gdb/
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_msymbol_info (struct minimal_symbol *);
114
115 void _initialize_symtab (void);
116
117 /* */
118
119 /* Allow the user to configure the debugger behavior with respect
120 to multiple-choice menus when more than one symbol matches during
121 a symbol lookup. */
122
123 const char multiple_symbols_ask[] = "ask";
124 const char multiple_symbols_all[] = "all";
125 const char multiple_symbols_cancel[] = "cancel";
126 static const char *multiple_symbols_modes[] =
127 {
128 multiple_symbols_ask,
129 multiple_symbols_all,
130 multiple_symbols_cancel,
131 NULL
132 };
133 static const char *multiple_symbols_mode = multiple_symbols_all;
134
135 /* Read-only accessor to AUTO_SELECT_MODE. */
136
137 const char *
138 multiple_symbols_select_mode (void)
139 {
140 return multiple_symbols_mode;
141 }
142
143 /* Block in which the most recently searched-for symbol was found.
144 Might be better to make this a parameter to lookup_symbol and
145 value_of_this. */
146
147 const struct block *block_found;
148
149 /* Check for a symtab of a specific name; first in symtabs, then in
150 psymtabs. *If* there is no '/' in the name, a match after a '/'
151 in the symtab filename will also work. */
152
153 struct symtab *
154 lookup_symtab (const char *name)
155 {
156 int found;
157 struct symtab *s = NULL;
158 struct objfile *objfile;
159 char *real_path = NULL;
160 char *full_path = NULL;
161
162 /* Here we are interested in canonicalizing an absolute path, not
163 absolutizing a relative path. */
164 if (IS_ABSOLUTE_PATH (name))
165 {
166 full_path = xfullpath (name);
167 make_cleanup (xfree, full_path);
168 real_path = gdb_realpath (name);
169 make_cleanup (xfree, real_path);
170 }
171
172 got_symtab:
173
174 /* First, search for an exact match. */
175
176 ALL_SYMTABS (objfile, s)
177 {
178 if (FILENAME_CMP (name, s->filename) == 0)
179 {
180 return s;
181 }
182
183 /* If the user gave us an absolute path, try to find the file in
184 this symtab and use its absolute path. */
185
186 if (full_path != NULL)
187 {
188 const char *fp = symtab_to_fullname (s);
189
190 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
191 {
192 return s;
193 }
194 }
195
196 if (real_path != NULL)
197 {
198 char *fullname = symtab_to_fullname (s);
199
200 if (fullname != NULL)
201 {
202 char *rp = gdb_realpath (fullname);
203
204 make_cleanup (xfree, rp);
205 if (FILENAME_CMP (real_path, rp) == 0)
206 {
207 return s;
208 }
209 }
210 }
211 }
212
213 /* Now, search for a matching tail (only if name doesn't have any dirs). */
214
215 if (lbasename (name) == name)
216 ALL_SYMTABS (objfile, s)
217 {
218 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
219 return s;
220 }
221
222 /* Same search rules as above apply here, but now we look thru the
223 psymtabs. */
224
225 found = 0;
226 ALL_OBJFILES (objfile)
227 {
228 if (objfile->sf
229 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
230 &s))
231 {
232 found = 1;
233 break;
234 }
235 }
236
237 if (s != NULL)
238 return s;
239 if (!found)
240 return NULL;
241
242 /* At this point, we have located the psymtab for this file, but
243 the conversion to a symtab has failed. This usually happens
244 when we are looking up an include file. In this case,
245 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
246 been created. So, we need to run through the symtabs again in
247 order to find the file.
248 XXX - This is a crock, and should be fixed inside of the
249 symbol parsing routines. */
250 goto got_symtab;
251 }
252 \f
253 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
254 full method name, which consist of the class name (from T), the unadorned
255 method name from METHOD_ID, and the signature for the specific overload,
256 specified by SIGNATURE_ID. Note that this function is g++ specific. */
257
258 char *
259 gdb_mangle_name (struct type *type, int method_id, int signature_id)
260 {
261 int mangled_name_len;
262 char *mangled_name;
263 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
264 struct fn_field *method = &f[signature_id];
265 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
266 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
267 char *newname = type_name_no_tag (type);
268
269 /* Does the form of physname indicate that it is the full mangled name
270 of a constructor (not just the args)? */
271 int is_full_physname_constructor;
272
273 int is_constructor;
274 int is_destructor = is_destructor_name (physname);
275 /* Need a new type prefix. */
276 char *const_prefix = method->is_const ? "C" : "";
277 char *volatile_prefix = method->is_volatile ? "V" : "";
278 char buf[20];
279 int len = (newname == NULL ? 0 : strlen (newname));
280
281 /* Nothing to do if physname already contains a fully mangled v3 abi name
282 or an operator name. */
283 if ((physname[0] == '_' && physname[1] == 'Z')
284 || is_operator_name (field_name))
285 return xstrdup (physname);
286
287 is_full_physname_constructor = is_constructor_name (physname);
288
289 is_constructor = is_full_physname_constructor
290 || (newname && strcmp (field_name, newname) == 0);
291
292 if (!is_destructor)
293 is_destructor = (strncmp (physname, "__dt", 4) == 0);
294
295 if (is_destructor || is_full_physname_constructor)
296 {
297 mangled_name = (char *) xmalloc (strlen (physname) + 1);
298 strcpy (mangled_name, physname);
299 return mangled_name;
300 }
301
302 if (len == 0)
303 {
304 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
305 }
306 else if (physname[0] == 't' || physname[0] == 'Q')
307 {
308 /* The physname for template and qualified methods already includes
309 the class name. */
310 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
311 newname = NULL;
312 len = 0;
313 }
314 else
315 {
316 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
317 }
318 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
319 + strlen (buf) + len + strlen (physname) + 1);
320
321 mangled_name = (char *) xmalloc (mangled_name_len);
322 if (is_constructor)
323 mangled_name[0] = '\0';
324 else
325 strcpy (mangled_name, field_name);
326
327 strcat (mangled_name, buf);
328 /* If the class doesn't have a name, i.e. newname NULL, then we just
329 mangle it using 0 for the length of the class. Thus it gets mangled
330 as something starting with `::' rather than `classname::'. */
331 if (newname != NULL)
332 strcat (mangled_name, newname);
333
334 strcat (mangled_name, physname);
335 return (mangled_name);
336 }
337
338 /* Initialize the cplus_specific structure. 'cplus_specific' should
339 only be allocated for use with cplus symbols. */
340
341 static void
342 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
343 struct objfile *objfile)
344 {
345 /* A language_specific structure should not have been previously
346 initialized. */
347 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
348 gdb_assert (objfile != NULL);
349
350 gsymbol->language_specific.cplus_specific =
351 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
352 }
353
354 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
355 correctly allocated. For C++ symbols a cplus_specific struct is
356 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
357 OBJFILE can be NULL. */
358 void
359 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
360 char *name,
361 struct objfile *objfile)
362 {
363 if (gsymbol->language == language_cplus)
364 {
365 if (gsymbol->language_specific.cplus_specific == NULL)
366 symbol_init_cplus_specific (gsymbol, objfile);
367
368 gsymbol->language_specific.cplus_specific->demangled_name = name;
369 }
370 else
371 gsymbol->language_specific.mangled_lang.demangled_name = name;
372 }
373
374 /* Return the demangled name of GSYMBOL. */
375 char *
376 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
377 {
378 if (gsymbol->language == language_cplus)
379 {
380 if (gsymbol->language_specific.cplus_specific != NULL)
381 return gsymbol->language_specific.cplus_specific->demangled_name;
382 else
383 return NULL;
384 }
385 else
386 return gsymbol->language_specific.mangled_lang.demangled_name;
387 }
388
389 \f
390 /* Initialize the language dependent portion of a symbol
391 depending upon the language for the symbol. */
392 void
393 symbol_set_language (struct general_symbol_info *gsymbol,
394 enum language language)
395 {
396 gsymbol->language = language;
397 if (gsymbol->language == language_d
398 || gsymbol->language == language_java
399 || gsymbol->language == language_objc
400 || gsymbol->language == language_fortran)
401 {
402 symbol_set_demangled_name (gsymbol, NULL, NULL);
403 }
404 else if (gsymbol->language == language_cplus)
405 gsymbol->language_specific.cplus_specific = NULL;
406 else
407 {
408 memset (&gsymbol->language_specific, 0,
409 sizeof (gsymbol->language_specific));
410 }
411 }
412
413 /* Functions to initialize a symbol's mangled name. */
414
415 /* Objects of this type are stored in the demangled name hash table. */
416 struct demangled_name_entry
417 {
418 char *mangled;
419 char demangled[1];
420 };
421
422 /* Hash function for the demangled name hash. */
423 static hashval_t
424 hash_demangled_name_entry (const void *data)
425 {
426 const struct demangled_name_entry *e = data;
427
428 return htab_hash_string (e->mangled);
429 }
430
431 /* Equality function for the demangled name hash. */
432 static int
433 eq_demangled_name_entry (const void *a, const void *b)
434 {
435 const struct demangled_name_entry *da = a;
436 const struct demangled_name_entry *db = b;
437
438 return strcmp (da->mangled, db->mangled) == 0;
439 }
440
441 /* Create the hash table used for demangled names. Each hash entry is
442 a pair of strings; one for the mangled name and one for the demangled
443 name. The entry is hashed via just the mangled name. */
444
445 static void
446 create_demangled_names_hash (struct objfile *objfile)
447 {
448 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
449 The hash table code will round this up to the next prime number.
450 Choosing a much larger table size wastes memory, and saves only about
451 1% in symbol reading. */
452
453 objfile->demangled_names_hash = htab_create_alloc
454 (256, hash_demangled_name_entry, eq_demangled_name_entry,
455 NULL, xcalloc, xfree);
456 }
457
458 /* Try to determine the demangled name for a symbol, based on the
459 language of that symbol. If the language is set to language_auto,
460 it will attempt to find any demangling algorithm that works and
461 then set the language appropriately. The returned name is allocated
462 by the demangler and should be xfree'd. */
463
464 static char *
465 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
466 const char *mangled)
467 {
468 char *demangled = NULL;
469
470 if (gsymbol->language == language_unknown)
471 gsymbol->language = language_auto;
472
473 if (gsymbol->language == language_objc
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 objc_demangle (mangled, 0);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_objc;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_cplus
485 || gsymbol->language == language_auto)
486 {
487 demangled =
488 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_cplus;
492 return demangled;
493 }
494 }
495 if (gsymbol->language == language_java)
496 {
497 demangled =
498 cplus_demangle (mangled,
499 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
500 if (demangled != NULL)
501 {
502 gsymbol->language = language_java;
503 return demangled;
504 }
505 }
506 if (gsymbol->language == language_d
507 || gsymbol->language == language_auto)
508 {
509 demangled = d_demangle(mangled, 0);
510 if (demangled != NULL)
511 {
512 gsymbol->language = language_d;
513 return demangled;
514 }
515 }
516 /* We could support `gsymbol->language == language_fortran' here to provide
517 module namespaces also for inferiors with only minimal symbol table (ELF
518 symbols). Just the mangling standard is not standardized across compilers
519 and there is no DW_AT_producer available for inferiors with only the ELF
520 symbols to check the mangling kind. */
521 return NULL;
522 }
523
524 /* Set both the mangled and demangled (if any) names for GSYMBOL based
525 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
526 objfile's obstack; but if COPY_NAME is 0 and if NAME is
527 NUL-terminated, then this function assumes that NAME is already
528 correctly saved (either permanently or with a lifetime tied to the
529 objfile), and it will not be copied.
530
531 The hash table corresponding to OBJFILE is used, and the memory
532 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
533 so the pointer can be discarded after calling this function. */
534
535 /* We have to be careful when dealing with Java names: when we run
536 into a Java minimal symbol, we don't know it's a Java symbol, so it
537 gets demangled as a C++ name. This is unfortunate, but there's not
538 much we can do about it: but when demangling partial symbols and
539 regular symbols, we'd better not reuse the wrong demangled name.
540 (See PR gdb/1039.) We solve this by putting a distinctive prefix
541 on Java names when storing them in the hash table. */
542
543 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
544 don't mind the Java prefix so much: different languages have
545 different demangling requirements, so it's only natural that we
546 need to keep language data around in our demangling cache. But
547 it's not good that the minimal symbol has the wrong demangled name.
548 Unfortunately, I can't think of any easy solution to that
549 problem. */
550
551 #define JAVA_PREFIX "##JAVA$$"
552 #define JAVA_PREFIX_LEN 8
553
554 void
555 symbol_set_names (struct general_symbol_info *gsymbol,
556 const char *linkage_name, int len, int copy_name,
557 struct objfile *objfile)
558 {
559 struct demangled_name_entry **slot;
560 /* A 0-terminated copy of the linkage name. */
561 const char *linkage_name_copy;
562 /* A copy of the linkage name that might have a special Java prefix
563 added to it, for use when looking names up in the hash table. */
564 const char *lookup_name;
565 /* The length of lookup_name. */
566 int lookup_len;
567 struct demangled_name_entry entry;
568
569 if (gsymbol->language == language_ada)
570 {
571 /* In Ada, we do the symbol lookups using the mangled name, so
572 we can save some space by not storing the demangled name.
573
574 As a side note, we have also observed some overlap between
575 the C++ mangling and Ada mangling, similarly to what has
576 been observed with Java. Because we don't store the demangled
577 name with the symbol, we don't need to use the same trick
578 as Java. */
579 if (!copy_name)
580 gsymbol->name = (char *) linkage_name;
581 else
582 {
583 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
584 memcpy (gsymbol->name, linkage_name, len);
585 gsymbol->name[len] = '\0';
586 }
587 symbol_set_demangled_name (gsymbol, NULL, NULL);
588
589 return;
590 }
591
592 if (objfile->demangled_names_hash == NULL)
593 create_demangled_names_hash (objfile);
594
595 /* The stabs reader generally provides names that are not
596 NUL-terminated; most of the other readers don't do this, so we
597 can just use the given copy, unless we're in the Java case. */
598 if (gsymbol->language == language_java)
599 {
600 char *alloc_name;
601
602 lookup_len = len + JAVA_PREFIX_LEN;
603 alloc_name = alloca (lookup_len + 1);
604 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
605 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
606 alloc_name[lookup_len] = '\0';
607
608 lookup_name = alloc_name;
609 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
610 }
611 else if (linkage_name[len] != '\0')
612 {
613 char *alloc_name;
614
615 lookup_len = len;
616 alloc_name = alloca (lookup_len + 1);
617 memcpy (alloc_name, linkage_name, len);
618 alloc_name[lookup_len] = '\0';
619
620 lookup_name = alloc_name;
621 linkage_name_copy = alloc_name;
622 }
623 else
624 {
625 lookup_len = len;
626 lookup_name = linkage_name;
627 linkage_name_copy = linkage_name;
628 }
629
630 entry.mangled = (char *) lookup_name;
631 slot = ((struct demangled_name_entry **)
632 htab_find_slot (objfile->demangled_names_hash,
633 &entry, INSERT));
634
635 /* If this name is not in the hash table, add it. */
636 if (*slot == NULL)
637 {
638 char *demangled_name = symbol_find_demangled_name (gsymbol,
639 linkage_name_copy);
640 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
641
642 /* Suppose we have demangled_name==NULL, copy_name==0, and
643 lookup_name==linkage_name. In this case, we already have the
644 mangled name saved, and we don't have a demangled name. So,
645 you might think we could save a little space by not recording
646 this in the hash table at all.
647
648 It turns out that it is actually important to still save such
649 an entry in the hash table, because storing this name gives
650 us better bcache hit rates for partial symbols. */
651 if (!copy_name && lookup_name == linkage_name)
652 {
653 *slot = obstack_alloc (&objfile->objfile_obstack,
654 offsetof (struct demangled_name_entry,
655 demangled)
656 + demangled_len + 1);
657 (*slot)->mangled = (char *) lookup_name;
658 }
659 else
660 {
661 /* If we must copy the mangled name, put it directly after
662 the demangled name so we can have a single
663 allocation. */
664 *slot = obstack_alloc (&objfile->objfile_obstack,
665 offsetof (struct demangled_name_entry,
666 demangled)
667 + lookup_len + demangled_len + 2);
668 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
669 strcpy ((*slot)->mangled, lookup_name);
670 }
671
672 if (demangled_name != NULL)
673 {
674 strcpy ((*slot)->demangled, demangled_name);
675 xfree (demangled_name);
676 }
677 else
678 (*slot)->demangled[0] = '\0';
679 }
680
681 gsymbol->name = (*slot)->mangled + lookup_len - len;
682 if ((*slot)->demangled[0] != '\0')
683 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
684 else
685 symbol_set_demangled_name (gsymbol, NULL, objfile);
686 }
687
688 /* Return the source code name of a symbol. In languages where
689 demangling is necessary, this is the demangled name. */
690
691 char *
692 symbol_natural_name (const struct general_symbol_info *gsymbol)
693 {
694 switch (gsymbol->language)
695 {
696 case language_cplus:
697 case language_d:
698 case language_java:
699 case language_objc:
700 case language_fortran:
701 if (symbol_get_demangled_name (gsymbol) != NULL)
702 return symbol_get_demangled_name (gsymbol);
703 break;
704 case language_ada:
705 if (symbol_get_demangled_name (gsymbol) != NULL)
706 return symbol_get_demangled_name (gsymbol);
707 else
708 return ada_decode_symbol (gsymbol);
709 break;
710 default:
711 break;
712 }
713 return gsymbol->name;
714 }
715
716 /* Return the demangled name for a symbol based on the language for
717 that symbol. If no demangled name exists, return NULL. */
718 char *
719 symbol_demangled_name (const struct general_symbol_info *gsymbol)
720 {
721 switch (gsymbol->language)
722 {
723 case language_cplus:
724 case language_d:
725 case language_java:
726 case language_objc:
727 case language_fortran:
728 if (symbol_get_demangled_name (gsymbol) != NULL)
729 return symbol_get_demangled_name (gsymbol);
730 break;
731 case language_ada:
732 if (symbol_get_demangled_name (gsymbol) != NULL)
733 return symbol_get_demangled_name (gsymbol);
734 else
735 return ada_decode_symbol (gsymbol);
736 break;
737 default:
738 break;
739 }
740 return NULL;
741 }
742
743 /* Return the search name of a symbol---generally the demangled or
744 linkage name of the symbol, depending on how it will be searched for.
745 If there is no distinct demangled name, then returns the same value
746 (same pointer) as SYMBOL_LINKAGE_NAME. */
747 char *
748 symbol_search_name (const struct general_symbol_info *gsymbol)
749 {
750 if (gsymbol->language == language_ada)
751 return gsymbol->name;
752 else
753 return symbol_natural_name (gsymbol);
754 }
755
756 /* Initialize the structure fields to zero values. */
757 void
758 init_sal (struct symtab_and_line *sal)
759 {
760 sal->pspace = NULL;
761 sal->symtab = 0;
762 sal->section = 0;
763 sal->line = 0;
764 sal->pc = 0;
765 sal->end = 0;
766 sal->explicit_pc = 0;
767 sal->explicit_line = 0;
768 }
769 \f
770
771 /* Return 1 if the two sections are the same, or if they could
772 plausibly be copies of each other, one in an original object
773 file and another in a separated debug file. */
774
775 int
776 matching_obj_sections (struct obj_section *obj_first,
777 struct obj_section *obj_second)
778 {
779 asection *first = obj_first? obj_first->the_bfd_section : NULL;
780 asection *second = obj_second? obj_second->the_bfd_section : NULL;
781 struct objfile *obj;
782
783 /* If they're the same section, then they match. */
784 if (first == second)
785 return 1;
786
787 /* If either is NULL, give up. */
788 if (first == NULL || second == NULL)
789 return 0;
790
791 /* This doesn't apply to absolute symbols. */
792 if (first->owner == NULL || second->owner == NULL)
793 return 0;
794
795 /* If they're in the same object file, they must be different sections. */
796 if (first->owner == second->owner)
797 return 0;
798
799 /* Check whether the two sections are potentially corresponding. They must
800 have the same size, address, and name. We can't compare section indexes,
801 which would be more reliable, because some sections may have been
802 stripped. */
803 if (bfd_get_section_size (first) != bfd_get_section_size (second))
804 return 0;
805
806 /* In-memory addresses may start at a different offset, relativize them. */
807 if (bfd_get_section_vma (first->owner, first)
808 - bfd_get_start_address (first->owner)
809 != bfd_get_section_vma (second->owner, second)
810 - bfd_get_start_address (second->owner))
811 return 0;
812
813 if (bfd_get_section_name (first->owner, first) == NULL
814 || bfd_get_section_name (second->owner, second) == NULL
815 || strcmp (bfd_get_section_name (first->owner, first),
816 bfd_get_section_name (second->owner, second)) != 0)
817 return 0;
818
819 /* Otherwise check that they are in corresponding objfiles. */
820
821 ALL_OBJFILES (obj)
822 if (obj->obfd == first->owner)
823 break;
824 gdb_assert (obj != NULL);
825
826 if (obj->separate_debug_objfile != NULL
827 && obj->separate_debug_objfile->obfd == second->owner)
828 return 1;
829 if (obj->separate_debug_objfile_backlink != NULL
830 && obj->separate_debug_objfile_backlink->obfd == second->owner)
831 return 1;
832
833 return 0;
834 }
835
836 struct symtab *
837 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
838 {
839 struct objfile *objfile;
840 struct minimal_symbol *msymbol;
841
842 /* If we know that this is not a text address, return failure. This is
843 necessary because we loop based on texthigh and textlow, which do
844 not include the data ranges. */
845 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
846 if (msymbol
847 && (MSYMBOL_TYPE (msymbol) == mst_data
848 || MSYMBOL_TYPE (msymbol) == mst_bss
849 || MSYMBOL_TYPE (msymbol) == mst_abs
850 || MSYMBOL_TYPE (msymbol) == mst_file_data
851 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
852 return NULL;
853
854 ALL_OBJFILES (objfile)
855 {
856 struct symtab *result = NULL;
857
858 if (objfile->sf)
859 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
860 pc, section, 0);
861 if (result)
862 return result;
863 }
864
865 return NULL;
866 }
867 \f
868 /* Debug symbols usually don't have section information. We need to dig that
869 out of the minimal symbols and stash that in the debug symbol. */
870
871 void
872 fixup_section (struct general_symbol_info *ginfo,
873 CORE_ADDR addr, struct objfile *objfile)
874 {
875 struct minimal_symbol *msym;
876
877 /* First, check whether a minimal symbol with the same name exists
878 and points to the same address. The address check is required
879 e.g. on PowerPC64, where the minimal symbol for a function will
880 point to the function descriptor, while the debug symbol will
881 point to the actual function code. */
882 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
883 if (msym)
884 {
885 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
886 ginfo->section = SYMBOL_SECTION (msym);
887 }
888 else
889 {
890 /* Static, function-local variables do appear in the linker
891 (minimal) symbols, but are frequently given names that won't
892 be found via lookup_minimal_symbol(). E.g., it has been
893 observed in frv-uclinux (ELF) executables that a static,
894 function-local variable named "foo" might appear in the
895 linker symbols as "foo.6" or "foo.3". Thus, there is no
896 point in attempting to extend the lookup-by-name mechanism to
897 handle this case due to the fact that there can be multiple
898 names.
899
900 So, instead, search the section table when lookup by name has
901 failed. The ``addr'' and ``endaddr'' fields may have already
902 been relocated. If so, the relocation offset (i.e. the
903 ANOFFSET value) needs to be subtracted from these values when
904 performing the comparison. We unconditionally subtract it,
905 because, when no relocation has been performed, the ANOFFSET
906 value will simply be zero.
907
908 The address of the symbol whose section we're fixing up HAS
909 NOT BEEN adjusted (relocated) yet. It can't have been since
910 the section isn't yet known and knowing the section is
911 necessary in order to add the correct relocation value. In
912 other words, we wouldn't even be in this function (attempting
913 to compute the section) if it were already known.
914
915 Note that it is possible to search the minimal symbols
916 (subtracting the relocation value if necessary) to find the
917 matching minimal symbol, but this is overkill and much less
918 efficient. It is not necessary to find the matching minimal
919 symbol, only its section.
920
921 Note that this technique (of doing a section table search)
922 can fail when unrelocated section addresses overlap. For
923 this reason, we still attempt a lookup by name prior to doing
924 a search of the section table. */
925
926 struct obj_section *s;
927
928 ALL_OBJFILE_OSECTIONS (objfile, s)
929 {
930 int idx = s->the_bfd_section->index;
931 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
932
933 if (obj_section_addr (s) - offset <= addr
934 && addr < obj_section_endaddr (s) - offset)
935 {
936 ginfo->obj_section = s;
937 ginfo->section = idx;
938 return;
939 }
940 }
941 }
942 }
943
944 struct symbol *
945 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
946 {
947 CORE_ADDR addr;
948
949 if (!sym)
950 return NULL;
951
952 if (SYMBOL_OBJ_SECTION (sym))
953 return sym;
954
955 /* We either have an OBJFILE, or we can get at it from the sym's
956 symtab. Anything else is a bug. */
957 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
958
959 if (objfile == NULL)
960 objfile = SYMBOL_SYMTAB (sym)->objfile;
961
962 /* We should have an objfile by now. */
963 gdb_assert (objfile);
964
965 switch (SYMBOL_CLASS (sym))
966 {
967 case LOC_STATIC:
968 case LOC_LABEL:
969 addr = SYMBOL_VALUE_ADDRESS (sym);
970 break;
971 case LOC_BLOCK:
972 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
973 break;
974
975 default:
976 /* Nothing else will be listed in the minsyms -- no use looking
977 it up. */
978 return sym;
979 }
980
981 fixup_section (&sym->ginfo, addr, objfile);
982
983 return sym;
984 }
985
986 /* Find the definition for a specified symbol name NAME
987 in domain DOMAIN, visible from lexical block BLOCK.
988 Returns the struct symbol pointer, or zero if no symbol is found.
989 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
990 NAME is a field of the current implied argument `this'. If so set
991 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
992 BLOCK_FOUND is set to the block in which NAME is found (in the case of
993 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
994
995 /* This function has a bunch of loops in it and it would seem to be
996 attractive to put in some QUIT's (though I'm not really sure
997 whether it can run long enough to be really important). But there
998 are a few calls for which it would appear to be bad news to quit
999 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1000 that there is C++ code below which can error(), but that probably
1001 doesn't affect these calls since they are looking for a known
1002 variable and thus can probably assume it will never hit the C++
1003 code). */
1004
1005 struct symbol *
1006 lookup_symbol_in_language (const char *name, const struct block *block,
1007 const domain_enum domain, enum language lang,
1008 int *is_a_field_of_this)
1009 {
1010 char *demangled_name = NULL;
1011 const char *modified_name = NULL;
1012 struct symbol *returnval;
1013 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1014
1015 modified_name = name;
1016
1017 /* If we are using C++, D, or Java, demangle the name before doing a
1018 lookup, so we can always binary search. */
1019 if (lang == language_cplus)
1020 {
1021 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1022 if (demangled_name)
1023 {
1024 modified_name = demangled_name;
1025 make_cleanup (xfree, demangled_name);
1026 }
1027 else
1028 {
1029 /* If we were given a non-mangled name, canonicalize it
1030 according to the language (so far only for C++). */
1031 demangled_name = cp_canonicalize_string (name);
1032 if (demangled_name)
1033 {
1034 modified_name = demangled_name;
1035 make_cleanup (xfree, demangled_name);
1036 }
1037 }
1038 }
1039 else if (lang == language_java)
1040 {
1041 demangled_name = cplus_demangle (name,
1042 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1043 if (demangled_name)
1044 {
1045 modified_name = demangled_name;
1046 make_cleanup (xfree, demangled_name);
1047 }
1048 }
1049 else if (lang == language_d)
1050 {
1051 demangled_name = d_demangle (name, 0);
1052 if (demangled_name)
1053 {
1054 modified_name = demangled_name;
1055 make_cleanup (xfree, demangled_name);
1056 }
1057 }
1058
1059 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1060 is_a_field_of_this);
1061 do_cleanups (cleanup);
1062
1063 return returnval;
1064 }
1065
1066 /* Behave like lookup_symbol_in_language, but performed with the
1067 current language. */
1068
1069 struct symbol *
1070 lookup_symbol (const char *name, const struct block *block,
1071 domain_enum domain, int *is_a_field_of_this)
1072 {
1073 return lookup_symbol_in_language (name, block, domain,
1074 current_language->la_language,
1075 is_a_field_of_this);
1076 }
1077
1078 /* Behave like lookup_symbol except that NAME is the natural name
1079 of the symbol that we're looking for and, if LINKAGE_NAME is
1080 non-NULL, ensure that the symbol's linkage name matches as
1081 well. */
1082
1083 static struct symbol *
1084 lookup_symbol_aux (const char *name, const struct block *block,
1085 const domain_enum domain, enum language language,
1086 int *is_a_field_of_this)
1087 {
1088 struct symbol *sym;
1089 const struct language_defn *langdef;
1090
1091 /* Make sure we do something sensible with is_a_field_of_this, since
1092 the callers that set this parameter to some non-null value will
1093 certainly use it later and expect it to be either 0 or 1.
1094 If we don't set it, the contents of is_a_field_of_this are
1095 undefined. */
1096 if (is_a_field_of_this != NULL)
1097 *is_a_field_of_this = 0;
1098
1099 /* Search specified block and its superiors. Don't search
1100 STATIC_BLOCK or GLOBAL_BLOCK. */
1101
1102 sym = lookup_symbol_aux_local (name, block, domain, language);
1103 if (sym != NULL)
1104 return sym;
1105
1106 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1107 check to see if NAME is a field of `this'. */
1108
1109 langdef = language_def (language);
1110
1111 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1112 && block != NULL)
1113 {
1114 struct symbol *sym = NULL;
1115 const struct block *function_block = block;
1116
1117 /* 'this' is only defined in the function's block, so find the
1118 enclosing function block. */
1119 for (; function_block && !BLOCK_FUNCTION (function_block);
1120 function_block = BLOCK_SUPERBLOCK (function_block));
1121
1122 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1123 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1124 VAR_DOMAIN);
1125 if (sym)
1126 {
1127 struct type *t = sym->type;
1128
1129 /* I'm not really sure that type of this can ever
1130 be typedefed; just be safe. */
1131 CHECK_TYPEDEF (t);
1132 if (TYPE_CODE (t) == TYPE_CODE_PTR
1133 || TYPE_CODE (t) == TYPE_CODE_REF)
1134 t = TYPE_TARGET_TYPE (t);
1135
1136 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1137 && TYPE_CODE (t) != TYPE_CODE_UNION)
1138 error (_("Internal error: `%s' is not an aggregate"),
1139 langdef->la_name_of_this);
1140
1141 if (check_field (t, name))
1142 {
1143 *is_a_field_of_this = 1;
1144 return NULL;
1145 }
1146 }
1147 }
1148
1149 /* Now do whatever is appropriate for LANGUAGE to look
1150 up static and global variables. */
1151
1152 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1153 if (sym != NULL)
1154 return sym;
1155
1156 /* Now search all static file-level symbols. Not strictly correct,
1157 but more useful than an error. */
1158
1159 return lookup_static_symbol_aux (name, domain);
1160 }
1161
1162 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1163 first, then check the psymtabs. If a psymtab indicates the existence of the
1164 desired name as a file-level static, then do psymtab-to-symtab conversion on
1165 the fly and return the found symbol. */
1166
1167 struct symbol *
1168 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1169 {
1170 struct objfile *objfile;
1171 struct symbol *sym;
1172
1173 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1174 if (sym != NULL)
1175 return sym;
1176
1177 ALL_OBJFILES (objfile)
1178 {
1179 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1180 if (sym != NULL)
1181 return sym;
1182 }
1183
1184 return NULL;
1185 }
1186
1187 /* Check to see if the symbol is defined in BLOCK or its superiors.
1188 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1189
1190 static struct symbol *
1191 lookup_symbol_aux_local (const char *name, const struct block *block,
1192 const domain_enum domain,
1193 enum language language)
1194 {
1195 struct symbol *sym;
1196 const struct block *static_block = block_static_block (block);
1197 const char *scope = block_scope (block);
1198
1199 /* Check if either no block is specified or it's a global block. */
1200
1201 if (static_block == NULL)
1202 return NULL;
1203
1204 while (block != static_block)
1205 {
1206 sym = lookup_symbol_aux_block (name, block, domain);
1207 if (sym != NULL)
1208 return sym;
1209
1210 if (language == language_cplus || language == language_fortran)
1211 {
1212 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1213 domain);
1214 if (sym != NULL)
1215 return sym;
1216 }
1217
1218 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1219 break;
1220 block = BLOCK_SUPERBLOCK (block);
1221 }
1222
1223 /* We've reached the edge of the function without finding a result. */
1224
1225 return NULL;
1226 }
1227
1228 /* Look up OBJFILE to BLOCK. */
1229
1230 struct objfile *
1231 lookup_objfile_from_block (const struct block *block)
1232 {
1233 struct objfile *obj;
1234 struct symtab *s;
1235
1236 if (block == NULL)
1237 return NULL;
1238
1239 block = block_global_block (block);
1240 /* Go through SYMTABS. */
1241 ALL_SYMTABS (obj, s)
1242 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1243 {
1244 if (obj->separate_debug_objfile_backlink)
1245 obj = obj->separate_debug_objfile_backlink;
1246
1247 return obj;
1248 }
1249
1250 return NULL;
1251 }
1252
1253 /* Look up a symbol in a block; if found, fixup the symbol, and set
1254 block_found appropriately. */
1255
1256 struct symbol *
1257 lookup_symbol_aux_block (const char *name, const struct block *block,
1258 const domain_enum domain)
1259 {
1260 struct symbol *sym;
1261
1262 sym = lookup_block_symbol (block, name, domain);
1263 if (sym)
1264 {
1265 block_found = block;
1266 return fixup_symbol_section (sym, NULL);
1267 }
1268
1269 return NULL;
1270 }
1271
1272 /* Check all global symbols in OBJFILE in symtabs and
1273 psymtabs. */
1274
1275 struct symbol *
1276 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1277 const char *name,
1278 const domain_enum domain)
1279 {
1280 const struct objfile *objfile;
1281 struct symbol *sym;
1282 struct blockvector *bv;
1283 const struct block *block;
1284 struct symtab *s;
1285
1286 for (objfile = main_objfile;
1287 objfile;
1288 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1289 {
1290 /* Go through symtabs. */
1291 ALL_OBJFILE_SYMTABS (objfile, s)
1292 {
1293 bv = BLOCKVECTOR (s);
1294 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1295 sym = lookup_block_symbol (block, name, domain);
1296 if (sym)
1297 {
1298 block_found = block;
1299 return fixup_symbol_section (sym, (struct objfile *)objfile);
1300 }
1301 }
1302
1303 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1304 name, domain);
1305 if (sym)
1306 return sym;
1307 }
1308
1309 return NULL;
1310 }
1311
1312 /* Check to see if the symbol is defined in one of the symtabs.
1313 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1314 depending on whether or not we want to search global symbols or
1315 static symbols. */
1316
1317 static struct symbol *
1318 lookup_symbol_aux_symtabs (int block_index, const char *name,
1319 const domain_enum domain)
1320 {
1321 struct symbol *sym;
1322 struct objfile *objfile;
1323 struct blockvector *bv;
1324 const struct block *block;
1325 struct symtab *s;
1326
1327 ALL_OBJFILES (objfile)
1328 {
1329 if (objfile->sf)
1330 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1331 block_index,
1332 name, domain);
1333
1334 ALL_OBJFILE_SYMTABS (objfile, s)
1335 if (s->primary)
1336 {
1337 bv = BLOCKVECTOR (s);
1338 block = BLOCKVECTOR_BLOCK (bv, block_index);
1339 sym = lookup_block_symbol (block, name, domain);
1340 if (sym)
1341 {
1342 block_found = block;
1343 return fixup_symbol_section (sym, objfile);
1344 }
1345 }
1346 }
1347
1348 return NULL;
1349 }
1350
1351 /* A helper function for lookup_symbol_aux that interfaces with the
1352 "quick" symbol table functions. */
1353
1354 static struct symbol *
1355 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1356 const char *name, const domain_enum domain)
1357 {
1358 struct symtab *symtab;
1359 struct blockvector *bv;
1360 const struct block *block;
1361 struct symbol *sym;
1362
1363 if (!objfile->sf)
1364 return NULL;
1365 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1366 if (!symtab)
1367 return NULL;
1368
1369 bv = BLOCKVECTOR (symtab);
1370 block = BLOCKVECTOR_BLOCK (bv, kind);
1371 sym = lookup_block_symbol (block, name, domain);
1372 if (!sym)
1373 {
1374 /* This shouldn't be necessary, but as a last resort try
1375 looking in the statics even though the psymtab claimed
1376 the symbol was global, or vice-versa. It's possible
1377 that the psymtab gets it wrong in some cases. */
1378
1379 /* FIXME: carlton/2002-09-30: Should we really do that?
1380 If that happens, isn't it likely to be a GDB error, in
1381 which case we should fix the GDB error rather than
1382 silently dealing with it here? So I'd vote for
1383 removing the check for the symbol in the other
1384 block. */
1385 block = BLOCKVECTOR_BLOCK (bv,
1386 kind == GLOBAL_BLOCK ?
1387 STATIC_BLOCK : GLOBAL_BLOCK);
1388 sym = lookup_block_symbol (block, name, domain);
1389 if (!sym)
1390 error (_("\
1391 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1392 %s may be an inlined function, or may be a template function\n\
1393 (if a template, try specifying an instantiation: %s<type>)."),
1394 kind == GLOBAL_BLOCK ? "global" : "static",
1395 name, symtab->filename, name, name);
1396 }
1397 return fixup_symbol_section (sym, objfile);
1398 }
1399
1400 /* A default version of lookup_symbol_nonlocal for use by languages
1401 that can't think of anything better to do. This implements the C
1402 lookup rules. */
1403
1404 struct symbol *
1405 basic_lookup_symbol_nonlocal (const char *name,
1406 const struct block *block,
1407 const domain_enum domain)
1408 {
1409 struct symbol *sym;
1410
1411 /* NOTE: carlton/2003-05-19: The comments below were written when
1412 this (or what turned into this) was part of lookup_symbol_aux;
1413 I'm much less worried about these questions now, since these
1414 decisions have turned out well, but I leave these comments here
1415 for posterity. */
1416
1417 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1418 not it would be appropriate to search the current global block
1419 here as well. (That's what this code used to do before the
1420 is_a_field_of_this check was moved up.) On the one hand, it's
1421 redundant with the lookup_symbol_aux_symtabs search that happens
1422 next. On the other hand, if decode_line_1 is passed an argument
1423 like filename:var, then the user presumably wants 'var' to be
1424 searched for in filename. On the third hand, there shouldn't be
1425 multiple global variables all of which are named 'var', and it's
1426 not like decode_line_1 has ever restricted its search to only
1427 global variables in a single filename. All in all, only
1428 searching the static block here seems best: it's correct and it's
1429 cleanest. */
1430
1431 /* NOTE: carlton/2002-12-05: There's also a possible performance
1432 issue here: if you usually search for global symbols in the
1433 current file, then it would be slightly better to search the
1434 current global block before searching all the symtabs. But there
1435 are other factors that have a much greater effect on performance
1436 than that one, so I don't think we should worry about that for
1437 now. */
1438
1439 sym = lookup_symbol_static (name, block, domain);
1440 if (sym != NULL)
1441 return sym;
1442
1443 return lookup_symbol_global (name, block, domain);
1444 }
1445
1446 /* Lookup a symbol in the static block associated to BLOCK, if there
1447 is one; do nothing if BLOCK is NULL or a global block. */
1448
1449 struct symbol *
1450 lookup_symbol_static (const char *name,
1451 const struct block *block,
1452 const domain_enum domain)
1453 {
1454 const struct block *static_block = block_static_block (block);
1455
1456 if (static_block != NULL)
1457 return lookup_symbol_aux_block (name, static_block, domain);
1458 else
1459 return NULL;
1460 }
1461
1462 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1463 necessary). */
1464
1465 struct symbol *
1466 lookup_symbol_global (const char *name,
1467 const struct block *block,
1468 const domain_enum domain)
1469 {
1470 struct symbol *sym = NULL;
1471 struct objfile *objfile = NULL;
1472
1473 /* Call library-specific lookup procedure. */
1474 objfile = lookup_objfile_from_block (block);
1475 if (objfile != NULL)
1476 sym = solib_global_lookup (objfile, name, domain);
1477 if (sym != NULL)
1478 return sym;
1479
1480 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1481 if (sym != NULL)
1482 return sym;
1483
1484 ALL_OBJFILES (objfile)
1485 {
1486 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1487 if (sym)
1488 return sym;
1489 }
1490
1491 return NULL;
1492 }
1493
1494 int
1495 symbol_matches_domain (enum language symbol_language,
1496 domain_enum symbol_domain,
1497 domain_enum domain)
1498 {
1499 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1500 A Java class declaration also defines a typedef for the class.
1501 Similarly, any Ada type declaration implicitly defines a typedef. */
1502 if (symbol_language == language_cplus
1503 || symbol_language == language_d
1504 || symbol_language == language_java
1505 || symbol_language == language_ada)
1506 {
1507 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1508 && symbol_domain == STRUCT_DOMAIN)
1509 return 1;
1510 }
1511 /* For all other languages, strict match is required. */
1512 return (symbol_domain == domain);
1513 }
1514
1515 /* Look up a type named NAME in the struct_domain. The type returned
1516 must not be opaque -- i.e., must have at least one field
1517 defined. */
1518
1519 struct type *
1520 lookup_transparent_type (const char *name)
1521 {
1522 return current_language->la_lookup_transparent_type (name);
1523 }
1524
1525 /* A helper for basic_lookup_transparent_type that interfaces with the
1526 "quick" symbol table functions. */
1527
1528 static struct type *
1529 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1530 const char *name)
1531 {
1532 struct symtab *symtab;
1533 struct blockvector *bv;
1534 struct block *block;
1535 struct symbol *sym;
1536
1537 if (!objfile->sf)
1538 return NULL;
1539 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1540 if (!symtab)
1541 return NULL;
1542
1543 bv = BLOCKVECTOR (symtab);
1544 block = BLOCKVECTOR_BLOCK (bv, kind);
1545 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1546 if (!sym)
1547 {
1548 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1549
1550 /* This shouldn't be necessary, but as a last resort
1551 * try looking in the 'other kind' even though the psymtab
1552 * claimed the symbol was one thing. It's possible that
1553 * the psymtab gets it wrong in some cases.
1554 */
1555 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1556 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1557 if (!sym)
1558 /* FIXME; error is wrong in one case. */
1559 error (_("\
1560 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1561 %s may be an inlined function, or may be a template function\n\
1562 (if a template, try specifying an instantiation: %s<type>)."),
1563 name, symtab->filename, name, name);
1564 }
1565 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1566 return SYMBOL_TYPE (sym);
1567
1568 return NULL;
1569 }
1570
1571 /* The standard implementation of lookup_transparent_type. This code
1572 was modeled on lookup_symbol -- the parts not relevant to looking
1573 up types were just left out. In particular it's assumed here that
1574 types are available in struct_domain and only at file-static or
1575 global blocks. */
1576
1577 struct type *
1578 basic_lookup_transparent_type (const char *name)
1579 {
1580 struct symbol *sym;
1581 struct symtab *s = NULL;
1582 struct blockvector *bv;
1583 struct objfile *objfile;
1584 struct block *block;
1585 struct type *t;
1586
1587 /* Now search all the global symbols. Do the symtab's first, then
1588 check the psymtab's. If a psymtab indicates the existence
1589 of the desired name as a global, then do psymtab-to-symtab
1590 conversion on the fly and return the found symbol. */
1591
1592 ALL_OBJFILES (objfile)
1593 {
1594 if (objfile->sf)
1595 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1596 GLOBAL_BLOCK,
1597 name, STRUCT_DOMAIN);
1598
1599 ALL_OBJFILE_SYMTABS (objfile, s)
1600 if (s->primary)
1601 {
1602 bv = BLOCKVECTOR (s);
1603 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1604 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1605 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1606 {
1607 return SYMBOL_TYPE (sym);
1608 }
1609 }
1610 }
1611
1612 ALL_OBJFILES (objfile)
1613 {
1614 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1615 if (t)
1616 return t;
1617 }
1618
1619 /* Now search the static file-level symbols.
1620 Not strictly correct, but more useful than an error.
1621 Do the symtab's first, then
1622 check the psymtab's. If a psymtab indicates the existence
1623 of the desired name as a file-level static, then do psymtab-to-symtab
1624 conversion on the fly and return the found symbol. */
1625
1626 ALL_OBJFILES (objfile)
1627 {
1628 if (objfile->sf)
1629 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1630 name, STRUCT_DOMAIN);
1631
1632 ALL_OBJFILE_SYMTABS (objfile, s)
1633 {
1634 bv = BLOCKVECTOR (s);
1635 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1636 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1637 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1638 {
1639 return SYMBOL_TYPE (sym);
1640 }
1641 }
1642 }
1643
1644 ALL_OBJFILES (objfile)
1645 {
1646 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1647 if (t)
1648 return t;
1649 }
1650
1651 return (struct type *) 0;
1652 }
1653
1654
1655 /* Find the name of the file containing main(). */
1656 /* FIXME: What about languages without main() or specially linked
1657 executables that have no main() ? */
1658
1659 const char *
1660 find_main_filename (void)
1661 {
1662 struct objfile *objfile;
1663 char *name = main_name ();
1664
1665 ALL_OBJFILES (objfile)
1666 {
1667 const char *result;
1668
1669 if (!objfile->sf)
1670 continue;
1671 result = objfile->sf->qf->find_symbol_file (objfile, name);
1672 if (result)
1673 return result;
1674 }
1675 return (NULL);
1676 }
1677
1678 /* Search BLOCK for symbol NAME in DOMAIN.
1679
1680 Note that if NAME is the demangled form of a C++ symbol, we will fail
1681 to find a match during the binary search of the non-encoded names, but
1682 for now we don't worry about the slight inefficiency of looking for
1683 a match we'll never find, since it will go pretty quick. Once the
1684 binary search terminates, we drop through and do a straight linear
1685 search on the symbols. Each symbol which is marked as being a ObjC/C++
1686 symbol (language_cplus or language_objc set) has both the encoded and
1687 non-encoded names tested for a match. */
1688
1689 struct symbol *
1690 lookup_block_symbol (const struct block *block, const char *name,
1691 const domain_enum domain)
1692 {
1693 struct dict_iterator iter;
1694 struct symbol *sym;
1695
1696 if (!BLOCK_FUNCTION (block))
1697 {
1698 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1699 sym != NULL;
1700 sym = dict_iter_name_next (name, &iter))
1701 {
1702 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1703 SYMBOL_DOMAIN (sym), domain))
1704 return sym;
1705 }
1706 return NULL;
1707 }
1708 else
1709 {
1710 /* Note that parameter symbols do not always show up last in the
1711 list; this loop makes sure to take anything else other than
1712 parameter symbols first; it only uses parameter symbols as a
1713 last resort. Note that this only takes up extra computation
1714 time on a match. */
1715
1716 struct symbol *sym_found = NULL;
1717
1718 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1719 sym != NULL;
1720 sym = dict_iter_name_next (name, &iter))
1721 {
1722 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1723 SYMBOL_DOMAIN (sym), domain))
1724 {
1725 sym_found = sym;
1726 if (!SYMBOL_IS_ARGUMENT (sym))
1727 {
1728 break;
1729 }
1730 }
1731 }
1732 return (sym_found); /* Will be NULL if not found. */
1733 }
1734 }
1735
1736 /* Find the symtab associated with PC and SECTION. Look through the
1737 psymtabs and read in another symtab if necessary. */
1738
1739 struct symtab *
1740 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1741 {
1742 struct block *b;
1743 struct blockvector *bv;
1744 struct symtab *s = NULL;
1745 struct symtab *best_s = NULL;
1746 struct objfile *objfile;
1747 struct program_space *pspace;
1748 CORE_ADDR distance = 0;
1749 struct minimal_symbol *msymbol;
1750
1751 pspace = current_program_space;
1752
1753 /* If we know that this is not a text address, return failure. This is
1754 necessary because we loop based on the block's high and low code
1755 addresses, which do not include the data ranges, and because
1756 we call find_pc_sect_psymtab which has a similar restriction based
1757 on the partial_symtab's texthigh and textlow. */
1758 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1759 if (msymbol
1760 && (MSYMBOL_TYPE (msymbol) == mst_data
1761 || MSYMBOL_TYPE (msymbol) == mst_bss
1762 || MSYMBOL_TYPE (msymbol) == mst_abs
1763 || MSYMBOL_TYPE (msymbol) == mst_file_data
1764 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1765 return NULL;
1766
1767 /* Search all symtabs for the one whose file contains our address, and which
1768 is the smallest of all the ones containing the address. This is designed
1769 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1770 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1771 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1772
1773 This happens for native ecoff format, where code from included files
1774 gets its own symtab. The symtab for the included file should have
1775 been read in already via the dependency mechanism.
1776 It might be swifter to create several symtabs with the same name
1777 like xcoff does (I'm not sure).
1778
1779 It also happens for objfiles that have their functions reordered.
1780 For these, the symtab we are looking for is not necessarily read in. */
1781
1782 ALL_PRIMARY_SYMTABS (objfile, s)
1783 {
1784 bv = BLOCKVECTOR (s);
1785 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1786
1787 if (BLOCK_START (b) <= pc
1788 && BLOCK_END (b) > pc
1789 && (distance == 0
1790 || BLOCK_END (b) - BLOCK_START (b) < distance))
1791 {
1792 /* For an objfile that has its functions reordered,
1793 find_pc_psymtab will find the proper partial symbol table
1794 and we simply return its corresponding symtab. */
1795 /* In order to better support objfiles that contain both
1796 stabs and coff debugging info, we continue on if a psymtab
1797 can't be found. */
1798 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1799 {
1800 struct symtab *result;
1801
1802 result
1803 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1804 msymbol,
1805 pc, section,
1806 0);
1807 if (result)
1808 return result;
1809 }
1810 if (section != 0)
1811 {
1812 struct dict_iterator iter;
1813 struct symbol *sym = NULL;
1814
1815 ALL_BLOCK_SYMBOLS (b, iter, sym)
1816 {
1817 fixup_symbol_section (sym, objfile);
1818 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1819 break;
1820 }
1821 if (sym == NULL)
1822 continue; /* No symbol in this symtab matches
1823 section. */
1824 }
1825 distance = BLOCK_END (b) - BLOCK_START (b);
1826 best_s = s;
1827 }
1828 }
1829
1830 if (best_s != NULL)
1831 return (best_s);
1832
1833 ALL_OBJFILES (objfile)
1834 {
1835 struct symtab *result;
1836
1837 if (!objfile->sf)
1838 continue;
1839 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1840 msymbol,
1841 pc, section,
1842 1);
1843 if (result)
1844 return result;
1845 }
1846
1847 return NULL;
1848 }
1849
1850 /* Find the symtab associated with PC. Look through the psymtabs and read
1851 in another symtab if necessary. Backward compatibility, no section. */
1852
1853 struct symtab *
1854 find_pc_symtab (CORE_ADDR pc)
1855 {
1856 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1857 }
1858 \f
1859
1860 /* Find the source file and line number for a given PC value and SECTION.
1861 Return a structure containing a symtab pointer, a line number,
1862 and a pc range for the entire source line.
1863 The value's .pc field is NOT the specified pc.
1864 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1865 use the line that ends there. Otherwise, in that case, the line
1866 that begins there is used. */
1867
1868 /* The big complication here is that a line may start in one file, and end just
1869 before the start of another file. This usually occurs when you #include
1870 code in the middle of a subroutine. To properly find the end of a line's PC
1871 range, we must search all symtabs associated with this compilation unit, and
1872 find the one whose first PC is closer than that of the next line in this
1873 symtab. */
1874
1875 /* If it's worth the effort, we could be using a binary search. */
1876
1877 struct symtab_and_line
1878 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1879 {
1880 struct symtab *s;
1881 struct linetable *l;
1882 int len;
1883 int i;
1884 struct linetable_entry *item;
1885 struct symtab_and_line val;
1886 struct blockvector *bv;
1887 struct minimal_symbol *msymbol;
1888 struct minimal_symbol *mfunsym;
1889 struct objfile *objfile;
1890
1891 /* Info on best line seen so far, and where it starts, and its file. */
1892
1893 struct linetable_entry *best = NULL;
1894 CORE_ADDR best_end = 0;
1895 struct symtab *best_symtab = 0;
1896
1897 /* Store here the first line number
1898 of a file which contains the line at the smallest pc after PC.
1899 If we don't find a line whose range contains PC,
1900 we will use a line one less than this,
1901 with a range from the start of that file to the first line's pc. */
1902 struct linetable_entry *alt = NULL;
1903 struct symtab *alt_symtab = 0;
1904
1905 /* Info on best line seen in this file. */
1906
1907 struct linetable_entry *prev;
1908
1909 /* If this pc is not from the current frame,
1910 it is the address of the end of a call instruction.
1911 Quite likely that is the start of the following statement.
1912 But what we want is the statement containing the instruction.
1913 Fudge the pc to make sure we get that. */
1914
1915 init_sal (&val); /* initialize to zeroes */
1916
1917 val.pspace = current_program_space;
1918
1919 /* It's tempting to assume that, if we can't find debugging info for
1920 any function enclosing PC, that we shouldn't search for line
1921 number info, either. However, GAS can emit line number info for
1922 assembly files --- very helpful when debugging hand-written
1923 assembly code. In such a case, we'd have no debug info for the
1924 function, but we would have line info. */
1925
1926 if (notcurrent)
1927 pc -= 1;
1928
1929 /* elz: added this because this function returned the wrong
1930 information if the pc belongs to a stub (import/export)
1931 to call a shlib function. This stub would be anywhere between
1932 two functions in the target, and the line info was erroneously
1933 taken to be the one of the line before the pc. */
1934
1935 /* RT: Further explanation:
1936
1937 * We have stubs (trampolines) inserted between procedures.
1938 *
1939 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1940 * exists in the main image.
1941 *
1942 * In the minimal symbol table, we have a bunch of symbols
1943 * sorted by start address. The stubs are marked as "trampoline",
1944 * the others appear as text. E.g.:
1945 *
1946 * Minimal symbol table for main image
1947 * main: code for main (text symbol)
1948 * shr1: stub (trampoline symbol)
1949 * foo: code for foo (text symbol)
1950 * ...
1951 * Minimal symbol table for "shr1" image:
1952 * ...
1953 * shr1: code for shr1 (text symbol)
1954 * ...
1955 *
1956 * So the code below is trying to detect if we are in the stub
1957 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1958 * and if found, do the symbolization from the real-code address
1959 * rather than the stub address.
1960 *
1961 * Assumptions being made about the minimal symbol table:
1962 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1963 * if we're really in the trampoline.s If we're beyond it (say
1964 * we're in "foo" in the above example), it'll have a closer
1965 * symbol (the "foo" text symbol for example) and will not
1966 * return the trampoline.
1967 * 2. lookup_minimal_symbol_text() will find a real text symbol
1968 * corresponding to the trampoline, and whose address will
1969 * be different than the trampoline address. I put in a sanity
1970 * check for the address being the same, to avoid an
1971 * infinite recursion.
1972 */
1973 msymbol = lookup_minimal_symbol_by_pc (pc);
1974 if (msymbol != NULL)
1975 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1976 {
1977 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1978 NULL);
1979 if (mfunsym == NULL)
1980 /* I eliminated this warning since it is coming out
1981 * in the following situation:
1982 * gdb shmain // test program with shared libraries
1983 * (gdb) break shr1 // function in shared lib
1984 * Warning: In stub for ...
1985 * In the above situation, the shared lib is not loaded yet,
1986 * so of course we can't find the real func/line info,
1987 * but the "break" still works, and the warning is annoying.
1988 * So I commented out the warning. RT */
1989 /* warning ("In stub for %s; unable to find real function/line info",
1990 SYMBOL_LINKAGE_NAME (msymbol)); */
1991 ;
1992 /* fall through */
1993 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
1994 == SYMBOL_VALUE_ADDRESS (msymbol))
1995 /* Avoid infinite recursion */
1996 /* See above comment about why warning is commented out. */
1997 /* warning ("In stub for %s; unable to find real function/line info",
1998 SYMBOL_LINKAGE_NAME (msymbol)); */
1999 ;
2000 /* fall through */
2001 else
2002 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2003 }
2004
2005
2006 s = find_pc_sect_symtab (pc, section);
2007 if (!s)
2008 {
2009 /* If no symbol information, return previous pc. */
2010 if (notcurrent)
2011 pc++;
2012 val.pc = pc;
2013 return val;
2014 }
2015
2016 bv = BLOCKVECTOR (s);
2017 objfile = s->objfile;
2018
2019 /* Look at all the symtabs that share this blockvector.
2020 They all have the same apriori range, that we found was right;
2021 but they have different line tables. */
2022
2023 ALL_OBJFILE_SYMTABS (objfile, s)
2024 {
2025 if (BLOCKVECTOR (s) != bv)
2026 continue;
2027
2028 /* Find the best line in this symtab. */
2029 l = LINETABLE (s);
2030 if (!l)
2031 continue;
2032 len = l->nitems;
2033 if (len <= 0)
2034 {
2035 /* I think len can be zero if the symtab lacks line numbers
2036 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2037 I'm not sure which, and maybe it depends on the symbol
2038 reader). */
2039 continue;
2040 }
2041
2042 prev = NULL;
2043 item = l->item; /* Get first line info. */
2044
2045 /* Is this file's first line closer than the first lines of other files?
2046 If so, record this file, and its first line, as best alternate. */
2047 if (item->pc > pc && (!alt || item->pc < alt->pc))
2048 {
2049 alt = item;
2050 alt_symtab = s;
2051 }
2052
2053 for (i = 0; i < len; i++, item++)
2054 {
2055 /* Leave prev pointing to the linetable entry for the last line
2056 that started at or before PC. */
2057 if (item->pc > pc)
2058 break;
2059
2060 prev = item;
2061 }
2062
2063 /* At this point, prev points at the line whose start addr is <= pc, and
2064 item points at the next line. If we ran off the end of the linetable
2065 (pc >= start of the last line), then prev == item. If pc < start of
2066 the first line, prev will not be set. */
2067
2068 /* Is this file's best line closer than the best in the other files?
2069 If so, record this file, and its best line, as best so far. Don't
2070 save prev if it represents the end of a function (i.e. line number
2071 0) instead of a real line. */
2072
2073 if (prev && prev->line && (!best || prev->pc > best->pc))
2074 {
2075 best = prev;
2076 best_symtab = s;
2077
2078 /* Discard BEST_END if it's before the PC of the current BEST. */
2079 if (best_end <= best->pc)
2080 best_end = 0;
2081 }
2082
2083 /* If another line (denoted by ITEM) is in the linetable and its
2084 PC is after BEST's PC, but before the current BEST_END, then
2085 use ITEM's PC as the new best_end. */
2086 if (best && i < len && item->pc > best->pc
2087 && (best_end == 0 || best_end > item->pc))
2088 best_end = item->pc;
2089 }
2090
2091 if (!best_symtab)
2092 {
2093 /* If we didn't find any line number info, just return zeros.
2094 We used to return alt->line - 1 here, but that could be
2095 anywhere; if we don't have line number info for this PC,
2096 don't make some up. */
2097 val.pc = pc;
2098 }
2099 else if (best->line == 0)
2100 {
2101 /* If our best fit is in a range of PC's for which no line
2102 number info is available (line number is zero) then we didn't
2103 find any valid line information. */
2104 val.pc = pc;
2105 }
2106 else
2107 {
2108 val.symtab = best_symtab;
2109 val.line = best->line;
2110 val.pc = best->pc;
2111 if (best_end && (!alt || best_end < alt->pc))
2112 val.end = best_end;
2113 else if (alt)
2114 val.end = alt->pc;
2115 else
2116 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2117 }
2118 val.section = section;
2119 return val;
2120 }
2121
2122 /* Backward compatibility (no section). */
2123
2124 struct symtab_and_line
2125 find_pc_line (CORE_ADDR pc, int notcurrent)
2126 {
2127 struct obj_section *section;
2128
2129 section = find_pc_overlay (pc);
2130 if (pc_in_unmapped_range (pc, section))
2131 pc = overlay_mapped_address (pc, section);
2132 return find_pc_sect_line (pc, section, notcurrent);
2133 }
2134 \f
2135 /* Find line number LINE in any symtab whose name is the same as
2136 SYMTAB.
2137
2138 If found, return the symtab that contains the linetable in which it was
2139 found, set *INDEX to the index in the linetable of the best entry
2140 found, and set *EXACT_MATCH nonzero if the value returned is an
2141 exact match.
2142
2143 If not found, return NULL. */
2144
2145 struct symtab *
2146 find_line_symtab (struct symtab *symtab, int line,
2147 int *index, int *exact_match)
2148 {
2149 int exact = 0; /* Initialized here to avoid a compiler warning. */
2150
2151 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2152 so far seen. */
2153
2154 int best_index;
2155 struct linetable *best_linetable;
2156 struct symtab *best_symtab;
2157
2158 /* First try looking it up in the given symtab. */
2159 best_linetable = LINETABLE (symtab);
2160 best_symtab = symtab;
2161 best_index = find_line_common (best_linetable, line, &exact);
2162 if (best_index < 0 || !exact)
2163 {
2164 /* Didn't find an exact match. So we better keep looking for
2165 another symtab with the same name. In the case of xcoff,
2166 multiple csects for one source file (produced by IBM's FORTRAN
2167 compiler) produce multiple symtabs (this is unavoidable
2168 assuming csects can be at arbitrary places in memory and that
2169 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2170
2171 /* BEST is the smallest linenumber > LINE so far seen,
2172 or 0 if none has been seen so far.
2173 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2174 int best;
2175
2176 struct objfile *objfile;
2177 struct symtab *s;
2178
2179 if (best_index >= 0)
2180 best = best_linetable->item[best_index].line;
2181 else
2182 best = 0;
2183
2184 ALL_OBJFILES (objfile)
2185 {
2186 if (objfile->sf)
2187 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2188 symtab->filename);
2189 }
2190
2191 /* Get symbol full file name if possible. */
2192 symtab_to_fullname (symtab);
2193
2194 ALL_SYMTABS (objfile, s)
2195 {
2196 struct linetable *l;
2197 int ind;
2198
2199 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2200 continue;
2201 if (symtab->fullname != NULL
2202 && symtab_to_fullname (s) != NULL
2203 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2204 continue;
2205 l = LINETABLE (s);
2206 ind = find_line_common (l, line, &exact);
2207 if (ind >= 0)
2208 {
2209 if (exact)
2210 {
2211 best_index = ind;
2212 best_linetable = l;
2213 best_symtab = s;
2214 goto done;
2215 }
2216 if (best == 0 || l->item[ind].line < best)
2217 {
2218 best = l->item[ind].line;
2219 best_index = ind;
2220 best_linetable = l;
2221 best_symtab = s;
2222 }
2223 }
2224 }
2225 }
2226 done:
2227 if (best_index < 0)
2228 return NULL;
2229
2230 if (index)
2231 *index = best_index;
2232 if (exact_match)
2233 *exact_match = exact;
2234
2235 return best_symtab;
2236 }
2237 \f
2238 /* Set the PC value for a given source file and line number and return true.
2239 Returns zero for invalid line number (and sets the PC to 0).
2240 The source file is specified with a struct symtab. */
2241
2242 int
2243 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2244 {
2245 struct linetable *l;
2246 int ind;
2247
2248 *pc = 0;
2249 if (symtab == 0)
2250 return 0;
2251
2252 symtab = find_line_symtab (symtab, line, &ind, NULL);
2253 if (symtab != NULL)
2254 {
2255 l = LINETABLE (symtab);
2256 *pc = l->item[ind].pc;
2257 return 1;
2258 }
2259 else
2260 return 0;
2261 }
2262
2263 /* Find the range of pc values in a line.
2264 Store the starting pc of the line into *STARTPTR
2265 and the ending pc (start of next line) into *ENDPTR.
2266 Returns 1 to indicate success.
2267 Returns 0 if could not find the specified line. */
2268
2269 int
2270 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2271 CORE_ADDR *endptr)
2272 {
2273 CORE_ADDR startaddr;
2274 struct symtab_and_line found_sal;
2275
2276 startaddr = sal.pc;
2277 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2278 return 0;
2279
2280 /* This whole function is based on address. For example, if line 10 has
2281 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2282 "info line *0x123" should say the line goes from 0x100 to 0x200
2283 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2284 This also insures that we never give a range like "starts at 0x134
2285 and ends at 0x12c". */
2286
2287 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2288 if (found_sal.line != sal.line)
2289 {
2290 /* The specified line (sal) has zero bytes. */
2291 *startptr = found_sal.pc;
2292 *endptr = found_sal.pc;
2293 }
2294 else
2295 {
2296 *startptr = found_sal.pc;
2297 *endptr = found_sal.end;
2298 }
2299 return 1;
2300 }
2301
2302 /* Given a line table and a line number, return the index into the line
2303 table for the pc of the nearest line whose number is >= the specified one.
2304 Return -1 if none is found. The value is >= 0 if it is an index.
2305
2306 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2307
2308 static int
2309 find_line_common (struct linetable *l, int lineno,
2310 int *exact_match)
2311 {
2312 int i;
2313 int len;
2314
2315 /* BEST is the smallest linenumber > LINENO so far seen,
2316 or 0 if none has been seen so far.
2317 BEST_INDEX identifies the item for it. */
2318
2319 int best_index = -1;
2320 int best = 0;
2321
2322 *exact_match = 0;
2323
2324 if (lineno <= 0)
2325 return -1;
2326 if (l == 0)
2327 return -1;
2328
2329 len = l->nitems;
2330 for (i = 0; i < len; i++)
2331 {
2332 struct linetable_entry *item = &(l->item[i]);
2333
2334 if (item->line == lineno)
2335 {
2336 /* Return the first (lowest address) entry which matches. */
2337 *exact_match = 1;
2338 return i;
2339 }
2340
2341 if (item->line > lineno && (best == 0 || item->line < best))
2342 {
2343 best = item->line;
2344 best_index = i;
2345 }
2346 }
2347
2348 /* If we got here, we didn't get an exact match. */
2349 return best_index;
2350 }
2351
2352 int
2353 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2354 {
2355 struct symtab_and_line sal;
2356
2357 sal = find_pc_line (pc, 0);
2358 *startptr = sal.pc;
2359 *endptr = sal.end;
2360 return sal.symtab != 0;
2361 }
2362
2363 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2364 address for that function that has an entry in SYMTAB's line info
2365 table. If such an entry cannot be found, return FUNC_ADDR
2366 unaltered. */
2367 CORE_ADDR
2368 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2369 {
2370 CORE_ADDR func_start, func_end;
2371 struct linetable *l;
2372 int i;
2373
2374 /* Give up if this symbol has no lineinfo table. */
2375 l = LINETABLE (symtab);
2376 if (l == NULL)
2377 return func_addr;
2378
2379 /* Get the range for the function's PC values, or give up if we
2380 cannot, for some reason. */
2381 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2382 return func_addr;
2383
2384 /* Linetable entries are ordered by PC values, see the commentary in
2385 symtab.h where `struct linetable' is defined. Thus, the first
2386 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2387 address we are looking for. */
2388 for (i = 0; i < l->nitems; i++)
2389 {
2390 struct linetable_entry *item = &(l->item[i]);
2391
2392 /* Don't use line numbers of zero, they mark special entries in
2393 the table. See the commentary on symtab.h before the
2394 definition of struct linetable. */
2395 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2396 return item->pc;
2397 }
2398
2399 return func_addr;
2400 }
2401
2402 /* Given a function symbol SYM, find the symtab and line for the start
2403 of the function.
2404 If the argument FUNFIRSTLINE is nonzero, we want the first line
2405 of real code inside the function. */
2406
2407 struct symtab_and_line
2408 find_function_start_sal (struct symbol *sym, int funfirstline)
2409 {
2410 struct symtab_and_line sal;
2411
2412 fixup_symbol_section (sym, NULL);
2413 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2414 SYMBOL_OBJ_SECTION (sym), 0);
2415
2416 /* We always should have a line for the function start address.
2417 If we don't, something is odd. Create a plain SAL refering
2418 just the PC and hope that skip_prologue_sal (if requested)
2419 can find a line number for after the prologue. */
2420 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2421 {
2422 init_sal (&sal);
2423 sal.pspace = current_program_space;
2424 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2425 sal.section = SYMBOL_OBJ_SECTION (sym);
2426 }
2427
2428 if (funfirstline)
2429 skip_prologue_sal (&sal);
2430
2431 return sal;
2432 }
2433
2434 /* Adjust SAL to the first instruction past the function prologue.
2435 If the PC was explicitly specified, the SAL is not changed.
2436 If the line number was explicitly specified, at most the SAL's PC
2437 is updated. If SAL is already past the prologue, then do nothing. */
2438 void
2439 skip_prologue_sal (struct symtab_and_line *sal)
2440 {
2441 struct symbol *sym;
2442 struct symtab_and_line start_sal;
2443 struct cleanup *old_chain;
2444 CORE_ADDR pc, saved_pc;
2445 struct obj_section *section;
2446 const char *name;
2447 struct objfile *objfile;
2448 struct gdbarch *gdbarch;
2449 struct block *b, *function_block;
2450 int force_skip, skip;
2451
2452 /* Do not change the SAL is PC was specified explicitly. */
2453 if (sal->explicit_pc)
2454 return;
2455
2456 old_chain = save_current_space_and_thread ();
2457 switch_to_program_space_and_thread (sal->pspace);
2458
2459 sym = find_pc_sect_function (sal->pc, sal->section);
2460 if (sym != NULL)
2461 {
2462 fixup_symbol_section (sym, NULL);
2463
2464 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2465 section = SYMBOL_OBJ_SECTION (sym);
2466 name = SYMBOL_LINKAGE_NAME (sym);
2467 objfile = SYMBOL_SYMTAB (sym)->objfile;
2468 }
2469 else
2470 {
2471 struct minimal_symbol *msymbol
2472 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2473
2474 if (msymbol == NULL)
2475 {
2476 do_cleanups (old_chain);
2477 return;
2478 }
2479
2480 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2481 section = SYMBOL_OBJ_SECTION (msymbol);
2482 name = SYMBOL_LINKAGE_NAME (msymbol);
2483 objfile = msymbol_objfile (msymbol);
2484 }
2485
2486 gdbarch = get_objfile_arch (objfile);
2487
2488 /* Process the prologue in two passes. In the first pass try to skip the
2489 prologue (SKIP is true) and verify there is a real need for it (indicated
2490 by FORCE_SKIP). If no such reason was found run a second pass where the
2491 prologue is not skipped (SKIP is false). */
2492
2493 skip = 1;
2494 force_skip = 1;
2495
2496 /* Be conservative - allow direct PC (without skipping prologue) only if we
2497 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2498 have to be set by the caller so we use SYM instead. */
2499 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2500 force_skip = 0;
2501
2502 saved_pc = pc;
2503 do
2504 {
2505 pc = saved_pc;
2506
2507 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2508 so that gdbarch_skip_prologue has something unique to work on. */
2509 if (section_is_overlay (section) && !section_is_mapped (section))
2510 pc = overlay_unmapped_address (pc, section);
2511
2512 /* Skip "first line" of function (which is actually its prologue). */
2513 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2514 if (skip)
2515 pc = gdbarch_skip_prologue (gdbarch, pc);
2516
2517 /* For overlays, map pc back into its mapped VMA range. */
2518 pc = overlay_mapped_address (pc, section);
2519
2520 /* Calculate line number. */
2521 start_sal = find_pc_sect_line (pc, section, 0);
2522
2523 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2524 line is still part of the same function. */
2525 if (skip && start_sal.pc != pc
2526 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2527 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2528 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2529 == lookup_minimal_symbol_by_pc_section (pc, section))))
2530 {
2531 /* First pc of next line */
2532 pc = start_sal.end;
2533 /* Recalculate the line number (might not be N+1). */
2534 start_sal = find_pc_sect_line (pc, section, 0);
2535 }
2536
2537 /* On targets with executable formats that don't have a concept of
2538 constructors (ELF with .init has, PE doesn't), gcc emits a call
2539 to `__main' in `main' between the prologue and before user
2540 code. */
2541 if (gdbarch_skip_main_prologue_p (gdbarch)
2542 && name && strcmp (name, "main") == 0)
2543 {
2544 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2545 /* Recalculate the line number (might not be N+1). */
2546 start_sal = find_pc_sect_line (pc, section, 0);
2547 force_skip = 1;
2548 }
2549 }
2550 while (!force_skip && skip--);
2551
2552 /* If we still don't have a valid source line, try to find the first
2553 PC in the lineinfo table that belongs to the same function. This
2554 happens with COFF debug info, which does not seem to have an
2555 entry in lineinfo table for the code after the prologue which has
2556 no direct relation to source. For example, this was found to be
2557 the case with the DJGPP target using "gcc -gcoff" when the
2558 compiler inserted code after the prologue to make sure the stack
2559 is aligned. */
2560 if (!force_skip && sym && start_sal.symtab == NULL)
2561 {
2562 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2563 /* Recalculate the line number. */
2564 start_sal = find_pc_sect_line (pc, section, 0);
2565 }
2566
2567 do_cleanups (old_chain);
2568
2569 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2570 forward SAL to the end of the prologue. */
2571 if (sal->pc >= pc)
2572 return;
2573
2574 sal->pc = pc;
2575 sal->section = section;
2576
2577 /* Unless the explicit_line flag was set, update the SAL line
2578 and symtab to correspond to the modified PC location. */
2579 if (sal->explicit_line)
2580 return;
2581
2582 sal->symtab = start_sal.symtab;
2583 sal->line = start_sal.line;
2584 sal->end = start_sal.end;
2585
2586 /* Check if we are now inside an inlined function. If we can,
2587 use the call site of the function instead. */
2588 b = block_for_pc_sect (sal->pc, sal->section);
2589 function_block = NULL;
2590 while (b != NULL)
2591 {
2592 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2593 function_block = b;
2594 else if (BLOCK_FUNCTION (b) != NULL)
2595 break;
2596 b = BLOCK_SUPERBLOCK (b);
2597 }
2598 if (function_block != NULL
2599 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2600 {
2601 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2602 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2603 }
2604 }
2605
2606 /* If P is of the form "operator[ \t]+..." where `...' is
2607 some legitimate operator text, return a pointer to the
2608 beginning of the substring of the operator text.
2609 Otherwise, return "". */
2610 char *
2611 operator_chars (char *p, char **end)
2612 {
2613 *end = "";
2614 if (strncmp (p, "operator", 8))
2615 return *end;
2616 p += 8;
2617
2618 /* Don't get faked out by `operator' being part of a longer
2619 identifier. */
2620 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2621 return *end;
2622
2623 /* Allow some whitespace between `operator' and the operator symbol. */
2624 while (*p == ' ' || *p == '\t')
2625 p++;
2626
2627 /* Recognize 'operator TYPENAME'. */
2628
2629 if (isalpha (*p) || *p == '_' || *p == '$')
2630 {
2631 char *q = p + 1;
2632
2633 while (isalnum (*q) || *q == '_' || *q == '$')
2634 q++;
2635 *end = q;
2636 return p;
2637 }
2638
2639 while (*p)
2640 switch (*p)
2641 {
2642 case '\\': /* regexp quoting */
2643 if (p[1] == '*')
2644 {
2645 if (p[2] == '=') /* 'operator\*=' */
2646 *end = p + 3;
2647 else /* 'operator\*' */
2648 *end = p + 2;
2649 return p;
2650 }
2651 else if (p[1] == '[')
2652 {
2653 if (p[2] == ']')
2654 error (_("mismatched quoting on brackets, "
2655 "try 'operator\\[\\]'"));
2656 else if (p[2] == '\\' && p[3] == ']')
2657 {
2658 *end = p + 4; /* 'operator\[\]' */
2659 return p;
2660 }
2661 else
2662 error (_("nothing is allowed between '[' and ']'"));
2663 }
2664 else
2665 {
2666 /* Gratuitous qoute: skip it and move on. */
2667 p++;
2668 continue;
2669 }
2670 break;
2671 case '!':
2672 case '=':
2673 case '*':
2674 case '/':
2675 case '%':
2676 case '^':
2677 if (p[1] == '=')
2678 *end = p + 2;
2679 else
2680 *end = p + 1;
2681 return p;
2682 case '<':
2683 case '>':
2684 case '+':
2685 case '-':
2686 case '&':
2687 case '|':
2688 if (p[0] == '-' && p[1] == '>')
2689 {
2690 /* Struct pointer member operator 'operator->'. */
2691 if (p[2] == '*')
2692 {
2693 *end = p + 3; /* 'operator->*' */
2694 return p;
2695 }
2696 else if (p[2] == '\\')
2697 {
2698 *end = p + 4; /* Hopefully 'operator->\*' */
2699 return p;
2700 }
2701 else
2702 {
2703 *end = p + 2; /* 'operator->' */
2704 return p;
2705 }
2706 }
2707 if (p[1] == '=' || p[1] == p[0])
2708 *end = p + 2;
2709 else
2710 *end = p + 1;
2711 return p;
2712 case '~':
2713 case ',':
2714 *end = p + 1;
2715 return p;
2716 case '(':
2717 if (p[1] != ')')
2718 error (_("`operator ()' must be specified "
2719 "without whitespace in `()'"));
2720 *end = p + 2;
2721 return p;
2722 case '?':
2723 if (p[1] != ':')
2724 error (_("`operator ?:' must be specified "
2725 "without whitespace in `?:'"));
2726 *end = p + 2;
2727 return p;
2728 case '[':
2729 if (p[1] != ']')
2730 error (_("`operator []' must be specified "
2731 "without whitespace in `[]'"));
2732 *end = p + 2;
2733 return p;
2734 default:
2735 error (_("`operator %s' not supported"), p);
2736 break;
2737 }
2738
2739 *end = "";
2740 return *end;
2741 }
2742 \f
2743
2744 /* If FILE is not already in the table of files, return zero;
2745 otherwise return non-zero. Optionally add FILE to the table if ADD
2746 is non-zero. If *FIRST is non-zero, forget the old table
2747 contents. */
2748 static int
2749 filename_seen (const char *file, int add, int *first)
2750 {
2751 /* Table of files seen so far. */
2752 static const char **tab = NULL;
2753 /* Allocated size of tab in elements.
2754 Start with one 256-byte block (when using GNU malloc.c).
2755 24 is the malloc overhead when range checking is in effect. */
2756 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2757 /* Current size of tab in elements. */
2758 static int tab_cur_size;
2759 const char **p;
2760
2761 if (*first)
2762 {
2763 if (tab == NULL)
2764 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2765 tab_cur_size = 0;
2766 }
2767
2768 /* Is FILE in tab? */
2769 for (p = tab; p < tab + tab_cur_size; p++)
2770 if (filename_cmp (*p, file) == 0)
2771 return 1;
2772
2773 /* No; maybe add it to tab. */
2774 if (add)
2775 {
2776 if (tab_cur_size == tab_alloc_size)
2777 {
2778 tab_alloc_size *= 2;
2779 tab = (const char **) xrealloc ((char *) tab,
2780 tab_alloc_size * sizeof (*tab));
2781 }
2782 tab[tab_cur_size++] = file;
2783 }
2784
2785 return 0;
2786 }
2787
2788 /* Slave routine for sources_info. Force line breaks at ,'s.
2789 NAME is the name to print and *FIRST is nonzero if this is the first
2790 name printed. Set *FIRST to zero. */
2791 static void
2792 output_source_filename (const char *name, int *first)
2793 {
2794 /* Since a single source file can result in several partial symbol
2795 tables, we need to avoid printing it more than once. Note: if
2796 some of the psymtabs are read in and some are not, it gets
2797 printed both under "Source files for which symbols have been
2798 read" and "Source files for which symbols will be read in on
2799 demand". I consider this a reasonable way to deal with the
2800 situation. I'm not sure whether this can also happen for
2801 symtabs; it doesn't hurt to check. */
2802
2803 /* Was NAME already seen? */
2804 if (filename_seen (name, 1, first))
2805 {
2806 /* Yes; don't print it again. */
2807 return;
2808 }
2809 /* No; print it and reset *FIRST. */
2810 if (*first)
2811 {
2812 *first = 0;
2813 }
2814 else
2815 {
2816 printf_filtered (", ");
2817 }
2818
2819 wrap_here ("");
2820 fputs_filtered (name, gdb_stdout);
2821 }
2822
2823 /* A callback for map_partial_symbol_filenames. */
2824 static void
2825 output_partial_symbol_filename (const char *fullname, const char *filename,
2826 void *data)
2827 {
2828 output_source_filename (fullname ? fullname : filename, data);
2829 }
2830
2831 static void
2832 sources_info (char *ignore, int from_tty)
2833 {
2834 struct symtab *s;
2835 struct objfile *objfile;
2836 int first;
2837
2838 if (!have_full_symbols () && !have_partial_symbols ())
2839 {
2840 error (_("No symbol table is loaded. Use the \"file\" command."));
2841 }
2842
2843 printf_filtered ("Source files for which symbols have been read in:\n\n");
2844
2845 first = 1;
2846 ALL_SYMTABS (objfile, s)
2847 {
2848 const char *fullname = symtab_to_fullname (s);
2849
2850 output_source_filename (fullname ? fullname : s->filename, &first);
2851 }
2852 printf_filtered ("\n\n");
2853
2854 printf_filtered ("Source files for which symbols "
2855 "will be read in on demand:\n\n");
2856
2857 first = 1;
2858 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2859 printf_filtered ("\n");
2860 }
2861
2862 static int
2863 file_matches (const char *file, char *files[], int nfiles)
2864 {
2865 int i;
2866
2867 if (file != NULL && nfiles != 0)
2868 {
2869 for (i = 0; i < nfiles; i++)
2870 {
2871 if (filename_cmp (files[i], lbasename (file)) == 0)
2872 return 1;
2873 }
2874 }
2875 else if (nfiles == 0)
2876 return 1;
2877 return 0;
2878 }
2879
2880 /* Free any memory associated with a search. */
2881 void
2882 free_search_symbols (struct symbol_search *symbols)
2883 {
2884 struct symbol_search *p;
2885 struct symbol_search *next;
2886
2887 for (p = symbols; p != NULL; p = next)
2888 {
2889 next = p->next;
2890 xfree (p);
2891 }
2892 }
2893
2894 static void
2895 do_free_search_symbols_cleanup (void *symbols)
2896 {
2897 free_search_symbols (symbols);
2898 }
2899
2900 struct cleanup *
2901 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2902 {
2903 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2904 }
2905
2906 /* Helper function for sort_search_symbols and qsort. Can only
2907 sort symbols, not minimal symbols. */
2908 static int
2909 compare_search_syms (const void *sa, const void *sb)
2910 {
2911 struct symbol_search **sym_a = (struct symbol_search **) sa;
2912 struct symbol_search **sym_b = (struct symbol_search **) sb;
2913
2914 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2915 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2916 }
2917
2918 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2919 prevtail where it is, but update its next pointer to point to
2920 the first of the sorted symbols. */
2921 static struct symbol_search *
2922 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2923 {
2924 struct symbol_search **symbols, *symp, *old_next;
2925 int i;
2926
2927 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2928 * nfound);
2929 symp = prevtail->next;
2930 for (i = 0; i < nfound; i++)
2931 {
2932 symbols[i] = symp;
2933 symp = symp->next;
2934 }
2935 /* Generally NULL. */
2936 old_next = symp;
2937
2938 qsort (symbols, nfound, sizeof (struct symbol_search *),
2939 compare_search_syms);
2940
2941 symp = prevtail;
2942 for (i = 0; i < nfound; i++)
2943 {
2944 symp->next = symbols[i];
2945 symp = symp->next;
2946 }
2947 symp->next = old_next;
2948
2949 xfree (symbols);
2950 return symp;
2951 }
2952
2953 /* An object of this type is passed as the user_data to the
2954 expand_symtabs_matching method. */
2955 struct search_symbols_data
2956 {
2957 int nfiles;
2958 char **files;
2959
2960 /* It is true if PREG contains valid data, false otherwise. */
2961 unsigned preg_p : 1;
2962 regex_t preg;
2963 };
2964
2965 /* A callback for expand_symtabs_matching. */
2966 static int
2967 search_symbols_file_matches (const char *filename, void *user_data)
2968 {
2969 struct search_symbols_data *data = user_data;
2970
2971 return file_matches (filename, data->files, data->nfiles);
2972 }
2973
2974 /* A callback for expand_symtabs_matching. */
2975 static int
2976 search_symbols_name_matches (const char *symname, void *user_data)
2977 {
2978 struct search_symbols_data *data = user_data;
2979
2980 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
2981 }
2982
2983 /* Search the symbol table for matches to the regular expression REGEXP,
2984 returning the results in *MATCHES.
2985
2986 Only symbols of KIND are searched:
2987 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2988 and constants (enums)
2989 FUNCTIONS_DOMAIN - search all functions
2990 TYPES_DOMAIN - search all type names
2991 ALL_DOMAIN - an internal error for this function
2992
2993 free_search_symbols should be called when *MATCHES is no longer needed.
2994
2995 The results are sorted locally; each symtab's global and static blocks are
2996 separately alphabetized. */
2997
2998 void
2999 search_symbols (char *regexp, enum search_domain kind,
3000 int nfiles, char *files[],
3001 struct symbol_search **matches)
3002 {
3003 struct symtab *s;
3004 struct blockvector *bv;
3005 struct block *b;
3006 int i = 0;
3007 struct dict_iterator iter;
3008 struct symbol *sym;
3009 struct objfile *objfile;
3010 struct minimal_symbol *msymbol;
3011 char *val;
3012 int found_misc = 0;
3013 static const enum minimal_symbol_type types[]
3014 = {mst_data, mst_text, mst_abs};
3015 static const enum minimal_symbol_type types2[]
3016 = {mst_bss, mst_file_text, mst_abs};
3017 static const enum minimal_symbol_type types3[]
3018 = {mst_file_data, mst_solib_trampoline, mst_abs};
3019 static const enum minimal_symbol_type types4[]
3020 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3021 enum minimal_symbol_type ourtype;
3022 enum minimal_symbol_type ourtype2;
3023 enum minimal_symbol_type ourtype3;
3024 enum minimal_symbol_type ourtype4;
3025 struct symbol_search *sr;
3026 struct symbol_search *psr;
3027 struct symbol_search *tail;
3028 struct search_symbols_data datum;
3029
3030 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3031 CLEANUP_CHAIN is freed only in the case of an error. */
3032 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3033 struct cleanup *retval_chain;
3034
3035 gdb_assert (kind <= TYPES_DOMAIN);
3036
3037 ourtype = types[kind];
3038 ourtype2 = types2[kind];
3039 ourtype3 = types3[kind];
3040 ourtype4 = types4[kind];
3041
3042 sr = *matches = NULL;
3043 tail = NULL;
3044 datum.preg_p = 0;
3045
3046 if (regexp != NULL)
3047 {
3048 /* Make sure spacing is right for C++ operators.
3049 This is just a courtesy to make the matching less sensitive
3050 to how many spaces the user leaves between 'operator'
3051 and <TYPENAME> or <OPERATOR>. */
3052 char *opend;
3053 char *opname = operator_chars (regexp, &opend);
3054 int errcode;
3055
3056 if (*opname)
3057 {
3058 int fix = -1; /* -1 means ok; otherwise number of
3059 spaces needed. */
3060
3061 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3062 {
3063 /* There should 1 space between 'operator' and 'TYPENAME'. */
3064 if (opname[-1] != ' ' || opname[-2] == ' ')
3065 fix = 1;
3066 }
3067 else
3068 {
3069 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3070 if (opname[-1] == ' ')
3071 fix = 0;
3072 }
3073 /* If wrong number of spaces, fix it. */
3074 if (fix >= 0)
3075 {
3076 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3077
3078 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3079 regexp = tmp;
3080 }
3081 }
3082
3083 errcode = regcomp (&datum.preg, regexp,
3084 REG_NOSUB | (case_sensitivity == case_sensitive_off
3085 ? REG_ICASE : 0));
3086 if (errcode != 0)
3087 {
3088 char *err = get_regcomp_error (errcode, &datum.preg);
3089
3090 make_cleanup (xfree, err);
3091 error (_("Invalid regexp (%s): %s"), err, regexp);
3092 }
3093 datum.preg_p = 1;
3094 make_regfree_cleanup (&datum.preg);
3095 }
3096
3097 /* Search through the partial symtabs *first* for all symbols
3098 matching the regexp. That way we don't have to reproduce all of
3099 the machinery below. */
3100
3101 datum.nfiles = nfiles;
3102 datum.files = files;
3103 ALL_OBJFILES (objfile)
3104 {
3105 if (objfile->sf)
3106 objfile->sf->qf->expand_symtabs_matching (objfile,
3107 search_symbols_file_matches,
3108 search_symbols_name_matches,
3109 kind,
3110 &datum);
3111 }
3112
3113 retval_chain = old_chain;
3114
3115 /* Here, we search through the minimal symbol tables for functions
3116 and variables that match, and force their symbols to be read.
3117 This is in particular necessary for demangled variable names,
3118 which are no longer put into the partial symbol tables.
3119 The symbol will then be found during the scan of symtabs below.
3120
3121 For functions, find_pc_symtab should succeed if we have debug info
3122 for the function, for variables we have to call lookup_symbol
3123 to determine if the variable has debug info.
3124 If the lookup fails, set found_misc so that we will rescan to print
3125 any matching symbols without debug info. */
3126
3127 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3128 {
3129 ALL_MSYMBOLS (objfile, msymbol)
3130 {
3131 QUIT;
3132
3133 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3134 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3135 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3136 MSYMBOL_TYPE (msymbol) == ourtype4)
3137 {
3138 if (!datum.preg_p
3139 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3140 NULL, 0) == 0)
3141 {
3142 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3143 {
3144 /* FIXME: carlton/2003-02-04: Given that the
3145 semantics of lookup_symbol keeps on changing
3146 slightly, it would be a nice idea if we had a
3147 function lookup_symbol_minsym that found the
3148 symbol associated to a given minimal symbol (if
3149 any). */
3150 if (kind == FUNCTIONS_DOMAIN
3151 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3152 (struct block *) NULL,
3153 VAR_DOMAIN, 0)
3154 == NULL)
3155 found_misc = 1;
3156 }
3157 }
3158 }
3159 }
3160 }
3161
3162 ALL_PRIMARY_SYMTABS (objfile, s)
3163 {
3164 bv = BLOCKVECTOR (s);
3165 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3166 {
3167 struct symbol_search *prevtail = tail;
3168 int nfound = 0;
3169
3170 b = BLOCKVECTOR_BLOCK (bv, i);
3171 ALL_BLOCK_SYMBOLS (b, iter, sym)
3172 {
3173 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3174
3175 QUIT;
3176
3177 if (file_matches (real_symtab->filename, files, nfiles)
3178 && ((!datum.preg_p
3179 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3180 NULL, 0) == 0)
3181 && ((kind == VARIABLES_DOMAIN
3182 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3183 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3184 && SYMBOL_CLASS (sym) != LOC_BLOCK
3185 /* LOC_CONST can be used for more than just enums,
3186 e.g., c++ static const members.
3187 We only want to skip enums here. */
3188 && !(SYMBOL_CLASS (sym) == LOC_CONST
3189 && TYPE_CODE (SYMBOL_TYPE (sym))
3190 == TYPE_CODE_ENUM))
3191 || (kind == FUNCTIONS_DOMAIN
3192 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3193 || (kind == TYPES_DOMAIN
3194 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3195 {
3196 /* match */
3197 psr = (struct symbol_search *)
3198 xmalloc (sizeof (struct symbol_search));
3199 psr->block = i;
3200 psr->symtab = real_symtab;
3201 psr->symbol = sym;
3202 psr->msymbol = NULL;
3203 psr->next = NULL;
3204 if (tail == NULL)
3205 sr = psr;
3206 else
3207 tail->next = psr;
3208 tail = psr;
3209 nfound ++;
3210 }
3211 }
3212 if (nfound > 0)
3213 {
3214 if (prevtail == NULL)
3215 {
3216 struct symbol_search dummy;
3217
3218 dummy.next = sr;
3219 tail = sort_search_symbols (&dummy, nfound);
3220 sr = dummy.next;
3221
3222 make_cleanup_free_search_symbols (sr);
3223 }
3224 else
3225 tail = sort_search_symbols (prevtail, nfound);
3226 }
3227 }
3228 }
3229
3230 /* If there are no eyes, avoid all contact. I mean, if there are
3231 no debug symbols, then print directly from the msymbol_vector. */
3232
3233 if (found_misc || kind != FUNCTIONS_DOMAIN)
3234 {
3235 ALL_MSYMBOLS (objfile, msymbol)
3236 {
3237 QUIT;
3238
3239 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3240 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3241 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3242 MSYMBOL_TYPE (msymbol) == ourtype4)
3243 {
3244 if (!datum.preg_p
3245 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3246 NULL, 0) == 0)
3247 {
3248 /* Functions: Look up by address. */
3249 if (kind != FUNCTIONS_DOMAIN ||
3250 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3251 {
3252 /* Variables/Absolutes: Look up by name. */
3253 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3254 (struct block *) NULL, VAR_DOMAIN, 0)
3255 == NULL)
3256 {
3257 /* match */
3258 psr = (struct symbol_search *)
3259 xmalloc (sizeof (struct symbol_search));
3260 psr->block = i;
3261 psr->msymbol = msymbol;
3262 psr->symtab = NULL;
3263 psr->symbol = NULL;
3264 psr->next = NULL;
3265 if (tail == NULL)
3266 {
3267 sr = psr;
3268 make_cleanup_free_search_symbols (sr);
3269 }
3270 else
3271 tail->next = psr;
3272 tail = psr;
3273 }
3274 }
3275 }
3276 }
3277 }
3278 }
3279
3280 discard_cleanups (retval_chain);
3281 do_cleanups (old_chain);
3282 *matches = sr;
3283 }
3284
3285 /* Helper function for symtab_symbol_info, this function uses
3286 the data returned from search_symbols() to print information
3287 regarding the match to gdb_stdout. */
3288
3289 static void
3290 print_symbol_info (enum search_domain kind,
3291 struct symtab *s, struct symbol *sym,
3292 int block, char *last)
3293 {
3294 if (last == NULL || filename_cmp (last, s->filename) != 0)
3295 {
3296 fputs_filtered ("\nFile ", gdb_stdout);
3297 fputs_filtered (s->filename, gdb_stdout);
3298 fputs_filtered (":\n", gdb_stdout);
3299 }
3300
3301 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3302 printf_filtered ("static ");
3303
3304 /* Typedef that is not a C++ class. */
3305 if (kind == TYPES_DOMAIN
3306 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3307 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3308 /* variable, func, or typedef-that-is-c++-class. */
3309 else if (kind < TYPES_DOMAIN ||
3310 (kind == TYPES_DOMAIN &&
3311 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3312 {
3313 type_print (SYMBOL_TYPE (sym),
3314 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3315 ? "" : SYMBOL_PRINT_NAME (sym)),
3316 gdb_stdout, 0);
3317
3318 printf_filtered (";\n");
3319 }
3320 }
3321
3322 /* This help function for symtab_symbol_info() prints information
3323 for non-debugging symbols to gdb_stdout. */
3324
3325 static void
3326 print_msymbol_info (struct minimal_symbol *msymbol)
3327 {
3328 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3329 char *tmp;
3330
3331 if (gdbarch_addr_bit (gdbarch) <= 32)
3332 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3333 & (CORE_ADDR) 0xffffffff,
3334 8);
3335 else
3336 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3337 16);
3338 printf_filtered ("%s %s\n",
3339 tmp, SYMBOL_PRINT_NAME (msymbol));
3340 }
3341
3342 /* This is the guts of the commands "info functions", "info types", and
3343 "info variables". It calls search_symbols to find all matches and then
3344 print_[m]symbol_info to print out some useful information about the
3345 matches. */
3346
3347 static void
3348 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3349 {
3350 static const char * const classnames[] =
3351 {"variable", "function", "type"};
3352 struct symbol_search *symbols;
3353 struct symbol_search *p;
3354 struct cleanup *old_chain;
3355 char *last_filename = NULL;
3356 int first = 1;
3357
3358 gdb_assert (kind <= TYPES_DOMAIN);
3359
3360 /* Must make sure that if we're interrupted, symbols gets freed. */
3361 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3362 old_chain = make_cleanup_free_search_symbols (symbols);
3363
3364 printf_filtered (regexp
3365 ? "All %ss matching regular expression \"%s\":\n"
3366 : "All defined %ss:\n",
3367 classnames[kind], regexp);
3368
3369 for (p = symbols; p != NULL; p = p->next)
3370 {
3371 QUIT;
3372
3373 if (p->msymbol != NULL)
3374 {
3375 if (first)
3376 {
3377 printf_filtered ("\nNon-debugging symbols:\n");
3378 first = 0;
3379 }
3380 print_msymbol_info (p->msymbol);
3381 }
3382 else
3383 {
3384 print_symbol_info (kind,
3385 p->symtab,
3386 p->symbol,
3387 p->block,
3388 last_filename);
3389 last_filename = p->symtab->filename;
3390 }
3391 }
3392
3393 do_cleanups (old_chain);
3394 }
3395
3396 static void
3397 variables_info (char *regexp, int from_tty)
3398 {
3399 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3400 }
3401
3402 static void
3403 functions_info (char *regexp, int from_tty)
3404 {
3405 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3406 }
3407
3408
3409 static void
3410 types_info (char *regexp, int from_tty)
3411 {
3412 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3413 }
3414
3415 /* Breakpoint all functions matching regular expression. */
3416
3417 void
3418 rbreak_command_wrapper (char *regexp, int from_tty)
3419 {
3420 rbreak_command (regexp, from_tty);
3421 }
3422
3423 /* A cleanup function that calls end_rbreak_breakpoints. */
3424
3425 static void
3426 do_end_rbreak_breakpoints (void *ignore)
3427 {
3428 end_rbreak_breakpoints ();
3429 }
3430
3431 static void
3432 rbreak_command (char *regexp, int from_tty)
3433 {
3434 struct symbol_search *ss;
3435 struct symbol_search *p;
3436 struct cleanup *old_chain;
3437 char *string = NULL;
3438 int len = 0;
3439 char **files = NULL, *file_name;
3440 int nfiles = 0;
3441
3442 if (regexp)
3443 {
3444 char *colon = strchr (regexp, ':');
3445
3446 if (colon && *(colon + 1) != ':')
3447 {
3448 int colon_index;
3449
3450 colon_index = colon - regexp;
3451 file_name = alloca (colon_index + 1);
3452 memcpy (file_name, regexp, colon_index);
3453 file_name[colon_index--] = 0;
3454 while (isspace (file_name[colon_index]))
3455 file_name[colon_index--] = 0;
3456 files = &file_name;
3457 nfiles = 1;
3458 regexp = colon + 1;
3459 while (isspace (*regexp)) regexp++;
3460 }
3461 }
3462
3463 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3464 old_chain = make_cleanup_free_search_symbols (ss);
3465 make_cleanup (free_current_contents, &string);
3466
3467 start_rbreak_breakpoints ();
3468 make_cleanup (do_end_rbreak_breakpoints, NULL);
3469 for (p = ss; p != NULL; p = p->next)
3470 {
3471 if (p->msymbol == NULL)
3472 {
3473 int newlen = (strlen (p->symtab->filename)
3474 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3475 + 4);
3476
3477 if (newlen > len)
3478 {
3479 string = xrealloc (string, newlen);
3480 len = newlen;
3481 }
3482 strcpy (string, p->symtab->filename);
3483 strcat (string, ":'");
3484 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3485 strcat (string, "'");
3486 break_command (string, from_tty);
3487 print_symbol_info (FUNCTIONS_DOMAIN,
3488 p->symtab,
3489 p->symbol,
3490 p->block,
3491 p->symtab->filename);
3492 }
3493 else
3494 {
3495 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3496
3497 if (newlen > len)
3498 {
3499 string = xrealloc (string, newlen);
3500 len = newlen;
3501 }
3502 strcpy (string, "'");
3503 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3504 strcat (string, "'");
3505
3506 break_command (string, from_tty);
3507 printf_filtered ("<function, no debug info> %s;\n",
3508 SYMBOL_PRINT_NAME (p->msymbol));
3509 }
3510 }
3511
3512 do_cleanups (old_chain);
3513 }
3514 \f
3515
3516 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3517
3518 Either sym_text[sym_text_len] != '(' and then we search for any
3519 symbol starting with SYM_TEXT text.
3520
3521 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3522 be terminated at that point. Partial symbol tables do not have parameters
3523 information. */
3524
3525 static int
3526 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3527 {
3528 int (*ncmp) (const char *, const char *, size_t);
3529
3530 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3531
3532 if (ncmp (name, sym_text, sym_text_len) != 0)
3533 return 0;
3534
3535 if (sym_text[sym_text_len] == '(')
3536 {
3537 /* User searches for `name(someth...'. Require NAME to be terminated.
3538 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3539 present but accept even parameters presence. In this case this
3540 function is in fact strcmp_iw but whitespace skipping is not supported
3541 for tab completion. */
3542
3543 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3544 return 0;
3545 }
3546
3547 return 1;
3548 }
3549
3550 /* Helper routine for make_symbol_completion_list. */
3551
3552 static int return_val_size;
3553 static int return_val_index;
3554 static char **return_val;
3555
3556 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3557 completion_list_add_name \
3558 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3559
3560 /* Test to see if the symbol specified by SYMNAME (which is already
3561 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3562 characters. If so, add it to the current completion list. */
3563
3564 static void
3565 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3566 char *text, char *word)
3567 {
3568 int newsize;
3569
3570 /* Clip symbols that cannot match. */
3571 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3572 return;
3573
3574 /* We have a match for a completion, so add SYMNAME to the current list
3575 of matches. Note that the name is moved to freshly malloc'd space. */
3576
3577 {
3578 char *new;
3579
3580 if (word == sym_text)
3581 {
3582 new = xmalloc (strlen (symname) + 5);
3583 strcpy (new, symname);
3584 }
3585 else if (word > sym_text)
3586 {
3587 /* Return some portion of symname. */
3588 new = xmalloc (strlen (symname) + 5);
3589 strcpy (new, symname + (word - sym_text));
3590 }
3591 else
3592 {
3593 /* Return some of SYM_TEXT plus symname. */
3594 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3595 strncpy (new, word, sym_text - word);
3596 new[sym_text - word] = '\0';
3597 strcat (new, symname);
3598 }
3599
3600 if (return_val_index + 3 > return_val_size)
3601 {
3602 newsize = (return_val_size *= 2) * sizeof (char *);
3603 return_val = (char **) xrealloc ((char *) return_val, newsize);
3604 }
3605 return_val[return_val_index++] = new;
3606 return_val[return_val_index] = NULL;
3607 }
3608 }
3609
3610 /* ObjC: In case we are completing on a selector, look as the msymbol
3611 again and feed all the selectors into the mill. */
3612
3613 static void
3614 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3615 int sym_text_len, char *text, char *word)
3616 {
3617 static char *tmp = NULL;
3618 static unsigned int tmplen = 0;
3619
3620 char *method, *category, *selector;
3621 char *tmp2 = NULL;
3622
3623 method = SYMBOL_NATURAL_NAME (msymbol);
3624
3625 /* Is it a method? */
3626 if ((method[0] != '-') && (method[0] != '+'))
3627 return;
3628
3629 if (sym_text[0] == '[')
3630 /* Complete on shortened method method. */
3631 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3632
3633 while ((strlen (method) + 1) >= tmplen)
3634 {
3635 if (tmplen == 0)
3636 tmplen = 1024;
3637 else
3638 tmplen *= 2;
3639 tmp = xrealloc (tmp, tmplen);
3640 }
3641 selector = strchr (method, ' ');
3642 if (selector != NULL)
3643 selector++;
3644
3645 category = strchr (method, '(');
3646
3647 if ((category != NULL) && (selector != NULL))
3648 {
3649 memcpy (tmp, method, (category - method));
3650 tmp[category - method] = ' ';
3651 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3652 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3653 if (sym_text[0] == '[')
3654 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3655 }
3656
3657 if (selector != NULL)
3658 {
3659 /* Complete on selector only. */
3660 strcpy (tmp, selector);
3661 tmp2 = strchr (tmp, ']');
3662 if (tmp2 != NULL)
3663 *tmp2 = '\0';
3664
3665 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3666 }
3667 }
3668
3669 /* Break the non-quoted text based on the characters which are in
3670 symbols. FIXME: This should probably be language-specific. */
3671
3672 static char *
3673 language_search_unquoted_string (char *text, char *p)
3674 {
3675 for (; p > text; --p)
3676 {
3677 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3678 continue;
3679 else
3680 {
3681 if ((current_language->la_language == language_objc))
3682 {
3683 if (p[-1] == ':') /* Might be part of a method name. */
3684 continue;
3685 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3686 p -= 2; /* Beginning of a method name. */
3687 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3688 { /* Might be part of a method name. */
3689 char *t = p;
3690
3691 /* Seeing a ' ' or a '(' is not conclusive evidence
3692 that we are in the middle of a method name. However,
3693 finding "-[" or "+[" should be pretty un-ambiguous.
3694 Unfortunately we have to find it now to decide. */
3695
3696 while (t > text)
3697 if (isalnum (t[-1]) || t[-1] == '_' ||
3698 t[-1] == ' ' || t[-1] == ':' ||
3699 t[-1] == '(' || t[-1] == ')')
3700 --t;
3701 else
3702 break;
3703
3704 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3705 p = t - 2; /* Method name detected. */
3706 /* Else we leave with p unchanged. */
3707 }
3708 }
3709 break;
3710 }
3711 }
3712 return p;
3713 }
3714
3715 static void
3716 completion_list_add_fields (struct symbol *sym, char *sym_text,
3717 int sym_text_len, char *text, char *word)
3718 {
3719 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3720 {
3721 struct type *t = SYMBOL_TYPE (sym);
3722 enum type_code c = TYPE_CODE (t);
3723 int j;
3724
3725 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3726 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3727 if (TYPE_FIELD_NAME (t, j))
3728 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3729 sym_text, sym_text_len, text, word);
3730 }
3731 }
3732
3733 /* Type of the user_data argument passed to add_macro_name or
3734 expand_partial_symbol_name. The contents are simply whatever is
3735 needed by completion_list_add_name. */
3736 struct add_name_data
3737 {
3738 char *sym_text;
3739 int sym_text_len;
3740 char *text;
3741 char *word;
3742 };
3743
3744 /* A callback used with macro_for_each and macro_for_each_in_scope.
3745 This adds a macro's name to the current completion list. */
3746 static void
3747 add_macro_name (const char *name, const struct macro_definition *ignore,
3748 void *user_data)
3749 {
3750 struct add_name_data *datum = (struct add_name_data *) user_data;
3751
3752 completion_list_add_name ((char *) name,
3753 datum->sym_text, datum->sym_text_len,
3754 datum->text, datum->word);
3755 }
3756
3757 /* A callback for expand_partial_symbol_names. */
3758 static int
3759 expand_partial_symbol_name (const char *name, void *user_data)
3760 {
3761 struct add_name_data *datum = (struct add_name_data *) user_data;
3762
3763 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
3764 }
3765
3766 char **
3767 default_make_symbol_completion_list_break_on (char *text, char *word,
3768 const char *break_on)
3769 {
3770 /* Problem: All of the symbols have to be copied because readline
3771 frees them. I'm not going to worry about this; hopefully there
3772 won't be that many. */
3773
3774 struct symbol *sym;
3775 struct symtab *s;
3776 struct minimal_symbol *msymbol;
3777 struct objfile *objfile;
3778 struct block *b;
3779 const struct block *surrounding_static_block, *surrounding_global_block;
3780 struct dict_iterator iter;
3781 /* The symbol we are completing on. Points in same buffer as text. */
3782 char *sym_text;
3783 /* Length of sym_text. */
3784 int sym_text_len;
3785 struct add_name_data datum;
3786
3787 /* Now look for the symbol we are supposed to complete on. */
3788 {
3789 char *p;
3790 char quote_found;
3791 char *quote_pos = NULL;
3792
3793 /* First see if this is a quoted string. */
3794 quote_found = '\0';
3795 for (p = text; *p != '\0'; ++p)
3796 {
3797 if (quote_found != '\0')
3798 {
3799 if (*p == quote_found)
3800 /* Found close quote. */
3801 quote_found = '\0';
3802 else if (*p == '\\' && p[1] == quote_found)
3803 /* A backslash followed by the quote character
3804 doesn't end the string. */
3805 ++p;
3806 }
3807 else if (*p == '\'' || *p == '"')
3808 {
3809 quote_found = *p;
3810 quote_pos = p;
3811 }
3812 }
3813 if (quote_found == '\'')
3814 /* A string within single quotes can be a symbol, so complete on it. */
3815 sym_text = quote_pos + 1;
3816 else if (quote_found == '"')
3817 /* A double-quoted string is never a symbol, nor does it make sense
3818 to complete it any other way. */
3819 {
3820 return_val = (char **) xmalloc (sizeof (char *));
3821 return_val[0] = NULL;
3822 return return_val;
3823 }
3824 else
3825 {
3826 /* It is not a quoted string. Break it based on the characters
3827 which are in symbols. */
3828 while (p > text)
3829 {
3830 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3831 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3832 --p;
3833 else
3834 break;
3835 }
3836 sym_text = p;
3837 }
3838 }
3839
3840 sym_text_len = strlen (sym_text);
3841
3842 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
3843
3844 if (current_language->la_language == language_cplus
3845 || current_language->la_language == language_java
3846 || current_language->la_language == language_fortran)
3847 {
3848 /* These languages may have parameters entered by user but they are never
3849 present in the partial symbol tables. */
3850
3851 const char *cs = memchr (sym_text, '(', sym_text_len);
3852
3853 if (cs)
3854 sym_text_len = cs - sym_text;
3855 }
3856 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
3857
3858 return_val_size = 100;
3859 return_val_index = 0;
3860 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3861 return_val[0] = NULL;
3862
3863 datum.sym_text = sym_text;
3864 datum.sym_text_len = sym_text_len;
3865 datum.text = text;
3866 datum.word = word;
3867
3868 /* Look through the partial symtabs for all symbols which begin
3869 by matching SYM_TEXT. Expand all CUs that you find to the list.
3870 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
3871 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
3872
3873 /* At this point scan through the misc symbol vectors and add each
3874 symbol you find to the list. Eventually we want to ignore
3875 anything that isn't a text symbol (everything else will be
3876 handled by the psymtab code above). */
3877
3878 ALL_MSYMBOLS (objfile, msymbol)
3879 {
3880 QUIT;
3881 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3882
3883 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3884 }
3885
3886 /* Search upwards from currently selected frame (so that we can
3887 complete on local vars). Also catch fields of types defined in
3888 this places which match our text string. Only complete on types
3889 visible from current context. */
3890
3891 b = get_selected_block (0);
3892 surrounding_static_block = block_static_block (b);
3893 surrounding_global_block = block_global_block (b);
3894 if (surrounding_static_block != NULL)
3895 while (b != surrounding_static_block)
3896 {
3897 QUIT;
3898
3899 ALL_BLOCK_SYMBOLS (b, iter, sym)
3900 {
3901 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3902 word);
3903 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3904 word);
3905 }
3906
3907 /* Stop when we encounter an enclosing function. Do not stop for
3908 non-inlined functions - the locals of the enclosing function
3909 are in scope for a nested function. */
3910 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3911 break;
3912 b = BLOCK_SUPERBLOCK (b);
3913 }
3914
3915 /* Add fields from the file's types; symbols will be added below. */
3916
3917 if (surrounding_static_block != NULL)
3918 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3919 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3920
3921 if (surrounding_global_block != NULL)
3922 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3923 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3924
3925 /* Go through the symtabs and check the externs and statics for
3926 symbols which match. */
3927
3928 ALL_PRIMARY_SYMTABS (objfile, s)
3929 {
3930 QUIT;
3931 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3932 ALL_BLOCK_SYMBOLS (b, iter, sym)
3933 {
3934 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3935 }
3936 }
3937
3938 ALL_PRIMARY_SYMTABS (objfile, s)
3939 {
3940 QUIT;
3941 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3942 ALL_BLOCK_SYMBOLS (b, iter, sym)
3943 {
3944 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3945 }
3946 }
3947
3948 if (current_language->la_macro_expansion == macro_expansion_c)
3949 {
3950 struct macro_scope *scope;
3951
3952 /* Add any macros visible in the default scope. Note that this
3953 may yield the occasional wrong result, because an expression
3954 might be evaluated in a scope other than the default. For
3955 example, if the user types "break file:line if <TAB>", the
3956 resulting expression will be evaluated at "file:line" -- but
3957 at there does not seem to be a way to detect this at
3958 completion time. */
3959 scope = default_macro_scope ();
3960 if (scope)
3961 {
3962 macro_for_each_in_scope (scope->file, scope->line,
3963 add_macro_name, &datum);
3964 xfree (scope);
3965 }
3966
3967 /* User-defined macros are always visible. */
3968 macro_for_each (macro_user_macros, add_macro_name, &datum);
3969 }
3970
3971 return (return_val);
3972 }
3973
3974 char **
3975 default_make_symbol_completion_list (char *text, char *word)
3976 {
3977 return default_make_symbol_completion_list_break_on (text, word, "");
3978 }
3979
3980 /* Return a NULL terminated array of all symbols (regardless of class)
3981 which begin by matching TEXT. If the answer is no symbols, then
3982 the return value is an array which contains only a NULL pointer. */
3983
3984 char **
3985 make_symbol_completion_list (char *text, char *word)
3986 {
3987 return current_language->la_make_symbol_completion_list (text, word);
3988 }
3989
3990 /* Like make_symbol_completion_list, but suitable for use as a
3991 completion function. */
3992
3993 char **
3994 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3995 char *text, char *word)
3996 {
3997 return make_symbol_completion_list (text, word);
3998 }
3999
4000 /* Like make_symbol_completion_list, but returns a list of symbols
4001 defined in a source file FILE. */
4002
4003 char **
4004 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4005 {
4006 struct symbol *sym;
4007 struct symtab *s;
4008 struct block *b;
4009 struct dict_iterator iter;
4010 /* The symbol we are completing on. Points in same buffer as text. */
4011 char *sym_text;
4012 /* Length of sym_text. */
4013 int sym_text_len;
4014
4015 /* Now look for the symbol we are supposed to complete on.
4016 FIXME: This should be language-specific. */
4017 {
4018 char *p;
4019 char quote_found;
4020 char *quote_pos = NULL;
4021
4022 /* First see if this is a quoted string. */
4023 quote_found = '\0';
4024 for (p = text; *p != '\0'; ++p)
4025 {
4026 if (quote_found != '\0')
4027 {
4028 if (*p == quote_found)
4029 /* Found close quote. */
4030 quote_found = '\0';
4031 else if (*p == '\\' && p[1] == quote_found)
4032 /* A backslash followed by the quote character
4033 doesn't end the string. */
4034 ++p;
4035 }
4036 else if (*p == '\'' || *p == '"')
4037 {
4038 quote_found = *p;
4039 quote_pos = p;
4040 }
4041 }
4042 if (quote_found == '\'')
4043 /* A string within single quotes can be a symbol, so complete on it. */
4044 sym_text = quote_pos + 1;
4045 else if (quote_found == '"')
4046 /* A double-quoted string is never a symbol, nor does it make sense
4047 to complete it any other way. */
4048 {
4049 return_val = (char **) xmalloc (sizeof (char *));
4050 return_val[0] = NULL;
4051 return return_val;
4052 }
4053 else
4054 {
4055 /* Not a quoted string. */
4056 sym_text = language_search_unquoted_string (text, p);
4057 }
4058 }
4059
4060 sym_text_len = strlen (sym_text);
4061
4062 return_val_size = 10;
4063 return_val_index = 0;
4064 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4065 return_val[0] = NULL;
4066
4067 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4068 in). */
4069 s = lookup_symtab (srcfile);
4070 if (s == NULL)
4071 {
4072 /* Maybe they typed the file with leading directories, while the
4073 symbol tables record only its basename. */
4074 const char *tail = lbasename (srcfile);
4075
4076 if (tail > srcfile)
4077 s = lookup_symtab (tail);
4078 }
4079
4080 /* If we have no symtab for that file, return an empty list. */
4081 if (s == NULL)
4082 return (return_val);
4083
4084 /* Go through this symtab and check the externs and statics for
4085 symbols which match. */
4086
4087 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4088 ALL_BLOCK_SYMBOLS (b, iter, sym)
4089 {
4090 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4091 }
4092
4093 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4094 ALL_BLOCK_SYMBOLS (b, iter, sym)
4095 {
4096 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4097 }
4098
4099 return (return_val);
4100 }
4101
4102 /* A helper function for make_source_files_completion_list. It adds
4103 another file name to a list of possible completions, growing the
4104 list as necessary. */
4105
4106 static void
4107 add_filename_to_list (const char *fname, char *text, char *word,
4108 char ***list, int *list_used, int *list_alloced)
4109 {
4110 char *new;
4111 size_t fnlen = strlen (fname);
4112
4113 if (*list_used + 1 >= *list_alloced)
4114 {
4115 *list_alloced *= 2;
4116 *list = (char **) xrealloc ((char *) *list,
4117 *list_alloced * sizeof (char *));
4118 }
4119
4120 if (word == text)
4121 {
4122 /* Return exactly fname. */
4123 new = xmalloc (fnlen + 5);
4124 strcpy (new, fname);
4125 }
4126 else if (word > text)
4127 {
4128 /* Return some portion of fname. */
4129 new = xmalloc (fnlen + 5);
4130 strcpy (new, fname + (word - text));
4131 }
4132 else
4133 {
4134 /* Return some of TEXT plus fname. */
4135 new = xmalloc (fnlen + (text - word) + 5);
4136 strncpy (new, word, text - word);
4137 new[text - word] = '\0';
4138 strcat (new, fname);
4139 }
4140 (*list)[*list_used] = new;
4141 (*list)[++*list_used] = NULL;
4142 }
4143
4144 static int
4145 not_interesting_fname (const char *fname)
4146 {
4147 static const char *illegal_aliens[] = {
4148 "_globals_", /* inserted by coff_symtab_read */
4149 NULL
4150 };
4151 int i;
4152
4153 for (i = 0; illegal_aliens[i]; i++)
4154 {
4155 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4156 return 1;
4157 }
4158 return 0;
4159 }
4160
4161 /* An object of this type is passed as the user_data argument to
4162 map_partial_symbol_filenames. */
4163 struct add_partial_filename_data
4164 {
4165 int *first;
4166 char *text;
4167 char *word;
4168 int text_len;
4169 char ***list;
4170 int *list_used;
4171 int *list_alloced;
4172 };
4173
4174 /* A callback for map_partial_symbol_filenames. */
4175 static void
4176 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4177 void *user_data)
4178 {
4179 struct add_partial_filename_data *data = user_data;
4180
4181 if (not_interesting_fname (filename))
4182 return;
4183 if (!filename_seen (filename, 1, data->first)
4184 && filename_ncmp (filename, data->text, data->text_len) == 0)
4185 {
4186 /* This file matches for a completion; add it to the
4187 current list of matches. */
4188 add_filename_to_list (filename, data->text, data->word,
4189 data->list, data->list_used, data->list_alloced);
4190 }
4191 else
4192 {
4193 const char *base_name = lbasename (filename);
4194
4195 if (base_name != filename
4196 && !filename_seen (base_name, 1, data->first)
4197 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4198 add_filename_to_list (base_name, data->text, data->word,
4199 data->list, data->list_used, data->list_alloced);
4200 }
4201 }
4202
4203 /* Return a NULL terminated array of all source files whose names
4204 begin with matching TEXT. The file names are looked up in the
4205 symbol tables of this program. If the answer is no matchess, then
4206 the return value is an array which contains only a NULL pointer. */
4207
4208 char **
4209 make_source_files_completion_list (char *text, char *word)
4210 {
4211 struct symtab *s;
4212 struct objfile *objfile;
4213 int first = 1;
4214 int list_alloced = 1;
4215 int list_used = 0;
4216 size_t text_len = strlen (text);
4217 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4218 const char *base_name;
4219 struct add_partial_filename_data datum;
4220
4221 list[0] = NULL;
4222
4223 if (!have_full_symbols () && !have_partial_symbols ())
4224 return list;
4225
4226 ALL_SYMTABS (objfile, s)
4227 {
4228 if (not_interesting_fname (s->filename))
4229 continue;
4230 if (!filename_seen (s->filename, 1, &first)
4231 && filename_ncmp (s->filename, text, text_len) == 0)
4232 {
4233 /* This file matches for a completion; add it to the current
4234 list of matches. */
4235 add_filename_to_list (s->filename, text, word,
4236 &list, &list_used, &list_alloced);
4237 }
4238 else
4239 {
4240 /* NOTE: We allow the user to type a base name when the
4241 debug info records leading directories, but not the other
4242 way around. This is what subroutines of breakpoint
4243 command do when they parse file names. */
4244 base_name = lbasename (s->filename);
4245 if (base_name != s->filename
4246 && !filename_seen (base_name, 1, &first)
4247 && filename_ncmp (base_name, text, text_len) == 0)
4248 add_filename_to_list (base_name, text, word,
4249 &list, &list_used, &list_alloced);
4250 }
4251 }
4252
4253 datum.first = &first;
4254 datum.text = text;
4255 datum.word = word;
4256 datum.text_len = text_len;
4257 datum.list = &list;
4258 datum.list_used = &list_used;
4259 datum.list_alloced = &list_alloced;
4260 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4261
4262 return list;
4263 }
4264
4265 /* Determine if PC is in the prologue of a function. The prologue is the area
4266 between the first instruction of a function, and the first executable line.
4267 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4268
4269 If non-zero, func_start is where we think the prologue starts, possibly
4270 by previous examination of symbol table information. */
4271
4272 int
4273 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4274 {
4275 struct symtab_and_line sal;
4276 CORE_ADDR func_addr, func_end;
4277
4278 /* We have several sources of information we can consult to figure
4279 this out.
4280 - Compilers usually emit line number info that marks the prologue
4281 as its own "source line". So the ending address of that "line"
4282 is the end of the prologue. If available, this is the most
4283 reliable method.
4284 - The minimal symbols and partial symbols, which can usually tell
4285 us the starting and ending addresses of a function.
4286 - If we know the function's start address, we can call the
4287 architecture-defined gdbarch_skip_prologue function to analyze the
4288 instruction stream and guess where the prologue ends.
4289 - Our `func_start' argument; if non-zero, this is the caller's
4290 best guess as to the function's entry point. At the time of
4291 this writing, handle_inferior_event doesn't get this right, so
4292 it should be our last resort. */
4293
4294 /* Consult the partial symbol table, to find which function
4295 the PC is in. */
4296 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4297 {
4298 CORE_ADDR prologue_end;
4299
4300 /* We don't even have minsym information, so fall back to using
4301 func_start, if given. */
4302 if (! func_start)
4303 return 1; /* We *might* be in a prologue. */
4304
4305 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4306
4307 return func_start <= pc && pc < prologue_end;
4308 }
4309
4310 /* If we have line number information for the function, that's
4311 usually pretty reliable. */
4312 sal = find_pc_line (func_addr, 0);
4313
4314 /* Now sal describes the source line at the function's entry point,
4315 which (by convention) is the prologue. The end of that "line",
4316 sal.end, is the end of the prologue.
4317
4318 Note that, for functions whose source code is all on a single
4319 line, the line number information doesn't always end up this way.
4320 So we must verify that our purported end-of-prologue address is
4321 *within* the function, not at its start or end. */
4322 if (sal.line == 0
4323 || sal.end <= func_addr
4324 || func_end <= sal.end)
4325 {
4326 /* We don't have any good line number info, so use the minsym
4327 information, together with the architecture-specific prologue
4328 scanning code. */
4329 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4330
4331 return func_addr <= pc && pc < prologue_end;
4332 }
4333
4334 /* We have line number info, and it looks good. */
4335 return func_addr <= pc && pc < sal.end;
4336 }
4337
4338 /* Given PC at the function's start address, attempt to find the
4339 prologue end using SAL information. Return zero if the skip fails.
4340
4341 A non-optimized prologue traditionally has one SAL for the function
4342 and a second for the function body. A single line function has
4343 them both pointing at the same line.
4344
4345 An optimized prologue is similar but the prologue may contain
4346 instructions (SALs) from the instruction body. Need to skip those
4347 while not getting into the function body.
4348
4349 The functions end point and an increasing SAL line are used as
4350 indicators of the prologue's endpoint.
4351
4352 This code is based on the function refine_prologue_limit (versions
4353 found in both ia64 and ppc). */
4354
4355 CORE_ADDR
4356 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4357 {
4358 struct symtab_and_line prologue_sal;
4359 CORE_ADDR start_pc;
4360 CORE_ADDR end_pc;
4361 struct block *bl;
4362
4363 /* Get an initial range for the function. */
4364 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4365 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4366
4367 prologue_sal = find_pc_line (start_pc, 0);
4368 if (prologue_sal.line != 0)
4369 {
4370 /* For langauges other than assembly, treat two consecutive line
4371 entries at the same address as a zero-instruction prologue.
4372 The GNU assembler emits separate line notes for each instruction
4373 in a multi-instruction macro, but compilers generally will not
4374 do this. */
4375 if (prologue_sal.symtab->language != language_asm)
4376 {
4377 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4378 int idx = 0;
4379
4380 /* Skip any earlier lines, and any end-of-sequence marker
4381 from a previous function. */
4382 while (linetable->item[idx].pc != prologue_sal.pc
4383 || linetable->item[idx].line == 0)
4384 idx++;
4385
4386 if (idx+1 < linetable->nitems
4387 && linetable->item[idx+1].line != 0
4388 && linetable->item[idx+1].pc == start_pc)
4389 return start_pc;
4390 }
4391
4392 /* If there is only one sal that covers the entire function,
4393 then it is probably a single line function, like
4394 "foo(){}". */
4395 if (prologue_sal.end >= end_pc)
4396 return 0;
4397
4398 while (prologue_sal.end < end_pc)
4399 {
4400 struct symtab_and_line sal;
4401
4402 sal = find_pc_line (prologue_sal.end, 0);
4403 if (sal.line == 0)
4404 break;
4405 /* Assume that a consecutive SAL for the same (or larger)
4406 line mark the prologue -> body transition. */
4407 if (sal.line >= prologue_sal.line)
4408 break;
4409
4410 /* The line number is smaller. Check that it's from the
4411 same function, not something inlined. If it's inlined,
4412 then there is no point comparing the line numbers. */
4413 bl = block_for_pc (prologue_sal.end);
4414 while (bl)
4415 {
4416 if (block_inlined_p (bl))
4417 break;
4418 if (BLOCK_FUNCTION (bl))
4419 {
4420 bl = NULL;
4421 break;
4422 }
4423 bl = BLOCK_SUPERBLOCK (bl);
4424 }
4425 if (bl != NULL)
4426 break;
4427
4428 /* The case in which compiler's optimizer/scheduler has
4429 moved instructions into the prologue. We look ahead in
4430 the function looking for address ranges whose
4431 corresponding line number is less the first one that we
4432 found for the function. This is more conservative then
4433 refine_prologue_limit which scans a large number of SALs
4434 looking for any in the prologue. */
4435 prologue_sal = sal;
4436 }
4437 }
4438
4439 if (prologue_sal.end < end_pc)
4440 /* Return the end of this line, or zero if we could not find a
4441 line. */
4442 return prologue_sal.end;
4443 else
4444 /* Don't return END_PC, which is past the end of the function. */
4445 return prologue_sal.pc;
4446 }
4447 \f
4448 struct symtabs_and_lines
4449 decode_line_spec (char *string, int funfirstline)
4450 {
4451 struct symtabs_and_lines sals;
4452 struct symtab_and_line cursal;
4453
4454 if (string == 0)
4455 error (_("Empty line specification."));
4456
4457 /* We use whatever is set as the current source line. We do not try
4458 and get a default or it will recursively call us! */
4459 cursal = get_current_source_symtab_and_line ();
4460
4461 sals = decode_line_1 (&string, funfirstline,
4462 cursal.symtab, cursal.line,
4463 NULL);
4464
4465 if (*string)
4466 error (_("Junk at end of line specification: %s"), string);
4467 return sals;
4468 }
4469
4470 /* Track MAIN */
4471 static char *name_of_main;
4472 enum language language_of_main = language_unknown;
4473
4474 void
4475 set_main_name (const char *name)
4476 {
4477 if (name_of_main != NULL)
4478 {
4479 xfree (name_of_main);
4480 name_of_main = NULL;
4481 language_of_main = language_unknown;
4482 }
4483 if (name != NULL)
4484 {
4485 name_of_main = xstrdup (name);
4486 language_of_main = language_unknown;
4487 }
4488 }
4489
4490 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4491 accordingly. */
4492
4493 static void
4494 find_main_name (void)
4495 {
4496 const char *new_main_name;
4497
4498 /* Try to see if the main procedure is in Ada. */
4499 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4500 be to add a new method in the language vector, and call this
4501 method for each language until one of them returns a non-empty
4502 name. This would allow us to remove this hard-coded call to
4503 an Ada function. It is not clear that this is a better approach
4504 at this point, because all methods need to be written in a way
4505 such that false positives never be returned. For instance, it is
4506 important that a method does not return a wrong name for the main
4507 procedure if the main procedure is actually written in a different
4508 language. It is easy to guaranty this with Ada, since we use a
4509 special symbol generated only when the main in Ada to find the name
4510 of the main procedure. It is difficult however to see how this can
4511 be guarantied for languages such as C, for instance. This suggests
4512 that order of call for these methods becomes important, which means
4513 a more complicated approach. */
4514 new_main_name = ada_main_name ();
4515 if (new_main_name != NULL)
4516 {
4517 set_main_name (new_main_name);
4518 return;
4519 }
4520
4521 new_main_name = pascal_main_name ();
4522 if (new_main_name != NULL)
4523 {
4524 set_main_name (new_main_name);
4525 return;
4526 }
4527
4528 /* The languages above didn't identify the name of the main procedure.
4529 Fallback to "main". */
4530 set_main_name ("main");
4531 }
4532
4533 char *
4534 main_name (void)
4535 {
4536 if (name_of_main == NULL)
4537 find_main_name ();
4538
4539 return name_of_main;
4540 }
4541
4542 /* Handle ``executable_changed'' events for the symtab module. */
4543
4544 static void
4545 symtab_observer_executable_changed (void)
4546 {
4547 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4548 set_main_name (NULL);
4549 }
4550
4551 /* Helper to expand_line_sal below. Appends new sal to SAL,
4552 initializing it from SYMTAB, LINENO and PC. */
4553 static void
4554 append_expanded_sal (struct symtabs_and_lines *sal,
4555 struct program_space *pspace,
4556 struct symtab *symtab,
4557 int lineno, CORE_ADDR pc)
4558 {
4559 sal->sals = xrealloc (sal->sals,
4560 sizeof (sal->sals[0])
4561 * (sal->nelts + 1));
4562 init_sal (sal->sals + sal->nelts);
4563 sal->sals[sal->nelts].pspace = pspace;
4564 sal->sals[sal->nelts].symtab = symtab;
4565 sal->sals[sal->nelts].section = NULL;
4566 sal->sals[sal->nelts].end = 0;
4567 sal->sals[sal->nelts].line = lineno;
4568 sal->sals[sal->nelts].pc = pc;
4569 ++sal->nelts;
4570 }
4571
4572 /* Helper to expand_line_sal below. Search in the symtabs for any
4573 linetable entry that exactly matches FULLNAME and LINENO and append
4574 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4575 use FILENAME and LINENO instead. If there is at least one match,
4576 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4577 and BEST_SYMTAB. */
4578
4579 static int
4580 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4581 struct symtabs_and_lines *ret,
4582 struct linetable_entry **best_item,
4583 struct symtab **best_symtab)
4584 {
4585 struct program_space *pspace;
4586 struct objfile *objfile;
4587 struct symtab *symtab;
4588 int exact = 0;
4589 int j;
4590 *best_item = 0;
4591 *best_symtab = 0;
4592
4593 ALL_PSPACES (pspace)
4594 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4595 {
4596 if (FILENAME_CMP (filename, symtab->filename) == 0)
4597 {
4598 struct linetable *l;
4599 int len;
4600
4601 if (fullname != NULL
4602 && symtab_to_fullname (symtab) != NULL
4603 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4604 continue;
4605 l = LINETABLE (symtab);
4606 if (!l)
4607 continue;
4608 len = l->nitems;
4609
4610 for (j = 0; j < len; j++)
4611 {
4612 struct linetable_entry *item = &(l->item[j]);
4613
4614 if (item->line == lineno)
4615 {
4616 exact = 1;
4617 append_expanded_sal (ret, objfile->pspace,
4618 symtab, lineno, item->pc);
4619 }
4620 else if (!exact && item->line > lineno
4621 && (*best_item == NULL
4622 || item->line < (*best_item)->line))
4623 {
4624 *best_item = item;
4625 *best_symtab = symtab;
4626 }
4627 }
4628 }
4629 }
4630 return exact;
4631 }
4632
4633 /* Compute a set of all sals in all program spaces that correspond to
4634 same file and line as SAL and return those. If there are several
4635 sals that belong to the same block, only one sal for the block is
4636 included in results. */
4637
4638 struct symtabs_and_lines
4639 expand_line_sal (struct symtab_and_line sal)
4640 {
4641 struct symtabs_and_lines ret;
4642 int i, j;
4643 struct objfile *objfile;
4644 int lineno;
4645 int deleted = 0;
4646 struct block **blocks = NULL;
4647 int *filter;
4648 struct cleanup *old_chain;
4649
4650 ret.nelts = 0;
4651 ret.sals = NULL;
4652
4653 /* Only expand sals that represent file.c:line. */
4654 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4655 {
4656 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4657 ret.sals[0] = sal;
4658 ret.nelts = 1;
4659 return ret;
4660 }
4661 else
4662 {
4663 struct program_space *pspace;
4664 struct linetable_entry *best_item = 0;
4665 struct symtab *best_symtab = 0;
4666 int exact = 0;
4667 char *match_filename;
4668
4669 lineno = sal.line;
4670 match_filename = sal.symtab->filename;
4671
4672 /* We need to find all symtabs for a file which name
4673 is described by sal. We cannot just directly
4674 iterate over symtabs, since a symtab might not be
4675 yet created. We also cannot iterate over psymtabs,
4676 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4677 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4678 corresponding to an included file. Therefore, we do
4679 first pass over psymtabs, reading in those with
4680 the right name. Then, we iterate over symtabs, knowing
4681 that all symtabs we're interested in are loaded. */
4682
4683 old_chain = save_current_program_space ();
4684 ALL_PSPACES (pspace)
4685 {
4686 set_current_program_space (pspace);
4687 ALL_PSPACE_OBJFILES (pspace, objfile)
4688 {
4689 if (objfile->sf)
4690 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4691 sal.symtab->filename);
4692 }
4693 }
4694 do_cleanups (old_chain);
4695
4696 /* Now search the symtab for exact matches and append them. If
4697 none is found, append the best_item and all its exact
4698 matches. */
4699 symtab_to_fullname (sal.symtab);
4700 exact = append_exact_match_to_sals (sal.symtab->filename,
4701 sal.symtab->fullname, lineno,
4702 &ret, &best_item, &best_symtab);
4703 if (!exact && best_item)
4704 append_exact_match_to_sals (best_symtab->filename,
4705 best_symtab->fullname, best_item->line,
4706 &ret, &best_item, &best_symtab);
4707 }
4708
4709 /* For optimized code, compiler can scatter one source line accross
4710 disjoint ranges of PC values, even when no duplicate functions
4711 or inline functions are involved. For example, 'for (;;)' inside
4712 non-template non-inline non-ctor-or-dtor function can result
4713 in two PC ranges. In this case, we don't want to set breakpoint
4714 on first PC of each range. To filter such cases, we use containing
4715 blocks -- for each PC found above we see if there are other PCs
4716 that are in the same block. If yes, the other PCs are filtered out. */
4717
4718 old_chain = save_current_program_space ();
4719 filter = alloca (ret.nelts * sizeof (int));
4720 blocks = alloca (ret.nelts * sizeof (struct block *));
4721 for (i = 0; i < ret.nelts; ++i)
4722 {
4723 set_current_program_space (ret.sals[i].pspace);
4724
4725 filter[i] = 1;
4726 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4727
4728 }
4729 do_cleanups (old_chain);
4730
4731 for (i = 0; i < ret.nelts; ++i)
4732 if (blocks[i] != NULL)
4733 for (j = i+1; j < ret.nelts; ++j)
4734 if (blocks[j] == blocks[i])
4735 {
4736 filter[j] = 0;
4737 ++deleted;
4738 break;
4739 }
4740
4741 {
4742 struct symtab_and_line *final =
4743 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4744
4745 for (i = 0, j = 0; i < ret.nelts; ++i)
4746 if (filter[i])
4747 final[j++] = ret.sals[i];
4748
4749 ret.nelts -= deleted;
4750 xfree (ret.sals);
4751 ret.sals = final;
4752 }
4753
4754 return ret;
4755 }
4756
4757 /* Return 1 if the supplied producer string matches the ARM RealView
4758 compiler (armcc). */
4759
4760 int
4761 producer_is_realview (const char *producer)
4762 {
4763 static const char *const arm_idents[] = {
4764 "ARM C Compiler, ADS",
4765 "Thumb C Compiler, ADS",
4766 "ARM C++ Compiler, ADS",
4767 "Thumb C++ Compiler, ADS",
4768 "ARM/Thumb C/C++ Compiler, RVCT",
4769 "ARM C/C++ Compiler, RVCT"
4770 };
4771 int i;
4772
4773 if (producer == NULL)
4774 return 0;
4775
4776 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4777 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4778 return 1;
4779
4780 return 0;
4781 }
4782
4783 void
4784 _initialize_symtab (void)
4785 {
4786 add_info ("variables", variables_info, _("\
4787 All global and static variable names, or those matching REGEXP."));
4788 if (dbx_commands)
4789 add_com ("whereis", class_info, variables_info, _("\
4790 All global and static variable names, or those matching REGEXP."));
4791
4792 add_info ("functions", functions_info,
4793 _("All function names, or those matching REGEXP."));
4794
4795 /* FIXME: This command has at least the following problems:
4796 1. It prints builtin types (in a very strange and confusing fashion).
4797 2. It doesn't print right, e.g. with
4798 typedef struct foo *FOO
4799 type_print prints "FOO" when we want to make it (in this situation)
4800 print "struct foo *".
4801 I also think "ptype" or "whatis" is more likely to be useful (but if
4802 there is much disagreement "info types" can be fixed). */
4803 add_info ("types", types_info,
4804 _("All type names, or those matching REGEXP."));
4805
4806 add_info ("sources", sources_info,
4807 _("Source files in the program."));
4808
4809 add_com ("rbreak", class_breakpoint, rbreak_command,
4810 _("Set a breakpoint for all functions matching REGEXP."));
4811
4812 if (xdb_commands)
4813 {
4814 add_com ("lf", class_info, sources_info,
4815 _("Source files in the program"));
4816 add_com ("lg", class_info, variables_info, _("\
4817 All global and static variable names, or those matching REGEXP."));
4818 }
4819
4820 add_setshow_enum_cmd ("multiple-symbols", no_class,
4821 multiple_symbols_modes, &multiple_symbols_mode,
4822 _("\
4823 Set the debugger behavior when more than one symbol are possible matches\n\
4824 in an expression."), _("\
4825 Show how the debugger handles ambiguities in expressions."), _("\
4826 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4827 NULL, NULL, &setlist, &showlist);
4828
4829 observer_attach_executable_changed (symtab_observer_executable_changed);
4830 }
This page took 0.129855 seconds and 4 git commands to generate.