULL,
3088 VAR_DOMAIN,
3089 0, (struct symtab **) NULL)
3090 == NULL)
3091 found_misc = 1;
3092 }
3093 }
3094 }
3095 }
3096 }
3097
3098 ALL_PRIMARY_SYMTABS (objfile, s)
3099 {
3100 bv = BLOCKVECTOR (s);
3101 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3102 {
3103 struct symbol_search *prevtail = tail;
3104 int nfound = 0;
3105 b = BLOCKVECTOR_BLOCK (bv, i);
3106 ALL_BLOCK_SYMBOLS (b, iter, sym)
3107 {
3108 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3109 QUIT;
3110
3111 if (file_matches (real_symtab->filename, files, nfiles)
3112 && ((regexp == NULL
3113 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3114 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3115 && SYMBOL_CLASS (sym) != LOC_BLOCK
3116 && SYMBOL_CLASS (sym) != LOC_CONST)
3117 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3118 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3119 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3120 {
3121 /* match */
3122 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3123 psr->block = i;
3124 psr->symtab = real_symtab;
3125 psr->symbol = sym;
3126 psr->msymbol = NULL;
3127 psr->next = NULL;
3128 if (tail == NULL)
3129 sr = psr;
3130 else
3131 tail->next = psr;
3132 tail = psr;
3133 nfound ++;
3134 }
3135 }
3136 if (nfound > 0)
3137 {
3138 if (prevtail == NULL)
3139 {
3140 struct symbol_search dummy;
3141
3142 dummy.next = sr;
3143 tail = sort_search_symbols (&dummy, nfound);
3144 sr = dummy.next;
3145
3146 old_chain = make_cleanup_free_search_symbols (sr);
3147 }
3148 else
3149 tail = sort_search_symbols (prevtail, nfound);
3150 }
3151 }
3152 }
3153
3154 /* If there are no eyes, avoid all contact. I mean, if there are
3155 no debug symbols, then print directly from the msymbol_vector. */
3156
3157 if (found_misc || kind != FUNCTIONS_DOMAIN)
3158 {
3159 ALL_MSYMBOLS (objfile, msymbol)
3160 {
3161 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3162 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3163 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3164 MSYMBOL_TYPE (msymbol) == ourtype4)
3165 {
3166 if (regexp == NULL
3167 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3168 {
3169 /* Functions: Look up by address. */
3170 if (kind != FUNCTIONS_DOMAIN ||
3171 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3172 {
3173 /* Variables/Absolutes: Look up by name */
3174 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3175 (struct block *) NULL, VAR_DOMAIN,
3176 0, (struct symtab **) NULL) == NULL)
3177 {
3178 /* match */
3179 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3180 psr->block = i;
3181 psr->msymbol = msymbol;
3182 psr->symtab = NULL;
3183 psr->symbol = NULL;
3184 psr->next = NULL;
3185 if (tail == NULL)
3186 {
3187 sr = psr;
3188 old_chain = make_cleanup_free_search_symbols (sr);
3189 }
3190 else
3191 tail->next = psr;
3192 tail = psr;
3193 }
3194 }
3195 }
3196 }
3197 }
3198 }
3199
3200 *matches = sr;
3201 if (sr != NULL)
3202 discard_cleanups (old_chain);
3203 }
3204
3205 /* Helper function for symtab_symbol_info, this function uses
3206 the data returned from search_symbols() to print information
3207 regarding the match to gdb_stdout.
3208 */
3209 static void
3210 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3211 int block, char *last)
3212 {
3213 if (last == NULL || strcmp (last, s->filename) != 0)
3214 {
3215 fputs_filtered ("\nFile ", gdb_stdout);
3216 fputs_filtered (s->filename, gdb_stdout);
3217 fputs_filtered (":\n", gdb_stdout);
3218 }
3219
3220 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3221 printf_filtered ("static ");
3222
3223 /* Typedef that is not a C++ class */
3224 if (kind == TYPES_DOMAIN
3225 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3226 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3227 /* variable, func, or typedef-that-is-c++-class */
3228 else if (kind < TYPES_DOMAIN ||
3229 (kind == TYPES_DOMAIN &&
3230 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3231 {
3232 type_print (SYMBOL_TYPE (sym),
3233 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3234 ? "" : SYMBOL_PRINT_NAME (sym)),
3235 gdb_stdout, 0);
3236
3237 printf_filtered (";\n");
3238 }
3239 }
3240
3241 /* This help function for symtab_symbol_info() prints information
3242 for non-debugging symbols to gdb_stdout.
3243 */
3244 static void
3245 print_msymbol_info (struct minimal_symbol *msymbol)
3246 {
3247 char *tmp;
3248
3249 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3250 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3251 & (CORE_ADDR) 0xffffffff,
3252 8);
3253 else
3254 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3255 16);
3256 printf_filtered ("%s %s\n",
3257 tmp, SYMBOL_PRINT_NAME (msymbol));
3258 }
3259
3260 /* This is the guts of the commands "info functions", "info types", and
3261 "info variables". It calls search_symbols to find all matches and then
3262 print_[m]symbol_info to print out some useful information about the
3263 matches.
3264 */
3265 static void
3266 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3267 {
3268 static char *classnames[]
3269 =
3270 {"variable", "function", "type", "method"};
3271 struct symbol_search *symbols;
3272 struct symbol_search *p;
3273 struct cleanup *old_chain;
3274 char *last_filename = NULL;
3275 int first = 1;
3276
3277 /* must make sure that if we're interrupted, symbols gets freed */
3278 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3279 old_chain = make_cleanup_free_search_symbols (symbols);
3280
3281 printf_filtered (regexp
3282 ? "All %ss matching regular expression \"%s\":\n"
3283 : "All defined %ss:\n",
3284 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3285
3286 for (p = symbols; p != NULL; p = p->next)
3287 {
3288 QUIT;
3289
3290 if (p->msymbol != NULL)
3291 {
3292 if (first)
3293 {
3294 printf_filtered ("\nNon-debugging symbols:\n");
3295 first = 0;
3296 }
3297 print_msymbol_info (p->msymbol);
3298 }
3299 else
3300 {
3301 print_symbol_info (kind,
3302 p->symtab,
3303 p->symbol,
3304 p->block,
3305 last_filename);
3306 last_filename = p->symtab->filename;
3307 }
3308 }
3309
3310 do_cleanups (old_chain);
3311 }
3312
3313 static void
3314 variables_info (char *regexp, int from_tty)
3315 {
3316 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3317 }
3318
3319 static void
3320 functions_info (char *regexp, int from_tty)
3321 {
3322 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3323 }
3324
3325
3326 static void
3327 types_info (char *regexp, int from_tty)
3328 {
3329 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3330 }
3331
3332 /* Breakpoint all functions matching regular expression. */
3333
3334 void
3335 rbreak_command_wrapper (char *regexp, int from_tty)
3336 {
3337 rbreak_command (regexp, from_tty);
3338 }
3339
3340 static void
3341 rbreak_command (char *regexp, int from_tty)
3342 {
3343 struct symbol_search *ss;
3344 struct symbol_search *p;
3345 struct cleanup *old_chain;
3346
3347 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3348 old_chain = make_cleanup_free_search_symbols (ss);
3349
3350 for (p = ss; p != NULL; p = p->next)
3351 {
3352 if (p->msymbol == NULL)
3353 {
3354 char *string = alloca (strlen (p->symtab->filename)
3355 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3356 + 4);
3357 strcpy (string, p->symtab->filename);
3358 strcat (string, ":'");
3359 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3360 strcat (string, "'");
3361 break_command (string, from_tty);
3362 print_symbol_info (FUNCTIONS_DOMAIN,
3363 p->symtab,
3364 p->symbol,
3365 p->block,
3366 p->symtab->filename);
3367 }
3368 else
3369 {
3370 break_command (SYMBOL_LINKAGE_NAME (p->msymbol), from_tty);
3371 printf_filtered ("<function, no debug info> %s;\n",
3372 SYMBOL_PRINT_NAME (p->msymbol));
3373 }
3374 }
3375
3376 do_cleanups (old_chain);
3377 }
3378 \f
3379
3380 /* Helper routine for make_symbol_completion_list. */
3381
3382 static int return_val_size;
3383 static int return_val_index;
3384 static char **return_val;
3385
3386 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3387 completion_list_add_name \
3388 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3389
3390 /* Test to see if the symbol specified by SYMNAME (which is already
3391 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3392 characters. If so, add it to the current completion list. */
3393
3394 static void
3395 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3396 char *text, char *word)
3397 {
3398 int newsize;
3399 int i;
3400
3401 /* clip symbols that cannot match */
3402
3403 if (strncmp (symname, sym_text, sym_text_len) != 0)
3404 {
3405 return;
3406 }
3407
3408 /* We have a match for a completion, so add SYMNAME to the current list
3409 of matches. Note that the name is moved to freshly malloc'd space. */
3410
3411 {
3412 char *new;
3413 if (word == sym_text)
3414 {
3415 new = xmalloc (strlen (symname) + 5);
3416 strcpy (new, symname);
3417 }
3418 else if (word > sym_text)
3419 {
3420 /* Return some portion of symname. */
3421 new = xmalloc (strlen (symname) + 5);
3422 strcpy (new, symname + (word - sym_text));
3423 }
3424 else
3425 {
3426 /* Return some of SYM_TEXT plus symname. */
3427 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3428 strncpy (new, word, sym_text - word);
3429 new[sym_text - word] = '\0';
3430 strcat (new, symname);
3431 }
3432
3433 if (return_val_index + 3 > return_val_size)
3434 {
3435 newsize = (return_val_size *= 2) * sizeof (char *);
3436 return_val = (char **) xrealloc ((char *) return_val, newsize);
3437 }
3438 return_val[return_val_index++] = new;
3439 return_val[return_val_index] = NULL;
3440 }
3441 }
3442
3443 /* ObjC: In case we are completing on a selector, look as the msymbol
3444 again and feed all the selectors into the mill. */
3445
3446 static void
3447 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3448 int sym_text_len, char *text, char *word)
3449 {
3450 static char *tmp = NULL;
3451 static unsigned int tmplen = 0;
3452
3453 char *method, *category, *selector;
3454 char *tmp2 = NULL;
3455
3456 method = SYMBOL_NATURAL_NAME (msymbol);
3457
3458 /* Is it a method? */
3459 if ((method[0] != '-') && (method[0] != '+'))
3460 return;
3461
3462 if (sym_text[0] == '[')
3463 /* Complete on shortened method method. */
3464 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3465
3466 while ((strlen (method) + 1) >= tmplen)
3467 {
3468 if (tmplen == 0)
3469 tmplen = 1024;
3470 else
3471 tmplen *= 2;
3472 tmp = xrealloc (tmp, tmplen);
3473 }
3474 selector = strchr (method, ' ');
3475 if (selector != NULL)
3476 selector++;
3477
3478 category = strchr (method, '(');
3479
3480 if ((category != NULL) && (selector != NULL))
3481 {
3482 memcpy (tmp, method, (category - method));
3483 tmp[category - method] = ' ';
3484 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3485 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3486 if (sym_text[0] == '[')
3487 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3488 }
3489
3490 if (selector != NULL)
3491 {
3492 /* Complete on selector only. */
3493 strcpy (tmp, selector);
3494 tmp2 = strchr (tmp, ']');
3495 if (tmp2 != NULL)
3496 *tmp2 = '\0';
3497
3498 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3499 }
3500 }
3501
3502 /* Break the non-quoted text based on the characters which are in
3503 symbols. FIXME: This should probably be language-specific. */
3504
3505 static char *
3506 language_search_unquoted_string (char *text, char *p)
3507 {
3508 for (; p > text; --p)
3509 {
3510 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3511 continue;
3512 else
3513 {
3514 if ((current_language->la_language == language_objc))
3515 {
3516 if (p[-1] == ':') /* might be part of a method name */
3517 continue;
3518 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3519 p -= 2; /* beginning of a method name */
3520 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3521 { /* might be part of a method name */
3522 char *t = p;
3523
3524 /* Seeing a ' ' or a '(' is not conclusive evidence
3525 that we are in the middle of a method name. However,
3526 finding "-[" or "+[" should be pretty un-ambiguous.
3527 Unfortunately we have to find it now to decide. */
3528
3529 while (t > text)
3530 if (isalnum (t[-1]) || t[-1] == '_' ||
3531 t[-1] == ' ' || t[-1] == ':' ||
3532 t[-1] == '(' || t[-1] == ')')
3533 --t;
3534 else
3535 break;
3536
3537 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3538 p = t - 2; /* method name detected */
3539 /* else we leave with p unchanged */
3540 }
3541 }
3542 break;
3543 }
3544 }
3545 return p;
3546 }
3547
3548
3549 /* Return a NULL terminated array of all symbols (regardless of class)
3550 which begin by matching TEXT. If the answer is no symbols, then
3551 the return value is an array which contains only a NULL pointer.
3552
3553 Problem: All of the symbols have to be copied because readline frees them.
3554 I'm not going to worry about this; hopefully there won't be that many. */
3555
3556 char **
3557 make_symbol_completion_list (char *text, char *word)
3558 {
3559 struct symbol *sym;
3560 struct symtab *s;
3561 struct partial_symtab *ps;
3562 struct minimal_symbol *msymbol;
3563 struct objfile *objfile;
3564 struct block *b, *surrounding_static_block = 0;
3565 struct dict_iterator iter;
3566 int j;
3567 struct partial_symbol **psym;
3568 /* The symbol we are completing on. Points in same buffer as text. */
3569 char *sym_text;
3570 /* Length of sym_text. */
3571 int sym_text_len;
3572
3573 /* Now look for the symbol we are supposed to complete on.
3574 FIXME: This should be language-specific. */
3575 {
3576 char *p;
3577 char quote_found;
3578 char *quote_pos = NULL;
3579
3580 /* First see if this is a quoted string. */
3581 quote_found = '\0';
3582 for (p = text; *p != '\0'; ++p)
3583 {
3584 if (quote_found != '\0')
3585 {
3586 if (*p == quote_found)
3587 /* Found close quote. */
3588 quote_found = '\0';
3589 else if (*p == '\\' && p[1] == quote_found)
3590 /* A backslash followed by the quote character
3591 doesn't end the string. */
3592 ++p;
3593 }
3594 else if (*p == '\'' || *p == '"')
3595 {
3596 quote_found = *p;
3597 quote_pos = p;
3598 }
3599 }
3600 if (quote_found == '\'')
3601 /* A string within single quotes can be a symbol, so complete on it. */
3602 sym_text = quote_pos + 1;
3603 else if (quote_found == '"')
3604 /* A double-quoted string is never a symbol, nor does it make sense
3605 to complete it any other way. */
3606 {
3607 return_val = (char **) xmalloc (sizeof (char *));
3608 return_val[0] = NULL;
3609 return return_val;
3610 }
3611 else
3612 {
3613 /* It is not a quoted string. Break it based on the characters
3614 which are in symbols. */
3615 while (p > text)
3616 {
3617 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3618 --p;
3619 else
3620 break;
3621 }
3622 sym_text = p;
3623 }
3624 }
3625
3626 sym_text_len = strlen (sym_text);
3627
3628 return_val_size = 100;
3629 return_val_index = 0;
3630 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3631 return_val[0] = NULL;
3632
3633 /* Look through the partial symtabs for all symbols which begin
3634 by matching SYM_TEXT. Add each one that you find to the list. */
3635
3636 ALL_PSYMTABS (objfile, ps)
3637 {
3638 /* If the psymtab's been read in we'll get it when we search
3639 through the blockvector. */
3640 if (ps->readin)
3641 continue;
3642
3643 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3644 psym < (objfile->global_psymbols.list + ps->globals_offset
3645 + ps->n_global_syms);
3646 psym++)
3647 {
3648 /* If interrupted, then quit. */
3649 QUIT;
3650 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3651 }
3652
3653 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3654 psym < (objfile->static_psymbols.list + ps->statics_offset
3655 + ps->n_static_syms);
3656 psym++)
3657 {
3658 QUIT;
3659 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3660 }
3661 }
3662
3663 /* At this point scan through the misc symbol vectors and add each
3664 symbol you find to the list. Eventually we want to ignore
3665 anything that isn't a text symbol (everything else will be
3666 handled by the psymtab code above). */
3667
3668 ALL_MSYMBOLS (objfile, msymbol)
3669 {
3670 QUIT;
3671 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3672
3673 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3674 }
3675
3676 /* Search upwards from currently selected frame (so that we can
3677 complete on local vars. */
3678
3679 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3680 {
3681 if (!BLOCK_SUPERBLOCK (b))
3682 {
3683 surrounding_static_block = b; /* For elmin of dups */
3684 }
3685
3686 /* Also catch fields of types defined in this places which match our
3687 text string. Only complete on types visible from current context. */
3688
3689 ALL_BLOCK_SYMBOLS (b, iter, sym)
3690 {
3691 QUIT;
3692 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3693 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3694 {
3695 struct type *t = SYMBOL_TYPE (sym);
3696 enum type_code c = TYPE_CODE (t);
3697
3698 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3699 {
3700 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3701 {
3702 if (TYPE_FIELD_NAME (t, j))
3703 {
3704 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3705 sym_text, sym_text_len, text, word);
3706 }
3707 }
3708 }
3709 }
3710 }
3711 }
3712
3713 /* Go through the symtabs and check the externs and statics for
3714 symbols which match. */
3715
3716 ALL_PRIMARY_SYMTABS (objfile, s)
3717 {
3718 QUIT;
3719 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3720 ALL_BLOCK_SYMBOLS (b, iter, sym)
3721 {
3722 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3723 }
3724 }
3725
3726 ALL_PRIMARY_SYMTABS (objfile, s)
3727 {
3728 QUIT;
3729 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3730 /* Don't do this block twice. */
3731 if (b == surrounding_static_block)
3732 continue;
3733 ALL_BLOCK_SYMBOLS (b, iter, sym)
3734 {
3735 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3736 }
3737 }
3738
3739 return (return_val);
3740 }
3741
3742 /* Like make_symbol_completion_list, but returns a list of symbols
3743 defined in a source file FILE. */
3744
3745 char **
3746 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3747 {
3748 struct symbol *sym;
3749 struct symtab *s;
3750 struct block *b;
3751 struct dict_iterator iter;
3752 /* The symbol we are completing on. Points in same buffer as text. */
3753 char *sym_text;
3754 /* Length of sym_text. */
3755 int sym_text_len;
3756
3757 /* Now look for the symbol we are supposed to complete on.
3758 FIXME: This should be language-specific. */
3759 {
3760 char *p;
3761 char quote_found;
3762 char *quote_pos = NULL;
3763
3764 /* First see if this is a quoted string. */
3765 quote_found = '\0';
3766 for (p = text; *p != '\0'; ++p)
3767 {
3768 if (quote_found != '\0')
3769 {
3770 if (*p == quote_found)
3771 /* Found close quote. */
3772 quote_found = '\0';
3773 else if (*p == '\\' && p[1] == quote_found)
3774 /* A backslash followed by the quote character
3775 doesn't end the string. */
3776 ++p;
3777 }
3778 else if (*p == '\'' || *p == '"')
3779 {
3780 quote_found = *p;
3781 quote_pos = p;
3782 }
3783 }
3784 if (quote_found == '\'')
3785 /* A string within single quotes can be a symbol, so complete on it. */
3786 sym_text = quote_pos + 1;
3787 else if (quote_found == '"')
3788 /* A double-quoted string is never a symbol, nor does it make sense
3789 to complete it any other way. */
3790 {
3791 return_val = (char **) xmalloc (sizeof (char *));
3792 return_val[0] = NULL;
3793 return return_val;
3794 }
3795 else
3796 {
3797 /* Not a quoted string. */
3798 sym_text = language_search_unquoted_string (text, p);
3799 }
3800 }
3801
3802 sym_text_len = strlen (sym_text);
3803
3804 return_val_size = 10;
3805 return_val_index = 0;
3806 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3807 return_val[0] = NULL;
3808
3809 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3810 in). */
3811 s = lookup_symtab (srcfile);
3812 if (s == NULL)
3813 {
3814 /* Maybe they typed the file with leading directories, while the
3815 symbol tables record only its basename. */
3816 const char *tail = lbasename (srcfile);
3817
3818 if (tail > srcfile)
3819 s = lookup_symtab (tail);
3820 }
3821
3822 /* If we have no symtab for that file, return an empty list. */
3823 if (s == NULL)
3824 return (return_val);
3825
3826 /* Go through this symtab and check the externs and statics for
3827 symbols which match. */
3828
3829 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3830 ALL_BLOCK_SYMBOLS (b, iter, sym)
3831 {
3832 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3833 }
3834
3835 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3836 ALL_BLOCK_SYMBOLS (b, iter, sym)
3837 {
3838 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3839 }
3840
3841 return (return_val);
3842 }
3843
3844 /* A helper function for make_source_files_completion_list. It adds
3845 another file name to a list of possible completions, growing the
3846 list as necessary. */
3847
3848 static void
3849 add_filename_to_list (const char *fname, char *text, char *word,
3850 char ***list, int *list_used, int *list_alloced)
3851 {
3852 char *new;
3853 size_t fnlen = strlen (fname);
3854
3855 if (*list_used + 1 >= *list_alloced)
3856 {
3857 *list_alloced *= 2;
3858 *list = (char **) xrealloc ((char *) *list,
3859 *list_alloced * sizeof (char *));
3860 }
3861
3862 if (word == text)
3863 {
3864 /* Return exactly fname. */
3865 new = xmalloc (fnlen + 5);
3866 strcpy (new, fname);
3867 }
3868 else if (word > text)
3869 {
3870 /* Return some portion of fname. */
3871 new = xmalloc (fnlen + 5);
3872 strcpy (new, fname + (word - text));
3873 }
3874 else
3875 {
3876 /* Return some of TEXT plus fname. */
3877 new = xmalloc (fnlen + (text - word) + 5);
3878 strncpy (new, word, text - word);
3879 new[text - word] = '\0';
3880 strcat (new, fname);
3881 }
3882 (*list)[*list_used] = new;
3883 (*list)[++*list_used] = NULL;
3884 }
3885
3886 static int
3887 not_interesting_fname (const char *fname)
3888 {
3889 static const char *illegal_aliens[] = {
3890 "_globals_", /* inserted by coff_symtab_read */
3891 NULL
3892 };
3893 int i;
3894
3895 for (i = 0; illegal_aliens[i]; i++)
3896 {
3897 if (strcmp (fname, illegal_aliens[i]) == 0)
3898 return 1;
3899 }
3900 return 0;
3901 }
3902
3903 /* Return a NULL terminated array of all source files whose names
3904 begin with matching TEXT. The file names are looked up in the
3905 symbol tables of this program. If the answer is no matchess, then
3906 the return value is an array which contains only a NULL pointer. */
3907
3908 char **
3909 make_source_files_completion_list (char *text, char *word)
3910 {
3911 struct symtab *s;
3912 struct partial_symtab *ps;
3913 struct objfile *objfile;
3914 int first = 1;
3915 int list_alloced = 1;
3916 int list_used = 0;
3917 size_t text_len = strlen (text);
3918 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3919 const char *base_name;
3920
3921 list[0] = NULL;
3922
3923 if (!have_full_symbols () && !have_partial_symbols ())
3924 return list;
3925
3926 ALL_SYMTABS (objfile, s)
3927 {
3928 if (not_interesting_fname (s->filename))
3929 continue;
3930 if (!filename_seen (s->filename, 1, &first)
3931 #if HAVE_DOS_BASED_FILE_SYSTEM
3932 && strncasecmp (s->filename, text, text_len) == 0
3933 #else
3934 && strncmp (s->filename, text, text_len) == 0
3935 #endif
3936 )
3937 {
3938 /* This file matches for a completion; add it to the current
3939 list of matches. */
3940 add_filename_to_list (s->filename, text, word,
3941 &list, &list_used, &list_alloced);
3942 }
3943 else
3944 {
3945 /* NOTE: We allow the user to type a base name when the
3946 debug info records leading directories, but not the other
3947 way around. This is what subroutines of breakpoint
3948 command do when they parse file names. */
3949 base_name = lbasename (s->filename);
3950 if (base_name != s->filename
3951 && !filename_seen (base_name, 1, &first)
3952 #if HAVE_DOS_BASED_FILE_SYSTEM
3953 && strncasecmp (base_name, text, text_len) == 0
3954 #else
3955 && strncmp (base_name, text, text_len) == 0
3956 #endif
3957 )
3958 add_filename_to_list (base_name, text, word,
3959 &list, &list_used, &list_alloced);
3960 }
3961 }
3962
3963 ALL_PSYMTABS (objfile, ps)
3964 {
3965 if (not_interesting_fname (ps->filename))
3966 continue;
3967 if (!ps->readin)
3968 {
3969 if (!filename_seen (ps->filename, 1, &first)
3970 #if HAVE_DOS_BASED_FILE_SYSTEM
3971 && strncasecmp (ps->filename, text, text_len) == 0
3972 #else
3973 && strncmp (ps->filename, text, text_len) == 0
3974 #endif
3975 )
3976 {
3977 /* This file matches for a completion; add it to the
3978 current list of matches. */
3979 add_filename_to_list (ps->filename, text, word,
3980 &list, &list_used, &list_alloced);
3981
3982 }
3983 else
3984 {
3985 base_name = lbasename (ps->filename);
3986 if (base_name != ps->filename
3987 && !filename_seen (base_name, 1, &first)
3988 #if HAVE_DOS_BASED_FILE_SYSTEM
3989 && strncasecmp (base_name, text, text_len) == 0
3990 #else
3991 && strncmp (base_name, text, text_len) == 0
3992 #endif
3993 )
3994 add_filename_to_list (base_name, text, word,
3995 &list, &list_used, &list_alloced);
3996 }
3997 }
3998 }
3999
4000 return list;
4001 }
4002
4003 /* Determine if PC is in the prologue of a function. The prologue is the area
4004 between the first instruction of a function, and the first executable line.
4005 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4006
4007 If non-zero, func_start is where we think the prologue starts, possibly
4008 by previous examination of symbol table information.
4009 */
4010
4011 int
4012 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4013 {
4014 struct symtab_and_line sal;
4015 CORE_ADDR func_addr, func_end;
4016
4017 /* We have several sources of information we can consult to figure
4018 this out.
4019 - Compilers usually emit line number info that marks the prologue
4020 as its own "source line". So the ending address of that "line"
4021 is the end of the prologue. If available, this is the most
4022 reliable method.
4023 - The minimal symbols and partial symbols, which can usually tell
4024 us the starting and ending addresses of a function.
4025 - If we know the function's start address, we can call the
4026 architecture-defined gdbarch_skip_prologue function to analyze the
4027 instruction stream and guess where the prologue ends.
4028 - Our `func_start' argument; if non-zero, this is the caller's
4029 best guess as to the function's entry point. At the time of
4030 this writing, handle_inferior_event doesn't get this right, so
4031 it should be our last resort. */
4032
4033 /* Consult the partial symbol table, to find which function
4034 the PC is in. */
4035 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4036 {
4037 CORE_ADDR prologue_end;
4038
4039 /* We don't even have minsym information, so fall back to using
4040 func_start, if given. */
4041 if (! func_start)
4042 return 1; /* We *might* be in a prologue. */
4043
4044 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4045
4046 return func_start <= pc && pc < prologue_end;
4047 }
4048
4049 /* If we have line number information for the function, that's
4050 usually pretty reliable. */
4051 sal = find_pc_line (func_addr, 0);
4052
4053 /* Now sal describes the source line at the function's entry point,
4054 which (by convention) is the prologue. The end of that "line",
4055 sal.end, is the end of the prologue.
4056
4057 Note that, for functions whose source code is all on a single
4058 line, the line number information doesn't always end up this way.
4059 So we must verify that our purported end-of-prologue address is
4060 *within* the function, not at its start or end. */
4061 if (sal.line == 0
4062 || sal.end <= func_addr
4063 || func_end <= sal.end)
4064 {
4065 /* We don't have any good line number info, so use the minsym
4066 information, together with the architecture-specific prologue
4067 scanning code. */
4068 CORE_ADDR prologue_end = gdbarch_skip_prologue
4069 (current_gdbarch, func_addr);
4070
4071 return func_addr <= pc && pc < prologue_end;
4072 }
4073
4074 /* We have line number info, and it looks good. */
4075 return func_addr <= pc && pc < sal.end;
4076 }
4077
4078 /* Given PC at the function's start address, attempt to find the
4079 prologue end using SAL information. Return zero if the skip fails.
4080
4081 A non-optimized prologue traditionally has one SAL for the function
4082 and a second for the function body. A single line function has
4083 them both pointing at the same line.
4084
4085 An optimized prologue is similar but the prologue may contain
4086 instructions (SALs) from the instruction body. Need to skip those
4087 while not getting into the function body.
4088
4089 The functions end point and an increasing SAL line are used as
4090 indicators of the prologue's endpoint.
4091
4092 This code is based on the function refine_prologue_limit (versions
4093 found in both ia64 and ppc). */
4094
4095 CORE_ADDR
4096 skip_prologue_using_sal (CORE_ADDR func_addr)
4097 {
4098 struct symtab_and_line prologue_sal;
4099 CORE_ADDR start_pc;
4100 CORE_ADDR end_pc;
4101
4102 /* Get an initial range for the function. */
4103 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4104 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4105
4106 prologue_sal = find_pc_line (start_pc, 0);
4107 if (prologue_sal.line != 0)
4108 {
4109 /* If there is only one sal that covers the entire function,
4110 then it is probably a single line function, like
4111 "foo(){}". */
4112 if (prologue_sal.end >= end_pc)
4113 return 0;
4114 while (prologue_sal.end < end_pc)
4115 {
4116 struct symtab_and_line sal;
4117
4118 sal = find_pc_line (prologue_sal.end, 0);
4119 if (sal.line == 0)
4120 break;
4121 /* Assume that a consecutive SAL for the same (or larger)
4122 line mark the prologue -> body transition. */
4123 if (sal.line >= prologue_sal.line)
4124 break;
4125 /* The case in which compiler's optimizer/scheduler has
4126 moved instructions into the prologue. We look ahead in
4127 the function looking for address ranges whose
4128 corresponding line number is less the first one that we
4129 found for the function. This is more conservative then
4130 refine_prologue_limit which scans a large number of SALs
4131 looking for any in the prologue */
4132 prologue_sal = sal;
4133 }
4134 }
4135 return prologue_sal.end;
4136 }
4137 \f
4138 struct symtabs_and_lines
4139 decode_line_spec (char *string, int funfirstline)
4140 {
4141 struct symtabs_and_lines sals;
4142 struct symtab_and_line cursal;
4143
4144 if (string == 0)
4145 error (_("Empty line specification."));
4146
4147 /* We use whatever is set as the current source line. We do not try
4148 and get a default or it will recursively call us! */
4149 cursal = get_current_source_symtab_and_line ();
4150
4151 sals = decode_line_1 (&string, funfirstline,
4152 cursal.symtab, cursal.line,
4153 (char ***) NULL, NULL);
4154
4155 if (*string)
4156 error (_("Junk at end of line specification: %s"), string);
4157 return sals;
4158 }
4159
4160 /* Track MAIN */
4161 static char *name_of_main;
4162
4163 void
4164 set_main_name (const char *name)
4165 {
4166 if (name_of_main != NULL)
4167 {
4168 xfree (name_of_main);
4169 name_of_main = NULL;
4170 }
4171 if (name != NULL)
4172 {
4173 name_of_main = xstrdup (name);
4174 }
4175 }
4176
4177 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4178 accordingly. */
4179
4180 static void
4181 find_main_name (void)
4182 {
4183 char *new_main_name;
4184
4185 /* Try to see if the main procedure is in Ada. */
4186 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4187 be to add a new method in the language vector, and call this
4188 method for each language until one of them returns a non-empty
4189 name. This would allow us to remove this hard-coded call to
4190 an Ada function. It is not clear that this is a better approach
4191 at this point, because all methods need to be written in a way
4192 such that false positives never be returned. For instance, it is
4193 important that a method does not return a wrong name for the main
4194 procedure if the main procedure is actually written in a different
4195 language. It is easy to guaranty this with Ada, since we use a
4196 special symbol generated only when the main in Ada to find the name
4197 of the main procedure. It is difficult however to see how this can
4198 be guarantied for languages such as C, for instance. This suggests
4199 that order of call for these methods becomes important, which means
4200 a more complicated approach. */
4201 new_main_name = ada_main_name ();
4202 if (new_main_name != NULL)
4203 {
4204 set_main_name (new_main_name);
4205 return;
4206 }
4207
4208 /* The languages above didn't identify the name of the main procedure.
4209 Fallback to "main". */
4210 set_main_name ("main");
4211 }
4212
4213 char *
4214 main_name (void)
4215 {
4216 if (name_of_main == NULL)
4217 find_main_name ();
4218
4219 return name_of_main;
4220 }
4221
4222 /* Handle ``executable_changed'' events for the symtab module. */
4223
4224 static void
4225 symtab_observer_executable_changed (void *unused)
4226 {
4227 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4228 set_main_name (NULL);
4229 }
4230
4231 void
4232 _initialize_symtab (void)
4233 {
4234 add_info ("variables", variables_info, _("\
4235 All global and static variable names, or those matching REGEXP."));
4236 if (dbx_commands)
4237 add_com ("whereis", class_info, variables_info, _("\
4238 All global and static variable names, or those matching REGEXP."));
4239
4240 add_info ("functions", functions_info,
4241 _("All function names, or those matching REGEXP."));
4242
4243
4244 /* FIXME: This command has at least the following problems:
4245 1. It prints builtin types (in a very strange and confusing fashion).
4246 2. It doesn't print right, e.g. with
4247 typedef struct foo *FOO
4248 type_print prints "FOO" when we want to make it (in this situation)
4249 print "struct foo *".
4250 I also think "ptype" or "whatis" is more likely to be useful (but if
4251 there is much disagreement "info types" can be fixed). */
4252 add_info ("types", types_info,
4253 _("All type names, or those matching REGEXP."));
4254
4255 add_info ("sources", sources_info,
4256 _("Source files in the program."));
4257
4258 add_com ("rbreak", class_breakpoint, rbreak_command,
4259 _("Set a breakpoint for all functions matching REGEXP."));
4260
4261 if (xdb_commands)
4262 {
4263 add_com ("lf", class_info, sources_info,
4264 _("Source files in the program"));
4265 add_com ("lg", class_info, variables_info, _("\
4266 All global and static variable names, or those matching REGEXP."));
4267 }
4268
4269 /* Initialize the one built-in type that isn't language dependent... */
4270 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4271 "<unknown type>", (struct objfile *) NULL);
4272
4273 observer_attach_executable_changed (symtab_observer_executable_changed);
4274 }
This page took 0.118004 seconds and 4 git commands to generate.