Handle "p S::method()::static_var" in the C++ parser
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
68
69 /* Forward declarations for local functions. */
70
71 static void rbreak_command (char *, int);
72
73 static int find_line_common (struct linetable *, int, int *, int);
74
75 static struct block_symbol
76 lookup_symbol_aux (const char *name,
77 const struct block *block,
78 const domain_enum domain,
79 enum language language,
80 struct field_of_this_result *);
81
82 static
83 struct block_symbol lookup_local_symbol (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language);
87
88 static struct block_symbol
89 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
90 const char *name, const domain_enum domain);
91
92 /* See symtab.h. */
93 const struct block_symbol null_block_symbol = { NULL, NULL };
94
95 extern initialize_file_ftype _initialize_symtab;
96
97 /* Program space key for finding name and language of "main". */
98
99 static const struct program_space_data *main_progspace_key;
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 /* Name of "main". */
106
107 char *name_of_main;
108
109 /* Language of "main". */
110
111 enum language language_of_main;
112 };
113
114 /* Program space key for finding its symbol cache. */
115
116 static const struct program_space_data *symbol_cache_key;
117
118 /* The default symbol cache size.
119 There is no extra cpu cost for large N (except when flushing the cache,
120 which is rare). The value here is just a first attempt. A better default
121 value may be higher or lower. A prime number can make up for a bad hash
122 computation, so that's why the number is what it is. */
123 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
124
125 /* The maximum symbol cache size.
126 There's no method to the decision of what value to use here, other than
127 there's no point in allowing a user typo to make gdb consume all memory. */
128 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
129
130 /* symbol_cache_lookup returns this if a previous lookup failed to find the
131 symbol in any objfile. */
132 #define SYMBOL_LOOKUP_FAILED \
133 ((struct block_symbol) {(struct symbol *) 1, NULL})
134 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
135
136 /* Recording lookups that don't find the symbol is just as important, if not
137 more so, than recording found symbols. */
138
139 enum symbol_cache_slot_state
140 {
141 SYMBOL_SLOT_UNUSED,
142 SYMBOL_SLOT_NOT_FOUND,
143 SYMBOL_SLOT_FOUND
144 };
145
146 struct symbol_cache_slot
147 {
148 enum symbol_cache_slot_state state;
149
150 /* The objfile that was current when the symbol was looked up.
151 This is only needed for global blocks, but for simplicity's sake
152 we allocate the space for both. If data shows the extra space used
153 for static blocks is a problem, we can split things up then.
154
155 Global blocks need cache lookup to include the objfile context because
156 we need to account for gdbarch_iterate_over_objfiles_in_search_order
157 which can traverse objfiles in, effectively, any order, depending on
158 the current objfile, thus affecting which symbol is found. Normally,
159 only the current objfile is searched first, and then the rest are
160 searched in recorded order; but putting cache lookup inside
161 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
162 Instead we just make the current objfile part of the context of
163 cache lookup. This means we can record the same symbol multiple times,
164 each with a different "current objfile" that was in effect when the
165 lookup was saved in the cache, but cache space is pretty cheap. */
166 const struct objfile *objfile_context;
167
168 union
169 {
170 struct block_symbol found;
171 struct
172 {
173 char *name;
174 domain_enum domain;
175 } not_found;
176 } value;
177 };
178
179 /* Symbols don't specify global vs static block.
180 So keep them in separate caches. */
181
182 struct block_symbol_cache
183 {
184 unsigned int hits;
185 unsigned int misses;
186 unsigned int collisions;
187
188 /* SYMBOLS is a variable length array of this size.
189 One can imagine that in general one cache (global/static) should be a
190 fraction of the size of the other, but there's no data at the moment
191 on which to decide. */
192 unsigned int size;
193
194 struct symbol_cache_slot symbols[1];
195 };
196
197 /* The symbol cache.
198
199 Searching for symbols in the static and global blocks over multiple objfiles
200 again and again can be slow, as can searching very big objfiles. This is a
201 simple cache to improve symbol lookup performance, which is critical to
202 overall gdb performance.
203
204 Symbols are hashed on the name, its domain, and block.
205 They are also hashed on their objfile for objfile-specific lookups. */
206
207 struct symbol_cache
208 {
209 struct block_symbol_cache *global_symbols;
210 struct block_symbol_cache *static_symbols;
211 };
212
213 /* When non-zero, print debugging messages related to symtab creation. */
214 unsigned int symtab_create_debug = 0;
215
216 /* When non-zero, print debugging messages related to symbol lookup. */
217 unsigned int symbol_lookup_debug = 0;
218
219 /* The size of the cache is staged here. */
220 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
221
222 /* The current value of the symbol cache size.
223 This is saved so that if the user enters a value too big we can restore
224 the original value from here. */
225 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
226
227 /* Non-zero if a file may be known by two different basenames.
228 This is the uncommon case, and significantly slows down gdb.
229 Default set to "off" to not slow down the common case. */
230 int basenames_may_differ = 0;
231
232 /* Allow the user to configure the debugger behavior with respect
233 to multiple-choice menus when more than one symbol matches during
234 a symbol lookup. */
235
236 const char multiple_symbols_ask[] = "ask";
237 const char multiple_symbols_all[] = "all";
238 const char multiple_symbols_cancel[] = "cancel";
239 static const char *const multiple_symbols_modes[] =
240 {
241 multiple_symbols_ask,
242 multiple_symbols_all,
243 multiple_symbols_cancel,
244 NULL
245 };
246 static const char *multiple_symbols_mode = multiple_symbols_all;
247
248 /* Read-only accessor to AUTO_SELECT_MODE. */
249
250 const char *
251 multiple_symbols_select_mode (void)
252 {
253 return multiple_symbols_mode;
254 }
255
256 /* Return the name of a domain_enum. */
257
258 const char *
259 domain_name (domain_enum e)
260 {
261 switch (e)
262 {
263 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
264 case VAR_DOMAIN: return "VAR_DOMAIN";
265 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
266 case MODULE_DOMAIN: return "MODULE_DOMAIN";
267 case LABEL_DOMAIN: return "LABEL_DOMAIN";
268 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
269 default: gdb_assert_not_reached ("bad domain_enum");
270 }
271 }
272
273 /* Return the name of a search_domain . */
274
275 const char *
276 search_domain_name (enum search_domain e)
277 {
278 switch (e)
279 {
280 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
281 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
282 case TYPES_DOMAIN: return "TYPES_DOMAIN";
283 case ALL_DOMAIN: return "ALL_DOMAIN";
284 default: gdb_assert_not_reached ("bad search_domain");
285 }
286 }
287
288 /* See symtab.h. */
289
290 struct symtab *
291 compunit_primary_filetab (const struct compunit_symtab *cust)
292 {
293 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
294
295 /* The primary file symtab is the first one in the list. */
296 return COMPUNIT_FILETABS (cust);
297 }
298
299 /* See symtab.h. */
300
301 enum language
302 compunit_language (const struct compunit_symtab *cust)
303 {
304 struct symtab *symtab = compunit_primary_filetab (cust);
305
306 /* The language of the compunit symtab is the language of its primary
307 source file. */
308 return SYMTAB_LANGUAGE (symtab);
309 }
310
311 /* See whether FILENAME matches SEARCH_NAME using the rule that we
312 advertise to the user. (The manual's description of linespecs
313 describes what we advertise). Returns true if they match, false
314 otherwise. */
315
316 int
317 compare_filenames_for_search (const char *filename, const char *search_name)
318 {
319 int len = strlen (filename);
320 size_t search_len = strlen (search_name);
321
322 if (len < search_len)
323 return 0;
324
325 /* The tail of FILENAME must match. */
326 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
327 return 0;
328
329 /* Either the names must completely match, or the character
330 preceding the trailing SEARCH_NAME segment of FILENAME must be a
331 directory separator.
332
333 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
334 cannot match FILENAME "/path//dir/file.c" - as user has requested
335 absolute path. The sama applies for "c:\file.c" possibly
336 incorrectly hypothetically matching "d:\dir\c:\file.c".
337
338 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
339 compatible with SEARCH_NAME "file.c". In such case a compiler had
340 to put the "c:file.c" name into debug info. Such compatibility
341 works only on GDB built for DOS host. */
342 return (len == search_len
343 || (!IS_ABSOLUTE_PATH (search_name)
344 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
345 || (HAS_DRIVE_SPEC (filename)
346 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
347 }
348
349 /* Same as compare_filenames_for_search, but for glob-style patterns.
350 Heads up on the order of the arguments. They match the order of
351 compare_filenames_for_search, but it's the opposite of the order of
352 arguments to gdb_filename_fnmatch. */
353
354 int
355 compare_glob_filenames_for_search (const char *filename,
356 const char *search_name)
357 {
358 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
359 all /s have to be explicitly specified. */
360 int file_path_elements = count_path_elements (filename);
361 int search_path_elements = count_path_elements (search_name);
362
363 if (search_path_elements > file_path_elements)
364 return 0;
365
366 if (IS_ABSOLUTE_PATH (search_name))
367 {
368 return (search_path_elements == file_path_elements
369 && gdb_filename_fnmatch (search_name, filename,
370 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
371 }
372
373 {
374 const char *file_to_compare
375 = strip_leading_path_elements (filename,
376 file_path_elements - search_path_elements);
377
378 return gdb_filename_fnmatch (search_name, file_to_compare,
379 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
380 }
381 }
382
383 /* Check for a symtab of a specific name by searching some symtabs.
384 This is a helper function for callbacks of iterate_over_symtabs.
385
386 If NAME is not absolute, then REAL_PATH is NULL
387 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
388
389 The return value, NAME, REAL_PATH and CALLBACK are identical to the
390 `map_symtabs_matching_filename' method of quick_symbol_functions.
391
392 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
393 Each symtab within the specified compunit symtab is also searched.
394 AFTER_LAST is one past the last compunit symtab to search; NULL means to
395 search until the end of the list. */
396
397 bool
398 iterate_over_some_symtabs (const char *name,
399 const char *real_path,
400 struct compunit_symtab *first,
401 struct compunit_symtab *after_last,
402 gdb::function_view<bool (symtab *)> callback)
403 {
404 struct compunit_symtab *cust;
405 struct symtab *s;
406 const char* base_name = lbasename (name);
407
408 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
409 {
410 ALL_COMPUNIT_FILETABS (cust, s)
411 {
412 if (compare_filenames_for_search (s->filename, name))
413 {
414 if (callback (s))
415 return true;
416 continue;
417 }
418
419 /* Before we invoke realpath, which can get expensive when many
420 files are involved, do a quick comparison of the basenames. */
421 if (! basenames_may_differ
422 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
423 continue;
424
425 if (compare_filenames_for_search (symtab_to_fullname (s), name))
426 {
427 if (callback (s))
428 return true;
429 continue;
430 }
431
432 /* If the user gave us an absolute path, try to find the file in
433 this symtab and use its absolute path. */
434 if (real_path != NULL)
435 {
436 const char *fullname = symtab_to_fullname (s);
437
438 gdb_assert (IS_ABSOLUTE_PATH (real_path));
439 gdb_assert (IS_ABSOLUTE_PATH (name));
440 if (FILENAME_CMP (real_path, fullname) == 0)
441 {
442 if (callback (s))
443 return true;
444 continue;
445 }
446 }
447 }
448 }
449
450 return false;
451 }
452
453 /* Check for a symtab of a specific name; first in symtabs, then in
454 psymtabs. *If* there is no '/' in the name, a match after a '/'
455 in the symtab filename will also work.
456
457 Calls CALLBACK with each symtab that is found. If CALLBACK returns
458 true, the search stops. */
459
460 void
461 iterate_over_symtabs (const char *name,
462 gdb::function_view<bool (symtab *)> callback)
463 {
464 struct objfile *objfile;
465 gdb::unique_xmalloc_ptr<char> real_path;
466
467 /* Here we are interested in canonicalizing an absolute path, not
468 absolutizing a relative path. */
469 if (IS_ABSOLUTE_PATH (name))
470 {
471 real_path = gdb_realpath (name);
472 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
473 }
474
475 ALL_OBJFILES (objfile)
476 {
477 if (iterate_over_some_symtabs (name, real_path.get (),
478 objfile->compunit_symtabs, NULL,
479 callback))
480 return;
481 }
482
483 /* Same search rules as above apply here, but now we look thru the
484 psymtabs. */
485
486 ALL_OBJFILES (objfile)
487 {
488 if (objfile->sf
489 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
490 name,
491 real_path.get (),
492 callback))
493 return;
494 }
495 }
496
497 /* A wrapper for iterate_over_symtabs that returns the first matching
498 symtab, or NULL. */
499
500 struct symtab *
501 lookup_symtab (const char *name)
502 {
503 struct symtab *result = NULL;
504
505 iterate_over_symtabs (name, [&] (symtab *symtab)
506 {
507 result = symtab;
508 return true;
509 });
510
511 return result;
512 }
513
514 \f
515 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
516 full method name, which consist of the class name (from T), the unadorned
517 method name from METHOD_ID, and the signature for the specific overload,
518 specified by SIGNATURE_ID. Note that this function is g++ specific. */
519
520 char *
521 gdb_mangle_name (struct type *type, int method_id, int signature_id)
522 {
523 int mangled_name_len;
524 char *mangled_name;
525 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
526 struct fn_field *method = &f[signature_id];
527 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
528 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
529 const char *newname = type_name_no_tag (type);
530
531 /* Does the form of physname indicate that it is the full mangled name
532 of a constructor (not just the args)? */
533 int is_full_physname_constructor;
534
535 int is_constructor;
536 int is_destructor = is_destructor_name (physname);
537 /* Need a new type prefix. */
538 const char *const_prefix = method->is_const ? "C" : "";
539 const char *volatile_prefix = method->is_volatile ? "V" : "";
540 char buf[20];
541 int len = (newname == NULL ? 0 : strlen (newname));
542
543 /* Nothing to do if physname already contains a fully mangled v3 abi name
544 or an operator name. */
545 if ((physname[0] == '_' && physname[1] == 'Z')
546 || is_operator_name (field_name))
547 return xstrdup (physname);
548
549 is_full_physname_constructor = is_constructor_name (physname);
550
551 is_constructor = is_full_physname_constructor
552 || (newname && strcmp (field_name, newname) == 0);
553
554 if (!is_destructor)
555 is_destructor = (startswith (physname, "__dt"));
556
557 if (is_destructor || is_full_physname_constructor)
558 {
559 mangled_name = (char *) xmalloc (strlen (physname) + 1);
560 strcpy (mangled_name, physname);
561 return mangled_name;
562 }
563
564 if (len == 0)
565 {
566 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
567 }
568 else if (physname[0] == 't' || physname[0] == 'Q')
569 {
570 /* The physname for template and qualified methods already includes
571 the class name. */
572 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
573 newname = NULL;
574 len = 0;
575 }
576 else
577 {
578 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
579 volatile_prefix, len);
580 }
581 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
582 + strlen (buf) + len + strlen (physname) + 1);
583
584 mangled_name = (char *) xmalloc (mangled_name_len);
585 if (is_constructor)
586 mangled_name[0] = '\0';
587 else
588 strcpy (mangled_name, field_name);
589
590 strcat (mangled_name, buf);
591 /* If the class doesn't have a name, i.e. newname NULL, then we just
592 mangle it using 0 for the length of the class. Thus it gets mangled
593 as something starting with `::' rather than `classname::'. */
594 if (newname != NULL)
595 strcat (mangled_name, newname);
596
597 strcat (mangled_name, physname);
598 return (mangled_name);
599 }
600
601 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
602 correctly allocated. */
603
604 void
605 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
606 const char *name,
607 struct obstack *obstack)
608 {
609 if (gsymbol->language == language_ada)
610 {
611 if (name == NULL)
612 {
613 gsymbol->ada_mangled = 0;
614 gsymbol->language_specific.obstack = obstack;
615 }
616 else
617 {
618 gsymbol->ada_mangled = 1;
619 gsymbol->language_specific.demangled_name = name;
620 }
621 }
622 else
623 gsymbol->language_specific.demangled_name = name;
624 }
625
626 /* Return the demangled name of GSYMBOL. */
627
628 const char *
629 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
630 {
631 if (gsymbol->language == language_ada)
632 {
633 if (!gsymbol->ada_mangled)
634 return NULL;
635 /* Fall through. */
636 }
637
638 return gsymbol->language_specific.demangled_name;
639 }
640
641 \f
642 /* Initialize the language dependent portion of a symbol
643 depending upon the language for the symbol. */
644
645 void
646 symbol_set_language (struct general_symbol_info *gsymbol,
647 enum language language,
648 struct obstack *obstack)
649 {
650 gsymbol->language = language;
651 if (gsymbol->language == language_cplus
652 || gsymbol->language == language_d
653 || gsymbol->language == language_go
654 || gsymbol->language == language_objc
655 || gsymbol->language == language_fortran)
656 {
657 symbol_set_demangled_name (gsymbol, NULL, obstack);
658 }
659 else if (gsymbol->language == language_ada)
660 {
661 gdb_assert (gsymbol->ada_mangled == 0);
662 gsymbol->language_specific.obstack = obstack;
663 }
664 else
665 {
666 memset (&gsymbol->language_specific, 0,
667 sizeof (gsymbol->language_specific));
668 }
669 }
670
671 /* Functions to initialize a symbol's mangled name. */
672
673 /* Objects of this type are stored in the demangled name hash table. */
674 struct demangled_name_entry
675 {
676 const char *mangled;
677 char demangled[1];
678 };
679
680 /* Hash function for the demangled name hash. */
681
682 static hashval_t
683 hash_demangled_name_entry (const void *data)
684 {
685 const struct demangled_name_entry *e
686 = (const struct demangled_name_entry *) data;
687
688 return htab_hash_string (e->mangled);
689 }
690
691 /* Equality function for the demangled name hash. */
692
693 static int
694 eq_demangled_name_entry (const void *a, const void *b)
695 {
696 const struct demangled_name_entry *da
697 = (const struct demangled_name_entry *) a;
698 const struct demangled_name_entry *db
699 = (const struct demangled_name_entry *) b;
700
701 return strcmp (da->mangled, db->mangled) == 0;
702 }
703
704 /* Create the hash table used for demangled names. Each hash entry is
705 a pair of strings; one for the mangled name and one for the demangled
706 name. The entry is hashed via just the mangled name. */
707
708 static void
709 create_demangled_names_hash (struct objfile *objfile)
710 {
711 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
712 The hash table code will round this up to the next prime number.
713 Choosing a much larger table size wastes memory, and saves only about
714 1% in symbol reading. */
715
716 objfile->per_bfd->demangled_names_hash = htab_create_alloc
717 (256, hash_demangled_name_entry, eq_demangled_name_entry,
718 NULL, xcalloc, xfree);
719 }
720
721 /* Try to determine the demangled name for a symbol, based on the
722 language of that symbol. If the language is set to language_auto,
723 it will attempt to find any demangling algorithm that works and
724 then set the language appropriately. The returned name is allocated
725 by the demangler and should be xfree'd. */
726
727 static char *
728 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
729 const char *mangled)
730 {
731 char *demangled = NULL;
732 int i;
733 int recognized;
734
735 if (gsymbol->language == language_unknown)
736 gsymbol->language = language_auto;
737
738 if (gsymbol->language != language_auto)
739 {
740 const struct language_defn *lang = language_def (gsymbol->language);
741
742 language_sniff_from_mangled_name (lang, mangled, &demangled);
743 return demangled;
744 }
745
746 for (i = language_unknown; i < nr_languages; ++i)
747 {
748 enum language l = (enum language) i;
749 const struct language_defn *lang = language_def (l);
750
751 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
752 {
753 gsymbol->language = l;
754 return demangled;
755 }
756 }
757
758 return NULL;
759 }
760
761 /* Set both the mangled and demangled (if any) names for GSYMBOL based
762 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
763 objfile's obstack; but if COPY_NAME is 0 and if NAME is
764 NUL-terminated, then this function assumes that NAME is already
765 correctly saved (either permanently or with a lifetime tied to the
766 objfile), and it will not be copied.
767
768 The hash table corresponding to OBJFILE is used, and the memory
769 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
770 so the pointer can be discarded after calling this function. */
771
772 void
773 symbol_set_names (struct general_symbol_info *gsymbol,
774 const char *linkage_name, int len, int copy_name,
775 struct objfile *objfile)
776 {
777 struct demangled_name_entry **slot;
778 /* A 0-terminated copy of the linkage name. */
779 const char *linkage_name_copy;
780 struct demangled_name_entry entry;
781 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
782
783 if (gsymbol->language == language_ada)
784 {
785 /* In Ada, we do the symbol lookups using the mangled name, so
786 we can save some space by not storing the demangled name. */
787 if (!copy_name)
788 gsymbol->name = linkage_name;
789 else
790 {
791 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
792 len + 1);
793
794 memcpy (name, linkage_name, len);
795 name[len] = '\0';
796 gsymbol->name = name;
797 }
798 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
799
800 return;
801 }
802
803 if (per_bfd->demangled_names_hash == NULL)
804 create_demangled_names_hash (objfile);
805
806 if (linkage_name[len] != '\0')
807 {
808 char *alloc_name;
809
810 alloc_name = (char *) alloca (len + 1);
811 memcpy (alloc_name, linkage_name, len);
812 alloc_name[len] = '\0';
813
814 linkage_name_copy = alloc_name;
815 }
816 else
817 linkage_name_copy = linkage_name;
818
819 entry.mangled = linkage_name_copy;
820 slot = ((struct demangled_name_entry **)
821 htab_find_slot (per_bfd->demangled_names_hash,
822 &entry, INSERT));
823
824 /* If this name is not in the hash table, add it. */
825 if (*slot == NULL
826 /* A C version of the symbol may have already snuck into the table.
827 This happens to, e.g., main.init (__go_init_main). Cope. */
828 || (gsymbol->language == language_go
829 && (*slot)->demangled[0] == '\0'))
830 {
831 char *demangled_name = symbol_find_demangled_name (gsymbol,
832 linkage_name_copy);
833 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
834
835 /* Suppose we have demangled_name==NULL, copy_name==0, and
836 linkage_name_copy==linkage_name. In this case, we already have the
837 mangled name saved, and we don't have a demangled name. So,
838 you might think we could save a little space by not recording
839 this in the hash table at all.
840
841 It turns out that it is actually important to still save such
842 an entry in the hash table, because storing this name gives
843 us better bcache hit rates for partial symbols. */
844 if (!copy_name && linkage_name_copy == linkage_name)
845 {
846 *slot
847 = ((struct demangled_name_entry *)
848 obstack_alloc (&per_bfd->storage_obstack,
849 offsetof (struct demangled_name_entry, demangled)
850 + demangled_len + 1));
851 (*slot)->mangled = linkage_name;
852 }
853 else
854 {
855 char *mangled_ptr;
856
857 /* If we must copy the mangled name, put it directly after
858 the demangled name so we can have a single
859 allocation. */
860 *slot
861 = ((struct demangled_name_entry *)
862 obstack_alloc (&per_bfd->storage_obstack,
863 offsetof (struct demangled_name_entry, demangled)
864 + len + demangled_len + 2));
865 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
866 strcpy (mangled_ptr, linkage_name_copy);
867 (*slot)->mangled = mangled_ptr;
868 }
869
870 if (demangled_name != NULL)
871 {
872 strcpy ((*slot)->demangled, demangled_name);
873 xfree (demangled_name);
874 }
875 else
876 (*slot)->demangled[0] = '\0';
877 }
878
879 gsymbol->name = (*slot)->mangled;
880 if ((*slot)->demangled[0] != '\0')
881 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
882 &per_bfd->storage_obstack);
883 else
884 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
885 }
886
887 /* Return the source code name of a symbol. In languages where
888 demangling is necessary, this is the demangled name. */
889
890 const char *
891 symbol_natural_name (const struct general_symbol_info *gsymbol)
892 {
893 switch (gsymbol->language)
894 {
895 case language_cplus:
896 case language_d:
897 case language_go:
898 case language_objc:
899 case language_fortran:
900 if (symbol_get_demangled_name (gsymbol) != NULL)
901 return symbol_get_demangled_name (gsymbol);
902 break;
903 case language_ada:
904 return ada_decode_symbol (gsymbol);
905 default:
906 break;
907 }
908 return gsymbol->name;
909 }
910
911 /* Return the demangled name for a symbol based on the language for
912 that symbol. If no demangled name exists, return NULL. */
913
914 const char *
915 symbol_demangled_name (const struct general_symbol_info *gsymbol)
916 {
917 const char *dem_name = NULL;
918
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_objc:
925 case language_fortran:
926 dem_name = symbol_get_demangled_name (gsymbol);
927 break;
928 case language_ada:
929 dem_name = ada_decode_symbol (gsymbol);
930 break;
931 default:
932 break;
933 }
934 return dem_name;
935 }
936
937 /* Return the search name of a symbol---generally the demangled or
938 linkage name of the symbol, depending on how it will be searched for.
939 If there is no distinct demangled name, then returns the same value
940 (same pointer) as SYMBOL_LINKAGE_NAME. */
941
942 const char *
943 symbol_search_name (const struct general_symbol_info *gsymbol)
944 {
945 if (gsymbol->language == language_ada)
946 return gsymbol->name;
947 else
948 return symbol_natural_name (gsymbol);
949 }
950 \f
951
952 /* Return 1 if the two sections are the same, or if they could
953 plausibly be copies of each other, one in an original object
954 file and another in a separated debug file. */
955
956 int
957 matching_obj_sections (struct obj_section *obj_first,
958 struct obj_section *obj_second)
959 {
960 asection *first = obj_first? obj_first->the_bfd_section : NULL;
961 asection *second = obj_second? obj_second->the_bfd_section : NULL;
962 struct objfile *obj;
963
964 /* If they're the same section, then they match. */
965 if (first == second)
966 return 1;
967
968 /* If either is NULL, give up. */
969 if (first == NULL || second == NULL)
970 return 0;
971
972 /* This doesn't apply to absolute symbols. */
973 if (first->owner == NULL || second->owner == NULL)
974 return 0;
975
976 /* If they're in the same object file, they must be different sections. */
977 if (first->owner == second->owner)
978 return 0;
979
980 /* Check whether the two sections are potentially corresponding. They must
981 have the same size, address, and name. We can't compare section indexes,
982 which would be more reliable, because some sections may have been
983 stripped. */
984 if (bfd_get_section_size (first) != bfd_get_section_size (second))
985 return 0;
986
987 /* In-memory addresses may start at a different offset, relativize them. */
988 if (bfd_get_section_vma (first->owner, first)
989 - bfd_get_start_address (first->owner)
990 != bfd_get_section_vma (second->owner, second)
991 - bfd_get_start_address (second->owner))
992 return 0;
993
994 if (bfd_get_section_name (first->owner, first) == NULL
995 || bfd_get_section_name (second->owner, second) == NULL
996 || strcmp (bfd_get_section_name (first->owner, first),
997 bfd_get_section_name (second->owner, second)) != 0)
998 return 0;
999
1000 /* Otherwise check that they are in corresponding objfiles. */
1001
1002 ALL_OBJFILES (obj)
1003 if (obj->obfd == first->owner)
1004 break;
1005 gdb_assert (obj != NULL);
1006
1007 if (obj->separate_debug_objfile != NULL
1008 && obj->separate_debug_objfile->obfd == second->owner)
1009 return 1;
1010 if (obj->separate_debug_objfile_backlink != NULL
1011 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1012 return 1;
1013
1014 return 0;
1015 }
1016
1017 /* See symtab.h. */
1018
1019 void
1020 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1021 {
1022 struct objfile *objfile;
1023 struct bound_minimal_symbol msymbol;
1024
1025 /* If we know that this is not a text address, return failure. This is
1026 necessary because we loop based on texthigh and textlow, which do
1027 not include the data ranges. */
1028 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1029 if (msymbol.minsym
1030 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1031 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1032 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1033 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1034 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1035 return;
1036
1037 ALL_OBJFILES (objfile)
1038 {
1039 struct compunit_symtab *cust = NULL;
1040
1041 if (objfile->sf)
1042 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1043 pc, section, 0);
1044 if (cust)
1045 return;
1046 }
1047 }
1048 \f
1049 /* Hash function for the symbol cache. */
1050
1051 static unsigned int
1052 hash_symbol_entry (const struct objfile *objfile_context,
1053 const char *name, domain_enum domain)
1054 {
1055 unsigned int hash = (uintptr_t) objfile_context;
1056
1057 if (name != NULL)
1058 hash += htab_hash_string (name);
1059
1060 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1061 to map to the same slot. */
1062 if (domain == STRUCT_DOMAIN)
1063 hash += VAR_DOMAIN * 7;
1064 else
1065 hash += domain * 7;
1066
1067 return hash;
1068 }
1069
1070 /* Equality function for the symbol cache. */
1071
1072 static int
1073 eq_symbol_entry (const struct symbol_cache_slot *slot,
1074 const struct objfile *objfile_context,
1075 const char *name, domain_enum domain)
1076 {
1077 const char *slot_name;
1078 domain_enum slot_domain;
1079
1080 if (slot->state == SYMBOL_SLOT_UNUSED)
1081 return 0;
1082
1083 if (slot->objfile_context != objfile_context)
1084 return 0;
1085
1086 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1087 {
1088 slot_name = slot->value.not_found.name;
1089 slot_domain = slot->value.not_found.domain;
1090 }
1091 else
1092 {
1093 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1094 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1095 }
1096
1097 /* NULL names match. */
1098 if (slot_name == NULL && name == NULL)
1099 {
1100 /* But there's no point in calling symbol_matches_domain in the
1101 SYMBOL_SLOT_FOUND case. */
1102 if (slot_domain != domain)
1103 return 0;
1104 }
1105 else if (slot_name != NULL && name != NULL)
1106 {
1107 /* It's important that we use the same comparison that was done the
1108 first time through. If the slot records a found symbol, then this
1109 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1110 It also means using symbol_matches_domain for found symbols.
1111 See block.c.
1112
1113 If the slot records a not-found symbol, then require a precise match.
1114 We could still be lax with whitespace like strcmp_iw though. */
1115
1116 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1117 {
1118 if (strcmp (slot_name, name) != 0)
1119 return 0;
1120 if (slot_domain != domain)
1121 return 0;
1122 }
1123 else
1124 {
1125 struct symbol *sym = slot->value.found.symbol;
1126
1127 if (strcmp_iw (slot_name, name) != 0)
1128 return 0;
1129 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1130 slot_domain, domain))
1131 return 0;
1132 }
1133 }
1134 else
1135 {
1136 /* Only one name is NULL. */
1137 return 0;
1138 }
1139
1140 return 1;
1141 }
1142
1143 /* Given a cache of size SIZE, return the size of the struct (with variable
1144 length array) in bytes. */
1145
1146 static size_t
1147 symbol_cache_byte_size (unsigned int size)
1148 {
1149 return (sizeof (struct block_symbol_cache)
1150 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1151 }
1152
1153 /* Resize CACHE. */
1154
1155 static void
1156 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1157 {
1158 /* If there's no change in size, don't do anything.
1159 All caches have the same size, so we can just compare with the size
1160 of the global symbols cache. */
1161 if ((cache->global_symbols != NULL
1162 && cache->global_symbols->size == new_size)
1163 || (cache->global_symbols == NULL
1164 && new_size == 0))
1165 return;
1166
1167 xfree (cache->global_symbols);
1168 xfree (cache->static_symbols);
1169
1170 if (new_size == 0)
1171 {
1172 cache->global_symbols = NULL;
1173 cache->static_symbols = NULL;
1174 }
1175 else
1176 {
1177 size_t total_size = symbol_cache_byte_size (new_size);
1178
1179 cache->global_symbols
1180 = (struct block_symbol_cache *) xcalloc (1, total_size);
1181 cache->static_symbols
1182 = (struct block_symbol_cache *) xcalloc (1, total_size);
1183 cache->global_symbols->size = new_size;
1184 cache->static_symbols->size = new_size;
1185 }
1186 }
1187
1188 /* Make a symbol cache of size SIZE. */
1189
1190 static struct symbol_cache *
1191 make_symbol_cache (unsigned int size)
1192 {
1193 struct symbol_cache *cache;
1194
1195 cache = XCNEW (struct symbol_cache);
1196 resize_symbol_cache (cache, symbol_cache_size);
1197 return cache;
1198 }
1199
1200 /* Free the space used by CACHE. */
1201
1202 static void
1203 free_symbol_cache (struct symbol_cache *cache)
1204 {
1205 xfree (cache->global_symbols);
1206 xfree (cache->static_symbols);
1207 xfree (cache);
1208 }
1209
1210 /* Return the symbol cache of PSPACE.
1211 Create one if it doesn't exist yet. */
1212
1213 static struct symbol_cache *
1214 get_symbol_cache (struct program_space *pspace)
1215 {
1216 struct symbol_cache *cache
1217 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1218
1219 if (cache == NULL)
1220 {
1221 cache = make_symbol_cache (symbol_cache_size);
1222 set_program_space_data (pspace, symbol_cache_key, cache);
1223 }
1224
1225 return cache;
1226 }
1227
1228 /* Delete the symbol cache of PSPACE.
1229 Called when PSPACE is destroyed. */
1230
1231 static void
1232 symbol_cache_cleanup (struct program_space *pspace, void *data)
1233 {
1234 struct symbol_cache *cache = (struct symbol_cache *) data;
1235
1236 free_symbol_cache (cache);
1237 }
1238
1239 /* Set the size of the symbol cache in all program spaces. */
1240
1241 static void
1242 set_symbol_cache_size (unsigned int new_size)
1243 {
1244 struct program_space *pspace;
1245
1246 ALL_PSPACES (pspace)
1247 {
1248 struct symbol_cache *cache
1249 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1250
1251 /* The pspace could have been created but not have a cache yet. */
1252 if (cache != NULL)
1253 resize_symbol_cache (cache, new_size);
1254 }
1255 }
1256
1257 /* Called when symbol-cache-size is set. */
1258
1259 static void
1260 set_symbol_cache_size_handler (char *args, int from_tty,
1261 struct cmd_list_element *c)
1262 {
1263 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1264 {
1265 /* Restore the previous value.
1266 This is the value the "show" command prints. */
1267 new_symbol_cache_size = symbol_cache_size;
1268
1269 error (_("Symbol cache size is too large, max is %u."),
1270 MAX_SYMBOL_CACHE_SIZE);
1271 }
1272 symbol_cache_size = new_symbol_cache_size;
1273
1274 set_symbol_cache_size (symbol_cache_size);
1275 }
1276
1277 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1278 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1279 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1280 failed (and thus this one will too), or NULL if the symbol is not present
1281 in the cache.
1282 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1283 set to the cache and slot of the symbol to save the result of a full lookup
1284 attempt. */
1285
1286 static struct block_symbol
1287 symbol_cache_lookup (struct symbol_cache *cache,
1288 struct objfile *objfile_context, int block,
1289 const char *name, domain_enum domain,
1290 struct block_symbol_cache **bsc_ptr,
1291 struct symbol_cache_slot **slot_ptr)
1292 {
1293 struct block_symbol_cache *bsc;
1294 unsigned int hash;
1295 struct symbol_cache_slot *slot;
1296
1297 if (block == GLOBAL_BLOCK)
1298 bsc = cache->global_symbols;
1299 else
1300 bsc = cache->static_symbols;
1301 if (bsc == NULL)
1302 {
1303 *bsc_ptr = NULL;
1304 *slot_ptr = NULL;
1305 return (struct block_symbol) {NULL, NULL};
1306 }
1307
1308 hash = hash_symbol_entry (objfile_context, name, domain);
1309 slot = bsc->symbols + hash % bsc->size;
1310
1311 if (eq_symbol_entry (slot, objfile_context, name, domain))
1312 {
1313 if (symbol_lookup_debug)
1314 fprintf_unfiltered (gdb_stdlog,
1315 "%s block symbol cache hit%s for %s, %s\n",
1316 block == GLOBAL_BLOCK ? "Global" : "Static",
1317 slot->state == SYMBOL_SLOT_NOT_FOUND
1318 ? " (not found)" : "",
1319 name, domain_name (domain));
1320 ++bsc->hits;
1321 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1322 return SYMBOL_LOOKUP_FAILED;
1323 return slot->value.found;
1324 }
1325
1326 /* Symbol is not present in the cache. */
1327
1328 *bsc_ptr = bsc;
1329 *slot_ptr = slot;
1330
1331 if (symbol_lookup_debug)
1332 {
1333 fprintf_unfiltered (gdb_stdlog,
1334 "%s block symbol cache miss for %s, %s\n",
1335 block == GLOBAL_BLOCK ? "Global" : "Static",
1336 name, domain_name (domain));
1337 }
1338 ++bsc->misses;
1339 return (struct block_symbol) {NULL, NULL};
1340 }
1341
1342 /* Clear out SLOT. */
1343
1344 static void
1345 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1346 {
1347 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1348 xfree (slot->value.not_found.name);
1349 slot->state = SYMBOL_SLOT_UNUSED;
1350 }
1351
1352 /* Mark SYMBOL as found in SLOT.
1353 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1354 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1355 necessarily the objfile the symbol was found in. */
1356
1357 static void
1358 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1359 struct symbol_cache_slot *slot,
1360 struct objfile *objfile_context,
1361 struct symbol *symbol,
1362 const struct block *block)
1363 {
1364 if (bsc == NULL)
1365 return;
1366 if (slot->state != SYMBOL_SLOT_UNUSED)
1367 {
1368 ++bsc->collisions;
1369 symbol_cache_clear_slot (slot);
1370 }
1371 slot->state = SYMBOL_SLOT_FOUND;
1372 slot->objfile_context = objfile_context;
1373 slot->value.found.symbol = symbol;
1374 slot->value.found.block = block;
1375 }
1376
1377 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1378 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1379 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1380
1381 static void
1382 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1383 struct symbol_cache_slot *slot,
1384 struct objfile *objfile_context,
1385 const char *name, domain_enum domain)
1386 {
1387 if (bsc == NULL)
1388 return;
1389 if (slot->state != SYMBOL_SLOT_UNUSED)
1390 {
1391 ++bsc->collisions;
1392 symbol_cache_clear_slot (slot);
1393 }
1394 slot->state = SYMBOL_SLOT_NOT_FOUND;
1395 slot->objfile_context = objfile_context;
1396 slot->value.not_found.name = xstrdup (name);
1397 slot->value.not_found.domain = domain;
1398 }
1399
1400 /* Flush the symbol cache of PSPACE. */
1401
1402 static void
1403 symbol_cache_flush (struct program_space *pspace)
1404 {
1405 struct symbol_cache *cache
1406 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1407 int pass;
1408
1409 if (cache == NULL)
1410 return;
1411 if (cache->global_symbols == NULL)
1412 {
1413 gdb_assert (symbol_cache_size == 0);
1414 gdb_assert (cache->static_symbols == NULL);
1415 return;
1416 }
1417
1418 /* If the cache is untouched since the last flush, early exit.
1419 This is important for performance during the startup of a program linked
1420 with 100s (or 1000s) of shared libraries. */
1421 if (cache->global_symbols->misses == 0
1422 && cache->static_symbols->misses == 0)
1423 return;
1424
1425 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1426 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1427
1428 for (pass = 0; pass < 2; ++pass)
1429 {
1430 struct block_symbol_cache *bsc
1431 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1432 unsigned int i;
1433
1434 for (i = 0; i < bsc->size; ++i)
1435 symbol_cache_clear_slot (&bsc->symbols[i]);
1436 }
1437
1438 cache->global_symbols->hits = 0;
1439 cache->global_symbols->misses = 0;
1440 cache->global_symbols->collisions = 0;
1441 cache->static_symbols->hits = 0;
1442 cache->static_symbols->misses = 0;
1443 cache->static_symbols->collisions = 0;
1444 }
1445
1446 /* Dump CACHE. */
1447
1448 static void
1449 symbol_cache_dump (const struct symbol_cache *cache)
1450 {
1451 int pass;
1452
1453 if (cache->global_symbols == NULL)
1454 {
1455 printf_filtered (" <disabled>\n");
1456 return;
1457 }
1458
1459 for (pass = 0; pass < 2; ++pass)
1460 {
1461 const struct block_symbol_cache *bsc
1462 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1463 unsigned int i;
1464
1465 if (pass == 0)
1466 printf_filtered ("Global symbols:\n");
1467 else
1468 printf_filtered ("Static symbols:\n");
1469
1470 for (i = 0; i < bsc->size; ++i)
1471 {
1472 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1473
1474 QUIT;
1475
1476 switch (slot->state)
1477 {
1478 case SYMBOL_SLOT_UNUSED:
1479 break;
1480 case SYMBOL_SLOT_NOT_FOUND:
1481 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1482 host_address_to_string (slot->objfile_context),
1483 slot->value.not_found.name,
1484 domain_name (slot->value.not_found.domain));
1485 break;
1486 case SYMBOL_SLOT_FOUND:
1487 {
1488 struct symbol *found = slot->value.found.symbol;
1489 const struct objfile *context = slot->objfile_context;
1490
1491 printf_filtered (" [%4u] = %s, %s %s\n", i,
1492 host_address_to_string (context),
1493 SYMBOL_PRINT_NAME (found),
1494 domain_name (SYMBOL_DOMAIN (found)));
1495 break;
1496 }
1497 }
1498 }
1499 }
1500 }
1501
1502 /* The "mt print symbol-cache" command. */
1503
1504 static void
1505 maintenance_print_symbol_cache (char *args, int from_tty)
1506 {
1507 struct program_space *pspace;
1508
1509 ALL_PSPACES (pspace)
1510 {
1511 struct symbol_cache *cache;
1512
1513 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1514 pspace->num,
1515 pspace->symfile_object_file != NULL
1516 ? objfile_name (pspace->symfile_object_file)
1517 : "(no object file)");
1518
1519 /* If the cache hasn't been created yet, avoid creating one. */
1520 cache
1521 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1522 if (cache == NULL)
1523 printf_filtered (" <empty>\n");
1524 else
1525 symbol_cache_dump (cache);
1526 }
1527 }
1528
1529 /* The "mt flush-symbol-cache" command. */
1530
1531 static void
1532 maintenance_flush_symbol_cache (char *args, int from_tty)
1533 {
1534 struct program_space *pspace;
1535
1536 ALL_PSPACES (pspace)
1537 {
1538 symbol_cache_flush (pspace);
1539 }
1540 }
1541
1542 /* Print usage statistics of CACHE. */
1543
1544 static void
1545 symbol_cache_stats (struct symbol_cache *cache)
1546 {
1547 int pass;
1548
1549 if (cache->global_symbols == NULL)
1550 {
1551 printf_filtered (" <disabled>\n");
1552 return;
1553 }
1554
1555 for (pass = 0; pass < 2; ++pass)
1556 {
1557 const struct block_symbol_cache *bsc
1558 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1559
1560 QUIT;
1561
1562 if (pass == 0)
1563 printf_filtered ("Global block cache stats:\n");
1564 else
1565 printf_filtered ("Static block cache stats:\n");
1566
1567 printf_filtered (" size: %u\n", bsc->size);
1568 printf_filtered (" hits: %u\n", bsc->hits);
1569 printf_filtered (" misses: %u\n", bsc->misses);
1570 printf_filtered (" collisions: %u\n", bsc->collisions);
1571 }
1572 }
1573
1574 /* The "mt print symbol-cache-statistics" command. */
1575
1576 static void
1577 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1578 {
1579 struct program_space *pspace;
1580
1581 ALL_PSPACES (pspace)
1582 {
1583 struct symbol_cache *cache;
1584
1585 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1586 pspace->num,
1587 pspace->symfile_object_file != NULL
1588 ? objfile_name (pspace->symfile_object_file)
1589 : "(no object file)");
1590
1591 /* If the cache hasn't been created yet, avoid creating one. */
1592 cache
1593 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1594 if (cache == NULL)
1595 printf_filtered (" empty, no stats available\n");
1596 else
1597 symbol_cache_stats (cache);
1598 }
1599 }
1600
1601 /* This module's 'new_objfile' observer. */
1602
1603 static void
1604 symtab_new_objfile_observer (struct objfile *objfile)
1605 {
1606 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1607 symbol_cache_flush (current_program_space);
1608 }
1609
1610 /* This module's 'free_objfile' observer. */
1611
1612 static void
1613 symtab_free_objfile_observer (struct objfile *objfile)
1614 {
1615 symbol_cache_flush (objfile->pspace);
1616 }
1617 \f
1618 /* Debug symbols usually don't have section information. We need to dig that
1619 out of the minimal symbols and stash that in the debug symbol. */
1620
1621 void
1622 fixup_section (struct general_symbol_info *ginfo,
1623 CORE_ADDR addr, struct objfile *objfile)
1624 {
1625 struct minimal_symbol *msym;
1626
1627 /* First, check whether a minimal symbol with the same name exists
1628 and points to the same address. The address check is required
1629 e.g. on PowerPC64, where the minimal symbol for a function will
1630 point to the function descriptor, while the debug symbol will
1631 point to the actual function code. */
1632 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1633 if (msym)
1634 ginfo->section = MSYMBOL_SECTION (msym);
1635 else
1636 {
1637 /* Static, function-local variables do appear in the linker
1638 (minimal) symbols, but are frequently given names that won't
1639 be found via lookup_minimal_symbol(). E.g., it has been
1640 observed in frv-uclinux (ELF) executables that a static,
1641 function-local variable named "foo" might appear in the
1642 linker symbols as "foo.6" or "foo.3". Thus, there is no
1643 point in attempting to extend the lookup-by-name mechanism to
1644 handle this case due to the fact that there can be multiple
1645 names.
1646
1647 So, instead, search the section table when lookup by name has
1648 failed. The ``addr'' and ``endaddr'' fields may have already
1649 been relocated. If so, the relocation offset (i.e. the
1650 ANOFFSET value) needs to be subtracted from these values when
1651 performing the comparison. We unconditionally subtract it,
1652 because, when no relocation has been performed, the ANOFFSET
1653 value will simply be zero.
1654
1655 The address of the symbol whose section we're fixing up HAS
1656 NOT BEEN adjusted (relocated) yet. It can't have been since
1657 the section isn't yet known and knowing the section is
1658 necessary in order to add the correct relocation value. In
1659 other words, we wouldn't even be in this function (attempting
1660 to compute the section) if it were already known.
1661
1662 Note that it is possible to search the minimal symbols
1663 (subtracting the relocation value if necessary) to find the
1664 matching minimal symbol, but this is overkill and much less
1665 efficient. It is not necessary to find the matching minimal
1666 symbol, only its section.
1667
1668 Note that this technique (of doing a section table search)
1669 can fail when unrelocated section addresses overlap. For
1670 this reason, we still attempt a lookup by name prior to doing
1671 a search of the section table. */
1672
1673 struct obj_section *s;
1674 int fallback = -1;
1675
1676 ALL_OBJFILE_OSECTIONS (objfile, s)
1677 {
1678 int idx = s - objfile->sections;
1679 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1680
1681 if (fallback == -1)
1682 fallback = idx;
1683
1684 if (obj_section_addr (s) - offset <= addr
1685 && addr < obj_section_endaddr (s) - offset)
1686 {
1687 ginfo->section = idx;
1688 return;
1689 }
1690 }
1691
1692 /* If we didn't find the section, assume it is in the first
1693 section. If there is no allocated section, then it hardly
1694 matters what we pick, so just pick zero. */
1695 if (fallback == -1)
1696 ginfo->section = 0;
1697 else
1698 ginfo->section = fallback;
1699 }
1700 }
1701
1702 struct symbol *
1703 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1704 {
1705 CORE_ADDR addr;
1706
1707 if (!sym)
1708 return NULL;
1709
1710 if (!SYMBOL_OBJFILE_OWNED (sym))
1711 return sym;
1712
1713 /* We either have an OBJFILE, or we can get at it from the sym's
1714 symtab. Anything else is a bug. */
1715 gdb_assert (objfile || symbol_symtab (sym));
1716
1717 if (objfile == NULL)
1718 objfile = symbol_objfile (sym);
1719
1720 if (SYMBOL_OBJ_SECTION (objfile, sym))
1721 return sym;
1722
1723 /* We should have an objfile by now. */
1724 gdb_assert (objfile);
1725
1726 switch (SYMBOL_CLASS (sym))
1727 {
1728 case LOC_STATIC:
1729 case LOC_LABEL:
1730 addr = SYMBOL_VALUE_ADDRESS (sym);
1731 break;
1732 case LOC_BLOCK:
1733 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1734 break;
1735
1736 default:
1737 /* Nothing else will be listed in the minsyms -- no use looking
1738 it up. */
1739 return sym;
1740 }
1741
1742 fixup_section (&sym->ginfo, addr, objfile);
1743
1744 return sym;
1745 }
1746
1747 /* Compute the demangled form of NAME as used by the various symbol
1748 lookup functions. The result can either be the input NAME
1749 directly, or a pointer to a buffer owned by the STORAGE object.
1750
1751 For Ada, this function just returns NAME, unmodified.
1752 Normally, Ada symbol lookups are performed using the encoded name
1753 rather than the demangled name, and so it might seem to make sense
1754 for this function to return an encoded version of NAME.
1755 Unfortunately, we cannot do this, because this function is used in
1756 circumstances where it is not appropriate to try to encode NAME.
1757 For instance, when displaying the frame info, we demangle the name
1758 of each parameter, and then perform a symbol lookup inside our
1759 function using that demangled name. In Ada, certain functions
1760 have internally-generated parameters whose name contain uppercase
1761 characters. Encoding those name would result in those uppercase
1762 characters to become lowercase, and thus cause the symbol lookup
1763 to fail. */
1764
1765 const char *
1766 demangle_for_lookup (const char *name, enum language lang,
1767 demangle_result_storage &storage)
1768 {
1769 /* If we are using C++, D, or Go, demangle the name before doing a
1770 lookup, so we can always binary search. */
1771 if (lang == language_cplus)
1772 {
1773 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1774 if (demangled_name != NULL)
1775 return storage.set_malloc_ptr (demangled_name);
1776
1777 /* If we were given a non-mangled name, canonicalize it
1778 according to the language (so far only for C++). */
1779 std::string canon = cp_canonicalize_string (name);
1780 if (!canon.empty ())
1781 return storage.swap_string (canon);
1782 }
1783 else if (lang == language_d)
1784 {
1785 char *demangled_name = d_demangle (name, 0);
1786 if (demangled_name != NULL)
1787 return storage.set_malloc_ptr (demangled_name);
1788 }
1789 else if (lang == language_go)
1790 {
1791 char *demangled_name = go_demangle (name, 0);
1792 if (demangled_name != NULL)
1793 return storage.set_malloc_ptr (demangled_name);
1794 }
1795
1796 return name;
1797 }
1798
1799 /* See symtab.h.
1800
1801 This function (or rather its subordinates) have a bunch of loops and
1802 it would seem to be attractive to put in some QUIT's (though I'm not really
1803 sure whether it can run long enough to be really important). But there
1804 are a few calls for which it would appear to be bad news to quit
1805 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1806 that there is C++ code below which can error(), but that probably
1807 doesn't affect these calls since they are looking for a known
1808 variable and thus can probably assume it will never hit the C++
1809 code). */
1810
1811 struct block_symbol
1812 lookup_symbol_in_language (const char *name, const struct block *block,
1813 const domain_enum domain, enum language lang,
1814 struct field_of_this_result *is_a_field_of_this)
1815 {
1816 demangle_result_storage storage;
1817 const char *modified_name = demangle_for_lookup (name, lang, storage);
1818
1819 return lookup_symbol_aux (modified_name, block, domain, lang,
1820 is_a_field_of_this);
1821 }
1822
1823 /* See symtab.h. */
1824
1825 struct block_symbol
1826 lookup_symbol (const char *name, const struct block *block,
1827 domain_enum domain,
1828 struct field_of_this_result *is_a_field_of_this)
1829 {
1830 return lookup_symbol_in_language (name, block, domain,
1831 current_language->la_language,
1832 is_a_field_of_this);
1833 }
1834
1835 /* See symtab.h. */
1836
1837 struct block_symbol
1838 lookup_language_this (const struct language_defn *lang,
1839 const struct block *block)
1840 {
1841 if (lang->la_name_of_this == NULL || block == NULL)
1842 return (struct block_symbol) {NULL, NULL};
1843
1844 if (symbol_lookup_debug > 1)
1845 {
1846 struct objfile *objfile = lookup_objfile_from_block (block);
1847
1848 fprintf_unfiltered (gdb_stdlog,
1849 "lookup_language_this (%s, %s (objfile %s))",
1850 lang->la_name, host_address_to_string (block),
1851 objfile_debug_name (objfile));
1852 }
1853
1854 while (block)
1855 {
1856 struct symbol *sym;
1857
1858 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1859 if (sym != NULL)
1860 {
1861 if (symbol_lookup_debug > 1)
1862 {
1863 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1864 SYMBOL_PRINT_NAME (sym),
1865 host_address_to_string (sym),
1866 host_address_to_string (block));
1867 }
1868 return (struct block_symbol) {sym, block};
1869 }
1870 if (BLOCK_FUNCTION (block))
1871 break;
1872 block = BLOCK_SUPERBLOCK (block);
1873 }
1874
1875 if (symbol_lookup_debug > 1)
1876 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1877 return (struct block_symbol) {NULL, NULL};
1878 }
1879
1880 /* Given TYPE, a structure/union,
1881 return 1 if the component named NAME from the ultimate target
1882 structure/union is defined, otherwise, return 0. */
1883
1884 static int
1885 check_field (struct type *type, const char *name,
1886 struct field_of_this_result *is_a_field_of_this)
1887 {
1888 int i;
1889
1890 /* The type may be a stub. */
1891 type = check_typedef (type);
1892
1893 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1894 {
1895 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1896
1897 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1898 {
1899 is_a_field_of_this->type = type;
1900 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1901 return 1;
1902 }
1903 }
1904
1905 /* C++: If it was not found as a data field, then try to return it
1906 as a pointer to a method. */
1907
1908 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1909 {
1910 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1911 {
1912 is_a_field_of_this->type = type;
1913 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1914 return 1;
1915 }
1916 }
1917
1918 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1919 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1920 return 1;
1921
1922 return 0;
1923 }
1924
1925 /* Behave like lookup_symbol except that NAME is the natural name
1926 (e.g., demangled name) of the symbol that we're looking for. */
1927
1928 static struct block_symbol
1929 lookup_symbol_aux (const char *name, const struct block *block,
1930 const domain_enum domain, enum language language,
1931 struct field_of_this_result *is_a_field_of_this)
1932 {
1933 struct block_symbol result;
1934 const struct language_defn *langdef;
1935
1936 if (symbol_lookup_debug)
1937 {
1938 struct objfile *objfile = lookup_objfile_from_block (block);
1939
1940 fprintf_unfiltered (gdb_stdlog,
1941 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1942 name, host_address_to_string (block),
1943 objfile != NULL
1944 ? objfile_debug_name (objfile) : "NULL",
1945 domain_name (domain), language_str (language));
1946 }
1947
1948 /* Make sure we do something sensible with is_a_field_of_this, since
1949 the callers that set this parameter to some non-null value will
1950 certainly use it later. If we don't set it, the contents of
1951 is_a_field_of_this are undefined. */
1952 if (is_a_field_of_this != NULL)
1953 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1954
1955 /* Search specified block and its superiors. Don't search
1956 STATIC_BLOCK or GLOBAL_BLOCK. */
1957
1958 result = lookup_local_symbol (name, block, domain, language);
1959 if (result.symbol != NULL)
1960 {
1961 if (symbol_lookup_debug)
1962 {
1963 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1964 host_address_to_string (result.symbol));
1965 }
1966 return result;
1967 }
1968
1969 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1970 check to see if NAME is a field of `this'. */
1971
1972 langdef = language_def (language);
1973
1974 /* Don't do this check if we are searching for a struct. It will
1975 not be found by check_field, but will be found by other
1976 means. */
1977 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1978 {
1979 result = lookup_language_this (langdef, block);
1980
1981 if (result.symbol)
1982 {
1983 struct type *t = result.symbol->type;
1984
1985 /* I'm not really sure that type of this can ever
1986 be typedefed; just be safe. */
1987 t = check_typedef (t);
1988 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1989 t = TYPE_TARGET_TYPE (t);
1990
1991 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1992 && TYPE_CODE (t) != TYPE_CODE_UNION)
1993 error (_("Internal error: `%s' is not an aggregate"),
1994 langdef->la_name_of_this);
1995
1996 if (check_field (t, name, is_a_field_of_this))
1997 {
1998 if (symbol_lookup_debug)
1999 {
2000 fprintf_unfiltered (gdb_stdlog,
2001 "lookup_symbol_aux (...) = NULL\n");
2002 }
2003 return (struct block_symbol) {NULL, NULL};
2004 }
2005 }
2006 }
2007
2008 /* Now do whatever is appropriate for LANGUAGE to look
2009 up static and global variables. */
2010
2011 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2012 if (result.symbol != NULL)
2013 {
2014 if (symbol_lookup_debug)
2015 {
2016 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2017 host_address_to_string (result.symbol));
2018 }
2019 return result;
2020 }
2021
2022 /* Now search all static file-level symbols. Not strictly correct,
2023 but more useful than an error. */
2024
2025 result = lookup_static_symbol (name, domain);
2026 if (symbol_lookup_debug)
2027 {
2028 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2029 result.symbol != NULL
2030 ? host_address_to_string (result.symbol)
2031 : "NULL");
2032 }
2033 return result;
2034 }
2035
2036 /* Check to see if the symbol is defined in BLOCK or its superiors.
2037 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2038
2039 static struct block_symbol
2040 lookup_local_symbol (const char *name, const struct block *block,
2041 const domain_enum domain,
2042 enum language language)
2043 {
2044 struct symbol *sym;
2045 const struct block *static_block = block_static_block (block);
2046 const char *scope = block_scope (block);
2047
2048 /* Check if either no block is specified or it's a global block. */
2049
2050 if (static_block == NULL)
2051 return (struct block_symbol) {NULL, NULL};
2052
2053 while (block != static_block)
2054 {
2055 sym = lookup_symbol_in_block (name, block, domain);
2056 if (sym != NULL)
2057 return (struct block_symbol) {sym, block};
2058
2059 if (language == language_cplus || language == language_fortran)
2060 {
2061 struct block_symbol sym
2062 = cp_lookup_symbol_imports_or_template (scope, name, block,
2063 domain);
2064
2065 if (sym.symbol != NULL)
2066 return sym;
2067 }
2068
2069 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2070 break;
2071 block = BLOCK_SUPERBLOCK (block);
2072 }
2073
2074 /* We've reached the end of the function without finding a result. */
2075
2076 return (struct block_symbol) {NULL, NULL};
2077 }
2078
2079 /* See symtab.h. */
2080
2081 struct objfile *
2082 lookup_objfile_from_block (const struct block *block)
2083 {
2084 struct objfile *obj;
2085 struct compunit_symtab *cust;
2086
2087 if (block == NULL)
2088 return NULL;
2089
2090 block = block_global_block (block);
2091 /* Look through all blockvectors. */
2092 ALL_COMPUNITS (obj, cust)
2093 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2094 GLOBAL_BLOCK))
2095 {
2096 if (obj->separate_debug_objfile_backlink)
2097 obj = obj->separate_debug_objfile_backlink;
2098
2099 return obj;
2100 }
2101
2102 return NULL;
2103 }
2104
2105 /* See symtab.h. */
2106
2107 struct symbol *
2108 lookup_symbol_in_block (const char *name, const struct block *block,
2109 const domain_enum domain)
2110 {
2111 struct symbol *sym;
2112
2113 if (symbol_lookup_debug > 1)
2114 {
2115 struct objfile *objfile = lookup_objfile_from_block (block);
2116
2117 fprintf_unfiltered (gdb_stdlog,
2118 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2119 name, host_address_to_string (block),
2120 objfile_debug_name (objfile),
2121 domain_name (domain));
2122 }
2123
2124 sym = block_lookup_symbol (block, name, domain);
2125 if (sym)
2126 {
2127 if (symbol_lookup_debug > 1)
2128 {
2129 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2130 host_address_to_string (sym));
2131 }
2132 return fixup_symbol_section (sym, NULL);
2133 }
2134
2135 if (symbol_lookup_debug > 1)
2136 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2137 return NULL;
2138 }
2139
2140 /* See symtab.h. */
2141
2142 struct block_symbol
2143 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2144 const char *name,
2145 const domain_enum domain)
2146 {
2147 struct objfile *objfile;
2148
2149 for (objfile = main_objfile;
2150 objfile;
2151 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2152 {
2153 struct block_symbol result
2154 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2155
2156 if (result.symbol != NULL)
2157 return result;
2158 }
2159
2160 return (struct block_symbol) {NULL, NULL};
2161 }
2162
2163 /* Check to see if the symbol is defined in one of the OBJFILE's
2164 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2165 depending on whether or not we want to search global symbols or
2166 static symbols. */
2167
2168 static struct block_symbol
2169 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2170 const char *name, const domain_enum domain)
2171 {
2172 struct compunit_symtab *cust;
2173
2174 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2175
2176 if (symbol_lookup_debug > 1)
2177 {
2178 fprintf_unfiltered (gdb_stdlog,
2179 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2180 objfile_debug_name (objfile),
2181 block_index == GLOBAL_BLOCK
2182 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2183 name, domain_name (domain));
2184 }
2185
2186 ALL_OBJFILE_COMPUNITS (objfile, cust)
2187 {
2188 const struct blockvector *bv;
2189 const struct block *block;
2190 struct block_symbol result;
2191
2192 bv = COMPUNIT_BLOCKVECTOR (cust);
2193 block = BLOCKVECTOR_BLOCK (bv, block_index);
2194 result.symbol = block_lookup_symbol_primary (block, name, domain);
2195 result.block = block;
2196 if (result.symbol != NULL)
2197 {
2198 if (symbol_lookup_debug > 1)
2199 {
2200 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2201 host_address_to_string (result.symbol),
2202 host_address_to_string (block));
2203 }
2204 result.symbol = fixup_symbol_section (result.symbol, objfile);
2205 return result;
2206
2207 }
2208 }
2209
2210 if (symbol_lookup_debug > 1)
2211 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2212 return (struct block_symbol) {NULL, NULL};
2213 }
2214
2215 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2216 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2217 and all associated separate debug objfiles.
2218
2219 Normally we only look in OBJFILE, and not any separate debug objfiles
2220 because the outer loop will cause them to be searched too. This case is
2221 different. Here we're called from search_symbols where it will only
2222 call us for the the objfile that contains a matching minsym. */
2223
2224 static struct block_symbol
2225 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2226 const char *linkage_name,
2227 domain_enum domain)
2228 {
2229 enum language lang = current_language->la_language;
2230 struct objfile *main_objfile, *cur_objfile;
2231
2232 demangle_result_storage storage;
2233 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2234
2235 if (objfile->separate_debug_objfile_backlink)
2236 main_objfile = objfile->separate_debug_objfile_backlink;
2237 else
2238 main_objfile = objfile;
2239
2240 for (cur_objfile = main_objfile;
2241 cur_objfile;
2242 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2243 {
2244 struct block_symbol result;
2245
2246 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2247 modified_name, domain);
2248 if (result.symbol == NULL)
2249 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2250 modified_name, domain);
2251 if (result.symbol != NULL)
2252 return result;
2253 }
2254
2255 return (struct block_symbol) {NULL, NULL};
2256 }
2257
2258 /* A helper function that throws an exception when a symbol was found
2259 in a psymtab but not in a symtab. */
2260
2261 static void ATTRIBUTE_NORETURN
2262 error_in_psymtab_expansion (int block_index, const char *name,
2263 struct compunit_symtab *cust)
2264 {
2265 error (_("\
2266 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2267 %s may be an inlined function, or may be a template function\n \
2268 (if a template, try specifying an instantiation: %s<type>)."),
2269 block_index == GLOBAL_BLOCK ? "global" : "static",
2270 name,
2271 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2272 name, name);
2273 }
2274
2275 /* A helper function for various lookup routines that interfaces with
2276 the "quick" symbol table functions. */
2277
2278 static struct block_symbol
2279 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2280 const char *name, const domain_enum domain)
2281 {
2282 struct compunit_symtab *cust;
2283 const struct blockvector *bv;
2284 const struct block *block;
2285 struct block_symbol result;
2286
2287 if (!objfile->sf)
2288 return (struct block_symbol) {NULL, NULL};
2289
2290 if (symbol_lookup_debug > 1)
2291 {
2292 fprintf_unfiltered (gdb_stdlog,
2293 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2294 objfile_debug_name (objfile),
2295 block_index == GLOBAL_BLOCK
2296 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2297 name, domain_name (domain));
2298 }
2299
2300 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2301 if (cust == NULL)
2302 {
2303 if (symbol_lookup_debug > 1)
2304 {
2305 fprintf_unfiltered (gdb_stdlog,
2306 "lookup_symbol_via_quick_fns (...) = NULL\n");
2307 }
2308 return (struct block_symbol) {NULL, NULL};
2309 }
2310
2311 bv = COMPUNIT_BLOCKVECTOR (cust);
2312 block = BLOCKVECTOR_BLOCK (bv, block_index);
2313 result.symbol = block_lookup_symbol (block, name, domain);
2314 if (result.symbol == NULL)
2315 error_in_psymtab_expansion (block_index, name, cust);
2316
2317 if (symbol_lookup_debug > 1)
2318 {
2319 fprintf_unfiltered (gdb_stdlog,
2320 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2321 host_address_to_string (result.symbol),
2322 host_address_to_string (block));
2323 }
2324
2325 result.symbol = fixup_symbol_section (result.symbol, objfile);
2326 result.block = block;
2327 return result;
2328 }
2329
2330 /* See symtab.h. */
2331
2332 struct block_symbol
2333 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2334 const char *name,
2335 const struct block *block,
2336 const domain_enum domain)
2337 {
2338 struct block_symbol result;
2339
2340 /* NOTE: carlton/2003-05-19: The comments below were written when
2341 this (or what turned into this) was part of lookup_symbol_aux;
2342 I'm much less worried about these questions now, since these
2343 decisions have turned out well, but I leave these comments here
2344 for posterity. */
2345
2346 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2347 not it would be appropriate to search the current global block
2348 here as well. (That's what this code used to do before the
2349 is_a_field_of_this check was moved up.) On the one hand, it's
2350 redundant with the lookup in all objfiles search that happens
2351 next. On the other hand, if decode_line_1 is passed an argument
2352 like filename:var, then the user presumably wants 'var' to be
2353 searched for in filename. On the third hand, there shouldn't be
2354 multiple global variables all of which are named 'var', and it's
2355 not like decode_line_1 has ever restricted its search to only
2356 global variables in a single filename. All in all, only
2357 searching the static block here seems best: it's correct and it's
2358 cleanest. */
2359
2360 /* NOTE: carlton/2002-12-05: There's also a possible performance
2361 issue here: if you usually search for global symbols in the
2362 current file, then it would be slightly better to search the
2363 current global block before searching all the symtabs. But there
2364 are other factors that have a much greater effect on performance
2365 than that one, so I don't think we should worry about that for
2366 now. */
2367
2368 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2369 the current objfile. Searching the current objfile first is useful
2370 for both matching user expectations as well as performance. */
2371
2372 result = lookup_symbol_in_static_block (name, block, domain);
2373 if (result.symbol != NULL)
2374 return result;
2375
2376 /* If we didn't find a definition for a builtin type in the static block,
2377 search for it now. This is actually the right thing to do and can be
2378 a massive performance win. E.g., when debugging a program with lots of
2379 shared libraries we could search all of them only to find out the
2380 builtin type isn't defined in any of them. This is common for types
2381 like "void". */
2382 if (domain == VAR_DOMAIN)
2383 {
2384 struct gdbarch *gdbarch;
2385
2386 if (block == NULL)
2387 gdbarch = target_gdbarch ();
2388 else
2389 gdbarch = block_gdbarch (block);
2390 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2391 gdbarch, name);
2392 result.block = NULL;
2393 if (result.symbol != NULL)
2394 return result;
2395 }
2396
2397 return lookup_global_symbol (name, block, domain);
2398 }
2399
2400 /* See symtab.h. */
2401
2402 struct block_symbol
2403 lookup_symbol_in_static_block (const char *name,
2404 const struct block *block,
2405 const domain_enum domain)
2406 {
2407 const struct block *static_block = block_static_block (block);
2408 struct symbol *sym;
2409
2410 if (static_block == NULL)
2411 return (struct block_symbol) {NULL, NULL};
2412
2413 if (symbol_lookup_debug)
2414 {
2415 struct objfile *objfile = lookup_objfile_from_block (static_block);
2416
2417 fprintf_unfiltered (gdb_stdlog,
2418 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2419 " %s)\n",
2420 name,
2421 host_address_to_string (block),
2422 objfile_debug_name (objfile),
2423 domain_name (domain));
2424 }
2425
2426 sym = lookup_symbol_in_block (name, static_block, domain);
2427 if (symbol_lookup_debug)
2428 {
2429 fprintf_unfiltered (gdb_stdlog,
2430 "lookup_symbol_in_static_block (...) = %s\n",
2431 sym != NULL ? host_address_to_string (sym) : "NULL");
2432 }
2433 return (struct block_symbol) {sym, static_block};
2434 }
2435
2436 /* Perform the standard symbol lookup of NAME in OBJFILE:
2437 1) First search expanded symtabs, and if not found
2438 2) Search the "quick" symtabs (partial or .gdb_index).
2439 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2440
2441 static struct block_symbol
2442 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2443 const char *name, const domain_enum domain)
2444 {
2445 struct block_symbol result;
2446
2447 if (symbol_lookup_debug)
2448 {
2449 fprintf_unfiltered (gdb_stdlog,
2450 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2451 objfile_debug_name (objfile),
2452 block_index == GLOBAL_BLOCK
2453 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2454 name, domain_name (domain));
2455 }
2456
2457 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2458 name, domain);
2459 if (result.symbol != NULL)
2460 {
2461 if (symbol_lookup_debug)
2462 {
2463 fprintf_unfiltered (gdb_stdlog,
2464 "lookup_symbol_in_objfile (...) = %s"
2465 " (in symtabs)\n",
2466 host_address_to_string (result.symbol));
2467 }
2468 return result;
2469 }
2470
2471 result = lookup_symbol_via_quick_fns (objfile, block_index,
2472 name, domain);
2473 if (symbol_lookup_debug)
2474 {
2475 fprintf_unfiltered (gdb_stdlog,
2476 "lookup_symbol_in_objfile (...) = %s%s\n",
2477 result.symbol != NULL
2478 ? host_address_to_string (result.symbol)
2479 : "NULL",
2480 result.symbol != NULL ? " (via quick fns)" : "");
2481 }
2482 return result;
2483 }
2484
2485 /* See symtab.h. */
2486
2487 struct block_symbol
2488 lookup_static_symbol (const char *name, const domain_enum domain)
2489 {
2490 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2491 struct objfile *objfile;
2492 struct block_symbol result;
2493 struct block_symbol_cache *bsc;
2494 struct symbol_cache_slot *slot;
2495
2496 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2497 NULL for OBJFILE_CONTEXT. */
2498 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2499 &bsc, &slot);
2500 if (result.symbol != NULL)
2501 {
2502 if (SYMBOL_LOOKUP_FAILED_P (result))
2503 return (struct block_symbol) {NULL, NULL};
2504 return result;
2505 }
2506
2507 ALL_OBJFILES (objfile)
2508 {
2509 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2510 if (result.symbol != NULL)
2511 {
2512 /* Still pass NULL for OBJFILE_CONTEXT here. */
2513 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2514 result.block);
2515 return result;
2516 }
2517 }
2518
2519 /* Still pass NULL for OBJFILE_CONTEXT here. */
2520 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2521 return (struct block_symbol) {NULL, NULL};
2522 }
2523
2524 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2525
2526 struct global_sym_lookup_data
2527 {
2528 /* The name of the symbol we are searching for. */
2529 const char *name;
2530
2531 /* The domain to use for our search. */
2532 domain_enum domain;
2533
2534 /* The field where the callback should store the symbol if found.
2535 It should be initialized to {NULL, NULL} before the search is started. */
2536 struct block_symbol result;
2537 };
2538
2539 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2540 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2541 OBJFILE. The arguments for the search are passed via CB_DATA,
2542 which in reality is a pointer to struct global_sym_lookup_data. */
2543
2544 static int
2545 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2546 void *cb_data)
2547 {
2548 struct global_sym_lookup_data *data =
2549 (struct global_sym_lookup_data *) cb_data;
2550
2551 gdb_assert (data->result.symbol == NULL
2552 && data->result.block == NULL);
2553
2554 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2555 data->name, data->domain);
2556
2557 /* If we found a match, tell the iterator to stop. Otherwise,
2558 keep going. */
2559 return (data->result.symbol != NULL);
2560 }
2561
2562 /* See symtab.h. */
2563
2564 struct block_symbol
2565 lookup_global_symbol (const char *name,
2566 const struct block *block,
2567 const domain_enum domain)
2568 {
2569 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2570 struct block_symbol result;
2571 struct objfile *objfile;
2572 struct global_sym_lookup_data lookup_data;
2573 struct block_symbol_cache *bsc;
2574 struct symbol_cache_slot *slot;
2575
2576 objfile = lookup_objfile_from_block (block);
2577
2578 /* First see if we can find the symbol in the cache.
2579 This works because we use the current objfile to qualify the lookup. */
2580 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2581 &bsc, &slot);
2582 if (result.symbol != NULL)
2583 {
2584 if (SYMBOL_LOOKUP_FAILED_P (result))
2585 return (struct block_symbol) {NULL, NULL};
2586 return result;
2587 }
2588
2589 /* Call library-specific lookup procedure. */
2590 if (objfile != NULL)
2591 result = solib_global_lookup (objfile, name, domain);
2592
2593 /* If that didn't work go a global search (of global blocks, heh). */
2594 if (result.symbol == NULL)
2595 {
2596 memset (&lookup_data, 0, sizeof (lookup_data));
2597 lookup_data.name = name;
2598 lookup_data.domain = domain;
2599 gdbarch_iterate_over_objfiles_in_search_order
2600 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2601 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2602 result = lookup_data.result;
2603 }
2604
2605 if (result.symbol != NULL)
2606 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2607 else
2608 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2609
2610 return result;
2611 }
2612
2613 int
2614 symbol_matches_domain (enum language symbol_language,
2615 domain_enum symbol_domain,
2616 domain_enum domain)
2617 {
2618 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2619 Similarly, any Ada type declaration implicitly defines a typedef. */
2620 if (symbol_language == language_cplus
2621 || symbol_language == language_d
2622 || symbol_language == language_ada
2623 || symbol_language == language_rust)
2624 {
2625 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2626 && symbol_domain == STRUCT_DOMAIN)
2627 return 1;
2628 }
2629 /* For all other languages, strict match is required. */
2630 return (symbol_domain == domain);
2631 }
2632
2633 /* See symtab.h. */
2634
2635 struct type *
2636 lookup_transparent_type (const char *name)
2637 {
2638 return current_language->la_lookup_transparent_type (name);
2639 }
2640
2641 /* A helper for basic_lookup_transparent_type that interfaces with the
2642 "quick" symbol table functions. */
2643
2644 static struct type *
2645 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2646 const char *name)
2647 {
2648 struct compunit_symtab *cust;
2649 const struct blockvector *bv;
2650 struct block *block;
2651 struct symbol *sym;
2652
2653 if (!objfile->sf)
2654 return NULL;
2655 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2656 STRUCT_DOMAIN);
2657 if (cust == NULL)
2658 return NULL;
2659
2660 bv = COMPUNIT_BLOCKVECTOR (cust);
2661 block = BLOCKVECTOR_BLOCK (bv, block_index);
2662 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2663 block_find_non_opaque_type, NULL);
2664 if (sym == NULL)
2665 error_in_psymtab_expansion (block_index, name, cust);
2666 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2667 return SYMBOL_TYPE (sym);
2668 }
2669
2670 /* Subroutine of basic_lookup_transparent_type to simplify it.
2671 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2672 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2673
2674 static struct type *
2675 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2676 const char *name)
2677 {
2678 const struct compunit_symtab *cust;
2679 const struct blockvector *bv;
2680 const struct block *block;
2681 const struct symbol *sym;
2682
2683 ALL_OBJFILE_COMPUNITS (objfile, cust)
2684 {
2685 bv = COMPUNIT_BLOCKVECTOR (cust);
2686 block = BLOCKVECTOR_BLOCK (bv, block_index);
2687 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2688 block_find_non_opaque_type, NULL);
2689 if (sym != NULL)
2690 {
2691 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2692 return SYMBOL_TYPE (sym);
2693 }
2694 }
2695
2696 return NULL;
2697 }
2698
2699 /* The standard implementation of lookup_transparent_type. This code
2700 was modeled on lookup_symbol -- the parts not relevant to looking
2701 up types were just left out. In particular it's assumed here that
2702 types are available in STRUCT_DOMAIN and only in file-static or
2703 global blocks. */
2704
2705 struct type *
2706 basic_lookup_transparent_type (const char *name)
2707 {
2708 struct objfile *objfile;
2709 struct type *t;
2710
2711 /* Now search all the global symbols. Do the symtab's first, then
2712 check the psymtab's. If a psymtab indicates the existence
2713 of the desired name as a global, then do psymtab-to-symtab
2714 conversion on the fly and return the found symbol. */
2715
2716 ALL_OBJFILES (objfile)
2717 {
2718 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2719 if (t)
2720 return t;
2721 }
2722
2723 ALL_OBJFILES (objfile)
2724 {
2725 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2726 if (t)
2727 return t;
2728 }
2729
2730 /* Now search the static file-level symbols.
2731 Not strictly correct, but more useful than an error.
2732 Do the symtab's first, then
2733 check the psymtab's. If a psymtab indicates the existence
2734 of the desired name as a file-level static, then do psymtab-to-symtab
2735 conversion on the fly and return the found symbol. */
2736
2737 ALL_OBJFILES (objfile)
2738 {
2739 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2740 if (t)
2741 return t;
2742 }
2743
2744 ALL_OBJFILES (objfile)
2745 {
2746 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2747 if (t)
2748 return t;
2749 }
2750
2751 return (struct type *) 0;
2752 }
2753
2754 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2755
2756 For each symbol that matches, CALLBACK is called. The symbol is
2757 passed to the callback.
2758
2759 If CALLBACK returns false, the iteration ends. Otherwise, the
2760 search continues. */
2761
2762 void
2763 iterate_over_symbols (const struct block *block, const char *name,
2764 const domain_enum domain,
2765 gdb::function_view<symbol_found_callback_ftype> callback)
2766 {
2767 struct block_iterator iter;
2768 struct symbol *sym;
2769
2770 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2771 {
2772 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2773 SYMBOL_DOMAIN (sym), domain))
2774 {
2775 if (!callback (sym))
2776 return;
2777 }
2778 }
2779 }
2780
2781 /* Find the compunit symtab associated with PC and SECTION.
2782 This will read in debug info as necessary. */
2783
2784 struct compunit_symtab *
2785 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2786 {
2787 struct compunit_symtab *cust;
2788 struct compunit_symtab *best_cust = NULL;
2789 struct objfile *objfile;
2790 CORE_ADDR distance = 0;
2791 struct bound_minimal_symbol msymbol;
2792
2793 /* If we know that this is not a text address, return failure. This is
2794 necessary because we loop based on the block's high and low code
2795 addresses, which do not include the data ranges, and because
2796 we call find_pc_sect_psymtab which has a similar restriction based
2797 on the partial_symtab's texthigh and textlow. */
2798 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2799 if (msymbol.minsym
2800 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2801 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2802 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2803 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2804 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2805 return NULL;
2806
2807 /* Search all symtabs for the one whose file contains our address, and which
2808 is the smallest of all the ones containing the address. This is designed
2809 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2810 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2811 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2812
2813 This happens for native ecoff format, where code from included files
2814 gets its own symtab. The symtab for the included file should have
2815 been read in already via the dependency mechanism.
2816 It might be swifter to create several symtabs with the same name
2817 like xcoff does (I'm not sure).
2818
2819 It also happens for objfiles that have their functions reordered.
2820 For these, the symtab we are looking for is not necessarily read in. */
2821
2822 ALL_COMPUNITS (objfile, cust)
2823 {
2824 struct block *b;
2825 const struct blockvector *bv;
2826
2827 bv = COMPUNIT_BLOCKVECTOR (cust);
2828 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2829
2830 if (BLOCK_START (b) <= pc
2831 && BLOCK_END (b) > pc
2832 && (distance == 0
2833 || BLOCK_END (b) - BLOCK_START (b) < distance))
2834 {
2835 /* For an objfile that has its functions reordered,
2836 find_pc_psymtab will find the proper partial symbol table
2837 and we simply return its corresponding symtab. */
2838 /* In order to better support objfiles that contain both
2839 stabs and coff debugging info, we continue on if a psymtab
2840 can't be found. */
2841 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2842 {
2843 struct compunit_symtab *result;
2844
2845 result
2846 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2847 msymbol,
2848 pc, section,
2849 0);
2850 if (result != NULL)
2851 return result;
2852 }
2853 if (section != 0)
2854 {
2855 struct block_iterator iter;
2856 struct symbol *sym = NULL;
2857
2858 ALL_BLOCK_SYMBOLS (b, iter, sym)
2859 {
2860 fixup_symbol_section (sym, objfile);
2861 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2862 section))
2863 break;
2864 }
2865 if (sym == NULL)
2866 continue; /* No symbol in this symtab matches
2867 section. */
2868 }
2869 distance = BLOCK_END (b) - BLOCK_START (b);
2870 best_cust = cust;
2871 }
2872 }
2873
2874 if (best_cust != NULL)
2875 return best_cust;
2876
2877 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2878
2879 ALL_OBJFILES (objfile)
2880 {
2881 struct compunit_symtab *result;
2882
2883 if (!objfile->sf)
2884 continue;
2885 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2886 msymbol,
2887 pc, section,
2888 1);
2889 if (result != NULL)
2890 return result;
2891 }
2892
2893 return NULL;
2894 }
2895
2896 /* Find the compunit symtab associated with PC.
2897 This will read in debug info as necessary.
2898 Backward compatibility, no section. */
2899
2900 struct compunit_symtab *
2901 find_pc_compunit_symtab (CORE_ADDR pc)
2902 {
2903 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2904 }
2905 \f
2906
2907 /* Find the source file and line number for a given PC value and SECTION.
2908 Return a structure containing a symtab pointer, a line number,
2909 and a pc range for the entire source line.
2910 The value's .pc field is NOT the specified pc.
2911 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2912 use the line that ends there. Otherwise, in that case, the line
2913 that begins there is used. */
2914
2915 /* The big complication here is that a line may start in one file, and end just
2916 before the start of another file. This usually occurs when you #include
2917 code in the middle of a subroutine. To properly find the end of a line's PC
2918 range, we must search all symtabs associated with this compilation unit, and
2919 find the one whose first PC is closer than that of the next line in this
2920 symtab. */
2921
2922 /* If it's worth the effort, we could be using a binary search. */
2923
2924 struct symtab_and_line
2925 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2926 {
2927 struct compunit_symtab *cust;
2928 struct symtab *iter_s;
2929 struct linetable *l;
2930 int len;
2931 int i;
2932 struct linetable_entry *item;
2933 const struct blockvector *bv;
2934 struct bound_minimal_symbol msymbol;
2935
2936 /* Info on best line seen so far, and where it starts, and its file. */
2937
2938 struct linetable_entry *best = NULL;
2939 CORE_ADDR best_end = 0;
2940 struct symtab *best_symtab = 0;
2941
2942 /* Store here the first line number
2943 of a file which contains the line at the smallest pc after PC.
2944 If we don't find a line whose range contains PC,
2945 we will use a line one less than this,
2946 with a range from the start of that file to the first line's pc. */
2947 struct linetable_entry *alt = NULL;
2948
2949 /* Info on best line seen in this file. */
2950
2951 struct linetable_entry *prev;
2952
2953 /* If this pc is not from the current frame,
2954 it is the address of the end of a call instruction.
2955 Quite likely that is the start of the following statement.
2956 But what we want is the statement containing the instruction.
2957 Fudge the pc to make sure we get that. */
2958
2959 /* It's tempting to assume that, if we can't find debugging info for
2960 any function enclosing PC, that we shouldn't search for line
2961 number info, either. However, GAS can emit line number info for
2962 assembly files --- very helpful when debugging hand-written
2963 assembly code. In such a case, we'd have no debug info for the
2964 function, but we would have line info. */
2965
2966 if (notcurrent)
2967 pc -= 1;
2968
2969 /* elz: added this because this function returned the wrong
2970 information if the pc belongs to a stub (import/export)
2971 to call a shlib function. This stub would be anywhere between
2972 two functions in the target, and the line info was erroneously
2973 taken to be the one of the line before the pc. */
2974
2975 /* RT: Further explanation:
2976
2977 * We have stubs (trampolines) inserted between procedures.
2978 *
2979 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2980 * exists in the main image.
2981 *
2982 * In the minimal symbol table, we have a bunch of symbols
2983 * sorted by start address. The stubs are marked as "trampoline",
2984 * the others appear as text. E.g.:
2985 *
2986 * Minimal symbol table for main image
2987 * main: code for main (text symbol)
2988 * shr1: stub (trampoline symbol)
2989 * foo: code for foo (text symbol)
2990 * ...
2991 * Minimal symbol table for "shr1" image:
2992 * ...
2993 * shr1: code for shr1 (text symbol)
2994 * ...
2995 *
2996 * So the code below is trying to detect if we are in the stub
2997 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2998 * and if found, do the symbolization from the real-code address
2999 * rather than the stub address.
3000 *
3001 * Assumptions being made about the minimal symbol table:
3002 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3003 * if we're really in the trampoline.s If we're beyond it (say
3004 * we're in "foo" in the above example), it'll have a closer
3005 * symbol (the "foo" text symbol for example) and will not
3006 * return the trampoline.
3007 * 2. lookup_minimal_symbol_text() will find a real text symbol
3008 * corresponding to the trampoline, and whose address will
3009 * be different than the trampoline address. I put in a sanity
3010 * check for the address being the same, to avoid an
3011 * infinite recursion.
3012 */
3013 msymbol = lookup_minimal_symbol_by_pc (pc);
3014 if (msymbol.minsym != NULL)
3015 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3016 {
3017 struct bound_minimal_symbol mfunsym
3018 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3019 NULL);
3020
3021 if (mfunsym.minsym == NULL)
3022 /* I eliminated this warning since it is coming out
3023 * in the following situation:
3024 * gdb shmain // test program with shared libraries
3025 * (gdb) break shr1 // function in shared lib
3026 * Warning: In stub for ...
3027 * In the above situation, the shared lib is not loaded yet,
3028 * so of course we can't find the real func/line info,
3029 * but the "break" still works, and the warning is annoying.
3030 * So I commented out the warning. RT */
3031 /* warning ("In stub for %s; unable to find real function/line info",
3032 SYMBOL_LINKAGE_NAME (msymbol)); */
3033 ;
3034 /* fall through */
3035 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3036 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3037 /* Avoid infinite recursion */
3038 /* See above comment about why warning is commented out. */
3039 /* warning ("In stub for %s; unable to find real function/line info",
3040 SYMBOL_LINKAGE_NAME (msymbol)); */
3041 ;
3042 /* fall through */
3043 else
3044 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3045 }
3046
3047 symtab_and_line val;
3048 val.pspace = current_program_space;
3049
3050 cust = find_pc_sect_compunit_symtab (pc, section);
3051 if (cust == NULL)
3052 {
3053 /* If no symbol information, return previous pc. */
3054 if (notcurrent)
3055 pc++;
3056 val.pc = pc;
3057 return val;
3058 }
3059
3060 bv = COMPUNIT_BLOCKVECTOR (cust);
3061
3062 /* Look at all the symtabs that share this blockvector.
3063 They all have the same apriori range, that we found was right;
3064 but they have different line tables. */
3065
3066 ALL_COMPUNIT_FILETABS (cust, iter_s)
3067 {
3068 /* Find the best line in this symtab. */
3069 l = SYMTAB_LINETABLE (iter_s);
3070 if (!l)
3071 continue;
3072 len = l->nitems;
3073 if (len <= 0)
3074 {
3075 /* I think len can be zero if the symtab lacks line numbers
3076 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3077 I'm not sure which, and maybe it depends on the symbol
3078 reader). */
3079 continue;
3080 }
3081
3082 prev = NULL;
3083 item = l->item; /* Get first line info. */
3084
3085 /* Is this file's first line closer than the first lines of other files?
3086 If so, record this file, and its first line, as best alternate. */
3087 if (item->pc > pc && (!alt || item->pc < alt->pc))
3088 alt = item;
3089
3090 for (i = 0; i < len; i++, item++)
3091 {
3092 /* Leave prev pointing to the linetable entry for the last line
3093 that started at or before PC. */
3094 if (item->pc > pc)
3095 break;
3096
3097 prev = item;
3098 }
3099
3100 /* At this point, prev points at the line whose start addr is <= pc, and
3101 item points at the next line. If we ran off the end of the linetable
3102 (pc >= start of the last line), then prev == item. If pc < start of
3103 the first line, prev will not be set. */
3104
3105 /* Is this file's best line closer than the best in the other files?
3106 If so, record this file, and its best line, as best so far. Don't
3107 save prev if it represents the end of a function (i.e. line number
3108 0) instead of a real line. */
3109
3110 if (prev && prev->line && (!best || prev->pc > best->pc))
3111 {
3112 best = prev;
3113 best_symtab = iter_s;
3114
3115 /* Discard BEST_END if it's before the PC of the current BEST. */
3116 if (best_end <= best->pc)
3117 best_end = 0;
3118 }
3119
3120 /* If another line (denoted by ITEM) is in the linetable and its
3121 PC is after BEST's PC, but before the current BEST_END, then
3122 use ITEM's PC as the new best_end. */
3123 if (best && i < len && item->pc > best->pc
3124 && (best_end == 0 || best_end > item->pc))
3125 best_end = item->pc;
3126 }
3127
3128 if (!best_symtab)
3129 {
3130 /* If we didn't find any line number info, just return zeros.
3131 We used to return alt->line - 1 here, but that could be
3132 anywhere; if we don't have line number info for this PC,
3133 don't make some up. */
3134 val.pc = pc;
3135 }
3136 else if (best->line == 0)
3137 {
3138 /* If our best fit is in a range of PC's for which no line
3139 number info is available (line number is zero) then we didn't
3140 find any valid line information. */
3141 val.pc = pc;
3142 }
3143 else
3144 {
3145 val.symtab = best_symtab;
3146 val.line = best->line;
3147 val.pc = best->pc;
3148 if (best_end && (!alt || best_end < alt->pc))
3149 val.end = best_end;
3150 else if (alt)
3151 val.end = alt->pc;
3152 else
3153 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3154 }
3155 val.section = section;
3156 return val;
3157 }
3158
3159 /* Backward compatibility (no section). */
3160
3161 struct symtab_and_line
3162 find_pc_line (CORE_ADDR pc, int notcurrent)
3163 {
3164 struct obj_section *section;
3165
3166 section = find_pc_overlay (pc);
3167 if (pc_in_unmapped_range (pc, section))
3168 pc = overlay_mapped_address (pc, section);
3169 return find_pc_sect_line (pc, section, notcurrent);
3170 }
3171
3172 /* See symtab.h. */
3173
3174 struct symtab *
3175 find_pc_line_symtab (CORE_ADDR pc)
3176 {
3177 struct symtab_and_line sal;
3178
3179 /* This always passes zero for NOTCURRENT to find_pc_line.
3180 There are currently no callers that ever pass non-zero. */
3181 sal = find_pc_line (pc, 0);
3182 return sal.symtab;
3183 }
3184 \f
3185 /* Find line number LINE in any symtab whose name is the same as
3186 SYMTAB.
3187
3188 If found, return the symtab that contains the linetable in which it was
3189 found, set *INDEX to the index in the linetable of the best entry
3190 found, and set *EXACT_MATCH nonzero if the value returned is an
3191 exact match.
3192
3193 If not found, return NULL. */
3194
3195 struct symtab *
3196 find_line_symtab (struct symtab *symtab, int line,
3197 int *index, int *exact_match)
3198 {
3199 int exact = 0; /* Initialized here to avoid a compiler warning. */
3200
3201 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3202 so far seen. */
3203
3204 int best_index;
3205 struct linetable *best_linetable;
3206 struct symtab *best_symtab;
3207
3208 /* First try looking it up in the given symtab. */
3209 best_linetable = SYMTAB_LINETABLE (symtab);
3210 best_symtab = symtab;
3211 best_index = find_line_common (best_linetable, line, &exact, 0);
3212 if (best_index < 0 || !exact)
3213 {
3214 /* Didn't find an exact match. So we better keep looking for
3215 another symtab with the same name. In the case of xcoff,
3216 multiple csects for one source file (produced by IBM's FORTRAN
3217 compiler) produce multiple symtabs (this is unavoidable
3218 assuming csects can be at arbitrary places in memory and that
3219 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3220
3221 /* BEST is the smallest linenumber > LINE so far seen,
3222 or 0 if none has been seen so far.
3223 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3224 int best;
3225
3226 struct objfile *objfile;
3227 struct compunit_symtab *cu;
3228 struct symtab *s;
3229
3230 if (best_index >= 0)
3231 best = best_linetable->item[best_index].line;
3232 else
3233 best = 0;
3234
3235 ALL_OBJFILES (objfile)
3236 {
3237 if (objfile->sf)
3238 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3239 symtab_to_fullname (symtab));
3240 }
3241
3242 ALL_FILETABS (objfile, cu, s)
3243 {
3244 struct linetable *l;
3245 int ind;
3246
3247 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3248 continue;
3249 if (FILENAME_CMP (symtab_to_fullname (symtab),
3250 symtab_to_fullname (s)) != 0)
3251 continue;
3252 l = SYMTAB_LINETABLE (s);
3253 ind = find_line_common (l, line, &exact, 0);
3254 if (ind >= 0)
3255 {
3256 if (exact)
3257 {
3258 best_index = ind;
3259 best_linetable = l;
3260 best_symtab = s;
3261 goto done;
3262 }
3263 if (best == 0 || l->item[ind].line < best)
3264 {
3265 best = l->item[ind].line;
3266 best_index = ind;
3267 best_linetable = l;
3268 best_symtab = s;
3269 }
3270 }
3271 }
3272 }
3273 done:
3274 if (best_index < 0)
3275 return NULL;
3276
3277 if (index)
3278 *index = best_index;
3279 if (exact_match)
3280 *exact_match = exact;
3281
3282 return best_symtab;
3283 }
3284
3285 /* Given SYMTAB, returns all the PCs function in the symtab that
3286 exactly match LINE. Returns an empty vector if there are no exact
3287 matches, but updates BEST_ITEM in this case. */
3288
3289 std::vector<CORE_ADDR>
3290 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3291 struct linetable_entry **best_item)
3292 {
3293 int start = 0;
3294 std::vector<CORE_ADDR> result;
3295
3296 /* First, collect all the PCs that are at this line. */
3297 while (1)
3298 {
3299 int was_exact;
3300 int idx;
3301
3302 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3303 start);
3304 if (idx < 0)
3305 break;
3306
3307 if (!was_exact)
3308 {
3309 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3310
3311 if (*best_item == NULL || item->line < (*best_item)->line)
3312 *best_item = item;
3313
3314 break;
3315 }
3316
3317 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3318 start = idx + 1;
3319 }
3320
3321 return result;
3322 }
3323
3324 \f
3325 /* Set the PC value for a given source file and line number and return true.
3326 Returns zero for invalid line number (and sets the PC to 0).
3327 The source file is specified with a struct symtab. */
3328
3329 int
3330 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3331 {
3332 struct linetable *l;
3333 int ind;
3334
3335 *pc = 0;
3336 if (symtab == 0)
3337 return 0;
3338
3339 symtab = find_line_symtab (symtab, line, &ind, NULL);
3340 if (symtab != NULL)
3341 {
3342 l = SYMTAB_LINETABLE (symtab);
3343 *pc = l->item[ind].pc;
3344 return 1;
3345 }
3346 else
3347 return 0;
3348 }
3349
3350 /* Find the range of pc values in a line.
3351 Store the starting pc of the line into *STARTPTR
3352 and the ending pc (start of next line) into *ENDPTR.
3353 Returns 1 to indicate success.
3354 Returns 0 if could not find the specified line. */
3355
3356 int
3357 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3358 CORE_ADDR *endptr)
3359 {
3360 CORE_ADDR startaddr;
3361 struct symtab_and_line found_sal;
3362
3363 startaddr = sal.pc;
3364 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3365 return 0;
3366
3367 /* This whole function is based on address. For example, if line 10 has
3368 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3369 "info line *0x123" should say the line goes from 0x100 to 0x200
3370 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3371 This also insures that we never give a range like "starts at 0x134
3372 and ends at 0x12c". */
3373
3374 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3375 if (found_sal.line != sal.line)
3376 {
3377 /* The specified line (sal) has zero bytes. */
3378 *startptr = found_sal.pc;
3379 *endptr = found_sal.pc;
3380 }
3381 else
3382 {
3383 *startptr = found_sal.pc;
3384 *endptr = found_sal.end;
3385 }
3386 return 1;
3387 }
3388
3389 /* Given a line table and a line number, return the index into the line
3390 table for the pc of the nearest line whose number is >= the specified one.
3391 Return -1 if none is found. The value is >= 0 if it is an index.
3392 START is the index at which to start searching the line table.
3393
3394 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3395
3396 static int
3397 find_line_common (struct linetable *l, int lineno,
3398 int *exact_match, int start)
3399 {
3400 int i;
3401 int len;
3402
3403 /* BEST is the smallest linenumber > LINENO so far seen,
3404 or 0 if none has been seen so far.
3405 BEST_INDEX identifies the item for it. */
3406
3407 int best_index = -1;
3408 int best = 0;
3409
3410 *exact_match = 0;
3411
3412 if (lineno <= 0)
3413 return -1;
3414 if (l == 0)
3415 return -1;
3416
3417 len = l->nitems;
3418 for (i = start; i < len; i++)
3419 {
3420 struct linetable_entry *item = &(l->item[i]);
3421
3422 if (item->line == lineno)
3423 {
3424 /* Return the first (lowest address) entry which matches. */
3425 *exact_match = 1;
3426 return i;
3427 }
3428
3429 if (item->line > lineno && (best == 0 || item->line < best))
3430 {
3431 best = item->line;
3432 best_index = i;
3433 }
3434 }
3435
3436 /* If we got here, we didn't get an exact match. */
3437 return best_index;
3438 }
3439
3440 int
3441 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3442 {
3443 struct symtab_and_line sal;
3444
3445 sal = find_pc_line (pc, 0);
3446 *startptr = sal.pc;
3447 *endptr = sal.end;
3448 return sal.symtab != 0;
3449 }
3450
3451 /* Given a function symbol SYM, find the symtab and line for the start
3452 of the function.
3453 If the argument FUNFIRSTLINE is nonzero, we want the first line
3454 of real code inside the function.
3455 This function should return SALs matching those from minsym_found,
3456 otherwise false multiple-locations breakpoints could be placed. */
3457
3458 struct symtab_and_line
3459 find_function_start_sal (struct symbol *sym, int funfirstline)
3460 {
3461 fixup_symbol_section (sym, NULL);
3462
3463 obj_section *section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3464 symtab_and_line sal
3465 = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3466
3467 if (funfirstline && sal.symtab != NULL
3468 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3469 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3470 {
3471 struct gdbarch *gdbarch = symbol_arch (sym);
3472
3473 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3474 if (gdbarch_skip_entrypoint_p (gdbarch))
3475 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3476 return sal;
3477 }
3478
3479 /* We always should have a line for the function start address.
3480 If we don't, something is odd. Create a plain SAL refering
3481 just the PC and hope that skip_prologue_sal (if requested)
3482 can find a line number for after the prologue. */
3483 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3484 {
3485 sal = {};
3486 sal.pspace = current_program_space;
3487 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3488 sal.section = section;
3489 }
3490
3491 if (funfirstline)
3492 skip_prologue_sal (&sal);
3493
3494 return sal;
3495 }
3496
3497 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3498 address for that function that has an entry in SYMTAB's line info
3499 table. If such an entry cannot be found, return FUNC_ADDR
3500 unaltered. */
3501
3502 static CORE_ADDR
3503 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3504 {
3505 CORE_ADDR func_start, func_end;
3506 struct linetable *l;
3507 int i;
3508
3509 /* Give up if this symbol has no lineinfo table. */
3510 l = SYMTAB_LINETABLE (symtab);
3511 if (l == NULL)
3512 return func_addr;
3513
3514 /* Get the range for the function's PC values, or give up if we
3515 cannot, for some reason. */
3516 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3517 return func_addr;
3518
3519 /* Linetable entries are ordered by PC values, see the commentary in
3520 symtab.h where `struct linetable' is defined. Thus, the first
3521 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3522 address we are looking for. */
3523 for (i = 0; i < l->nitems; i++)
3524 {
3525 struct linetable_entry *item = &(l->item[i]);
3526
3527 /* Don't use line numbers of zero, they mark special entries in
3528 the table. See the commentary on symtab.h before the
3529 definition of struct linetable. */
3530 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3531 return item->pc;
3532 }
3533
3534 return func_addr;
3535 }
3536
3537 /* Adjust SAL to the first instruction past the function prologue.
3538 If the PC was explicitly specified, the SAL is not changed.
3539 If the line number was explicitly specified, at most the SAL's PC
3540 is updated. If SAL is already past the prologue, then do nothing. */
3541
3542 void
3543 skip_prologue_sal (struct symtab_and_line *sal)
3544 {
3545 struct symbol *sym;
3546 struct symtab_and_line start_sal;
3547 CORE_ADDR pc, saved_pc;
3548 struct obj_section *section;
3549 const char *name;
3550 struct objfile *objfile;
3551 struct gdbarch *gdbarch;
3552 const struct block *b, *function_block;
3553 int force_skip, skip;
3554
3555 /* Do not change the SAL if PC was specified explicitly. */
3556 if (sal->explicit_pc)
3557 return;
3558
3559 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3560
3561 switch_to_program_space_and_thread (sal->pspace);
3562
3563 sym = find_pc_sect_function (sal->pc, sal->section);
3564 if (sym != NULL)
3565 {
3566 fixup_symbol_section (sym, NULL);
3567
3568 objfile = symbol_objfile (sym);
3569 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3570 section = SYMBOL_OBJ_SECTION (objfile, sym);
3571 name = SYMBOL_LINKAGE_NAME (sym);
3572 }
3573 else
3574 {
3575 struct bound_minimal_symbol msymbol
3576 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3577
3578 if (msymbol.minsym == NULL)
3579 return;
3580
3581 objfile = msymbol.objfile;
3582 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3583 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3584 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3585 }
3586
3587 gdbarch = get_objfile_arch (objfile);
3588
3589 /* Process the prologue in two passes. In the first pass try to skip the
3590 prologue (SKIP is true) and verify there is a real need for it (indicated
3591 by FORCE_SKIP). If no such reason was found run a second pass where the
3592 prologue is not skipped (SKIP is false). */
3593
3594 skip = 1;
3595 force_skip = 1;
3596
3597 /* Be conservative - allow direct PC (without skipping prologue) only if we
3598 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3599 have to be set by the caller so we use SYM instead. */
3600 if (sym != NULL
3601 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3602 force_skip = 0;
3603
3604 saved_pc = pc;
3605 do
3606 {
3607 pc = saved_pc;
3608
3609 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3610 so that gdbarch_skip_prologue has something unique to work on. */
3611 if (section_is_overlay (section) && !section_is_mapped (section))
3612 pc = overlay_unmapped_address (pc, section);
3613
3614 /* Skip "first line" of function (which is actually its prologue). */
3615 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3616 if (gdbarch_skip_entrypoint_p (gdbarch))
3617 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3618 if (skip)
3619 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3620
3621 /* For overlays, map pc back into its mapped VMA range. */
3622 pc = overlay_mapped_address (pc, section);
3623
3624 /* Calculate line number. */
3625 start_sal = find_pc_sect_line (pc, section, 0);
3626
3627 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3628 line is still part of the same function. */
3629 if (skip && start_sal.pc != pc
3630 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3631 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3632 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3633 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3634 {
3635 /* First pc of next line */
3636 pc = start_sal.end;
3637 /* Recalculate the line number (might not be N+1). */
3638 start_sal = find_pc_sect_line (pc, section, 0);
3639 }
3640
3641 /* On targets with executable formats that don't have a concept of
3642 constructors (ELF with .init has, PE doesn't), gcc emits a call
3643 to `__main' in `main' between the prologue and before user
3644 code. */
3645 if (gdbarch_skip_main_prologue_p (gdbarch)
3646 && name && strcmp_iw (name, "main") == 0)
3647 {
3648 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3649 /* Recalculate the line number (might not be N+1). */
3650 start_sal = find_pc_sect_line (pc, section, 0);
3651 force_skip = 1;
3652 }
3653 }
3654 while (!force_skip && skip--);
3655
3656 /* If we still don't have a valid source line, try to find the first
3657 PC in the lineinfo table that belongs to the same function. This
3658 happens with COFF debug info, which does not seem to have an
3659 entry in lineinfo table for the code after the prologue which has
3660 no direct relation to source. For example, this was found to be
3661 the case with the DJGPP target using "gcc -gcoff" when the
3662 compiler inserted code after the prologue to make sure the stack
3663 is aligned. */
3664 if (!force_skip && sym && start_sal.symtab == NULL)
3665 {
3666 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3667 /* Recalculate the line number. */
3668 start_sal = find_pc_sect_line (pc, section, 0);
3669 }
3670
3671 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3672 forward SAL to the end of the prologue. */
3673 if (sal->pc >= pc)
3674 return;
3675
3676 sal->pc = pc;
3677 sal->section = section;
3678
3679 /* Unless the explicit_line flag was set, update the SAL line
3680 and symtab to correspond to the modified PC location. */
3681 if (sal->explicit_line)
3682 return;
3683
3684 sal->symtab = start_sal.symtab;
3685 sal->line = start_sal.line;
3686 sal->end = start_sal.end;
3687
3688 /* Check if we are now inside an inlined function. If we can,
3689 use the call site of the function instead. */
3690 b = block_for_pc_sect (sal->pc, sal->section);
3691 function_block = NULL;
3692 while (b != NULL)
3693 {
3694 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3695 function_block = b;
3696 else if (BLOCK_FUNCTION (b) != NULL)
3697 break;
3698 b = BLOCK_SUPERBLOCK (b);
3699 }
3700 if (function_block != NULL
3701 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3702 {
3703 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3704 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3705 }
3706 }
3707
3708 /* Given PC at the function's start address, attempt to find the
3709 prologue end using SAL information. Return zero if the skip fails.
3710
3711 A non-optimized prologue traditionally has one SAL for the function
3712 and a second for the function body. A single line function has
3713 them both pointing at the same line.
3714
3715 An optimized prologue is similar but the prologue may contain
3716 instructions (SALs) from the instruction body. Need to skip those
3717 while not getting into the function body.
3718
3719 The functions end point and an increasing SAL line are used as
3720 indicators of the prologue's endpoint.
3721
3722 This code is based on the function refine_prologue_limit
3723 (found in ia64). */
3724
3725 CORE_ADDR
3726 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3727 {
3728 struct symtab_and_line prologue_sal;
3729 CORE_ADDR start_pc;
3730 CORE_ADDR end_pc;
3731 const struct block *bl;
3732
3733 /* Get an initial range for the function. */
3734 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3735 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3736
3737 prologue_sal = find_pc_line (start_pc, 0);
3738 if (prologue_sal.line != 0)
3739 {
3740 /* For languages other than assembly, treat two consecutive line
3741 entries at the same address as a zero-instruction prologue.
3742 The GNU assembler emits separate line notes for each instruction
3743 in a multi-instruction macro, but compilers generally will not
3744 do this. */
3745 if (prologue_sal.symtab->language != language_asm)
3746 {
3747 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3748 int idx = 0;
3749
3750 /* Skip any earlier lines, and any end-of-sequence marker
3751 from a previous function. */
3752 while (linetable->item[idx].pc != prologue_sal.pc
3753 || linetable->item[idx].line == 0)
3754 idx++;
3755
3756 if (idx+1 < linetable->nitems
3757 && linetable->item[idx+1].line != 0
3758 && linetable->item[idx+1].pc == start_pc)
3759 return start_pc;
3760 }
3761
3762 /* If there is only one sal that covers the entire function,
3763 then it is probably a single line function, like
3764 "foo(){}". */
3765 if (prologue_sal.end >= end_pc)
3766 return 0;
3767
3768 while (prologue_sal.end < end_pc)
3769 {
3770 struct symtab_and_line sal;
3771
3772 sal = find_pc_line (prologue_sal.end, 0);
3773 if (sal.line == 0)
3774 break;
3775 /* Assume that a consecutive SAL for the same (or larger)
3776 line mark the prologue -> body transition. */
3777 if (sal.line >= prologue_sal.line)
3778 break;
3779 /* Likewise if we are in a different symtab altogether
3780 (e.g. within a file included via #include).  */
3781 if (sal.symtab != prologue_sal.symtab)
3782 break;
3783
3784 /* The line number is smaller. Check that it's from the
3785 same function, not something inlined. If it's inlined,
3786 then there is no point comparing the line numbers. */
3787 bl = block_for_pc (prologue_sal.end);
3788 while (bl)
3789 {
3790 if (block_inlined_p (bl))
3791 break;
3792 if (BLOCK_FUNCTION (bl))
3793 {
3794 bl = NULL;
3795 break;
3796 }
3797 bl = BLOCK_SUPERBLOCK (bl);
3798 }
3799 if (bl != NULL)
3800 break;
3801
3802 /* The case in which compiler's optimizer/scheduler has
3803 moved instructions into the prologue. We look ahead in
3804 the function looking for address ranges whose
3805 corresponding line number is less the first one that we
3806 found for the function. This is more conservative then
3807 refine_prologue_limit which scans a large number of SALs
3808 looking for any in the prologue. */
3809 prologue_sal = sal;
3810 }
3811 }
3812
3813 if (prologue_sal.end < end_pc)
3814 /* Return the end of this line, or zero if we could not find a
3815 line. */
3816 return prologue_sal.end;
3817 else
3818 /* Don't return END_PC, which is past the end of the function. */
3819 return prologue_sal.pc;
3820 }
3821
3822 /* See symtab.h. */
3823
3824 symbol *
3825 find_function_alias_target (bound_minimal_symbol msymbol)
3826 {
3827 if (!msymbol_is_text (msymbol.minsym))
3828 return NULL;
3829
3830 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
3831 symbol *sym = find_pc_function (addr);
3832 if (sym != NULL
3833 && SYMBOL_CLASS (sym) == LOC_BLOCK
3834 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == addr)
3835 return sym;
3836
3837 return NULL;
3838 }
3839
3840 \f
3841 /* If P is of the form "operator[ \t]+..." where `...' is
3842 some legitimate operator text, return a pointer to the
3843 beginning of the substring of the operator text.
3844 Otherwise, return "". */
3845
3846 static const char *
3847 operator_chars (const char *p, const char **end)
3848 {
3849 *end = "";
3850 if (!startswith (p, CP_OPERATOR_STR))
3851 return *end;
3852 p += CP_OPERATOR_LEN;
3853
3854 /* Don't get faked out by `operator' being part of a longer
3855 identifier. */
3856 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3857 return *end;
3858
3859 /* Allow some whitespace between `operator' and the operator symbol. */
3860 while (*p == ' ' || *p == '\t')
3861 p++;
3862
3863 /* Recognize 'operator TYPENAME'. */
3864
3865 if (isalpha (*p) || *p == '_' || *p == '$')
3866 {
3867 const char *q = p + 1;
3868
3869 while (isalnum (*q) || *q == '_' || *q == '$')
3870 q++;
3871 *end = q;
3872 return p;
3873 }
3874
3875 while (*p)
3876 switch (*p)
3877 {
3878 case '\\': /* regexp quoting */
3879 if (p[1] == '*')
3880 {
3881 if (p[2] == '=') /* 'operator\*=' */
3882 *end = p + 3;
3883 else /* 'operator\*' */
3884 *end = p + 2;
3885 return p;
3886 }
3887 else if (p[1] == '[')
3888 {
3889 if (p[2] == ']')
3890 error (_("mismatched quoting on brackets, "
3891 "try 'operator\\[\\]'"));
3892 else if (p[2] == '\\' && p[3] == ']')
3893 {
3894 *end = p + 4; /* 'operator\[\]' */
3895 return p;
3896 }
3897 else
3898 error (_("nothing is allowed between '[' and ']'"));
3899 }
3900 else
3901 {
3902 /* Gratuitous qoute: skip it and move on. */
3903 p++;
3904 continue;
3905 }
3906 break;
3907 case '!':
3908 case '=':
3909 case '*':
3910 case '/':
3911 case '%':
3912 case '^':
3913 if (p[1] == '=')
3914 *end = p + 2;
3915 else
3916 *end = p + 1;
3917 return p;
3918 case '<':
3919 case '>':
3920 case '+':
3921 case '-':
3922 case '&':
3923 case '|':
3924 if (p[0] == '-' && p[1] == '>')
3925 {
3926 /* Struct pointer member operator 'operator->'. */
3927 if (p[2] == '*')
3928 {
3929 *end = p + 3; /* 'operator->*' */
3930 return p;
3931 }
3932 else if (p[2] == '\\')
3933 {
3934 *end = p + 4; /* Hopefully 'operator->\*' */
3935 return p;
3936 }
3937 else
3938 {
3939 *end = p + 2; /* 'operator->' */
3940 return p;
3941 }
3942 }
3943 if (p[1] == '=' || p[1] == p[0])
3944 *end = p + 2;
3945 else
3946 *end = p + 1;
3947 return p;
3948 case '~':
3949 case ',':
3950 *end = p + 1;
3951 return p;
3952 case '(':
3953 if (p[1] != ')')
3954 error (_("`operator ()' must be specified "
3955 "without whitespace in `()'"));
3956 *end = p + 2;
3957 return p;
3958 case '?':
3959 if (p[1] != ':')
3960 error (_("`operator ?:' must be specified "
3961 "without whitespace in `?:'"));
3962 *end = p + 2;
3963 return p;
3964 case '[':
3965 if (p[1] != ']')
3966 error (_("`operator []' must be specified "
3967 "without whitespace in `[]'"));
3968 *end = p + 2;
3969 return p;
3970 default:
3971 error (_("`operator %s' not supported"), p);
3972 break;
3973 }
3974
3975 *end = "";
3976 return *end;
3977 }
3978 \f
3979
3980 /* Data structure to maintain printing state for output_source_filename. */
3981
3982 struct output_source_filename_data
3983 {
3984 /* Cache of what we've seen so far. */
3985 struct filename_seen_cache *filename_seen_cache;
3986
3987 /* Flag of whether we're printing the first one. */
3988 int first;
3989 };
3990
3991 /* Slave routine for sources_info. Force line breaks at ,'s.
3992 NAME is the name to print.
3993 DATA contains the state for printing and watching for duplicates. */
3994
3995 static void
3996 output_source_filename (const char *name,
3997 struct output_source_filename_data *data)
3998 {
3999 /* Since a single source file can result in several partial symbol
4000 tables, we need to avoid printing it more than once. Note: if
4001 some of the psymtabs are read in and some are not, it gets
4002 printed both under "Source files for which symbols have been
4003 read" and "Source files for which symbols will be read in on
4004 demand". I consider this a reasonable way to deal with the
4005 situation. I'm not sure whether this can also happen for
4006 symtabs; it doesn't hurt to check. */
4007
4008 /* Was NAME already seen? */
4009 if (data->filename_seen_cache->seen (name))
4010 {
4011 /* Yes; don't print it again. */
4012 return;
4013 }
4014
4015 /* No; print it and reset *FIRST. */
4016 if (! data->first)
4017 printf_filtered (", ");
4018 data->first = 0;
4019
4020 wrap_here ("");
4021 fputs_filtered (name, gdb_stdout);
4022 }
4023
4024 /* A callback for map_partial_symbol_filenames. */
4025
4026 static void
4027 output_partial_symbol_filename (const char *filename, const char *fullname,
4028 void *data)
4029 {
4030 output_source_filename (fullname ? fullname : filename,
4031 (struct output_source_filename_data *) data);
4032 }
4033
4034 static void
4035 info_sources_command (char *ignore, int from_tty)
4036 {
4037 struct compunit_symtab *cu;
4038 struct symtab *s;
4039 struct objfile *objfile;
4040 struct output_source_filename_data data;
4041
4042 if (!have_full_symbols () && !have_partial_symbols ())
4043 {
4044 error (_("No symbol table is loaded. Use the \"file\" command."));
4045 }
4046
4047 filename_seen_cache filenames_seen;
4048
4049 data.filename_seen_cache = &filenames_seen;
4050
4051 printf_filtered ("Source files for which symbols have been read in:\n\n");
4052
4053 data.first = 1;
4054 ALL_FILETABS (objfile, cu, s)
4055 {
4056 const char *fullname = symtab_to_fullname (s);
4057
4058 output_source_filename (fullname, &data);
4059 }
4060 printf_filtered ("\n\n");
4061
4062 printf_filtered ("Source files for which symbols "
4063 "will be read in on demand:\n\n");
4064
4065 filenames_seen.clear ();
4066 data.first = 1;
4067 map_symbol_filenames (output_partial_symbol_filename, &data,
4068 1 /*need_fullname*/);
4069 printf_filtered ("\n");
4070 }
4071
4072 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4073 non-zero compare only lbasename of FILES. */
4074
4075 static int
4076 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4077 {
4078 int i;
4079
4080 if (file != NULL && nfiles != 0)
4081 {
4082 for (i = 0; i < nfiles; i++)
4083 {
4084 if (compare_filenames_for_search (file, (basenames
4085 ? lbasename (files[i])
4086 : files[i])))
4087 return 1;
4088 }
4089 }
4090 else if (nfiles == 0)
4091 return 1;
4092 return 0;
4093 }
4094
4095 /* Free any memory associated with a search. */
4096
4097 void
4098 free_search_symbols (struct symbol_search *symbols)
4099 {
4100 struct symbol_search *p;
4101 struct symbol_search *next;
4102
4103 for (p = symbols; p != NULL; p = next)
4104 {
4105 next = p->next;
4106 xfree (p);
4107 }
4108 }
4109
4110 static void
4111 do_free_search_symbols_cleanup (void *symbolsp)
4112 {
4113 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4114
4115 free_search_symbols (symbols);
4116 }
4117
4118 struct cleanup *
4119 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4120 {
4121 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4122 }
4123
4124 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4125 sort symbols, not minimal symbols. */
4126
4127 static int
4128 compare_search_syms (const void *sa, const void *sb)
4129 {
4130 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4131 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4132 int c;
4133
4134 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4135 symbol_symtab (sym_b->symbol)->filename);
4136 if (c != 0)
4137 return c;
4138
4139 if (sym_a->block != sym_b->block)
4140 return sym_a->block - sym_b->block;
4141
4142 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4143 SYMBOL_PRINT_NAME (sym_b->symbol));
4144 }
4145
4146 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4147 The duplicates are freed, and the new list is returned in
4148 *NEW_HEAD, *NEW_TAIL. */
4149
4150 static void
4151 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4152 struct symbol_search **new_head,
4153 struct symbol_search **new_tail)
4154 {
4155 struct symbol_search **symbols, *symp;
4156 int i, j, nunique;
4157
4158 gdb_assert (found != NULL && nfound > 0);
4159
4160 /* Build an array out of the list so we can easily sort them. */
4161 symbols = XNEWVEC (struct symbol_search *, nfound);
4162
4163 symp = found;
4164 for (i = 0; i < nfound; i++)
4165 {
4166 gdb_assert (symp != NULL);
4167 gdb_assert (symp->block >= 0 && symp->block <= 1);
4168 symbols[i] = symp;
4169 symp = symp->next;
4170 }
4171 gdb_assert (symp == NULL);
4172
4173 qsort (symbols, nfound, sizeof (struct symbol_search *),
4174 compare_search_syms);
4175
4176 /* Collapse out the dups. */
4177 for (i = 1, j = 1; i < nfound; ++i)
4178 {
4179 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4180 symbols[j++] = symbols[i];
4181 else
4182 xfree (symbols[i]);
4183 }
4184 nunique = j;
4185 symbols[j - 1]->next = NULL;
4186
4187 /* Rebuild the linked list. */
4188 for (i = 0; i < nunique - 1; i++)
4189 symbols[i]->next = symbols[i + 1];
4190 symbols[nunique - 1]->next = NULL;
4191
4192 *new_head = symbols[0];
4193 *new_tail = symbols[nunique - 1];
4194 xfree (symbols);
4195 }
4196
4197 /* Search the symbol table for matches to the regular expression REGEXP,
4198 returning the results in *MATCHES.
4199
4200 Only symbols of KIND are searched:
4201 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4202 and constants (enums)
4203 FUNCTIONS_DOMAIN - search all functions
4204 TYPES_DOMAIN - search all type names
4205 ALL_DOMAIN - an internal error for this function
4206
4207 free_search_symbols should be called when *MATCHES is no longer needed.
4208
4209 Within each file the results are sorted locally; each symtab's global and
4210 static blocks are separately alphabetized.
4211 Duplicate entries are removed. */
4212
4213 void
4214 search_symbols (const char *regexp, enum search_domain kind,
4215 int nfiles, const char *files[],
4216 struct symbol_search **matches)
4217 {
4218 struct compunit_symtab *cust;
4219 const struct blockvector *bv;
4220 struct block *b;
4221 int i = 0;
4222 struct block_iterator iter;
4223 struct symbol *sym;
4224 struct objfile *objfile;
4225 struct minimal_symbol *msymbol;
4226 int found_misc = 0;
4227 static const enum minimal_symbol_type types[]
4228 = {mst_data, mst_text, mst_abs};
4229 static const enum minimal_symbol_type types2[]
4230 = {mst_bss, mst_file_text, mst_abs};
4231 static const enum minimal_symbol_type types3[]
4232 = {mst_file_data, mst_solib_trampoline, mst_abs};
4233 static const enum minimal_symbol_type types4[]
4234 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4235 enum minimal_symbol_type ourtype;
4236 enum minimal_symbol_type ourtype2;
4237 enum minimal_symbol_type ourtype3;
4238 enum minimal_symbol_type ourtype4;
4239 struct symbol_search *found;
4240 struct symbol_search *tail;
4241 int nfound;
4242 gdb::optional<compiled_regex> preg;
4243
4244 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4245 CLEANUP_CHAIN is freed only in the case of an error. */
4246 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4247 struct cleanup *retval_chain;
4248
4249 gdb_assert (kind <= TYPES_DOMAIN);
4250
4251 ourtype = types[kind];
4252 ourtype2 = types2[kind];
4253 ourtype3 = types3[kind];
4254 ourtype4 = types4[kind];
4255
4256 *matches = NULL;
4257
4258 if (regexp != NULL)
4259 {
4260 /* Make sure spacing is right for C++ operators.
4261 This is just a courtesy to make the matching less sensitive
4262 to how many spaces the user leaves between 'operator'
4263 and <TYPENAME> or <OPERATOR>. */
4264 const char *opend;
4265 const char *opname = operator_chars (regexp, &opend);
4266 int errcode;
4267
4268 if (*opname)
4269 {
4270 int fix = -1; /* -1 means ok; otherwise number of
4271 spaces needed. */
4272
4273 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4274 {
4275 /* There should 1 space between 'operator' and 'TYPENAME'. */
4276 if (opname[-1] != ' ' || opname[-2] == ' ')
4277 fix = 1;
4278 }
4279 else
4280 {
4281 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4282 if (opname[-1] == ' ')
4283 fix = 0;
4284 }
4285 /* If wrong number of spaces, fix it. */
4286 if (fix >= 0)
4287 {
4288 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4289
4290 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4291 regexp = tmp;
4292 }
4293 }
4294
4295 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4296 ? REG_ICASE : 0);
4297 preg.emplace (regexp, cflags, _("Invalid regexp"));
4298 }
4299
4300 /* Search through the partial symtabs *first* for all symbols
4301 matching the regexp. That way we don't have to reproduce all of
4302 the machinery below. */
4303 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4304 {
4305 return file_matches (filename, files, nfiles,
4306 basenames);
4307 },
4308 [&] (const char *symname)
4309 {
4310 return (!preg || preg->exec (symname,
4311 0, NULL, 0) == 0);
4312 },
4313 NULL,
4314 kind);
4315
4316 /* Here, we search through the minimal symbol tables for functions
4317 and variables that match, and force their symbols to be read.
4318 This is in particular necessary for demangled variable names,
4319 which are no longer put into the partial symbol tables.
4320 The symbol will then be found during the scan of symtabs below.
4321
4322 For functions, find_pc_symtab should succeed if we have debug info
4323 for the function, for variables we have to call
4324 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4325 has debug info.
4326 If the lookup fails, set found_misc so that we will rescan to print
4327 any matching symbols without debug info.
4328 We only search the objfile the msymbol came from, we no longer search
4329 all objfiles. In large programs (1000s of shared libs) searching all
4330 objfiles is not worth the pain. */
4331
4332 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4333 {
4334 ALL_MSYMBOLS (objfile, msymbol)
4335 {
4336 QUIT;
4337
4338 if (msymbol->created_by_gdb)
4339 continue;
4340
4341 if (MSYMBOL_TYPE (msymbol) == ourtype
4342 || MSYMBOL_TYPE (msymbol) == ourtype2
4343 || MSYMBOL_TYPE (msymbol) == ourtype3
4344 || MSYMBOL_TYPE (msymbol) == ourtype4)
4345 {
4346 if (!preg
4347 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4348 NULL, 0) == 0)
4349 {
4350 /* Note: An important side-effect of these lookup functions
4351 is to expand the symbol table if msymbol is found, for the
4352 benefit of the next loop on ALL_COMPUNITS. */
4353 if (kind == FUNCTIONS_DOMAIN
4354 ? (find_pc_compunit_symtab
4355 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4356 : (lookup_symbol_in_objfile_from_linkage_name
4357 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4358 .symbol == NULL))
4359 found_misc = 1;
4360 }
4361 }
4362 }
4363 }
4364
4365 found = NULL;
4366 tail = NULL;
4367 nfound = 0;
4368 retval_chain = make_cleanup_free_search_symbols (&found);
4369
4370 ALL_COMPUNITS (objfile, cust)
4371 {
4372 bv = COMPUNIT_BLOCKVECTOR (cust);
4373 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4374 {
4375 b = BLOCKVECTOR_BLOCK (bv, i);
4376 ALL_BLOCK_SYMBOLS (b, iter, sym)
4377 {
4378 struct symtab *real_symtab = symbol_symtab (sym);
4379
4380 QUIT;
4381
4382 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4383 a substring of symtab_to_fullname as it may contain "./" etc. */
4384 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4385 || ((basenames_may_differ
4386 || file_matches (lbasename (real_symtab->filename),
4387 files, nfiles, 1))
4388 && file_matches (symtab_to_fullname (real_symtab),
4389 files, nfiles, 0)))
4390 && ((!preg
4391 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4392 NULL, 0) == 0)
4393 && ((kind == VARIABLES_DOMAIN
4394 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4395 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4396 && SYMBOL_CLASS (sym) != LOC_BLOCK
4397 /* LOC_CONST can be used for more than just enums,
4398 e.g., c++ static const members.
4399 We only want to skip enums here. */
4400 && !(SYMBOL_CLASS (sym) == LOC_CONST
4401 && (TYPE_CODE (SYMBOL_TYPE (sym))
4402 == TYPE_CODE_ENUM)))
4403 || (kind == FUNCTIONS_DOMAIN
4404 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4405 || (kind == TYPES_DOMAIN
4406 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4407 {
4408 /* match */
4409 struct symbol_search *psr = XCNEW (struct symbol_search);
4410
4411 psr->block = i;
4412 psr->symbol = sym;
4413 psr->next = NULL;
4414 if (tail == NULL)
4415 found = psr;
4416 else
4417 tail->next = psr;
4418 tail = psr;
4419 nfound ++;
4420 }
4421 }
4422 }
4423 }
4424
4425 if (found != NULL)
4426 {
4427 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4428 /* Note: nfound is no longer useful beyond this point. */
4429 }
4430
4431 /* If there are no eyes, avoid all contact. I mean, if there are
4432 no debug symbols, then add matching minsyms. */
4433
4434 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4435 {
4436 ALL_MSYMBOLS (objfile, msymbol)
4437 {
4438 QUIT;
4439
4440 if (msymbol->created_by_gdb)
4441 continue;
4442
4443 if (MSYMBOL_TYPE (msymbol) == ourtype
4444 || MSYMBOL_TYPE (msymbol) == ourtype2
4445 || MSYMBOL_TYPE (msymbol) == ourtype3
4446 || MSYMBOL_TYPE (msymbol) == ourtype4)
4447 {
4448 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4449 NULL, 0) == 0)
4450 {
4451 /* For functions we can do a quick check of whether the
4452 symbol might be found via find_pc_symtab. */
4453 if (kind != FUNCTIONS_DOMAIN
4454 || (find_pc_compunit_symtab
4455 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4456 {
4457 if (lookup_symbol_in_objfile_from_linkage_name
4458 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4459 .symbol == NULL)
4460 {
4461 /* match */
4462 struct symbol_search *psr = XNEW (struct symbol_search);
4463 psr->block = i;
4464 psr->msymbol.minsym = msymbol;
4465 psr->msymbol.objfile = objfile;
4466 psr->symbol = NULL;
4467 psr->next = NULL;
4468 if (tail == NULL)
4469 found = psr;
4470 else
4471 tail->next = psr;
4472 tail = psr;
4473 }
4474 }
4475 }
4476 }
4477 }
4478 }
4479
4480 discard_cleanups (retval_chain);
4481 do_cleanups (old_chain);
4482 *matches = found;
4483 }
4484
4485 /* Helper function for symtab_symbol_info, this function uses
4486 the data returned from search_symbols() to print information
4487 regarding the match to gdb_stdout. */
4488
4489 static void
4490 print_symbol_info (enum search_domain kind,
4491 struct symbol *sym,
4492 int block, const char *last)
4493 {
4494 struct symtab *s = symbol_symtab (sym);
4495 const char *s_filename = symtab_to_filename_for_display (s);
4496
4497 if (last == NULL || filename_cmp (last, s_filename) != 0)
4498 {
4499 fputs_filtered ("\nFile ", gdb_stdout);
4500 fputs_filtered (s_filename, gdb_stdout);
4501 fputs_filtered (":\n", gdb_stdout);
4502 }
4503
4504 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4505 printf_filtered ("static ");
4506
4507 /* Typedef that is not a C++ class. */
4508 if (kind == TYPES_DOMAIN
4509 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4510 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4511 /* variable, func, or typedef-that-is-c++-class. */
4512 else if (kind < TYPES_DOMAIN
4513 || (kind == TYPES_DOMAIN
4514 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4515 {
4516 type_print (SYMBOL_TYPE (sym),
4517 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4518 ? "" : SYMBOL_PRINT_NAME (sym)),
4519 gdb_stdout, 0);
4520
4521 printf_filtered (";\n");
4522 }
4523 }
4524
4525 /* This help function for symtab_symbol_info() prints information
4526 for non-debugging symbols to gdb_stdout. */
4527
4528 static void
4529 print_msymbol_info (struct bound_minimal_symbol msymbol)
4530 {
4531 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4532 char *tmp;
4533
4534 if (gdbarch_addr_bit (gdbarch) <= 32)
4535 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4536 & (CORE_ADDR) 0xffffffff,
4537 8);
4538 else
4539 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4540 16);
4541 printf_filtered ("%s %s\n",
4542 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4543 }
4544
4545 /* This is the guts of the commands "info functions", "info types", and
4546 "info variables". It calls search_symbols to find all matches and then
4547 print_[m]symbol_info to print out some useful information about the
4548 matches. */
4549
4550 static void
4551 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4552 {
4553 static const char * const classnames[] =
4554 {"variable", "function", "type"};
4555 struct symbol_search *symbols;
4556 struct symbol_search *p;
4557 struct cleanup *old_chain;
4558 const char *last_filename = NULL;
4559 int first = 1;
4560
4561 gdb_assert (kind <= TYPES_DOMAIN);
4562
4563 /* Must make sure that if we're interrupted, symbols gets freed. */
4564 search_symbols (regexp, kind, 0, NULL, &symbols);
4565 old_chain = make_cleanup_free_search_symbols (&symbols);
4566
4567 if (regexp != NULL)
4568 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4569 classnames[kind], regexp);
4570 else
4571 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4572
4573 for (p = symbols; p != NULL; p = p->next)
4574 {
4575 QUIT;
4576
4577 if (p->msymbol.minsym != NULL)
4578 {
4579 if (first)
4580 {
4581 printf_filtered (_("\nNon-debugging symbols:\n"));
4582 first = 0;
4583 }
4584 print_msymbol_info (p->msymbol);
4585 }
4586 else
4587 {
4588 print_symbol_info (kind,
4589 p->symbol,
4590 p->block,
4591 last_filename);
4592 last_filename
4593 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4594 }
4595 }
4596
4597 do_cleanups (old_chain);
4598 }
4599
4600 static void
4601 info_variables_command (char *regexp, int from_tty)
4602 {
4603 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4604 }
4605
4606 static void
4607 info_functions_command (char *regexp, int from_tty)
4608 {
4609 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4610 }
4611
4612
4613 static void
4614 info_types_command (char *regexp, int from_tty)
4615 {
4616 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4617 }
4618
4619 /* Breakpoint all functions matching regular expression. */
4620
4621 void
4622 rbreak_command_wrapper (char *regexp, int from_tty)
4623 {
4624 rbreak_command (regexp, from_tty);
4625 }
4626
4627 /* A cleanup function that calls end_rbreak_breakpoints. */
4628
4629 static void
4630 do_end_rbreak_breakpoints (void *ignore)
4631 {
4632 end_rbreak_breakpoints ();
4633 }
4634
4635 static void
4636 rbreak_command (char *regexp, int from_tty)
4637 {
4638 struct symbol_search *ss;
4639 struct symbol_search *p;
4640 struct cleanup *old_chain;
4641 char *string = NULL;
4642 int len = 0;
4643 const char **files = NULL;
4644 const char *file_name;
4645 int nfiles = 0;
4646
4647 if (regexp)
4648 {
4649 char *colon = strchr (regexp, ':');
4650
4651 if (colon && *(colon + 1) != ':')
4652 {
4653 int colon_index;
4654 char *local_name;
4655
4656 colon_index = colon - regexp;
4657 local_name = (char *) alloca (colon_index + 1);
4658 memcpy (local_name, regexp, colon_index);
4659 local_name[colon_index--] = 0;
4660 while (isspace (local_name[colon_index]))
4661 local_name[colon_index--] = 0;
4662 file_name = local_name;
4663 files = &file_name;
4664 nfiles = 1;
4665 regexp = skip_spaces (colon + 1);
4666 }
4667 }
4668
4669 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4670 old_chain = make_cleanup_free_search_symbols (&ss);
4671 make_cleanup (free_current_contents, &string);
4672
4673 start_rbreak_breakpoints ();
4674 make_cleanup (do_end_rbreak_breakpoints, NULL);
4675 for (p = ss; p != NULL; p = p->next)
4676 {
4677 if (p->msymbol.minsym == NULL)
4678 {
4679 struct symtab *symtab = symbol_symtab (p->symbol);
4680 const char *fullname = symtab_to_fullname (symtab);
4681
4682 int newlen = (strlen (fullname)
4683 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4684 + 4);
4685
4686 if (newlen > len)
4687 {
4688 string = (char *) xrealloc (string, newlen);
4689 len = newlen;
4690 }
4691 strcpy (string, fullname);
4692 strcat (string, ":'");
4693 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4694 strcat (string, "'");
4695 break_command (string, from_tty);
4696 print_symbol_info (FUNCTIONS_DOMAIN,
4697 p->symbol,
4698 p->block,
4699 symtab_to_filename_for_display (symtab));
4700 }
4701 else
4702 {
4703 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4704
4705 if (newlen > len)
4706 {
4707 string = (char *) xrealloc (string, newlen);
4708 len = newlen;
4709 }
4710 strcpy (string, "'");
4711 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4712 strcat (string, "'");
4713
4714 break_command (string, from_tty);
4715 printf_filtered ("<function, no debug info> %s;\n",
4716 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4717 }
4718 }
4719
4720 do_cleanups (old_chain);
4721 }
4722 \f
4723
4724 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4725
4726 Either sym_text[sym_text_len] != '(' and then we search for any
4727 symbol starting with SYM_TEXT text.
4728
4729 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4730 be terminated at that point. Partial symbol tables do not have parameters
4731 information. */
4732
4733 static int
4734 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4735 {
4736 int (*ncmp) (const char *, const char *, size_t);
4737
4738 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4739
4740 if (ncmp (name, sym_text, sym_text_len) != 0)
4741 return 0;
4742
4743 if (sym_text[sym_text_len] == '(')
4744 {
4745 /* User searches for `name(someth...'. Require NAME to be terminated.
4746 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4747 present but accept even parameters presence. In this case this
4748 function is in fact strcmp_iw but whitespace skipping is not supported
4749 for tab completion. */
4750
4751 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4752 return 0;
4753 }
4754
4755 return 1;
4756 }
4757
4758 /* Test to see if the symbol specified by SYMNAME (which is already
4759 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4760 characters. If so, add it to the current completion list. */
4761
4762 static void
4763 completion_list_add_name (completion_tracker &tracker,
4764 const char *symname,
4765 const char *sym_text, int sym_text_len,
4766 const char *text, const char *word)
4767 {
4768 /* Clip symbols that cannot match. */
4769 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4770 return;
4771
4772 /* We have a match for a completion, so add SYMNAME to the current list
4773 of matches. Note that the name is moved to freshly malloc'd space. */
4774
4775 {
4776 char *newobj;
4777
4778 if (word == sym_text)
4779 {
4780 newobj = (char *) xmalloc (strlen (symname) + 5);
4781 strcpy (newobj, symname);
4782 }
4783 else if (word > sym_text)
4784 {
4785 /* Return some portion of symname. */
4786 newobj = (char *) xmalloc (strlen (symname) + 5);
4787 strcpy (newobj, symname + (word - sym_text));
4788 }
4789 else
4790 {
4791 /* Return some of SYM_TEXT plus symname. */
4792 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4793 strncpy (newobj, word, sym_text - word);
4794 newobj[sym_text - word] = '\0';
4795 strcat (newobj, symname);
4796 }
4797
4798 gdb::unique_xmalloc_ptr<char> completion (newobj);
4799
4800 tracker.add_completion (std::move (completion));
4801 }
4802 }
4803
4804 /* completion_list_add_name wrapper for struct symbol. */
4805
4806 static void
4807 completion_list_add_symbol (completion_tracker &tracker,
4808 symbol *sym,
4809 const char *sym_text, int sym_text_len,
4810 const char *text, const char *word)
4811 {
4812 completion_list_add_name (tracker, SYMBOL_NATURAL_NAME (sym),
4813 sym_text, sym_text_len, text, word);
4814 }
4815
4816 /* completion_list_add_name wrapper for struct minimal_symbol. */
4817
4818 static void
4819 completion_list_add_msymbol (completion_tracker &tracker,
4820 minimal_symbol *sym,
4821 const char *sym_text, int sym_text_len,
4822 const char *text, const char *word)
4823 {
4824 completion_list_add_name (tracker, MSYMBOL_NATURAL_NAME (sym),
4825 sym_text, sym_text_len, text, word);
4826 }
4827
4828 /* ObjC: In case we are completing on a selector, look as the msymbol
4829 again and feed all the selectors into the mill. */
4830
4831 static void
4832 completion_list_objc_symbol (completion_tracker &tracker,
4833 struct minimal_symbol *msymbol,
4834 const char *sym_text, int sym_text_len,
4835 const char *text, const char *word)
4836 {
4837 static char *tmp = NULL;
4838 static unsigned int tmplen = 0;
4839
4840 const char *method, *category, *selector;
4841 char *tmp2 = NULL;
4842
4843 method = MSYMBOL_NATURAL_NAME (msymbol);
4844
4845 /* Is it a method? */
4846 if ((method[0] != '-') && (method[0] != '+'))
4847 return;
4848
4849 if (sym_text[0] == '[')
4850 /* Complete on shortened method method. */
4851 completion_list_add_name (tracker, method + 1,
4852 sym_text, sym_text_len, text, word);
4853
4854 while ((strlen (method) + 1) >= tmplen)
4855 {
4856 if (tmplen == 0)
4857 tmplen = 1024;
4858 else
4859 tmplen *= 2;
4860 tmp = (char *) xrealloc (tmp, tmplen);
4861 }
4862 selector = strchr (method, ' ');
4863 if (selector != NULL)
4864 selector++;
4865
4866 category = strchr (method, '(');
4867
4868 if ((category != NULL) && (selector != NULL))
4869 {
4870 memcpy (tmp, method, (category - method));
4871 tmp[category - method] = ' ';
4872 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4873 completion_list_add_name (tracker, tmp,
4874 sym_text, sym_text_len, text, word);
4875 if (sym_text[0] == '[')
4876 completion_list_add_name (tracker, tmp + 1,
4877 sym_text, sym_text_len, text, word);
4878 }
4879
4880 if (selector != NULL)
4881 {
4882 /* Complete on selector only. */
4883 strcpy (tmp, selector);
4884 tmp2 = strchr (tmp, ']');
4885 if (tmp2 != NULL)
4886 *tmp2 = '\0';
4887
4888 completion_list_add_name (tracker, tmp,
4889 sym_text, sym_text_len, text, word);
4890 }
4891 }
4892
4893 /* Break the non-quoted text based on the characters which are in
4894 symbols. FIXME: This should probably be language-specific. */
4895
4896 static const char *
4897 language_search_unquoted_string (const char *text, const char *p)
4898 {
4899 for (; p > text; --p)
4900 {
4901 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4902 continue;
4903 else
4904 {
4905 if ((current_language->la_language == language_objc))
4906 {
4907 if (p[-1] == ':') /* Might be part of a method name. */
4908 continue;
4909 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4910 p -= 2; /* Beginning of a method name. */
4911 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4912 { /* Might be part of a method name. */
4913 const char *t = p;
4914
4915 /* Seeing a ' ' or a '(' is not conclusive evidence
4916 that we are in the middle of a method name. However,
4917 finding "-[" or "+[" should be pretty un-ambiguous.
4918 Unfortunately we have to find it now to decide. */
4919
4920 while (t > text)
4921 if (isalnum (t[-1]) || t[-1] == '_' ||
4922 t[-1] == ' ' || t[-1] == ':' ||
4923 t[-1] == '(' || t[-1] == ')')
4924 --t;
4925 else
4926 break;
4927
4928 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4929 p = t - 2; /* Method name detected. */
4930 /* Else we leave with p unchanged. */
4931 }
4932 }
4933 break;
4934 }
4935 }
4936 return p;
4937 }
4938
4939 static void
4940 completion_list_add_fields (completion_tracker &tracker,
4941 struct symbol *sym,
4942 const char *sym_text, int sym_text_len,
4943 const char *text, const char *word)
4944 {
4945 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4946 {
4947 struct type *t = SYMBOL_TYPE (sym);
4948 enum type_code c = TYPE_CODE (t);
4949 int j;
4950
4951 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4952 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4953 if (TYPE_FIELD_NAME (t, j))
4954 completion_list_add_name (tracker, TYPE_FIELD_NAME (t, j),
4955 sym_text, sym_text_len, text, word);
4956 }
4957 }
4958
4959 /* Add matching symbols from SYMTAB to the current completion list. */
4960
4961 static void
4962 add_symtab_completions (struct compunit_symtab *cust,
4963 completion_tracker &tracker,
4964 const char *sym_text, int sym_text_len,
4965 const char *text, const char *word,
4966 enum type_code code)
4967 {
4968 struct symbol *sym;
4969 const struct block *b;
4970 struct block_iterator iter;
4971 int i;
4972
4973 if (cust == NULL)
4974 return;
4975
4976 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4977 {
4978 QUIT;
4979 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4980 ALL_BLOCK_SYMBOLS (b, iter, sym)
4981 {
4982 if (code == TYPE_CODE_UNDEF
4983 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4984 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4985 completion_list_add_symbol (tracker, sym,
4986 sym_text, sym_text_len,
4987 text, word);
4988 }
4989 }
4990 }
4991
4992 void
4993 default_collect_symbol_completion_matches_break_on
4994 (completion_tracker &tracker,
4995 complete_symbol_mode mode,
4996 const char *text, const char *word,
4997 const char *break_on, enum type_code code)
4998 {
4999 /* Problem: All of the symbols have to be copied because readline
5000 frees them. I'm not going to worry about this; hopefully there
5001 won't be that many. */
5002
5003 struct symbol *sym;
5004 struct compunit_symtab *cust;
5005 struct minimal_symbol *msymbol;
5006 struct objfile *objfile;
5007 const struct block *b;
5008 const struct block *surrounding_static_block, *surrounding_global_block;
5009 struct block_iterator iter;
5010 /* The symbol we are completing on. Points in same buffer as text. */
5011 const char *sym_text;
5012 /* Length of sym_text. */
5013 int sym_text_len;
5014
5015 /* Now look for the symbol we are supposed to complete on. */
5016 if (mode == complete_symbol_mode::LINESPEC)
5017 sym_text = text;
5018 else
5019 {
5020 const char *p;
5021 char quote_found;
5022 const char *quote_pos = NULL;
5023
5024 /* First see if this is a quoted string. */
5025 quote_found = '\0';
5026 for (p = text; *p != '\0'; ++p)
5027 {
5028 if (quote_found != '\0')
5029 {
5030 if (*p == quote_found)
5031 /* Found close quote. */
5032 quote_found = '\0';
5033 else if (*p == '\\' && p[1] == quote_found)
5034 /* A backslash followed by the quote character
5035 doesn't end the string. */
5036 ++p;
5037 }
5038 else if (*p == '\'' || *p == '"')
5039 {
5040 quote_found = *p;
5041 quote_pos = p;
5042 }
5043 }
5044 if (quote_found == '\'')
5045 /* A string within single quotes can be a symbol, so complete on it. */
5046 sym_text = quote_pos + 1;
5047 else if (quote_found == '"')
5048 /* A double-quoted string is never a symbol, nor does it make sense
5049 to complete it any other way. */
5050 {
5051 return;
5052 }
5053 else
5054 {
5055 /* It is not a quoted string. Break it based on the characters
5056 which are in symbols. */
5057 while (p > text)
5058 {
5059 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5060 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5061 --p;
5062 else
5063 break;
5064 }
5065 sym_text = p;
5066 }
5067 }
5068
5069 sym_text_len = strlen (sym_text);
5070
5071 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5072
5073 if (current_language->la_language == language_cplus
5074 || current_language->la_language == language_fortran)
5075 {
5076 /* These languages may have parameters entered by user but they are never
5077 present in the partial symbol tables. */
5078
5079 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5080
5081 if (cs)
5082 sym_text_len = cs - sym_text;
5083 }
5084 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5085
5086 /* At this point scan through the misc symbol vectors and add each
5087 symbol you find to the list. Eventually we want to ignore
5088 anything that isn't a text symbol (everything else will be
5089 handled by the psymtab code below). */
5090
5091 if (code == TYPE_CODE_UNDEF)
5092 {
5093 ALL_MSYMBOLS (objfile, msymbol)
5094 {
5095 QUIT;
5096
5097 completion_list_add_msymbol (tracker,
5098 msymbol, sym_text, sym_text_len,
5099 text, word);
5100
5101 completion_list_objc_symbol (tracker,
5102 msymbol, sym_text, sym_text_len,
5103 text, word);
5104 }
5105 }
5106
5107 /* Add completions for all currently loaded symbol tables. */
5108 ALL_COMPUNITS (objfile, cust)
5109 add_symtab_completions (cust, tracker,
5110 sym_text, sym_text_len, text, word, code);
5111
5112 /* Look through the partial symtabs for all symbols which begin by
5113 matching SYM_TEXT. Expand all CUs that you find to the list. */
5114 expand_symtabs_matching (NULL,
5115 [&] (const char *name) /* symbol matcher */
5116 {
5117 return compare_symbol_name (name,
5118 sym_text,
5119 sym_text_len);
5120 },
5121 [&] (compunit_symtab *symtab) /* expansion notify */
5122 {
5123 add_symtab_completions (symtab,
5124 tracker,
5125 sym_text, sym_text_len,
5126 text, word, code);
5127 },
5128 ALL_DOMAIN);
5129
5130 /* Search upwards from currently selected frame (so that we can
5131 complete on local vars). Also catch fields of types defined in
5132 this places which match our text string. Only complete on types
5133 visible from current context. */
5134
5135 b = get_selected_block (0);
5136 surrounding_static_block = block_static_block (b);
5137 surrounding_global_block = block_global_block (b);
5138 if (surrounding_static_block != NULL)
5139 while (b != surrounding_static_block)
5140 {
5141 QUIT;
5142
5143 ALL_BLOCK_SYMBOLS (b, iter, sym)
5144 {
5145 if (code == TYPE_CODE_UNDEF)
5146 {
5147 completion_list_add_symbol (tracker, sym,
5148 sym_text, sym_text_len, text,
5149 word);
5150 completion_list_add_fields (tracker, sym,
5151 sym_text, sym_text_len, text,
5152 word);
5153 }
5154 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5155 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5156 completion_list_add_symbol (tracker, sym,
5157 sym_text, sym_text_len, text,
5158 word);
5159 }
5160
5161 /* Stop when we encounter an enclosing function. Do not stop for
5162 non-inlined functions - the locals of the enclosing function
5163 are in scope for a nested function. */
5164 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5165 break;
5166 b = BLOCK_SUPERBLOCK (b);
5167 }
5168
5169 /* Add fields from the file's types; symbols will be added below. */
5170
5171 if (code == TYPE_CODE_UNDEF)
5172 {
5173 if (surrounding_static_block != NULL)
5174 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5175 completion_list_add_fields (tracker, sym,
5176 sym_text, sym_text_len, text, word);
5177
5178 if (surrounding_global_block != NULL)
5179 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5180 completion_list_add_fields (tracker, sym,
5181 sym_text, sym_text_len, text, word);
5182 }
5183
5184 /* Skip macros if we are completing a struct tag -- arguable but
5185 usually what is expected. */
5186 if (current_language->la_macro_expansion == macro_expansion_c
5187 && code == TYPE_CODE_UNDEF)
5188 {
5189 struct macro_scope *scope;
5190
5191 /* This adds a macro's name to the current completion list. */
5192 auto add_macro_name = [&] (const char *macro_name,
5193 const macro_definition *,
5194 macro_source_file *,
5195 int)
5196 {
5197 completion_list_add_name (tracker, macro_name,
5198 sym_text, sym_text_len,
5199 text, word);
5200 };
5201
5202 /* Add any macros visible in the default scope. Note that this
5203 may yield the occasional wrong result, because an expression
5204 might be evaluated in a scope other than the default. For
5205 example, if the user types "break file:line if <TAB>", the
5206 resulting expression will be evaluated at "file:line" -- but
5207 at there does not seem to be a way to detect this at
5208 completion time. */
5209 scope = default_macro_scope ();
5210 if (scope)
5211 {
5212 macro_for_each_in_scope (scope->file, scope->line,
5213 add_macro_name);
5214 xfree (scope);
5215 }
5216
5217 /* User-defined macros are always visible. */
5218 macro_for_each (macro_user_macros, add_macro_name);
5219 }
5220 }
5221
5222 void
5223 default_collect_symbol_completion_matches (completion_tracker &tracker,
5224 complete_symbol_mode mode,
5225 const char *text, const char *word,
5226 enum type_code code)
5227 {
5228 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5229 text, word, "",
5230 code);
5231 }
5232
5233 /* Collect all symbols (regardless of class) which begin by matching
5234 TEXT. */
5235
5236 void
5237 collect_symbol_completion_matches (completion_tracker &tracker,
5238 complete_symbol_mode mode,
5239 const char *text, const char *word)
5240 {
5241 current_language->la_collect_symbol_completion_matches (tracker, mode,
5242 text, word,
5243 TYPE_CODE_UNDEF);
5244 }
5245
5246 /* Like collect_symbol_completion_matches, but only collect
5247 STRUCT_DOMAIN symbols whose type code is CODE. */
5248
5249 void
5250 collect_symbol_completion_matches_type (completion_tracker &tracker,
5251 const char *text, const char *word,
5252 enum type_code code)
5253 {
5254 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5255
5256 gdb_assert (code == TYPE_CODE_UNION
5257 || code == TYPE_CODE_STRUCT
5258 || code == TYPE_CODE_ENUM);
5259 current_language->la_collect_symbol_completion_matches (tracker, mode,
5260 text, word, code);
5261 }
5262
5263 /* Like collect_symbol_completion_matches, but collects a list of
5264 symbols defined in all source files named SRCFILE. */
5265
5266 void
5267 collect_file_symbol_completion_matches (completion_tracker &tracker,
5268 complete_symbol_mode mode,
5269 const char *text, const char *word,
5270 const char *srcfile)
5271 {
5272 /* The symbol we are completing on. Points in same buffer as text. */
5273 const char *sym_text;
5274 /* Length of sym_text. */
5275 int sym_text_len;
5276
5277 /* Now look for the symbol we are supposed to complete on.
5278 FIXME: This should be language-specific. */
5279 if (mode == complete_symbol_mode::LINESPEC)
5280 sym_text = text;
5281 else
5282 {
5283 const char *p;
5284 char quote_found;
5285 const char *quote_pos = NULL;
5286
5287 /* First see if this is a quoted string. */
5288 quote_found = '\0';
5289 for (p = text; *p != '\0'; ++p)
5290 {
5291 if (quote_found != '\0')
5292 {
5293 if (*p == quote_found)
5294 /* Found close quote. */
5295 quote_found = '\0';
5296 else if (*p == '\\' && p[1] == quote_found)
5297 /* A backslash followed by the quote character
5298 doesn't end the string. */
5299 ++p;
5300 }
5301 else if (*p == '\'' || *p == '"')
5302 {
5303 quote_found = *p;
5304 quote_pos = p;
5305 }
5306 }
5307 if (quote_found == '\'')
5308 /* A string within single quotes can be a symbol, so complete on it. */
5309 sym_text = quote_pos + 1;
5310 else if (quote_found == '"')
5311 /* A double-quoted string is never a symbol, nor does it make sense
5312 to complete it any other way. */
5313 {
5314 return;
5315 }
5316 else
5317 {
5318 /* Not a quoted string. */
5319 sym_text = language_search_unquoted_string (text, p);
5320 }
5321 }
5322
5323 sym_text_len = strlen (sym_text);
5324
5325 /* Go through symtabs for SRCFILE and check the externs and statics
5326 for symbols which match. */
5327 iterate_over_symtabs (srcfile, [&] (symtab *s)
5328 {
5329 add_symtab_completions (SYMTAB_COMPUNIT (s),
5330 tracker,
5331 sym_text, sym_text_len,
5332 text, word, TYPE_CODE_UNDEF);
5333 return false;
5334 });
5335 }
5336
5337 /* A helper function for make_source_files_completion_list. It adds
5338 another file name to a list of possible completions, growing the
5339 list as necessary. */
5340
5341 static void
5342 add_filename_to_list (const char *fname, const char *text, const char *word,
5343 completion_list *list)
5344 {
5345 char *newobj;
5346 size_t fnlen = strlen (fname);
5347
5348 if (word == text)
5349 {
5350 /* Return exactly fname. */
5351 newobj = (char *) xmalloc (fnlen + 5);
5352 strcpy (newobj, fname);
5353 }
5354 else if (word > text)
5355 {
5356 /* Return some portion of fname. */
5357 newobj = (char *) xmalloc (fnlen + 5);
5358 strcpy (newobj, fname + (word - text));
5359 }
5360 else
5361 {
5362 /* Return some of TEXT plus fname. */
5363 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5364 strncpy (newobj, word, text - word);
5365 newobj[text - word] = '\0';
5366 strcat (newobj, fname);
5367 }
5368 list->emplace_back (newobj);
5369 }
5370
5371 static int
5372 not_interesting_fname (const char *fname)
5373 {
5374 static const char *illegal_aliens[] = {
5375 "_globals_", /* inserted by coff_symtab_read */
5376 NULL
5377 };
5378 int i;
5379
5380 for (i = 0; illegal_aliens[i]; i++)
5381 {
5382 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5383 return 1;
5384 }
5385 return 0;
5386 }
5387
5388 /* An object of this type is passed as the user_data argument to
5389 map_partial_symbol_filenames. */
5390 struct add_partial_filename_data
5391 {
5392 struct filename_seen_cache *filename_seen_cache;
5393 const char *text;
5394 const char *word;
5395 int text_len;
5396 completion_list *list;
5397 };
5398
5399 /* A callback for map_partial_symbol_filenames. */
5400
5401 static void
5402 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5403 void *user_data)
5404 {
5405 struct add_partial_filename_data *data
5406 = (struct add_partial_filename_data *) user_data;
5407
5408 if (not_interesting_fname (filename))
5409 return;
5410 if (!data->filename_seen_cache->seen (filename)
5411 && filename_ncmp (filename, data->text, data->text_len) == 0)
5412 {
5413 /* This file matches for a completion; add it to the
5414 current list of matches. */
5415 add_filename_to_list (filename, data->text, data->word, data->list);
5416 }
5417 else
5418 {
5419 const char *base_name = lbasename (filename);
5420
5421 if (base_name != filename
5422 && !data->filename_seen_cache->seen (base_name)
5423 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5424 add_filename_to_list (base_name, data->text, data->word, data->list);
5425 }
5426 }
5427
5428 /* Return a list of all source files whose names begin with matching
5429 TEXT. The file names are looked up in the symbol tables of this
5430 program. */
5431
5432 completion_list
5433 make_source_files_completion_list (const char *text, const char *word)
5434 {
5435 struct compunit_symtab *cu;
5436 struct symtab *s;
5437 struct objfile *objfile;
5438 size_t text_len = strlen (text);
5439 completion_list list;
5440 const char *base_name;
5441 struct add_partial_filename_data datum;
5442 struct cleanup *back_to;
5443
5444 if (!have_full_symbols () && !have_partial_symbols ())
5445 return list;
5446
5447 filename_seen_cache filenames_seen;
5448
5449 ALL_FILETABS (objfile, cu, s)
5450 {
5451 if (not_interesting_fname (s->filename))
5452 continue;
5453 if (!filenames_seen.seen (s->filename)
5454 && filename_ncmp (s->filename, text, text_len) == 0)
5455 {
5456 /* This file matches for a completion; add it to the current
5457 list of matches. */
5458 add_filename_to_list (s->filename, text, word, &list);
5459 }
5460 else
5461 {
5462 /* NOTE: We allow the user to type a base name when the
5463 debug info records leading directories, but not the other
5464 way around. This is what subroutines of breakpoint
5465 command do when they parse file names. */
5466 base_name = lbasename (s->filename);
5467 if (base_name != s->filename
5468 && !filenames_seen.seen (base_name)
5469 && filename_ncmp (base_name, text, text_len) == 0)
5470 add_filename_to_list (base_name, text, word, &list);
5471 }
5472 }
5473
5474 datum.filename_seen_cache = &filenames_seen;
5475 datum.text = text;
5476 datum.word = word;
5477 datum.text_len = text_len;
5478 datum.list = &list;
5479 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5480 0 /*need_fullname*/);
5481
5482 return list;
5483 }
5484 \f
5485 /* Track MAIN */
5486
5487 /* Return the "main_info" object for the current program space. If
5488 the object has not yet been created, create it and fill in some
5489 default values. */
5490
5491 static struct main_info *
5492 get_main_info (void)
5493 {
5494 struct main_info *info
5495 = (struct main_info *) program_space_data (current_program_space,
5496 main_progspace_key);
5497
5498 if (info == NULL)
5499 {
5500 /* It may seem strange to store the main name in the progspace
5501 and also in whatever objfile happens to see a main name in
5502 its debug info. The reason for this is mainly historical:
5503 gdb returned "main" as the name even if no function named
5504 "main" was defined the program; and this approach lets us
5505 keep compatibility. */
5506 info = XCNEW (struct main_info);
5507 info->language_of_main = language_unknown;
5508 set_program_space_data (current_program_space, main_progspace_key,
5509 info);
5510 }
5511
5512 return info;
5513 }
5514
5515 /* A cleanup to destroy a struct main_info when a progspace is
5516 destroyed. */
5517
5518 static void
5519 main_info_cleanup (struct program_space *pspace, void *data)
5520 {
5521 struct main_info *info = (struct main_info *) data;
5522
5523 if (info != NULL)
5524 xfree (info->name_of_main);
5525 xfree (info);
5526 }
5527
5528 static void
5529 set_main_name (const char *name, enum language lang)
5530 {
5531 struct main_info *info = get_main_info ();
5532
5533 if (info->name_of_main != NULL)
5534 {
5535 xfree (info->name_of_main);
5536 info->name_of_main = NULL;
5537 info->language_of_main = language_unknown;
5538 }
5539 if (name != NULL)
5540 {
5541 info->name_of_main = xstrdup (name);
5542 info->language_of_main = lang;
5543 }
5544 }
5545
5546 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5547 accordingly. */
5548
5549 static void
5550 find_main_name (void)
5551 {
5552 const char *new_main_name;
5553 struct objfile *objfile;
5554
5555 /* First check the objfiles to see whether a debuginfo reader has
5556 picked up the appropriate main name. Historically the main name
5557 was found in a more or less random way; this approach instead
5558 relies on the order of objfile creation -- which still isn't
5559 guaranteed to get the correct answer, but is just probably more
5560 accurate. */
5561 ALL_OBJFILES (objfile)
5562 {
5563 if (objfile->per_bfd->name_of_main != NULL)
5564 {
5565 set_main_name (objfile->per_bfd->name_of_main,
5566 objfile->per_bfd->language_of_main);
5567 return;
5568 }
5569 }
5570
5571 /* Try to see if the main procedure is in Ada. */
5572 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5573 be to add a new method in the language vector, and call this
5574 method for each language until one of them returns a non-empty
5575 name. This would allow us to remove this hard-coded call to
5576 an Ada function. It is not clear that this is a better approach
5577 at this point, because all methods need to be written in a way
5578 such that false positives never be returned. For instance, it is
5579 important that a method does not return a wrong name for the main
5580 procedure if the main procedure is actually written in a different
5581 language. It is easy to guaranty this with Ada, since we use a
5582 special symbol generated only when the main in Ada to find the name
5583 of the main procedure. It is difficult however to see how this can
5584 be guarantied for languages such as C, for instance. This suggests
5585 that order of call for these methods becomes important, which means
5586 a more complicated approach. */
5587 new_main_name = ada_main_name ();
5588 if (new_main_name != NULL)
5589 {
5590 set_main_name (new_main_name, language_ada);
5591 return;
5592 }
5593
5594 new_main_name = d_main_name ();
5595 if (new_main_name != NULL)
5596 {
5597 set_main_name (new_main_name, language_d);
5598 return;
5599 }
5600
5601 new_main_name = go_main_name ();
5602 if (new_main_name != NULL)
5603 {
5604 set_main_name (new_main_name, language_go);
5605 return;
5606 }
5607
5608 new_main_name = pascal_main_name ();
5609 if (new_main_name != NULL)
5610 {
5611 set_main_name (new_main_name, language_pascal);
5612 return;
5613 }
5614
5615 /* The languages above didn't identify the name of the main procedure.
5616 Fallback to "main". */
5617 set_main_name ("main", language_unknown);
5618 }
5619
5620 char *
5621 main_name (void)
5622 {
5623 struct main_info *info = get_main_info ();
5624
5625 if (info->name_of_main == NULL)
5626 find_main_name ();
5627
5628 return info->name_of_main;
5629 }
5630
5631 /* Return the language of the main function. If it is not known,
5632 return language_unknown. */
5633
5634 enum language
5635 main_language (void)
5636 {
5637 struct main_info *info = get_main_info ();
5638
5639 if (info->name_of_main == NULL)
5640 find_main_name ();
5641
5642 return info->language_of_main;
5643 }
5644
5645 /* Handle ``executable_changed'' events for the symtab module. */
5646
5647 static void
5648 symtab_observer_executable_changed (void)
5649 {
5650 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5651 set_main_name (NULL, language_unknown);
5652 }
5653
5654 /* Return 1 if the supplied producer string matches the ARM RealView
5655 compiler (armcc). */
5656
5657 int
5658 producer_is_realview (const char *producer)
5659 {
5660 static const char *const arm_idents[] = {
5661 "ARM C Compiler, ADS",
5662 "Thumb C Compiler, ADS",
5663 "ARM C++ Compiler, ADS",
5664 "Thumb C++ Compiler, ADS",
5665 "ARM/Thumb C/C++ Compiler, RVCT",
5666 "ARM C/C++ Compiler, RVCT"
5667 };
5668 int i;
5669
5670 if (producer == NULL)
5671 return 0;
5672
5673 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5674 if (startswith (producer, arm_idents[i]))
5675 return 1;
5676
5677 return 0;
5678 }
5679
5680 \f
5681
5682 /* The next index to hand out in response to a registration request. */
5683
5684 static int next_aclass_value = LOC_FINAL_VALUE;
5685
5686 /* The maximum number of "aclass" registrations we support. This is
5687 constant for convenience. */
5688 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5689
5690 /* The objects representing the various "aclass" values. The elements
5691 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5692 elements are those registered at gdb initialization time. */
5693
5694 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5695
5696 /* The globally visible pointer. This is separate from 'symbol_impl'
5697 so that it can be const. */
5698
5699 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5700
5701 /* Make sure we saved enough room in struct symbol. */
5702
5703 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5704
5705 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5706 is the ops vector associated with this index. This returns the new
5707 index, which should be used as the aclass_index field for symbols
5708 of this type. */
5709
5710 int
5711 register_symbol_computed_impl (enum address_class aclass,
5712 const struct symbol_computed_ops *ops)
5713 {
5714 int result = next_aclass_value++;
5715
5716 gdb_assert (aclass == LOC_COMPUTED);
5717 gdb_assert (result < MAX_SYMBOL_IMPLS);
5718 symbol_impl[result].aclass = aclass;
5719 symbol_impl[result].ops_computed = ops;
5720
5721 /* Sanity check OPS. */
5722 gdb_assert (ops != NULL);
5723 gdb_assert (ops->tracepoint_var_ref != NULL);
5724 gdb_assert (ops->describe_location != NULL);
5725 gdb_assert (ops->get_symbol_read_needs != NULL);
5726 gdb_assert (ops->read_variable != NULL);
5727
5728 return result;
5729 }
5730
5731 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5732 OPS is the ops vector associated with this index. This returns the
5733 new index, which should be used as the aclass_index field for symbols
5734 of this type. */
5735
5736 int
5737 register_symbol_block_impl (enum address_class aclass,
5738 const struct symbol_block_ops *ops)
5739 {
5740 int result = next_aclass_value++;
5741
5742 gdb_assert (aclass == LOC_BLOCK);
5743 gdb_assert (result < MAX_SYMBOL_IMPLS);
5744 symbol_impl[result].aclass = aclass;
5745 symbol_impl[result].ops_block = ops;
5746
5747 /* Sanity check OPS. */
5748 gdb_assert (ops != NULL);
5749 gdb_assert (ops->find_frame_base_location != NULL);
5750
5751 return result;
5752 }
5753
5754 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5755 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5756 this index. This returns the new index, which should be used as
5757 the aclass_index field for symbols of this type. */
5758
5759 int
5760 register_symbol_register_impl (enum address_class aclass,
5761 const struct symbol_register_ops *ops)
5762 {
5763 int result = next_aclass_value++;
5764
5765 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5766 gdb_assert (result < MAX_SYMBOL_IMPLS);
5767 symbol_impl[result].aclass = aclass;
5768 symbol_impl[result].ops_register = ops;
5769
5770 return result;
5771 }
5772
5773 /* Initialize elements of 'symbol_impl' for the constants in enum
5774 address_class. */
5775
5776 static void
5777 initialize_ordinary_address_classes (void)
5778 {
5779 int i;
5780
5781 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5782 symbol_impl[i].aclass = (enum address_class) i;
5783 }
5784
5785 \f
5786
5787 /* Helper function to initialize the fields of an objfile-owned symbol.
5788 It assumed that *SYM is already all zeroes. */
5789
5790 static void
5791 initialize_objfile_symbol_1 (struct symbol *sym)
5792 {
5793 SYMBOL_OBJFILE_OWNED (sym) = 1;
5794 SYMBOL_SECTION (sym) = -1;
5795 }
5796
5797 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5798
5799 void
5800 initialize_objfile_symbol (struct symbol *sym)
5801 {
5802 memset (sym, 0, sizeof (*sym));
5803 initialize_objfile_symbol_1 (sym);
5804 }
5805
5806 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5807 obstack. */
5808
5809 struct symbol *
5810 allocate_symbol (struct objfile *objfile)
5811 {
5812 struct symbol *result;
5813
5814 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5815 initialize_objfile_symbol_1 (result);
5816
5817 return result;
5818 }
5819
5820 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5821 obstack. */
5822
5823 struct template_symbol *
5824 allocate_template_symbol (struct objfile *objfile)
5825 {
5826 struct template_symbol *result;
5827
5828 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5829 initialize_objfile_symbol_1 (&result->base);
5830
5831 return result;
5832 }
5833
5834 /* See symtab.h. */
5835
5836 struct objfile *
5837 symbol_objfile (const struct symbol *symbol)
5838 {
5839 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5840 return SYMTAB_OBJFILE (symbol->owner.symtab);
5841 }
5842
5843 /* See symtab.h. */
5844
5845 struct gdbarch *
5846 symbol_arch (const struct symbol *symbol)
5847 {
5848 if (!SYMBOL_OBJFILE_OWNED (symbol))
5849 return symbol->owner.arch;
5850 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5851 }
5852
5853 /* See symtab.h. */
5854
5855 struct symtab *
5856 symbol_symtab (const struct symbol *symbol)
5857 {
5858 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5859 return symbol->owner.symtab;
5860 }
5861
5862 /* See symtab.h. */
5863
5864 void
5865 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5866 {
5867 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5868 symbol->owner.symtab = symtab;
5869 }
5870
5871 \f
5872
5873 void
5874 _initialize_symtab (void)
5875 {
5876 initialize_ordinary_address_classes ();
5877
5878 main_progspace_key
5879 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5880
5881 symbol_cache_key
5882 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5883
5884 add_info ("variables", info_variables_command, _("\
5885 All global and static variable names, or those matching REGEXP."));
5886 if (dbx_commands)
5887 add_com ("whereis", class_info, info_variables_command, _("\
5888 All global and static variable names, or those matching REGEXP."));
5889
5890 add_info ("functions", info_functions_command,
5891 _("All function names, or those matching REGEXP."));
5892
5893 /* FIXME: This command has at least the following problems:
5894 1. It prints builtin types (in a very strange and confusing fashion).
5895 2. It doesn't print right, e.g. with
5896 typedef struct foo *FOO
5897 type_print prints "FOO" when we want to make it (in this situation)
5898 print "struct foo *".
5899 I also think "ptype" or "whatis" is more likely to be useful (but if
5900 there is much disagreement "info types" can be fixed). */
5901 add_info ("types", info_types_command,
5902 _("All type names, or those matching REGEXP."));
5903
5904 add_info ("sources", info_sources_command,
5905 _("Source files in the program."));
5906
5907 add_com ("rbreak", class_breakpoint, rbreak_command,
5908 _("Set a breakpoint for all functions matching REGEXP."));
5909
5910 add_setshow_enum_cmd ("multiple-symbols", no_class,
5911 multiple_symbols_modes, &multiple_symbols_mode,
5912 _("\
5913 Set the debugger behavior when more than one symbol are possible matches\n\
5914 in an expression."), _("\
5915 Show how the debugger handles ambiguities in expressions."), _("\
5916 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5917 NULL, NULL, &setlist, &showlist);
5918
5919 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5920 &basenames_may_differ, _("\
5921 Set whether a source file may have multiple base names."), _("\
5922 Show whether a source file may have multiple base names."), _("\
5923 (A \"base name\" is the name of a file with the directory part removed.\n\
5924 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5925 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5926 before comparing them. Canonicalization is an expensive operation,\n\
5927 but it allows the same file be known by more than one base name.\n\
5928 If not set (the default), all source files are assumed to have just\n\
5929 one base name, and gdb will do file name comparisons more efficiently."),
5930 NULL, NULL,
5931 &setlist, &showlist);
5932
5933 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5934 _("Set debugging of symbol table creation."),
5935 _("Show debugging of symbol table creation."), _("\
5936 When enabled (non-zero), debugging messages are printed when building\n\
5937 symbol tables. A value of 1 (one) normally provides enough information.\n\
5938 A value greater than 1 provides more verbose information."),
5939 NULL,
5940 NULL,
5941 &setdebuglist, &showdebuglist);
5942
5943 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5944 _("\
5945 Set debugging of symbol lookup."), _("\
5946 Show debugging of symbol lookup."), _("\
5947 When enabled (non-zero), symbol lookups are logged."),
5948 NULL, NULL,
5949 &setdebuglist, &showdebuglist);
5950
5951 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5952 &new_symbol_cache_size,
5953 _("Set the size of the symbol cache."),
5954 _("Show the size of the symbol cache."), _("\
5955 The size of the symbol cache.\n\
5956 If zero then the symbol cache is disabled."),
5957 set_symbol_cache_size_handler, NULL,
5958 &maintenance_set_cmdlist,
5959 &maintenance_show_cmdlist);
5960
5961 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5962 _("Dump the symbol cache for each program space."),
5963 &maintenanceprintlist);
5964
5965 add_cmd ("symbol-cache-statistics", class_maintenance,
5966 maintenance_print_symbol_cache_statistics,
5967 _("Print symbol cache statistics for each program space."),
5968 &maintenanceprintlist);
5969
5970 add_cmd ("flush-symbol-cache", class_maintenance,
5971 maintenance_flush_symbol_cache,
5972 _("Flush the symbol cache for each program space."),
5973 &maintenancelist);
5974
5975 observer_attach_executable_changed (symtab_observer_executable_changed);
5976 observer_attach_new_objfile (symtab_new_objfile_observer);
5977 observer_attach_free_objfile (symtab_free_objfile_observer);
5978 }
This page took 0.158945 seconds and 4 git commands to generate.