oops - typo correction.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43
44 #include "hashtab.h"
45
46 #include "gdb_obstack.h"
47 #include "block.h"
48 #include "dictionary.h"
49
50 #include <sys/types.h>
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_stat.h"
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "gdb_assert.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "psymtab.h"
64 #include "parser-defs.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *is_a_field_of_this);
85
86 static
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 static void print_msymbol_info (struct minimal_symbol *);
104
105 void _initialize_symtab (void);
106
107 /* */
108
109 /* When non-zero, print debugging messages related to symtab creation. */
110 int symtab_create_debug = 0;
111
112 /* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115 int basenames_may_differ = 0;
116
117 /* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121 const char multiple_symbols_ask[] = "ask";
122 const char multiple_symbols_all[] = "all";
123 const char multiple_symbols_cancel[] = "cancel";
124 static const char *const multiple_symbols_modes[] =
125 {
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130 };
131 static const char *multiple_symbols_mode = multiple_symbols_all;
132
133 /* Read-only accessor to AUTO_SELECT_MODE. */
134
135 const char *
136 multiple_symbols_select_mode (void)
137 {
138 return multiple_symbols_mode;
139 }
140
141 /* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145 const struct block *block_found;
146
147 /* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). We assume that SEARCH_NAME is
150 a relative path. Returns true if they match, false otherwise. */
151
152 int
153 compare_filenames_for_search (const char *filename, const char *search_name)
154 {
155 int len = strlen (filename);
156 size_t search_len = strlen (search_name);
157
158 if (len < search_len)
159 return 0;
160
161 /* The tail of FILENAME must match. */
162 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
163 return 0;
164
165 /* Either the names must completely match, or the character
166 preceding the trailing SEARCH_NAME segment of FILENAME must be a
167 directory separator. */
168 return (len == search_len
169 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
170 || (HAS_DRIVE_SPEC (filename)
171 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
172 }
173
174 /* Check for a symtab of a specific name by searching some symtabs.
175 This is a helper function for callbacks of iterate_over_symtabs.
176
177 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
178 are identical to the `map_symtabs_matching_filename' method of
179 quick_symbol_functions.
180
181 FIRST and AFTER_LAST indicate the range of symtabs to search.
182 AFTER_LAST is one past the last symtab to search; NULL means to
183 search until the end of the list. */
184
185 int
186 iterate_over_some_symtabs (const char *name,
187 const char *full_path,
188 const char *real_path,
189 int (*callback) (struct symtab *symtab,
190 void *data),
191 void *data,
192 struct symtab *first,
193 struct symtab *after_last)
194 {
195 struct symtab *s = NULL;
196 const char* base_name = lbasename (name);
197 int is_abs = IS_ABSOLUTE_PATH (name);
198
199 for (s = first; s != NULL && s != after_last; s = s->next)
200 {
201 /* Exact match is always ok. */
202 if (FILENAME_CMP (name, s->filename) == 0)
203 {
204 if (callback (s, data))
205 return 1;
206 }
207
208 if (!is_abs && compare_filenames_for_search (s->filename, name))
209 {
210 if (callback (s, data))
211 return 1;
212 }
213
214 /* Before we invoke realpath, which can get expensive when many
215 files are involved, do a quick comparison of the basenames. */
216 if (! basenames_may_differ
217 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
218 continue;
219
220 /* If the user gave us an absolute path, try to find the file in
221 this symtab and use its absolute path. */
222
223 if (full_path != NULL)
224 {
225 const char *fp = symtab_to_fullname (s);
226
227 if (FILENAME_CMP (full_path, fp) == 0)
228 {
229 if (callback (s, data))
230 return 1;
231 }
232
233 if (!is_abs && compare_filenames_for_search (fp, name))
234 {
235 if (callback (s, data))
236 return 1;
237 }
238 }
239
240 if (real_path != NULL)
241 {
242 const char *fullname = symtab_to_fullname (s);
243 char *rp = gdb_realpath (fullname);
244
245 make_cleanup (xfree, rp);
246 if (FILENAME_CMP (real_path, rp) == 0)
247 {
248 if (callback (s, data))
249 return 1;
250 }
251
252 if (!is_abs && compare_filenames_for_search (rp, name))
253 {
254 if (callback (s, data))
255 return 1;
256 }
257 }
258 }
259
260 return 0;
261 }
262
263 /* Check for a symtab of a specific name; first in symtabs, then in
264 psymtabs. *If* there is no '/' in the name, a match after a '/'
265 in the symtab filename will also work.
266
267 Calls CALLBACK with each symtab that is found and with the supplied
268 DATA. If CALLBACK returns true, the search stops. */
269
270 void
271 iterate_over_symtabs (const char *name,
272 int (*callback) (struct symtab *symtab,
273 void *data),
274 void *data)
275 {
276 struct symtab *s = NULL;
277 struct objfile *objfile;
278 char *real_path = NULL;
279 char *full_path = NULL;
280 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
281
282 /* Here we are interested in canonicalizing an absolute path, not
283 absolutizing a relative path. */
284 if (IS_ABSOLUTE_PATH (name))
285 {
286 full_path = xfullpath (name);
287 make_cleanup (xfree, full_path);
288 real_path = gdb_realpath (name);
289 make_cleanup (xfree, real_path);
290 }
291
292 ALL_OBJFILES (objfile)
293 {
294 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
295 objfile->symtabs, NULL))
296 {
297 do_cleanups (cleanups);
298 return;
299 }
300 }
301
302 /* Same search rules as above apply here, but now we look thru the
303 psymtabs. */
304
305 ALL_OBJFILES (objfile)
306 {
307 if (objfile->sf
308 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
309 name,
310 full_path,
311 real_path,
312 callback,
313 data))
314 {
315 do_cleanups (cleanups);
316 return;
317 }
318 }
319
320 do_cleanups (cleanups);
321 }
322
323 /* The callback function used by lookup_symtab. */
324
325 static int
326 lookup_symtab_callback (struct symtab *symtab, void *data)
327 {
328 struct symtab **result_ptr = data;
329
330 *result_ptr = symtab;
331 return 1;
332 }
333
334 /* A wrapper for iterate_over_symtabs that returns the first matching
335 symtab, or NULL. */
336
337 struct symtab *
338 lookup_symtab (const char *name)
339 {
340 struct symtab *result = NULL;
341
342 iterate_over_symtabs (name, lookup_symtab_callback, &result);
343 return result;
344 }
345
346 \f
347 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
348 full method name, which consist of the class name (from T), the unadorned
349 method name from METHOD_ID, and the signature for the specific overload,
350 specified by SIGNATURE_ID. Note that this function is g++ specific. */
351
352 char *
353 gdb_mangle_name (struct type *type, int method_id, int signature_id)
354 {
355 int mangled_name_len;
356 char *mangled_name;
357 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
358 struct fn_field *method = &f[signature_id];
359 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
360 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
361 const char *newname = type_name_no_tag (type);
362
363 /* Does the form of physname indicate that it is the full mangled name
364 of a constructor (not just the args)? */
365 int is_full_physname_constructor;
366
367 int is_constructor;
368 int is_destructor = is_destructor_name (physname);
369 /* Need a new type prefix. */
370 char *const_prefix = method->is_const ? "C" : "";
371 char *volatile_prefix = method->is_volatile ? "V" : "";
372 char buf[20];
373 int len = (newname == NULL ? 0 : strlen (newname));
374
375 /* Nothing to do if physname already contains a fully mangled v3 abi name
376 or an operator name. */
377 if ((physname[0] == '_' && physname[1] == 'Z')
378 || is_operator_name (field_name))
379 return xstrdup (physname);
380
381 is_full_physname_constructor = is_constructor_name (physname);
382
383 is_constructor = is_full_physname_constructor
384 || (newname && strcmp (field_name, newname) == 0);
385
386 if (!is_destructor)
387 is_destructor = (strncmp (physname, "__dt", 4) == 0);
388
389 if (is_destructor || is_full_physname_constructor)
390 {
391 mangled_name = (char *) xmalloc (strlen (physname) + 1);
392 strcpy (mangled_name, physname);
393 return mangled_name;
394 }
395
396 if (len == 0)
397 {
398 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
399 }
400 else if (physname[0] == 't' || physname[0] == 'Q')
401 {
402 /* The physname for template and qualified methods already includes
403 the class name. */
404 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
405 newname = NULL;
406 len = 0;
407 }
408 else
409 {
410 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
411 volatile_prefix, len);
412 }
413 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
414 + strlen (buf) + len + strlen (physname) + 1);
415
416 mangled_name = (char *) xmalloc (mangled_name_len);
417 if (is_constructor)
418 mangled_name[0] = '\0';
419 else
420 strcpy (mangled_name, field_name);
421
422 strcat (mangled_name, buf);
423 /* If the class doesn't have a name, i.e. newname NULL, then we just
424 mangle it using 0 for the length of the class. Thus it gets mangled
425 as something starting with `::' rather than `classname::'. */
426 if (newname != NULL)
427 strcat (mangled_name, newname);
428
429 strcat (mangled_name, physname);
430 return (mangled_name);
431 }
432
433 /* Initialize the cplus_specific structure. 'cplus_specific' should
434 only be allocated for use with cplus symbols. */
435
436 static void
437 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
438 struct objfile *objfile)
439 {
440 /* A language_specific structure should not have been previously
441 initialized. */
442 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
443 gdb_assert (objfile != NULL);
444
445 gsymbol->language_specific.cplus_specific =
446 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
447 }
448
449 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
450 correctly allocated. For C++ symbols a cplus_specific struct is
451 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
452 OBJFILE can be NULL. */
453
454 void
455 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
456 char *name,
457 struct objfile *objfile)
458 {
459 if (gsymbol->language == language_cplus)
460 {
461 if (gsymbol->language_specific.cplus_specific == NULL)
462 symbol_init_cplus_specific (gsymbol, objfile);
463
464 gsymbol->language_specific.cplus_specific->demangled_name = name;
465 }
466 else
467 gsymbol->language_specific.mangled_lang.demangled_name = name;
468 }
469
470 /* Return the demangled name of GSYMBOL. */
471
472 const char *
473 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
474 {
475 if (gsymbol->language == language_cplus)
476 {
477 if (gsymbol->language_specific.cplus_specific != NULL)
478 return gsymbol->language_specific.cplus_specific->demangled_name;
479 else
480 return NULL;
481 }
482 else
483 return gsymbol->language_specific.mangled_lang.demangled_name;
484 }
485
486 \f
487 /* Initialize the language dependent portion of a symbol
488 depending upon the language for the symbol. */
489
490 void
491 symbol_set_language (struct general_symbol_info *gsymbol,
492 enum language language)
493 {
494 gsymbol->language = language;
495 if (gsymbol->language == language_d
496 || gsymbol->language == language_go
497 || gsymbol->language == language_java
498 || gsymbol->language == language_objc
499 || gsymbol->language == language_fortran)
500 {
501 symbol_set_demangled_name (gsymbol, NULL, NULL);
502 }
503 else if (gsymbol->language == language_cplus)
504 gsymbol->language_specific.cplus_specific = NULL;
505 else
506 {
507 memset (&gsymbol->language_specific, 0,
508 sizeof (gsymbol->language_specific));
509 }
510 }
511
512 /* Functions to initialize a symbol's mangled name. */
513
514 /* Objects of this type are stored in the demangled name hash table. */
515 struct demangled_name_entry
516 {
517 char *mangled;
518 char demangled[1];
519 };
520
521 /* Hash function for the demangled name hash. */
522
523 static hashval_t
524 hash_demangled_name_entry (const void *data)
525 {
526 const struct demangled_name_entry *e = data;
527
528 return htab_hash_string (e->mangled);
529 }
530
531 /* Equality function for the demangled name hash. */
532
533 static int
534 eq_demangled_name_entry (const void *a, const void *b)
535 {
536 const struct demangled_name_entry *da = a;
537 const struct demangled_name_entry *db = b;
538
539 return strcmp (da->mangled, db->mangled) == 0;
540 }
541
542 /* Create the hash table used for demangled names. Each hash entry is
543 a pair of strings; one for the mangled name and one for the demangled
544 name. The entry is hashed via just the mangled name. */
545
546 static void
547 create_demangled_names_hash (struct objfile *objfile)
548 {
549 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
550 The hash table code will round this up to the next prime number.
551 Choosing a much larger table size wastes memory, and saves only about
552 1% in symbol reading. */
553
554 objfile->demangled_names_hash = htab_create_alloc
555 (256, hash_demangled_name_entry, eq_demangled_name_entry,
556 NULL, xcalloc, xfree);
557 }
558
559 /* Try to determine the demangled name for a symbol, based on the
560 language of that symbol. If the language is set to language_auto,
561 it will attempt to find any demangling algorithm that works and
562 then set the language appropriately. The returned name is allocated
563 by the demangler and should be xfree'd. */
564
565 static char *
566 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
567 const char *mangled)
568 {
569 char *demangled = NULL;
570
571 if (gsymbol->language == language_unknown)
572 gsymbol->language = language_auto;
573
574 if (gsymbol->language == language_objc
575 || gsymbol->language == language_auto)
576 {
577 demangled =
578 objc_demangle (mangled, 0);
579 if (demangled != NULL)
580 {
581 gsymbol->language = language_objc;
582 return demangled;
583 }
584 }
585 if (gsymbol->language == language_cplus
586 || gsymbol->language == language_auto)
587 {
588 demangled =
589 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
590 if (demangled != NULL)
591 {
592 gsymbol->language = language_cplus;
593 return demangled;
594 }
595 }
596 if (gsymbol->language == language_java)
597 {
598 demangled =
599 cplus_demangle (mangled,
600 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
601 if (demangled != NULL)
602 {
603 gsymbol->language = language_java;
604 return demangled;
605 }
606 }
607 if (gsymbol->language == language_d
608 || gsymbol->language == language_auto)
609 {
610 demangled = d_demangle(mangled, 0);
611 if (demangled != NULL)
612 {
613 gsymbol->language = language_d;
614 return demangled;
615 }
616 }
617 /* FIXME(dje): Continually adding languages here is clumsy.
618 Better to just call la_demangle if !auto, and if auto then call
619 a utility routine that tries successive languages in turn and reports
620 which one it finds. I realize the la_demangle options may be different
621 for different languages but there's already a FIXME for that. */
622 if (gsymbol->language == language_go
623 || gsymbol->language == language_auto)
624 {
625 demangled = go_demangle (mangled, 0);
626 if (demangled != NULL)
627 {
628 gsymbol->language = language_go;
629 return demangled;
630 }
631 }
632
633 /* We could support `gsymbol->language == language_fortran' here to provide
634 module namespaces also for inferiors with only minimal symbol table (ELF
635 symbols). Just the mangling standard is not standardized across compilers
636 and there is no DW_AT_producer available for inferiors with only the ELF
637 symbols to check the mangling kind. */
638 return NULL;
639 }
640
641 /* Set both the mangled and demangled (if any) names for GSYMBOL based
642 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
643 objfile's obstack; but if COPY_NAME is 0 and if NAME is
644 NUL-terminated, then this function assumes that NAME is already
645 correctly saved (either permanently or with a lifetime tied to the
646 objfile), and it will not be copied.
647
648 The hash table corresponding to OBJFILE is used, and the memory
649 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
650 so the pointer can be discarded after calling this function. */
651
652 /* We have to be careful when dealing with Java names: when we run
653 into a Java minimal symbol, we don't know it's a Java symbol, so it
654 gets demangled as a C++ name. This is unfortunate, but there's not
655 much we can do about it: but when demangling partial symbols and
656 regular symbols, we'd better not reuse the wrong demangled name.
657 (See PR gdb/1039.) We solve this by putting a distinctive prefix
658 on Java names when storing them in the hash table. */
659
660 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
661 don't mind the Java prefix so much: different languages have
662 different demangling requirements, so it's only natural that we
663 need to keep language data around in our demangling cache. But
664 it's not good that the minimal symbol has the wrong demangled name.
665 Unfortunately, I can't think of any easy solution to that
666 problem. */
667
668 #define JAVA_PREFIX "##JAVA$$"
669 #define JAVA_PREFIX_LEN 8
670
671 void
672 symbol_set_names (struct general_symbol_info *gsymbol,
673 const char *linkage_name, int len, int copy_name,
674 struct objfile *objfile)
675 {
676 struct demangled_name_entry **slot;
677 /* A 0-terminated copy of the linkage name. */
678 const char *linkage_name_copy;
679 /* A copy of the linkage name that might have a special Java prefix
680 added to it, for use when looking names up in the hash table. */
681 const char *lookup_name;
682 /* The length of lookup_name. */
683 int lookup_len;
684 struct demangled_name_entry entry;
685
686 if (gsymbol->language == language_ada)
687 {
688 /* In Ada, we do the symbol lookups using the mangled name, so
689 we can save some space by not storing the demangled name.
690
691 As a side note, we have also observed some overlap between
692 the C++ mangling and Ada mangling, similarly to what has
693 been observed with Java. Because we don't store the demangled
694 name with the symbol, we don't need to use the same trick
695 as Java. */
696 if (!copy_name)
697 gsymbol->name = linkage_name;
698 else
699 {
700 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
701
702 memcpy (name, linkage_name, len);
703 name[len] = '\0';
704 gsymbol->name = name;
705 }
706 symbol_set_demangled_name (gsymbol, NULL, NULL);
707
708 return;
709 }
710
711 if (objfile->demangled_names_hash == NULL)
712 create_demangled_names_hash (objfile);
713
714 /* The stabs reader generally provides names that are not
715 NUL-terminated; most of the other readers don't do this, so we
716 can just use the given copy, unless we're in the Java case. */
717 if (gsymbol->language == language_java)
718 {
719 char *alloc_name;
720
721 lookup_len = len + JAVA_PREFIX_LEN;
722 alloc_name = alloca (lookup_len + 1);
723 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
724 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
725 alloc_name[lookup_len] = '\0';
726
727 lookup_name = alloc_name;
728 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
729 }
730 else if (linkage_name[len] != '\0')
731 {
732 char *alloc_name;
733
734 lookup_len = len;
735 alloc_name = alloca (lookup_len + 1);
736 memcpy (alloc_name, linkage_name, len);
737 alloc_name[lookup_len] = '\0';
738
739 lookup_name = alloc_name;
740 linkage_name_copy = alloc_name;
741 }
742 else
743 {
744 lookup_len = len;
745 lookup_name = linkage_name;
746 linkage_name_copy = linkage_name;
747 }
748
749 entry.mangled = (char *) lookup_name;
750 slot = ((struct demangled_name_entry **)
751 htab_find_slot (objfile->demangled_names_hash,
752 &entry, INSERT));
753
754 /* If this name is not in the hash table, add it. */
755 if (*slot == NULL
756 /* A C version of the symbol may have already snuck into the table.
757 This happens to, e.g., main.init (__go_init_main). Cope. */
758 || (gsymbol->language == language_go
759 && (*slot)->demangled[0] == '\0'))
760 {
761 char *demangled_name = symbol_find_demangled_name (gsymbol,
762 linkage_name_copy);
763 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
764
765 /* Suppose we have demangled_name==NULL, copy_name==0, and
766 lookup_name==linkage_name. In this case, we already have the
767 mangled name saved, and we don't have a demangled name. So,
768 you might think we could save a little space by not recording
769 this in the hash table at all.
770
771 It turns out that it is actually important to still save such
772 an entry in the hash table, because storing this name gives
773 us better bcache hit rates for partial symbols. */
774 if (!copy_name && lookup_name == linkage_name)
775 {
776 *slot = obstack_alloc (&objfile->objfile_obstack,
777 offsetof (struct demangled_name_entry,
778 demangled)
779 + demangled_len + 1);
780 (*slot)->mangled = (char *) lookup_name;
781 }
782 else
783 {
784 /* If we must copy the mangled name, put it directly after
785 the demangled name so we can have a single
786 allocation. */
787 *slot = obstack_alloc (&objfile->objfile_obstack,
788 offsetof (struct demangled_name_entry,
789 demangled)
790 + lookup_len + demangled_len + 2);
791 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
792 strcpy ((*slot)->mangled, lookup_name);
793 }
794
795 if (demangled_name != NULL)
796 {
797 strcpy ((*slot)->demangled, demangled_name);
798 xfree (demangled_name);
799 }
800 else
801 (*slot)->demangled[0] = '\0';
802 }
803
804 gsymbol->name = (*slot)->mangled + lookup_len - len;
805 if ((*slot)->demangled[0] != '\0')
806 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
807 else
808 symbol_set_demangled_name (gsymbol, NULL, objfile);
809 }
810
811 /* Return the source code name of a symbol. In languages where
812 demangling is necessary, this is the demangled name. */
813
814 const char *
815 symbol_natural_name (const struct general_symbol_info *gsymbol)
816 {
817 switch (gsymbol->language)
818 {
819 case language_cplus:
820 case language_d:
821 case language_go:
822 case language_java:
823 case language_objc:
824 case language_fortran:
825 if (symbol_get_demangled_name (gsymbol) != NULL)
826 return symbol_get_demangled_name (gsymbol);
827 break;
828 case language_ada:
829 if (symbol_get_demangled_name (gsymbol) != NULL)
830 return symbol_get_demangled_name (gsymbol);
831 else
832 return ada_decode_symbol (gsymbol);
833 break;
834 default:
835 break;
836 }
837 return gsymbol->name;
838 }
839
840 /* Return the demangled name for a symbol based on the language for
841 that symbol. If no demangled name exists, return NULL. */
842
843 const char *
844 symbol_demangled_name (const struct general_symbol_info *gsymbol)
845 {
846 const char *dem_name = NULL;
847
848 switch (gsymbol->language)
849 {
850 case language_cplus:
851 case language_d:
852 case language_go:
853 case language_java:
854 case language_objc:
855 case language_fortran:
856 dem_name = symbol_get_demangled_name (gsymbol);
857 break;
858 case language_ada:
859 dem_name = symbol_get_demangled_name (gsymbol);
860 if (dem_name == NULL)
861 dem_name = ada_decode_symbol (gsymbol);
862 break;
863 default:
864 break;
865 }
866 return dem_name;
867 }
868
869 /* Return the search name of a symbol---generally the demangled or
870 linkage name of the symbol, depending on how it will be searched for.
871 If there is no distinct demangled name, then returns the same value
872 (same pointer) as SYMBOL_LINKAGE_NAME. */
873
874 const char *
875 symbol_search_name (const struct general_symbol_info *gsymbol)
876 {
877 if (gsymbol->language == language_ada)
878 return gsymbol->name;
879 else
880 return symbol_natural_name (gsymbol);
881 }
882
883 /* Initialize the structure fields to zero values. */
884
885 void
886 init_sal (struct symtab_and_line *sal)
887 {
888 sal->pspace = NULL;
889 sal->symtab = 0;
890 sal->section = 0;
891 sal->line = 0;
892 sal->pc = 0;
893 sal->end = 0;
894 sal->explicit_pc = 0;
895 sal->explicit_line = 0;
896 sal->probe = NULL;
897 }
898 \f
899
900 /* Return 1 if the two sections are the same, or if they could
901 plausibly be copies of each other, one in an original object
902 file and another in a separated debug file. */
903
904 int
905 matching_obj_sections (struct obj_section *obj_first,
906 struct obj_section *obj_second)
907 {
908 asection *first = obj_first? obj_first->the_bfd_section : NULL;
909 asection *second = obj_second? obj_second->the_bfd_section : NULL;
910 struct objfile *obj;
911
912 /* If they're the same section, then they match. */
913 if (first == second)
914 return 1;
915
916 /* If either is NULL, give up. */
917 if (first == NULL || second == NULL)
918 return 0;
919
920 /* This doesn't apply to absolute symbols. */
921 if (first->owner == NULL || second->owner == NULL)
922 return 0;
923
924 /* If they're in the same object file, they must be different sections. */
925 if (first->owner == second->owner)
926 return 0;
927
928 /* Check whether the two sections are potentially corresponding. They must
929 have the same size, address, and name. We can't compare section indexes,
930 which would be more reliable, because some sections may have been
931 stripped. */
932 if (bfd_get_section_size (first) != bfd_get_section_size (second))
933 return 0;
934
935 /* In-memory addresses may start at a different offset, relativize them. */
936 if (bfd_get_section_vma (first->owner, first)
937 - bfd_get_start_address (first->owner)
938 != bfd_get_section_vma (second->owner, second)
939 - bfd_get_start_address (second->owner))
940 return 0;
941
942 if (bfd_get_section_name (first->owner, first) == NULL
943 || bfd_get_section_name (second->owner, second) == NULL
944 || strcmp (bfd_get_section_name (first->owner, first),
945 bfd_get_section_name (second->owner, second)) != 0)
946 return 0;
947
948 /* Otherwise check that they are in corresponding objfiles. */
949
950 ALL_OBJFILES (obj)
951 if (obj->obfd == first->owner)
952 break;
953 gdb_assert (obj != NULL);
954
955 if (obj->separate_debug_objfile != NULL
956 && obj->separate_debug_objfile->obfd == second->owner)
957 return 1;
958 if (obj->separate_debug_objfile_backlink != NULL
959 && obj->separate_debug_objfile_backlink->obfd == second->owner)
960 return 1;
961
962 return 0;
963 }
964
965 struct symtab *
966 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
967 {
968 struct objfile *objfile;
969 struct minimal_symbol *msymbol;
970
971 /* If we know that this is not a text address, return failure. This is
972 necessary because we loop based on texthigh and textlow, which do
973 not include the data ranges. */
974 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
975 if (msymbol
976 && (MSYMBOL_TYPE (msymbol) == mst_data
977 || MSYMBOL_TYPE (msymbol) == mst_bss
978 || MSYMBOL_TYPE (msymbol) == mst_abs
979 || MSYMBOL_TYPE (msymbol) == mst_file_data
980 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
981 return NULL;
982
983 ALL_OBJFILES (objfile)
984 {
985 struct symtab *result = NULL;
986
987 if (objfile->sf)
988 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
989 pc, section, 0);
990 if (result)
991 return result;
992 }
993
994 return NULL;
995 }
996 \f
997 /* Debug symbols usually don't have section information. We need to dig that
998 out of the minimal symbols and stash that in the debug symbol. */
999
1000 void
1001 fixup_section (struct general_symbol_info *ginfo,
1002 CORE_ADDR addr, struct objfile *objfile)
1003 {
1004 struct minimal_symbol *msym;
1005
1006 /* First, check whether a minimal symbol with the same name exists
1007 and points to the same address. The address check is required
1008 e.g. on PowerPC64, where the minimal symbol for a function will
1009 point to the function descriptor, while the debug symbol will
1010 point to the actual function code. */
1011 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1012 if (msym)
1013 {
1014 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1015 ginfo->section = SYMBOL_SECTION (msym);
1016 }
1017 else
1018 {
1019 /* Static, function-local variables do appear in the linker
1020 (minimal) symbols, but are frequently given names that won't
1021 be found via lookup_minimal_symbol(). E.g., it has been
1022 observed in frv-uclinux (ELF) executables that a static,
1023 function-local variable named "foo" might appear in the
1024 linker symbols as "foo.6" or "foo.3". Thus, there is no
1025 point in attempting to extend the lookup-by-name mechanism to
1026 handle this case due to the fact that there can be multiple
1027 names.
1028
1029 So, instead, search the section table when lookup by name has
1030 failed. The ``addr'' and ``endaddr'' fields may have already
1031 been relocated. If so, the relocation offset (i.e. the
1032 ANOFFSET value) needs to be subtracted from these values when
1033 performing the comparison. We unconditionally subtract it,
1034 because, when no relocation has been performed, the ANOFFSET
1035 value will simply be zero.
1036
1037 The address of the symbol whose section we're fixing up HAS
1038 NOT BEEN adjusted (relocated) yet. It can't have been since
1039 the section isn't yet known and knowing the section is
1040 necessary in order to add the correct relocation value. In
1041 other words, we wouldn't even be in this function (attempting
1042 to compute the section) if it were already known.
1043
1044 Note that it is possible to search the minimal symbols
1045 (subtracting the relocation value if necessary) to find the
1046 matching minimal symbol, but this is overkill and much less
1047 efficient. It is not necessary to find the matching minimal
1048 symbol, only its section.
1049
1050 Note that this technique (of doing a section table search)
1051 can fail when unrelocated section addresses overlap. For
1052 this reason, we still attempt a lookup by name prior to doing
1053 a search of the section table. */
1054
1055 struct obj_section *s;
1056
1057 ALL_OBJFILE_OSECTIONS (objfile, s)
1058 {
1059 int idx = s->the_bfd_section->index;
1060 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1061
1062 if (obj_section_addr (s) - offset <= addr
1063 && addr < obj_section_endaddr (s) - offset)
1064 {
1065 ginfo->obj_section = s;
1066 ginfo->section = idx;
1067 return;
1068 }
1069 }
1070 }
1071 }
1072
1073 struct symbol *
1074 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1075 {
1076 CORE_ADDR addr;
1077
1078 if (!sym)
1079 return NULL;
1080
1081 if (SYMBOL_OBJ_SECTION (sym))
1082 return sym;
1083
1084 /* We either have an OBJFILE, or we can get at it from the sym's
1085 symtab. Anything else is a bug. */
1086 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1087
1088 if (objfile == NULL)
1089 objfile = SYMBOL_SYMTAB (sym)->objfile;
1090
1091 /* We should have an objfile by now. */
1092 gdb_assert (objfile);
1093
1094 switch (SYMBOL_CLASS (sym))
1095 {
1096 case LOC_STATIC:
1097 case LOC_LABEL:
1098 addr = SYMBOL_VALUE_ADDRESS (sym);
1099 break;
1100 case LOC_BLOCK:
1101 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1102 break;
1103
1104 default:
1105 /* Nothing else will be listed in the minsyms -- no use looking
1106 it up. */
1107 return sym;
1108 }
1109
1110 fixup_section (&sym->ginfo, addr, objfile);
1111
1112 return sym;
1113 }
1114
1115 /* Compute the demangled form of NAME as used by the various symbol
1116 lookup functions. The result is stored in *RESULT_NAME. Returns a
1117 cleanup which can be used to clean up the result.
1118
1119 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1120 Normally, Ada symbol lookups are performed using the encoded name
1121 rather than the demangled name, and so it might seem to make sense
1122 for this function to return an encoded version of NAME.
1123 Unfortunately, we cannot do this, because this function is used in
1124 circumstances where it is not appropriate to try to encode NAME.
1125 For instance, when displaying the frame info, we demangle the name
1126 of each parameter, and then perform a symbol lookup inside our
1127 function using that demangled name. In Ada, certain functions
1128 have internally-generated parameters whose name contain uppercase
1129 characters. Encoding those name would result in those uppercase
1130 characters to become lowercase, and thus cause the symbol lookup
1131 to fail. */
1132
1133 struct cleanup *
1134 demangle_for_lookup (const char *name, enum language lang,
1135 const char **result_name)
1136 {
1137 char *demangled_name = NULL;
1138 const char *modified_name = NULL;
1139 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1140
1141 modified_name = name;
1142
1143 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1144 lookup, so we can always binary search. */
1145 if (lang == language_cplus)
1146 {
1147 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1148 if (demangled_name)
1149 {
1150 modified_name = demangled_name;
1151 make_cleanup (xfree, demangled_name);
1152 }
1153 else
1154 {
1155 /* If we were given a non-mangled name, canonicalize it
1156 according to the language (so far only for C++). */
1157 demangled_name = cp_canonicalize_string (name);
1158 if (demangled_name)
1159 {
1160 modified_name = demangled_name;
1161 make_cleanup (xfree, demangled_name);
1162 }
1163 }
1164 }
1165 else if (lang == language_java)
1166 {
1167 demangled_name = cplus_demangle (name,
1168 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1169 if (demangled_name)
1170 {
1171 modified_name = demangled_name;
1172 make_cleanup (xfree, demangled_name);
1173 }
1174 }
1175 else if (lang == language_d)
1176 {
1177 demangled_name = d_demangle (name, 0);
1178 if (demangled_name)
1179 {
1180 modified_name = demangled_name;
1181 make_cleanup (xfree, demangled_name);
1182 }
1183 }
1184 else if (lang == language_go)
1185 {
1186 demangled_name = go_demangle (name, 0);
1187 if (demangled_name)
1188 {
1189 modified_name = demangled_name;
1190 make_cleanup (xfree, demangled_name);
1191 }
1192 }
1193
1194 *result_name = modified_name;
1195 return cleanup;
1196 }
1197
1198 /* Find the definition for a specified symbol name NAME
1199 in domain DOMAIN, visible from lexical block BLOCK.
1200 Returns the struct symbol pointer, or zero if no symbol is found.
1201 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1202 NAME is a field of the current implied argument `this'. If so set
1203 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1204 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1205 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1206
1207 /* This function (or rather its subordinates) have a bunch of loops and
1208 it would seem to be attractive to put in some QUIT's (though I'm not really
1209 sure whether it can run long enough to be really important). But there
1210 are a few calls for which it would appear to be bad news to quit
1211 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1212 that there is C++ code below which can error(), but that probably
1213 doesn't affect these calls since they are looking for a known
1214 variable and thus can probably assume it will never hit the C++
1215 code). */
1216
1217 struct symbol *
1218 lookup_symbol_in_language (const char *name, const struct block *block,
1219 const domain_enum domain, enum language lang,
1220 struct field_of_this_result *is_a_field_of_this)
1221 {
1222 const char *modified_name;
1223 struct symbol *returnval;
1224 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1225
1226 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1227 is_a_field_of_this);
1228 do_cleanups (cleanup);
1229
1230 return returnval;
1231 }
1232
1233 /* Behave like lookup_symbol_in_language, but performed with the
1234 current language. */
1235
1236 struct symbol *
1237 lookup_symbol (const char *name, const struct block *block,
1238 domain_enum domain,
1239 struct field_of_this_result *is_a_field_of_this)
1240 {
1241 return lookup_symbol_in_language (name, block, domain,
1242 current_language->la_language,
1243 is_a_field_of_this);
1244 }
1245
1246 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1247 found, or NULL if not found. */
1248
1249 struct symbol *
1250 lookup_language_this (const struct language_defn *lang,
1251 const struct block *block)
1252 {
1253 if (lang->la_name_of_this == NULL || block == NULL)
1254 return NULL;
1255
1256 while (block)
1257 {
1258 struct symbol *sym;
1259
1260 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1261 if (sym != NULL)
1262 {
1263 block_found = block;
1264 return sym;
1265 }
1266 if (BLOCK_FUNCTION (block))
1267 break;
1268 block = BLOCK_SUPERBLOCK (block);
1269 }
1270
1271 return NULL;
1272 }
1273
1274 /* Given TYPE, a structure/union,
1275 return 1 if the component named NAME from the ultimate target
1276 structure/union is defined, otherwise, return 0. */
1277
1278 static int
1279 check_field (struct type *type, const char *name,
1280 struct field_of_this_result *is_a_field_of_this)
1281 {
1282 int i;
1283
1284 /* The type may be a stub. */
1285 CHECK_TYPEDEF (type);
1286
1287 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1288 {
1289 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1290
1291 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1292 {
1293 is_a_field_of_this->type = type;
1294 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1295 return 1;
1296 }
1297 }
1298
1299 /* C++: If it was not found as a data field, then try to return it
1300 as a pointer to a method. */
1301
1302 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1303 {
1304 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1305 {
1306 is_a_field_of_this->type = type;
1307 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1308 return 1;
1309 }
1310 }
1311
1312 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1313 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1314 return 1;
1315
1316 return 0;
1317 }
1318
1319 /* Behave like lookup_symbol except that NAME is the natural name
1320 (e.g., demangled name) of the symbol that we're looking for. */
1321
1322 static struct symbol *
1323 lookup_symbol_aux (const char *name, const struct block *block,
1324 const domain_enum domain, enum language language,
1325 struct field_of_this_result *is_a_field_of_this)
1326 {
1327 struct symbol *sym;
1328 const struct language_defn *langdef;
1329
1330 /* Make sure we do something sensible with is_a_field_of_this, since
1331 the callers that set this parameter to some non-null value will
1332 certainly use it later. If we don't set it, the contents of
1333 is_a_field_of_this are undefined. */
1334 if (is_a_field_of_this != NULL)
1335 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1336
1337 /* Search specified block and its superiors. Don't search
1338 STATIC_BLOCK or GLOBAL_BLOCK. */
1339
1340 sym = lookup_symbol_aux_local (name, block, domain, language);
1341 if (sym != NULL)
1342 return sym;
1343
1344 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1345 check to see if NAME is a field of `this'. */
1346
1347 langdef = language_def (language);
1348
1349 /* Don't do this check if we are searching for a struct. It will
1350 not be found by check_field, but will be found by other
1351 means. */
1352 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1353 {
1354 struct symbol *sym = lookup_language_this (langdef, block);
1355
1356 if (sym)
1357 {
1358 struct type *t = sym->type;
1359
1360 /* I'm not really sure that type of this can ever
1361 be typedefed; just be safe. */
1362 CHECK_TYPEDEF (t);
1363 if (TYPE_CODE (t) == TYPE_CODE_PTR
1364 || TYPE_CODE (t) == TYPE_CODE_REF)
1365 t = TYPE_TARGET_TYPE (t);
1366
1367 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1368 && TYPE_CODE (t) != TYPE_CODE_UNION)
1369 error (_("Internal error: `%s' is not an aggregate"),
1370 langdef->la_name_of_this);
1371
1372 if (check_field (t, name, is_a_field_of_this))
1373 return NULL;
1374 }
1375 }
1376
1377 /* Now do whatever is appropriate for LANGUAGE to look
1378 up static and global variables. */
1379
1380 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1381 if (sym != NULL)
1382 return sym;
1383
1384 /* Now search all static file-level symbols. Not strictly correct,
1385 but more useful than an error. */
1386
1387 return lookup_static_symbol_aux (name, domain);
1388 }
1389
1390 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1391 first, then check the psymtabs. If a psymtab indicates the existence of the
1392 desired name as a file-level static, then do psymtab-to-symtab conversion on
1393 the fly and return the found symbol. */
1394
1395 struct symbol *
1396 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1397 {
1398 struct objfile *objfile;
1399 struct symbol *sym;
1400
1401 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1402 if (sym != NULL)
1403 return sym;
1404
1405 ALL_OBJFILES (objfile)
1406 {
1407 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1408 if (sym != NULL)
1409 return sym;
1410 }
1411
1412 return NULL;
1413 }
1414
1415 /* Check to see if the symbol is defined in BLOCK or its superiors.
1416 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1417
1418 static struct symbol *
1419 lookup_symbol_aux_local (const char *name, const struct block *block,
1420 const domain_enum domain,
1421 enum language language)
1422 {
1423 struct symbol *sym;
1424 const struct block *static_block = block_static_block (block);
1425 const char *scope = block_scope (block);
1426
1427 /* Check if either no block is specified or it's a global block. */
1428
1429 if (static_block == NULL)
1430 return NULL;
1431
1432 while (block != static_block)
1433 {
1434 sym = lookup_symbol_aux_block (name, block, domain);
1435 if (sym != NULL)
1436 return sym;
1437
1438 if (language == language_cplus || language == language_fortran)
1439 {
1440 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1441 domain);
1442 if (sym != NULL)
1443 return sym;
1444 }
1445
1446 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1447 break;
1448 block = BLOCK_SUPERBLOCK (block);
1449 }
1450
1451 /* We've reached the edge of the function without finding a result. */
1452
1453 return NULL;
1454 }
1455
1456 /* Look up OBJFILE to BLOCK. */
1457
1458 struct objfile *
1459 lookup_objfile_from_block (const struct block *block)
1460 {
1461 struct objfile *obj;
1462 struct symtab *s;
1463
1464 if (block == NULL)
1465 return NULL;
1466
1467 block = block_global_block (block);
1468 /* Go through SYMTABS. */
1469 ALL_SYMTABS (obj, s)
1470 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1471 {
1472 if (obj->separate_debug_objfile_backlink)
1473 obj = obj->separate_debug_objfile_backlink;
1474
1475 return obj;
1476 }
1477
1478 return NULL;
1479 }
1480
1481 /* Look up a symbol in a block; if found, fixup the symbol, and set
1482 block_found appropriately. */
1483
1484 struct symbol *
1485 lookup_symbol_aux_block (const char *name, const struct block *block,
1486 const domain_enum domain)
1487 {
1488 struct symbol *sym;
1489
1490 sym = lookup_block_symbol (block, name, domain);
1491 if (sym)
1492 {
1493 block_found = block;
1494 return fixup_symbol_section (sym, NULL);
1495 }
1496
1497 return NULL;
1498 }
1499
1500 /* Check all global symbols in OBJFILE in symtabs and
1501 psymtabs. */
1502
1503 struct symbol *
1504 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1505 const char *name,
1506 const domain_enum domain)
1507 {
1508 const struct objfile *objfile;
1509 struct symbol *sym;
1510 struct blockvector *bv;
1511 const struct block *block;
1512 struct symtab *s;
1513
1514 for (objfile = main_objfile;
1515 objfile;
1516 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1517 {
1518 /* Go through symtabs. */
1519 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1520 {
1521 bv = BLOCKVECTOR (s);
1522 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1523 sym = lookup_block_symbol (block, name, domain);
1524 if (sym)
1525 {
1526 block_found = block;
1527 return fixup_symbol_section (sym, (struct objfile *)objfile);
1528 }
1529 }
1530
1531 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1532 name, domain);
1533 if (sym)
1534 return sym;
1535 }
1536
1537 return NULL;
1538 }
1539
1540 /* Check to see if the symbol is defined in one of the OBJFILE's
1541 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1542 depending on whether or not we want to search global symbols or
1543 static symbols. */
1544
1545 static struct symbol *
1546 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1547 const char *name, const domain_enum domain)
1548 {
1549 struct symbol *sym = NULL;
1550 struct blockvector *bv;
1551 const struct block *block;
1552 struct symtab *s;
1553
1554 if (objfile->sf)
1555 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1556 name, domain);
1557
1558 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1559 {
1560 bv = BLOCKVECTOR (s);
1561 block = BLOCKVECTOR_BLOCK (bv, block_index);
1562 sym = lookup_block_symbol (block, name, domain);
1563 if (sym)
1564 {
1565 block_found = block;
1566 return fixup_symbol_section (sym, objfile);
1567 }
1568 }
1569
1570 return NULL;
1571 }
1572
1573 /* Same as lookup_symbol_aux_objfile, except that it searches all
1574 objfiles. Return the first match found. */
1575
1576 static struct symbol *
1577 lookup_symbol_aux_symtabs (int block_index, const char *name,
1578 const domain_enum domain)
1579 {
1580 struct symbol *sym;
1581 struct objfile *objfile;
1582
1583 ALL_OBJFILES (objfile)
1584 {
1585 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1586 if (sym)
1587 return sym;
1588 }
1589
1590 return NULL;
1591 }
1592
1593 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1594 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1595 and all related objfiles. */
1596
1597 static struct symbol *
1598 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1599 const char *linkage_name,
1600 domain_enum domain)
1601 {
1602 enum language lang = current_language->la_language;
1603 const char *modified_name;
1604 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1605 &modified_name);
1606 struct objfile *main_objfile, *cur_objfile;
1607
1608 if (objfile->separate_debug_objfile_backlink)
1609 main_objfile = objfile->separate_debug_objfile_backlink;
1610 else
1611 main_objfile = objfile;
1612
1613 for (cur_objfile = main_objfile;
1614 cur_objfile;
1615 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1616 {
1617 struct symbol *sym;
1618
1619 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1620 modified_name, domain);
1621 if (sym == NULL)
1622 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1623 modified_name, domain);
1624 if (sym != NULL)
1625 {
1626 do_cleanups (cleanup);
1627 return sym;
1628 }
1629 }
1630
1631 do_cleanups (cleanup);
1632 return NULL;
1633 }
1634
1635 /* A helper function for lookup_symbol_aux that interfaces with the
1636 "quick" symbol table functions. */
1637
1638 static struct symbol *
1639 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1640 const char *name, const domain_enum domain)
1641 {
1642 struct symtab *symtab;
1643 struct blockvector *bv;
1644 const struct block *block;
1645 struct symbol *sym;
1646
1647 if (!objfile->sf)
1648 return NULL;
1649 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1650 if (!symtab)
1651 return NULL;
1652
1653 bv = BLOCKVECTOR (symtab);
1654 block = BLOCKVECTOR_BLOCK (bv, kind);
1655 sym = lookup_block_symbol (block, name, domain);
1656 if (!sym)
1657 {
1658 /* This shouldn't be necessary, but as a last resort try
1659 looking in the statics even though the psymtab claimed
1660 the symbol was global, or vice-versa. It's possible
1661 that the psymtab gets it wrong in some cases. */
1662
1663 /* FIXME: carlton/2002-09-30: Should we really do that?
1664 If that happens, isn't it likely to be a GDB error, in
1665 which case we should fix the GDB error rather than
1666 silently dealing with it here? So I'd vote for
1667 removing the check for the symbol in the other
1668 block. */
1669 block = BLOCKVECTOR_BLOCK (bv,
1670 kind == GLOBAL_BLOCK ?
1671 STATIC_BLOCK : GLOBAL_BLOCK);
1672 sym = lookup_block_symbol (block, name, domain);
1673 if (!sym)
1674 error (_("\
1675 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1676 %s may be an inlined function, or may be a template function\n\
1677 (if a template, try specifying an instantiation: %s<type>)."),
1678 kind == GLOBAL_BLOCK ? "global" : "static",
1679 name, symtab->filename, name, name);
1680 }
1681 return fixup_symbol_section (sym, objfile);
1682 }
1683
1684 /* A default version of lookup_symbol_nonlocal for use by languages
1685 that can't think of anything better to do. This implements the C
1686 lookup rules. */
1687
1688 struct symbol *
1689 basic_lookup_symbol_nonlocal (const char *name,
1690 const struct block *block,
1691 const domain_enum domain)
1692 {
1693 struct symbol *sym;
1694
1695 /* NOTE: carlton/2003-05-19: The comments below were written when
1696 this (or what turned into this) was part of lookup_symbol_aux;
1697 I'm much less worried about these questions now, since these
1698 decisions have turned out well, but I leave these comments here
1699 for posterity. */
1700
1701 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1702 not it would be appropriate to search the current global block
1703 here as well. (That's what this code used to do before the
1704 is_a_field_of_this check was moved up.) On the one hand, it's
1705 redundant with the lookup_symbol_aux_symtabs search that happens
1706 next. On the other hand, if decode_line_1 is passed an argument
1707 like filename:var, then the user presumably wants 'var' to be
1708 searched for in filename. On the third hand, there shouldn't be
1709 multiple global variables all of which are named 'var', and it's
1710 not like decode_line_1 has ever restricted its search to only
1711 global variables in a single filename. All in all, only
1712 searching the static block here seems best: it's correct and it's
1713 cleanest. */
1714
1715 /* NOTE: carlton/2002-12-05: There's also a possible performance
1716 issue here: if you usually search for global symbols in the
1717 current file, then it would be slightly better to search the
1718 current global block before searching all the symtabs. But there
1719 are other factors that have a much greater effect on performance
1720 than that one, so I don't think we should worry about that for
1721 now. */
1722
1723 sym = lookup_symbol_static (name, block, domain);
1724 if (sym != NULL)
1725 return sym;
1726
1727 return lookup_symbol_global (name, block, domain);
1728 }
1729
1730 /* Lookup a symbol in the static block associated to BLOCK, if there
1731 is one; do nothing if BLOCK is NULL or a global block. */
1732
1733 struct symbol *
1734 lookup_symbol_static (const char *name,
1735 const struct block *block,
1736 const domain_enum domain)
1737 {
1738 const struct block *static_block = block_static_block (block);
1739
1740 if (static_block != NULL)
1741 return lookup_symbol_aux_block (name, static_block, domain);
1742 else
1743 return NULL;
1744 }
1745
1746 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1747
1748 struct global_sym_lookup_data
1749 {
1750 /* The name of the symbol we are searching for. */
1751 const char *name;
1752
1753 /* The domain to use for our search. */
1754 domain_enum domain;
1755
1756 /* The field where the callback should store the symbol if found.
1757 It should be initialized to NULL before the search is started. */
1758 struct symbol *result;
1759 };
1760
1761 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1762 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1763 OBJFILE. The arguments for the search are passed via CB_DATA,
1764 which in reality is a pointer to struct global_sym_lookup_data. */
1765
1766 static int
1767 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1768 void *cb_data)
1769 {
1770 struct global_sym_lookup_data *data =
1771 (struct global_sym_lookup_data *) cb_data;
1772
1773 gdb_assert (data->result == NULL);
1774
1775 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1776 data->name, data->domain);
1777 if (data->result == NULL)
1778 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1779 data->name, data->domain);
1780
1781 /* If we found a match, tell the iterator to stop. Otherwise,
1782 keep going. */
1783 return (data->result != NULL);
1784 }
1785
1786 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1787 necessary). */
1788
1789 struct symbol *
1790 lookup_symbol_global (const char *name,
1791 const struct block *block,
1792 const domain_enum domain)
1793 {
1794 struct symbol *sym = NULL;
1795 struct objfile *objfile = NULL;
1796 struct global_sym_lookup_data lookup_data;
1797
1798 /* Call library-specific lookup procedure. */
1799 objfile = lookup_objfile_from_block (block);
1800 if (objfile != NULL)
1801 sym = solib_global_lookup (objfile, name, domain);
1802 if (sym != NULL)
1803 return sym;
1804
1805 memset (&lookup_data, 0, sizeof (lookup_data));
1806 lookup_data.name = name;
1807 lookup_data.domain = domain;
1808 gdbarch_iterate_over_objfiles_in_search_order
1809 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1810 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1811
1812 return lookup_data.result;
1813 }
1814
1815 int
1816 symbol_matches_domain (enum language symbol_language,
1817 domain_enum symbol_domain,
1818 domain_enum domain)
1819 {
1820 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1821 A Java class declaration also defines a typedef for the class.
1822 Similarly, any Ada type declaration implicitly defines a typedef. */
1823 if (symbol_language == language_cplus
1824 || symbol_language == language_d
1825 || symbol_language == language_java
1826 || symbol_language == language_ada)
1827 {
1828 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1829 && symbol_domain == STRUCT_DOMAIN)
1830 return 1;
1831 }
1832 /* For all other languages, strict match is required. */
1833 return (symbol_domain == domain);
1834 }
1835
1836 /* Look up a type named NAME in the struct_domain. The type returned
1837 must not be opaque -- i.e., must have at least one field
1838 defined. */
1839
1840 struct type *
1841 lookup_transparent_type (const char *name)
1842 {
1843 return current_language->la_lookup_transparent_type (name);
1844 }
1845
1846 /* A helper for basic_lookup_transparent_type that interfaces with the
1847 "quick" symbol table functions. */
1848
1849 static struct type *
1850 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1851 const char *name)
1852 {
1853 struct symtab *symtab;
1854 struct blockvector *bv;
1855 struct block *block;
1856 struct symbol *sym;
1857
1858 if (!objfile->sf)
1859 return NULL;
1860 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1861 if (!symtab)
1862 return NULL;
1863
1864 bv = BLOCKVECTOR (symtab);
1865 block = BLOCKVECTOR_BLOCK (bv, kind);
1866 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1867 if (!sym)
1868 {
1869 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1870
1871 /* This shouldn't be necessary, but as a last resort
1872 * try looking in the 'other kind' even though the psymtab
1873 * claimed the symbol was one thing. It's possible that
1874 * the psymtab gets it wrong in some cases.
1875 */
1876 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1877 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1878 if (!sym)
1879 /* FIXME; error is wrong in one case. */
1880 error (_("\
1881 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1882 %s may be an inlined function, or may be a template function\n\
1883 (if a template, try specifying an instantiation: %s<type>)."),
1884 name, symtab->filename, name, name);
1885 }
1886 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1887 return SYMBOL_TYPE (sym);
1888
1889 return NULL;
1890 }
1891
1892 /* The standard implementation of lookup_transparent_type. This code
1893 was modeled on lookup_symbol -- the parts not relevant to looking
1894 up types were just left out. In particular it's assumed here that
1895 types are available in struct_domain and only at file-static or
1896 global blocks. */
1897
1898 struct type *
1899 basic_lookup_transparent_type (const char *name)
1900 {
1901 struct symbol *sym;
1902 struct symtab *s = NULL;
1903 struct blockvector *bv;
1904 struct objfile *objfile;
1905 struct block *block;
1906 struct type *t;
1907
1908 /* Now search all the global symbols. Do the symtab's first, then
1909 check the psymtab's. If a psymtab indicates the existence
1910 of the desired name as a global, then do psymtab-to-symtab
1911 conversion on the fly and return the found symbol. */
1912
1913 ALL_OBJFILES (objfile)
1914 {
1915 if (objfile->sf)
1916 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1917 GLOBAL_BLOCK,
1918 name, STRUCT_DOMAIN);
1919
1920 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1921 {
1922 bv = BLOCKVECTOR (s);
1923 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1924 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1925 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1926 {
1927 return SYMBOL_TYPE (sym);
1928 }
1929 }
1930 }
1931
1932 ALL_OBJFILES (objfile)
1933 {
1934 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1935 if (t)
1936 return t;
1937 }
1938
1939 /* Now search the static file-level symbols.
1940 Not strictly correct, but more useful than an error.
1941 Do the symtab's first, then
1942 check the psymtab's. If a psymtab indicates the existence
1943 of the desired name as a file-level static, then do psymtab-to-symtab
1944 conversion on the fly and return the found symbol. */
1945
1946 ALL_OBJFILES (objfile)
1947 {
1948 if (objfile->sf)
1949 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1950 name, STRUCT_DOMAIN);
1951
1952 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1953 {
1954 bv = BLOCKVECTOR (s);
1955 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1956 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1957 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1958 {
1959 return SYMBOL_TYPE (sym);
1960 }
1961 }
1962 }
1963
1964 ALL_OBJFILES (objfile)
1965 {
1966 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1967 if (t)
1968 return t;
1969 }
1970
1971 return (struct type *) 0;
1972 }
1973
1974 /* Find the name of the file containing main(). */
1975 /* FIXME: What about languages without main() or specially linked
1976 executables that have no main() ? */
1977
1978 const char *
1979 find_main_filename (void)
1980 {
1981 struct objfile *objfile;
1982 char *name = main_name ();
1983
1984 ALL_OBJFILES (objfile)
1985 {
1986 const char *result;
1987
1988 if (!objfile->sf)
1989 continue;
1990 result = objfile->sf->qf->find_symbol_file (objfile, name);
1991 if (result)
1992 return result;
1993 }
1994 return (NULL);
1995 }
1996
1997 /* Search BLOCK for symbol NAME in DOMAIN.
1998
1999 Note that if NAME is the demangled form of a C++ symbol, we will fail
2000 to find a match during the binary search of the non-encoded names, but
2001 for now we don't worry about the slight inefficiency of looking for
2002 a match we'll never find, since it will go pretty quick. Once the
2003 binary search terminates, we drop through and do a straight linear
2004 search on the symbols. Each symbol which is marked as being a ObjC/C++
2005 symbol (language_cplus or language_objc set) has both the encoded and
2006 non-encoded names tested for a match. */
2007
2008 struct symbol *
2009 lookup_block_symbol (const struct block *block, const char *name,
2010 const domain_enum domain)
2011 {
2012 struct block_iterator iter;
2013 struct symbol *sym;
2014
2015 if (!BLOCK_FUNCTION (block))
2016 {
2017 for (sym = block_iter_name_first (block, name, &iter);
2018 sym != NULL;
2019 sym = block_iter_name_next (name, &iter))
2020 {
2021 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2022 SYMBOL_DOMAIN (sym), domain))
2023 return sym;
2024 }
2025 return NULL;
2026 }
2027 else
2028 {
2029 /* Note that parameter symbols do not always show up last in the
2030 list; this loop makes sure to take anything else other than
2031 parameter symbols first; it only uses parameter symbols as a
2032 last resort. Note that this only takes up extra computation
2033 time on a match. */
2034
2035 struct symbol *sym_found = NULL;
2036
2037 for (sym = block_iter_name_first (block, name, &iter);
2038 sym != NULL;
2039 sym = block_iter_name_next (name, &iter))
2040 {
2041 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2042 SYMBOL_DOMAIN (sym), domain))
2043 {
2044 sym_found = sym;
2045 if (!SYMBOL_IS_ARGUMENT (sym))
2046 {
2047 break;
2048 }
2049 }
2050 }
2051 return (sym_found); /* Will be NULL if not found. */
2052 }
2053 }
2054
2055 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2056 BLOCK.
2057
2058 For each symbol that matches, CALLBACK is called. The symbol and
2059 DATA are passed to the callback.
2060
2061 If CALLBACK returns zero, the iteration ends. Otherwise, the
2062 search continues. This function iterates upward through blocks.
2063 When the outermost block has been finished, the function
2064 returns. */
2065
2066 void
2067 iterate_over_symbols (const struct block *block, const char *name,
2068 const domain_enum domain,
2069 symbol_found_callback_ftype *callback,
2070 void *data)
2071 {
2072 while (block)
2073 {
2074 struct block_iterator iter;
2075 struct symbol *sym;
2076
2077 for (sym = block_iter_name_first (block, name, &iter);
2078 sym != NULL;
2079 sym = block_iter_name_next (name, &iter))
2080 {
2081 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2082 SYMBOL_DOMAIN (sym), domain))
2083 {
2084 if (!callback (sym, data))
2085 return;
2086 }
2087 }
2088
2089 block = BLOCK_SUPERBLOCK (block);
2090 }
2091 }
2092
2093 /* Find the symtab associated with PC and SECTION. Look through the
2094 psymtabs and read in another symtab if necessary. */
2095
2096 struct symtab *
2097 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2098 {
2099 struct block *b;
2100 struct blockvector *bv;
2101 struct symtab *s = NULL;
2102 struct symtab *best_s = NULL;
2103 struct objfile *objfile;
2104 struct program_space *pspace;
2105 CORE_ADDR distance = 0;
2106 struct minimal_symbol *msymbol;
2107
2108 pspace = current_program_space;
2109
2110 /* If we know that this is not a text address, return failure. This is
2111 necessary because we loop based on the block's high and low code
2112 addresses, which do not include the data ranges, and because
2113 we call find_pc_sect_psymtab which has a similar restriction based
2114 on the partial_symtab's texthigh and textlow. */
2115 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2116 if (msymbol
2117 && (MSYMBOL_TYPE (msymbol) == mst_data
2118 || MSYMBOL_TYPE (msymbol) == mst_bss
2119 || MSYMBOL_TYPE (msymbol) == mst_abs
2120 || MSYMBOL_TYPE (msymbol) == mst_file_data
2121 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2122 return NULL;
2123
2124 /* Search all symtabs for the one whose file contains our address, and which
2125 is the smallest of all the ones containing the address. This is designed
2126 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2127 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2128 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2129
2130 This happens for native ecoff format, where code from included files
2131 gets its own symtab. The symtab for the included file should have
2132 been read in already via the dependency mechanism.
2133 It might be swifter to create several symtabs with the same name
2134 like xcoff does (I'm not sure).
2135
2136 It also happens for objfiles that have their functions reordered.
2137 For these, the symtab we are looking for is not necessarily read in. */
2138
2139 ALL_PRIMARY_SYMTABS (objfile, s)
2140 {
2141 bv = BLOCKVECTOR (s);
2142 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2143
2144 if (BLOCK_START (b) <= pc
2145 && BLOCK_END (b) > pc
2146 && (distance == 0
2147 || BLOCK_END (b) - BLOCK_START (b) < distance))
2148 {
2149 /* For an objfile that has its functions reordered,
2150 find_pc_psymtab will find the proper partial symbol table
2151 and we simply return its corresponding symtab. */
2152 /* In order to better support objfiles that contain both
2153 stabs and coff debugging info, we continue on if a psymtab
2154 can't be found. */
2155 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2156 {
2157 struct symtab *result;
2158
2159 result
2160 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2161 msymbol,
2162 pc, section,
2163 0);
2164 if (result)
2165 return result;
2166 }
2167 if (section != 0)
2168 {
2169 struct block_iterator iter;
2170 struct symbol *sym = NULL;
2171
2172 ALL_BLOCK_SYMBOLS (b, iter, sym)
2173 {
2174 fixup_symbol_section (sym, objfile);
2175 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2176 break;
2177 }
2178 if (sym == NULL)
2179 continue; /* No symbol in this symtab matches
2180 section. */
2181 }
2182 distance = BLOCK_END (b) - BLOCK_START (b);
2183 best_s = s;
2184 }
2185 }
2186
2187 if (best_s != NULL)
2188 return (best_s);
2189
2190 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2191
2192 ALL_OBJFILES (objfile)
2193 {
2194 struct symtab *result;
2195
2196 if (!objfile->sf)
2197 continue;
2198 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2199 msymbol,
2200 pc, section,
2201 1);
2202 if (result)
2203 return result;
2204 }
2205
2206 return NULL;
2207 }
2208
2209 /* Find the symtab associated with PC. Look through the psymtabs and read
2210 in another symtab if necessary. Backward compatibility, no section. */
2211
2212 struct symtab *
2213 find_pc_symtab (CORE_ADDR pc)
2214 {
2215 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2216 }
2217 \f
2218
2219 /* Find the source file and line number for a given PC value and SECTION.
2220 Return a structure containing a symtab pointer, a line number,
2221 and a pc range for the entire source line.
2222 The value's .pc field is NOT the specified pc.
2223 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2224 use the line that ends there. Otherwise, in that case, the line
2225 that begins there is used. */
2226
2227 /* The big complication here is that a line may start in one file, and end just
2228 before the start of another file. This usually occurs when you #include
2229 code in the middle of a subroutine. To properly find the end of a line's PC
2230 range, we must search all symtabs associated with this compilation unit, and
2231 find the one whose first PC is closer than that of the next line in this
2232 symtab. */
2233
2234 /* If it's worth the effort, we could be using a binary search. */
2235
2236 struct symtab_and_line
2237 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2238 {
2239 struct symtab *s;
2240 struct linetable *l;
2241 int len;
2242 int i;
2243 struct linetable_entry *item;
2244 struct symtab_and_line val;
2245 struct blockvector *bv;
2246 struct minimal_symbol *msymbol;
2247 struct minimal_symbol *mfunsym;
2248 struct objfile *objfile;
2249
2250 /* Info on best line seen so far, and where it starts, and its file. */
2251
2252 struct linetable_entry *best = NULL;
2253 CORE_ADDR best_end = 0;
2254 struct symtab *best_symtab = 0;
2255
2256 /* Store here the first line number
2257 of a file which contains the line at the smallest pc after PC.
2258 If we don't find a line whose range contains PC,
2259 we will use a line one less than this,
2260 with a range from the start of that file to the first line's pc. */
2261 struct linetable_entry *alt = NULL;
2262 struct symtab *alt_symtab = 0;
2263
2264 /* Info on best line seen in this file. */
2265
2266 struct linetable_entry *prev;
2267
2268 /* If this pc is not from the current frame,
2269 it is the address of the end of a call instruction.
2270 Quite likely that is the start of the following statement.
2271 But what we want is the statement containing the instruction.
2272 Fudge the pc to make sure we get that. */
2273
2274 init_sal (&val); /* initialize to zeroes */
2275
2276 val.pspace = current_program_space;
2277
2278 /* It's tempting to assume that, if we can't find debugging info for
2279 any function enclosing PC, that we shouldn't search for line
2280 number info, either. However, GAS can emit line number info for
2281 assembly files --- very helpful when debugging hand-written
2282 assembly code. In such a case, we'd have no debug info for the
2283 function, but we would have line info. */
2284
2285 if (notcurrent)
2286 pc -= 1;
2287
2288 /* elz: added this because this function returned the wrong
2289 information if the pc belongs to a stub (import/export)
2290 to call a shlib function. This stub would be anywhere between
2291 two functions in the target, and the line info was erroneously
2292 taken to be the one of the line before the pc. */
2293
2294 /* RT: Further explanation:
2295
2296 * We have stubs (trampolines) inserted between procedures.
2297 *
2298 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2299 * exists in the main image.
2300 *
2301 * In the minimal symbol table, we have a bunch of symbols
2302 * sorted by start address. The stubs are marked as "trampoline",
2303 * the others appear as text. E.g.:
2304 *
2305 * Minimal symbol table for main image
2306 * main: code for main (text symbol)
2307 * shr1: stub (trampoline symbol)
2308 * foo: code for foo (text symbol)
2309 * ...
2310 * Minimal symbol table for "shr1" image:
2311 * ...
2312 * shr1: code for shr1 (text symbol)
2313 * ...
2314 *
2315 * So the code below is trying to detect if we are in the stub
2316 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2317 * and if found, do the symbolization from the real-code address
2318 * rather than the stub address.
2319 *
2320 * Assumptions being made about the minimal symbol table:
2321 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2322 * if we're really in the trampoline.s If we're beyond it (say
2323 * we're in "foo" in the above example), it'll have a closer
2324 * symbol (the "foo" text symbol for example) and will not
2325 * return the trampoline.
2326 * 2. lookup_minimal_symbol_text() will find a real text symbol
2327 * corresponding to the trampoline, and whose address will
2328 * be different than the trampoline address. I put in a sanity
2329 * check for the address being the same, to avoid an
2330 * infinite recursion.
2331 */
2332 msymbol = lookup_minimal_symbol_by_pc (pc);
2333 if (msymbol != NULL)
2334 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2335 {
2336 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2337 NULL);
2338 if (mfunsym == NULL)
2339 /* I eliminated this warning since it is coming out
2340 * in the following situation:
2341 * gdb shmain // test program with shared libraries
2342 * (gdb) break shr1 // function in shared lib
2343 * Warning: In stub for ...
2344 * In the above situation, the shared lib is not loaded yet,
2345 * so of course we can't find the real func/line info,
2346 * but the "break" still works, and the warning is annoying.
2347 * So I commented out the warning. RT */
2348 /* warning ("In stub for %s; unable to find real function/line info",
2349 SYMBOL_LINKAGE_NAME (msymbol)); */
2350 ;
2351 /* fall through */
2352 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2353 == SYMBOL_VALUE_ADDRESS (msymbol))
2354 /* Avoid infinite recursion */
2355 /* See above comment about why warning is commented out. */
2356 /* warning ("In stub for %s; unable to find real function/line info",
2357 SYMBOL_LINKAGE_NAME (msymbol)); */
2358 ;
2359 /* fall through */
2360 else
2361 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2362 }
2363
2364
2365 s = find_pc_sect_symtab (pc, section);
2366 if (!s)
2367 {
2368 /* If no symbol information, return previous pc. */
2369 if (notcurrent)
2370 pc++;
2371 val.pc = pc;
2372 return val;
2373 }
2374
2375 bv = BLOCKVECTOR (s);
2376 objfile = s->objfile;
2377
2378 /* Look at all the symtabs that share this blockvector.
2379 They all have the same apriori range, that we found was right;
2380 but they have different line tables. */
2381
2382 ALL_OBJFILE_SYMTABS (objfile, s)
2383 {
2384 if (BLOCKVECTOR (s) != bv)
2385 continue;
2386
2387 /* Find the best line in this symtab. */
2388 l = LINETABLE (s);
2389 if (!l)
2390 continue;
2391 len = l->nitems;
2392 if (len <= 0)
2393 {
2394 /* I think len can be zero if the symtab lacks line numbers
2395 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2396 I'm not sure which, and maybe it depends on the symbol
2397 reader). */
2398 continue;
2399 }
2400
2401 prev = NULL;
2402 item = l->item; /* Get first line info. */
2403
2404 /* Is this file's first line closer than the first lines of other files?
2405 If so, record this file, and its first line, as best alternate. */
2406 if (item->pc > pc && (!alt || item->pc < alt->pc))
2407 {
2408 alt = item;
2409 alt_symtab = s;
2410 }
2411
2412 for (i = 0; i < len; i++, item++)
2413 {
2414 /* Leave prev pointing to the linetable entry for the last line
2415 that started at or before PC. */
2416 if (item->pc > pc)
2417 break;
2418
2419 prev = item;
2420 }
2421
2422 /* At this point, prev points at the line whose start addr is <= pc, and
2423 item points at the next line. If we ran off the end of the linetable
2424 (pc >= start of the last line), then prev == item. If pc < start of
2425 the first line, prev will not be set. */
2426
2427 /* Is this file's best line closer than the best in the other files?
2428 If so, record this file, and its best line, as best so far. Don't
2429 save prev if it represents the end of a function (i.e. line number
2430 0) instead of a real line. */
2431
2432 if (prev && prev->line && (!best || prev->pc > best->pc))
2433 {
2434 best = prev;
2435 best_symtab = s;
2436
2437 /* Discard BEST_END if it's before the PC of the current BEST. */
2438 if (best_end <= best->pc)
2439 best_end = 0;
2440 }
2441
2442 /* If another line (denoted by ITEM) is in the linetable and its
2443 PC is after BEST's PC, but before the current BEST_END, then
2444 use ITEM's PC as the new best_end. */
2445 if (best && i < len && item->pc > best->pc
2446 && (best_end == 0 || best_end > item->pc))
2447 best_end = item->pc;
2448 }
2449
2450 if (!best_symtab)
2451 {
2452 /* If we didn't find any line number info, just return zeros.
2453 We used to return alt->line - 1 here, but that could be
2454 anywhere; if we don't have line number info for this PC,
2455 don't make some up. */
2456 val.pc = pc;
2457 }
2458 else if (best->line == 0)
2459 {
2460 /* If our best fit is in a range of PC's for which no line
2461 number info is available (line number is zero) then we didn't
2462 find any valid line information. */
2463 val.pc = pc;
2464 }
2465 else
2466 {
2467 val.symtab = best_symtab;
2468 val.line = best->line;
2469 val.pc = best->pc;
2470 if (best_end && (!alt || best_end < alt->pc))
2471 val.end = best_end;
2472 else if (alt)
2473 val.end = alt->pc;
2474 else
2475 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2476 }
2477 val.section = section;
2478 return val;
2479 }
2480
2481 /* Backward compatibility (no section). */
2482
2483 struct symtab_and_line
2484 find_pc_line (CORE_ADDR pc, int notcurrent)
2485 {
2486 struct obj_section *section;
2487
2488 section = find_pc_overlay (pc);
2489 if (pc_in_unmapped_range (pc, section))
2490 pc = overlay_mapped_address (pc, section);
2491 return find_pc_sect_line (pc, section, notcurrent);
2492 }
2493 \f
2494 /* Find line number LINE in any symtab whose name is the same as
2495 SYMTAB.
2496
2497 If found, return the symtab that contains the linetable in which it was
2498 found, set *INDEX to the index in the linetable of the best entry
2499 found, and set *EXACT_MATCH nonzero if the value returned is an
2500 exact match.
2501
2502 If not found, return NULL. */
2503
2504 struct symtab *
2505 find_line_symtab (struct symtab *symtab, int line,
2506 int *index, int *exact_match)
2507 {
2508 int exact = 0; /* Initialized here to avoid a compiler warning. */
2509
2510 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2511 so far seen. */
2512
2513 int best_index;
2514 struct linetable *best_linetable;
2515 struct symtab *best_symtab;
2516
2517 /* First try looking it up in the given symtab. */
2518 best_linetable = LINETABLE (symtab);
2519 best_symtab = symtab;
2520 best_index = find_line_common (best_linetable, line, &exact, 0);
2521 if (best_index < 0 || !exact)
2522 {
2523 /* Didn't find an exact match. So we better keep looking for
2524 another symtab with the same name. In the case of xcoff,
2525 multiple csects for one source file (produced by IBM's FORTRAN
2526 compiler) produce multiple symtabs (this is unavoidable
2527 assuming csects can be at arbitrary places in memory and that
2528 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2529
2530 /* BEST is the smallest linenumber > LINE so far seen,
2531 or 0 if none has been seen so far.
2532 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2533 int best;
2534
2535 struct objfile *objfile;
2536 struct symtab *s;
2537
2538 if (best_index >= 0)
2539 best = best_linetable->item[best_index].line;
2540 else
2541 best = 0;
2542
2543 ALL_OBJFILES (objfile)
2544 {
2545 if (objfile->sf)
2546 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2547 symtab->filename);
2548 }
2549
2550 ALL_SYMTABS (objfile, s)
2551 {
2552 struct linetable *l;
2553 int ind;
2554
2555 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2556 continue;
2557 if (FILENAME_CMP (symtab_to_fullname (symtab),
2558 symtab_to_fullname (s)) != 0)
2559 continue;
2560 l = LINETABLE (s);
2561 ind = find_line_common (l, line, &exact, 0);
2562 if (ind >= 0)
2563 {
2564 if (exact)
2565 {
2566 best_index = ind;
2567 best_linetable = l;
2568 best_symtab = s;
2569 goto done;
2570 }
2571 if (best == 0 || l->item[ind].line < best)
2572 {
2573 best = l->item[ind].line;
2574 best_index = ind;
2575 best_linetable = l;
2576 best_symtab = s;
2577 }
2578 }
2579 }
2580 }
2581 done:
2582 if (best_index < 0)
2583 return NULL;
2584
2585 if (index)
2586 *index = best_index;
2587 if (exact_match)
2588 *exact_match = exact;
2589
2590 return best_symtab;
2591 }
2592
2593 /* Given SYMTAB, returns all the PCs function in the symtab that
2594 exactly match LINE. Returns NULL if there are no exact matches,
2595 but updates BEST_ITEM in this case. */
2596
2597 VEC (CORE_ADDR) *
2598 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2599 struct linetable_entry **best_item)
2600 {
2601 int start = 0, ix;
2602 struct symbol *previous_function = NULL;
2603 VEC (CORE_ADDR) *result = NULL;
2604
2605 /* First, collect all the PCs that are at this line. */
2606 while (1)
2607 {
2608 int was_exact;
2609 int idx;
2610
2611 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2612 if (idx < 0)
2613 break;
2614
2615 if (!was_exact)
2616 {
2617 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2618
2619 if (*best_item == NULL || item->line < (*best_item)->line)
2620 *best_item = item;
2621
2622 break;
2623 }
2624
2625 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2626 start = idx + 1;
2627 }
2628
2629 return result;
2630 }
2631
2632 \f
2633 /* Set the PC value for a given source file and line number and return true.
2634 Returns zero for invalid line number (and sets the PC to 0).
2635 The source file is specified with a struct symtab. */
2636
2637 int
2638 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2639 {
2640 struct linetable *l;
2641 int ind;
2642
2643 *pc = 0;
2644 if (symtab == 0)
2645 return 0;
2646
2647 symtab = find_line_symtab (symtab, line, &ind, NULL);
2648 if (symtab != NULL)
2649 {
2650 l = LINETABLE (symtab);
2651 *pc = l->item[ind].pc;
2652 return 1;
2653 }
2654 else
2655 return 0;
2656 }
2657
2658 /* Find the range of pc values in a line.
2659 Store the starting pc of the line into *STARTPTR
2660 and the ending pc (start of next line) into *ENDPTR.
2661 Returns 1 to indicate success.
2662 Returns 0 if could not find the specified line. */
2663
2664 int
2665 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2666 CORE_ADDR *endptr)
2667 {
2668 CORE_ADDR startaddr;
2669 struct symtab_and_line found_sal;
2670
2671 startaddr = sal.pc;
2672 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2673 return 0;
2674
2675 /* This whole function is based on address. For example, if line 10 has
2676 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2677 "info line *0x123" should say the line goes from 0x100 to 0x200
2678 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2679 This also insures that we never give a range like "starts at 0x134
2680 and ends at 0x12c". */
2681
2682 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2683 if (found_sal.line != sal.line)
2684 {
2685 /* The specified line (sal) has zero bytes. */
2686 *startptr = found_sal.pc;
2687 *endptr = found_sal.pc;
2688 }
2689 else
2690 {
2691 *startptr = found_sal.pc;
2692 *endptr = found_sal.end;
2693 }
2694 return 1;
2695 }
2696
2697 /* Given a line table and a line number, return the index into the line
2698 table for the pc of the nearest line whose number is >= the specified one.
2699 Return -1 if none is found. The value is >= 0 if it is an index.
2700 START is the index at which to start searching the line table.
2701
2702 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2703
2704 static int
2705 find_line_common (struct linetable *l, int lineno,
2706 int *exact_match, int start)
2707 {
2708 int i;
2709 int len;
2710
2711 /* BEST is the smallest linenumber > LINENO so far seen,
2712 or 0 if none has been seen so far.
2713 BEST_INDEX identifies the item for it. */
2714
2715 int best_index = -1;
2716 int best = 0;
2717
2718 *exact_match = 0;
2719
2720 if (lineno <= 0)
2721 return -1;
2722 if (l == 0)
2723 return -1;
2724
2725 len = l->nitems;
2726 for (i = start; i < len; i++)
2727 {
2728 struct linetable_entry *item = &(l->item[i]);
2729
2730 if (item->line == lineno)
2731 {
2732 /* Return the first (lowest address) entry which matches. */
2733 *exact_match = 1;
2734 return i;
2735 }
2736
2737 if (item->line > lineno && (best == 0 || item->line < best))
2738 {
2739 best = item->line;
2740 best_index = i;
2741 }
2742 }
2743
2744 /* If we got here, we didn't get an exact match. */
2745 return best_index;
2746 }
2747
2748 int
2749 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2750 {
2751 struct symtab_and_line sal;
2752
2753 sal = find_pc_line (pc, 0);
2754 *startptr = sal.pc;
2755 *endptr = sal.end;
2756 return sal.symtab != 0;
2757 }
2758
2759 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2760 address for that function that has an entry in SYMTAB's line info
2761 table. If such an entry cannot be found, return FUNC_ADDR
2762 unaltered. */
2763
2764 static CORE_ADDR
2765 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2766 {
2767 CORE_ADDR func_start, func_end;
2768 struct linetable *l;
2769 int i;
2770
2771 /* Give up if this symbol has no lineinfo table. */
2772 l = LINETABLE (symtab);
2773 if (l == NULL)
2774 return func_addr;
2775
2776 /* Get the range for the function's PC values, or give up if we
2777 cannot, for some reason. */
2778 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2779 return func_addr;
2780
2781 /* Linetable entries are ordered by PC values, see the commentary in
2782 symtab.h where `struct linetable' is defined. Thus, the first
2783 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2784 address we are looking for. */
2785 for (i = 0; i < l->nitems; i++)
2786 {
2787 struct linetable_entry *item = &(l->item[i]);
2788
2789 /* Don't use line numbers of zero, they mark special entries in
2790 the table. See the commentary on symtab.h before the
2791 definition of struct linetable. */
2792 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2793 return item->pc;
2794 }
2795
2796 return func_addr;
2797 }
2798
2799 /* Given a function symbol SYM, find the symtab and line for the start
2800 of the function.
2801 If the argument FUNFIRSTLINE is nonzero, we want the first line
2802 of real code inside the function. */
2803
2804 struct symtab_and_line
2805 find_function_start_sal (struct symbol *sym, int funfirstline)
2806 {
2807 struct symtab_and_line sal;
2808
2809 fixup_symbol_section (sym, NULL);
2810 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2811 SYMBOL_OBJ_SECTION (sym), 0);
2812
2813 /* We always should have a line for the function start address.
2814 If we don't, something is odd. Create a plain SAL refering
2815 just the PC and hope that skip_prologue_sal (if requested)
2816 can find a line number for after the prologue. */
2817 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2818 {
2819 init_sal (&sal);
2820 sal.pspace = current_program_space;
2821 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2822 sal.section = SYMBOL_OBJ_SECTION (sym);
2823 }
2824
2825 if (funfirstline)
2826 skip_prologue_sal (&sal);
2827
2828 return sal;
2829 }
2830
2831 /* Adjust SAL to the first instruction past the function prologue.
2832 If the PC was explicitly specified, the SAL is not changed.
2833 If the line number was explicitly specified, at most the SAL's PC
2834 is updated. If SAL is already past the prologue, then do nothing. */
2835
2836 void
2837 skip_prologue_sal (struct symtab_and_line *sal)
2838 {
2839 struct symbol *sym;
2840 struct symtab_and_line start_sal;
2841 struct cleanup *old_chain;
2842 CORE_ADDR pc, saved_pc;
2843 struct obj_section *section;
2844 const char *name;
2845 struct objfile *objfile;
2846 struct gdbarch *gdbarch;
2847 struct block *b, *function_block;
2848 int force_skip, skip;
2849
2850 /* Do not change the SAL if PC was specified explicitly. */
2851 if (sal->explicit_pc)
2852 return;
2853
2854 old_chain = save_current_space_and_thread ();
2855 switch_to_program_space_and_thread (sal->pspace);
2856
2857 sym = find_pc_sect_function (sal->pc, sal->section);
2858 if (sym != NULL)
2859 {
2860 fixup_symbol_section (sym, NULL);
2861
2862 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2863 section = SYMBOL_OBJ_SECTION (sym);
2864 name = SYMBOL_LINKAGE_NAME (sym);
2865 objfile = SYMBOL_SYMTAB (sym)->objfile;
2866 }
2867 else
2868 {
2869 struct minimal_symbol *msymbol
2870 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2871
2872 if (msymbol == NULL)
2873 {
2874 do_cleanups (old_chain);
2875 return;
2876 }
2877
2878 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2879 section = SYMBOL_OBJ_SECTION (msymbol);
2880 name = SYMBOL_LINKAGE_NAME (msymbol);
2881 objfile = msymbol_objfile (msymbol);
2882 }
2883
2884 gdbarch = get_objfile_arch (objfile);
2885
2886 /* Process the prologue in two passes. In the first pass try to skip the
2887 prologue (SKIP is true) and verify there is a real need for it (indicated
2888 by FORCE_SKIP). If no such reason was found run a second pass where the
2889 prologue is not skipped (SKIP is false). */
2890
2891 skip = 1;
2892 force_skip = 1;
2893
2894 /* Be conservative - allow direct PC (without skipping prologue) only if we
2895 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2896 have to be set by the caller so we use SYM instead. */
2897 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2898 force_skip = 0;
2899
2900 saved_pc = pc;
2901 do
2902 {
2903 pc = saved_pc;
2904
2905 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2906 so that gdbarch_skip_prologue has something unique to work on. */
2907 if (section_is_overlay (section) && !section_is_mapped (section))
2908 pc = overlay_unmapped_address (pc, section);
2909
2910 /* Skip "first line" of function (which is actually its prologue). */
2911 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2912 if (skip)
2913 pc = gdbarch_skip_prologue (gdbarch, pc);
2914
2915 /* For overlays, map pc back into its mapped VMA range. */
2916 pc = overlay_mapped_address (pc, section);
2917
2918 /* Calculate line number. */
2919 start_sal = find_pc_sect_line (pc, section, 0);
2920
2921 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2922 line is still part of the same function. */
2923 if (skip && start_sal.pc != pc
2924 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2925 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2926 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2927 == lookup_minimal_symbol_by_pc_section (pc, section))))
2928 {
2929 /* First pc of next line */
2930 pc = start_sal.end;
2931 /* Recalculate the line number (might not be N+1). */
2932 start_sal = find_pc_sect_line (pc, section, 0);
2933 }
2934
2935 /* On targets with executable formats that don't have a concept of
2936 constructors (ELF with .init has, PE doesn't), gcc emits a call
2937 to `__main' in `main' between the prologue and before user
2938 code. */
2939 if (gdbarch_skip_main_prologue_p (gdbarch)
2940 && name && strcmp_iw (name, "main") == 0)
2941 {
2942 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2943 /* Recalculate the line number (might not be N+1). */
2944 start_sal = find_pc_sect_line (pc, section, 0);
2945 force_skip = 1;
2946 }
2947 }
2948 while (!force_skip && skip--);
2949
2950 /* If we still don't have a valid source line, try to find the first
2951 PC in the lineinfo table that belongs to the same function. This
2952 happens with COFF debug info, which does not seem to have an
2953 entry in lineinfo table for the code after the prologue which has
2954 no direct relation to source. For example, this was found to be
2955 the case with the DJGPP target using "gcc -gcoff" when the
2956 compiler inserted code after the prologue to make sure the stack
2957 is aligned. */
2958 if (!force_skip && sym && start_sal.symtab == NULL)
2959 {
2960 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2961 /* Recalculate the line number. */
2962 start_sal = find_pc_sect_line (pc, section, 0);
2963 }
2964
2965 do_cleanups (old_chain);
2966
2967 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2968 forward SAL to the end of the prologue. */
2969 if (sal->pc >= pc)
2970 return;
2971
2972 sal->pc = pc;
2973 sal->section = section;
2974
2975 /* Unless the explicit_line flag was set, update the SAL line
2976 and symtab to correspond to the modified PC location. */
2977 if (sal->explicit_line)
2978 return;
2979
2980 sal->symtab = start_sal.symtab;
2981 sal->line = start_sal.line;
2982 sal->end = start_sal.end;
2983
2984 /* Check if we are now inside an inlined function. If we can,
2985 use the call site of the function instead. */
2986 b = block_for_pc_sect (sal->pc, sal->section);
2987 function_block = NULL;
2988 while (b != NULL)
2989 {
2990 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2991 function_block = b;
2992 else if (BLOCK_FUNCTION (b) != NULL)
2993 break;
2994 b = BLOCK_SUPERBLOCK (b);
2995 }
2996 if (function_block != NULL
2997 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2998 {
2999 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3000 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3001 }
3002 }
3003
3004 /* If P is of the form "operator[ \t]+..." where `...' is
3005 some legitimate operator text, return a pointer to the
3006 beginning of the substring of the operator text.
3007 Otherwise, return "". */
3008
3009 static char *
3010 operator_chars (char *p, char **end)
3011 {
3012 *end = "";
3013 if (strncmp (p, "operator", 8))
3014 return *end;
3015 p += 8;
3016
3017 /* Don't get faked out by `operator' being part of a longer
3018 identifier. */
3019 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3020 return *end;
3021
3022 /* Allow some whitespace between `operator' and the operator symbol. */
3023 while (*p == ' ' || *p == '\t')
3024 p++;
3025
3026 /* Recognize 'operator TYPENAME'. */
3027
3028 if (isalpha (*p) || *p == '_' || *p == '$')
3029 {
3030 char *q = p + 1;
3031
3032 while (isalnum (*q) || *q == '_' || *q == '$')
3033 q++;
3034 *end = q;
3035 return p;
3036 }
3037
3038 while (*p)
3039 switch (*p)
3040 {
3041 case '\\': /* regexp quoting */
3042 if (p[1] == '*')
3043 {
3044 if (p[2] == '=') /* 'operator\*=' */
3045 *end = p + 3;
3046 else /* 'operator\*' */
3047 *end = p + 2;
3048 return p;
3049 }
3050 else if (p[1] == '[')
3051 {
3052 if (p[2] == ']')
3053 error (_("mismatched quoting on brackets, "
3054 "try 'operator\\[\\]'"));
3055 else if (p[2] == '\\' && p[3] == ']')
3056 {
3057 *end = p + 4; /* 'operator\[\]' */
3058 return p;
3059 }
3060 else
3061 error (_("nothing is allowed between '[' and ']'"));
3062 }
3063 else
3064 {
3065 /* Gratuitous qoute: skip it and move on. */
3066 p++;
3067 continue;
3068 }
3069 break;
3070 case '!':
3071 case '=':
3072 case '*':
3073 case '/':
3074 case '%':
3075 case '^':
3076 if (p[1] == '=')
3077 *end = p + 2;
3078 else
3079 *end = p + 1;
3080 return p;
3081 case '<':
3082 case '>':
3083 case '+':
3084 case '-':
3085 case '&':
3086 case '|':
3087 if (p[0] == '-' && p[1] == '>')
3088 {
3089 /* Struct pointer member operator 'operator->'. */
3090 if (p[2] == '*')
3091 {
3092 *end = p + 3; /* 'operator->*' */
3093 return p;
3094 }
3095 else if (p[2] == '\\')
3096 {
3097 *end = p + 4; /* Hopefully 'operator->\*' */
3098 return p;
3099 }
3100 else
3101 {
3102 *end = p + 2; /* 'operator->' */
3103 return p;
3104 }
3105 }
3106 if (p[1] == '=' || p[1] == p[0])
3107 *end = p + 2;
3108 else
3109 *end = p + 1;
3110 return p;
3111 case '~':
3112 case ',':
3113 *end = p + 1;
3114 return p;
3115 case '(':
3116 if (p[1] != ')')
3117 error (_("`operator ()' must be specified "
3118 "without whitespace in `()'"));
3119 *end = p + 2;
3120 return p;
3121 case '?':
3122 if (p[1] != ':')
3123 error (_("`operator ?:' must be specified "
3124 "without whitespace in `?:'"));
3125 *end = p + 2;
3126 return p;
3127 case '[':
3128 if (p[1] != ']')
3129 error (_("`operator []' must be specified "
3130 "without whitespace in `[]'"));
3131 *end = p + 2;
3132 return p;
3133 default:
3134 error (_("`operator %s' not supported"), p);
3135 break;
3136 }
3137
3138 *end = "";
3139 return *end;
3140 }
3141 \f
3142
3143 /* Cache to watch for file names already seen by filename_seen. */
3144
3145 struct filename_seen_cache
3146 {
3147 /* Table of files seen so far. */
3148 htab_t tab;
3149 /* Initial size of the table. It automagically grows from here. */
3150 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3151 };
3152
3153 /* filename_seen_cache constructor. */
3154
3155 static struct filename_seen_cache *
3156 create_filename_seen_cache (void)
3157 {
3158 struct filename_seen_cache *cache;
3159
3160 cache = XNEW (struct filename_seen_cache);
3161 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3162 filename_hash, filename_eq,
3163 NULL, xcalloc, xfree);
3164
3165 return cache;
3166 }
3167
3168 /* Empty the cache, but do not delete it. */
3169
3170 static void
3171 clear_filename_seen_cache (struct filename_seen_cache *cache)
3172 {
3173 htab_empty (cache->tab);
3174 }
3175
3176 /* filename_seen_cache destructor.
3177 This takes a void * argument as it is generally used as a cleanup. */
3178
3179 static void
3180 delete_filename_seen_cache (void *ptr)
3181 {
3182 struct filename_seen_cache *cache = ptr;
3183
3184 htab_delete (cache->tab);
3185 xfree (cache);
3186 }
3187
3188 /* If FILE is not already in the table of files in CACHE, return zero;
3189 otherwise return non-zero. Optionally add FILE to the table if ADD
3190 is non-zero.
3191
3192 NOTE: We don't manage space for FILE, we assume FILE lives as long
3193 as the caller needs. */
3194
3195 static int
3196 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3197 {
3198 void **slot;
3199
3200 /* Is FILE in tab? */
3201 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3202 if (*slot != NULL)
3203 return 1;
3204
3205 /* No; maybe add it to tab. */
3206 if (add)
3207 *slot = (char *) file;
3208
3209 return 0;
3210 }
3211
3212 /* Data structure to maintain printing state for output_source_filename. */
3213
3214 struct output_source_filename_data
3215 {
3216 /* Cache of what we've seen so far. */
3217 struct filename_seen_cache *filename_seen_cache;
3218
3219 /* Flag of whether we're printing the first one. */
3220 int first;
3221 };
3222
3223 /* Slave routine for sources_info. Force line breaks at ,'s.
3224 NAME is the name to print.
3225 DATA contains the state for printing and watching for duplicates. */
3226
3227 static void
3228 output_source_filename (const char *name,
3229 struct output_source_filename_data *data)
3230 {
3231 /* Since a single source file can result in several partial symbol
3232 tables, we need to avoid printing it more than once. Note: if
3233 some of the psymtabs are read in and some are not, it gets
3234 printed both under "Source files for which symbols have been
3235 read" and "Source files for which symbols will be read in on
3236 demand". I consider this a reasonable way to deal with the
3237 situation. I'm not sure whether this can also happen for
3238 symtabs; it doesn't hurt to check. */
3239
3240 /* Was NAME already seen? */
3241 if (filename_seen (data->filename_seen_cache, name, 1))
3242 {
3243 /* Yes; don't print it again. */
3244 return;
3245 }
3246
3247 /* No; print it and reset *FIRST. */
3248 if (! data->first)
3249 printf_filtered (", ");
3250 data->first = 0;
3251
3252 wrap_here ("");
3253 fputs_filtered (name, gdb_stdout);
3254 }
3255
3256 /* A callback for map_partial_symbol_filenames. */
3257
3258 static void
3259 output_partial_symbol_filename (const char *filename, const char *fullname,
3260 void *data)
3261 {
3262 output_source_filename (fullname ? fullname : filename, data);
3263 }
3264
3265 static void
3266 sources_info (char *ignore, int from_tty)
3267 {
3268 struct symtab *s;
3269 struct objfile *objfile;
3270 struct output_source_filename_data data;
3271 struct cleanup *cleanups;
3272
3273 if (!have_full_symbols () && !have_partial_symbols ())
3274 {
3275 error (_("No symbol table is loaded. Use the \"file\" command."));
3276 }
3277
3278 data.filename_seen_cache = create_filename_seen_cache ();
3279 cleanups = make_cleanup (delete_filename_seen_cache,
3280 data.filename_seen_cache);
3281
3282 printf_filtered ("Source files for which symbols have been read in:\n\n");
3283
3284 data.first = 1;
3285 ALL_SYMTABS (objfile, s)
3286 {
3287 const char *fullname = symtab_to_fullname (s);
3288
3289 output_source_filename (fullname, &data);
3290 }
3291 printf_filtered ("\n\n");
3292
3293 printf_filtered ("Source files for which symbols "
3294 "will be read in on demand:\n\n");
3295
3296 clear_filename_seen_cache (data.filename_seen_cache);
3297 data.first = 1;
3298 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3299 1 /*need_fullname*/);
3300 printf_filtered ("\n");
3301
3302 do_cleanups (cleanups);
3303 }
3304
3305 static int
3306 file_matches (const char *file, char *files[], int nfiles)
3307 {
3308 int i;
3309
3310 if (file != NULL && nfiles != 0)
3311 {
3312 for (i = 0; i < nfiles; i++)
3313 {
3314 if (filename_cmp (files[i], lbasename (file)) == 0)
3315 return 1;
3316 }
3317 }
3318 else if (nfiles == 0)
3319 return 1;
3320 return 0;
3321 }
3322
3323 /* Free any memory associated with a search. */
3324
3325 void
3326 free_search_symbols (struct symbol_search *symbols)
3327 {
3328 struct symbol_search *p;
3329 struct symbol_search *next;
3330
3331 for (p = symbols; p != NULL; p = next)
3332 {
3333 next = p->next;
3334 xfree (p);
3335 }
3336 }
3337
3338 static void
3339 do_free_search_symbols_cleanup (void *symbols)
3340 {
3341 free_search_symbols (symbols);
3342 }
3343
3344 struct cleanup *
3345 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3346 {
3347 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3348 }
3349
3350 /* Helper function for sort_search_symbols and qsort. Can only
3351 sort symbols, not minimal symbols. */
3352
3353 static int
3354 compare_search_syms (const void *sa, const void *sb)
3355 {
3356 struct symbol_search **sym_a = (struct symbol_search **) sa;
3357 struct symbol_search **sym_b = (struct symbol_search **) sb;
3358
3359 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3360 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3361 }
3362
3363 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3364 prevtail where it is, but update its next pointer to point to
3365 the first of the sorted symbols. */
3366
3367 static struct symbol_search *
3368 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3369 {
3370 struct symbol_search **symbols, *symp, *old_next;
3371 int i;
3372
3373 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3374 * nfound);
3375 symp = prevtail->next;
3376 for (i = 0; i < nfound; i++)
3377 {
3378 symbols[i] = symp;
3379 symp = symp->next;
3380 }
3381 /* Generally NULL. */
3382 old_next = symp;
3383
3384 qsort (symbols, nfound, sizeof (struct symbol_search *),
3385 compare_search_syms);
3386
3387 symp = prevtail;
3388 for (i = 0; i < nfound; i++)
3389 {
3390 symp->next = symbols[i];
3391 symp = symp->next;
3392 }
3393 symp->next = old_next;
3394
3395 xfree (symbols);
3396 return symp;
3397 }
3398
3399 /* An object of this type is passed as the user_data to the
3400 expand_symtabs_matching method. */
3401 struct search_symbols_data
3402 {
3403 int nfiles;
3404 char **files;
3405
3406 /* It is true if PREG contains valid data, false otherwise. */
3407 unsigned preg_p : 1;
3408 regex_t preg;
3409 };
3410
3411 /* A callback for expand_symtabs_matching. */
3412
3413 static int
3414 search_symbols_file_matches (const char *filename, void *user_data)
3415 {
3416 struct search_symbols_data *data = user_data;
3417
3418 return file_matches (filename, data->files, data->nfiles);
3419 }
3420
3421 /* A callback for expand_symtabs_matching. */
3422
3423 static int
3424 search_symbols_name_matches (const char *symname, void *user_data)
3425 {
3426 struct search_symbols_data *data = user_data;
3427
3428 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3429 }
3430
3431 /* Search the symbol table for matches to the regular expression REGEXP,
3432 returning the results in *MATCHES.
3433
3434 Only symbols of KIND are searched:
3435 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3436 and constants (enums)
3437 FUNCTIONS_DOMAIN - search all functions
3438 TYPES_DOMAIN - search all type names
3439 ALL_DOMAIN - an internal error for this function
3440
3441 free_search_symbols should be called when *MATCHES is no longer needed.
3442
3443 The results are sorted locally; each symtab's global and static blocks are
3444 separately alphabetized. */
3445
3446 void
3447 search_symbols (char *regexp, enum search_domain kind,
3448 int nfiles, char *files[],
3449 struct symbol_search **matches)
3450 {
3451 struct symtab *s;
3452 struct blockvector *bv;
3453 struct block *b;
3454 int i = 0;
3455 struct block_iterator iter;
3456 struct symbol *sym;
3457 struct objfile *objfile;
3458 struct minimal_symbol *msymbol;
3459 int found_misc = 0;
3460 static const enum minimal_symbol_type types[]
3461 = {mst_data, mst_text, mst_abs};
3462 static const enum minimal_symbol_type types2[]
3463 = {mst_bss, mst_file_text, mst_abs};
3464 static const enum minimal_symbol_type types3[]
3465 = {mst_file_data, mst_solib_trampoline, mst_abs};
3466 static const enum minimal_symbol_type types4[]
3467 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3468 enum minimal_symbol_type ourtype;
3469 enum minimal_symbol_type ourtype2;
3470 enum minimal_symbol_type ourtype3;
3471 enum minimal_symbol_type ourtype4;
3472 struct symbol_search *sr;
3473 struct symbol_search *psr;
3474 struct symbol_search *tail;
3475 struct search_symbols_data datum;
3476
3477 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3478 CLEANUP_CHAIN is freed only in the case of an error. */
3479 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3480 struct cleanup *retval_chain;
3481
3482 gdb_assert (kind <= TYPES_DOMAIN);
3483
3484 ourtype = types[kind];
3485 ourtype2 = types2[kind];
3486 ourtype3 = types3[kind];
3487 ourtype4 = types4[kind];
3488
3489 sr = *matches = NULL;
3490 tail = NULL;
3491 datum.preg_p = 0;
3492
3493 if (regexp != NULL)
3494 {
3495 /* Make sure spacing is right for C++ operators.
3496 This is just a courtesy to make the matching less sensitive
3497 to how many spaces the user leaves between 'operator'
3498 and <TYPENAME> or <OPERATOR>. */
3499 char *opend;
3500 char *opname = operator_chars (regexp, &opend);
3501 int errcode;
3502
3503 if (*opname)
3504 {
3505 int fix = -1; /* -1 means ok; otherwise number of
3506 spaces needed. */
3507
3508 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3509 {
3510 /* There should 1 space between 'operator' and 'TYPENAME'. */
3511 if (opname[-1] != ' ' || opname[-2] == ' ')
3512 fix = 1;
3513 }
3514 else
3515 {
3516 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3517 if (opname[-1] == ' ')
3518 fix = 0;
3519 }
3520 /* If wrong number of spaces, fix it. */
3521 if (fix >= 0)
3522 {
3523 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3524
3525 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3526 regexp = tmp;
3527 }
3528 }
3529
3530 errcode = regcomp (&datum.preg, regexp,
3531 REG_NOSUB | (case_sensitivity == case_sensitive_off
3532 ? REG_ICASE : 0));
3533 if (errcode != 0)
3534 {
3535 char *err = get_regcomp_error (errcode, &datum.preg);
3536
3537 make_cleanup (xfree, err);
3538 error (_("Invalid regexp (%s): %s"), err, regexp);
3539 }
3540 datum.preg_p = 1;
3541 make_regfree_cleanup (&datum.preg);
3542 }
3543
3544 /* Search through the partial symtabs *first* for all symbols
3545 matching the regexp. That way we don't have to reproduce all of
3546 the machinery below. */
3547
3548 datum.nfiles = nfiles;
3549 datum.files = files;
3550 ALL_OBJFILES (objfile)
3551 {
3552 if (objfile->sf)
3553 objfile->sf->qf->expand_symtabs_matching (objfile,
3554 (nfiles == 0
3555 ? NULL
3556 : search_symbols_file_matches),
3557 search_symbols_name_matches,
3558 kind,
3559 &datum);
3560 }
3561
3562 retval_chain = old_chain;
3563
3564 /* Here, we search through the minimal symbol tables for functions
3565 and variables that match, and force their symbols to be read.
3566 This is in particular necessary for demangled variable names,
3567 which are no longer put into the partial symbol tables.
3568 The symbol will then be found during the scan of symtabs below.
3569
3570 For functions, find_pc_symtab should succeed if we have debug info
3571 for the function, for variables we have to call
3572 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3573 has debug info.
3574 If the lookup fails, set found_misc so that we will rescan to print
3575 any matching symbols without debug info.
3576 We only search the objfile the msymbol came from, we no longer search
3577 all objfiles. In large programs (1000s of shared libs) searching all
3578 objfiles is not worth the pain. */
3579
3580 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3581 {
3582 ALL_MSYMBOLS (objfile, msymbol)
3583 {
3584 QUIT;
3585
3586 if (msymbol->created_by_gdb)
3587 continue;
3588
3589 if (MSYMBOL_TYPE (msymbol) == ourtype
3590 || MSYMBOL_TYPE (msymbol) == ourtype2
3591 || MSYMBOL_TYPE (msymbol) == ourtype3
3592 || MSYMBOL_TYPE (msymbol) == ourtype4)
3593 {
3594 if (!datum.preg_p
3595 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3596 NULL, 0) == 0)
3597 {
3598 /* Note: An important side-effect of these lookup functions
3599 is to expand the symbol table if msymbol is found, for the
3600 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3601 if (kind == FUNCTIONS_DOMAIN
3602 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3603 : (lookup_symbol_in_objfile_from_linkage_name
3604 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3605 == NULL))
3606 found_misc = 1;
3607 }
3608 }
3609 }
3610 }
3611
3612 ALL_PRIMARY_SYMTABS (objfile, s)
3613 {
3614 bv = BLOCKVECTOR (s);
3615 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3616 {
3617 struct symbol_search *prevtail = tail;
3618 int nfound = 0;
3619
3620 b = BLOCKVECTOR_BLOCK (bv, i);
3621 ALL_BLOCK_SYMBOLS (b, iter, sym)
3622 {
3623 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3624
3625 QUIT;
3626
3627 if (file_matches (real_symtab->filename, files, nfiles)
3628 && ((!datum.preg_p
3629 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3630 NULL, 0) == 0)
3631 && ((kind == VARIABLES_DOMAIN
3632 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3633 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3634 && SYMBOL_CLASS (sym) != LOC_BLOCK
3635 /* LOC_CONST can be used for more than just enums,
3636 e.g., c++ static const members.
3637 We only want to skip enums here. */
3638 && !(SYMBOL_CLASS (sym) == LOC_CONST
3639 && TYPE_CODE (SYMBOL_TYPE (sym))
3640 == TYPE_CODE_ENUM))
3641 || (kind == FUNCTIONS_DOMAIN
3642 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3643 || (kind == TYPES_DOMAIN
3644 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3645 {
3646 /* match */
3647 psr = (struct symbol_search *)
3648 xmalloc (sizeof (struct symbol_search));
3649 psr->block = i;
3650 psr->symtab = real_symtab;
3651 psr->symbol = sym;
3652 psr->msymbol = NULL;
3653 psr->next = NULL;
3654 if (tail == NULL)
3655 sr = psr;
3656 else
3657 tail->next = psr;
3658 tail = psr;
3659 nfound ++;
3660 }
3661 }
3662 if (nfound > 0)
3663 {
3664 if (prevtail == NULL)
3665 {
3666 struct symbol_search dummy;
3667
3668 dummy.next = sr;
3669 tail = sort_search_symbols (&dummy, nfound);
3670 sr = dummy.next;
3671
3672 make_cleanup_free_search_symbols (sr);
3673 }
3674 else
3675 tail = sort_search_symbols (prevtail, nfound);
3676 }
3677 }
3678 }
3679
3680 /* If there are no eyes, avoid all contact. I mean, if there are
3681 no debug symbols, then print directly from the msymbol_vector. */
3682
3683 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3684 {
3685 ALL_MSYMBOLS (objfile, msymbol)
3686 {
3687 QUIT;
3688
3689 if (msymbol->created_by_gdb)
3690 continue;
3691
3692 if (MSYMBOL_TYPE (msymbol) == ourtype
3693 || MSYMBOL_TYPE (msymbol) == ourtype2
3694 || MSYMBOL_TYPE (msymbol) == ourtype3
3695 || MSYMBOL_TYPE (msymbol) == ourtype4)
3696 {
3697 if (!datum.preg_p
3698 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3699 NULL, 0) == 0)
3700 {
3701 /* For functions we can do a quick check of whether the
3702 symbol might be found via find_pc_symtab. */
3703 if (kind != FUNCTIONS_DOMAIN
3704 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3705 {
3706 if (lookup_symbol_in_objfile_from_linkage_name
3707 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3708 == NULL)
3709 {
3710 /* match */
3711 psr = (struct symbol_search *)
3712 xmalloc (sizeof (struct symbol_search));
3713 psr->block = i;
3714 psr->msymbol = msymbol;
3715 psr->symtab = NULL;
3716 psr->symbol = NULL;
3717 psr->next = NULL;
3718 if (tail == NULL)
3719 {
3720 sr = psr;
3721 make_cleanup_free_search_symbols (sr);
3722 }
3723 else
3724 tail->next = psr;
3725 tail = psr;
3726 }
3727 }
3728 }
3729 }
3730 }
3731 }
3732
3733 discard_cleanups (retval_chain);
3734 do_cleanups (old_chain);
3735 *matches = sr;
3736 }
3737
3738 /* Helper function for symtab_symbol_info, this function uses
3739 the data returned from search_symbols() to print information
3740 regarding the match to gdb_stdout. */
3741
3742 static void
3743 print_symbol_info (enum search_domain kind,
3744 struct symtab *s, struct symbol *sym,
3745 int block, char *last)
3746 {
3747 if (last == NULL || filename_cmp (last, s->filename) != 0)
3748 {
3749 fputs_filtered ("\nFile ", gdb_stdout);
3750 fputs_filtered (s->filename, gdb_stdout);
3751 fputs_filtered (":\n", gdb_stdout);
3752 }
3753
3754 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3755 printf_filtered ("static ");
3756
3757 /* Typedef that is not a C++ class. */
3758 if (kind == TYPES_DOMAIN
3759 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3760 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3761 /* variable, func, or typedef-that-is-c++-class. */
3762 else if (kind < TYPES_DOMAIN
3763 || (kind == TYPES_DOMAIN
3764 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3765 {
3766 type_print (SYMBOL_TYPE (sym),
3767 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3768 ? "" : SYMBOL_PRINT_NAME (sym)),
3769 gdb_stdout, 0);
3770
3771 printf_filtered (";\n");
3772 }
3773 }
3774
3775 /* This help function for symtab_symbol_info() prints information
3776 for non-debugging symbols to gdb_stdout. */
3777
3778 static void
3779 print_msymbol_info (struct minimal_symbol *msymbol)
3780 {
3781 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3782 char *tmp;
3783
3784 if (gdbarch_addr_bit (gdbarch) <= 32)
3785 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3786 & (CORE_ADDR) 0xffffffff,
3787 8);
3788 else
3789 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3790 16);
3791 printf_filtered ("%s %s\n",
3792 tmp, SYMBOL_PRINT_NAME (msymbol));
3793 }
3794
3795 /* This is the guts of the commands "info functions", "info types", and
3796 "info variables". It calls search_symbols to find all matches and then
3797 print_[m]symbol_info to print out some useful information about the
3798 matches. */
3799
3800 static void
3801 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3802 {
3803 static const char * const classnames[] =
3804 {"variable", "function", "type"};
3805 struct symbol_search *symbols;
3806 struct symbol_search *p;
3807 struct cleanup *old_chain;
3808 char *last_filename = NULL;
3809 int first = 1;
3810
3811 gdb_assert (kind <= TYPES_DOMAIN);
3812
3813 /* Must make sure that if we're interrupted, symbols gets freed. */
3814 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3815 old_chain = make_cleanup_free_search_symbols (symbols);
3816
3817 if (regexp != NULL)
3818 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3819 classnames[kind], regexp);
3820 else
3821 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3822
3823 for (p = symbols; p != NULL; p = p->next)
3824 {
3825 QUIT;
3826
3827 if (p->msymbol != NULL)
3828 {
3829 if (first)
3830 {
3831 printf_filtered (_("\nNon-debugging symbols:\n"));
3832 first = 0;
3833 }
3834 print_msymbol_info (p->msymbol);
3835 }
3836 else
3837 {
3838 print_symbol_info (kind,
3839 p->symtab,
3840 p->symbol,
3841 p->block,
3842 last_filename);
3843 last_filename = p->symtab->filename;
3844 }
3845 }
3846
3847 do_cleanups (old_chain);
3848 }
3849
3850 static void
3851 variables_info (char *regexp, int from_tty)
3852 {
3853 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3854 }
3855
3856 static void
3857 functions_info (char *regexp, int from_tty)
3858 {
3859 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3860 }
3861
3862
3863 static void
3864 types_info (char *regexp, int from_tty)
3865 {
3866 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3867 }
3868
3869 /* Breakpoint all functions matching regular expression. */
3870
3871 void
3872 rbreak_command_wrapper (char *regexp, int from_tty)
3873 {
3874 rbreak_command (regexp, from_tty);
3875 }
3876
3877 /* A cleanup function that calls end_rbreak_breakpoints. */
3878
3879 static void
3880 do_end_rbreak_breakpoints (void *ignore)
3881 {
3882 end_rbreak_breakpoints ();
3883 }
3884
3885 static void
3886 rbreak_command (char *regexp, int from_tty)
3887 {
3888 struct symbol_search *ss;
3889 struct symbol_search *p;
3890 struct cleanup *old_chain;
3891 char *string = NULL;
3892 int len = 0;
3893 char **files = NULL, *file_name;
3894 int nfiles = 0;
3895
3896 if (regexp)
3897 {
3898 char *colon = strchr (regexp, ':');
3899
3900 if (colon && *(colon + 1) != ':')
3901 {
3902 int colon_index;
3903
3904 colon_index = colon - regexp;
3905 file_name = alloca (colon_index + 1);
3906 memcpy (file_name, regexp, colon_index);
3907 file_name[colon_index--] = 0;
3908 while (isspace (file_name[colon_index]))
3909 file_name[colon_index--] = 0;
3910 files = &file_name;
3911 nfiles = 1;
3912 regexp = colon + 1;
3913 while (isspace (*regexp)) regexp++;
3914 }
3915 }
3916
3917 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3918 old_chain = make_cleanup_free_search_symbols (ss);
3919 make_cleanup (free_current_contents, &string);
3920
3921 start_rbreak_breakpoints ();
3922 make_cleanup (do_end_rbreak_breakpoints, NULL);
3923 for (p = ss; p != NULL; p = p->next)
3924 {
3925 if (p->msymbol == NULL)
3926 {
3927 int newlen = (strlen (p->symtab->filename)
3928 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3929 + 4);
3930
3931 if (newlen > len)
3932 {
3933 string = xrealloc (string, newlen);
3934 len = newlen;
3935 }
3936 strcpy (string, p->symtab->filename);
3937 strcat (string, ":'");
3938 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3939 strcat (string, "'");
3940 break_command (string, from_tty);
3941 print_symbol_info (FUNCTIONS_DOMAIN,
3942 p->symtab,
3943 p->symbol,
3944 p->block,
3945 p->symtab->filename);
3946 }
3947 else
3948 {
3949 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3950
3951 if (newlen > len)
3952 {
3953 string = xrealloc (string, newlen);
3954 len = newlen;
3955 }
3956 strcpy (string, "'");
3957 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3958 strcat (string, "'");
3959
3960 break_command (string, from_tty);
3961 printf_filtered ("<function, no debug info> %s;\n",
3962 SYMBOL_PRINT_NAME (p->msymbol));
3963 }
3964 }
3965
3966 do_cleanups (old_chain);
3967 }
3968 \f
3969
3970 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3971
3972 Either sym_text[sym_text_len] != '(' and then we search for any
3973 symbol starting with SYM_TEXT text.
3974
3975 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3976 be terminated at that point. Partial symbol tables do not have parameters
3977 information. */
3978
3979 static int
3980 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3981 {
3982 int (*ncmp) (const char *, const char *, size_t);
3983
3984 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3985
3986 if (ncmp (name, sym_text, sym_text_len) != 0)
3987 return 0;
3988
3989 if (sym_text[sym_text_len] == '(')
3990 {
3991 /* User searches for `name(someth...'. Require NAME to be terminated.
3992 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3993 present but accept even parameters presence. In this case this
3994 function is in fact strcmp_iw but whitespace skipping is not supported
3995 for tab completion. */
3996
3997 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3998 return 0;
3999 }
4000
4001 return 1;
4002 }
4003
4004 /* Free any memory associated with a completion list. */
4005
4006 static void
4007 free_completion_list (VEC (char_ptr) **list_ptr)
4008 {
4009 int i;
4010 char *p;
4011
4012 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4013 xfree (p);
4014 VEC_free (char_ptr, *list_ptr);
4015 }
4016
4017 /* Callback for make_cleanup. */
4018
4019 static void
4020 do_free_completion_list (void *list)
4021 {
4022 free_completion_list (list);
4023 }
4024
4025 /* Helper routine for make_symbol_completion_list. */
4026
4027 static VEC (char_ptr) *return_val;
4028
4029 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4030 completion_list_add_name \
4031 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4032
4033 /* Test to see if the symbol specified by SYMNAME (which is already
4034 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4035 characters. If so, add it to the current completion list. */
4036
4037 static void
4038 completion_list_add_name (const char *symname,
4039 const char *sym_text, int sym_text_len,
4040 const char *text, const char *word)
4041 {
4042 int newsize;
4043
4044 /* Clip symbols that cannot match. */
4045 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4046 return;
4047
4048 /* We have a match for a completion, so add SYMNAME to the current list
4049 of matches. Note that the name is moved to freshly malloc'd space. */
4050
4051 {
4052 char *new;
4053
4054 if (word == sym_text)
4055 {
4056 new = xmalloc (strlen (symname) + 5);
4057 strcpy (new, symname);
4058 }
4059 else if (word > sym_text)
4060 {
4061 /* Return some portion of symname. */
4062 new = xmalloc (strlen (symname) + 5);
4063 strcpy (new, symname + (word - sym_text));
4064 }
4065 else
4066 {
4067 /* Return some of SYM_TEXT plus symname. */
4068 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4069 strncpy (new, word, sym_text - word);
4070 new[sym_text - word] = '\0';
4071 strcat (new, symname);
4072 }
4073
4074 VEC_safe_push (char_ptr, return_val, new);
4075 }
4076 }
4077
4078 /* ObjC: In case we are completing on a selector, look as the msymbol
4079 again and feed all the selectors into the mill. */
4080
4081 static void
4082 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4083 const char *sym_text, int sym_text_len,
4084 const char *text, const char *word)
4085 {
4086 static char *tmp = NULL;
4087 static unsigned int tmplen = 0;
4088
4089 const char *method, *category, *selector;
4090 char *tmp2 = NULL;
4091
4092 method = SYMBOL_NATURAL_NAME (msymbol);
4093
4094 /* Is it a method? */
4095 if ((method[0] != '-') && (method[0] != '+'))
4096 return;
4097
4098 if (sym_text[0] == '[')
4099 /* Complete on shortened method method. */
4100 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4101
4102 while ((strlen (method) + 1) >= tmplen)
4103 {
4104 if (tmplen == 0)
4105 tmplen = 1024;
4106 else
4107 tmplen *= 2;
4108 tmp = xrealloc (tmp, tmplen);
4109 }
4110 selector = strchr (method, ' ');
4111 if (selector != NULL)
4112 selector++;
4113
4114 category = strchr (method, '(');
4115
4116 if ((category != NULL) && (selector != NULL))
4117 {
4118 memcpy (tmp, method, (category - method));
4119 tmp[category - method] = ' ';
4120 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4121 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4122 if (sym_text[0] == '[')
4123 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4124 }
4125
4126 if (selector != NULL)
4127 {
4128 /* Complete on selector only. */
4129 strcpy (tmp, selector);
4130 tmp2 = strchr (tmp, ']');
4131 if (tmp2 != NULL)
4132 *tmp2 = '\0';
4133
4134 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4135 }
4136 }
4137
4138 /* Break the non-quoted text based on the characters which are in
4139 symbols. FIXME: This should probably be language-specific. */
4140
4141 static char *
4142 language_search_unquoted_string (char *text, char *p)
4143 {
4144 for (; p > text; --p)
4145 {
4146 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4147 continue;
4148 else
4149 {
4150 if ((current_language->la_language == language_objc))
4151 {
4152 if (p[-1] == ':') /* Might be part of a method name. */
4153 continue;
4154 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4155 p -= 2; /* Beginning of a method name. */
4156 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4157 { /* Might be part of a method name. */
4158 char *t = p;
4159
4160 /* Seeing a ' ' or a '(' is not conclusive evidence
4161 that we are in the middle of a method name. However,
4162 finding "-[" or "+[" should be pretty un-ambiguous.
4163 Unfortunately we have to find it now to decide. */
4164
4165 while (t > text)
4166 if (isalnum (t[-1]) || t[-1] == '_' ||
4167 t[-1] == ' ' || t[-1] == ':' ||
4168 t[-1] == '(' || t[-1] == ')')
4169 --t;
4170 else
4171 break;
4172
4173 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4174 p = t - 2; /* Method name detected. */
4175 /* Else we leave with p unchanged. */
4176 }
4177 }
4178 break;
4179 }
4180 }
4181 return p;
4182 }
4183
4184 static void
4185 completion_list_add_fields (struct symbol *sym, char *sym_text,
4186 int sym_text_len, char *text, char *word)
4187 {
4188 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4189 {
4190 struct type *t = SYMBOL_TYPE (sym);
4191 enum type_code c = TYPE_CODE (t);
4192 int j;
4193
4194 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4195 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4196 if (TYPE_FIELD_NAME (t, j))
4197 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4198 sym_text, sym_text_len, text, word);
4199 }
4200 }
4201
4202 /* Type of the user_data argument passed to add_macro_name or
4203 expand_partial_symbol_name. The contents are simply whatever is
4204 needed by completion_list_add_name. */
4205 struct add_name_data
4206 {
4207 char *sym_text;
4208 int sym_text_len;
4209 char *text;
4210 char *word;
4211 };
4212
4213 /* A callback used with macro_for_each and macro_for_each_in_scope.
4214 This adds a macro's name to the current completion list. */
4215
4216 static void
4217 add_macro_name (const char *name, const struct macro_definition *ignore,
4218 struct macro_source_file *ignore2, int ignore3,
4219 void *user_data)
4220 {
4221 struct add_name_data *datum = (struct add_name_data *) user_data;
4222
4223 completion_list_add_name ((char *) name,
4224 datum->sym_text, datum->sym_text_len,
4225 datum->text, datum->word);
4226 }
4227
4228 /* A callback for expand_partial_symbol_names. */
4229
4230 static int
4231 expand_partial_symbol_name (const char *name, void *user_data)
4232 {
4233 struct add_name_data *datum = (struct add_name_data *) user_data;
4234
4235 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4236 }
4237
4238 VEC (char_ptr) *
4239 default_make_symbol_completion_list_break_on (char *text, char *word,
4240 const char *break_on,
4241 enum type_code code)
4242 {
4243 /* Problem: All of the symbols have to be copied because readline
4244 frees them. I'm not going to worry about this; hopefully there
4245 won't be that many. */
4246
4247 struct symbol *sym;
4248 struct symtab *s;
4249 struct minimal_symbol *msymbol;
4250 struct objfile *objfile;
4251 struct block *b;
4252 const struct block *surrounding_static_block, *surrounding_global_block;
4253 struct block_iterator iter;
4254 /* The symbol we are completing on. Points in same buffer as text. */
4255 char *sym_text;
4256 /* Length of sym_text. */
4257 int sym_text_len;
4258 struct add_name_data datum;
4259 struct cleanup *back_to;
4260
4261 /* Now look for the symbol we are supposed to complete on. */
4262 {
4263 char *p;
4264 char quote_found;
4265 char *quote_pos = NULL;
4266
4267 /* First see if this is a quoted string. */
4268 quote_found = '\0';
4269 for (p = text; *p != '\0'; ++p)
4270 {
4271 if (quote_found != '\0')
4272 {
4273 if (*p == quote_found)
4274 /* Found close quote. */
4275 quote_found = '\0';
4276 else if (*p == '\\' && p[1] == quote_found)
4277 /* A backslash followed by the quote character
4278 doesn't end the string. */
4279 ++p;
4280 }
4281 else if (*p == '\'' || *p == '"')
4282 {
4283 quote_found = *p;
4284 quote_pos = p;
4285 }
4286 }
4287 if (quote_found == '\'')
4288 /* A string within single quotes can be a symbol, so complete on it. */
4289 sym_text = quote_pos + 1;
4290 else if (quote_found == '"')
4291 /* A double-quoted string is never a symbol, nor does it make sense
4292 to complete it any other way. */
4293 {
4294 return NULL;
4295 }
4296 else
4297 {
4298 /* It is not a quoted string. Break it based on the characters
4299 which are in symbols. */
4300 while (p > text)
4301 {
4302 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4303 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4304 --p;
4305 else
4306 break;
4307 }
4308 sym_text = p;
4309 }
4310 }
4311
4312 sym_text_len = strlen (sym_text);
4313
4314 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4315
4316 if (current_language->la_language == language_cplus
4317 || current_language->la_language == language_java
4318 || current_language->la_language == language_fortran)
4319 {
4320 /* These languages may have parameters entered by user but they are never
4321 present in the partial symbol tables. */
4322
4323 const char *cs = memchr (sym_text, '(', sym_text_len);
4324
4325 if (cs)
4326 sym_text_len = cs - sym_text;
4327 }
4328 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4329
4330 return_val = NULL;
4331 back_to = make_cleanup (do_free_completion_list, &return_val);
4332
4333 datum.sym_text = sym_text;
4334 datum.sym_text_len = sym_text_len;
4335 datum.text = text;
4336 datum.word = word;
4337
4338 /* Look through the partial symtabs for all symbols which begin
4339 by matching SYM_TEXT. Expand all CUs that you find to the list.
4340 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4341 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4342
4343 /* At this point scan through the misc symbol vectors and add each
4344 symbol you find to the list. Eventually we want to ignore
4345 anything that isn't a text symbol (everything else will be
4346 handled by the psymtab code above). */
4347
4348 if (code == TYPE_CODE_UNDEF)
4349 {
4350 ALL_MSYMBOLS (objfile, msymbol)
4351 {
4352 QUIT;
4353 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4354 word);
4355
4356 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4357 word);
4358 }
4359 }
4360
4361 /* Search upwards from currently selected frame (so that we can
4362 complete on local vars). Also catch fields of types defined in
4363 this places which match our text string. Only complete on types
4364 visible from current context. */
4365
4366 b = get_selected_block (0);
4367 surrounding_static_block = block_static_block (b);
4368 surrounding_global_block = block_global_block (b);
4369 if (surrounding_static_block != NULL)
4370 while (b != surrounding_static_block)
4371 {
4372 QUIT;
4373
4374 ALL_BLOCK_SYMBOLS (b, iter, sym)
4375 {
4376 if (code == TYPE_CODE_UNDEF)
4377 {
4378 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4379 word);
4380 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4381 word);
4382 }
4383 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4384 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4385 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4386 word);
4387 }
4388
4389 /* Stop when we encounter an enclosing function. Do not stop for
4390 non-inlined functions - the locals of the enclosing function
4391 are in scope for a nested function. */
4392 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4393 break;
4394 b = BLOCK_SUPERBLOCK (b);
4395 }
4396
4397 /* Add fields from the file's types; symbols will be added below. */
4398
4399 if (code == TYPE_CODE_UNDEF)
4400 {
4401 if (surrounding_static_block != NULL)
4402 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4403 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4404
4405 if (surrounding_global_block != NULL)
4406 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4407 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4408 }
4409
4410 /* Go through the symtabs and check the externs and statics for
4411 symbols which match. */
4412
4413 ALL_PRIMARY_SYMTABS (objfile, s)
4414 {
4415 QUIT;
4416 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4417 ALL_BLOCK_SYMBOLS (b, iter, sym)
4418 {
4419 if (code == TYPE_CODE_UNDEF
4420 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4421 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4422 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4423 }
4424 }
4425
4426 ALL_PRIMARY_SYMTABS (objfile, s)
4427 {
4428 QUIT;
4429 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4430 ALL_BLOCK_SYMBOLS (b, iter, sym)
4431 {
4432 if (code == TYPE_CODE_UNDEF
4433 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4434 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4435 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4436 }
4437 }
4438
4439 /* Skip macros if we are completing a struct tag -- arguable but
4440 usually what is expected. */
4441 if (current_language->la_macro_expansion == macro_expansion_c
4442 && code == TYPE_CODE_UNDEF)
4443 {
4444 struct macro_scope *scope;
4445
4446 /* Add any macros visible in the default scope. Note that this
4447 may yield the occasional wrong result, because an expression
4448 might be evaluated in a scope other than the default. For
4449 example, if the user types "break file:line if <TAB>", the
4450 resulting expression will be evaluated at "file:line" -- but
4451 at there does not seem to be a way to detect this at
4452 completion time. */
4453 scope = default_macro_scope ();
4454 if (scope)
4455 {
4456 macro_for_each_in_scope (scope->file, scope->line,
4457 add_macro_name, &datum);
4458 xfree (scope);
4459 }
4460
4461 /* User-defined macros are always visible. */
4462 macro_for_each (macro_user_macros, add_macro_name, &datum);
4463 }
4464
4465 discard_cleanups (back_to);
4466 return (return_val);
4467 }
4468
4469 VEC (char_ptr) *
4470 default_make_symbol_completion_list (char *text, char *word,
4471 enum type_code code)
4472 {
4473 return default_make_symbol_completion_list_break_on (text, word, "", code);
4474 }
4475
4476 /* Return a vector of all symbols (regardless of class) which begin by
4477 matching TEXT. If the answer is no symbols, then the return value
4478 is NULL. */
4479
4480 VEC (char_ptr) *
4481 make_symbol_completion_list (char *text, char *word)
4482 {
4483 return current_language->la_make_symbol_completion_list (text, word,
4484 TYPE_CODE_UNDEF);
4485 }
4486
4487 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4488 symbols whose type code is CODE. */
4489
4490 VEC (char_ptr) *
4491 make_symbol_completion_type (char *text, char *word, enum type_code code)
4492 {
4493 gdb_assert (code == TYPE_CODE_UNION
4494 || code == TYPE_CODE_STRUCT
4495 || code == TYPE_CODE_CLASS
4496 || code == TYPE_CODE_ENUM);
4497 return current_language->la_make_symbol_completion_list (text, word, code);
4498 }
4499
4500 /* Like make_symbol_completion_list, but suitable for use as a
4501 completion function. */
4502
4503 VEC (char_ptr) *
4504 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4505 char *text, char *word)
4506 {
4507 return make_symbol_completion_list (text, word);
4508 }
4509
4510 /* Like make_symbol_completion_list, but returns a list of symbols
4511 defined in a source file FILE. */
4512
4513 VEC (char_ptr) *
4514 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4515 {
4516 struct symbol *sym;
4517 struct symtab *s;
4518 struct block *b;
4519 struct block_iterator iter;
4520 /* The symbol we are completing on. Points in same buffer as text. */
4521 char *sym_text;
4522 /* Length of sym_text. */
4523 int sym_text_len;
4524
4525 /* Now look for the symbol we are supposed to complete on.
4526 FIXME: This should be language-specific. */
4527 {
4528 char *p;
4529 char quote_found;
4530 char *quote_pos = NULL;
4531
4532 /* First see if this is a quoted string. */
4533 quote_found = '\0';
4534 for (p = text; *p != '\0'; ++p)
4535 {
4536 if (quote_found != '\0')
4537 {
4538 if (*p == quote_found)
4539 /* Found close quote. */
4540 quote_found = '\0';
4541 else if (*p == '\\' && p[1] == quote_found)
4542 /* A backslash followed by the quote character
4543 doesn't end the string. */
4544 ++p;
4545 }
4546 else if (*p == '\'' || *p == '"')
4547 {
4548 quote_found = *p;
4549 quote_pos = p;
4550 }
4551 }
4552 if (quote_found == '\'')
4553 /* A string within single quotes can be a symbol, so complete on it. */
4554 sym_text = quote_pos + 1;
4555 else if (quote_found == '"')
4556 /* A double-quoted string is never a symbol, nor does it make sense
4557 to complete it any other way. */
4558 {
4559 return NULL;
4560 }
4561 else
4562 {
4563 /* Not a quoted string. */
4564 sym_text = language_search_unquoted_string (text, p);
4565 }
4566 }
4567
4568 sym_text_len = strlen (sym_text);
4569
4570 return_val = NULL;
4571
4572 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4573 in). */
4574 s = lookup_symtab (srcfile);
4575 if (s == NULL)
4576 {
4577 /* Maybe they typed the file with leading directories, while the
4578 symbol tables record only its basename. */
4579 const char *tail = lbasename (srcfile);
4580
4581 if (tail > srcfile)
4582 s = lookup_symtab (tail);
4583 }
4584
4585 /* If we have no symtab for that file, return an empty list. */
4586 if (s == NULL)
4587 return (return_val);
4588
4589 /* Go through this symtab and check the externs and statics for
4590 symbols which match. */
4591
4592 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4593 ALL_BLOCK_SYMBOLS (b, iter, sym)
4594 {
4595 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4596 }
4597
4598 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4599 ALL_BLOCK_SYMBOLS (b, iter, sym)
4600 {
4601 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4602 }
4603
4604 return (return_val);
4605 }
4606
4607 /* A helper function for make_source_files_completion_list. It adds
4608 another file name to a list of possible completions, growing the
4609 list as necessary. */
4610
4611 static void
4612 add_filename_to_list (const char *fname, char *text, char *word,
4613 VEC (char_ptr) **list)
4614 {
4615 char *new;
4616 size_t fnlen = strlen (fname);
4617
4618 if (word == text)
4619 {
4620 /* Return exactly fname. */
4621 new = xmalloc (fnlen + 5);
4622 strcpy (new, fname);
4623 }
4624 else if (word > text)
4625 {
4626 /* Return some portion of fname. */
4627 new = xmalloc (fnlen + 5);
4628 strcpy (new, fname + (word - text));
4629 }
4630 else
4631 {
4632 /* Return some of TEXT plus fname. */
4633 new = xmalloc (fnlen + (text - word) + 5);
4634 strncpy (new, word, text - word);
4635 new[text - word] = '\0';
4636 strcat (new, fname);
4637 }
4638 VEC_safe_push (char_ptr, *list, new);
4639 }
4640
4641 static int
4642 not_interesting_fname (const char *fname)
4643 {
4644 static const char *illegal_aliens[] = {
4645 "_globals_", /* inserted by coff_symtab_read */
4646 NULL
4647 };
4648 int i;
4649
4650 for (i = 0; illegal_aliens[i]; i++)
4651 {
4652 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4653 return 1;
4654 }
4655 return 0;
4656 }
4657
4658 /* An object of this type is passed as the user_data argument to
4659 map_partial_symbol_filenames. */
4660 struct add_partial_filename_data
4661 {
4662 struct filename_seen_cache *filename_seen_cache;
4663 char *text;
4664 char *word;
4665 int text_len;
4666 VEC (char_ptr) **list;
4667 };
4668
4669 /* A callback for map_partial_symbol_filenames. */
4670
4671 static void
4672 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4673 void *user_data)
4674 {
4675 struct add_partial_filename_data *data = user_data;
4676
4677 if (not_interesting_fname (filename))
4678 return;
4679 if (!filename_seen (data->filename_seen_cache, filename, 1)
4680 && filename_ncmp (filename, data->text, data->text_len) == 0)
4681 {
4682 /* This file matches for a completion; add it to the
4683 current list of matches. */
4684 add_filename_to_list (filename, data->text, data->word, data->list);
4685 }
4686 else
4687 {
4688 const char *base_name = lbasename (filename);
4689
4690 if (base_name != filename
4691 && !filename_seen (data->filename_seen_cache, base_name, 1)
4692 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4693 add_filename_to_list (base_name, data->text, data->word, data->list);
4694 }
4695 }
4696
4697 /* Return a vector of all source files whose names begin with matching
4698 TEXT. The file names are looked up in the symbol tables of this
4699 program. If the answer is no matchess, then the return value is
4700 NULL. */
4701
4702 VEC (char_ptr) *
4703 make_source_files_completion_list (char *text, char *word)
4704 {
4705 struct symtab *s;
4706 struct objfile *objfile;
4707 size_t text_len = strlen (text);
4708 VEC (char_ptr) *list = NULL;
4709 const char *base_name;
4710 struct add_partial_filename_data datum;
4711 struct filename_seen_cache *filename_seen_cache;
4712 struct cleanup *back_to, *cache_cleanup;
4713
4714 if (!have_full_symbols () && !have_partial_symbols ())
4715 return list;
4716
4717 back_to = make_cleanup (do_free_completion_list, &list);
4718
4719 filename_seen_cache = create_filename_seen_cache ();
4720 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4721 filename_seen_cache);
4722
4723 ALL_SYMTABS (objfile, s)
4724 {
4725 if (not_interesting_fname (s->filename))
4726 continue;
4727 if (!filename_seen (filename_seen_cache, s->filename, 1)
4728 && filename_ncmp (s->filename, text, text_len) == 0)
4729 {
4730 /* This file matches for a completion; add it to the current
4731 list of matches. */
4732 add_filename_to_list (s->filename, text, word, &list);
4733 }
4734 else
4735 {
4736 /* NOTE: We allow the user to type a base name when the
4737 debug info records leading directories, but not the other
4738 way around. This is what subroutines of breakpoint
4739 command do when they parse file names. */
4740 base_name = lbasename (s->filename);
4741 if (base_name != s->filename
4742 && !filename_seen (filename_seen_cache, base_name, 1)
4743 && filename_ncmp (base_name, text, text_len) == 0)
4744 add_filename_to_list (base_name, text, word, &list);
4745 }
4746 }
4747
4748 datum.filename_seen_cache = filename_seen_cache;
4749 datum.text = text;
4750 datum.word = word;
4751 datum.text_len = text_len;
4752 datum.list = &list;
4753 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4754 0 /*need_fullname*/);
4755
4756 do_cleanups (cache_cleanup);
4757 discard_cleanups (back_to);
4758
4759 return list;
4760 }
4761
4762 /* Determine if PC is in the prologue of a function. The prologue is the area
4763 between the first instruction of a function, and the first executable line.
4764 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4765
4766 If non-zero, func_start is where we think the prologue starts, possibly
4767 by previous examination of symbol table information. */
4768
4769 int
4770 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4771 {
4772 struct symtab_and_line sal;
4773 CORE_ADDR func_addr, func_end;
4774
4775 /* We have several sources of information we can consult to figure
4776 this out.
4777 - Compilers usually emit line number info that marks the prologue
4778 as its own "source line". So the ending address of that "line"
4779 is the end of the prologue. If available, this is the most
4780 reliable method.
4781 - The minimal symbols and partial symbols, which can usually tell
4782 us the starting and ending addresses of a function.
4783 - If we know the function's start address, we can call the
4784 architecture-defined gdbarch_skip_prologue function to analyze the
4785 instruction stream and guess where the prologue ends.
4786 - Our `func_start' argument; if non-zero, this is the caller's
4787 best guess as to the function's entry point. At the time of
4788 this writing, handle_inferior_event doesn't get this right, so
4789 it should be our last resort. */
4790
4791 /* Consult the partial symbol table, to find which function
4792 the PC is in. */
4793 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4794 {
4795 CORE_ADDR prologue_end;
4796
4797 /* We don't even have minsym information, so fall back to using
4798 func_start, if given. */
4799 if (! func_start)
4800 return 1; /* We *might* be in a prologue. */
4801
4802 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4803
4804 return func_start <= pc && pc < prologue_end;
4805 }
4806
4807 /* If we have line number information for the function, that's
4808 usually pretty reliable. */
4809 sal = find_pc_line (func_addr, 0);
4810
4811 /* Now sal describes the source line at the function's entry point,
4812 which (by convention) is the prologue. The end of that "line",
4813 sal.end, is the end of the prologue.
4814
4815 Note that, for functions whose source code is all on a single
4816 line, the line number information doesn't always end up this way.
4817 So we must verify that our purported end-of-prologue address is
4818 *within* the function, not at its start or end. */
4819 if (sal.line == 0
4820 || sal.end <= func_addr
4821 || func_end <= sal.end)
4822 {
4823 /* We don't have any good line number info, so use the minsym
4824 information, together with the architecture-specific prologue
4825 scanning code. */
4826 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4827
4828 return func_addr <= pc && pc < prologue_end;
4829 }
4830
4831 /* We have line number info, and it looks good. */
4832 return func_addr <= pc && pc < sal.end;
4833 }
4834
4835 /* Given PC at the function's start address, attempt to find the
4836 prologue end using SAL information. Return zero if the skip fails.
4837
4838 A non-optimized prologue traditionally has one SAL for the function
4839 and a second for the function body. A single line function has
4840 them both pointing at the same line.
4841
4842 An optimized prologue is similar but the prologue may contain
4843 instructions (SALs) from the instruction body. Need to skip those
4844 while not getting into the function body.
4845
4846 The functions end point and an increasing SAL line are used as
4847 indicators of the prologue's endpoint.
4848
4849 This code is based on the function refine_prologue_limit
4850 (found in ia64). */
4851
4852 CORE_ADDR
4853 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4854 {
4855 struct symtab_and_line prologue_sal;
4856 CORE_ADDR start_pc;
4857 CORE_ADDR end_pc;
4858 struct block *bl;
4859
4860 /* Get an initial range for the function. */
4861 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4862 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4863
4864 prologue_sal = find_pc_line (start_pc, 0);
4865 if (prologue_sal.line != 0)
4866 {
4867 /* For languages other than assembly, treat two consecutive line
4868 entries at the same address as a zero-instruction prologue.
4869 The GNU assembler emits separate line notes for each instruction
4870 in a multi-instruction macro, but compilers generally will not
4871 do this. */
4872 if (prologue_sal.symtab->language != language_asm)
4873 {
4874 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4875 int idx = 0;
4876
4877 /* Skip any earlier lines, and any end-of-sequence marker
4878 from a previous function. */
4879 while (linetable->item[idx].pc != prologue_sal.pc
4880 || linetable->item[idx].line == 0)
4881 idx++;
4882
4883 if (idx+1 < linetable->nitems
4884 && linetable->item[idx+1].line != 0
4885 && linetable->item[idx+1].pc == start_pc)
4886 return start_pc;
4887 }
4888
4889 /* If there is only one sal that covers the entire function,
4890 then it is probably a single line function, like
4891 "foo(){}". */
4892 if (prologue_sal.end >= end_pc)
4893 return 0;
4894
4895 while (prologue_sal.end < end_pc)
4896 {
4897 struct symtab_and_line sal;
4898
4899 sal = find_pc_line (prologue_sal.end, 0);
4900 if (sal.line == 0)
4901 break;
4902 /* Assume that a consecutive SAL for the same (or larger)
4903 line mark the prologue -> body transition. */
4904 if (sal.line >= prologue_sal.line)
4905 break;
4906
4907 /* The line number is smaller. Check that it's from the
4908 same function, not something inlined. If it's inlined,
4909 then there is no point comparing the line numbers. */
4910 bl = block_for_pc (prologue_sal.end);
4911 while (bl)
4912 {
4913 if (block_inlined_p (bl))
4914 break;
4915 if (BLOCK_FUNCTION (bl))
4916 {
4917 bl = NULL;
4918 break;
4919 }
4920 bl = BLOCK_SUPERBLOCK (bl);
4921 }
4922 if (bl != NULL)
4923 break;
4924
4925 /* The case in which compiler's optimizer/scheduler has
4926 moved instructions into the prologue. We look ahead in
4927 the function looking for address ranges whose
4928 corresponding line number is less the first one that we
4929 found for the function. This is more conservative then
4930 refine_prologue_limit which scans a large number of SALs
4931 looking for any in the prologue. */
4932 prologue_sal = sal;
4933 }
4934 }
4935
4936 if (prologue_sal.end < end_pc)
4937 /* Return the end of this line, or zero if we could not find a
4938 line. */
4939 return prologue_sal.end;
4940 else
4941 /* Don't return END_PC, which is past the end of the function. */
4942 return prologue_sal.pc;
4943 }
4944 \f
4945 /* Track MAIN */
4946 static char *name_of_main;
4947 enum language language_of_main = language_unknown;
4948
4949 void
4950 set_main_name (const char *name)
4951 {
4952 if (name_of_main != NULL)
4953 {
4954 xfree (name_of_main);
4955 name_of_main = NULL;
4956 language_of_main = language_unknown;
4957 }
4958 if (name != NULL)
4959 {
4960 name_of_main = xstrdup (name);
4961 language_of_main = language_unknown;
4962 }
4963 }
4964
4965 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4966 accordingly. */
4967
4968 static void
4969 find_main_name (void)
4970 {
4971 const char *new_main_name;
4972
4973 /* Try to see if the main procedure is in Ada. */
4974 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4975 be to add a new method in the language vector, and call this
4976 method for each language until one of them returns a non-empty
4977 name. This would allow us to remove this hard-coded call to
4978 an Ada function. It is not clear that this is a better approach
4979 at this point, because all methods need to be written in a way
4980 such that false positives never be returned. For instance, it is
4981 important that a method does not return a wrong name for the main
4982 procedure if the main procedure is actually written in a different
4983 language. It is easy to guaranty this with Ada, since we use a
4984 special symbol generated only when the main in Ada to find the name
4985 of the main procedure. It is difficult however to see how this can
4986 be guarantied for languages such as C, for instance. This suggests
4987 that order of call for these methods becomes important, which means
4988 a more complicated approach. */
4989 new_main_name = ada_main_name ();
4990 if (new_main_name != NULL)
4991 {
4992 set_main_name (new_main_name);
4993 return;
4994 }
4995
4996 new_main_name = go_main_name ();
4997 if (new_main_name != NULL)
4998 {
4999 set_main_name (new_main_name);
5000 return;
5001 }
5002
5003 new_main_name = pascal_main_name ();
5004 if (new_main_name != NULL)
5005 {
5006 set_main_name (new_main_name);
5007 return;
5008 }
5009
5010 /* The languages above didn't identify the name of the main procedure.
5011 Fallback to "main". */
5012 set_main_name ("main");
5013 }
5014
5015 char *
5016 main_name (void)
5017 {
5018 if (name_of_main == NULL)
5019 find_main_name ();
5020
5021 return name_of_main;
5022 }
5023
5024 /* Handle ``executable_changed'' events for the symtab module. */
5025
5026 static void
5027 symtab_observer_executable_changed (void)
5028 {
5029 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5030 set_main_name (NULL);
5031 }
5032
5033 /* Return 1 if the supplied producer string matches the ARM RealView
5034 compiler (armcc). */
5035
5036 int
5037 producer_is_realview (const char *producer)
5038 {
5039 static const char *const arm_idents[] = {
5040 "ARM C Compiler, ADS",
5041 "Thumb C Compiler, ADS",
5042 "ARM C++ Compiler, ADS",
5043 "Thumb C++ Compiler, ADS",
5044 "ARM/Thumb C/C++ Compiler, RVCT",
5045 "ARM C/C++ Compiler, RVCT"
5046 };
5047 int i;
5048
5049 if (producer == NULL)
5050 return 0;
5051
5052 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5053 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5054 return 1;
5055
5056 return 0;
5057 }
5058
5059 void
5060 _initialize_symtab (void)
5061 {
5062 add_info ("variables", variables_info, _("\
5063 All global and static variable names, or those matching REGEXP."));
5064 if (dbx_commands)
5065 add_com ("whereis", class_info, variables_info, _("\
5066 All global and static variable names, or those matching REGEXP."));
5067
5068 add_info ("functions", functions_info,
5069 _("All function names, or those matching REGEXP."));
5070
5071 /* FIXME: This command has at least the following problems:
5072 1. It prints builtin types (in a very strange and confusing fashion).
5073 2. It doesn't print right, e.g. with
5074 typedef struct foo *FOO
5075 type_print prints "FOO" when we want to make it (in this situation)
5076 print "struct foo *".
5077 I also think "ptype" or "whatis" is more likely to be useful (but if
5078 there is much disagreement "info types" can be fixed). */
5079 add_info ("types", types_info,
5080 _("All type names, or those matching REGEXP."));
5081
5082 add_info ("sources", sources_info,
5083 _("Source files in the program."));
5084
5085 add_com ("rbreak", class_breakpoint, rbreak_command,
5086 _("Set a breakpoint for all functions matching REGEXP."));
5087
5088 if (xdb_commands)
5089 {
5090 add_com ("lf", class_info, sources_info,
5091 _("Source files in the program"));
5092 add_com ("lg", class_info, variables_info, _("\
5093 All global and static variable names, or those matching REGEXP."));
5094 }
5095
5096 add_setshow_enum_cmd ("multiple-symbols", no_class,
5097 multiple_symbols_modes, &multiple_symbols_mode,
5098 _("\
5099 Set the debugger behavior when more than one symbol are possible matches\n\
5100 in an expression."), _("\
5101 Show how the debugger handles ambiguities in expressions."), _("\
5102 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5103 NULL, NULL, &setlist, &showlist);
5104
5105 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5106 &basenames_may_differ, _("\
5107 Set whether a source file may have multiple base names."), _("\
5108 Show whether a source file may have multiple base names."), _("\
5109 (A \"base name\" is the name of a file with the directory part removed.\n\
5110 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5111 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5112 before comparing them. Canonicalization is an expensive operation,\n\
5113 but it allows the same file be known by more than one base name.\n\
5114 If not set (the default), all source files are assumed to have just\n\
5115 one base name, and gdb will do file name comparisons more efficiently."),
5116 NULL, NULL,
5117 &setlist, &showlist);
5118
5119 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5120 _("Set debugging of symbol table creation."),
5121 _("Show debugging of symbol table creation."), _("\
5122 When enabled, debugging messages are printed when building symbol tables."),
5123 NULL,
5124 NULL,
5125 &setdebuglist, &showdebuglist);
5126
5127 observer_attach_executable_changed (symtab_observer_executable_changed);
5128 }
This page took 0.137604 seconds and 4 git commands to generate.