*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61
62 /* Prototypes for local functions */
63
64 static void completion_list_add_name (char *, char *, int, char *, char *);
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static void output_source_filename (const char *, int *);
77
78 static int find_line_common (struct linetable *, int, int *);
79
80 /* This one is used by linespec.c */
81
82 char *operator_chars (char *p, char **end);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const char *linkage_name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 int *is_a_field_of_this);
90
91 static
92 struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_symtabs (int block_index,
99 const char *name,
100 const char *linkage_name,
101 const domain_enum domain);
102
103 static
104 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
105 const char *name,
106 const char *linkage_name,
107 const domain_enum domain);
108
109 static int file_matches (char *, char **, int);
110
111 static void print_symbol_info (domain_enum,
112 struct symtab *, struct symbol *, int, char *);
113
114 static void print_msymbol_info (struct minimal_symbol *);
115
116 static void symtab_symbol_info (char *, domain_enum, int);
117
118 void _initialize_symtab (void);
119
120 /* */
121
122 /* Allow the user to configure the debugger behavior with respect
123 to multiple-choice menus when more than one symbol matches during
124 a symbol lookup. */
125
126 const char multiple_symbols_ask[] = "ask";
127 const char multiple_symbols_all[] = "all";
128 const char multiple_symbols_cancel[] = "cancel";
129 static const char *multiple_symbols_modes[] =
130 {
131 multiple_symbols_ask,
132 multiple_symbols_all,
133 multiple_symbols_cancel,
134 NULL
135 };
136 static const char *multiple_symbols_mode = multiple_symbols_all;
137
138 /* Read-only accessor to AUTO_SELECT_MODE. */
139
140 const char *
141 multiple_symbols_select_mode (void)
142 {
143 return multiple_symbols_mode;
144 }
145
146 /* The single non-language-specific builtin type */
147 struct type *builtin_type_error;
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Create the hash table used for demangled names. Each hash entry is
431 a pair of strings; one for the mangled name and one for the demangled
432 name. The entry is hashed via just the mangled name. */
433
434 static void
435 create_demangled_names_hash (struct objfile *objfile)
436 {
437 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
438 The hash table code will round this up to the next prime number.
439 Choosing a much larger table size wastes memory, and saves only about
440 1% in symbol reading. */
441
442 objfile->demangled_names_hash = htab_create_alloc
443 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
444 NULL, xcalloc, xfree);
445 }
446
447 /* Try to determine the demangled name for a symbol, based on the
448 language of that symbol. If the language is set to language_auto,
449 it will attempt to find any demangling algorithm that works and
450 then set the language appropriately. The returned name is allocated
451 by the demangler and should be xfree'd. */
452
453 static char *
454 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
455 const char *mangled)
456 {
457 char *demangled = NULL;
458
459 if (gsymbol->language == language_unknown)
460 gsymbol->language = language_auto;
461
462 if (gsymbol->language == language_objc
463 || gsymbol->language == language_auto)
464 {
465 demangled =
466 objc_demangle (mangled, 0);
467 if (demangled != NULL)
468 {
469 gsymbol->language = language_objc;
470 return demangled;
471 }
472 }
473 if (gsymbol->language == language_cplus
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_cplus;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_java)
485 {
486 demangled =
487 cplus_demangle (mangled,
488 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_java;
492 return demangled;
493 }
494 }
495 return NULL;
496 }
497
498 /* Set both the mangled and demangled (if any) names for GSYMBOL based
499 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
500 is used, and the memory comes from that objfile's objfile_obstack.
501 LINKAGE_NAME is copied, so the pointer can be discarded after
502 calling this function. */
503
504 /* We have to be careful when dealing with Java names: when we run
505 into a Java minimal symbol, we don't know it's a Java symbol, so it
506 gets demangled as a C++ name. This is unfortunate, but there's not
507 much we can do about it: but when demangling partial symbols and
508 regular symbols, we'd better not reuse the wrong demangled name.
509 (See PR gdb/1039.) We solve this by putting a distinctive prefix
510 on Java names when storing them in the hash table. */
511
512 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
513 don't mind the Java prefix so much: different languages have
514 different demangling requirements, so it's only natural that we
515 need to keep language data around in our demangling cache. But
516 it's not good that the minimal symbol has the wrong demangled name.
517 Unfortunately, I can't think of any easy solution to that
518 problem. */
519
520 #define JAVA_PREFIX "##JAVA$$"
521 #define JAVA_PREFIX_LEN 8
522
523 void
524 symbol_set_names (struct general_symbol_info *gsymbol,
525 const char *linkage_name, int len, struct objfile *objfile)
526 {
527 char **slot;
528 /* A 0-terminated copy of the linkage name. */
529 const char *linkage_name_copy;
530 /* A copy of the linkage name that might have a special Java prefix
531 added to it, for use when looking names up in the hash table. */
532 const char *lookup_name;
533 /* The length of lookup_name. */
534 int lookup_len;
535
536 if (objfile->demangled_names_hash == NULL)
537 create_demangled_names_hash (objfile);
538
539 if (gsymbol->language == language_ada)
540 {
541 /* In Ada, we do the symbol lookups using the mangled name, so
542 we can save some space by not storing the demangled name.
543
544 As a side note, we have also observed some overlap between
545 the C++ mangling and Ada mangling, similarly to what has
546 been observed with Java. Because we don't store the demangled
547 name with the symbol, we don't need to use the same trick
548 as Java. */
549 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
550 memcpy (gsymbol->name, linkage_name, len);
551 gsymbol->name[len] = '\0';
552 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
553
554 return;
555 }
556
557 /* The stabs reader generally provides names that are not
558 NUL-terminated; most of the other readers don't do this, so we
559 can just use the given copy, unless we're in the Java case. */
560 if (gsymbol->language == language_java)
561 {
562 char *alloc_name;
563 lookup_len = len + JAVA_PREFIX_LEN;
564
565 alloc_name = alloca (lookup_len + 1);
566 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
567 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
568 alloc_name[lookup_len] = '\0';
569
570 lookup_name = alloc_name;
571 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
572 }
573 else if (linkage_name[len] != '\0')
574 {
575 char *alloc_name;
576 lookup_len = len;
577
578 alloc_name = alloca (lookup_len + 1);
579 memcpy (alloc_name, linkage_name, len);
580 alloc_name[lookup_len] = '\0';
581
582 lookup_name = alloc_name;
583 linkage_name_copy = alloc_name;
584 }
585 else
586 {
587 lookup_len = len;
588 lookup_name = linkage_name;
589 linkage_name_copy = linkage_name;
590 }
591
592 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
593 lookup_name, INSERT);
594
595 /* If this name is not in the hash table, add it. */
596 if (*slot == NULL)
597 {
598 char *demangled_name = symbol_find_demangled_name (gsymbol,
599 linkage_name_copy);
600 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
601
602 /* If there is a demangled name, place it right after the mangled name.
603 Otherwise, just place a second zero byte after the end of the mangled
604 name. */
605 *slot = obstack_alloc (&objfile->objfile_obstack,
606 lookup_len + demangled_len + 2);
607 memcpy (*slot, lookup_name, lookup_len + 1);
608 if (demangled_name != NULL)
609 {
610 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
611 xfree (demangled_name);
612 }
613 else
614 (*slot)[lookup_len + 1] = '\0';
615 }
616
617 gsymbol->name = *slot + lookup_len - len;
618 if ((*slot)[lookup_len + 1] != '\0')
619 gsymbol->language_specific.cplus_specific.demangled_name
620 = &(*slot)[lookup_len + 1];
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624
625 /* Return the source code name of a symbol. In languages where
626 demangling is necessary, this is the demangled name. */
627
628 char *
629 symbol_natural_name (const struct general_symbol_info *gsymbol)
630 {
631 switch (gsymbol->language)
632 {
633 case language_cplus:
634 case language_java:
635 case language_objc:
636 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
637 return gsymbol->language_specific.cplus_specific.demangled_name;
638 break;
639 case language_ada:
640 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
641 return gsymbol->language_specific.cplus_specific.demangled_name;
642 else
643 return ada_decode_symbol (gsymbol);
644 break;
645 default:
646 break;
647 }
648 return gsymbol->name;
649 }
650
651 /* Return the demangled name for a symbol based on the language for
652 that symbol. If no demangled name exists, return NULL. */
653 char *
654 symbol_demangled_name (struct general_symbol_info *gsymbol)
655 {
656 switch (gsymbol->language)
657 {
658 case language_cplus:
659 case language_java:
660 case language_objc:
661 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
662 return gsymbol->language_specific.cplus_specific.demangled_name;
663 break;
664 case language_ada:
665 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
666 return gsymbol->language_specific.cplus_specific.demangled_name;
667 else
668 return ada_decode_symbol (gsymbol);
669 break;
670 default:
671 break;
672 }
673 return NULL;
674 }
675
676 /* Return the search name of a symbol---generally the demangled or
677 linkage name of the symbol, depending on how it will be searched for.
678 If there is no distinct demangled name, then returns the same value
679 (same pointer) as SYMBOL_LINKAGE_NAME. */
680 char *
681 symbol_search_name (const struct general_symbol_info *gsymbol)
682 {
683 if (gsymbol->language == language_ada)
684 return gsymbol->name;
685 else
686 return symbol_natural_name (gsymbol);
687 }
688
689 /* Initialize the structure fields to zero values. */
690 void
691 init_sal (struct symtab_and_line *sal)
692 {
693 sal->symtab = 0;
694 sal->section = 0;
695 sal->line = 0;
696 sal->pc = 0;
697 sal->end = 0;
698 sal->explicit_pc = 0;
699 sal->explicit_line = 0;
700 }
701 \f
702
703 /* Return 1 if the two sections are the same, or if they could
704 plausibly be copies of each other, one in an original object
705 file and another in a separated debug file. */
706
707 int
708 matching_bfd_sections (asection *first, asection *second)
709 {
710 struct objfile *obj;
711
712 /* If they're the same section, then they match. */
713 if (first == second)
714 return 1;
715
716 /* If either is NULL, give up. */
717 if (first == NULL || second == NULL)
718 return 0;
719
720 /* This doesn't apply to absolute symbols. */
721 if (first->owner == NULL || second->owner == NULL)
722 return 0;
723
724 /* If they're in the same object file, they must be different sections. */
725 if (first->owner == second->owner)
726 return 0;
727
728 /* Check whether the two sections are potentially corresponding. They must
729 have the same size, address, and name. We can't compare section indexes,
730 which would be more reliable, because some sections may have been
731 stripped. */
732 if (bfd_get_section_size (first) != bfd_get_section_size (second))
733 return 0;
734
735 /* In-memory addresses may start at a different offset, relativize them. */
736 if (bfd_get_section_vma (first->owner, first)
737 - bfd_get_start_address (first->owner)
738 != bfd_get_section_vma (second->owner, second)
739 - bfd_get_start_address (second->owner))
740 return 0;
741
742 if (bfd_get_section_name (first->owner, first) == NULL
743 || bfd_get_section_name (second->owner, second) == NULL
744 || strcmp (bfd_get_section_name (first->owner, first),
745 bfd_get_section_name (second->owner, second)) != 0)
746 return 0;
747
748 /* Otherwise check that they are in corresponding objfiles. */
749
750 ALL_OBJFILES (obj)
751 if (obj->obfd == first->owner)
752 break;
753 gdb_assert (obj != NULL);
754
755 if (obj->separate_debug_objfile != NULL
756 && obj->separate_debug_objfile->obfd == second->owner)
757 return 1;
758 if (obj->separate_debug_objfile_backlink != NULL
759 && obj->separate_debug_objfile_backlink->obfd == second->owner)
760 return 1;
761
762 return 0;
763 }
764
765 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
766 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
767
768 struct partial_symtab *
769 find_pc_sect_psymtab_closer (CORE_ADDR pc, asection *section,
770 struct partial_symtab *pst,
771 struct minimal_symbol *msymbol)
772 {
773 struct objfile *objfile = pst->objfile;
774 struct partial_symtab *tpst;
775 struct partial_symtab *best_pst = pst;
776 CORE_ADDR best_addr = pst->textlow;
777
778 /* An objfile that has its functions reordered might have
779 many partial symbol tables containing the PC, but
780 we want the partial symbol table that contains the
781 function containing the PC. */
782 if (!(objfile->flags & OBJF_REORDERED) &&
783 section == 0) /* can't validate section this way */
784 return pst;
785
786 if (msymbol == NULL)
787 return (pst);
788
789 /* The code range of partial symtabs sometimes overlap, so, in
790 the loop below, we need to check all partial symtabs and
791 find the one that fits better for the given PC address. We
792 select the partial symtab that contains a symbol whose
793 address is closest to the PC address. By closest we mean
794 that find_pc_sect_symbol returns the symbol with address
795 that is closest and still less than the given PC. */
796 for (tpst = pst; tpst != NULL; tpst = tpst->next)
797 {
798 if (pc >= tpst->textlow && pc < tpst->texthigh)
799 {
800 struct partial_symbol *p;
801 CORE_ADDR this_addr;
802
803 /* NOTE: This assumes that every psymbol has a
804 corresponding msymbol, which is not necessarily
805 true; the debug info might be much richer than the
806 object's symbol table. */
807 p = find_pc_sect_psymbol (tpst, pc, section);
808 if (p != NULL
809 && SYMBOL_VALUE_ADDRESS (p)
810 == SYMBOL_VALUE_ADDRESS (msymbol))
811 return tpst;
812
813 /* Also accept the textlow value of a psymtab as a
814 "symbol", to provide some support for partial
815 symbol tables with line information but no debug
816 symbols (e.g. those produced by an assembler). */
817 if (p != NULL)
818 this_addr = SYMBOL_VALUE_ADDRESS (p);
819 else
820 this_addr = tpst->textlow;
821
822 /* Check whether it is closer than our current
823 BEST_ADDR. Since this symbol address is
824 necessarily lower or equal to PC, the symbol closer
825 to PC is the symbol which address is the highest.
826 This way we return the psymtab which contains such
827 best match symbol. This can help in cases where the
828 symbol information/debuginfo is not complete, like
829 for instance on IRIX6 with gcc, where no debug info
830 is emitted for statics. (See also the nodebug.exp
831 testcase.) */
832 if (this_addr > best_addr)
833 {
834 best_addr = this_addr;
835 best_pst = tpst;
836 }
837 }
838 }
839 return best_pst;
840 }
841
842 /* Find which partial symtab contains PC and SECTION. Return 0 if
843 none. We return the psymtab that contains a symbol whose address
844 exactly matches PC, or, if we cannot find an exact match, the
845 psymtab that contains a symbol whose address is closest to PC. */
846 struct partial_symtab *
847 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
848 {
849 struct objfile *objfile;
850 struct minimal_symbol *msymbol;
851
852 /* If we know that this is not a text address, return failure. This is
853 necessary because we loop based on texthigh and textlow, which do
854 not include the data ranges. */
855 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
856 if (msymbol
857 && (msymbol->type == mst_data
858 || msymbol->type == mst_bss
859 || msymbol->type == mst_abs
860 || msymbol->type == mst_file_data
861 || msymbol->type == mst_file_bss))
862 return NULL;
863
864 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
865 than the later used TEXTLOW/TEXTHIGH one. */
866
867 ALL_OBJFILES (objfile)
868 if (objfile->psymtabs_addrmap != NULL)
869 {
870 struct partial_symtab *pst;
871
872 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
873 if (pst != NULL)
874 {
875 /* FIXME: addrmaps currently do not handle overlayed sections,
876 so fall back to the non-addrmap case if we're debugging
877 overlays and the addrmap returned the wrong section. */
878 if (overlay_debugging && msymbol && section)
879 {
880 struct partial_symbol *p;
881 /* NOTE: This assumes that every psymbol has a
882 corresponding msymbol, which is not necessarily
883 true; the debug info might be much richer than the
884 object's symbol table. */
885 p = find_pc_sect_psymbol (pst, pc, section);
886 if (!p
887 || SYMBOL_VALUE_ADDRESS (p)
888 != SYMBOL_VALUE_ADDRESS (msymbol))
889 continue;
890 }
891
892 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
893 PSYMTABS_ADDRMAP we used has already the best 1-byte
894 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
895 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
896 overlap. */
897
898 return pst;
899 }
900 }
901
902 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
903 which still have no corresponding full SYMTABs read. But it is not
904 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
905 so far. */
906
907 ALL_OBJFILES (objfile)
908 {
909 struct partial_symtab *pst;
910
911 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
912 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
913 debug info type in single OBJFILE. */
914
915 ALL_OBJFILE_PSYMTABS (objfile, pst)
916 if (pc >= pst->textlow && pc < pst->texthigh)
917 {
918 struct partial_symtab *best_pst;
919
920 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
921 msymbol);
922 if (best_pst != NULL)
923 return best_pst;
924 }
925 }
926
927 return NULL;
928 }
929
930 /* Find which partial symtab contains PC. Return 0 if none.
931 Backward compatibility, no section */
932
933 struct partial_symtab *
934 find_pc_psymtab (CORE_ADDR pc)
935 {
936 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
937 }
938
939 /* Find which partial symbol within a psymtab matches PC and SECTION.
940 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
941
942 struct partial_symbol *
943 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
944 asection *section)
945 {
946 struct partial_symbol *best = NULL, *p, **pp;
947 CORE_ADDR best_pc;
948
949 if (!psymtab)
950 psymtab = find_pc_sect_psymtab (pc, section);
951 if (!psymtab)
952 return 0;
953
954 /* Cope with programs that start at address 0 */
955 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
956
957 /* Search the global symbols as well as the static symbols, so that
958 find_pc_partial_function doesn't use a minimal symbol and thus
959 cache a bad endaddr. */
960 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
961 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
962 < psymtab->n_global_syms);
963 pp++)
964 {
965 p = *pp;
966 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
967 && SYMBOL_CLASS (p) == LOC_BLOCK
968 && pc >= SYMBOL_VALUE_ADDRESS (p)
969 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
970 || (psymtab->textlow == 0
971 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
972 {
973 if (section) /* match on a specific section */
974 {
975 fixup_psymbol_section (p, psymtab->objfile);
976 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
977 continue;
978 }
979 best_pc = SYMBOL_VALUE_ADDRESS (p);
980 best = p;
981 }
982 }
983
984 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
985 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
986 < psymtab->n_static_syms);
987 pp++)
988 {
989 p = *pp;
990 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
991 && SYMBOL_CLASS (p) == LOC_BLOCK
992 && pc >= SYMBOL_VALUE_ADDRESS (p)
993 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
994 || (psymtab->textlow == 0
995 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
996 {
997 if (section) /* match on a specific section */
998 {
999 fixup_psymbol_section (p, psymtab->objfile);
1000 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
1001 continue;
1002 }
1003 best_pc = SYMBOL_VALUE_ADDRESS (p);
1004 best = p;
1005 }
1006 }
1007
1008 return best;
1009 }
1010
1011 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1012 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1013
1014 struct partial_symbol *
1015 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1016 {
1017 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1018 }
1019 \f
1020 /* Debug symbols usually don't have section information. We need to dig that
1021 out of the minimal symbols and stash that in the debug symbol. */
1022
1023 static void
1024 fixup_section (struct general_symbol_info *ginfo,
1025 CORE_ADDR addr, struct objfile *objfile)
1026 {
1027 struct minimal_symbol *msym;
1028
1029 /* First, check whether a minimal symbol with the same name exists
1030 and points to the same address. The address check is required
1031 e.g. on PowerPC64, where the minimal symbol for a function will
1032 point to the function descriptor, while the debug symbol will
1033 point to the actual function code. */
1034 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1035 if (msym)
1036 {
1037 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
1038 ginfo->section = SYMBOL_SECTION (msym);
1039 }
1040 else
1041 {
1042 /* Static, function-local variables do appear in the linker
1043 (minimal) symbols, but are frequently given names that won't
1044 be found via lookup_minimal_symbol(). E.g., it has been
1045 observed in frv-uclinux (ELF) executables that a static,
1046 function-local variable named "foo" might appear in the
1047 linker symbols as "foo.6" or "foo.3". Thus, there is no
1048 point in attempting to extend the lookup-by-name mechanism to
1049 handle this case due to the fact that there can be multiple
1050 names.
1051
1052 So, instead, search the section table when lookup by name has
1053 failed. The ``addr'' and ``endaddr'' fields may have already
1054 been relocated. If so, the relocation offset (i.e. the
1055 ANOFFSET value) needs to be subtracted from these values when
1056 performing the comparison. We unconditionally subtract it,
1057 because, when no relocation has been performed, the ANOFFSET
1058 value will simply be zero.
1059
1060 The address of the symbol whose section we're fixing up HAS
1061 NOT BEEN adjusted (relocated) yet. It can't have been since
1062 the section isn't yet known and knowing the section is
1063 necessary in order to add the correct relocation value. In
1064 other words, we wouldn't even be in this function (attempting
1065 to compute the section) if it were already known.
1066
1067 Note that it is possible to search the minimal symbols
1068 (subtracting the relocation value if necessary) to find the
1069 matching minimal symbol, but this is overkill and much less
1070 efficient. It is not necessary to find the matching minimal
1071 symbol, only its section.
1072
1073 Note that this technique (of doing a section table search)
1074 can fail when unrelocated section addresses overlap. For
1075 this reason, we still attempt a lookup by name prior to doing
1076 a search of the section table. */
1077
1078 struct obj_section *s;
1079 ALL_OBJFILE_OSECTIONS (objfile, s)
1080 {
1081 int idx = s->the_bfd_section->index;
1082 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1083
1084 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1085 {
1086 ginfo->bfd_section = s->the_bfd_section;
1087 ginfo->section = idx;
1088 return;
1089 }
1090 }
1091 }
1092 }
1093
1094 struct symbol *
1095 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1096 {
1097 CORE_ADDR addr;
1098
1099 if (!sym)
1100 return NULL;
1101
1102 if (SYMBOL_BFD_SECTION (sym))
1103 return sym;
1104
1105 /* We either have an OBJFILE, or we can get at it from the sym's
1106 symtab. Anything else is a bug. */
1107 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1108
1109 if (objfile == NULL)
1110 objfile = SYMBOL_SYMTAB (sym)->objfile;
1111
1112 /* We should have an objfile by now. */
1113 gdb_assert (objfile);
1114
1115 switch (SYMBOL_CLASS (sym))
1116 {
1117 case LOC_STATIC:
1118 case LOC_LABEL:
1119 addr = SYMBOL_VALUE_ADDRESS (sym);
1120 break;
1121 case LOC_BLOCK:
1122 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1123 break;
1124
1125 default:
1126 /* Nothing else will be listed in the minsyms -- no use looking
1127 it up. */
1128 return sym;
1129 }
1130
1131 fixup_section (&sym->ginfo, addr, objfile);
1132
1133 return sym;
1134 }
1135
1136 struct partial_symbol *
1137 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1138 {
1139 CORE_ADDR addr;
1140
1141 if (!psym)
1142 return NULL;
1143
1144 if (SYMBOL_BFD_SECTION (psym))
1145 return psym;
1146
1147 gdb_assert (objfile);
1148
1149 switch (SYMBOL_CLASS (psym))
1150 {
1151 case LOC_STATIC:
1152 case LOC_LABEL:
1153 case LOC_BLOCK:
1154 addr = SYMBOL_VALUE_ADDRESS (psym);
1155 break;
1156 default:
1157 /* Nothing else will be listed in the minsyms -- no use looking
1158 it up. */
1159 return psym;
1160 }
1161
1162 fixup_section (&psym->ginfo, addr, objfile);
1163
1164 return psym;
1165 }
1166
1167 /* Find the definition for a specified symbol name NAME
1168 in domain DOMAIN, visible from lexical block BLOCK.
1169 Returns the struct symbol pointer, or zero if no symbol is found.
1170 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1171 NAME is a field of the current implied argument `this'. If so set
1172 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1173 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1174 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1175
1176 /* This function has a bunch of loops in it and it would seem to be
1177 attractive to put in some QUIT's (though I'm not really sure
1178 whether it can run long enough to be really important). But there
1179 are a few calls for which it would appear to be bad news to quit
1180 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1181 that there is C++ code below which can error(), but that probably
1182 doesn't affect these calls since they are looking for a known
1183 variable and thus can probably assume it will never hit the C++
1184 code). */
1185
1186 struct symbol *
1187 lookup_symbol_in_language (const char *name, const struct block *block,
1188 const domain_enum domain, enum language lang,
1189 int *is_a_field_of_this)
1190 {
1191 char *demangled_name = NULL;
1192 const char *modified_name = NULL;
1193 const char *mangled_name = NULL;
1194 int needtofreename = 0;
1195 struct symbol *returnval;
1196
1197 modified_name = name;
1198
1199 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1200 we can always binary search. */
1201 if (lang == language_cplus)
1202 {
1203 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1204 if (demangled_name)
1205 {
1206 mangled_name = name;
1207 modified_name = demangled_name;
1208 needtofreename = 1;
1209 }
1210 }
1211 else if (lang == language_java)
1212 {
1213 demangled_name = cplus_demangle (name,
1214 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1215 if (demangled_name)
1216 {
1217 mangled_name = name;
1218 modified_name = demangled_name;
1219 needtofreename = 1;
1220 }
1221 }
1222
1223 if (case_sensitivity == case_sensitive_off)
1224 {
1225 char *copy;
1226 int len, i;
1227
1228 len = strlen (name);
1229 copy = (char *) alloca (len + 1);
1230 for (i= 0; i < len; i++)
1231 copy[i] = tolower (name[i]);
1232 copy[len] = 0;
1233 modified_name = copy;
1234 }
1235
1236 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1237 domain, lang, is_a_field_of_this);
1238 if (needtofreename)
1239 xfree (demangled_name);
1240
1241 return returnval;
1242 }
1243
1244 /* Behave like lookup_symbol_in_language, but performed with the
1245 current language. */
1246
1247 struct symbol *
1248 lookup_symbol (const char *name, const struct block *block,
1249 domain_enum domain, int *is_a_field_of_this)
1250 {
1251 return lookup_symbol_in_language (name, block, domain,
1252 current_language->la_language,
1253 is_a_field_of_this);
1254 }
1255
1256 /* Behave like lookup_symbol except that NAME is the natural name
1257 of the symbol that we're looking for and, if LINKAGE_NAME is
1258 non-NULL, ensure that the symbol's linkage name matches as
1259 well. */
1260
1261 static struct symbol *
1262 lookup_symbol_aux (const char *name, const char *linkage_name,
1263 const struct block *block, const domain_enum domain,
1264 enum language language, int *is_a_field_of_this)
1265 {
1266 struct symbol *sym;
1267 const struct language_defn *langdef;
1268
1269 /* Make sure we do something sensible with is_a_field_of_this, since
1270 the callers that set this parameter to some non-null value will
1271 certainly use it later and expect it to be either 0 or 1.
1272 If we don't set it, the contents of is_a_field_of_this are
1273 undefined. */
1274 if (is_a_field_of_this != NULL)
1275 *is_a_field_of_this = 0;
1276
1277 /* Search specified block and its superiors. Don't search
1278 STATIC_BLOCK or GLOBAL_BLOCK. */
1279
1280 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1281 if (sym != NULL)
1282 return sym;
1283
1284 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1285 check to see if NAME is a field of `this'. */
1286
1287 langdef = language_def (language);
1288
1289 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1290 && block != NULL)
1291 {
1292 struct symbol *sym = NULL;
1293 /* 'this' is only defined in the function's block, so find the
1294 enclosing function block. */
1295 for (; block && !BLOCK_FUNCTION (block);
1296 block = BLOCK_SUPERBLOCK (block));
1297
1298 if (block && !dict_empty (BLOCK_DICT (block)))
1299 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1300 NULL, VAR_DOMAIN);
1301 if (sym)
1302 {
1303 struct type *t = sym->type;
1304
1305 /* I'm not really sure that type of this can ever
1306 be typedefed; just be safe. */
1307 CHECK_TYPEDEF (t);
1308 if (TYPE_CODE (t) == TYPE_CODE_PTR
1309 || TYPE_CODE (t) == TYPE_CODE_REF)
1310 t = TYPE_TARGET_TYPE (t);
1311
1312 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1313 && TYPE_CODE (t) != TYPE_CODE_UNION)
1314 error (_("Internal error: `%s' is not an aggregate"),
1315 langdef->la_name_of_this);
1316
1317 if (check_field (t, name))
1318 {
1319 *is_a_field_of_this = 1;
1320 return NULL;
1321 }
1322 }
1323 }
1324
1325 /* Now do whatever is appropriate for LANGUAGE to look
1326 up static and global variables. */
1327
1328 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1329 if (sym != NULL)
1330 return sym;
1331
1332 /* Now search all static file-level symbols. Not strictly correct,
1333 but more useful than an error. Do the symtabs first, then check
1334 the psymtabs. If a psymtab indicates the existence of the
1335 desired name as a file-level static, then do psymtab-to-symtab
1336 conversion on the fly and return the found symbol. */
1337
1338 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1339 if (sym != NULL)
1340 return sym;
1341
1342 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1343 if (sym != NULL)
1344 return sym;
1345
1346 return NULL;
1347 }
1348
1349 /* Check to see if the symbol is defined in BLOCK or its superiors.
1350 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1351
1352 static struct symbol *
1353 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1354 const struct block *block,
1355 const domain_enum domain)
1356 {
1357 struct symbol *sym;
1358 const struct block *static_block = block_static_block (block);
1359
1360 /* Check if either no block is specified or it's a global block. */
1361
1362 if (static_block == NULL)
1363 return NULL;
1364
1365 while (block != static_block)
1366 {
1367 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1368 if (sym != NULL)
1369 return sym;
1370 block = BLOCK_SUPERBLOCK (block);
1371 }
1372
1373 /* We've reached the static block without finding a result. */
1374
1375 return NULL;
1376 }
1377
1378 /* Look up OBJFILE to BLOCK. */
1379
1380 static struct objfile *
1381 lookup_objfile_from_block (const struct block *block)
1382 {
1383 struct objfile *obj;
1384 struct symtab *s;
1385
1386 if (block == NULL)
1387 return NULL;
1388
1389 block = block_global_block (block);
1390 /* Go through SYMTABS. */
1391 ALL_SYMTABS (obj, s)
1392 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1393 return obj;
1394
1395 return NULL;
1396 }
1397
1398 /* Look up a symbol in a block; if found, fixup the symbol, and set
1399 block_found appropriately. */
1400
1401 struct symbol *
1402 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1403 const struct block *block,
1404 const domain_enum domain)
1405 {
1406 struct symbol *sym;
1407
1408 sym = lookup_block_symbol (block, name, linkage_name, domain);
1409 if (sym)
1410 {
1411 block_found = block;
1412 return fixup_symbol_section (sym, NULL);
1413 }
1414
1415 return NULL;
1416 }
1417
1418 /* Check all global symbols in OBJFILE in symtabs and
1419 psymtabs. */
1420
1421 struct symbol *
1422 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1423 const char *name,
1424 const char *linkage_name,
1425 const domain_enum domain)
1426 {
1427 struct symbol *sym;
1428 struct blockvector *bv;
1429 const struct block *block;
1430 struct symtab *s;
1431 struct partial_symtab *ps;
1432
1433 /* Go through symtabs. */
1434 ALL_OBJFILE_SYMTABS (objfile, s)
1435 {
1436 bv = BLOCKVECTOR (s);
1437 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1438 sym = lookup_block_symbol (block, name, linkage_name, domain);
1439 if (sym)
1440 {
1441 block_found = block;
1442 return fixup_symbol_section (sym, (struct objfile *)objfile);
1443 }
1444 }
1445
1446 /* Now go through psymtabs. */
1447 ALL_OBJFILE_PSYMTABS (objfile, ps)
1448 {
1449 if (!ps->readin
1450 && lookup_partial_symbol (ps, name, linkage_name,
1451 1, domain))
1452 {
1453 s = PSYMTAB_TO_SYMTAB (ps);
1454 bv = BLOCKVECTOR (s);
1455 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1456 sym = lookup_block_symbol (block, name, linkage_name, domain);
1457 return fixup_symbol_section (sym, (struct objfile *)objfile);
1458 }
1459 }
1460
1461 if (objfile->separate_debug_objfile)
1462 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1463 name, linkage_name, domain);
1464
1465 return NULL;
1466 }
1467
1468 /* Check to see if the symbol is defined in one of the symtabs.
1469 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1470 depending on whether or not we want to search global symbols or
1471 static symbols. */
1472
1473 static struct symbol *
1474 lookup_symbol_aux_symtabs (int block_index,
1475 const char *name, const char *linkage_name,
1476 const domain_enum domain)
1477 {
1478 struct symbol *sym;
1479 struct objfile *objfile;
1480 struct blockvector *bv;
1481 const struct block *block;
1482 struct symtab *s;
1483
1484 ALL_PRIMARY_SYMTABS (objfile, s)
1485 {
1486 bv = BLOCKVECTOR (s);
1487 block = BLOCKVECTOR_BLOCK (bv, block_index);
1488 sym = lookup_block_symbol (block, name, linkage_name, domain);
1489 if (sym)
1490 {
1491 block_found = block;
1492 return fixup_symbol_section (sym, objfile);
1493 }
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check to see if the symbol is defined in one of the partial
1500 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1501 STATIC_BLOCK, depending on whether or not we want to search global
1502 symbols or static symbols. */
1503
1504 static struct symbol *
1505 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1506 const char *linkage_name,
1507 const domain_enum domain)
1508 {
1509 struct symbol *sym;
1510 struct objfile *objfile;
1511 struct blockvector *bv;
1512 const struct block *block;
1513 struct partial_symtab *ps;
1514 struct symtab *s;
1515 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1516
1517 ALL_PSYMTABS (objfile, ps)
1518 {
1519 if (!ps->readin
1520 && lookup_partial_symbol (ps, name, linkage_name,
1521 psymtab_index, domain))
1522 {
1523 s = PSYMTAB_TO_SYMTAB (ps);
1524 bv = BLOCKVECTOR (s);
1525 block = BLOCKVECTOR_BLOCK (bv, block_index);
1526 sym = lookup_block_symbol (block, name, linkage_name, domain);
1527 if (!sym)
1528 {
1529 /* This shouldn't be necessary, but as a last resort try
1530 looking in the statics even though the psymtab claimed
1531 the symbol was global, or vice-versa. It's possible
1532 that the psymtab gets it wrong in some cases. */
1533
1534 /* FIXME: carlton/2002-09-30: Should we really do that?
1535 If that happens, isn't it likely to be a GDB error, in
1536 which case we should fix the GDB error rather than
1537 silently dealing with it here? So I'd vote for
1538 removing the check for the symbol in the other
1539 block. */
1540 block = BLOCKVECTOR_BLOCK (bv,
1541 block_index == GLOBAL_BLOCK ?
1542 STATIC_BLOCK : GLOBAL_BLOCK);
1543 sym = lookup_block_symbol (block, name, linkage_name, domain);
1544 if (!sym)
1545 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1546 block_index == GLOBAL_BLOCK ? "global" : "static",
1547 name, ps->filename, name, name);
1548 }
1549 return fixup_symbol_section (sym, objfile);
1550 }
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* A default version of lookup_symbol_nonlocal for use by languages
1557 that can't think of anything better to do. This implements the C
1558 lookup rules. */
1559
1560 struct symbol *
1561 basic_lookup_symbol_nonlocal (const char *name,
1562 const char *linkage_name,
1563 const struct block *block,
1564 const domain_enum domain)
1565 {
1566 struct symbol *sym;
1567
1568 /* NOTE: carlton/2003-05-19: The comments below were written when
1569 this (or what turned into this) was part of lookup_symbol_aux;
1570 I'm much less worried about these questions now, since these
1571 decisions have turned out well, but I leave these comments here
1572 for posterity. */
1573
1574 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1575 not it would be appropriate to search the current global block
1576 here as well. (That's what this code used to do before the
1577 is_a_field_of_this check was moved up.) On the one hand, it's
1578 redundant with the lookup_symbol_aux_symtabs search that happens
1579 next. On the other hand, if decode_line_1 is passed an argument
1580 like filename:var, then the user presumably wants 'var' to be
1581 searched for in filename. On the third hand, there shouldn't be
1582 multiple global variables all of which are named 'var', and it's
1583 not like decode_line_1 has ever restricted its search to only
1584 global variables in a single filename. All in all, only
1585 searching the static block here seems best: it's correct and it's
1586 cleanest. */
1587
1588 /* NOTE: carlton/2002-12-05: There's also a possible performance
1589 issue here: if you usually search for global symbols in the
1590 current file, then it would be slightly better to search the
1591 current global block before searching all the symtabs. But there
1592 are other factors that have a much greater effect on performance
1593 than that one, so I don't think we should worry about that for
1594 now. */
1595
1596 sym = lookup_symbol_static (name, linkage_name, block, domain);
1597 if (sym != NULL)
1598 return sym;
1599
1600 return lookup_symbol_global (name, linkage_name, block, domain);
1601 }
1602
1603 /* Lookup a symbol in the static block associated to BLOCK, if there
1604 is one; do nothing if BLOCK is NULL or a global block. */
1605
1606 struct symbol *
1607 lookup_symbol_static (const char *name,
1608 const char *linkage_name,
1609 const struct block *block,
1610 const domain_enum domain)
1611 {
1612 const struct block *static_block = block_static_block (block);
1613
1614 if (static_block != NULL)
1615 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1616 else
1617 return NULL;
1618 }
1619
1620 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1621 necessary). */
1622
1623 struct symbol *
1624 lookup_symbol_global (const char *name,
1625 const char *linkage_name,
1626 const struct block *block,
1627 const domain_enum domain)
1628 {
1629 struct symbol *sym = NULL;
1630 struct objfile *objfile = NULL;
1631
1632 /* Call library-specific lookup procedure. */
1633 objfile = lookup_objfile_from_block (block);
1634 if (objfile != NULL)
1635 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1636 if (sym != NULL)
1637 return sym;
1638
1639 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1640 if (sym != NULL)
1641 return sym;
1642
1643 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1644 }
1645
1646 int
1647 symbol_matches_domain (enum language symbol_language,
1648 domain_enum symbol_domain,
1649 domain_enum domain)
1650 {
1651 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1652 A Java class declaration also defines a typedef for the class.
1653 Similarly, any Ada type declaration implicitly defines a typedef. */
1654 if (symbol_language == language_cplus
1655 || symbol_language == language_java
1656 || symbol_language == language_ada)
1657 {
1658 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1659 && symbol_domain == STRUCT_DOMAIN)
1660 return 1;
1661 }
1662 /* For all other languages, strict match is required. */
1663 return (symbol_domain == domain);
1664 }
1665
1666 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1667 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1668 linkage name matches it. Check the global symbols if GLOBAL, the
1669 static symbols if not */
1670
1671 struct partial_symbol *
1672 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1673 const char *linkage_name, int global,
1674 domain_enum domain)
1675 {
1676 struct partial_symbol *temp;
1677 struct partial_symbol **start, **psym;
1678 struct partial_symbol **top, **real_top, **bottom, **center;
1679 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1680 int do_linear_search = 1;
1681
1682 if (length == 0)
1683 {
1684 return (NULL);
1685 }
1686 start = (global ?
1687 pst->objfile->global_psymbols.list + pst->globals_offset :
1688 pst->objfile->static_psymbols.list + pst->statics_offset);
1689
1690 if (global) /* This means we can use a binary search. */
1691 {
1692 do_linear_search = 0;
1693
1694 /* Binary search. This search is guaranteed to end with center
1695 pointing at the earliest partial symbol whose name might be
1696 correct. At that point *all* partial symbols with an
1697 appropriate name will be checked against the correct
1698 domain. */
1699
1700 bottom = start;
1701 top = start + length - 1;
1702 real_top = top;
1703 while (top > bottom)
1704 {
1705 center = bottom + (top - bottom) / 2;
1706 if (!(center < top))
1707 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1708 if (!do_linear_search
1709 && (SYMBOL_LANGUAGE (*center) == language_java))
1710 {
1711 do_linear_search = 1;
1712 }
1713 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1714 {
1715 top = center;
1716 }
1717 else
1718 {
1719 bottom = center + 1;
1720 }
1721 }
1722 if (!(top == bottom))
1723 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1724
1725 while (top <= real_top
1726 && (linkage_name != NULL
1727 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1728 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1729 {
1730 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1731 SYMBOL_DOMAIN (*top), domain))
1732 return (*top);
1733 top++;
1734 }
1735 }
1736
1737 /* Can't use a binary search or else we found during the binary search that
1738 we should also do a linear search. */
1739
1740 if (do_linear_search)
1741 {
1742 for (psym = start; psym < start + length; psym++)
1743 {
1744 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1745 SYMBOL_DOMAIN (*psym), domain))
1746 {
1747 if (linkage_name != NULL
1748 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1749 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1750 {
1751 return (*psym);
1752 }
1753 }
1754 }
1755 }
1756
1757 return (NULL);
1758 }
1759
1760 /* Look up a type named NAME in the struct_domain. The type returned
1761 must not be opaque -- i.e., must have at least one field
1762 defined. */
1763
1764 struct type *
1765 lookup_transparent_type (const char *name)
1766 {
1767 return current_language->la_lookup_transparent_type (name);
1768 }
1769
1770 /* The standard implementation of lookup_transparent_type. This code
1771 was modeled on lookup_symbol -- the parts not relevant to looking
1772 up types were just left out. In particular it's assumed here that
1773 types are available in struct_domain and only at file-static or
1774 global blocks. */
1775
1776 struct type *
1777 basic_lookup_transparent_type (const char *name)
1778 {
1779 struct symbol *sym;
1780 struct symtab *s = NULL;
1781 struct partial_symtab *ps;
1782 struct blockvector *bv;
1783 struct objfile *objfile;
1784 struct block *block;
1785
1786 /* Now search all the global symbols. Do the symtab's first, then
1787 check the psymtab's. If a psymtab indicates the existence
1788 of the desired name as a global, then do psymtab-to-symtab
1789 conversion on the fly and return the found symbol. */
1790
1791 ALL_PRIMARY_SYMTABS (objfile, s)
1792 {
1793 bv = BLOCKVECTOR (s);
1794 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1795 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1796 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1797 {
1798 return SYMBOL_TYPE (sym);
1799 }
1800 }
1801
1802 ALL_PSYMTABS (objfile, ps)
1803 {
1804 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1805 1, STRUCT_DOMAIN))
1806 {
1807 s = PSYMTAB_TO_SYMTAB (ps);
1808 bv = BLOCKVECTOR (s);
1809 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1810 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1811 if (!sym)
1812 {
1813 /* This shouldn't be necessary, but as a last resort
1814 * try looking in the statics even though the psymtab
1815 * claimed the symbol was global. It's possible that
1816 * the psymtab gets it wrong in some cases.
1817 */
1818 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1819 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1820 if (!sym)
1821 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1822 %s may be an inlined function, or may be a template function\n\
1823 (if a template, try specifying an instantiation: %s<type>)."),
1824 name, ps->filename, name, name);
1825 }
1826 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1827 return SYMBOL_TYPE (sym);
1828 }
1829 }
1830
1831 /* Now search the static file-level symbols.
1832 Not strictly correct, but more useful than an error.
1833 Do the symtab's first, then
1834 check the psymtab's. If a psymtab indicates the existence
1835 of the desired name as a file-level static, then do psymtab-to-symtab
1836 conversion on the fly and return the found symbol.
1837 */
1838
1839 ALL_PRIMARY_SYMTABS (objfile, s)
1840 {
1841 bv = BLOCKVECTOR (s);
1842 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1843 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1844 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1845 {
1846 return SYMBOL_TYPE (sym);
1847 }
1848 }
1849
1850 ALL_PSYMTABS (objfile, ps)
1851 {
1852 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1853 {
1854 s = PSYMTAB_TO_SYMTAB (ps);
1855 bv = BLOCKVECTOR (s);
1856 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1857 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1858 if (!sym)
1859 {
1860 /* This shouldn't be necessary, but as a last resort
1861 * try looking in the globals even though the psymtab
1862 * claimed the symbol was static. It's possible that
1863 * the psymtab gets it wrong in some cases.
1864 */
1865 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1866 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1867 if (!sym)
1868 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1869 %s may be an inlined function, or may be a template function\n\
1870 (if a template, try specifying an instantiation: %s<type>)."),
1871 name, ps->filename, name, name);
1872 }
1873 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1874 return SYMBOL_TYPE (sym);
1875 }
1876 }
1877 return (struct type *) 0;
1878 }
1879
1880
1881 /* Find the psymtab containing main(). */
1882 /* FIXME: What about languages without main() or specially linked
1883 executables that have no main() ? */
1884
1885 struct partial_symtab *
1886 find_main_psymtab (void)
1887 {
1888 struct partial_symtab *pst;
1889 struct objfile *objfile;
1890
1891 ALL_PSYMTABS (objfile, pst)
1892 {
1893 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1894 {
1895 return (pst);
1896 }
1897 }
1898 return (NULL);
1899 }
1900
1901 /* Search BLOCK for symbol NAME in DOMAIN.
1902
1903 Note that if NAME is the demangled form of a C++ symbol, we will fail
1904 to find a match during the binary search of the non-encoded names, but
1905 for now we don't worry about the slight inefficiency of looking for
1906 a match we'll never find, since it will go pretty quick. Once the
1907 binary search terminates, we drop through and do a straight linear
1908 search on the symbols. Each symbol which is marked as being a ObjC/C++
1909 symbol (language_cplus or language_objc set) has both the encoded and
1910 non-encoded names tested for a match.
1911
1912 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1913 particular mangled name.
1914 */
1915
1916 struct symbol *
1917 lookup_block_symbol (const struct block *block, const char *name,
1918 const char *linkage_name,
1919 const domain_enum domain)
1920 {
1921 struct dict_iterator iter;
1922 struct symbol *sym;
1923
1924 if (!BLOCK_FUNCTION (block))
1925 {
1926 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1927 sym != NULL;
1928 sym = dict_iter_name_next (name, &iter))
1929 {
1930 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1931 SYMBOL_DOMAIN (sym), domain)
1932 && (linkage_name != NULL
1933 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1934 return sym;
1935 }
1936 return NULL;
1937 }
1938 else
1939 {
1940 /* Note that parameter symbols do not always show up last in the
1941 list; this loop makes sure to take anything else other than
1942 parameter symbols first; it only uses parameter symbols as a
1943 last resort. Note that this only takes up extra computation
1944 time on a match. */
1945
1946 struct symbol *sym_found = NULL;
1947
1948 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1949 sym != NULL;
1950 sym = dict_iter_name_next (name, &iter))
1951 {
1952 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1953 SYMBOL_DOMAIN (sym), domain)
1954 && (linkage_name != NULL
1955 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1956 {
1957 sym_found = sym;
1958 if (!SYMBOL_IS_ARGUMENT (sym))
1959 {
1960 break;
1961 }
1962 }
1963 }
1964 return (sym_found); /* Will be NULL if not found. */
1965 }
1966 }
1967
1968 /* Find the symtab associated with PC and SECTION. Look through the
1969 psymtabs and read in another symtab if necessary. */
1970
1971 struct symtab *
1972 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1973 {
1974 struct block *b;
1975 struct blockvector *bv;
1976 struct symtab *s = NULL;
1977 struct symtab *best_s = NULL;
1978 struct partial_symtab *ps;
1979 struct objfile *objfile;
1980 CORE_ADDR distance = 0;
1981 struct minimal_symbol *msymbol;
1982
1983 /* If we know that this is not a text address, return failure. This is
1984 necessary because we loop based on the block's high and low code
1985 addresses, which do not include the data ranges, and because
1986 we call find_pc_sect_psymtab which has a similar restriction based
1987 on the partial_symtab's texthigh and textlow. */
1988 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1989 if (msymbol
1990 && (msymbol->type == mst_data
1991 || msymbol->type == mst_bss
1992 || msymbol->type == mst_abs
1993 || msymbol->type == mst_file_data
1994 || msymbol->type == mst_file_bss))
1995 return NULL;
1996
1997 /* Search all symtabs for the one whose file contains our address, and which
1998 is the smallest of all the ones containing the address. This is designed
1999 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2000 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2001 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2002
2003 This happens for native ecoff format, where code from included files
2004 gets its own symtab. The symtab for the included file should have
2005 been read in already via the dependency mechanism.
2006 It might be swifter to create several symtabs with the same name
2007 like xcoff does (I'm not sure).
2008
2009 It also happens for objfiles that have their functions reordered.
2010 For these, the symtab we are looking for is not necessarily read in. */
2011
2012 ALL_PRIMARY_SYMTABS (objfile, s)
2013 {
2014 bv = BLOCKVECTOR (s);
2015 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2016
2017 if (BLOCK_START (b) <= pc
2018 && BLOCK_END (b) > pc
2019 && (distance == 0
2020 || BLOCK_END (b) - BLOCK_START (b) < distance))
2021 {
2022 /* For an objfile that has its functions reordered,
2023 find_pc_psymtab will find the proper partial symbol table
2024 and we simply return its corresponding symtab. */
2025 /* In order to better support objfiles that contain both
2026 stabs and coff debugging info, we continue on if a psymtab
2027 can't be found. */
2028 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2029 {
2030 ps = find_pc_sect_psymtab (pc, section);
2031 if (ps)
2032 return PSYMTAB_TO_SYMTAB (ps);
2033 }
2034 if (section != 0)
2035 {
2036 struct dict_iterator iter;
2037 struct symbol *sym = NULL;
2038
2039 ALL_BLOCK_SYMBOLS (b, iter, sym)
2040 {
2041 fixup_symbol_section (sym, objfile);
2042 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
2043 break;
2044 }
2045 if (sym == NULL)
2046 continue; /* no symbol in this symtab matches section */
2047 }
2048 distance = BLOCK_END (b) - BLOCK_START (b);
2049 best_s = s;
2050 }
2051 }
2052
2053 if (best_s != NULL)
2054 return (best_s);
2055
2056 s = NULL;
2057 ps = find_pc_sect_psymtab (pc, section);
2058 if (ps)
2059 {
2060 if (ps->readin)
2061 /* Might want to error() here (in case symtab is corrupt and
2062 will cause a core dump), but maybe we can successfully
2063 continue, so let's not. */
2064 warning (_("\
2065 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2066 paddr_nz (pc));
2067 s = PSYMTAB_TO_SYMTAB (ps);
2068 }
2069 return (s);
2070 }
2071
2072 /* Find the symtab associated with PC. Look through the psymtabs and
2073 read in another symtab if necessary. Backward compatibility, no section */
2074
2075 struct symtab *
2076 find_pc_symtab (CORE_ADDR pc)
2077 {
2078 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2079 }
2080 \f
2081
2082 /* Find the source file and line number for a given PC value and SECTION.
2083 Return a structure containing a symtab pointer, a line number,
2084 and a pc range for the entire source line.
2085 The value's .pc field is NOT the specified pc.
2086 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2087 use the line that ends there. Otherwise, in that case, the line
2088 that begins there is used. */
2089
2090 /* The big complication here is that a line may start in one file, and end just
2091 before the start of another file. This usually occurs when you #include
2092 code in the middle of a subroutine. To properly find the end of a line's PC
2093 range, we must search all symtabs associated with this compilation unit, and
2094 find the one whose first PC is closer than that of the next line in this
2095 symtab. */
2096
2097 /* If it's worth the effort, we could be using a binary search. */
2098
2099 struct symtab_and_line
2100 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2101 {
2102 struct symtab *s;
2103 struct linetable *l;
2104 int len;
2105 int i;
2106 struct linetable_entry *item;
2107 struct symtab_and_line val;
2108 struct blockvector *bv;
2109 struct minimal_symbol *msymbol;
2110 struct minimal_symbol *mfunsym;
2111
2112 /* Info on best line seen so far, and where it starts, and its file. */
2113
2114 struct linetable_entry *best = NULL;
2115 CORE_ADDR best_end = 0;
2116 struct symtab *best_symtab = 0;
2117
2118 /* Store here the first line number
2119 of a file which contains the line at the smallest pc after PC.
2120 If we don't find a line whose range contains PC,
2121 we will use a line one less than this,
2122 with a range from the start of that file to the first line's pc. */
2123 struct linetable_entry *alt = NULL;
2124 struct symtab *alt_symtab = 0;
2125
2126 /* Info on best line seen in this file. */
2127
2128 struct linetable_entry *prev;
2129
2130 /* If this pc is not from the current frame,
2131 it is the address of the end of a call instruction.
2132 Quite likely that is the start of the following statement.
2133 But what we want is the statement containing the instruction.
2134 Fudge the pc to make sure we get that. */
2135
2136 init_sal (&val); /* initialize to zeroes */
2137
2138 /* It's tempting to assume that, if we can't find debugging info for
2139 any function enclosing PC, that we shouldn't search for line
2140 number info, either. However, GAS can emit line number info for
2141 assembly files --- very helpful when debugging hand-written
2142 assembly code. In such a case, we'd have no debug info for the
2143 function, but we would have line info. */
2144
2145 if (notcurrent)
2146 pc -= 1;
2147
2148 /* elz: added this because this function returned the wrong
2149 information if the pc belongs to a stub (import/export)
2150 to call a shlib function. This stub would be anywhere between
2151 two functions in the target, and the line info was erroneously
2152 taken to be the one of the line before the pc.
2153 */
2154 /* RT: Further explanation:
2155
2156 * We have stubs (trampolines) inserted between procedures.
2157 *
2158 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2159 * exists in the main image.
2160 *
2161 * In the minimal symbol table, we have a bunch of symbols
2162 * sorted by start address. The stubs are marked as "trampoline",
2163 * the others appear as text. E.g.:
2164 *
2165 * Minimal symbol table for main image
2166 * main: code for main (text symbol)
2167 * shr1: stub (trampoline symbol)
2168 * foo: code for foo (text symbol)
2169 * ...
2170 * Minimal symbol table for "shr1" image:
2171 * ...
2172 * shr1: code for shr1 (text symbol)
2173 * ...
2174 *
2175 * So the code below is trying to detect if we are in the stub
2176 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2177 * and if found, do the symbolization from the real-code address
2178 * rather than the stub address.
2179 *
2180 * Assumptions being made about the minimal symbol table:
2181 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2182 * if we're really in the trampoline. If we're beyond it (say
2183 * we're in "foo" in the above example), it'll have a closer
2184 * symbol (the "foo" text symbol for example) and will not
2185 * return the trampoline.
2186 * 2. lookup_minimal_symbol_text() will find a real text symbol
2187 * corresponding to the trampoline, and whose address will
2188 * be different than the trampoline address. I put in a sanity
2189 * check for the address being the same, to avoid an
2190 * infinite recursion.
2191 */
2192 msymbol = lookup_minimal_symbol_by_pc (pc);
2193 if (msymbol != NULL)
2194 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2195 {
2196 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2197 NULL);
2198 if (mfunsym == NULL)
2199 /* I eliminated this warning since it is coming out
2200 * in the following situation:
2201 * gdb shmain // test program with shared libraries
2202 * (gdb) break shr1 // function in shared lib
2203 * Warning: In stub for ...
2204 * In the above situation, the shared lib is not loaded yet,
2205 * so of course we can't find the real func/line info,
2206 * but the "break" still works, and the warning is annoying.
2207 * So I commented out the warning. RT */
2208 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2209 /* fall through */
2210 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2211 /* Avoid infinite recursion */
2212 /* See above comment about why warning is commented out */
2213 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2214 /* fall through */
2215 else
2216 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2217 }
2218
2219
2220 s = find_pc_sect_symtab (pc, section);
2221 if (!s)
2222 {
2223 /* if no symbol information, return previous pc */
2224 if (notcurrent)
2225 pc++;
2226 val.pc = pc;
2227 return val;
2228 }
2229
2230 bv = BLOCKVECTOR (s);
2231
2232 /* Look at all the symtabs that share this blockvector.
2233 They all have the same apriori range, that we found was right;
2234 but they have different line tables. */
2235
2236 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2237 {
2238 /* Find the best line in this symtab. */
2239 l = LINETABLE (s);
2240 if (!l)
2241 continue;
2242 len = l->nitems;
2243 if (len <= 0)
2244 {
2245 /* I think len can be zero if the symtab lacks line numbers
2246 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2247 I'm not sure which, and maybe it depends on the symbol
2248 reader). */
2249 continue;
2250 }
2251
2252 prev = NULL;
2253 item = l->item; /* Get first line info */
2254
2255 /* Is this file's first line closer than the first lines of other files?
2256 If so, record this file, and its first line, as best alternate. */
2257 if (item->pc > pc && (!alt || item->pc < alt->pc))
2258 {
2259 alt = item;
2260 alt_symtab = s;
2261 }
2262
2263 for (i = 0; i < len; i++, item++)
2264 {
2265 /* Leave prev pointing to the linetable entry for the last line
2266 that started at or before PC. */
2267 if (item->pc > pc)
2268 break;
2269
2270 prev = item;
2271 }
2272
2273 /* At this point, prev points at the line whose start addr is <= pc, and
2274 item points at the next line. If we ran off the end of the linetable
2275 (pc >= start of the last line), then prev == item. If pc < start of
2276 the first line, prev will not be set. */
2277
2278 /* Is this file's best line closer than the best in the other files?
2279 If so, record this file, and its best line, as best so far. Don't
2280 save prev if it represents the end of a function (i.e. line number
2281 0) instead of a real line. */
2282
2283 if (prev && prev->line && (!best || prev->pc > best->pc))
2284 {
2285 best = prev;
2286 best_symtab = s;
2287
2288 /* Discard BEST_END if it's before the PC of the current BEST. */
2289 if (best_end <= best->pc)
2290 best_end = 0;
2291 }
2292
2293 /* If another line (denoted by ITEM) is in the linetable and its
2294 PC is after BEST's PC, but before the current BEST_END, then
2295 use ITEM's PC as the new best_end. */
2296 if (best && i < len && item->pc > best->pc
2297 && (best_end == 0 || best_end > item->pc))
2298 best_end = item->pc;
2299 }
2300
2301 if (!best_symtab)
2302 {
2303 /* If we didn't find any line number info, just return zeros.
2304 We used to return alt->line - 1 here, but that could be
2305 anywhere; if we don't have line number info for this PC,
2306 don't make some up. */
2307 val.pc = pc;
2308 }
2309 else if (best->line == 0)
2310 {
2311 /* If our best fit is in a range of PC's for which no line
2312 number info is available (line number is zero) then we didn't
2313 find any valid line information. */
2314 val.pc = pc;
2315 }
2316 else
2317 {
2318 val.symtab = best_symtab;
2319 val.line = best->line;
2320 val.pc = best->pc;
2321 if (best_end && (!alt || best_end < alt->pc))
2322 val.end = best_end;
2323 else if (alt)
2324 val.end = alt->pc;
2325 else
2326 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2327 }
2328 val.section = section;
2329 return val;
2330 }
2331
2332 /* Backward compatibility (no section) */
2333
2334 struct symtab_and_line
2335 find_pc_line (CORE_ADDR pc, int notcurrent)
2336 {
2337 asection *section;
2338
2339 section = find_pc_overlay (pc);
2340 if (pc_in_unmapped_range (pc, section))
2341 pc = overlay_mapped_address (pc, section);
2342 return find_pc_sect_line (pc, section, notcurrent);
2343 }
2344 \f
2345 /* Find line number LINE in any symtab whose name is the same as
2346 SYMTAB.
2347
2348 If found, return the symtab that contains the linetable in which it was
2349 found, set *INDEX to the index in the linetable of the best entry
2350 found, and set *EXACT_MATCH nonzero if the value returned is an
2351 exact match.
2352
2353 If not found, return NULL. */
2354
2355 struct symtab *
2356 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2357 {
2358 int exact;
2359
2360 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2361 so far seen. */
2362
2363 int best_index;
2364 struct linetable *best_linetable;
2365 struct symtab *best_symtab;
2366
2367 /* First try looking it up in the given symtab. */
2368 best_linetable = LINETABLE (symtab);
2369 best_symtab = symtab;
2370 best_index = find_line_common (best_linetable, line, &exact);
2371 if (best_index < 0 || !exact)
2372 {
2373 /* Didn't find an exact match. So we better keep looking for
2374 another symtab with the same name. In the case of xcoff,
2375 multiple csects for one source file (produced by IBM's FORTRAN
2376 compiler) produce multiple symtabs (this is unavoidable
2377 assuming csects can be at arbitrary places in memory and that
2378 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2379
2380 /* BEST is the smallest linenumber > LINE so far seen,
2381 or 0 if none has been seen so far.
2382 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2383 int best;
2384
2385 struct objfile *objfile;
2386 struct symtab *s;
2387 struct partial_symtab *p;
2388
2389 if (best_index >= 0)
2390 best = best_linetable->item[best_index].line;
2391 else
2392 best = 0;
2393
2394 ALL_PSYMTABS (objfile, p)
2395 {
2396 if (strcmp (symtab->filename, p->filename) != 0)
2397 continue;
2398 PSYMTAB_TO_SYMTAB (p);
2399 }
2400
2401 ALL_SYMTABS (objfile, s)
2402 {
2403 struct linetable *l;
2404 int ind;
2405
2406 if (strcmp (symtab->filename, s->filename) != 0)
2407 continue;
2408 l = LINETABLE (s);
2409 ind = find_line_common (l, line, &exact);
2410 if (ind >= 0)
2411 {
2412 if (exact)
2413 {
2414 best_index = ind;
2415 best_linetable = l;
2416 best_symtab = s;
2417 goto done;
2418 }
2419 if (best == 0 || l->item[ind].line < best)
2420 {
2421 best = l->item[ind].line;
2422 best_index = ind;
2423 best_linetable = l;
2424 best_symtab = s;
2425 }
2426 }
2427 }
2428 }
2429 done:
2430 if (best_index < 0)
2431 return NULL;
2432
2433 if (index)
2434 *index = best_index;
2435 if (exact_match)
2436 *exact_match = exact;
2437
2438 return best_symtab;
2439 }
2440 \f
2441 /* Set the PC value for a given source file and line number and return true.
2442 Returns zero for invalid line number (and sets the PC to 0).
2443 The source file is specified with a struct symtab. */
2444
2445 int
2446 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2447 {
2448 struct linetable *l;
2449 int ind;
2450
2451 *pc = 0;
2452 if (symtab == 0)
2453 return 0;
2454
2455 symtab = find_line_symtab (symtab, line, &ind, NULL);
2456 if (symtab != NULL)
2457 {
2458 l = LINETABLE (symtab);
2459 *pc = l->item[ind].pc;
2460 return 1;
2461 }
2462 else
2463 return 0;
2464 }
2465
2466 /* Find the range of pc values in a line.
2467 Store the starting pc of the line into *STARTPTR
2468 and the ending pc (start of next line) into *ENDPTR.
2469 Returns 1 to indicate success.
2470 Returns 0 if could not find the specified line. */
2471
2472 int
2473 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2474 CORE_ADDR *endptr)
2475 {
2476 CORE_ADDR startaddr;
2477 struct symtab_and_line found_sal;
2478
2479 startaddr = sal.pc;
2480 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2481 return 0;
2482
2483 /* This whole function is based on address. For example, if line 10 has
2484 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2485 "info line *0x123" should say the line goes from 0x100 to 0x200
2486 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2487 This also insures that we never give a range like "starts at 0x134
2488 and ends at 0x12c". */
2489
2490 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2491 if (found_sal.line != sal.line)
2492 {
2493 /* The specified line (sal) has zero bytes. */
2494 *startptr = found_sal.pc;
2495 *endptr = found_sal.pc;
2496 }
2497 else
2498 {
2499 *startptr = found_sal.pc;
2500 *endptr = found_sal.end;
2501 }
2502 return 1;
2503 }
2504
2505 /* Given a line table and a line number, return the index into the line
2506 table for the pc of the nearest line whose number is >= the specified one.
2507 Return -1 if none is found. The value is >= 0 if it is an index.
2508
2509 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2510
2511 static int
2512 find_line_common (struct linetable *l, int lineno,
2513 int *exact_match)
2514 {
2515 int i;
2516 int len;
2517
2518 /* BEST is the smallest linenumber > LINENO so far seen,
2519 or 0 if none has been seen so far.
2520 BEST_INDEX identifies the item for it. */
2521
2522 int best_index = -1;
2523 int best = 0;
2524
2525 *exact_match = 0;
2526
2527 if (lineno <= 0)
2528 return -1;
2529 if (l == 0)
2530 return -1;
2531
2532 len = l->nitems;
2533 for (i = 0; i < len; i++)
2534 {
2535 struct linetable_entry *item = &(l->item[i]);
2536
2537 if (item->line == lineno)
2538 {
2539 /* Return the first (lowest address) entry which matches. */
2540 *exact_match = 1;
2541 return i;
2542 }
2543
2544 if (item->line > lineno && (best == 0 || item->line < best))
2545 {
2546 best = item->line;
2547 best_index = i;
2548 }
2549 }
2550
2551 /* If we got here, we didn't get an exact match. */
2552 return best_index;
2553 }
2554
2555 int
2556 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2557 {
2558 struct symtab_and_line sal;
2559 sal = find_pc_line (pc, 0);
2560 *startptr = sal.pc;
2561 *endptr = sal.end;
2562 return sal.symtab != 0;
2563 }
2564
2565 /* Given a function start address PC and SECTION, find the first
2566 address after the function prologue. */
2567 CORE_ADDR
2568 find_function_start_pc (struct gdbarch *gdbarch,
2569 CORE_ADDR pc, asection *section)
2570 {
2571 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2572 so that gdbarch_skip_prologue has something unique to work on. */
2573 if (section_is_overlay (section) && !section_is_mapped (section))
2574 pc = overlay_unmapped_address (pc, section);
2575
2576 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2577 pc = gdbarch_skip_prologue (gdbarch, pc);
2578
2579 /* For overlays, map pc back into its mapped VMA range. */
2580 pc = overlay_mapped_address (pc, section);
2581
2582 return pc;
2583 }
2584
2585 /* Given a function symbol SYM, find the symtab and line for the start
2586 of the function.
2587 If the argument FUNFIRSTLINE is nonzero, we want the first line
2588 of real code inside the function. */
2589
2590 struct symtab_and_line
2591 find_function_start_sal (struct symbol *sym, int funfirstline)
2592 {
2593 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2594 struct objfile *objfile = lookup_objfile_from_block (block);
2595 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2596
2597 CORE_ADDR pc;
2598 struct symtab_and_line sal;
2599
2600 pc = BLOCK_START (block);
2601 fixup_symbol_section (sym, objfile);
2602 if (funfirstline)
2603 {
2604 /* Skip "first line" of function (which is actually its prologue). */
2605 pc = find_function_start_pc (gdbarch, pc, SYMBOL_BFD_SECTION (sym));
2606 }
2607 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2608
2609 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2610 line is still part of the same function. */
2611 if (sal.pc != pc
2612 && BLOCK_START (block) <= sal.end
2613 && sal.end < BLOCK_END (block))
2614 {
2615 /* First pc of next line */
2616 pc = sal.end;
2617 /* Recalculate the line number (might not be N+1). */
2618 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2619 }
2620 sal.pc = pc;
2621
2622 return sal;
2623 }
2624
2625 /* If P is of the form "operator[ \t]+..." where `...' is
2626 some legitimate operator text, return a pointer to the
2627 beginning of the substring of the operator text.
2628 Otherwise, return "". */
2629 char *
2630 operator_chars (char *p, char **end)
2631 {
2632 *end = "";
2633 if (strncmp (p, "operator", 8))
2634 return *end;
2635 p += 8;
2636
2637 /* Don't get faked out by `operator' being part of a longer
2638 identifier. */
2639 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2640 return *end;
2641
2642 /* Allow some whitespace between `operator' and the operator symbol. */
2643 while (*p == ' ' || *p == '\t')
2644 p++;
2645
2646 /* Recognize 'operator TYPENAME'. */
2647
2648 if (isalpha (*p) || *p == '_' || *p == '$')
2649 {
2650 char *q = p + 1;
2651 while (isalnum (*q) || *q == '_' || *q == '$')
2652 q++;
2653 *end = q;
2654 return p;
2655 }
2656
2657 while (*p)
2658 switch (*p)
2659 {
2660 case '\\': /* regexp quoting */
2661 if (p[1] == '*')
2662 {
2663 if (p[2] == '=') /* 'operator\*=' */
2664 *end = p + 3;
2665 else /* 'operator\*' */
2666 *end = p + 2;
2667 return p;
2668 }
2669 else if (p[1] == '[')
2670 {
2671 if (p[2] == ']')
2672 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2673 else if (p[2] == '\\' && p[3] == ']')
2674 {
2675 *end = p + 4; /* 'operator\[\]' */
2676 return p;
2677 }
2678 else
2679 error (_("nothing is allowed between '[' and ']'"));
2680 }
2681 else
2682 {
2683 /* Gratuitous qoute: skip it and move on. */
2684 p++;
2685 continue;
2686 }
2687 break;
2688 case '!':
2689 case '=':
2690 case '*':
2691 case '/':
2692 case '%':
2693 case '^':
2694 if (p[1] == '=')
2695 *end = p + 2;
2696 else
2697 *end = p + 1;
2698 return p;
2699 case '<':
2700 case '>':
2701 case '+':
2702 case '-':
2703 case '&':
2704 case '|':
2705 if (p[0] == '-' && p[1] == '>')
2706 {
2707 /* Struct pointer member operator 'operator->'. */
2708 if (p[2] == '*')
2709 {
2710 *end = p + 3; /* 'operator->*' */
2711 return p;
2712 }
2713 else if (p[2] == '\\')
2714 {
2715 *end = p + 4; /* Hopefully 'operator->\*' */
2716 return p;
2717 }
2718 else
2719 {
2720 *end = p + 2; /* 'operator->' */
2721 return p;
2722 }
2723 }
2724 if (p[1] == '=' || p[1] == p[0])
2725 *end = p + 2;
2726 else
2727 *end = p + 1;
2728 return p;
2729 case '~':
2730 case ',':
2731 *end = p + 1;
2732 return p;
2733 case '(':
2734 if (p[1] != ')')
2735 error (_("`operator ()' must be specified without whitespace in `()'"));
2736 *end = p + 2;
2737 return p;
2738 case '?':
2739 if (p[1] != ':')
2740 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2741 *end = p + 2;
2742 return p;
2743 case '[':
2744 if (p[1] != ']')
2745 error (_("`operator []' must be specified without whitespace in `[]'"));
2746 *end = p + 2;
2747 return p;
2748 default:
2749 error (_("`operator %s' not supported"), p);
2750 break;
2751 }
2752
2753 *end = "";
2754 return *end;
2755 }
2756 \f
2757
2758 /* If FILE is not already in the table of files, return zero;
2759 otherwise return non-zero. Optionally add FILE to the table if ADD
2760 is non-zero. If *FIRST is non-zero, forget the old table
2761 contents. */
2762 static int
2763 filename_seen (const char *file, int add, int *first)
2764 {
2765 /* Table of files seen so far. */
2766 static const char **tab = NULL;
2767 /* Allocated size of tab in elements.
2768 Start with one 256-byte block (when using GNU malloc.c).
2769 24 is the malloc overhead when range checking is in effect. */
2770 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2771 /* Current size of tab in elements. */
2772 static int tab_cur_size;
2773 const char **p;
2774
2775 if (*first)
2776 {
2777 if (tab == NULL)
2778 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2779 tab_cur_size = 0;
2780 }
2781
2782 /* Is FILE in tab? */
2783 for (p = tab; p < tab + tab_cur_size; p++)
2784 if (strcmp (*p, file) == 0)
2785 return 1;
2786
2787 /* No; maybe add it to tab. */
2788 if (add)
2789 {
2790 if (tab_cur_size == tab_alloc_size)
2791 {
2792 tab_alloc_size *= 2;
2793 tab = (const char **) xrealloc ((char *) tab,
2794 tab_alloc_size * sizeof (*tab));
2795 }
2796 tab[tab_cur_size++] = file;
2797 }
2798
2799 return 0;
2800 }
2801
2802 /* Slave routine for sources_info. Force line breaks at ,'s.
2803 NAME is the name to print and *FIRST is nonzero if this is the first
2804 name printed. Set *FIRST to zero. */
2805 static void
2806 output_source_filename (const char *name, int *first)
2807 {
2808 /* Since a single source file can result in several partial symbol
2809 tables, we need to avoid printing it more than once. Note: if
2810 some of the psymtabs are read in and some are not, it gets
2811 printed both under "Source files for which symbols have been
2812 read" and "Source files for which symbols will be read in on
2813 demand". I consider this a reasonable way to deal with the
2814 situation. I'm not sure whether this can also happen for
2815 symtabs; it doesn't hurt to check. */
2816
2817 /* Was NAME already seen? */
2818 if (filename_seen (name, 1, first))
2819 {
2820 /* Yes; don't print it again. */
2821 return;
2822 }
2823 /* No; print it and reset *FIRST. */
2824 if (*first)
2825 {
2826 *first = 0;
2827 }
2828 else
2829 {
2830 printf_filtered (", ");
2831 }
2832
2833 wrap_here ("");
2834 fputs_filtered (name, gdb_stdout);
2835 }
2836
2837 static void
2838 sources_info (char *ignore, int from_tty)
2839 {
2840 struct symtab *s;
2841 struct partial_symtab *ps;
2842 struct objfile *objfile;
2843 int first;
2844
2845 if (!have_full_symbols () && !have_partial_symbols ())
2846 {
2847 error (_("No symbol table is loaded. Use the \"file\" command."));
2848 }
2849
2850 printf_filtered ("Source files for which symbols have been read in:\n\n");
2851
2852 first = 1;
2853 ALL_SYMTABS (objfile, s)
2854 {
2855 const char *fullname = symtab_to_fullname (s);
2856 output_source_filename (fullname ? fullname : s->filename, &first);
2857 }
2858 printf_filtered ("\n\n");
2859
2860 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2861
2862 first = 1;
2863 ALL_PSYMTABS (objfile, ps)
2864 {
2865 if (!ps->readin)
2866 {
2867 const char *fullname = psymtab_to_fullname (ps);
2868 output_source_filename (fullname ? fullname : ps->filename, &first);
2869 }
2870 }
2871 printf_filtered ("\n");
2872 }
2873
2874 static int
2875 file_matches (char *file, char *files[], int nfiles)
2876 {
2877 int i;
2878
2879 if (file != NULL && nfiles != 0)
2880 {
2881 for (i = 0; i < nfiles; i++)
2882 {
2883 if (strcmp (files[i], lbasename (file)) == 0)
2884 return 1;
2885 }
2886 }
2887 else if (nfiles == 0)
2888 return 1;
2889 return 0;
2890 }
2891
2892 /* Free any memory associated with a search. */
2893 void
2894 free_search_symbols (struct symbol_search *symbols)
2895 {
2896 struct symbol_search *p;
2897 struct symbol_search *next;
2898
2899 for (p = symbols; p != NULL; p = next)
2900 {
2901 next = p->next;
2902 xfree (p);
2903 }
2904 }
2905
2906 static void
2907 do_free_search_symbols_cleanup (void *symbols)
2908 {
2909 free_search_symbols (symbols);
2910 }
2911
2912 struct cleanup *
2913 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2914 {
2915 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2916 }
2917
2918 /* Helper function for sort_search_symbols and qsort. Can only
2919 sort symbols, not minimal symbols. */
2920 static int
2921 compare_search_syms (const void *sa, const void *sb)
2922 {
2923 struct symbol_search **sym_a = (struct symbol_search **) sa;
2924 struct symbol_search **sym_b = (struct symbol_search **) sb;
2925
2926 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2927 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2928 }
2929
2930 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2931 prevtail where it is, but update its next pointer to point to
2932 the first of the sorted symbols. */
2933 static struct symbol_search *
2934 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2935 {
2936 struct symbol_search **symbols, *symp, *old_next;
2937 int i;
2938
2939 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2940 * nfound);
2941 symp = prevtail->next;
2942 for (i = 0; i < nfound; i++)
2943 {
2944 symbols[i] = symp;
2945 symp = symp->next;
2946 }
2947 /* Generally NULL. */
2948 old_next = symp;
2949
2950 qsort (symbols, nfound, sizeof (struct symbol_search *),
2951 compare_search_syms);
2952
2953 symp = prevtail;
2954 for (i = 0; i < nfound; i++)
2955 {
2956 symp->next = symbols[i];
2957 symp = symp->next;
2958 }
2959 symp->next = old_next;
2960
2961 xfree (symbols);
2962 return symp;
2963 }
2964
2965 /* Search the symbol table for matches to the regular expression REGEXP,
2966 returning the results in *MATCHES.
2967
2968 Only symbols of KIND are searched:
2969 FUNCTIONS_DOMAIN - search all functions
2970 TYPES_DOMAIN - search all type names
2971 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2972 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2973 and constants (enums)
2974
2975 free_search_symbols should be called when *MATCHES is no longer needed.
2976
2977 The results are sorted locally; each symtab's global and static blocks are
2978 separately alphabetized.
2979 */
2980 void
2981 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2982 struct symbol_search **matches)
2983 {
2984 struct symtab *s;
2985 struct partial_symtab *ps;
2986 struct blockvector *bv;
2987 struct block *b;
2988 int i = 0;
2989 struct dict_iterator iter;
2990 struct symbol *sym;
2991 struct partial_symbol **psym;
2992 struct objfile *objfile;
2993 struct minimal_symbol *msymbol;
2994 char *val;
2995 int found_misc = 0;
2996 static enum minimal_symbol_type types[]
2997 =
2998 {mst_data, mst_text, mst_abs, mst_unknown};
2999 static enum minimal_symbol_type types2[]
3000 =
3001 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3002 static enum minimal_symbol_type types3[]
3003 =
3004 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3005 static enum minimal_symbol_type types4[]
3006 =
3007 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3008 enum minimal_symbol_type ourtype;
3009 enum minimal_symbol_type ourtype2;
3010 enum minimal_symbol_type ourtype3;
3011 enum minimal_symbol_type ourtype4;
3012 struct symbol_search *sr;
3013 struct symbol_search *psr;
3014 struct symbol_search *tail;
3015 struct cleanup *old_chain = NULL;
3016
3017 if (kind < VARIABLES_DOMAIN)
3018 error (_("must search on specific domain"));
3019
3020 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3021 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3022 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3023 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3024
3025 sr = *matches = NULL;
3026 tail = NULL;
3027
3028 if (regexp != NULL)
3029 {
3030 /* Make sure spacing is right for C++ operators.
3031 This is just a courtesy to make the matching less sensitive
3032 to how many spaces the user leaves between 'operator'
3033 and <TYPENAME> or <OPERATOR>. */
3034 char *opend;
3035 char *opname = operator_chars (regexp, &opend);
3036 if (*opname)
3037 {
3038 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3039 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3040 {
3041 /* There should 1 space between 'operator' and 'TYPENAME'. */
3042 if (opname[-1] != ' ' || opname[-2] == ' ')
3043 fix = 1;
3044 }
3045 else
3046 {
3047 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3048 if (opname[-1] == ' ')
3049 fix = 0;
3050 }
3051 /* If wrong number of spaces, fix it. */
3052 if (fix >= 0)
3053 {
3054 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3055 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3056 regexp = tmp;
3057 }
3058 }
3059
3060 if (0 != (val = re_comp (regexp)))
3061 error (_("Invalid regexp (%s): %s"), val, regexp);
3062 }
3063
3064 /* Search through the partial symtabs *first* for all symbols
3065 matching the regexp. That way we don't have to reproduce all of
3066 the machinery below. */
3067
3068 ALL_PSYMTABS (objfile, ps)
3069 {
3070 struct partial_symbol **bound, **gbound, **sbound;
3071 int keep_going = 1;
3072
3073 if (ps->readin)
3074 continue;
3075
3076 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3077 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3078 bound = gbound;
3079
3080 /* Go through all of the symbols stored in a partial
3081 symtab in one loop. */
3082 psym = objfile->global_psymbols.list + ps->globals_offset;
3083 while (keep_going)
3084 {
3085 if (psym >= bound)
3086 {
3087 if (bound == gbound && ps->n_static_syms != 0)
3088 {
3089 psym = objfile->static_psymbols.list + ps->statics_offset;
3090 bound = sbound;
3091 }
3092 else
3093 keep_going = 0;
3094 continue;
3095 }
3096 else
3097 {
3098 QUIT;
3099
3100 /* If it would match (logic taken from loop below)
3101 load the file and go on to the next one. We check the
3102 filename here, but that's a bit bogus: we don't know
3103 what file it really comes from until we have full
3104 symtabs. The symbol might be in a header file included by
3105 this psymtab. This only affects Insight. */
3106 if (file_matches (ps->filename, files, nfiles)
3107 && ((regexp == NULL
3108 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3109 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3110 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3111 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3112 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3113 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3114 {
3115 PSYMTAB_TO_SYMTAB (ps);
3116 keep_going = 0;
3117 }
3118 }
3119 psym++;
3120 }
3121 }
3122
3123 /* Here, we search through the minimal symbol tables for functions
3124 and variables that match, and force their symbols to be read.
3125 This is in particular necessary for demangled variable names,
3126 which are no longer put into the partial symbol tables.
3127 The symbol will then be found during the scan of symtabs below.
3128
3129 For functions, find_pc_symtab should succeed if we have debug info
3130 for the function, for variables we have to call lookup_symbol
3131 to determine if the variable has debug info.
3132 If the lookup fails, set found_misc so that we will rescan to print
3133 any matching symbols without debug info.
3134 */
3135
3136 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3137 {
3138 ALL_MSYMBOLS (objfile, msymbol)
3139 {
3140 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3141 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3142 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3143 MSYMBOL_TYPE (msymbol) == ourtype4)
3144 {
3145 if (regexp == NULL
3146 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3147 {
3148 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3149 {
3150 /* FIXME: carlton/2003-02-04: Given that the
3151 semantics of lookup_symbol keeps on changing
3152 slightly, it would be a nice idea if we had a
3153 function lookup_symbol_minsym that found the
3154 symbol associated to a given minimal symbol (if
3155 any). */
3156 if (kind == FUNCTIONS_DOMAIN
3157 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3158 (struct block *) NULL,
3159 VAR_DOMAIN, 0)
3160 == NULL)
3161 found_misc = 1;
3162 }
3163 }
3164 }
3165 }
3166 }
3167
3168 ALL_PRIMARY_SYMTABS (objfile, s)
3169 {
3170 bv = BLOCKVECTOR (s);
3171 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3172 {
3173 struct symbol_search *prevtail = tail;
3174 int nfound = 0;
3175 b = BLOCKVECTOR_BLOCK (bv, i);
3176 ALL_BLOCK_SYMBOLS (b, iter, sym)
3177 {
3178 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3179 QUIT;
3180
3181 if (file_matches (real_symtab->filename, files, nfiles)
3182 && ((regexp == NULL
3183 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3184 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3185 && SYMBOL_CLASS (sym) != LOC_BLOCK
3186 && SYMBOL_CLASS (sym) != LOC_CONST)
3187 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3188 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3189 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3190 {
3191 /* match */
3192 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3193 psr->block = i;
3194 psr->symtab = real_symtab;
3195 psr->symbol = sym;
3196 psr->msymbol = NULL;
3197 psr->next = NULL;
3198 if (tail == NULL)
3199 sr = psr;
3200 else
3201 tail->next = psr;
3202 tail = psr;
3203 nfound ++;
3204 }
3205 }
3206 if (nfound > 0)
3207 {
3208 if (prevtail == NULL)
3209 {
3210 struct symbol_search dummy;
3211
3212 dummy.next = sr;
3213 tail = sort_search_symbols (&dummy, nfound);
3214 sr = dummy.next;
3215
3216 old_chain = make_cleanup_free_search_symbols (sr);
3217 }
3218 else
3219 tail = sort_search_symbols (prevtail, nfound);
3220 }
3221 }
3222 }
3223
3224 /* If there are no eyes, avoid all contact. I mean, if there are
3225 no debug symbols, then print directly from the msymbol_vector. */
3226
3227 if (found_misc || kind != FUNCTIONS_DOMAIN)
3228 {
3229 ALL_MSYMBOLS (objfile, msymbol)
3230 {
3231 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3232 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3233 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3234 MSYMBOL_TYPE (msymbol) == ourtype4)
3235 {
3236 if (regexp == NULL
3237 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3238 {
3239 /* Functions: Look up by address. */
3240 if (kind != FUNCTIONS_DOMAIN ||
3241 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3242 {
3243 /* Variables/Absolutes: Look up by name */
3244 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3245 (struct block *) NULL, VAR_DOMAIN, 0)
3246 == NULL)
3247 {
3248 /* match */
3249 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3250 psr->block = i;
3251 psr->msymbol = msymbol;
3252 psr->symtab = NULL;
3253 psr->symbol = NULL;
3254 psr->next = NULL;
3255 if (tail == NULL)
3256 {
3257 sr = psr;
3258 old_chain = make_cleanup_free_search_symbols (sr);
3259 }
3260 else
3261 tail->next = psr;
3262 tail = psr;
3263 }
3264 }
3265 }
3266 }
3267 }
3268 }
3269
3270 *matches = sr;
3271 if (sr != NULL)
3272 discard_cleanups (old_chain);
3273 }
3274
3275 /* Helper function for symtab_symbol_info, this function uses
3276 the data returned from search_symbols() to print information
3277 regarding the match to gdb_stdout.
3278 */
3279 static void
3280 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3281 int block, char *last)
3282 {
3283 if (last == NULL || strcmp (last, s->filename) != 0)
3284 {
3285 fputs_filtered ("\nFile ", gdb_stdout);
3286 fputs_filtered (s->filename, gdb_stdout);
3287 fputs_filtered (":\n", gdb_stdout);
3288 }
3289
3290 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3291 printf_filtered ("static ");
3292
3293 /* Typedef that is not a C++ class */
3294 if (kind == TYPES_DOMAIN
3295 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3296 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3297 /* variable, func, or typedef-that-is-c++-class */
3298 else if (kind < TYPES_DOMAIN ||
3299 (kind == TYPES_DOMAIN &&
3300 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3301 {
3302 type_print (SYMBOL_TYPE (sym),
3303 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3304 ? "" : SYMBOL_PRINT_NAME (sym)),
3305 gdb_stdout, 0);
3306
3307 printf_filtered (";\n");
3308 }
3309 }
3310
3311 /* This help function for symtab_symbol_info() prints information
3312 for non-debugging symbols to gdb_stdout.
3313 */
3314 static void
3315 print_msymbol_info (struct minimal_symbol *msymbol)
3316 {
3317 char *tmp;
3318
3319 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3320 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3321 & (CORE_ADDR) 0xffffffff,
3322 8);
3323 else
3324 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3325 16);
3326 printf_filtered ("%s %s\n",
3327 tmp, SYMBOL_PRINT_NAME (msymbol));
3328 }
3329
3330 /* This is the guts of the commands "info functions", "info types", and
3331 "info variables". It calls search_symbols to find all matches and then
3332 print_[m]symbol_info to print out some useful information about the
3333 matches.
3334 */
3335 static void
3336 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3337 {
3338 static char *classnames[]
3339 =
3340 {"variable", "function", "type", "method"};
3341 struct symbol_search *symbols;
3342 struct symbol_search *p;
3343 struct cleanup *old_chain;
3344 char *last_filename = NULL;
3345 int first = 1;
3346
3347 /* must make sure that if we're interrupted, symbols gets freed */
3348 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3349 old_chain = make_cleanup_free_search_symbols (symbols);
3350
3351 printf_filtered (regexp
3352 ? "All %ss matching regular expression \"%s\":\n"
3353 : "All defined %ss:\n",
3354 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3355
3356 for (p = symbols; p != NULL; p = p->next)
3357 {
3358 QUIT;
3359
3360 if (p->msymbol != NULL)
3361 {
3362 if (first)
3363 {
3364 printf_filtered ("\nNon-debugging symbols:\n");
3365 first = 0;
3366 }
3367 print_msymbol_info (p->msymbol);
3368 }
3369 else
3370 {
3371 print_symbol_info (kind,
3372 p->symtab,
3373 p->symbol,
3374 p->block,
3375 last_filename);
3376 last_filename = p->symtab->filename;
3377 }
3378 }
3379
3380 do_cleanups (old_chain);
3381 }
3382
3383 static void
3384 variables_info (char *regexp, int from_tty)
3385 {
3386 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3387 }
3388
3389 static void
3390 functions_info (char *regexp, int from_tty)
3391 {
3392 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3393 }
3394
3395
3396 static void
3397 types_info (char *regexp, int from_tty)
3398 {
3399 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3400 }
3401
3402 /* Breakpoint all functions matching regular expression. */
3403
3404 void
3405 rbreak_command_wrapper (char *regexp, int from_tty)
3406 {
3407 rbreak_command (regexp, from_tty);
3408 }
3409
3410 static void
3411 rbreak_command (char *regexp, int from_tty)
3412 {
3413 struct symbol_search *ss;
3414 struct symbol_search *p;
3415 struct cleanup *old_chain;
3416
3417 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3418 old_chain = make_cleanup_free_search_symbols (ss);
3419
3420 for (p = ss; p != NULL; p = p->next)
3421 {
3422 if (p->msymbol == NULL)
3423 {
3424 char *string = alloca (strlen (p->symtab->filename)
3425 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3426 + 4);
3427 strcpy (string, p->symtab->filename);
3428 strcat (string, ":'");
3429 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3430 strcat (string, "'");
3431 break_command (string, from_tty);
3432 print_symbol_info (FUNCTIONS_DOMAIN,
3433 p->symtab,
3434 p->symbol,
3435 p->block,
3436 p->symtab->filename);
3437 }
3438 else
3439 {
3440 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3441 + 3);
3442 strcpy (string, "'");
3443 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3444 strcat (string, "'");
3445
3446 break_command (string, from_tty);
3447 printf_filtered ("<function, no debug info> %s;\n",
3448 SYMBOL_PRINT_NAME (p->msymbol));
3449 }
3450 }
3451
3452 do_cleanups (old_chain);
3453 }
3454 \f
3455
3456 /* Helper routine for make_symbol_completion_list. */
3457
3458 static int return_val_size;
3459 static int return_val_index;
3460 static char **return_val;
3461
3462 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3463 completion_list_add_name \
3464 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3465
3466 /* Test to see if the symbol specified by SYMNAME (which is already
3467 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3468 characters. If so, add it to the current completion list. */
3469
3470 static void
3471 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3472 char *text, char *word)
3473 {
3474 int newsize;
3475 int i;
3476
3477 /* clip symbols that cannot match */
3478
3479 if (strncmp (symname, sym_text, sym_text_len) != 0)
3480 {
3481 return;
3482 }
3483
3484 /* We have a match for a completion, so add SYMNAME to the current list
3485 of matches. Note that the name is moved to freshly malloc'd space. */
3486
3487 {
3488 char *new;
3489 if (word == sym_text)
3490 {
3491 new = xmalloc (strlen (symname) + 5);
3492 strcpy (new, symname);
3493 }
3494 else if (word > sym_text)
3495 {
3496 /* Return some portion of symname. */
3497 new = xmalloc (strlen (symname) + 5);
3498 strcpy (new, symname + (word - sym_text));
3499 }
3500 else
3501 {
3502 /* Return some of SYM_TEXT plus symname. */
3503 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3504 strncpy (new, word, sym_text - word);
3505 new[sym_text - word] = '\0';
3506 strcat (new, symname);
3507 }
3508
3509 if (return_val_index + 3 > return_val_size)
3510 {
3511 newsize = (return_val_size *= 2) * sizeof (char *);
3512 return_val = (char **) xrealloc ((char *) return_val, newsize);
3513 }
3514 return_val[return_val_index++] = new;
3515 return_val[return_val_index] = NULL;
3516 }
3517 }
3518
3519 /* ObjC: In case we are completing on a selector, look as the msymbol
3520 again and feed all the selectors into the mill. */
3521
3522 static void
3523 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3524 int sym_text_len, char *text, char *word)
3525 {
3526 static char *tmp = NULL;
3527 static unsigned int tmplen = 0;
3528
3529 char *method, *category, *selector;
3530 char *tmp2 = NULL;
3531
3532 method = SYMBOL_NATURAL_NAME (msymbol);
3533
3534 /* Is it a method? */
3535 if ((method[0] != '-') && (method[0] != '+'))
3536 return;
3537
3538 if (sym_text[0] == '[')
3539 /* Complete on shortened method method. */
3540 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3541
3542 while ((strlen (method) + 1) >= tmplen)
3543 {
3544 if (tmplen == 0)
3545 tmplen = 1024;
3546 else
3547 tmplen *= 2;
3548 tmp = xrealloc (tmp, tmplen);
3549 }
3550 selector = strchr (method, ' ');
3551 if (selector != NULL)
3552 selector++;
3553
3554 category = strchr (method, '(');
3555
3556 if ((category != NULL) && (selector != NULL))
3557 {
3558 memcpy (tmp, method, (category - method));
3559 tmp[category - method] = ' ';
3560 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3561 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3562 if (sym_text[0] == '[')
3563 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3564 }
3565
3566 if (selector != NULL)
3567 {
3568 /* Complete on selector only. */
3569 strcpy (tmp, selector);
3570 tmp2 = strchr (tmp, ']');
3571 if (tmp2 != NULL)
3572 *tmp2 = '\0';
3573
3574 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3575 }
3576 }
3577
3578 /* Break the non-quoted text based on the characters which are in
3579 symbols. FIXME: This should probably be language-specific. */
3580
3581 static char *
3582 language_search_unquoted_string (char *text, char *p)
3583 {
3584 for (; p > text; --p)
3585 {
3586 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3587 continue;
3588 else
3589 {
3590 if ((current_language->la_language == language_objc))
3591 {
3592 if (p[-1] == ':') /* might be part of a method name */
3593 continue;
3594 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3595 p -= 2; /* beginning of a method name */
3596 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3597 { /* might be part of a method name */
3598 char *t = p;
3599
3600 /* Seeing a ' ' or a '(' is not conclusive evidence
3601 that we are in the middle of a method name. However,
3602 finding "-[" or "+[" should be pretty un-ambiguous.
3603 Unfortunately we have to find it now to decide. */
3604
3605 while (t > text)
3606 if (isalnum (t[-1]) || t[-1] == '_' ||
3607 t[-1] == ' ' || t[-1] == ':' ||
3608 t[-1] == '(' || t[-1] == ')')
3609 --t;
3610 else
3611 break;
3612
3613 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3614 p = t - 2; /* method name detected */
3615 /* else we leave with p unchanged */
3616 }
3617 }
3618 break;
3619 }
3620 }
3621 return p;
3622 }
3623
3624 char **
3625 default_make_symbol_completion_list (char *text, char *word)
3626 {
3627 /* Problem: All of the symbols have to be copied because readline
3628 frees them. I'm not going to worry about this; hopefully there
3629 won't be that many. */
3630
3631 struct symbol *sym;
3632 struct symtab *s;
3633 struct partial_symtab *ps;
3634 struct minimal_symbol *msymbol;
3635 struct objfile *objfile;
3636 struct block *b, *surrounding_static_block = 0;
3637 struct dict_iterator iter;
3638 int j;
3639 struct partial_symbol **psym;
3640 /* The symbol we are completing on. Points in same buffer as text. */
3641 char *sym_text;
3642 /* Length of sym_text. */
3643 int sym_text_len;
3644
3645 /* Now look for the symbol we are supposed to complete on. */
3646 {
3647 char *p;
3648 char quote_found;
3649 char *quote_pos = NULL;
3650
3651 /* First see if this is a quoted string. */
3652 quote_found = '\0';
3653 for (p = text; *p != '\0'; ++p)
3654 {
3655 if (quote_found != '\0')
3656 {
3657 if (*p == quote_found)
3658 /* Found close quote. */
3659 quote_found = '\0';
3660 else if (*p == '\\' && p[1] == quote_found)
3661 /* A backslash followed by the quote character
3662 doesn't end the string. */
3663 ++p;
3664 }
3665 else if (*p == '\'' || *p == '"')
3666 {
3667 quote_found = *p;
3668 quote_pos = p;
3669 }
3670 }
3671 if (quote_found == '\'')
3672 /* A string within single quotes can be a symbol, so complete on it. */
3673 sym_text = quote_pos + 1;
3674 else if (quote_found == '"')
3675 /* A double-quoted string is never a symbol, nor does it make sense
3676 to complete it any other way. */
3677 {
3678 return_val = (char **) xmalloc (sizeof (char *));
3679 return_val[0] = NULL;
3680 return return_val;
3681 }
3682 else
3683 {
3684 /* It is not a quoted string. Break it based on the characters
3685 which are in symbols. */
3686 while (p > text)
3687 {
3688 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3689 --p;
3690 else
3691 break;
3692 }
3693 sym_text = p;
3694 }
3695 }
3696
3697 sym_text_len = strlen (sym_text);
3698
3699 return_val_size = 100;
3700 return_val_index = 0;
3701 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3702 return_val[0] = NULL;
3703
3704 /* Look through the partial symtabs for all symbols which begin
3705 by matching SYM_TEXT. Add each one that you find to the list. */
3706
3707 ALL_PSYMTABS (objfile, ps)
3708 {
3709 /* If the psymtab's been read in we'll get it when we search
3710 through the blockvector. */
3711 if (ps->readin)
3712 continue;
3713
3714 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3715 psym < (objfile->global_psymbols.list + ps->globals_offset
3716 + ps->n_global_syms);
3717 psym++)
3718 {
3719 /* If interrupted, then quit. */
3720 QUIT;
3721 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3722 }
3723
3724 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3725 psym < (objfile->static_psymbols.list + ps->statics_offset
3726 + ps->n_static_syms);
3727 psym++)
3728 {
3729 QUIT;
3730 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3731 }
3732 }
3733
3734 /* At this point scan through the misc symbol vectors and add each
3735 symbol you find to the list. Eventually we want to ignore
3736 anything that isn't a text symbol (everything else will be
3737 handled by the psymtab code above). */
3738
3739 ALL_MSYMBOLS (objfile, msymbol)
3740 {
3741 QUIT;
3742 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3743
3744 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3745 }
3746
3747 /* Search upwards from currently selected frame (so that we can
3748 complete on local vars. */
3749
3750 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3751 {
3752 if (!BLOCK_SUPERBLOCK (b))
3753 {
3754 surrounding_static_block = b; /* For elmin of dups */
3755 }
3756
3757 /* Also catch fields of types defined in this places which match our
3758 text string. Only complete on types visible from current context. */
3759
3760 ALL_BLOCK_SYMBOLS (b, iter, sym)
3761 {
3762 QUIT;
3763 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3764 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3765 {
3766 struct type *t = SYMBOL_TYPE (sym);
3767 enum type_code c = TYPE_CODE (t);
3768
3769 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3770 {
3771 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3772 {
3773 if (TYPE_FIELD_NAME (t, j))
3774 {
3775 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3776 sym_text, sym_text_len, text, word);
3777 }
3778 }
3779 }
3780 }
3781 }
3782 }
3783
3784 /* Go through the symtabs and check the externs and statics for
3785 symbols which match. */
3786
3787 ALL_PRIMARY_SYMTABS (objfile, s)
3788 {
3789 QUIT;
3790 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3791 ALL_BLOCK_SYMBOLS (b, iter, sym)
3792 {
3793 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3794 }
3795 }
3796
3797 ALL_PRIMARY_SYMTABS (objfile, s)
3798 {
3799 QUIT;
3800 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3801 /* Don't do this block twice. */
3802 if (b == surrounding_static_block)
3803 continue;
3804 ALL_BLOCK_SYMBOLS (b, iter, sym)
3805 {
3806 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3807 }
3808 }
3809
3810 return (return_val);
3811 }
3812
3813 /* Return a NULL terminated array of all symbols (regardless of class)
3814 which begin by matching TEXT. If the answer is no symbols, then
3815 the return value is an array which contains only a NULL pointer. */
3816
3817 char **
3818 make_symbol_completion_list (char *text, char *word)
3819 {
3820 return current_language->la_make_symbol_completion_list (text, word);
3821 }
3822
3823 /* Like make_symbol_completion_list, but returns a list of symbols
3824 defined in a source file FILE. */
3825
3826 char **
3827 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3828 {
3829 struct symbol *sym;
3830 struct symtab *s;
3831 struct block *b;
3832 struct dict_iterator iter;
3833 /* The symbol we are completing on. Points in same buffer as text. */
3834 char *sym_text;
3835 /* Length of sym_text. */
3836 int sym_text_len;
3837
3838 /* Now look for the symbol we are supposed to complete on.
3839 FIXME: This should be language-specific. */
3840 {
3841 char *p;
3842 char quote_found;
3843 char *quote_pos = NULL;
3844
3845 /* First see if this is a quoted string. */
3846 quote_found = '\0';
3847 for (p = text; *p != '\0'; ++p)
3848 {
3849 if (quote_found != '\0')
3850 {
3851 if (*p == quote_found)
3852 /* Found close quote. */
3853 quote_found = '\0';
3854 else if (*p == '\\' && p[1] == quote_found)
3855 /* A backslash followed by the quote character
3856 doesn't end the string. */
3857 ++p;
3858 }
3859 else if (*p == '\'' || *p == '"')
3860 {
3861 quote_found = *p;
3862 quote_pos = p;
3863 }
3864 }
3865 if (quote_found == '\'')
3866 /* A string within single quotes can be a symbol, so complete on it. */
3867 sym_text = quote_pos + 1;
3868 else if (quote_found == '"')
3869 /* A double-quoted string is never a symbol, nor does it make sense
3870 to complete it any other way. */
3871 {
3872 return_val = (char **) xmalloc (sizeof (char *));
3873 return_val[0] = NULL;
3874 return return_val;
3875 }
3876 else
3877 {
3878 /* Not a quoted string. */
3879 sym_text = language_search_unquoted_string (text, p);
3880 }
3881 }
3882
3883 sym_text_len = strlen (sym_text);
3884
3885 return_val_size = 10;
3886 return_val_index = 0;
3887 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3888 return_val[0] = NULL;
3889
3890 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3891 in). */
3892 s = lookup_symtab (srcfile);
3893 if (s == NULL)
3894 {
3895 /* Maybe they typed the file with leading directories, while the
3896 symbol tables record only its basename. */
3897 const char *tail = lbasename (srcfile);
3898
3899 if (tail > srcfile)
3900 s = lookup_symtab (tail);
3901 }
3902
3903 /* If we have no symtab for that file, return an empty list. */
3904 if (s == NULL)
3905 return (return_val);
3906
3907 /* Go through this symtab and check the externs and statics for
3908 symbols which match. */
3909
3910 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3911 ALL_BLOCK_SYMBOLS (b, iter, sym)
3912 {
3913 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3914 }
3915
3916 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3917 ALL_BLOCK_SYMBOLS (b, iter, sym)
3918 {
3919 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3920 }
3921
3922 return (return_val);
3923 }
3924
3925 /* A helper function for make_source_files_completion_list. It adds
3926 another file name to a list of possible completions, growing the
3927 list as necessary. */
3928
3929 static void
3930 add_filename_to_list (const char *fname, char *text, char *word,
3931 char ***list, int *list_used, int *list_alloced)
3932 {
3933 char *new;
3934 size_t fnlen = strlen (fname);
3935
3936 if (*list_used + 1 >= *list_alloced)
3937 {
3938 *list_alloced *= 2;
3939 *list = (char **) xrealloc ((char *) *list,
3940 *list_alloced * sizeof (char *));
3941 }
3942
3943 if (word == text)
3944 {
3945 /* Return exactly fname. */
3946 new = xmalloc (fnlen + 5);
3947 strcpy (new, fname);
3948 }
3949 else if (word > text)
3950 {
3951 /* Return some portion of fname. */
3952 new = xmalloc (fnlen + 5);
3953 strcpy (new, fname + (word - text));
3954 }
3955 else
3956 {
3957 /* Return some of TEXT plus fname. */
3958 new = xmalloc (fnlen + (text - word) + 5);
3959 strncpy (new, word, text - word);
3960 new[text - word] = '\0';
3961 strcat (new, fname);
3962 }
3963 (*list)[*list_used] = new;
3964 (*list)[++*list_used] = NULL;
3965 }
3966
3967 static int
3968 not_interesting_fname (const char *fname)
3969 {
3970 static const char *illegal_aliens[] = {
3971 "_globals_", /* inserted by coff_symtab_read */
3972 NULL
3973 };
3974 int i;
3975
3976 for (i = 0; illegal_aliens[i]; i++)
3977 {
3978 if (strcmp (fname, illegal_aliens[i]) == 0)
3979 return 1;
3980 }
3981 return 0;
3982 }
3983
3984 /* Return a NULL terminated array of all source files whose names
3985 begin with matching TEXT. The file names are looked up in the
3986 symbol tables of this program. If the answer is no matchess, then
3987 the return value is an array which contains only a NULL pointer. */
3988
3989 char **
3990 make_source_files_completion_list (char *text, char *word)
3991 {
3992 struct symtab *s;
3993 struct partial_symtab *ps;
3994 struct objfile *objfile;
3995 int first = 1;
3996 int list_alloced = 1;
3997 int list_used = 0;
3998 size_t text_len = strlen (text);
3999 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4000 const char *base_name;
4001
4002 list[0] = NULL;
4003
4004 if (!have_full_symbols () && !have_partial_symbols ())
4005 return list;
4006
4007 ALL_SYMTABS (objfile, s)
4008 {
4009 if (not_interesting_fname (s->filename))
4010 continue;
4011 if (!filename_seen (s->filename, 1, &first)
4012 #if HAVE_DOS_BASED_FILE_SYSTEM
4013 && strncasecmp (s->filename, text, text_len) == 0
4014 #else
4015 && strncmp (s->filename, text, text_len) == 0
4016 #endif
4017 )
4018 {
4019 /* This file matches for a completion; add it to the current
4020 list of matches. */
4021 add_filename_to_list (s->filename, text, word,
4022 &list, &list_used, &list_alloced);
4023 }
4024 else
4025 {
4026 /* NOTE: We allow the user to type a base name when the
4027 debug info records leading directories, but not the other
4028 way around. This is what subroutines of breakpoint
4029 command do when they parse file names. */
4030 base_name = lbasename (s->filename);
4031 if (base_name != s->filename
4032 && !filename_seen (base_name, 1, &first)
4033 #if HAVE_DOS_BASED_FILE_SYSTEM
4034 && strncasecmp (base_name, text, text_len) == 0
4035 #else
4036 && strncmp (base_name, text, text_len) == 0
4037 #endif
4038 )
4039 add_filename_to_list (base_name, text, word,
4040 &list, &list_used, &list_alloced);
4041 }
4042 }
4043
4044 ALL_PSYMTABS (objfile, ps)
4045 {
4046 if (not_interesting_fname (ps->filename))
4047 continue;
4048 if (!ps->readin)
4049 {
4050 if (!filename_seen (ps->filename, 1, &first)
4051 #if HAVE_DOS_BASED_FILE_SYSTEM
4052 && strncasecmp (ps->filename, text, text_len) == 0
4053 #else
4054 && strncmp (ps->filename, text, text_len) == 0
4055 #endif
4056 )
4057 {
4058 /* This file matches for a completion; add it to the
4059 current list of matches. */
4060 add_filename_to_list (ps->filename, text, word,
4061 &list, &list_used, &list_alloced);
4062
4063 }
4064 else
4065 {
4066 base_name = lbasename (ps->filename);
4067 if (base_name != ps->filename
4068 && !filename_seen (base_name, 1, &first)
4069 #if HAVE_DOS_BASED_FILE_SYSTEM
4070 && strncasecmp (base_name, text, text_len) == 0
4071 #else
4072 && strncmp (base_name, text, text_len) == 0
4073 #endif
4074 )
4075 add_filename_to_list (base_name, text, word,
4076 &list, &list_used, &list_alloced);
4077 }
4078 }
4079 }
4080
4081 return list;
4082 }
4083
4084 /* Determine if PC is in the prologue of a function. The prologue is the area
4085 between the first instruction of a function, and the first executable line.
4086 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4087
4088 If non-zero, func_start is where we think the prologue starts, possibly
4089 by previous examination of symbol table information.
4090 */
4091
4092 int
4093 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4094 {
4095 struct symtab_and_line sal;
4096 CORE_ADDR func_addr, func_end;
4097
4098 /* We have several sources of information we can consult to figure
4099 this out.
4100 - Compilers usually emit line number info that marks the prologue
4101 as its own "source line". So the ending address of that "line"
4102 is the end of the prologue. If available, this is the most
4103 reliable method.
4104 - The minimal symbols and partial symbols, which can usually tell
4105 us the starting and ending addresses of a function.
4106 - If we know the function's start address, we can call the
4107 architecture-defined gdbarch_skip_prologue function to analyze the
4108 instruction stream and guess where the prologue ends.
4109 - Our `func_start' argument; if non-zero, this is the caller's
4110 best guess as to the function's entry point. At the time of
4111 this writing, handle_inferior_event doesn't get this right, so
4112 it should be our last resort. */
4113
4114 /* Consult the partial symbol table, to find which function
4115 the PC is in. */
4116 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4117 {
4118 CORE_ADDR prologue_end;
4119
4120 /* We don't even have minsym information, so fall back to using
4121 func_start, if given. */
4122 if (! func_start)
4123 return 1; /* We *might* be in a prologue. */
4124
4125 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4126
4127 return func_start <= pc && pc < prologue_end;
4128 }
4129
4130 /* If we have line number information for the function, that's
4131 usually pretty reliable. */
4132 sal = find_pc_line (func_addr, 0);
4133
4134 /* Now sal describes the source line at the function's entry point,
4135 which (by convention) is the prologue. The end of that "line",
4136 sal.end, is the end of the prologue.
4137
4138 Note that, for functions whose source code is all on a single
4139 line, the line number information doesn't always end up this way.
4140 So we must verify that our purported end-of-prologue address is
4141 *within* the function, not at its start or end. */
4142 if (sal.line == 0
4143 || sal.end <= func_addr
4144 || func_end <= sal.end)
4145 {
4146 /* We don't have any good line number info, so use the minsym
4147 information, together with the architecture-specific prologue
4148 scanning code. */
4149 CORE_ADDR prologue_end = gdbarch_skip_prologue
4150 (current_gdbarch, func_addr);
4151
4152 return func_addr <= pc && pc < prologue_end;
4153 }
4154
4155 /* We have line number info, and it looks good. */
4156 return func_addr <= pc && pc < sal.end;
4157 }
4158
4159 /* Given PC at the function's start address, attempt to find the
4160 prologue end using SAL information. Return zero if the skip fails.
4161
4162 A non-optimized prologue traditionally has one SAL for the function
4163 and a second for the function body. A single line function has
4164 them both pointing at the same line.
4165
4166 An optimized prologue is similar but the prologue may contain
4167 instructions (SALs) from the instruction body. Need to skip those
4168 while not getting into the function body.
4169
4170 The functions end point and an increasing SAL line are used as
4171 indicators of the prologue's endpoint.
4172
4173 This code is based on the function refine_prologue_limit (versions
4174 found in both ia64 and ppc). */
4175
4176 CORE_ADDR
4177 skip_prologue_using_sal (CORE_ADDR func_addr)
4178 {
4179 struct symtab_and_line prologue_sal;
4180 CORE_ADDR start_pc;
4181 CORE_ADDR end_pc;
4182
4183 /* Get an initial range for the function. */
4184 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4185 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4186
4187 prologue_sal = find_pc_line (start_pc, 0);
4188 if (prologue_sal.line != 0)
4189 {
4190 /* If there is only one sal that covers the entire function,
4191 then it is probably a single line function, like
4192 "foo(){}". */
4193 if (prologue_sal.end >= end_pc)
4194 return 0;
4195 while (prologue_sal.end < end_pc)
4196 {
4197 struct symtab_and_line sal;
4198
4199 sal = find_pc_line (prologue_sal.end, 0);
4200 if (sal.line == 0)
4201 break;
4202 /* Assume that a consecutive SAL for the same (or larger)
4203 line mark the prologue -> body transition. */
4204 if (sal.line >= prologue_sal.line)
4205 break;
4206 /* The case in which compiler's optimizer/scheduler has
4207 moved instructions into the prologue. We look ahead in
4208 the function looking for address ranges whose
4209 corresponding line number is less the first one that we
4210 found for the function. This is more conservative then
4211 refine_prologue_limit which scans a large number of SALs
4212 looking for any in the prologue */
4213 prologue_sal = sal;
4214 }
4215 }
4216 return prologue_sal.end;
4217 }
4218 \f
4219 struct symtabs_and_lines
4220 decode_line_spec (char *string, int funfirstline)
4221 {
4222 struct symtabs_and_lines sals;
4223 struct symtab_and_line cursal;
4224
4225 if (string == 0)
4226 error (_("Empty line specification."));
4227
4228 /* We use whatever is set as the current source line. We do not try
4229 and get a default or it will recursively call us! */
4230 cursal = get_current_source_symtab_and_line ();
4231
4232 sals = decode_line_1 (&string, funfirstline,
4233 cursal.symtab, cursal.line,
4234 (char ***) NULL, NULL);
4235
4236 if (*string)
4237 error (_("Junk at end of line specification: %s"), string);
4238 return sals;
4239 }
4240
4241 /* Track MAIN */
4242 static char *name_of_main;
4243
4244 void
4245 set_main_name (const char *name)
4246 {
4247 if (name_of_main != NULL)
4248 {
4249 xfree (name_of_main);
4250 name_of_main = NULL;
4251 }
4252 if (name != NULL)
4253 {
4254 name_of_main = xstrdup (name);
4255 }
4256 }
4257
4258 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4259 accordingly. */
4260
4261 static void
4262 find_main_name (void)
4263 {
4264 const char *new_main_name;
4265
4266 /* Try to see if the main procedure is in Ada. */
4267 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4268 be to add a new method in the language vector, and call this
4269 method for each language until one of them returns a non-empty
4270 name. This would allow us to remove this hard-coded call to
4271 an Ada function. It is not clear that this is a better approach
4272 at this point, because all methods need to be written in a way
4273 such that false positives never be returned. For instance, it is
4274 important that a method does not return a wrong name for the main
4275 procedure if the main procedure is actually written in a different
4276 language. It is easy to guaranty this with Ada, since we use a
4277 special symbol generated only when the main in Ada to find the name
4278 of the main procedure. It is difficult however to see how this can
4279 be guarantied for languages such as C, for instance. This suggests
4280 that order of call for these methods becomes important, which means
4281 a more complicated approach. */
4282 new_main_name = ada_main_name ();
4283 if (new_main_name != NULL)
4284 {
4285 set_main_name (new_main_name);
4286 return;
4287 }
4288
4289 new_main_name = pascal_main_name ();
4290 if (new_main_name != NULL)
4291 {
4292 set_main_name (new_main_name);
4293 return;
4294 }
4295
4296 /* The languages above didn't identify the name of the main procedure.
4297 Fallback to "main". */
4298 set_main_name ("main");
4299 }
4300
4301 char *
4302 main_name (void)
4303 {
4304 if (name_of_main == NULL)
4305 find_main_name ();
4306
4307 return name_of_main;
4308 }
4309
4310 /* Handle ``executable_changed'' events for the symtab module. */
4311
4312 static void
4313 symtab_observer_executable_changed (void *unused)
4314 {
4315 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4316 set_main_name (NULL);
4317 }
4318
4319 /* Helper to expand_line_sal below. Appends new sal to SAL,
4320 initializing it from SYMTAB, LINENO and PC. */
4321 static void
4322 append_expanded_sal (struct symtabs_and_lines *sal,
4323 struct symtab *symtab,
4324 int lineno, CORE_ADDR pc)
4325 {
4326 CORE_ADDR func_addr, func_end;
4327
4328 sal->sals = xrealloc (sal->sals,
4329 sizeof (sal->sals[0])
4330 * (sal->nelts + 1));
4331 init_sal (sal->sals + sal->nelts);
4332 sal->sals[sal->nelts].symtab = symtab;
4333 sal->sals[sal->nelts].section = NULL;
4334 sal->sals[sal->nelts].end = 0;
4335 sal->sals[sal->nelts].line = lineno;
4336 sal->sals[sal->nelts].pc = pc;
4337 ++sal->nelts;
4338 }
4339
4340 /* Compute a set of all sals in
4341 the entire program that correspond to same file
4342 and line as SAL and return those. If there
4343 are several sals that belong to the same block,
4344 only one sal for the block is included in results. */
4345
4346 struct symtabs_and_lines
4347 expand_line_sal (struct symtab_and_line sal)
4348 {
4349 struct symtabs_and_lines ret, this_line;
4350 int i, j;
4351 struct objfile *objfile;
4352 struct partial_symtab *psymtab;
4353 struct symtab *symtab;
4354 int lineno;
4355 int deleted = 0;
4356 struct block **blocks = NULL;
4357 int *filter;
4358
4359 ret.nelts = 0;
4360 ret.sals = NULL;
4361
4362 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4363 {
4364 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4365 ret.sals[0] = sal;
4366 ret.nelts = 1;
4367 return ret;
4368 }
4369 else
4370 {
4371 struct linetable_entry *best_item = 0;
4372 struct symtab *best_symtab = 0;
4373 int exact = 0;
4374
4375 lineno = sal.line;
4376
4377 /* We meed to find all symtabs for a file which name
4378 is described by sal. We cannot just directly
4379 iterate over symtabs, since a symtab might not be
4380 yet created. We also cannot iterate over psymtabs,
4381 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4382 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4383 corresponding to an included file. Therefore, we do
4384 first pass over psymtabs, reading in those with
4385 the right name. Then, we iterate over symtabs, knowing
4386 that all symtabs we're interested in are loaded. */
4387
4388 ALL_PSYMTABS (objfile, psymtab)
4389 {
4390 if (strcmp (sal.symtab->filename,
4391 psymtab->filename) == 0)
4392 PSYMTAB_TO_SYMTAB (psymtab);
4393 }
4394
4395
4396 /* For each symtab, we add all pcs to ret.sals. I'm actually
4397 not sure what to do if we have exact match in one symtab,
4398 and non-exact match on another symtab.
4399 */
4400 ALL_SYMTABS (objfile, symtab)
4401 {
4402 if (strcmp (sal.symtab->filename,
4403 symtab->filename) == 0)
4404 {
4405 struct linetable *l;
4406 int len;
4407 l = LINETABLE (symtab);
4408 if (!l)
4409 continue;
4410 len = l->nitems;
4411
4412 for (j = 0; j < len; j++)
4413 {
4414 struct linetable_entry *item = &(l->item[j]);
4415
4416 if (item->line == lineno)
4417 {
4418 exact = 1;
4419 append_expanded_sal (&ret, symtab, lineno, item->pc);
4420 }
4421 else if (!exact && item->line > lineno
4422 && (best_item == NULL || item->line < best_item->line))
4423
4424 {
4425 best_item = item;
4426 best_symtab = symtab;
4427 }
4428 }
4429 }
4430 }
4431 if (!exact && best_item)
4432 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4433 }
4434
4435 /* For optimized code, compiler can scatter one source line accross
4436 disjoint ranges of PC values, even when no duplicate functions
4437 or inline functions are involved. For example, 'for (;;)' inside
4438 non-template non-inline non-ctor-or-dtor function can result
4439 in two PC ranges. In this case, we don't want to set breakpoint
4440 on first PC of each range. To filter such cases, we use containing
4441 blocks -- for each PC found above we see if there are other PCs
4442 that are in the same block. If yes, the other PCs are filtered out. */
4443
4444 filter = xmalloc (ret.nelts * sizeof (int));
4445 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4446 for (i = 0; i < ret.nelts; ++i)
4447 {
4448 filter[i] = 1;
4449 blocks[i] = block_for_pc (ret.sals[i].pc);
4450 }
4451
4452 for (i = 0; i < ret.nelts; ++i)
4453 if (blocks[i] != NULL)
4454 for (j = i+1; j < ret.nelts; ++j)
4455 if (blocks[j] == blocks[i])
4456 {
4457 filter[j] = 0;
4458 ++deleted;
4459 break;
4460 }
4461
4462 {
4463 struct symtab_and_line *final =
4464 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4465
4466 for (i = 0, j = 0; i < ret.nelts; ++i)
4467 if (filter[i])
4468 final[j++] = ret.sals[i];
4469
4470 ret.nelts -= deleted;
4471 xfree (ret.sals);
4472 ret.sals = final;
4473 }
4474
4475 return ret;
4476 }
4477
4478
4479 void
4480 _initialize_symtab (void)
4481 {
4482 add_info ("variables", variables_info, _("\
4483 All global and static variable names, or those matching REGEXP."));
4484 if (dbx_commands)
4485 add_com ("whereis", class_info, variables_info, _("\
4486 All global and static variable names, or those matching REGEXP."));
4487
4488 add_info ("functions", functions_info,
4489 _("All function names, or those matching REGEXP."));
4490
4491
4492 /* FIXME: This command has at least the following problems:
4493 1. It prints builtin types (in a very strange and confusing fashion).
4494 2. It doesn't print right, e.g. with
4495 typedef struct foo *FOO
4496 type_print prints "FOO" when we want to make it (in this situation)
4497 print "struct foo *".
4498 I also think "ptype" or "whatis" is more likely to be useful (but if
4499 there is much disagreement "info types" can be fixed). */
4500 add_info ("types", types_info,
4501 _("All type names, or those matching REGEXP."));
4502
4503 add_info ("sources", sources_info,
4504 _("Source files in the program."));
4505
4506 add_com ("rbreak", class_breakpoint, rbreak_command,
4507 _("Set a breakpoint for all functions matching REGEXP."));
4508
4509 if (xdb_commands)
4510 {
4511 add_com ("lf", class_info, sources_info,
4512 _("Source files in the program"));
4513 add_com ("lg", class_info, variables_info, _("\
4514 All global and static variable names, or those matching REGEXP."));
4515 }
4516
4517 add_setshow_enum_cmd ("multiple-symbols", no_class,
4518 multiple_symbols_modes, &multiple_symbols_mode,
4519 _("\
4520 Set the debugger behavior when more than one symbol are possible matches\n\
4521 in an expression."), _("\
4522 Show how the debugger handles ambiguities in expressions."), _("\
4523 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4524 NULL, NULL, &setlist, &showlist);
4525
4526 /* Initialize the one built-in type that isn't language dependent... */
4527 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4528 "<unknown type>", (struct objfile *) NULL);
4529
4530 observer_attach_executable_changed (symtab_observer_executable_changed);
4531 }
This page took 0.121746 seconds and 4 git commands to generate.