gdb/
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61
62 /* Prototypes for local functions */
63
64 static void completion_list_add_name (char *, char *, int, char *, char *);
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static void output_source_filename (const char *, int *);
77
78 static int find_line_common (struct linetable *, int, int *);
79
80 /* This one is used by linespec.c */
81
82 char *operator_chars (char *p, char **end);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const char *linkage_name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 int *is_a_field_of_this,
90 struct symtab **symtab);
91
92 static
93 struct symbol *lookup_symbol_aux_local (const char *name,
94 const char *linkage_name,
95 const struct block *block,
96 const domain_enum domain,
97 struct symtab **symtab);
98
99 static
100 struct symbol *lookup_symbol_aux_symtabs (int block_index,
101 const char *name,
102 const char *linkage_name,
103 const domain_enum domain,
104 struct symtab **symtab);
105
106 static
107 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain,
111 struct symtab **symtab);
112
113 static void fixup_section (struct general_symbol_info *, struct objfile *);
114
115 static int file_matches (char *, char **, int);
116
117 static void print_symbol_info (domain_enum,
118 struct symtab *, struct symbol *, int, char *);
119
120 static void print_msymbol_info (struct minimal_symbol *);
121
122 static void symtab_symbol_info (char *, domain_enum, int);
123
124 void _initialize_symtab (void);
125
126 /* */
127
128 /* Allow the user to configure the debugger behavior with respect
129 to multiple-choice menus when more than one symbol matches during
130 a symbol lookup. */
131
132 const char multiple_symbols_ask[] = "ask";
133 const char multiple_symbols_all[] = "all";
134 const char multiple_symbols_cancel[] = "cancel";
135 static const char *multiple_symbols_modes[] =
136 {
137 multiple_symbols_ask,
138 multiple_symbols_all,
139 multiple_symbols_cancel,
140 NULL
141 };
142 static const char *multiple_symbols_mode = multiple_symbols_all;
143
144 /* Read-only accessor to AUTO_SELECT_MODE. */
145
146 const char *
147 multiple_symbols_select_mode (void)
148 {
149 return multiple_symbols_mode;
150 }
151
152 /* The single non-language-specific builtin type */
153 struct type *builtin_type_error;
154
155 /* Block in which the most recently searched-for symbol was found.
156 Might be better to make this a parameter to lookup_symbol and
157 value_of_this. */
158
159 const struct block *block_found;
160
161 /* Check for a symtab of a specific name; first in symtabs, then in
162 psymtabs. *If* there is no '/' in the name, a match after a '/'
163 in the symtab filename will also work. */
164
165 struct symtab *
166 lookup_symtab (const char *name)
167 {
168 struct symtab *s;
169 struct partial_symtab *ps;
170 struct objfile *objfile;
171 char *real_path = NULL;
172 char *full_path = NULL;
173
174 /* Here we are interested in canonicalizing an absolute path, not
175 absolutizing a relative path. */
176 if (IS_ABSOLUTE_PATH (name))
177 {
178 full_path = xfullpath (name);
179 make_cleanup (xfree, full_path);
180 real_path = gdb_realpath (name);
181 make_cleanup (xfree, real_path);
182 }
183
184 got_symtab:
185
186 /* First, search for an exact match */
187
188 ALL_SYMTABS (objfile, s)
189 {
190 if (FILENAME_CMP (name, s->filename) == 0)
191 {
192 return s;
193 }
194
195 /* If the user gave us an absolute path, try to find the file in
196 this symtab and use its absolute path. */
197
198 if (full_path != NULL)
199 {
200 const char *fp = symtab_to_fullname (s);
201 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
202 {
203 return s;
204 }
205 }
206
207 if (real_path != NULL)
208 {
209 char *fullname = symtab_to_fullname (s);
210 if (fullname != NULL)
211 {
212 char *rp = gdb_realpath (fullname);
213 make_cleanup (xfree, rp);
214 if (FILENAME_CMP (real_path, rp) == 0)
215 {
216 return s;
217 }
218 }
219 }
220 }
221
222 /* Now, search for a matching tail (only if name doesn't have any dirs) */
223
224 if (lbasename (name) == name)
225 ALL_SYMTABS (objfile, s)
226 {
227 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
228 return s;
229 }
230
231 /* Same search rules as above apply here, but now we look thru the
232 psymtabs. */
233
234 ps = lookup_partial_symtab (name);
235 if (!ps)
236 return (NULL);
237
238 if (ps->readin)
239 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
240 ps->filename, name);
241
242 s = PSYMTAB_TO_SYMTAB (ps);
243
244 if (s)
245 return s;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257
258 /* Lookup the partial symbol table of a source file named NAME.
259 *If* there is no '/' in the name, a match after a '/'
260 in the psymtab filename will also work. */
261
262 struct partial_symtab *
263 lookup_partial_symtab (const char *name)
264 {
265 struct partial_symtab *pst;
266 struct objfile *objfile;
267 char *full_path = NULL;
268 char *real_path = NULL;
269
270 /* Here we are interested in canonicalizing an absolute path, not
271 absolutizing a relative path. */
272 if (IS_ABSOLUTE_PATH (name))
273 {
274 full_path = xfullpath (name);
275 make_cleanup (xfree, full_path);
276 real_path = gdb_realpath (name);
277 make_cleanup (xfree, real_path);
278 }
279
280 ALL_PSYMTABS (objfile, pst)
281 {
282 if (FILENAME_CMP (name, pst->filename) == 0)
283 {
284 return (pst);
285 }
286
287 /* If the user gave us an absolute path, try to find the file in
288 this symtab and use its absolute path. */
289 if (full_path != NULL)
290 {
291 psymtab_to_fullname (pst);
292 if (pst->fullname != NULL
293 && FILENAME_CMP (full_path, pst->fullname) == 0)
294 {
295 return pst;
296 }
297 }
298
299 if (real_path != NULL)
300 {
301 char *rp = NULL;
302 psymtab_to_fullname (pst);
303 if (pst->fullname != NULL)
304 {
305 rp = gdb_realpath (pst->fullname);
306 make_cleanup (xfree, rp);
307 }
308 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
309 {
310 return pst;
311 }
312 }
313 }
314
315 /* Now, search for a matching tail (only if name doesn't have any dirs) */
316
317 if (lbasename (name) == name)
318 ALL_PSYMTABS (objfile, pst)
319 {
320 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
321 return (pst);
322 }
323
324 return (NULL);
325 }
326 \f
327 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
328 full method name, which consist of the class name (from T), the unadorned
329 method name from METHOD_ID, and the signature for the specific overload,
330 specified by SIGNATURE_ID. Note that this function is g++ specific. */
331
332 char *
333 gdb_mangle_name (struct type *type, int method_id, int signature_id)
334 {
335 int mangled_name_len;
336 char *mangled_name;
337 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
338 struct fn_field *method = &f[signature_id];
339 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
340 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
341 char *newname = type_name_no_tag (type);
342
343 /* Does the form of physname indicate that it is the full mangled name
344 of a constructor (not just the args)? */
345 int is_full_physname_constructor;
346
347 int is_constructor;
348 int is_destructor = is_destructor_name (physname);
349 /* Need a new type prefix. */
350 char *const_prefix = method->is_const ? "C" : "";
351 char *volatile_prefix = method->is_volatile ? "V" : "";
352 char buf[20];
353 int len = (newname == NULL ? 0 : strlen (newname));
354
355 /* Nothing to do if physname already contains a fully mangled v3 abi name
356 or an operator name. */
357 if ((physname[0] == '_' && physname[1] == 'Z')
358 || is_operator_name (field_name))
359 return xstrdup (physname);
360
361 is_full_physname_constructor = is_constructor_name (physname);
362
363 is_constructor =
364 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
365
366 if (!is_destructor)
367 is_destructor = (strncmp (physname, "__dt", 4) == 0);
368
369 if (is_destructor || is_full_physname_constructor)
370 {
371 mangled_name = (char *) xmalloc (strlen (physname) + 1);
372 strcpy (mangled_name, physname);
373 return mangled_name;
374 }
375
376 if (len == 0)
377 {
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 }
380 else if (physname[0] == 't' || physname[0] == 'Q')
381 {
382 /* The physname for template and qualified methods already includes
383 the class name. */
384 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
385 newname = NULL;
386 len = 0;
387 }
388 else
389 {
390 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
391 }
392 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
393 + strlen (buf) + len + strlen (physname) + 1);
394
395 {
396 mangled_name = (char *) xmalloc (mangled_name_len);
397 if (is_constructor)
398 mangled_name[0] = '\0';
399 else
400 strcpy (mangled_name, field_name);
401 }
402 strcat (mangled_name, buf);
403 /* If the class doesn't have a name, i.e. newname NULL, then we just
404 mangle it using 0 for the length of the class. Thus it gets mangled
405 as something starting with `::' rather than `classname::'. */
406 if (newname != NULL)
407 strcat (mangled_name, newname);
408
409 strcat (mangled_name, physname);
410 return (mangled_name);
411 }
412
413 \f
414 /* Initialize the language dependent portion of a symbol
415 depending upon the language for the symbol. */
416 void
417 symbol_init_language_specific (struct general_symbol_info *gsymbol,
418 enum language language)
419 {
420 gsymbol->language = language;
421 if (gsymbol->language == language_cplus
422 || gsymbol->language == language_java
423 || gsymbol->language == language_objc)
424 {
425 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
426 }
427 else
428 {
429 memset (&gsymbol->language_specific, 0,
430 sizeof (gsymbol->language_specific));
431 }
432 }
433
434 /* Functions to initialize a symbol's mangled name. */
435
436 /* Create the hash table used for demangled names. Each hash entry is
437 a pair of strings; one for the mangled name and one for the demangled
438 name. The entry is hashed via just the mangled name. */
439
440 static void
441 create_demangled_names_hash (struct objfile *objfile)
442 {
443 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
444 The hash table code will round this up to the next prime number.
445 Choosing a much larger table size wastes memory, and saves only about
446 1% in symbol reading. */
447
448 objfile->demangled_names_hash = htab_create_alloc
449 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
450 NULL, xcalloc, xfree);
451 }
452
453 /* Try to determine the demangled name for a symbol, based on the
454 language of that symbol. If the language is set to language_auto,
455 it will attempt to find any demangling algorithm that works and
456 then set the language appropriately. The returned name is allocated
457 by the demangler and should be xfree'd. */
458
459 static char *
460 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
461 const char *mangled)
462 {
463 char *demangled = NULL;
464
465 if (gsymbol->language == language_unknown)
466 gsymbol->language = language_auto;
467
468 if (gsymbol->language == language_objc
469 || gsymbol->language == language_auto)
470 {
471 demangled =
472 objc_demangle (mangled, 0);
473 if (demangled != NULL)
474 {
475 gsymbol->language = language_objc;
476 return demangled;
477 }
478 }
479 if (gsymbol->language == language_cplus
480 || gsymbol->language == language_auto)
481 {
482 demangled =
483 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
484 if (demangled != NULL)
485 {
486 gsymbol->language = language_cplus;
487 return demangled;
488 }
489 }
490 if (gsymbol->language == language_java)
491 {
492 demangled =
493 cplus_demangle (mangled,
494 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
495 if (demangled != NULL)
496 {
497 gsymbol->language = language_java;
498 return demangled;
499 }
500 }
501 return NULL;
502 }
503
504 /* Set both the mangled and demangled (if any) names for GSYMBOL based
505 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
506 is used, and the memory comes from that objfile's objfile_obstack.
507 LINKAGE_NAME is copied, so the pointer can be discarded after
508 calling this function. */
509
510 /* We have to be careful when dealing with Java names: when we run
511 into a Java minimal symbol, we don't know it's a Java symbol, so it
512 gets demangled as a C++ name. This is unfortunate, but there's not
513 much we can do about it: but when demangling partial symbols and
514 regular symbols, we'd better not reuse the wrong demangled name.
515 (See PR gdb/1039.) We solve this by putting a distinctive prefix
516 on Java names when storing them in the hash table. */
517
518 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
519 don't mind the Java prefix so much: different languages have
520 different demangling requirements, so it's only natural that we
521 need to keep language data around in our demangling cache. But
522 it's not good that the minimal symbol has the wrong demangled name.
523 Unfortunately, I can't think of any easy solution to that
524 problem. */
525
526 #define JAVA_PREFIX "##JAVA$$"
527 #define JAVA_PREFIX_LEN 8
528
529 void
530 symbol_set_names (struct general_symbol_info *gsymbol,
531 const char *linkage_name, int len, struct objfile *objfile)
532 {
533 char **slot;
534 /* A 0-terminated copy of the linkage name. */
535 const char *linkage_name_copy;
536 /* A copy of the linkage name that might have a special Java prefix
537 added to it, for use when looking names up in the hash table. */
538 const char *lookup_name;
539 /* The length of lookup_name. */
540 int lookup_len;
541
542 if (objfile->demangled_names_hash == NULL)
543 create_demangled_names_hash (objfile);
544
545 if (gsymbol->language == language_ada)
546 {
547 /* In Ada, we do the symbol lookups using the mangled name, so
548 we can save some space by not storing the demangled name.
549
550 As a side note, we have also observed some overlap between
551 the C++ mangling and Ada mangling, similarly to what has
552 been observed with Java. Because we don't store the demangled
553 name with the symbol, we don't need to use the same trick
554 as Java. */
555 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
556 memcpy (gsymbol->name, linkage_name, len);
557 gsymbol->name[len] = '\0';
558 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
559
560 return;
561 }
562
563 /* The stabs reader generally provides names that are not
564 NUL-terminated; most of the other readers don't do this, so we
565 can just use the given copy, unless we're in the Java case. */
566 if (gsymbol->language == language_java)
567 {
568 char *alloc_name;
569 lookup_len = len + JAVA_PREFIX_LEN;
570
571 alloc_name = alloca (lookup_len + 1);
572 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
573 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
574 alloc_name[lookup_len] = '\0';
575
576 lookup_name = alloc_name;
577 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
578 }
579 else if (linkage_name[len] != '\0')
580 {
581 char *alloc_name;
582 lookup_len = len;
583
584 alloc_name = alloca (lookup_len + 1);
585 memcpy (alloc_name, linkage_name, len);
586 alloc_name[lookup_len] = '\0';
587
588 lookup_name = alloc_name;
589 linkage_name_copy = alloc_name;
590 }
591 else
592 {
593 lookup_len = len;
594 lookup_name = linkage_name;
595 linkage_name_copy = linkage_name;
596 }
597
598 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
599 lookup_name, INSERT);
600
601 /* If this name is not in the hash table, add it. */
602 if (*slot == NULL)
603 {
604 char *demangled_name = symbol_find_demangled_name (gsymbol,
605 linkage_name_copy);
606 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
607
608 /* If there is a demangled name, place it right after the mangled name.
609 Otherwise, just place a second zero byte after the end of the mangled
610 name. */
611 *slot = obstack_alloc (&objfile->objfile_obstack,
612 lookup_len + demangled_len + 2);
613 memcpy (*slot, lookup_name, lookup_len + 1);
614 if (demangled_name != NULL)
615 {
616 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
617 xfree (demangled_name);
618 }
619 else
620 (*slot)[lookup_len + 1] = '\0';
621 }
622
623 gsymbol->name = *slot + lookup_len - len;
624 if ((*slot)[lookup_len + 1] != '\0')
625 gsymbol->language_specific.cplus_specific.demangled_name
626 = &(*slot)[lookup_len + 1];
627 else
628 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
629 }
630
631 /* Return the source code name of a symbol. In languages where
632 demangling is necessary, this is the demangled name. */
633
634 char *
635 symbol_natural_name (const struct general_symbol_info *gsymbol)
636 {
637 switch (gsymbol->language)
638 {
639 case language_cplus:
640 case language_java:
641 case language_objc:
642 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
643 return gsymbol->language_specific.cplus_specific.demangled_name;
644 break;
645 case language_ada:
646 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
647 return gsymbol->language_specific.cplus_specific.demangled_name;
648 else
649 return ada_decode_symbol (gsymbol);
650 break;
651 default:
652 break;
653 }
654 return gsymbol->name;
655 }
656
657 /* Return the demangled name for a symbol based on the language for
658 that symbol. If no demangled name exists, return NULL. */
659 char *
660 symbol_demangled_name (struct general_symbol_info *gsymbol)
661 {
662 switch (gsymbol->language)
663 {
664 case language_cplus:
665 case language_java:
666 case language_objc:
667 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
668 return gsymbol->language_specific.cplus_specific.demangled_name;
669 break;
670 case language_ada:
671 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
672 return gsymbol->language_specific.cplus_specific.demangled_name;
673 else
674 return ada_decode_symbol (gsymbol);
675 break;
676 default:
677 break;
678 }
679 return NULL;
680 }
681
682 /* Return the search name of a symbol---generally the demangled or
683 linkage name of the symbol, depending on how it will be searched for.
684 If there is no distinct demangled name, then returns the same value
685 (same pointer) as SYMBOL_LINKAGE_NAME. */
686 char *
687 symbol_search_name (const struct general_symbol_info *gsymbol)
688 {
689 if (gsymbol->language == language_ada)
690 return gsymbol->name;
691 else
692 return symbol_natural_name (gsymbol);
693 }
694
695 /* Initialize the structure fields to zero values. */
696 void
697 init_sal (struct symtab_and_line *sal)
698 {
699 sal->symtab = 0;
700 sal->section = 0;
701 sal->line = 0;
702 sal->pc = 0;
703 sal->end = 0;
704 sal->explicit_pc = 0;
705 sal->explicit_line = 0;
706 }
707 \f
708
709 /* Return 1 if the two sections are the same, or if they could
710 plausibly be copies of each other, one in an original object
711 file and another in a separated debug file. */
712
713 int
714 matching_bfd_sections (asection *first, asection *second)
715 {
716 struct objfile *obj;
717
718 /* If they're the same section, then they match. */
719 if (first == second)
720 return 1;
721
722 /* If either is NULL, give up. */
723 if (first == NULL || second == NULL)
724 return 0;
725
726 /* This doesn't apply to absolute symbols. */
727 if (first->owner == NULL || second->owner == NULL)
728 return 0;
729
730 /* If they're in the same object file, they must be different sections. */
731 if (first->owner == second->owner)
732 return 0;
733
734 /* Check whether the two sections are potentially corresponding. They must
735 have the same size, address, and name. We can't compare section indexes,
736 which would be more reliable, because some sections may have been
737 stripped. */
738 if (bfd_get_section_size (first) != bfd_get_section_size (second))
739 return 0;
740
741 /* In-memory addresses may start at a different offset, relativize them. */
742 if (bfd_get_section_vma (first->owner, first)
743 - bfd_get_start_address (first->owner)
744 != bfd_get_section_vma (second->owner, second)
745 - bfd_get_start_address (second->owner))
746 return 0;
747
748 if (bfd_get_section_name (first->owner, first) == NULL
749 || bfd_get_section_name (second->owner, second) == NULL
750 || strcmp (bfd_get_section_name (first->owner, first),
751 bfd_get_section_name (second->owner, second)) != 0)
752 return 0;
753
754 /* Otherwise check that they are in corresponding objfiles. */
755
756 ALL_OBJFILES (obj)
757 if (obj->obfd == first->owner)
758 break;
759 gdb_assert (obj != NULL);
760
761 if (obj->separate_debug_objfile != NULL
762 && obj->separate_debug_objfile->obfd == second->owner)
763 return 1;
764 if (obj->separate_debug_objfile_backlink != NULL
765 && obj->separate_debug_objfile_backlink->obfd == second->owner)
766 return 1;
767
768 return 0;
769 }
770
771 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
772 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
773
774 struct partial_symtab *
775 find_pc_sect_psymtab_closer (CORE_ADDR pc, asection *section,
776 struct partial_symtab *pst,
777 struct minimal_symbol *msymbol)
778 {
779 struct objfile *objfile = pst->objfile;
780 struct partial_symtab *tpst;
781 struct partial_symtab *best_pst = pst;
782 CORE_ADDR best_addr = pst->textlow;
783
784 /* An objfile that has its functions reordered might have
785 many partial symbol tables containing the PC, but
786 we want the partial symbol table that contains the
787 function containing the PC. */
788 if (!(objfile->flags & OBJF_REORDERED) &&
789 section == 0) /* can't validate section this way */
790 return pst;
791
792 if (msymbol == NULL)
793 return (pst);
794
795 /* The code range of partial symtabs sometimes overlap, so, in
796 the loop below, we need to check all partial symtabs and
797 find the one that fits better for the given PC address. We
798 select the partial symtab that contains a symbol whose
799 address is closest to the PC address. By closest we mean
800 that find_pc_sect_symbol returns the symbol with address
801 that is closest and still less than the given PC. */
802 for (tpst = pst; tpst != NULL; tpst = tpst->next)
803 {
804 if (pc >= tpst->textlow && pc < tpst->texthigh)
805 {
806 struct partial_symbol *p;
807 CORE_ADDR this_addr;
808
809 /* NOTE: This assumes that every psymbol has a
810 corresponding msymbol, which is not necessarily
811 true; the debug info might be much richer than the
812 object's symbol table. */
813 p = find_pc_sect_psymbol (tpst, pc, section);
814 if (p != NULL
815 && SYMBOL_VALUE_ADDRESS (p)
816 == SYMBOL_VALUE_ADDRESS (msymbol))
817 return tpst;
818
819 /* Also accept the textlow value of a psymtab as a
820 "symbol", to provide some support for partial
821 symbol tables with line information but no debug
822 symbols (e.g. those produced by an assembler). */
823 if (p != NULL)
824 this_addr = SYMBOL_VALUE_ADDRESS (p);
825 else
826 this_addr = tpst->textlow;
827
828 /* Check whether it is closer than our current
829 BEST_ADDR. Since this symbol address is
830 necessarily lower or equal to PC, the symbol closer
831 to PC is the symbol which address is the highest.
832 This way we return the psymtab which contains such
833 best match symbol. This can help in cases where the
834 symbol information/debuginfo is not complete, like
835 for instance on IRIX6 with gcc, where no debug info
836 is emitted for statics. (See also the nodebug.exp
837 testcase.) */
838 if (this_addr > best_addr)
839 {
840 best_addr = this_addr;
841 best_pst = tpst;
842 }
843 }
844 }
845 return best_pst;
846 }
847
848 /* Find which partial symtab contains PC and SECTION. Return 0 if
849 none. We return the psymtab that contains a symbol whose address
850 exactly matches PC, or, if we cannot find an exact match, the
851 psymtab that contains a symbol whose address is closest to PC. */
852 struct partial_symtab *
853 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
854 {
855 struct objfile *objfile;
856 struct minimal_symbol *msymbol;
857
858 /* If we know that this is not a text address, return failure. This is
859 necessary because we loop based on texthigh and textlow, which do
860 not include the data ranges. */
861 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
862 if (msymbol
863 && (msymbol->type == mst_data
864 || msymbol->type == mst_bss
865 || msymbol->type == mst_abs
866 || msymbol->type == mst_file_data
867 || msymbol->type == mst_file_bss))
868 return NULL;
869
870 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
871 than the later used TEXTLOW/TEXTHIGH one. */
872
873 ALL_OBJFILES (objfile)
874 if (objfile->psymtabs_addrmap != NULL)
875 {
876 struct partial_symtab *pst;
877
878 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
879 if (pst != NULL)
880 {
881 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
882 PSYMTABS_ADDRMAP we used has already the best 1-byte
883 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
884 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
885 overlap. */
886
887 return pst;
888 }
889 }
890
891 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
892 which still have no corresponding full SYMTABs read. But it is not
893 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
894 so far. */
895
896 ALL_OBJFILES (objfile)
897 {
898 struct partial_symtab *pst;
899
900 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
901 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
902 debug info type in single OBJFILE. */
903
904 ALL_OBJFILE_PSYMTABS (objfile, pst)
905 if (pc >= pst->textlow && pc < pst->texthigh)
906 {
907 struct partial_symtab *best_pst;
908
909 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
910 msymbol);
911 if (best_pst != NULL)
912 return best_pst;
913 }
914 }
915
916 return NULL;
917 }
918
919 /* Find which partial symtab contains PC. Return 0 if none.
920 Backward compatibility, no section */
921
922 struct partial_symtab *
923 find_pc_psymtab (CORE_ADDR pc)
924 {
925 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
926 }
927
928 /* Find which partial symbol within a psymtab matches PC and SECTION.
929 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
930
931 struct partial_symbol *
932 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
933 asection *section)
934 {
935 struct partial_symbol *best = NULL, *p, **pp;
936 CORE_ADDR best_pc;
937
938 if (!psymtab)
939 psymtab = find_pc_sect_psymtab (pc, section);
940 if (!psymtab)
941 return 0;
942
943 /* Cope with programs that start at address 0 */
944 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
945
946 /* Search the global symbols as well as the static symbols, so that
947 find_pc_partial_function doesn't use a minimal symbol and thus
948 cache a bad endaddr. */
949 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
950 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
951 < psymtab->n_global_syms);
952 pp++)
953 {
954 p = *pp;
955 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
956 && SYMBOL_CLASS (p) == LOC_BLOCK
957 && pc >= SYMBOL_VALUE_ADDRESS (p)
958 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
959 || (psymtab->textlow == 0
960 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
961 {
962 if (section) /* match on a specific section */
963 {
964 fixup_psymbol_section (p, psymtab->objfile);
965 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
966 continue;
967 }
968 best_pc = SYMBOL_VALUE_ADDRESS (p);
969 best = p;
970 }
971 }
972
973 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
974 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
975 < psymtab->n_static_syms);
976 pp++)
977 {
978 p = *pp;
979 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
980 && SYMBOL_CLASS (p) == LOC_BLOCK
981 && pc >= SYMBOL_VALUE_ADDRESS (p)
982 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
983 || (psymtab->textlow == 0
984 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
985 {
986 if (section) /* match on a specific section */
987 {
988 fixup_psymbol_section (p, psymtab->objfile);
989 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
990 continue;
991 }
992 best_pc = SYMBOL_VALUE_ADDRESS (p);
993 best = p;
994 }
995 }
996
997 return best;
998 }
999
1000 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1001 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1002
1003 struct partial_symbol *
1004 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1005 {
1006 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1007 }
1008 \f
1009 /* Debug symbols usually don't have section information. We need to dig that
1010 out of the minimal symbols and stash that in the debug symbol. */
1011
1012 static void
1013 fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
1014 {
1015 struct minimal_symbol *msym;
1016 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
1017
1018 /* First, check whether a minimal symbol with the same name exists
1019 and points to the same address. The address check is required
1020 e.g. on PowerPC64, where the minimal symbol for a function will
1021 point to the function descriptor, while the debug symbol will
1022 point to the actual function code. */
1023 if (msym
1024 && SYMBOL_VALUE_ADDRESS (msym) == ginfo->value.address)
1025 {
1026 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
1027 ginfo->section = SYMBOL_SECTION (msym);
1028 }
1029 else if (objfile)
1030 {
1031 /* Static, function-local variables do appear in the linker
1032 (minimal) symbols, but are frequently given names that won't
1033 be found via lookup_minimal_symbol(). E.g., it has been
1034 observed in frv-uclinux (ELF) executables that a static,
1035 function-local variable named "foo" might appear in the
1036 linker symbols as "foo.6" or "foo.3". Thus, there is no
1037 point in attempting to extend the lookup-by-name mechanism to
1038 handle this case due to the fact that there can be multiple
1039 names.
1040
1041 So, instead, search the section table when lookup by name has
1042 failed. The ``addr'' and ``endaddr'' fields may have already
1043 been relocated. If so, the relocation offset (i.e. the
1044 ANOFFSET value) needs to be subtracted from these values when
1045 performing the comparison. We unconditionally subtract it,
1046 because, when no relocation has been performed, the ANOFFSET
1047 value will simply be zero.
1048
1049 The address of the symbol whose section we're fixing up HAS
1050 NOT BEEN adjusted (relocated) yet. It can't have been since
1051 the section isn't yet known and knowing the section is
1052 necessary in order to add the correct relocation value. In
1053 other words, we wouldn't even be in this function (attempting
1054 to compute the section) if it were already known.
1055
1056 Note that it is possible to search the minimal symbols
1057 (subtracting the relocation value if necessary) to find the
1058 matching minimal symbol, but this is overkill and much less
1059 efficient. It is not necessary to find the matching minimal
1060 symbol, only its section.
1061
1062 Note that this technique (of doing a section table search)
1063 can fail when unrelocated section addresses overlap. For
1064 this reason, we still attempt a lookup by name prior to doing
1065 a search of the section table. */
1066
1067 CORE_ADDR addr;
1068 struct obj_section *s;
1069
1070 addr = ginfo->value.address;
1071
1072 ALL_OBJFILE_OSECTIONS (objfile, s)
1073 {
1074 int idx = s->the_bfd_section->index;
1075 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1076
1077 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1078 {
1079 ginfo->bfd_section = s->the_bfd_section;
1080 ginfo->section = idx;
1081 return;
1082 }
1083 }
1084 }
1085 }
1086
1087 struct symbol *
1088 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1089 {
1090 if (!sym)
1091 return NULL;
1092
1093 if (SYMBOL_BFD_SECTION (sym))
1094 return sym;
1095
1096 fixup_section (&sym->ginfo, objfile);
1097
1098 return sym;
1099 }
1100
1101 struct partial_symbol *
1102 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1103 {
1104 if (!psym)
1105 return NULL;
1106
1107 if (SYMBOL_BFD_SECTION (psym))
1108 return psym;
1109
1110 fixup_section (&psym->ginfo, objfile);
1111
1112 return psym;
1113 }
1114
1115 /* Find the definition for a specified symbol name NAME
1116 in domain DOMAIN, visible from lexical block BLOCK.
1117 Returns the struct symbol pointer, or zero if no symbol is found.
1118 If SYMTAB is non-NULL, store the symbol table in which the
1119 symbol was found there, or NULL if not found.
1120 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1121 NAME is a field of the current implied argument `this'. If so set
1122 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1123 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1124 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1125
1126 /* This function has a bunch of loops in it and it would seem to be
1127 attractive to put in some QUIT's (though I'm not really sure
1128 whether it can run long enough to be really important). But there
1129 are a few calls for which it would appear to be bad news to quit
1130 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1131 that there is C++ code below which can error(), but that probably
1132 doesn't affect these calls since they are looking for a known
1133 variable and thus can probably assume it will never hit the C++
1134 code). */
1135
1136 struct symbol *
1137 lookup_symbol_in_language (const char *name, const struct block *block,
1138 const domain_enum domain, enum language lang,
1139 int *is_a_field_of_this,
1140 struct symtab **symtab)
1141 {
1142 char *demangled_name = NULL;
1143 const char *modified_name = NULL;
1144 const char *mangled_name = NULL;
1145 int needtofreename = 0;
1146 struct symbol *returnval;
1147
1148 modified_name = name;
1149
1150 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1151 we can always binary search. */
1152 if (lang == language_cplus)
1153 {
1154 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1155 if (demangled_name)
1156 {
1157 mangled_name = name;
1158 modified_name = demangled_name;
1159 needtofreename = 1;
1160 }
1161 }
1162 else if (lang == language_java)
1163 {
1164 demangled_name = cplus_demangle (name,
1165 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1166 if (demangled_name)
1167 {
1168 mangled_name = name;
1169 modified_name = demangled_name;
1170 needtofreename = 1;
1171 }
1172 }
1173
1174 if (case_sensitivity == case_sensitive_off)
1175 {
1176 char *copy;
1177 int len, i;
1178
1179 len = strlen (name);
1180 copy = (char *) alloca (len + 1);
1181 for (i= 0; i < len; i++)
1182 copy[i] = tolower (name[i]);
1183 copy[len] = 0;
1184 modified_name = copy;
1185 }
1186
1187 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1188 domain, lang,
1189 is_a_field_of_this, symtab);
1190 if (needtofreename)
1191 xfree (demangled_name);
1192
1193 /* Override the returned symtab with the symbol's specific one. */
1194 if (returnval != NULL && symtab != NULL)
1195 *symtab = SYMBOL_SYMTAB (returnval);
1196
1197 return returnval;
1198 }
1199
1200 /* Behave like lookup_symbol_in_language, but performed with the
1201 current language. */
1202
1203 struct symbol *
1204 lookup_symbol (const char *name, const struct block *block,
1205 domain_enum domain, int *is_a_field_of_this,
1206 struct symtab **symtab)
1207 {
1208 return lookup_symbol_in_language (name, block, domain,
1209 current_language->la_language,
1210 is_a_field_of_this, symtab);
1211 }
1212
1213 /* Behave like lookup_symbol except that NAME is the natural name
1214 of the symbol that we're looking for and, if LINKAGE_NAME is
1215 non-NULL, ensure that the symbol's linkage name matches as
1216 well. */
1217
1218 static struct symbol *
1219 lookup_symbol_aux (const char *name, const char *linkage_name,
1220 const struct block *block, const domain_enum domain,
1221 enum language language,
1222 int *is_a_field_of_this, struct symtab **symtab)
1223 {
1224 struct symbol *sym;
1225 const struct language_defn *langdef;
1226
1227 /* Make sure we do something sensible with is_a_field_of_this, since
1228 the callers that set this parameter to some non-null value will
1229 certainly use it later and expect it to be either 0 or 1.
1230 If we don't set it, the contents of is_a_field_of_this are
1231 undefined. */
1232 if (is_a_field_of_this != NULL)
1233 *is_a_field_of_this = 0;
1234
1235 /* Search specified block and its superiors. Don't search
1236 STATIC_BLOCK or GLOBAL_BLOCK. */
1237
1238 sym = lookup_symbol_aux_local (name, linkage_name, block, domain,
1239 symtab);
1240 if (sym != NULL)
1241 return sym;
1242
1243 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1244 check to see if NAME is a field of `this'. */
1245
1246 langdef = language_def (language);
1247
1248 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1249 && block != NULL)
1250 {
1251 struct symbol *sym = NULL;
1252 /* 'this' is only defined in the function's block, so find the
1253 enclosing function block. */
1254 for (; block && !BLOCK_FUNCTION (block);
1255 block = BLOCK_SUPERBLOCK (block));
1256
1257 if (block && !dict_empty (BLOCK_DICT (block)))
1258 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1259 NULL, VAR_DOMAIN);
1260 if (sym)
1261 {
1262 struct type *t = sym->type;
1263
1264 /* I'm not really sure that type of this can ever
1265 be typedefed; just be safe. */
1266 CHECK_TYPEDEF (t);
1267 if (TYPE_CODE (t) == TYPE_CODE_PTR
1268 || TYPE_CODE (t) == TYPE_CODE_REF)
1269 t = TYPE_TARGET_TYPE (t);
1270
1271 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1272 && TYPE_CODE (t) != TYPE_CODE_UNION)
1273 error (_("Internal error: `%s' is not an aggregate"),
1274 langdef->la_name_of_this);
1275
1276 if (check_field (t, name))
1277 {
1278 *is_a_field_of_this = 1;
1279 if (symtab != NULL)
1280 *symtab = NULL;
1281 return NULL;
1282 }
1283 }
1284 }
1285
1286 /* Now do whatever is appropriate for LANGUAGE to look
1287 up static and global variables. */
1288
1289 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name,
1290 block, domain, symtab);
1291 if (sym != NULL)
1292 return sym;
1293
1294 /* Now search all static file-level symbols. Not strictly correct,
1295 but more useful than an error. Do the symtabs first, then check
1296 the psymtabs. If a psymtab indicates the existence of the
1297 desired name as a file-level static, then do psymtab-to-symtab
1298 conversion on the fly and return the found symbol. */
1299
1300 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name,
1301 domain, symtab);
1302 if (sym != NULL)
1303 return sym;
1304
1305 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name,
1306 domain, symtab);
1307 if (sym != NULL)
1308 return sym;
1309
1310 if (symtab != NULL)
1311 *symtab = NULL;
1312 return NULL;
1313 }
1314
1315 /* Check to see if the symbol is defined in BLOCK or its superiors.
1316 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1317
1318 static struct symbol *
1319 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1320 const struct block *block,
1321 const domain_enum domain,
1322 struct symtab **symtab)
1323 {
1324 struct symbol *sym;
1325 const struct block *static_block = block_static_block (block);
1326
1327 /* Check if either no block is specified or it's a global block. */
1328
1329 if (static_block == NULL)
1330 return NULL;
1331
1332 while (block != static_block)
1333 {
1334 sym = lookup_symbol_aux_block (name, linkage_name, block, domain,
1335 symtab);
1336 if (sym != NULL)
1337 return sym;
1338 block = BLOCK_SUPERBLOCK (block);
1339 }
1340
1341 /* We've reached the static block without finding a result. */
1342
1343 return NULL;
1344 }
1345
1346 /* Look up OBJFILE to BLOCK. */
1347
1348 static struct objfile *
1349 lookup_objfile_from_block (const struct block *block)
1350 {
1351 struct objfile *obj;
1352 struct symtab *s;
1353
1354 if (block == NULL)
1355 return NULL;
1356
1357 block = block_global_block (block);
1358 /* Go through SYMTABS. */
1359 ALL_SYMTABS (obj, s)
1360 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1361 return obj;
1362
1363 return NULL;
1364 }
1365
1366 /* Look up a symbol in a block; if found, locate its symtab, fixup the
1367 symbol, and set block_found appropriately. */
1368
1369 struct symbol *
1370 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1371 const struct block *block,
1372 const domain_enum domain,
1373 struct symtab **symtab)
1374 {
1375 struct symbol *sym;
1376 struct objfile *objfile = NULL;
1377 struct blockvector *bv;
1378 struct block *b;
1379 struct symtab *s = NULL;
1380
1381 sym = lookup_block_symbol (block, name, linkage_name, domain);
1382 if (sym)
1383 {
1384 block_found = block;
1385 if (symtab != NULL)
1386 {
1387 /* Search the list of symtabs for one which contains the
1388 address of the start of this block. */
1389 ALL_PRIMARY_SYMTABS (objfile, s)
1390 {
1391 bv = BLOCKVECTOR (s);
1392 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1393 if (BLOCK_START (b) <= BLOCK_START (block)
1394 && BLOCK_END (b) > BLOCK_START (block))
1395 goto found;
1396 }
1397 found:
1398 *symtab = s;
1399 }
1400
1401 return fixup_symbol_section (sym, objfile);
1402 }
1403
1404 return NULL;
1405 }
1406
1407 /* Check all global symbols in OBJFILE in symtabs and
1408 psymtabs. */
1409
1410 struct symbol *
1411 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1412 const char *name,
1413 const char *linkage_name,
1414 const domain_enum domain,
1415 struct symtab **symtab)
1416 {
1417 struct symbol *sym;
1418 struct blockvector *bv;
1419 const struct block *block;
1420 struct symtab *s;
1421 struct partial_symtab *ps;
1422
1423 /* Go through symtabs. */
1424 ALL_OBJFILE_SYMTABS (objfile, s)
1425 {
1426 bv = BLOCKVECTOR (s);
1427 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1428 sym = lookup_block_symbol (block, name, linkage_name, domain);
1429 if (sym)
1430 {
1431 block_found = block;
1432 if (symtab != NULL)
1433 *symtab = s;
1434 return fixup_symbol_section (sym, (struct objfile *)objfile);
1435 }
1436 }
1437
1438 /* Now go through psymtabs. */
1439 ALL_OBJFILE_PSYMTABS (objfile, ps)
1440 {
1441 if (!ps->readin
1442 && lookup_partial_symbol (ps, name, linkage_name,
1443 1, domain))
1444 {
1445 s = PSYMTAB_TO_SYMTAB (ps);
1446 bv = BLOCKVECTOR (s);
1447 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1448 sym = lookup_block_symbol (block, name, linkage_name, domain);
1449 if (symtab != NULL)
1450 *symtab = s;
1451 return fixup_symbol_section (sym, (struct objfile *)objfile);
1452 }
1453 }
1454
1455 if (objfile->separate_debug_objfile)
1456 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1457 name, linkage_name, domain,
1458 symtab);
1459
1460 return NULL;
1461 }
1462
1463 /* Check to see if the symbol is defined in one of the symtabs.
1464 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1465 depending on whether or not we want to search global symbols or
1466 static symbols. */
1467
1468 static struct symbol *
1469 lookup_symbol_aux_symtabs (int block_index,
1470 const char *name, const char *linkage_name,
1471 const domain_enum domain,
1472 struct symtab **symtab)
1473 {
1474 struct symbol *sym;
1475 struct objfile *objfile;
1476 struct blockvector *bv;
1477 const struct block *block;
1478 struct symtab *s;
1479
1480 ALL_PRIMARY_SYMTABS (objfile, s)
1481 {
1482 bv = BLOCKVECTOR (s);
1483 block = BLOCKVECTOR_BLOCK (bv, block_index);
1484 sym = lookup_block_symbol (block, name, linkage_name, domain);
1485 if (sym)
1486 {
1487 block_found = block;
1488 if (symtab != NULL)
1489 *symtab = s;
1490 return fixup_symbol_section (sym, objfile);
1491 }
1492 }
1493
1494 return NULL;
1495 }
1496
1497 /* Check to see if the symbol is defined in one of the partial
1498 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1499 STATIC_BLOCK, depending on whether or not we want to search global
1500 symbols or static symbols. */
1501
1502 static struct symbol *
1503 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1504 const char *linkage_name,
1505 const domain_enum domain,
1506 struct symtab **symtab)
1507 {
1508 struct symbol *sym;
1509 struct objfile *objfile;
1510 struct blockvector *bv;
1511 const struct block *block;
1512 struct partial_symtab *ps;
1513 struct symtab *s;
1514 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1515
1516 ALL_PSYMTABS (objfile, ps)
1517 {
1518 if (!ps->readin
1519 && lookup_partial_symbol (ps, name, linkage_name,
1520 psymtab_index, domain))
1521 {
1522 s = PSYMTAB_TO_SYMTAB (ps);
1523 bv = BLOCKVECTOR (s);
1524 block = BLOCKVECTOR_BLOCK (bv, block_index);
1525 sym = lookup_block_symbol (block, name, linkage_name, domain);
1526 if (!sym)
1527 {
1528 /* This shouldn't be necessary, but as a last resort try
1529 looking in the statics even though the psymtab claimed
1530 the symbol was global, or vice-versa. It's possible
1531 that the psymtab gets it wrong in some cases. */
1532
1533 /* FIXME: carlton/2002-09-30: Should we really do that?
1534 If that happens, isn't it likely to be a GDB error, in
1535 which case we should fix the GDB error rather than
1536 silently dealing with it here? So I'd vote for
1537 removing the check for the symbol in the other
1538 block. */
1539 block = BLOCKVECTOR_BLOCK (bv,
1540 block_index == GLOBAL_BLOCK ?
1541 STATIC_BLOCK : GLOBAL_BLOCK);
1542 sym = lookup_block_symbol (block, name, linkage_name, domain);
1543 if (!sym)
1544 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1545 block_index == GLOBAL_BLOCK ? "global" : "static",
1546 name, ps->filename, name, name);
1547 }
1548 if (symtab != NULL)
1549 *symtab = s;
1550 return fixup_symbol_section (sym, objfile);
1551 }
1552 }
1553
1554 return NULL;
1555 }
1556
1557 /* A default version of lookup_symbol_nonlocal for use by languages
1558 that can't think of anything better to do. This implements the C
1559 lookup rules. */
1560
1561 struct symbol *
1562 basic_lookup_symbol_nonlocal (const char *name,
1563 const char *linkage_name,
1564 const struct block *block,
1565 const domain_enum domain,
1566 struct symtab **symtab)
1567 {
1568 struct symbol *sym;
1569
1570 /* NOTE: carlton/2003-05-19: The comments below were written when
1571 this (or what turned into this) was part of lookup_symbol_aux;
1572 I'm much less worried about these questions now, since these
1573 decisions have turned out well, but I leave these comments here
1574 for posterity. */
1575
1576 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1577 not it would be appropriate to search the current global block
1578 here as well. (That's what this code used to do before the
1579 is_a_field_of_this check was moved up.) On the one hand, it's
1580 redundant with the lookup_symbol_aux_symtabs search that happens
1581 next. On the other hand, if decode_line_1 is passed an argument
1582 like filename:var, then the user presumably wants 'var' to be
1583 searched for in filename. On the third hand, there shouldn't be
1584 multiple global variables all of which are named 'var', and it's
1585 not like decode_line_1 has ever restricted its search to only
1586 global variables in a single filename. All in all, only
1587 searching the static block here seems best: it's correct and it's
1588 cleanest. */
1589
1590 /* NOTE: carlton/2002-12-05: There's also a possible performance
1591 issue here: if you usually search for global symbols in the
1592 current file, then it would be slightly better to search the
1593 current global block before searching all the symtabs. But there
1594 are other factors that have a much greater effect on performance
1595 than that one, so I don't think we should worry about that for
1596 now. */
1597
1598 sym = lookup_symbol_static (name, linkage_name, block, domain, symtab);
1599 if (sym != NULL)
1600 return sym;
1601
1602 return lookup_symbol_global (name, linkage_name, block, domain, symtab);
1603 }
1604
1605 /* Lookup a symbol in the static block associated to BLOCK, if there
1606 is one; do nothing if BLOCK is NULL or a global block. */
1607
1608 struct symbol *
1609 lookup_symbol_static (const char *name,
1610 const char *linkage_name,
1611 const struct block *block,
1612 const domain_enum domain,
1613 struct symtab **symtab)
1614 {
1615 const struct block *static_block = block_static_block (block);
1616
1617 if (static_block != NULL)
1618 return lookup_symbol_aux_block (name, linkage_name, static_block,
1619 domain, symtab);
1620 else
1621 return NULL;
1622 }
1623
1624 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1625 necessary). */
1626
1627 struct symbol *
1628 lookup_symbol_global (const char *name,
1629 const char *linkage_name,
1630 const struct block *block,
1631 const domain_enum domain,
1632 struct symtab **symtab)
1633 {
1634 struct symbol *sym = NULL;
1635 struct objfile *objfile = NULL;
1636
1637 /* Call library-specific lookup procedure. */
1638 objfile = lookup_objfile_from_block (block);
1639 if (objfile != NULL)
1640 sym = solib_global_lookup (objfile, name, linkage_name, domain, symtab);
1641 if (sym != NULL)
1642 return sym;
1643
1644 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name,
1645 domain, symtab);
1646 if (sym != NULL)
1647 return sym;
1648
1649 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name,
1650 domain, symtab);
1651 }
1652
1653 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1654 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1655 linkage name matches it. Check the global symbols if GLOBAL, the
1656 static symbols if not */
1657
1658 struct partial_symbol *
1659 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1660 const char *linkage_name, int global,
1661 domain_enum domain)
1662 {
1663 struct partial_symbol *temp;
1664 struct partial_symbol **start, **psym;
1665 struct partial_symbol **top, **real_top, **bottom, **center;
1666 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1667 int do_linear_search = 1;
1668
1669 if (length == 0)
1670 {
1671 return (NULL);
1672 }
1673 start = (global ?
1674 pst->objfile->global_psymbols.list + pst->globals_offset :
1675 pst->objfile->static_psymbols.list + pst->statics_offset);
1676
1677 if (global) /* This means we can use a binary search. */
1678 {
1679 do_linear_search = 0;
1680
1681 /* Binary search. This search is guaranteed to end with center
1682 pointing at the earliest partial symbol whose name might be
1683 correct. At that point *all* partial symbols with an
1684 appropriate name will be checked against the correct
1685 domain. */
1686
1687 bottom = start;
1688 top = start + length - 1;
1689 real_top = top;
1690 while (top > bottom)
1691 {
1692 center = bottom + (top - bottom) / 2;
1693 if (!(center < top))
1694 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1695 if (!do_linear_search
1696 && (SYMBOL_LANGUAGE (*center) == language_java))
1697 {
1698 do_linear_search = 1;
1699 }
1700 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1701 {
1702 top = center;
1703 }
1704 else
1705 {
1706 bottom = center + 1;
1707 }
1708 }
1709 if (!(top == bottom))
1710 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1711
1712 while (top <= real_top
1713 && (linkage_name != NULL
1714 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1715 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1716 {
1717 if (SYMBOL_DOMAIN (*top) == domain)
1718 {
1719 return (*top);
1720 }
1721 top++;
1722 }
1723 }
1724
1725 /* Can't use a binary search or else we found during the binary search that
1726 we should also do a linear search. */
1727
1728 if (do_linear_search)
1729 {
1730 for (psym = start; psym < start + length; psym++)
1731 {
1732 if (domain == SYMBOL_DOMAIN (*psym))
1733 {
1734 if (linkage_name != NULL
1735 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1736 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1737 {
1738 return (*psym);
1739 }
1740 }
1741 }
1742 }
1743
1744 return (NULL);
1745 }
1746
1747 /* Look up a type named NAME in the struct_domain. The type returned
1748 must not be opaque -- i.e., must have at least one field
1749 defined. */
1750
1751 struct type *
1752 lookup_transparent_type (const char *name)
1753 {
1754 return current_language->la_lookup_transparent_type (name);
1755 }
1756
1757 /* The standard implementation of lookup_transparent_type. This code
1758 was modeled on lookup_symbol -- the parts not relevant to looking
1759 up types were just left out. In particular it's assumed here that
1760 types are available in struct_domain and only at file-static or
1761 global blocks. */
1762
1763 struct type *
1764 basic_lookup_transparent_type (const char *name)
1765 {
1766 struct symbol *sym;
1767 struct symtab *s = NULL;
1768 struct partial_symtab *ps;
1769 struct blockvector *bv;
1770 struct objfile *objfile;
1771 struct block *block;
1772
1773 /* Now search all the global symbols. Do the symtab's first, then
1774 check the psymtab's. If a psymtab indicates the existence
1775 of the desired name as a global, then do psymtab-to-symtab
1776 conversion on the fly and return the found symbol. */
1777
1778 ALL_PRIMARY_SYMTABS (objfile, s)
1779 {
1780 bv = BLOCKVECTOR (s);
1781 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1782 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1783 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1784 {
1785 return SYMBOL_TYPE (sym);
1786 }
1787 }
1788
1789 ALL_PSYMTABS (objfile, ps)
1790 {
1791 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1792 1, STRUCT_DOMAIN))
1793 {
1794 s = PSYMTAB_TO_SYMTAB (ps);
1795 bv = BLOCKVECTOR (s);
1796 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1797 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1798 if (!sym)
1799 {
1800 /* This shouldn't be necessary, but as a last resort
1801 * try looking in the statics even though the psymtab
1802 * claimed the symbol was global. It's possible that
1803 * the psymtab gets it wrong in some cases.
1804 */
1805 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1806 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1807 if (!sym)
1808 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1809 %s may be an inlined function, or may be a template function\n\
1810 (if a template, try specifying an instantiation: %s<type>)."),
1811 name, ps->filename, name, name);
1812 }
1813 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1814 return SYMBOL_TYPE (sym);
1815 }
1816 }
1817
1818 /* Now search the static file-level symbols.
1819 Not strictly correct, but more useful than an error.
1820 Do the symtab's first, then
1821 check the psymtab's. If a psymtab indicates the existence
1822 of the desired name as a file-level static, then do psymtab-to-symtab
1823 conversion on the fly and return the found symbol.
1824 */
1825
1826 ALL_PRIMARY_SYMTABS (objfile, s)
1827 {
1828 bv = BLOCKVECTOR (s);
1829 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1830 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1831 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1832 {
1833 return SYMBOL_TYPE (sym);
1834 }
1835 }
1836
1837 ALL_PSYMTABS (objfile, ps)
1838 {
1839 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1840 {
1841 s = PSYMTAB_TO_SYMTAB (ps);
1842 bv = BLOCKVECTOR (s);
1843 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1844 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1845 if (!sym)
1846 {
1847 /* This shouldn't be necessary, but as a last resort
1848 * try looking in the globals even though the psymtab
1849 * claimed the symbol was static. It's possible that
1850 * the psymtab gets it wrong in some cases.
1851 */
1852 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1853 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1854 if (!sym)
1855 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1856 %s may be an inlined function, or may be a template function\n\
1857 (if a template, try specifying an instantiation: %s<type>)."),
1858 name, ps->filename, name, name);
1859 }
1860 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1861 return SYMBOL_TYPE (sym);
1862 }
1863 }
1864 return (struct type *) 0;
1865 }
1866
1867
1868 /* Find the psymtab containing main(). */
1869 /* FIXME: What about languages without main() or specially linked
1870 executables that have no main() ? */
1871
1872 struct partial_symtab *
1873 find_main_psymtab (void)
1874 {
1875 struct partial_symtab *pst;
1876 struct objfile *objfile;
1877
1878 ALL_PSYMTABS (objfile, pst)
1879 {
1880 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1881 {
1882 return (pst);
1883 }
1884 }
1885 return (NULL);
1886 }
1887
1888 /* Search BLOCK for symbol NAME in DOMAIN.
1889
1890 Note that if NAME is the demangled form of a C++ symbol, we will fail
1891 to find a match during the binary search of the non-encoded names, but
1892 for now we don't worry about the slight inefficiency of looking for
1893 a match we'll never find, since it will go pretty quick. Once the
1894 binary search terminates, we drop through and do a straight linear
1895 search on the symbols. Each symbol which is marked as being a ObjC/C++
1896 symbol (language_cplus or language_objc set) has both the encoded and
1897 non-encoded names tested for a match.
1898
1899 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1900 particular mangled name.
1901 */
1902
1903 struct symbol *
1904 lookup_block_symbol (const struct block *block, const char *name,
1905 const char *linkage_name,
1906 const domain_enum domain)
1907 {
1908 struct dict_iterator iter;
1909 struct symbol *sym;
1910
1911 if (!BLOCK_FUNCTION (block))
1912 {
1913 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1914 sym != NULL;
1915 sym = dict_iter_name_next (name, &iter))
1916 {
1917 if (SYMBOL_DOMAIN (sym) == domain
1918 && (linkage_name != NULL
1919 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1920 return sym;
1921 }
1922 return NULL;
1923 }
1924 else
1925 {
1926 /* Note that parameter symbols do not always show up last in the
1927 list; this loop makes sure to take anything else other than
1928 parameter symbols first; it only uses parameter symbols as a
1929 last resort. Note that this only takes up extra computation
1930 time on a match. */
1931
1932 struct symbol *sym_found = NULL;
1933
1934 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1935 sym != NULL;
1936 sym = dict_iter_name_next (name, &iter))
1937 {
1938 if (SYMBOL_DOMAIN (sym) == domain
1939 && (linkage_name != NULL
1940 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1941 {
1942 sym_found = sym;
1943 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1944 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1945 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1946 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1947 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1948 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1949 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1950 {
1951 break;
1952 }
1953 }
1954 }
1955 return (sym_found); /* Will be NULL if not found. */
1956 }
1957 }
1958
1959 /* Find the symtab associated with PC and SECTION. Look through the
1960 psymtabs and read in another symtab if necessary. */
1961
1962 struct symtab *
1963 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1964 {
1965 struct block *b;
1966 struct blockvector *bv;
1967 struct symtab *s = NULL;
1968 struct symtab *best_s = NULL;
1969 struct partial_symtab *ps;
1970 struct objfile *objfile;
1971 CORE_ADDR distance = 0;
1972 struct minimal_symbol *msymbol;
1973
1974 /* If we know that this is not a text address, return failure. This is
1975 necessary because we loop based on the block's high and low code
1976 addresses, which do not include the data ranges, and because
1977 we call find_pc_sect_psymtab which has a similar restriction based
1978 on the partial_symtab's texthigh and textlow. */
1979 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1980 if (msymbol
1981 && (msymbol->type == mst_data
1982 || msymbol->type == mst_bss
1983 || msymbol->type == mst_abs
1984 || msymbol->type == mst_file_data
1985 || msymbol->type == mst_file_bss))
1986 return NULL;
1987
1988 /* Search all symtabs for the one whose file contains our address, and which
1989 is the smallest of all the ones containing the address. This is designed
1990 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1991 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1992 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1993
1994 This happens for native ecoff format, where code from included files
1995 gets its own symtab. The symtab for the included file should have
1996 been read in already via the dependency mechanism.
1997 It might be swifter to create several symtabs with the same name
1998 like xcoff does (I'm not sure).
1999
2000 It also happens for objfiles that have their functions reordered.
2001 For these, the symtab we are looking for is not necessarily read in. */
2002
2003 ALL_PRIMARY_SYMTABS (objfile, s)
2004 {
2005 bv = BLOCKVECTOR (s);
2006 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2007
2008 if (BLOCK_START (b) <= pc
2009 && BLOCK_END (b) > pc
2010 && (distance == 0
2011 || BLOCK_END (b) - BLOCK_START (b) < distance))
2012 {
2013 /* For an objfile that has its functions reordered,
2014 find_pc_psymtab will find the proper partial symbol table
2015 and we simply return its corresponding symtab. */
2016 /* In order to better support objfiles that contain both
2017 stabs and coff debugging info, we continue on if a psymtab
2018 can't be found. */
2019 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2020 {
2021 ps = find_pc_sect_psymtab (pc, section);
2022 if (ps)
2023 return PSYMTAB_TO_SYMTAB (ps);
2024 }
2025 if (section != 0)
2026 {
2027 struct dict_iterator iter;
2028 struct symbol *sym = NULL;
2029
2030 ALL_BLOCK_SYMBOLS (b, iter, sym)
2031 {
2032 fixup_symbol_section (sym, objfile);
2033 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
2034 break;
2035 }
2036 if (sym == NULL)
2037 continue; /* no symbol in this symtab matches section */
2038 }
2039 distance = BLOCK_END (b) - BLOCK_START (b);
2040 best_s = s;
2041 }
2042 }
2043
2044 if (best_s != NULL)
2045 return (best_s);
2046
2047 s = NULL;
2048 ps = find_pc_sect_psymtab (pc, section);
2049 if (ps)
2050 {
2051 if (ps->readin)
2052 /* Might want to error() here (in case symtab is corrupt and
2053 will cause a core dump), but maybe we can successfully
2054 continue, so let's not. */
2055 warning (_("\
2056 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2057 paddr_nz (pc));
2058 s = PSYMTAB_TO_SYMTAB (ps);
2059 }
2060 return (s);
2061 }
2062
2063 /* Find the symtab associated with PC. Look through the psymtabs and
2064 read in another symtab if necessary. Backward compatibility, no section */
2065
2066 struct symtab *
2067 find_pc_symtab (CORE_ADDR pc)
2068 {
2069 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2070 }
2071 \f
2072
2073 /* Find the source file and line number for a given PC value and SECTION.
2074 Return a structure containing a symtab pointer, a line number,
2075 and a pc range for the entire source line.
2076 The value's .pc field is NOT the specified pc.
2077 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2078 use the line that ends there. Otherwise, in that case, the line
2079 that begins there is used. */
2080
2081 /* The big complication here is that a line may start in one file, and end just
2082 before the start of another file. This usually occurs when you #include
2083 code in the middle of a subroutine. To properly find the end of a line's PC
2084 range, we must search all symtabs associated with this compilation unit, and
2085 find the one whose first PC is closer than that of the next line in this
2086 symtab. */
2087
2088 /* If it's worth the effort, we could be using a binary search. */
2089
2090 struct symtab_and_line
2091 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2092 {
2093 struct symtab *s;
2094 struct linetable *l;
2095 int len;
2096 int i;
2097 struct linetable_entry *item;
2098 struct symtab_and_line val;
2099 struct blockvector *bv;
2100 struct minimal_symbol *msymbol;
2101 struct minimal_symbol *mfunsym;
2102
2103 /* Info on best line seen so far, and where it starts, and its file. */
2104
2105 struct linetable_entry *best = NULL;
2106 CORE_ADDR best_end = 0;
2107 struct symtab *best_symtab = 0;
2108
2109 /* Store here the first line number
2110 of a file which contains the line at the smallest pc after PC.
2111 If we don't find a line whose range contains PC,
2112 we will use a line one less than this,
2113 with a range from the start of that file to the first line's pc. */
2114 struct linetable_entry *alt = NULL;
2115 struct symtab *alt_symtab = 0;
2116
2117 /* Info on best line seen in this file. */
2118
2119 struct linetable_entry *prev;
2120
2121 /* If this pc is not from the current frame,
2122 it is the address of the end of a call instruction.
2123 Quite likely that is the start of the following statement.
2124 But what we want is the statement containing the instruction.
2125 Fudge the pc to make sure we get that. */
2126
2127 init_sal (&val); /* initialize to zeroes */
2128
2129 /* It's tempting to assume that, if we can't find debugging info for
2130 any function enclosing PC, that we shouldn't search for line
2131 number info, either. However, GAS can emit line number info for
2132 assembly files --- very helpful when debugging hand-written
2133 assembly code. In such a case, we'd have no debug info for the
2134 function, but we would have line info. */
2135
2136 if (notcurrent)
2137 pc -= 1;
2138
2139 /* elz: added this because this function returned the wrong
2140 information if the pc belongs to a stub (import/export)
2141 to call a shlib function. This stub would be anywhere between
2142 two functions in the target, and the line info was erroneously
2143 taken to be the one of the line before the pc.
2144 */
2145 /* RT: Further explanation:
2146
2147 * We have stubs (trampolines) inserted between procedures.
2148 *
2149 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2150 * exists in the main image.
2151 *
2152 * In the minimal symbol table, we have a bunch of symbols
2153 * sorted by start address. The stubs are marked as "trampoline",
2154 * the others appear as text. E.g.:
2155 *
2156 * Minimal symbol table for main image
2157 * main: code for main (text symbol)
2158 * shr1: stub (trampoline symbol)
2159 * foo: code for foo (text symbol)
2160 * ...
2161 * Minimal symbol table for "shr1" image:
2162 * ...
2163 * shr1: code for shr1 (text symbol)
2164 * ...
2165 *
2166 * So the code below is trying to detect if we are in the stub
2167 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2168 * and if found, do the symbolization from the real-code address
2169 * rather than the stub address.
2170 *
2171 * Assumptions being made about the minimal symbol table:
2172 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2173 * if we're really in the trampoline. If we're beyond it (say
2174 * we're in "foo" in the above example), it'll have a closer
2175 * symbol (the "foo" text symbol for example) and will not
2176 * return the trampoline.
2177 * 2. lookup_minimal_symbol_text() will find a real text symbol
2178 * corresponding to the trampoline, and whose address will
2179 * be different than the trampoline address. I put in a sanity
2180 * check for the address being the same, to avoid an
2181 * infinite recursion.
2182 */
2183 msymbol = lookup_minimal_symbol_by_pc (pc);
2184 if (msymbol != NULL)
2185 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2186 {
2187 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2188 NULL);
2189 if (mfunsym == NULL)
2190 /* I eliminated this warning since it is coming out
2191 * in the following situation:
2192 * gdb shmain // test program with shared libraries
2193 * (gdb) break shr1 // function in shared lib
2194 * Warning: In stub for ...
2195 * In the above situation, the shared lib is not loaded yet,
2196 * so of course we can't find the real func/line info,
2197 * but the "break" still works, and the warning is annoying.
2198 * So I commented out the warning. RT */
2199 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2200 /* fall through */
2201 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2202 /* Avoid infinite recursion */
2203 /* See above comment about why warning is commented out */
2204 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2205 /* fall through */
2206 else
2207 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2208 }
2209
2210
2211 s = find_pc_sect_symtab (pc, section);
2212 if (!s)
2213 {
2214 /* if no symbol information, return previous pc */
2215 if (notcurrent)
2216 pc++;
2217 val.pc = pc;
2218 return val;
2219 }
2220
2221 bv = BLOCKVECTOR (s);
2222
2223 /* Look at all the symtabs that share this blockvector.
2224 They all have the same apriori range, that we found was right;
2225 but they have different line tables. */
2226
2227 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2228 {
2229 /* Find the best line in this symtab. */
2230 l = LINETABLE (s);
2231 if (!l)
2232 continue;
2233 len = l->nitems;
2234 if (len <= 0)
2235 {
2236 /* I think len can be zero if the symtab lacks line numbers
2237 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2238 I'm not sure which, and maybe it depends on the symbol
2239 reader). */
2240 continue;
2241 }
2242
2243 prev = NULL;
2244 item = l->item; /* Get first line info */
2245
2246 /* Is this file's first line closer than the first lines of other files?
2247 If so, record this file, and its first line, as best alternate. */
2248 if (item->pc > pc && (!alt || item->pc < alt->pc))
2249 {
2250 alt = item;
2251 alt_symtab = s;
2252 }
2253
2254 for (i = 0; i < len; i++, item++)
2255 {
2256 /* Leave prev pointing to the linetable entry for the last line
2257 that started at or before PC. */
2258 if (item->pc > pc)
2259 break;
2260
2261 prev = item;
2262 }
2263
2264 /* At this point, prev points at the line whose start addr is <= pc, and
2265 item points at the next line. If we ran off the end of the linetable
2266 (pc >= start of the last line), then prev == item. If pc < start of
2267 the first line, prev will not be set. */
2268
2269 /* Is this file's best line closer than the best in the other files?
2270 If so, record this file, and its best line, as best so far. Don't
2271 save prev if it represents the end of a function (i.e. line number
2272 0) instead of a real line. */
2273
2274 if (prev && prev->line && (!best || prev->pc > best->pc))
2275 {
2276 best = prev;
2277 best_symtab = s;
2278
2279 /* Discard BEST_END if it's before the PC of the current BEST. */
2280 if (best_end <= best->pc)
2281 best_end = 0;
2282 }
2283
2284 /* If another line (denoted by ITEM) is in the linetable and its
2285 PC is after BEST's PC, but before the current BEST_END, then
2286 use ITEM's PC as the new best_end. */
2287 if (best && i < len && item->pc > best->pc
2288 && (best_end == 0 || best_end > item->pc))
2289 best_end = item->pc;
2290 }
2291
2292 if (!best_symtab)
2293 {
2294 /* If we didn't find any line number info, just return zeros.
2295 We used to return alt->line - 1 here, but that could be
2296 anywhere; if we don't have line number info for this PC,
2297 don't make some up. */
2298 val.pc = pc;
2299 }
2300 else if (best->line == 0)
2301 {
2302 /* If our best fit is in a range of PC's for which no line
2303 number info is available (line number is zero) then we didn't
2304 find any valid line information. */
2305 val.pc = pc;
2306 }
2307 else
2308 {
2309 val.symtab = best_symtab;
2310 val.line = best->line;
2311 val.pc = best->pc;
2312 if (best_end && (!alt || best_end < alt->pc))
2313 val.end = best_end;
2314 else if (alt)
2315 val.end = alt->pc;
2316 else
2317 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2318 }
2319 val.section = section;
2320 return val;
2321 }
2322
2323 /* Backward compatibility (no section) */
2324
2325 struct symtab_and_line
2326 find_pc_line (CORE_ADDR pc, int notcurrent)
2327 {
2328 asection *section;
2329
2330 section = find_pc_overlay (pc);
2331 if (pc_in_unmapped_range (pc, section))
2332 pc = overlay_mapped_address (pc, section);
2333 return find_pc_sect_line (pc, section, notcurrent);
2334 }
2335 \f
2336 /* Find line number LINE in any symtab whose name is the same as
2337 SYMTAB.
2338
2339 If found, return the symtab that contains the linetable in which it was
2340 found, set *INDEX to the index in the linetable of the best entry
2341 found, and set *EXACT_MATCH nonzero if the value returned is an
2342 exact match.
2343
2344 If not found, return NULL. */
2345
2346 struct symtab *
2347 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2348 {
2349 int exact;
2350
2351 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2352 so far seen. */
2353
2354 int best_index;
2355 struct linetable *best_linetable;
2356 struct symtab *best_symtab;
2357
2358 /* First try looking it up in the given symtab. */
2359 best_linetable = LINETABLE (symtab);
2360 best_symtab = symtab;
2361 best_index = find_line_common (best_linetable, line, &exact);
2362 if (best_index < 0 || !exact)
2363 {
2364 /* Didn't find an exact match. So we better keep looking for
2365 another symtab with the same name. In the case of xcoff,
2366 multiple csects for one source file (produced by IBM's FORTRAN
2367 compiler) produce multiple symtabs (this is unavoidable
2368 assuming csects can be at arbitrary places in memory and that
2369 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2370
2371 /* BEST is the smallest linenumber > LINE so far seen,
2372 or 0 if none has been seen so far.
2373 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2374 int best;
2375
2376 struct objfile *objfile;
2377 struct symtab *s;
2378 struct partial_symtab *p;
2379
2380 if (best_index >= 0)
2381 best = best_linetable->item[best_index].line;
2382 else
2383 best = 0;
2384
2385 ALL_PSYMTABS (objfile, p)
2386 {
2387 if (strcmp (symtab->filename, p->filename) != 0)
2388 continue;
2389 PSYMTAB_TO_SYMTAB (p);
2390 }
2391
2392 ALL_SYMTABS (objfile, s)
2393 {
2394 struct linetable *l;
2395 int ind;
2396
2397 if (strcmp (symtab->filename, s->filename) != 0)
2398 continue;
2399 l = LINETABLE (s);
2400 ind = find_line_common (l, line, &exact);
2401 if (ind >= 0)
2402 {
2403 if (exact)
2404 {
2405 best_index = ind;
2406 best_linetable = l;
2407 best_symtab = s;
2408 goto done;
2409 }
2410 if (best == 0 || l->item[ind].line < best)
2411 {
2412 best = l->item[ind].line;
2413 best_index = ind;
2414 best_linetable = l;
2415 best_symtab = s;
2416 }
2417 }
2418 }
2419 }
2420 done:
2421 if (best_index < 0)
2422 return NULL;
2423
2424 if (index)
2425 *index = best_index;
2426 if (exact_match)
2427 *exact_match = exact;
2428
2429 return best_symtab;
2430 }
2431 \f
2432 /* Set the PC value for a given source file and line number and return true.
2433 Returns zero for invalid line number (and sets the PC to 0).
2434 The source file is specified with a struct symtab. */
2435
2436 int
2437 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2438 {
2439 struct linetable *l;
2440 int ind;
2441
2442 *pc = 0;
2443 if (symtab == 0)
2444 return 0;
2445
2446 symtab = find_line_symtab (symtab, line, &ind, NULL);
2447 if (symtab != NULL)
2448 {
2449 l = LINETABLE (symtab);
2450 *pc = l->item[ind].pc;
2451 return 1;
2452 }
2453 else
2454 return 0;
2455 }
2456
2457 /* Find the range of pc values in a line.
2458 Store the starting pc of the line into *STARTPTR
2459 and the ending pc (start of next line) into *ENDPTR.
2460 Returns 1 to indicate success.
2461 Returns 0 if could not find the specified line. */
2462
2463 int
2464 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2465 CORE_ADDR *endptr)
2466 {
2467 CORE_ADDR startaddr;
2468 struct symtab_and_line found_sal;
2469
2470 startaddr = sal.pc;
2471 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2472 return 0;
2473
2474 /* This whole function is based on address. For example, if line 10 has
2475 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2476 "info line *0x123" should say the line goes from 0x100 to 0x200
2477 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2478 This also insures that we never give a range like "starts at 0x134
2479 and ends at 0x12c". */
2480
2481 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2482 if (found_sal.line != sal.line)
2483 {
2484 /* The specified line (sal) has zero bytes. */
2485 *startptr = found_sal.pc;
2486 *endptr = found_sal.pc;
2487 }
2488 else
2489 {
2490 *startptr = found_sal.pc;
2491 *endptr = found_sal.end;
2492 }
2493 return 1;
2494 }
2495
2496 /* Given a line table and a line number, return the index into the line
2497 table for the pc of the nearest line whose number is >= the specified one.
2498 Return -1 if none is found. The value is >= 0 if it is an index.
2499
2500 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2501
2502 static int
2503 find_line_common (struct linetable *l, int lineno,
2504 int *exact_match)
2505 {
2506 int i;
2507 int len;
2508
2509 /* BEST is the smallest linenumber > LINENO so far seen,
2510 or 0 if none has been seen so far.
2511 BEST_INDEX identifies the item for it. */
2512
2513 int best_index = -1;
2514 int best = 0;
2515
2516 *exact_match = 0;
2517
2518 if (lineno <= 0)
2519 return -1;
2520 if (l == 0)
2521 return -1;
2522
2523 len = l->nitems;
2524 for (i = 0; i < len; i++)
2525 {
2526 struct linetable_entry *item = &(l->item[i]);
2527
2528 if (item->line == lineno)
2529 {
2530 /* Return the first (lowest address) entry which matches. */
2531 *exact_match = 1;
2532 return i;
2533 }
2534
2535 if (item->line > lineno && (best == 0 || item->line < best))
2536 {
2537 best = item->line;
2538 best_index = i;
2539 }
2540 }
2541
2542 /* If we got here, we didn't get an exact match. */
2543 return best_index;
2544 }
2545
2546 int
2547 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2548 {
2549 struct symtab_and_line sal;
2550 sal = find_pc_line (pc, 0);
2551 *startptr = sal.pc;
2552 *endptr = sal.end;
2553 return sal.symtab != 0;
2554 }
2555
2556 /* Given a function start address PC and SECTION, find the first
2557 address after the function prologue. */
2558 CORE_ADDR
2559 find_function_start_pc (struct gdbarch *gdbarch,
2560 CORE_ADDR pc, asection *section)
2561 {
2562 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2563 so that gdbarch_skip_prologue has something unique to work on. */
2564 if (section_is_overlay (section) && !section_is_mapped (section))
2565 pc = overlay_unmapped_address (pc, section);
2566
2567 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2568 pc = gdbarch_skip_prologue (gdbarch, pc);
2569
2570 /* For overlays, map pc back into its mapped VMA range. */
2571 pc = overlay_mapped_address (pc, section);
2572
2573 return pc;
2574 }
2575
2576 /* Given a function symbol SYM, find the symtab and line for the start
2577 of the function.
2578 If the argument FUNFIRSTLINE is nonzero, we want the first line
2579 of real code inside the function. */
2580
2581 struct symtab_and_line
2582 find_function_start_sal (struct symbol *sym, int funfirstline)
2583 {
2584 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2585 struct objfile *objfile = lookup_objfile_from_block (block);
2586 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2587
2588 CORE_ADDR pc;
2589 struct symtab_and_line sal;
2590
2591 pc = BLOCK_START (block);
2592 fixup_symbol_section (sym, objfile);
2593 if (funfirstline)
2594 {
2595 /* Skip "first line" of function (which is actually its prologue). */
2596 pc = find_function_start_pc (gdbarch, pc, SYMBOL_BFD_SECTION (sym));
2597 }
2598 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2599
2600 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2601 line is still part of the same function. */
2602 if (sal.pc != pc
2603 && BLOCK_START (block) <= sal.end
2604 && sal.end < BLOCK_END (block))
2605 {
2606 /* First pc of next line */
2607 pc = sal.end;
2608 /* Recalculate the line number (might not be N+1). */
2609 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2610 }
2611 sal.pc = pc;
2612
2613 return sal;
2614 }
2615
2616 /* If P is of the form "operator[ \t]+..." where `...' is
2617 some legitimate operator text, return a pointer to the
2618 beginning of the substring of the operator text.
2619 Otherwise, return "". */
2620 char *
2621 operator_chars (char *p, char **end)
2622 {
2623 *end = "";
2624 if (strncmp (p, "operator", 8))
2625 return *end;
2626 p += 8;
2627
2628 /* Don't get faked out by `operator' being part of a longer
2629 identifier. */
2630 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2631 return *end;
2632
2633 /* Allow some whitespace between `operator' and the operator symbol. */
2634 while (*p == ' ' || *p == '\t')
2635 p++;
2636
2637 /* Recognize 'operator TYPENAME'. */
2638
2639 if (isalpha (*p) || *p == '_' || *p == '$')
2640 {
2641 char *q = p + 1;
2642 while (isalnum (*q) || *q == '_' || *q == '$')
2643 q++;
2644 *end = q;
2645 return p;
2646 }
2647
2648 while (*p)
2649 switch (*p)
2650 {
2651 case '\\': /* regexp quoting */
2652 if (p[1] == '*')
2653 {
2654 if (p[2] == '=') /* 'operator\*=' */
2655 *end = p + 3;
2656 else /* 'operator\*' */
2657 *end = p + 2;
2658 return p;
2659 }
2660 else if (p[1] == '[')
2661 {
2662 if (p[2] == ']')
2663 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2664 else if (p[2] == '\\' && p[3] == ']')
2665 {
2666 *end = p + 4; /* 'operator\[\]' */
2667 return p;
2668 }
2669 else
2670 error (_("nothing is allowed between '[' and ']'"));
2671 }
2672 else
2673 {
2674 /* Gratuitous qoute: skip it and move on. */
2675 p++;
2676 continue;
2677 }
2678 break;
2679 case '!':
2680 case '=':
2681 case '*':
2682 case '/':
2683 case '%':
2684 case '^':
2685 if (p[1] == '=')
2686 *end = p + 2;
2687 else
2688 *end = p + 1;
2689 return p;
2690 case '<':
2691 case '>':
2692 case '+':
2693 case '-':
2694 case '&':
2695 case '|':
2696 if (p[0] == '-' && p[1] == '>')
2697 {
2698 /* Struct pointer member operator 'operator->'. */
2699 if (p[2] == '*')
2700 {
2701 *end = p + 3; /* 'operator->*' */
2702 return p;
2703 }
2704 else if (p[2] == '\\')
2705 {
2706 *end = p + 4; /* Hopefully 'operator->\*' */
2707 return p;
2708 }
2709 else
2710 {
2711 *end = p + 2; /* 'operator->' */
2712 return p;
2713 }
2714 }
2715 if (p[1] == '=' || p[1] == p[0])
2716 *end = p + 2;
2717 else
2718 *end = p + 1;
2719 return p;
2720 case '~':
2721 case ',':
2722 *end = p + 1;
2723 return p;
2724 case '(':
2725 if (p[1] != ')')
2726 error (_("`operator ()' must be specified without whitespace in `()'"));
2727 *end = p + 2;
2728 return p;
2729 case '?':
2730 if (p[1] != ':')
2731 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2732 *end = p + 2;
2733 return p;
2734 case '[':
2735 if (p[1] != ']')
2736 error (_("`operator []' must be specified without whitespace in `[]'"));
2737 *end = p + 2;
2738 return p;
2739 default:
2740 error (_("`operator %s' not supported"), p);
2741 break;
2742 }
2743
2744 *end = "";
2745 return *end;
2746 }
2747 \f
2748
2749 /* If FILE is not already in the table of files, return zero;
2750 otherwise return non-zero. Optionally add FILE to the table if ADD
2751 is non-zero. If *FIRST is non-zero, forget the old table
2752 contents. */
2753 static int
2754 filename_seen (const char *file, int add, int *first)
2755 {
2756 /* Table of files seen so far. */
2757 static const char **tab = NULL;
2758 /* Allocated size of tab in elements.
2759 Start with one 256-byte block (when using GNU malloc.c).
2760 24 is the malloc overhead when range checking is in effect. */
2761 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2762 /* Current size of tab in elements. */
2763 static int tab_cur_size;
2764 const char **p;
2765
2766 if (*first)
2767 {
2768 if (tab == NULL)
2769 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2770 tab_cur_size = 0;
2771 }
2772
2773 /* Is FILE in tab? */
2774 for (p = tab; p < tab + tab_cur_size; p++)
2775 if (strcmp (*p, file) == 0)
2776 return 1;
2777
2778 /* No; maybe add it to tab. */
2779 if (add)
2780 {
2781 if (tab_cur_size == tab_alloc_size)
2782 {
2783 tab_alloc_size *= 2;
2784 tab = (const char **) xrealloc ((char *) tab,
2785 tab_alloc_size * sizeof (*tab));
2786 }
2787 tab[tab_cur_size++] = file;
2788 }
2789
2790 return 0;
2791 }
2792
2793 /* Slave routine for sources_info. Force line breaks at ,'s.
2794 NAME is the name to print and *FIRST is nonzero if this is the first
2795 name printed. Set *FIRST to zero. */
2796 static void
2797 output_source_filename (const char *name, int *first)
2798 {
2799 /* Since a single source file can result in several partial symbol
2800 tables, we need to avoid printing it more than once. Note: if
2801 some of the psymtabs are read in and some are not, it gets
2802 printed both under "Source files for which symbols have been
2803 read" and "Source files for which symbols will be read in on
2804 demand". I consider this a reasonable way to deal with the
2805 situation. I'm not sure whether this can also happen for
2806 symtabs; it doesn't hurt to check. */
2807
2808 /* Was NAME already seen? */
2809 if (filename_seen (name, 1, first))
2810 {
2811 /* Yes; don't print it again. */
2812 return;
2813 }
2814 /* No; print it and reset *FIRST. */
2815 if (*first)
2816 {
2817 *first = 0;
2818 }
2819 else
2820 {
2821 printf_filtered (", ");
2822 }
2823
2824 wrap_here ("");
2825 fputs_filtered (name, gdb_stdout);
2826 }
2827
2828 static void
2829 sources_info (char *ignore, int from_tty)
2830 {
2831 struct symtab *s;
2832 struct partial_symtab *ps;
2833 struct objfile *objfile;
2834 int first;
2835
2836 if (!have_full_symbols () && !have_partial_symbols ())
2837 {
2838 error (_("No symbol table is loaded. Use the \"file\" command."));
2839 }
2840
2841 printf_filtered ("Source files for which symbols have been read in:\n\n");
2842
2843 first = 1;
2844 ALL_SYMTABS (objfile, s)
2845 {
2846 const char *fullname = symtab_to_fullname (s);
2847 output_source_filename (fullname ? fullname : s->filename, &first);
2848 }
2849 printf_filtered ("\n\n");
2850
2851 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2852
2853 first = 1;
2854 ALL_PSYMTABS (objfile, ps)
2855 {
2856 if (!ps->readin)
2857 {
2858 const char *fullname = psymtab_to_fullname (ps);
2859 output_source_filename (fullname ? fullname : ps->filename, &first);
2860 }
2861 }
2862 printf_filtered ("\n");
2863 }
2864
2865 static int
2866 file_matches (char *file, char *files[], int nfiles)
2867 {
2868 int i;
2869
2870 if (file != NULL && nfiles != 0)
2871 {
2872 for (i = 0; i < nfiles; i++)
2873 {
2874 if (strcmp (files[i], lbasename (file)) == 0)
2875 return 1;
2876 }
2877 }
2878 else if (nfiles == 0)
2879 return 1;
2880 return 0;
2881 }
2882
2883 /* Free any memory associated with a search. */
2884 void
2885 free_search_symbols (struct symbol_search *symbols)
2886 {
2887 struct symbol_search *p;
2888 struct symbol_search *next;
2889
2890 for (p = symbols; p != NULL; p = next)
2891 {
2892 next = p->next;
2893 xfree (p);
2894 }
2895 }
2896
2897 static void
2898 do_free_search_symbols_cleanup (void *symbols)
2899 {
2900 free_search_symbols (symbols);
2901 }
2902
2903 struct cleanup *
2904 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2905 {
2906 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2907 }
2908
2909 /* Helper function for sort_search_symbols and qsort. Can only
2910 sort symbols, not minimal symbols. */
2911 static int
2912 compare_search_syms (const void *sa, const void *sb)
2913 {
2914 struct symbol_search **sym_a = (struct symbol_search **) sa;
2915 struct symbol_search **sym_b = (struct symbol_search **) sb;
2916
2917 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2918 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2919 }
2920
2921 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2922 prevtail where it is, but update its next pointer to point to
2923 the first of the sorted symbols. */
2924 static struct symbol_search *
2925 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2926 {
2927 struct symbol_search **symbols, *symp, *old_next;
2928 int i;
2929
2930 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2931 * nfound);
2932 symp = prevtail->next;
2933 for (i = 0; i < nfound; i++)
2934 {
2935 symbols[i] = symp;
2936 symp = symp->next;
2937 }
2938 /* Generally NULL. */
2939 old_next = symp;
2940
2941 qsort (symbols, nfound, sizeof (struct symbol_search *),
2942 compare_search_syms);
2943
2944 symp = prevtail;
2945 for (i = 0; i < nfound; i++)
2946 {
2947 symp->next = symbols[i];
2948 symp = symp->next;
2949 }
2950 symp->next = old_next;
2951
2952 xfree (symbols);
2953 return symp;
2954 }
2955
2956 /* Search the symbol table for matches to the regular expression REGEXP,
2957 returning the results in *MATCHES.
2958
2959 Only symbols of KIND are searched:
2960 FUNCTIONS_DOMAIN - search all functions
2961 TYPES_DOMAIN - search all type names
2962 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2963 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2964 and constants (enums)
2965
2966 free_search_symbols should be called when *MATCHES is no longer needed.
2967
2968 The results are sorted locally; each symtab's global and static blocks are
2969 separately alphabetized.
2970 */
2971 void
2972 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2973 struct symbol_search **matches)
2974 {
2975 struct symtab *s;
2976 struct partial_symtab *ps;
2977 struct blockvector *bv;
2978 struct block *b;
2979 int i = 0;
2980 struct dict_iterator iter;
2981 struct symbol *sym;
2982 struct partial_symbol **psym;
2983 struct objfile *objfile;
2984 struct minimal_symbol *msymbol;
2985 char *val;
2986 int found_misc = 0;
2987 static enum minimal_symbol_type types[]
2988 =
2989 {mst_data, mst_text, mst_abs, mst_unknown};
2990 static enum minimal_symbol_type types2[]
2991 =
2992 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2993 static enum minimal_symbol_type types3[]
2994 =
2995 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2996 static enum minimal_symbol_type types4[]
2997 =
2998 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2999 enum minimal_symbol_type ourtype;
3000 enum minimal_symbol_type ourtype2;
3001 enum minimal_symbol_type ourtype3;
3002 enum minimal_symbol_type ourtype4;
3003 struct symbol_search *sr;
3004 struct symbol_search *psr;
3005 struct symbol_search *tail;
3006 struct cleanup *old_chain = NULL;
3007
3008 if (kind < VARIABLES_DOMAIN)
3009 error (_("must search on specific domain"));
3010
3011 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3012 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3013 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3014 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3015
3016 sr = *matches = NULL;
3017 tail = NULL;
3018
3019 if (regexp != NULL)
3020 {
3021 /* Make sure spacing is right for C++ operators.
3022 This is just a courtesy to make the matching less sensitive
3023 to how many spaces the user leaves between 'operator'
3024 and <TYPENAME> or <OPERATOR>. */
3025 char *opend;
3026 char *opname = operator_chars (regexp, &opend);
3027 if (*opname)
3028 {
3029 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3030 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3031 {
3032 /* There should 1 space between 'operator' and 'TYPENAME'. */
3033 if (opname[-1] != ' ' || opname[-2] == ' ')
3034 fix = 1;
3035 }
3036 else
3037 {
3038 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3039 if (opname[-1] == ' ')
3040 fix = 0;
3041 }
3042 /* If wrong number of spaces, fix it. */
3043 if (fix >= 0)
3044 {
3045 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3046 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3047 regexp = tmp;
3048 }
3049 }
3050
3051 if (0 != (val = re_comp (regexp)))
3052 error (_("Invalid regexp (%s): %s"), val, regexp);
3053 }
3054
3055 /* Search through the partial symtabs *first* for all symbols
3056 matching the regexp. That way we don't have to reproduce all of
3057 the machinery below. */
3058
3059 ALL_PSYMTABS (objfile, ps)
3060 {
3061 struct partial_symbol **bound, **gbound, **sbound;
3062 int keep_going = 1;
3063
3064 if (ps->readin)
3065 continue;
3066
3067 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3068 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3069 bound = gbound;
3070
3071 /* Go through all of the symbols stored in a partial
3072 symtab in one loop. */
3073 psym = objfile->global_psymbols.list + ps->globals_offset;
3074 while (keep_going)
3075 {
3076 if (psym >= bound)
3077 {
3078 if (bound == gbound && ps->n_static_syms != 0)
3079 {
3080 psym = objfile->static_psymbols.list + ps->statics_offset;
3081 bound = sbound;
3082 }
3083 else
3084 keep_going = 0;
3085 continue;
3086 }
3087 else
3088 {
3089 QUIT;
3090
3091 /* If it would match (logic taken from loop below)
3092 load the file and go on to the next one. We check the
3093 filename here, but that's a bit bogus: we don't know
3094 what file it really comes from until we have full
3095 symtabs. The symbol might be in a header file included by
3096 this psymtab. This only affects Insight. */
3097 if (file_matches (ps->filename, files, nfiles)
3098 && ((regexp == NULL
3099 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3100 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3101 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3102 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3103 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3104 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3105 {
3106 PSYMTAB_TO_SYMTAB (ps);
3107 keep_going = 0;
3108 }
3109 }
3110 psym++;
3111 }
3112 }
3113
3114 /* Here, we search through the minimal symbol tables for functions
3115 and variables that match, and force their symbols to be read.
3116 This is in particular necessary for demangled variable names,
3117 which are no longer put into the partial symbol tables.
3118 The symbol will then be found during the scan of symtabs below.
3119
3120 For functions, find_pc_symtab should succeed if we have debug info
3121 for the function, for variables we have to call lookup_symbol
3122 to determine if the variable has debug info.
3123 If the lookup fails, set found_misc so that we will rescan to print
3124 any matching symbols without debug info.
3125 */
3126
3127 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3128 {
3129 ALL_MSYMBOLS (objfile, msymbol)
3130 {
3131 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3132 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3133 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3134 MSYMBOL_TYPE (msymbol) == ourtype4)
3135 {
3136 if (regexp == NULL
3137 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3138 {
3139 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3140 {
3141 /* FIXME: carlton/2003-02-04: Given that the
3142 semantics of lookup_symbol keeps on changing
3143 slightly, it would be a nice idea if we had a
3144 function lookup_symbol_minsym that found the
3145 symbol associated to a given minimal symbol (if
3146 any). */
3147 if (kind == FUNCTIONS_DOMAIN
3148 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3149 (struct block *) NULL,
3150 VAR_DOMAIN,
3151 0, (struct symtab **) NULL)
3152 == NULL)
3153 found_misc = 1;
3154 }
3155 }
3156 }
3157 }
3158 }
3159
3160 ALL_PRIMARY_SYMTABS (objfile, s)
3161 {
3162 bv = BLOCKVECTOR (s);
3163 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3164 {
3165 struct symbol_search *prevtail = tail;
3166 int nfound = 0;
3167 b = BLOCKVECTOR_BLOCK (bv, i);
3168 ALL_BLOCK_SYMBOLS (b, iter, sym)
3169 {
3170 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3171 QUIT;
3172
3173 if (file_matches (real_symtab->filename, files, nfiles)
3174 && ((regexp == NULL
3175 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3176 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3177 && SYMBOL_CLASS (sym) != LOC_BLOCK
3178 && SYMBOL_CLASS (sym) != LOC_CONST)
3179 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3180 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3181 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3182 {
3183 /* match */
3184 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3185 psr->block = i;
3186 psr->symtab = real_symtab;
3187 psr->symbol = sym;
3188 psr->msymbol = NULL;
3189 psr->next = NULL;
3190 if (tail == NULL)
3191 sr = psr;
3192 else
3193 tail->next = psr;
3194 tail = psr;
3195 nfound ++;
3196 }
3197 }
3198 if (nfound > 0)
3199 {
3200 if (prevtail == NULL)
3201 {
3202 struct symbol_search dummy;
3203
3204 dummy.next = sr;
3205 tail = sort_search_symbols (&dummy, nfound);
3206 sr = dummy.next;
3207
3208 old_chain = make_cleanup_free_search_symbols (sr);
3209 }
3210 else
3211 tail = sort_search_symbols (prevtail, nfound);
3212 }
3213 }
3214 }
3215
3216 /* If there are no eyes, avoid all contact. I mean, if there are
3217 no debug symbols, then print directly from the msymbol_vector. */
3218
3219 if (found_misc || kind != FUNCTIONS_DOMAIN)
3220 {
3221 ALL_MSYMBOLS (objfile, msymbol)
3222 {
3223 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3224 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3225 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3226 MSYMBOL_TYPE (msymbol) == ourtype4)
3227 {
3228 if (regexp == NULL
3229 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3230 {
3231 /* Functions: Look up by address. */
3232 if (kind != FUNCTIONS_DOMAIN ||
3233 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3234 {
3235 /* Variables/Absolutes: Look up by name */
3236 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3237 (struct block *) NULL, VAR_DOMAIN,
3238 0, (struct symtab **) NULL) == NULL)
3239 {
3240 /* match */
3241 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3242 psr->block = i;
3243 psr->msymbol = msymbol;
3244 psr->symtab = NULL;
3245 psr->symbol = NULL;
3246 psr->next = NULL;
3247 if (tail == NULL)
3248 {
3249 sr = psr;
3250 old_chain = make_cleanup_free_search_symbols (sr);
3251 }
3252 else
3253 tail->next = psr;
3254 tail = psr;
3255 }
3256 }
3257 }
3258 }
3259 }
3260 }
3261
3262 *matches = sr;
3263 if (sr != NULL)
3264 discard_cleanups (old_chain);
3265 }
3266
3267 /* Helper function for symtab_symbol_info, this function uses
3268 the data returned from search_symbols() to print information
3269 regarding the match to gdb_stdout.
3270 */
3271 static void
3272 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3273 int block, char *last)
3274 {
3275 if (last == NULL || strcmp (last, s->filename) != 0)
3276 {
3277 fputs_filtered ("\nFile ", gdb_stdout);
3278 fputs_filtered (s->filename, gdb_stdout);
3279 fputs_filtered (":\n", gdb_stdout);
3280 }
3281
3282 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3283 printf_filtered ("static ");
3284
3285 /* Typedef that is not a C++ class */
3286 if (kind == TYPES_DOMAIN
3287 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3288 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3289 /* variable, func, or typedef-that-is-c++-class */
3290 else if (kind < TYPES_DOMAIN ||
3291 (kind == TYPES_DOMAIN &&
3292 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3293 {
3294 type_print (SYMBOL_TYPE (sym),
3295 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3296 ? "" : SYMBOL_PRINT_NAME (sym)),
3297 gdb_stdout, 0);
3298
3299 printf_filtered (";\n");
3300 }
3301 }
3302
3303 /* This help function for symtab_symbol_info() prints information
3304 for non-debugging symbols to gdb_stdout.
3305 */
3306 static void
3307 print_msymbol_info (struct minimal_symbol *msymbol)
3308 {
3309 char *tmp;
3310
3311 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3312 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3313 & (CORE_ADDR) 0xffffffff,
3314 8);
3315 else
3316 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3317 16);
3318 printf_filtered ("%s %s\n",
3319 tmp, SYMBOL_PRINT_NAME (msymbol));
3320 }
3321
3322 /* This is the guts of the commands "info functions", "info types", and
3323 "info variables". It calls search_symbols to find all matches and then
3324 print_[m]symbol_info to print out some useful information about the
3325 matches.
3326 */
3327 static void
3328 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3329 {
3330 static char *classnames[]
3331 =
3332 {"variable", "function", "type", "method"};
3333 struct symbol_search *symbols;
3334 struct symbol_search *p;
3335 struct cleanup *old_chain;
3336 char *last_filename = NULL;
3337 int first = 1;
3338
3339 /* must make sure that if we're interrupted, symbols gets freed */
3340 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3341 old_chain = make_cleanup_free_search_symbols (symbols);
3342
3343 printf_filtered (regexp
3344 ? "All %ss matching regular expression \"%s\":\n"
3345 : "All defined %ss:\n",
3346 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3347
3348 for (p = symbols; p != NULL; p = p->next)
3349 {
3350 QUIT;
3351
3352 if (p->msymbol != NULL)
3353 {
3354 if (first)
3355 {
3356 printf_filtered ("\nNon-debugging symbols:\n");
3357 first = 0;
3358 }
3359 print_msymbol_info (p->msymbol);
3360 }
3361 else
3362 {
3363 print_symbol_info (kind,
3364 p->symtab,
3365 p->symbol,
3366 p->block,
3367 last_filename);
3368 last_filename = p->symtab->filename;
3369 }
3370 }
3371
3372 do_cleanups (old_chain);
3373 }
3374
3375 static void
3376 variables_info (char *regexp, int from_tty)
3377 {
3378 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3379 }
3380
3381 static void
3382 functions_info (char *regexp, int from_tty)
3383 {
3384 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3385 }
3386
3387
3388 static void
3389 types_info (char *regexp, int from_tty)
3390 {
3391 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3392 }
3393
3394 /* Breakpoint all functions matching regular expression. */
3395
3396 void
3397 rbreak_command_wrapper (char *regexp, int from_tty)
3398 {
3399 rbreak_command (regexp, from_tty);
3400 }
3401
3402 static void
3403 rbreak_command (char *regexp, int from_tty)
3404 {
3405 struct symbol_search *ss;
3406 struct symbol_search *p;
3407 struct cleanup *old_chain;
3408
3409 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3410 old_chain = make_cleanup_free_search_symbols (ss);
3411
3412 for (p = ss; p != NULL; p = p->next)
3413 {
3414 if (p->msymbol == NULL)
3415 {
3416 char *string = alloca (strlen (p->symtab->filename)
3417 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3418 + 4);
3419 strcpy (string, p->symtab->filename);
3420 strcat (string, ":'");
3421 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3422 strcat (string, "'");
3423 break_command (string, from_tty);
3424 print_symbol_info (FUNCTIONS_DOMAIN,
3425 p->symtab,
3426 p->symbol,
3427 p->block,
3428 p->symtab->filename);
3429 }
3430 else
3431 {
3432 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3433 + 3);
3434 strcpy (string, "'");
3435 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3436 strcat (string, "'");
3437
3438 break_command (string, from_tty);
3439 printf_filtered ("<function, no debug info> %s;\n",
3440 SYMBOL_PRINT_NAME (p->msymbol));
3441 }
3442 }
3443
3444 do_cleanups (old_chain);
3445 }
3446 \f
3447
3448 /* Helper routine for make_symbol_completion_list. */
3449
3450 static int return_val_size;
3451 static int return_val_index;
3452 static char **return_val;
3453
3454 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3455 completion_list_add_name \
3456 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3457
3458 /* Test to see if the symbol specified by SYMNAME (which is already
3459 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3460 characters. If so, add it to the current completion list. */
3461
3462 static void
3463 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3464 char *text, char *word)
3465 {
3466 int newsize;
3467 int i;
3468
3469 /* clip symbols that cannot match */
3470
3471 if (strncmp (symname, sym_text, sym_text_len) != 0)
3472 {
3473 return;
3474 }
3475
3476 /* We have a match for a completion, so add SYMNAME to the current list
3477 of matches. Note that the name is moved to freshly malloc'd space. */
3478
3479 {
3480 char *new;
3481 if (word == sym_text)
3482 {
3483 new = xmalloc (strlen (symname) + 5);
3484 strcpy (new, symname);
3485 }
3486 else if (word > sym_text)
3487 {
3488 /* Return some portion of symname. */
3489 new = xmalloc (strlen (symname) + 5);
3490 strcpy (new, symname + (word - sym_text));
3491 }
3492 else
3493 {
3494 /* Return some of SYM_TEXT plus symname. */
3495 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3496 strncpy (new, word, sym_text - word);
3497 new[sym_text - word] = '\0';
3498 strcat (new, symname);
3499 }
3500
3501 if (return_val_index + 3 > return_val_size)
3502 {
3503 newsize = (return_val_size *= 2) * sizeof (char *);
3504 return_val = (char **) xrealloc ((char *) return_val, newsize);
3505 }
3506 return_val[return_val_index++] = new;
3507 return_val[return_val_index] = NULL;
3508 }
3509 }
3510
3511 /* ObjC: In case we are completing on a selector, look as the msymbol
3512 again and feed all the selectors into the mill. */
3513
3514 static void
3515 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3516 int sym_text_len, char *text, char *word)
3517 {
3518 static char *tmp = NULL;
3519 static unsigned int tmplen = 0;
3520
3521 char *method, *category, *selector;
3522 char *tmp2 = NULL;
3523
3524 method = SYMBOL_NATURAL_NAME (msymbol);
3525
3526 /* Is it a method? */
3527 if ((method[0] != '-') && (method[0] != '+'))
3528 return;
3529
3530 if (sym_text[0] == '[')
3531 /* Complete on shortened method method. */
3532 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3533
3534 while ((strlen (method) + 1) >= tmplen)
3535 {
3536 if (tmplen == 0)
3537 tmplen = 1024;
3538 else
3539 tmplen *= 2;
3540 tmp = xrealloc (tmp, tmplen);
3541 }
3542 selector = strchr (method, ' ');
3543 if (selector != NULL)
3544 selector++;
3545
3546 category = strchr (method, '(');
3547
3548 if ((category != NULL) && (selector != NULL))
3549 {
3550 memcpy (tmp, method, (category - method));
3551 tmp[category - method] = ' ';
3552 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3553 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3554 if (sym_text[0] == '[')
3555 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3556 }
3557
3558 if (selector != NULL)
3559 {
3560 /* Complete on selector only. */
3561 strcpy (tmp, selector);
3562 tmp2 = strchr (tmp, ']');
3563 if (tmp2 != NULL)
3564 *tmp2 = '\0';
3565
3566 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3567 }
3568 }
3569
3570 /* Break the non-quoted text based on the characters which are in
3571 symbols. FIXME: This should probably be language-specific. */
3572
3573 static char *
3574 language_search_unquoted_string (char *text, char *p)
3575 {
3576 for (; p > text; --p)
3577 {
3578 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3579 continue;
3580 else
3581 {
3582 if ((current_language->la_language == language_objc))
3583 {
3584 if (p[-1] == ':') /* might be part of a method name */
3585 continue;
3586 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3587 p -= 2; /* beginning of a method name */
3588 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3589 { /* might be part of a method name */
3590 char *t = p;
3591
3592 /* Seeing a ' ' or a '(' is not conclusive evidence
3593 that we are in the middle of a method name. However,
3594 finding "-[" or "+[" should be pretty un-ambiguous.
3595 Unfortunately we have to find it now to decide. */
3596
3597 while (t > text)
3598 if (isalnum (t[-1]) || t[-1] == '_' ||
3599 t[-1] == ' ' || t[-1] == ':' ||
3600 t[-1] == '(' || t[-1] == ')')
3601 --t;
3602 else
3603 break;
3604
3605 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3606 p = t - 2; /* method name detected */
3607 /* else we leave with p unchanged */
3608 }
3609 }
3610 break;
3611 }
3612 }
3613 return p;
3614 }
3615
3616 char **
3617 default_make_symbol_completion_list (char *text, char *word)
3618 {
3619 /* Problem: All of the symbols have to be copied because readline
3620 frees them. I'm not going to worry about this; hopefully there
3621 won't be that many. */
3622
3623 struct symbol *sym;
3624 struct symtab *s;
3625 struct partial_symtab *ps;
3626 struct minimal_symbol *msymbol;
3627 struct objfile *objfile;
3628 struct block *b, *surrounding_static_block = 0;
3629 struct dict_iterator iter;
3630 int j;
3631 struct partial_symbol **psym;
3632 /* The symbol we are completing on. Points in same buffer as text. */
3633 char *sym_text;
3634 /* Length of sym_text. */
3635 int sym_text_len;
3636
3637 /* Now look for the symbol we are supposed to complete on. */
3638 {
3639 char *p;
3640 char quote_found;
3641 char *quote_pos = NULL;
3642
3643 /* First see if this is a quoted string. */
3644 quote_found = '\0';
3645 for (p = text; *p != '\0'; ++p)
3646 {
3647 if (quote_found != '\0')
3648 {
3649 if (*p == quote_found)
3650 /* Found close quote. */
3651 quote_found = '\0';
3652 else if (*p == '\\' && p[1] == quote_found)
3653 /* A backslash followed by the quote character
3654 doesn't end the string. */
3655 ++p;
3656 }
3657 else if (*p == '\'' || *p == '"')
3658 {
3659 quote_found = *p;
3660 quote_pos = p;
3661 }
3662 }
3663 if (quote_found == '\'')
3664 /* A string within single quotes can be a symbol, so complete on it. */
3665 sym_text = quote_pos + 1;
3666 else if (quote_found == '"')
3667 /* A double-quoted string is never a symbol, nor does it make sense
3668 to complete it any other way. */
3669 {
3670 return_val = (char **) xmalloc (sizeof (char *));
3671 return_val[0] = NULL;
3672 return return_val;
3673 }
3674 else
3675 {
3676 /* It is not a quoted string. Break it based on the characters
3677 which are in symbols. */
3678 while (p > text)
3679 {
3680 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3681 --p;
3682 else
3683 break;
3684 }
3685 sym_text = p;
3686 }
3687 }
3688
3689 sym_text_len = strlen (sym_text);
3690
3691 return_val_size = 100;
3692 return_val_index = 0;
3693 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3694 return_val[0] = NULL;
3695
3696 /* Look through the partial symtabs for all symbols which begin
3697 by matching SYM_TEXT. Add each one that you find to the list. */
3698
3699 ALL_PSYMTABS (objfile, ps)
3700 {
3701 /* If the psymtab's been read in we'll get it when we search
3702 through the blockvector. */
3703 if (ps->readin)
3704 continue;
3705
3706 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3707 psym < (objfile->global_psymbols.list + ps->globals_offset
3708 + ps->n_global_syms);
3709 psym++)
3710 {
3711 /* If interrupted, then quit. */
3712 QUIT;
3713 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3714 }
3715
3716 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3717 psym < (objfile->static_psymbols.list + ps->statics_offset
3718 + ps->n_static_syms);
3719 psym++)
3720 {
3721 QUIT;
3722 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3723 }
3724 }
3725
3726 /* At this point scan through the misc symbol vectors and add each
3727 symbol you find to the list. Eventually we want to ignore
3728 anything that isn't a text symbol (everything else will be
3729 handled by the psymtab code above). */
3730
3731 ALL_MSYMBOLS (objfile, msymbol)
3732 {
3733 QUIT;
3734 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3735
3736 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3737 }
3738
3739 /* Search upwards from currently selected frame (so that we can
3740 complete on local vars. */
3741
3742 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3743 {
3744 if (!BLOCK_SUPERBLOCK (b))
3745 {
3746 surrounding_static_block = b; /* For elmin of dups */
3747 }
3748
3749 /* Also catch fields of types defined in this places which match our
3750 text string. Only complete on types visible from current context. */
3751
3752 ALL_BLOCK_SYMBOLS (b, iter, sym)
3753 {
3754 QUIT;
3755 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3756 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3757 {
3758 struct type *t = SYMBOL_TYPE (sym);
3759 enum type_code c = TYPE_CODE (t);
3760
3761 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3762 {
3763 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3764 {
3765 if (TYPE_FIELD_NAME (t, j))
3766 {
3767 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3768 sym_text, sym_text_len, text, word);
3769 }
3770 }
3771 }
3772 }
3773 }
3774 }
3775
3776 /* Go through the symtabs and check the externs and statics for
3777 symbols which match. */
3778
3779 ALL_PRIMARY_SYMTABS (objfile, s)
3780 {
3781 QUIT;
3782 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3783 ALL_BLOCK_SYMBOLS (b, iter, sym)
3784 {
3785 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3786 }
3787 }
3788
3789 ALL_PRIMARY_SYMTABS (objfile, s)
3790 {
3791 QUIT;
3792 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3793 /* Don't do this block twice. */
3794 if (b == surrounding_static_block)
3795 continue;
3796 ALL_BLOCK_SYMBOLS (b, iter, sym)
3797 {
3798 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3799 }
3800 }
3801
3802 return (return_val);
3803 }
3804
3805 /* Return a NULL terminated array of all symbols (regardless of class)
3806 which begin by matching TEXT. If the answer is no symbols, then
3807 the return value is an array which contains only a NULL pointer. */
3808
3809 char **
3810 make_symbol_completion_list (char *text, char *word)
3811 {
3812 return current_language->la_make_symbol_completion_list (text, word);
3813 }
3814
3815 /* Like make_symbol_completion_list, but returns a list of symbols
3816 defined in a source file FILE. */
3817
3818 char **
3819 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3820 {
3821 struct symbol *sym;
3822 struct symtab *s;
3823 struct block *b;
3824 struct dict_iterator iter;
3825 /* The symbol we are completing on. Points in same buffer as text. */
3826 char *sym_text;
3827 /* Length of sym_text. */
3828 int sym_text_len;
3829
3830 /* Now look for the symbol we are supposed to complete on.
3831 FIXME: This should be language-specific. */
3832 {
3833 char *p;
3834 char quote_found;
3835 char *quote_pos = NULL;
3836
3837 /* First see if this is a quoted string. */
3838 quote_found = '\0';
3839 for (p = text; *p != '\0'; ++p)
3840 {
3841 if (quote_found != '\0')
3842 {
3843 if (*p == quote_found)
3844 /* Found close quote. */
3845 quote_found = '\0';
3846 else if (*p == '\\' && p[1] == quote_found)
3847 /* A backslash followed by the quote character
3848 doesn't end the string. */
3849 ++p;
3850 }
3851 else if (*p == '\'' || *p == '"')
3852 {
3853 quote_found = *p;
3854 quote_pos = p;
3855 }
3856 }
3857 if (quote_found == '\'')
3858 /* A string within single quotes can be a symbol, so complete on it. */
3859 sym_text = quote_pos + 1;
3860 else if (quote_found == '"')
3861 /* A double-quoted string is never a symbol, nor does it make sense
3862 to complete it any other way. */
3863 {
3864 return_val = (char **) xmalloc (sizeof (char *));
3865 return_val[0] = NULL;
3866 return return_val;
3867 }
3868 else
3869 {
3870 /* Not a quoted string. */
3871 sym_text = language_search_unquoted_string (text, p);
3872 }
3873 }
3874
3875 sym_text_len = strlen (sym_text);
3876
3877 return_val_size = 10;
3878 return_val_index = 0;
3879 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3880 return_val[0] = NULL;
3881
3882 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3883 in). */
3884 s = lookup_symtab (srcfile);
3885 if (s == NULL)
3886 {
3887 /* Maybe they typed the file with leading directories, while the
3888 symbol tables record only its basename. */
3889 const char *tail = lbasename (srcfile);
3890
3891 if (tail > srcfile)
3892 s = lookup_symtab (tail);
3893 }
3894
3895 /* If we have no symtab for that file, return an empty list. */
3896 if (s == NULL)
3897 return (return_val);
3898
3899 /* Go through this symtab and check the externs and statics for
3900 symbols which match. */
3901
3902 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3903 ALL_BLOCK_SYMBOLS (b, iter, sym)
3904 {
3905 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3906 }
3907
3908 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3909 ALL_BLOCK_SYMBOLS (b, iter, sym)
3910 {
3911 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3912 }
3913
3914 return (return_val);
3915 }
3916
3917 /* A helper function for make_source_files_completion_list. It adds
3918 another file name to a list of possible completions, growing the
3919 list as necessary. */
3920
3921 static void
3922 add_filename_to_list (const char *fname, char *text, char *word,
3923 char ***list, int *list_used, int *list_alloced)
3924 {
3925 char *new;
3926 size_t fnlen = strlen (fname);
3927
3928 if (*list_used + 1 >= *list_alloced)
3929 {
3930 *list_alloced *= 2;
3931 *list = (char **) xrealloc ((char *) *list,
3932 *list_alloced * sizeof (char *));
3933 }
3934
3935 if (word == text)
3936 {
3937 /* Return exactly fname. */
3938 new = xmalloc (fnlen + 5);
3939 strcpy (new, fname);
3940 }
3941 else if (word > text)
3942 {
3943 /* Return some portion of fname. */
3944 new = xmalloc (fnlen + 5);
3945 strcpy (new, fname + (word - text));
3946 }
3947 else
3948 {
3949 /* Return some of TEXT plus fname. */
3950 new = xmalloc (fnlen + (text - word) + 5);
3951 strncpy (new, word, text - word);
3952 new[text - word] = '\0';
3953 strcat (new, fname);
3954 }
3955 (*list)[*list_used] = new;
3956 (*list)[++*list_used] = NULL;
3957 }
3958
3959 static int
3960 not_interesting_fname (const char *fname)
3961 {
3962 static const char *illegal_aliens[] = {
3963 "_globals_", /* inserted by coff_symtab_read */
3964 NULL
3965 };
3966 int i;
3967
3968 for (i = 0; illegal_aliens[i]; i++)
3969 {
3970 if (strcmp (fname, illegal_aliens[i]) == 0)
3971 return 1;
3972 }
3973 return 0;
3974 }
3975
3976 /* Return a NULL terminated array of all source files whose names
3977 begin with matching TEXT. The file names are looked up in the
3978 symbol tables of this program. If the answer is no matchess, then
3979 the return value is an array which contains only a NULL pointer. */
3980
3981 char **
3982 make_source_files_completion_list (char *text, char *word)
3983 {
3984 struct symtab *s;
3985 struct partial_symtab *ps;
3986 struct objfile *objfile;
3987 int first = 1;
3988 int list_alloced = 1;
3989 int list_used = 0;
3990 size_t text_len = strlen (text);
3991 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3992 const char *base_name;
3993
3994 list[0] = NULL;
3995
3996 if (!have_full_symbols () && !have_partial_symbols ())
3997 return list;
3998
3999 ALL_SYMTABS (objfile, s)
4000 {
4001 if (not_interesting_fname (s->filename))
4002 continue;
4003 if (!filename_seen (s->filename, 1, &first)
4004 #if HAVE_DOS_BASED_FILE_SYSTEM
4005 && strncasecmp (s->filename, text, text_len) == 0
4006 #else
4007 && strncmp (s->filename, text, text_len) == 0
4008 #endif
4009 )
4010 {
4011 /* This file matches for a completion; add it to the current
4012 list of matches. */
4013 add_filename_to_list (s->filename, text, word,
4014 &list, &list_used, &list_alloced);
4015 }
4016 else
4017 {
4018 /* NOTE: We allow the user to type a base name when the
4019 debug info records leading directories, but not the other
4020 way around. This is what subroutines of breakpoint
4021 command do when they parse file names. */
4022 base_name = lbasename (s->filename);
4023 if (base_name != s->filename
4024 && !filename_seen (base_name, 1, &first)
4025 #if HAVE_DOS_BASED_FILE_SYSTEM
4026 && strncasecmp (base_name, text, text_len) == 0
4027 #else
4028 && strncmp (base_name, text, text_len) == 0
4029 #endif
4030 )
4031 add_filename_to_list (base_name, text, word,
4032 &list, &list_used, &list_alloced);
4033 }
4034 }
4035
4036 ALL_PSYMTABS (objfile, ps)
4037 {
4038 if (not_interesting_fname (ps->filename))
4039 continue;
4040 if (!ps->readin)
4041 {
4042 if (!filename_seen (ps->filename, 1, &first)
4043 #if HAVE_DOS_BASED_FILE_SYSTEM
4044 && strncasecmp (ps->filename, text, text_len) == 0
4045 #else
4046 && strncmp (ps->filename, text, text_len) == 0
4047 #endif
4048 )
4049 {
4050 /* This file matches for a completion; add it to the
4051 current list of matches. */
4052 add_filename_to_list (ps->filename, text, word,
4053 &list, &list_used, &list_alloced);
4054
4055 }
4056 else
4057 {
4058 base_name = lbasename (ps->filename);
4059 if (base_name != ps->filename
4060 && !filename_seen (base_name, 1, &first)
4061 #if HAVE_DOS_BASED_FILE_SYSTEM
4062 && strncasecmp (base_name, text, text_len) == 0
4063 #else
4064 && strncmp (base_name, text, text_len) == 0
4065 #endif
4066 )
4067 add_filename_to_list (base_name, text, word,
4068 &list, &list_used, &list_alloced);
4069 }
4070 }
4071 }
4072
4073 return list;
4074 }
4075
4076 /* Determine if PC is in the prologue of a function. The prologue is the area
4077 between the first instruction of a function, and the first executable line.
4078 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4079
4080 If non-zero, func_start is where we think the prologue starts, possibly
4081 by previous examination of symbol table information.
4082 */
4083
4084 int
4085 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4086 {
4087 struct symtab_and_line sal;
4088 CORE_ADDR func_addr, func_end;
4089
4090 /* We have several sources of information we can consult to figure
4091 this out.
4092 - Compilers usually emit line number info that marks the prologue
4093 as its own "source line". So the ending address of that "line"
4094 is the end of the prologue. If available, this is the most
4095 reliable method.
4096 - The minimal symbols and partial symbols, which can usually tell
4097 us the starting and ending addresses of a function.
4098 - If we know the function's start address, we can call the
4099 architecture-defined gdbarch_skip_prologue function to analyze the
4100 instruction stream and guess where the prologue ends.
4101 - Our `func_start' argument; if non-zero, this is the caller's
4102 best guess as to the function's entry point. At the time of
4103 this writing, handle_inferior_event doesn't get this right, so
4104 it should be our last resort. */
4105
4106 /* Consult the partial symbol table, to find which function
4107 the PC is in. */
4108 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4109 {
4110 CORE_ADDR prologue_end;
4111
4112 /* We don't even have minsym information, so fall back to using
4113 func_start, if given. */
4114 if (! func_start)
4115 return 1; /* We *might* be in a prologue. */
4116
4117 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4118
4119 return func_start <= pc && pc < prologue_end;
4120 }
4121
4122 /* If we have line number information for the function, that's
4123 usually pretty reliable. */
4124 sal = find_pc_line (func_addr, 0);
4125
4126 /* Now sal describes the source line at the function's entry point,
4127 which (by convention) is the prologue. The end of that "line",
4128 sal.end, is the end of the prologue.
4129
4130 Note that, for functions whose source code is all on a single
4131 line, the line number information doesn't always end up this way.
4132 So we must verify that our purported end-of-prologue address is
4133 *within* the function, not at its start or end. */
4134 if (sal.line == 0
4135 || sal.end <= func_addr
4136 || func_end <= sal.end)
4137 {
4138 /* We don't have any good line number info, so use the minsym
4139 information, together with the architecture-specific prologue
4140 scanning code. */
4141 CORE_ADDR prologue_end = gdbarch_skip_prologue
4142 (current_gdbarch, func_addr);
4143
4144 return func_addr <= pc && pc < prologue_end;
4145 }
4146
4147 /* We have line number info, and it looks good. */
4148 return func_addr <= pc && pc < sal.end;
4149 }
4150
4151 /* Given PC at the function's start address, attempt to find the
4152 prologue end using SAL information. Return zero if the skip fails.
4153
4154 A non-optimized prologue traditionally has one SAL for the function
4155 and a second for the function body. A single line function has
4156 them both pointing at the same line.
4157
4158 An optimized prologue is similar but the prologue may contain
4159 instructions (SALs) from the instruction body. Need to skip those
4160 while not getting into the function body.
4161
4162 The functions end point and an increasing SAL line are used as
4163 indicators of the prologue's endpoint.
4164
4165 This code is based on the function refine_prologue_limit (versions
4166 found in both ia64 and ppc). */
4167
4168 CORE_ADDR
4169 skip_prologue_using_sal (CORE_ADDR func_addr)
4170 {
4171 struct symtab_and_line prologue_sal;
4172 CORE_ADDR start_pc;
4173 CORE_ADDR end_pc;
4174
4175 /* Get an initial range for the function. */
4176 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4177 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4178
4179 prologue_sal = find_pc_line (start_pc, 0);
4180 if (prologue_sal.line != 0)
4181 {
4182 /* If there is only one sal that covers the entire function,
4183 then it is probably a single line function, like
4184 "foo(){}". */
4185 if (prologue_sal.end >= end_pc)
4186 return 0;
4187 while (prologue_sal.end < end_pc)
4188 {
4189 struct symtab_and_line sal;
4190
4191 sal = find_pc_line (prologue_sal.end, 0);
4192 if (sal.line == 0)
4193 break;
4194 /* Assume that a consecutive SAL for the same (or larger)
4195 line mark the prologue -> body transition. */
4196 if (sal.line >= prologue_sal.line)
4197 break;
4198 /* The case in which compiler's optimizer/scheduler has
4199 moved instructions into the prologue. We look ahead in
4200 the function looking for address ranges whose
4201 corresponding line number is less the first one that we
4202 found for the function. This is more conservative then
4203 refine_prologue_limit which scans a large number of SALs
4204 looking for any in the prologue */
4205 prologue_sal = sal;
4206 }
4207 }
4208 return prologue_sal.end;
4209 }
4210 \f
4211 struct symtabs_and_lines
4212 decode_line_spec (char *string, int funfirstline)
4213 {
4214 struct symtabs_and_lines sals;
4215 struct symtab_and_line cursal;
4216
4217 if (string == 0)
4218 error (_("Empty line specification."));
4219
4220 /* We use whatever is set as the current source line. We do not try
4221 and get a default or it will recursively call us! */
4222 cursal = get_current_source_symtab_and_line ();
4223
4224 sals = decode_line_1 (&string, funfirstline,
4225 cursal.symtab, cursal.line,
4226 (char ***) NULL, NULL);
4227
4228 if (*string)
4229 error (_("Junk at end of line specification: %s"), string);
4230 return sals;
4231 }
4232
4233 /* Track MAIN */
4234 static char *name_of_main;
4235
4236 void
4237 set_main_name (const char *name)
4238 {
4239 if (name_of_main != NULL)
4240 {
4241 xfree (name_of_main);
4242 name_of_main = NULL;
4243 }
4244 if (name != NULL)
4245 {
4246 name_of_main = xstrdup (name);
4247 }
4248 }
4249
4250 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4251 accordingly. */
4252
4253 static void
4254 find_main_name (void)
4255 {
4256 const char *new_main_name;
4257
4258 /* Try to see if the main procedure is in Ada. */
4259 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4260 be to add a new method in the language vector, and call this
4261 method for each language until one of them returns a non-empty
4262 name. This would allow us to remove this hard-coded call to
4263 an Ada function. It is not clear that this is a better approach
4264 at this point, because all methods need to be written in a way
4265 such that false positives never be returned. For instance, it is
4266 important that a method does not return a wrong name for the main
4267 procedure if the main procedure is actually written in a different
4268 language. It is easy to guaranty this with Ada, since we use a
4269 special symbol generated only when the main in Ada to find the name
4270 of the main procedure. It is difficult however to see how this can
4271 be guarantied for languages such as C, for instance. This suggests
4272 that order of call for these methods becomes important, which means
4273 a more complicated approach. */
4274 new_main_name = ada_main_name ();
4275 if (new_main_name != NULL)
4276 {
4277 set_main_name (new_main_name);
4278 return;
4279 }
4280
4281 new_main_name = pascal_main_name ();
4282 if (new_main_name != NULL)
4283 {
4284 set_main_name (new_main_name);
4285 return;
4286 }
4287
4288 /* The languages above didn't identify the name of the main procedure.
4289 Fallback to "main". */
4290 set_main_name ("main");
4291 }
4292
4293 char *
4294 main_name (void)
4295 {
4296 if (name_of_main == NULL)
4297 find_main_name ();
4298
4299 return name_of_main;
4300 }
4301
4302 /* Handle ``executable_changed'' events for the symtab module. */
4303
4304 static void
4305 symtab_observer_executable_changed (void *unused)
4306 {
4307 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4308 set_main_name (NULL);
4309 }
4310
4311 /* Helper to expand_line_sal below. Appends new sal to SAL,
4312 initializing it from SYMTAB, LINENO and PC. */
4313 static void
4314 append_expanded_sal (struct symtabs_and_lines *sal,
4315 struct symtab *symtab,
4316 int lineno, CORE_ADDR pc)
4317 {
4318 CORE_ADDR func_addr, func_end;
4319
4320 sal->sals = xrealloc (sal->sals,
4321 sizeof (sal->sals[0])
4322 * (sal->nelts + 1));
4323 init_sal (sal->sals + sal->nelts);
4324 sal->sals[sal->nelts].symtab = symtab;
4325 sal->sals[sal->nelts].section = NULL;
4326 sal->sals[sal->nelts].end = 0;
4327 sal->sals[sal->nelts].line = lineno;
4328 sal->sals[sal->nelts].pc = pc;
4329 ++sal->nelts;
4330 }
4331
4332 /* Compute a set of all sals in
4333 the entire program that correspond to same file
4334 and line as SAL and return those. If there
4335 are several sals that belong to the same block,
4336 only one sal for the block is included in results. */
4337
4338 struct symtabs_and_lines
4339 expand_line_sal (struct symtab_and_line sal)
4340 {
4341 struct symtabs_and_lines ret, this_line;
4342 int i, j;
4343 struct objfile *objfile;
4344 struct partial_symtab *psymtab;
4345 struct symtab *symtab;
4346 int lineno;
4347 int deleted = 0;
4348 struct block **blocks = NULL;
4349 int *filter;
4350
4351 ret.nelts = 0;
4352 ret.sals = NULL;
4353
4354 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4355 {
4356 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4357 ret.sals[0] = sal;
4358 ret.nelts = 1;
4359 return ret;
4360 }
4361 else
4362 {
4363 struct linetable_entry *best_item = 0;
4364 struct symtab *best_symtab = 0;
4365 int exact = 0;
4366
4367 lineno = sal.line;
4368
4369 /* We meed to find all symtabs for a file which name
4370 is described by sal. We cannot just directly
4371 iterate over symtabs, since a symtab might not be
4372 yet created. We also cannot iterate over psymtabs,
4373 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4374 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4375 corresponding to an included file. Therefore, we do
4376 first pass over psymtabs, reading in those with
4377 the right name. Then, we iterate over symtabs, knowing
4378 that all symtabs we're interested in are loaded. */
4379
4380 ALL_PSYMTABS (objfile, psymtab)
4381 {
4382 if (strcmp (sal.symtab->filename,
4383 psymtab->filename) == 0)
4384 PSYMTAB_TO_SYMTAB (psymtab);
4385 }
4386
4387
4388 /* For each symtab, we add all pcs to ret.sals. I'm actually
4389 not sure what to do if we have exact match in one symtab,
4390 and non-exact match on another symtab.
4391 */
4392 ALL_SYMTABS (objfile, symtab)
4393 {
4394 if (strcmp (sal.symtab->filename,
4395 symtab->filename) == 0)
4396 {
4397 struct linetable *l;
4398 int len;
4399 l = LINETABLE (symtab);
4400 if (!l)
4401 continue;
4402 len = l->nitems;
4403
4404 for (j = 0; j < len; j++)
4405 {
4406 struct linetable_entry *item = &(l->item[j]);
4407
4408 if (item->line == lineno)
4409 {
4410 exact = 1;
4411 append_expanded_sal (&ret, symtab, lineno, item->pc);
4412 }
4413 else if (!exact && item->line > lineno
4414 && (best_item == NULL || item->line < best_item->line))
4415
4416 {
4417 best_item = item;
4418 best_symtab = symtab;
4419 }
4420 }
4421 }
4422 }
4423 if (!exact && best_item)
4424 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4425 }
4426
4427 /* For optimized code, compiler can scatter one source line accross
4428 disjoint ranges of PC values, even when no duplicate functions
4429 or inline functions are involved. For example, 'for (;;)' inside
4430 non-template non-inline non-ctor-or-dtor function can result
4431 in two PC ranges. In this case, we don't want to set breakpoint
4432 on first PC of each range. To filter such cases, we use containing
4433 blocks -- for each PC found above we see if there are other PCs
4434 that are in the same block. If yes, the other PCs are filtered out. */
4435
4436 filter = xmalloc (ret.nelts * sizeof (int));
4437 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4438 for (i = 0; i < ret.nelts; ++i)
4439 {
4440 filter[i] = 1;
4441 blocks[i] = block_for_pc (ret.sals[i].pc);
4442 }
4443
4444 for (i = 0; i < ret.nelts; ++i)
4445 if (blocks[i] != NULL)
4446 for (j = i+1; j < ret.nelts; ++j)
4447 if (blocks[j] == blocks[i])
4448 {
4449 filter[j] = 0;
4450 ++deleted;
4451 break;
4452 }
4453
4454 {
4455 struct symtab_and_line *final =
4456 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4457
4458 for (i = 0, j = 0; i < ret.nelts; ++i)
4459 if (filter[i])
4460 final[j++] = ret.sals[i];
4461
4462 ret.nelts -= deleted;
4463 xfree (ret.sals);
4464 ret.sals = final;
4465 }
4466
4467 return ret;
4468 }
4469
4470
4471 void
4472 _initialize_symtab (void)
4473 {
4474 add_info ("variables", variables_info, _("\
4475 All global and static variable names, or those matching REGEXP."));
4476 if (dbx_commands)
4477 add_com ("whereis", class_info, variables_info, _("\
4478 All global and static variable names, or those matching REGEXP."));
4479
4480 add_info ("functions", functions_info,
4481 _("All function names, or those matching REGEXP."));
4482
4483
4484 /* FIXME: This command has at least the following problems:
4485 1. It prints builtin types (in a very strange and confusing fashion).
4486 2. It doesn't print right, e.g. with
4487 typedef struct foo *FOO
4488 type_print prints "FOO" when we want to make it (in this situation)
4489 print "struct foo *".
4490 I also think "ptype" or "whatis" is more likely to be useful (but if
4491 there is much disagreement "info types" can be fixed). */
4492 add_info ("types", types_info,
4493 _("All type names, or those matching REGEXP."));
4494
4495 add_info ("sources", sources_info,
4496 _("Source files in the program."));
4497
4498 add_com ("rbreak", class_breakpoint, rbreak_command,
4499 _("Set a breakpoint for all functions matching REGEXP."));
4500
4501 if (xdb_commands)
4502 {
4503 add_com ("lf", class_info, sources_info,
4504 _("Source files in the program"));
4505 add_com ("lg", class_info, variables_info, _("\
4506 All global and static variable names, or those matching REGEXP."));
4507 }
4508
4509 add_setshow_enum_cmd ("multiple-symbols", no_class,
4510 multiple_symbols_modes, &multiple_symbols_mode,
4511 _("\
4512 Set the debugger behavior when more than one symbol are possible matches\n\
4513 in an expression."), _("\
4514 Show how the debugger handles ambiguities in expressions."), _("\
4515 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4516 NULL, NULL, &setlist, &showlist);
4517
4518 /* Initialize the one built-in type that isn't language dependent... */
4519 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4520 "<unknown type>", (struct objfile *) NULL);
4521
4522 observer_attach_executable_changed (symtab_observer_executable_changed);
4523 }
This page took 0.137847 seconds and 4 git commands to generate.