b32eca18faf7e7ba08ebb60d783fe070fb24bc13
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46 #include "typeprint.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observable.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "parser-defs.h"
64 #include "completer.h"
65 #include "progspace-and-thread.h"
66 #include "common/gdb_optional.h"
67 #include "filename-seen-cache.h"
68 #include "arch-utils.h"
69 #include <algorithm>
70 #include "common/pathstuff.h"
71
72 /* Forward declarations for local functions. */
73
74 static void rbreak_command (const char *, int);
75
76 static int find_line_common (struct linetable *, int, int *, int);
77
78 static struct block_symbol
79 lookup_symbol_aux (const char *name,
80 symbol_name_match_type match_type,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *);
85
86 static
87 struct block_symbol lookup_local_symbol (const char *name,
88 symbol_name_match_type match_type,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static struct block_symbol
94 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
95 const char *name, const domain_enum domain);
96
97 /* See symtab.h. */
98 const struct block_symbol null_block_symbol = { NULL, NULL };
99
100 /* Program space key for finding name and language of "main". */
101
102 static const struct program_space_data *main_progspace_key;
103
104 /* Type of the data stored on the program space. */
105
106 struct main_info
107 {
108 /* Name of "main". */
109
110 char *name_of_main;
111
112 /* Language of "main". */
113
114 enum language language_of_main;
115 };
116
117 /* Program space key for finding its symbol cache. */
118
119 static const struct program_space_data *symbol_cache_key;
120
121 /* The default symbol cache size.
122 There is no extra cpu cost for large N (except when flushing the cache,
123 which is rare). The value here is just a first attempt. A better default
124 value may be higher or lower. A prime number can make up for a bad hash
125 computation, so that's why the number is what it is. */
126 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
127
128 /* The maximum symbol cache size.
129 There's no method to the decision of what value to use here, other than
130 there's no point in allowing a user typo to make gdb consume all memory. */
131 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
132
133 /* symbol_cache_lookup returns this if a previous lookup failed to find the
134 symbol in any objfile. */
135 #define SYMBOL_LOOKUP_FAILED \
136 ((struct block_symbol) {(struct symbol *) 1, NULL})
137 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
138
139 /* Recording lookups that don't find the symbol is just as important, if not
140 more so, than recording found symbols. */
141
142 enum symbol_cache_slot_state
143 {
144 SYMBOL_SLOT_UNUSED,
145 SYMBOL_SLOT_NOT_FOUND,
146 SYMBOL_SLOT_FOUND
147 };
148
149 struct symbol_cache_slot
150 {
151 enum symbol_cache_slot_state state;
152
153 /* The objfile that was current when the symbol was looked up.
154 This is only needed for global blocks, but for simplicity's sake
155 we allocate the space for both. If data shows the extra space used
156 for static blocks is a problem, we can split things up then.
157
158 Global blocks need cache lookup to include the objfile context because
159 we need to account for gdbarch_iterate_over_objfiles_in_search_order
160 which can traverse objfiles in, effectively, any order, depending on
161 the current objfile, thus affecting which symbol is found. Normally,
162 only the current objfile is searched first, and then the rest are
163 searched in recorded order; but putting cache lookup inside
164 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
165 Instead we just make the current objfile part of the context of
166 cache lookup. This means we can record the same symbol multiple times,
167 each with a different "current objfile" that was in effect when the
168 lookup was saved in the cache, but cache space is pretty cheap. */
169 const struct objfile *objfile_context;
170
171 union
172 {
173 struct block_symbol found;
174 struct
175 {
176 char *name;
177 domain_enum domain;
178 } not_found;
179 } value;
180 };
181
182 /* Symbols don't specify global vs static block.
183 So keep them in separate caches. */
184
185 struct block_symbol_cache
186 {
187 unsigned int hits;
188 unsigned int misses;
189 unsigned int collisions;
190
191 /* SYMBOLS is a variable length array of this size.
192 One can imagine that in general one cache (global/static) should be a
193 fraction of the size of the other, but there's no data at the moment
194 on which to decide. */
195 unsigned int size;
196
197 struct symbol_cache_slot symbols[1];
198 };
199
200 /* The symbol cache.
201
202 Searching for symbols in the static and global blocks over multiple objfiles
203 again and again can be slow, as can searching very big objfiles. This is a
204 simple cache to improve symbol lookup performance, which is critical to
205 overall gdb performance.
206
207 Symbols are hashed on the name, its domain, and block.
208 They are also hashed on their objfile for objfile-specific lookups. */
209
210 struct symbol_cache
211 {
212 struct block_symbol_cache *global_symbols;
213 struct block_symbol_cache *static_symbols;
214 };
215
216 /* When non-zero, print debugging messages related to symtab creation. */
217 unsigned int symtab_create_debug = 0;
218
219 /* When non-zero, print debugging messages related to symbol lookup. */
220 unsigned int symbol_lookup_debug = 0;
221
222 /* The size of the cache is staged here. */
223 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
224
225 /* The current value of the symbol cache size.
226 This is saved so that if the user enters a value too big we can restore
227 the original value from here. */
228 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
229
230 /* Non-zero if a file may be known by two different basenames.
231 This is the uncommon case, and significantly slows down gdb.
232 Default set to "off" to not slow down the common case. */
233 int basenames_may_differ = 0;
234
235 /* Allow the user to configure the debugger behavior with respect
236 to multiple-choice menus when more than one symbol matches during
237 a symbol lookup. */
238
239 const char multiple_symbols_ask[] = "ask";
240 const char multiple_symbols_all[] = "all";
241 const char multiple_symbols_cancel[] = "cancel";
242 static const char *const multiple_symbols_modes[] =
243 {
244 multiple_symbols_ask,
245 multiple_symbols_all,
246 multiple_symbols_cancel,
247 NULL
248 };
249 static const char *multiple_symbols_mode = multiple_symbols_all;
250
251 /* Read-only accessor to AUTO_SELECT_MODE. */
252
253 const char *
254 multiple_symbols_select_mode (void)
255 {
256 return multiple_symbols_mode;
257 }
258
259 /* Return the name of a domain_enum. */
260
261 const char *
262 domain_name (domain_enum e)
263 {
264 switch (e)
265 {
266 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
267 case VAR_DOMAIN: return "VAR_DOMAIN";
268 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
269 case MODULE_DOMAIN: return "MODULE_DOMAIN";
270 case LABEL_DOMAIN: return "LABEL_DOMAIN";
271 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
272 default: gdb_assert_not_reached ("bad domain_enum");
273 }
274 }
275
276 /* Return the name of a search_domain . */
277
278 const char *
279 search_domain_name (enum search_domain e)
280 {
281 switch (e)
282 {
283 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
284 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
285 case TYPES_DOMAIN: return "TYPES_DOMAIN";
286 case ALL_DOMAIN: return "ALL_DOMAIN";
287 default: gdb_assert_not_reached ("bad search_domain");
288 }
289 }
290
291 /* See symtab.h. */
292
293 struct symtab *
294 compunit_primary_filetab (const struct compunit_symtab *cust)
295 {
296 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
297
298 /* The primary file symtab is the first one in the list. */
299 return COMPUNIT_FILETABS (cust);
300 }
301
302 /* See symtab.h. */
303
304 enum language
305 compunit_language (const struct compunit_symtab *cust)
306 {
307 struct symtab *symtab = compunit_primary_filetab (cust);
308
309 /* The language of the compunit symtab is the language of its primary
310 source file. */
311 return SYMTAB_LANGUAGE (symtab);
312 }
313
314 /* See whether FILENAME matches SEARCH_NAME using the rule that we
315 advertise to the user. (The manual's description of linespecs
316 describes what we advertise). Returns true if they match, false
317 otherwise. */
318
319 int
320 compare_filenames_for_search (const char *filename, const char *search_name)
321 {
322 int len = strlen (filename);
323 size_t search_len = strlen (search_name);
324
325 if (len < search_len)
326 return 0;
327
328 /* The tail of FILENAME must match. */
329 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
330 return 0;
331
332 /* Either the names must completely match, or the character
333 preceding the trailing SEARCH_NAME segment of FILENAME must be a
334 directory separator.
335
336 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
337 cannot match FILENAME "/path//dir/file.c" - as user has requested
338 absolute path. The sama applies for "c:\file.c" possibly
339 incorrectly hypothetically matching "d:\dir\c:\file.c".
340
341 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
342 compatible with SEARCH_NAME "file.c". In such case a compiler had
343 to put the "c:file.c" name into debug info. Such compatibility
344 works only on GDB built for DOS host. */
345 return (len == search_len
346 || (!IS_ABSOLUTE_PATH (search_name)
347 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
348 || (HAS_DRIVE_SPEC (filename)
349 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
350 }
351
352 /* Same as compare_filenames_for_search, but for glob-style patterns.
353 Heads up on the order of the arguments. They match the order of
354 compare_filenames_for_search, but it's the opposite of the order of
355 arguments to gdb_filename_fnmatch. */
356
357 int
358 compare_glob_filenames_for_search (const char *filename,
359 const char *search_name)
360 {
361 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
362 all /s have to be explicitly specified. */
363 int file_path_elements = count_path_elements (filename);
364 int search_path_elements = count_path_elements (search_name);
365
366 if (search_path_elements > file_path_elements)
367 return 0;
368
369 if (IS_ABSOLUTE_PATH (search_name))
370 {
371 return (search_path_elements == file_path_elements
372 && gdb_filename_fnmatch (search_name, filename,
373 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
374 }
375
376 {
377 const char *file_to_compare
378 = strip_leading_path_elements (filename,
379 file_path_elements - search_path_elements);
380
381 return gdb_filename_fnmatch (search_name, file_to_compare,
382 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
383 }
384 }
385
386 /* Check for a symtab of a specific name by searching some symtabs.
387 This is a helper function for callbacks of iterate_over_symtabs.
388
389 If NAME is not absolute, then REAL_PATH is NULL
390 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
391
392 The return value, NAME, REAL_PATH and CALLBACK are identical to the
393 `map_symtabs_matching_filename' method of quick_symbol_functions.
394
395 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
396 Each symtab within the specified compunit symtab is also searched.
397 AFTER_LAST is one past the last compunit symtab to search; NULL means to
398 search until the end of the list. */
399
400 bool
401 iterate_over_some_symtabs (const char *name,
402 const char *real_path,
403 struct compunit_symtab *first,
404 struct compunit_symtab *after_last,
405 gdb::function_view<bool (symtab *)> callback)
406 {
407 struct compunit_symtab *cust;
408 const char* base_name = lbasename (name);
409
410 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
411 {
412 for (symtab *s : compunit_filetabs (cust))
413 {
414 if (compare_filenames_for_search (s->filename, name))
415 {
416 if (callback (s))
417 return true;
418 continue;
419 }
420
421 /* Before we invoke realpath, which can get expensive when many
422 files are involved, do a quick comparison of the basenames. */
423 if (! basenames_may_differ
424 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
425 continue;
426
427 if (compare_filenames_for_search (symtab_to_fullname (s), name))
428 {
429 if (callback (s))
430 return true;
431 continue;
432 }
433
434 /* If the user gave us an absolute path, try to find the file in
435 this symtab and use its absolute path. */
436 if (real_path != NULL)
437 {
438 const char *fullname = symtab_to_fullname (s);
439
440 gdb_assert (IS_ABSOLUTE_PATH (real_path));
441 gdb_assert (IS_ABSOLUTE_PATH (name));
442 if (FILENAME_CMP (real_path, fullname) == 0)
443 {
444 if (callback (s))
445 return true;
446 continue;
447 }
448 }
449 }
450 }
451
452 return false;
453 }
454
455 /* Check for a symtab of a specific name; first in symtabs, then in
456 psymtabs. *If* there is no '/' in the name, a match after a '/'
457 in the symtab filename will also work.
458
459 Calls CALLBACK with each symtab that is found. If CALLBACK returns
460 true, the search stops. */
461
462 void
463 iterate_over_symtabs (const char *name,
464 gdb::function_view<bool (symtab *)> callback)
465 {
466 gdb::unique_xmalloc_ptr<char> real_path;
467
468 /* Here we are interested in canonicalizing an absolute path, not
469 absolutizing a relative path. */
470 if (IS_ABSOLUTE_PATH (name))
471 {
472 real_path = gdb_realpath (name);
473 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
474 }
475
476 for (objfile *objfile : all_objfiles (current_program_space))
477 {
478 if (iterate_over_some_symtabs (name, real_path.get (),
479 objfile->compunit_symtabs, NULL,
480 callback))
481 return;
482 }
483
484 /* Same search rules as above apply here, but now we look thru the
485 psymtabs. */
486
487 for (objfile *objfile : all_objfiles (current_program_space))
488 {
489 if (objfile->sf
490 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
491 name,
492 real_path.get (),
493 callback))
494 return;
495 }
496 }
497
498 /* A wrapper for iterate_over_symtabs that returns the first matching
499 symtab, or NULL. */
500
501 struct symtab *
502 lookup_symtab (const char *name)
503 {
504 struct symtab *result = NULL;
505
506 iterate_over_symtabs (name, [&] (symtab *symtab)
507 {
508 result = symtab;
509 return true;
510 });
511
512 return result;
513 }
514
515 \f
516 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
517 full method name, which consist of the class name (from T), the unadorned
518 method name from METHOD_ID, and the signature for the specific overload,
519 specified by SIGNATURE_ID. Note that this function is g++ specific. */
520
521 char *
522 gdb_mangle_name (struct type *type, int method_id, int signature_id)
523 {
524 int mangled_name_len;
525 char *mangled_name;
526 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
527 struct fn_field *method = &f[signature_id];
528 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
529 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
530 const char *newname = TYPE_NAME (type);
531
532 /* Does the form of physname indicate that it is the full mangled name
533 of a constructor (not just the args)? */
534 int is_full_physname_constructor;
535
536 int is_constructor;
537 int is_destructor = is_destructor_name (physname);
538 /* Need a new type prefix. */
539 const char *const_prefix = method->is_const ? "C" : "";
540 const char *volatile_prefix = method->is_volatile ? "V" : "";
541 char buf[20];
542 int len = (newname == NULL ? 0 : strlen (newname));
543
544 /* Nothing to do if physname already contains a fully mangled v3 abi name
545 or an operator name. */
546 if ((physname[0] == '_' && physname[1] == 'Z')
547 || is_operator_name (field_name))
548 return xstrdup (physname);
549
550 is_full_physname_constructor = is_constructor_name (physname);
551
552 is_constructor = is_full_physname_constructor
553 || (newname && strcmp (field_name, newname) == 0);
554
555 if (!is_destructor)
556 is_destructor = (startswith (physname, "__dt"));
557
558 if (is_destructor || is_full_physname_constructor)
559 {
560 mangled_name = (char *) xmalloc (strlen (physname) + 1);
561 strcpy (mangled_name, physname);
562 return mangled_name;
563 }
564
565 if (len == 0)
566 {
567 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
568 }
569 else if (physname[0] == 't' || physname[0] == 'Q')
570 {
571 /* The physname for template and qualified methods already includes
572 the class name. */
573 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
574 newname = NULL;
575 len = 0;
576 }
577 else
578 {
579 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
580 volatile_prefix, len);
581 }
582 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
583 + strlen (buf) + len + strlen (physname) + 1);
584
585 mangled_name = (char *) xmalloc (mangled_name_len);
586 if (is_constructor)
587 mangled_name[0] = '\0';
588 else
589 strcpy (mangled_name, field_name);
590
591 strcat (mangled_name, buf);
592 /* If the class doesn't have a name, i.e. newname NULL, then we just
593 mangle it using 0 for the length of the class. Thus it gets mangled
594 as something starting with `::' rather than `classname::'. */
595 if (newname != NULL)
596 strcat (mangled_name, newname);
597
598 strcat (mangled_name, physname);
599 return (mangled_name);
600 }
601
602 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
603 correctly allocated. */
604
605 void
606 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
607 const char *name,
608 struct obstack *obstack)
609 {
610 if (gsymbol->language == language_ada)
611 {
612 if (name == NULL)
613 {
614 gsymbol->ada_mangled = 0;
615 gsymbol->language_specific.obstack = obstack;
616 }
617 else
618 {
619 gsymbol->ada_mangled = 1;
620 gsymbol->language_specific.demangled_name = name;
621 }
622 }
623 else
624 gsymbol->language_specific.demangled_name = name;
625 }
626
627 /* Return the demangled name of GSYMBOL. */
628
629 const char *
630 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
631 {
632 if (gsymbol->language == language_ada)
633 {
634 if (!gsymbol->ada_mangled)
635 return NULL;
636 /* Fall through. */
637 }
638
639 return gsymbol->language_specific.demangled_name;
640 }
641
642 \f
643 /* Initialize the language dependent portion of a symbol
644 depending upon the language for the symbol. */
645
646 void
647 symbol_set_language (struct general_symbol_info *gsymbol,
648 enum language language,
649 struct obstack *obstack)
650 {
651 gsymbol->language = language;
652 if (gsymbol->language == language_cplus
653 || gsymbol->language == language_d
654 || gsymbol->language == language_go
655 || gsymbol->language == language_objc
656 || gsymbol->language == language_fortran)
657 {
658 symbol_set_demangled_name (gsymbol, NULL, obstack);
659 }
660 else if (gsymbol->language == language_ada)
661 {
662 gdb_assert (gsymbol->ada_mangled == 0);
663 gsymbol->language_specific.obstack = obstack;
664 }
665 else
666 {
667 memset (&gsymbol->language_specific, 0,
668 sizeof (gsymbol->language_specific));
669 }
670 }
671
672 /* Functions to initialize a symbol's mangled name. */
673
674 /* Objects of this type are stored in the demangled name hash table. */
675 struct demangled_name_entry
676 {
677 const char *mangled;
678 char demangled[1];
679 };
680
681 /* Hash function for the demangled name hash. */
682
683 static hashval_t
684 hash_demangled_name_entry (const void *data)
685 {
686 const struct demangled_name_entry *e
687 = (const struct demangled_name_entry *) data;
688
689 return htab_hash_string (e->mangled);
690 }
691
692 /* Equality function for the demangled name hash. */
693
694 static int
695 eq_demangled_name_entry (const void *a, const void *b)
696 {
697 const struct demangled_name_entry *da
698 = (const struct demangled_name_entry *) a;
699 const struct demangled_name_entry *db
700 = (const struct demangled_name_entry *) b;
701
702 return strcmp (da->mangled, db->mangled) == 0;
703 }
704
705 /* Create the hash table used for demangled names. Each hash entry is
706 a pair of strings; one for the mangled name and one for the demangled
707 name. The entry is hashed via just the mangled name. */
708
709 static void
710 create_demangled_names_hash (struct objfile *objfile)
711 {
712 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
713 The hash table code will round this up to the next prime number.
714 Choosing a much larger table size wastes memory, and saves only about
715 1% in symbol reading. */
716
717 objfile->per_bfd->demangled_names_hash = htab_create_alloc
718 (256, hash_demangled_name_entry, eq_demangled_name_entry,
719 NULL, xcalloc, xfree);
720 }
721
722 /* Try to determine the demangled name for a symbol, based on the
723 language of that symbol. If the language is set to language_auto,
724 it will attempt to find any demangling algorithm that works and
725 then set the language appropriately. The returned name is allocated
726 by the demangler and should be xfree'd. */
727
728 static char *
729 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
730 const char *mangled)
731 {
732 char *demangled = NULL;
733 int i;
734
735 if (gsymbol->language == language_unknown)
736 gsymbol->language = language_auto;
737
738 if (gsymbol->language != language_auto)
739 {
740 const struct language_defn *lang = language_def (gsymbol->language);
741
742 language_sniff_from_mangled_name (lang, mangled, &demangled);
743 return demangled;
744 }
745
746 for (i = language_unknown; i < nr_languages; ++i)
747 {
748 enum language l = (enum language) i;
749 const struct language_defn *lang = language_def (l);
750
751 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
752 {
753 gsymbol->language = l;
754 return demangled;
755 }
756 }
757
758 return NULL;
759 }
760
761 /* Set both the mangled and demangled (if any) names for GSYMBOL based
762 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
763 objfile's obstack; but if COPY_NAME is 0 and if NAME is
764 NUL-terminated, then this function assumes that NAME is already
765 correctly saved (either permanently or with a lifetime tied to the
766 objfile), and it will not be copied.
767
768 The hash table corresponding to OBJFILE is used, and the memory
769 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
770 so the pointer can be discarded after calling this function. */
771
772 void
773 symbol_set_names (struct general_symbol_info *gsymbol,
774 const char *linkage_name, int len, int copy_name,
775 struct objfile *objfile)
776 {
777 struct demangled_name_entry **slot;
778 /* A 0-terminated copy of the linkage name. */
779 const char *linkage_name_copy;
780 struct demangled_name_entry entry;
781 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
782
783 if (gsymbol->language == language_ada)
784 {
785 /* In Ada, we do the symbol lookups using the mangled name, so
786 we can save some space by not storing the demangled name. */
787 if (!copy_name)
788 gsymbol->name = linkage_name;
789 else
790 {
791 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
792 len + 1);
793
794 memcpy (name, linkage_name, len);
795 name[len] = '\0';
796 gsymbol->name = name;
797 }
798 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
799
800 return;
801 }
802
803 if (per_bfd->demangled_names_hash == NULL)
804 create_demangled_names_hash (objfile);
805
806 if (linkage_name[len] != '\0')
807 {
808 char *alloc_name;
809
810 alloc_name = (char *) alloca (len + 1);
811 memcpy (alloc_name, linkage_name, len);
812 alloc_name[len] = '\0';
813
814 linkage_name_copy = alloc_name;
815 }
816 else
817 linkage_name_copy = linkage_name;
818
819 /* Set the symbol language. */
820 char *demangled_name_ptr
821 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
822 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
823
824 entry.mangled = linkage_name_copy;
825 slot = ((struct demangled_name_entry **)
826 htab_find_slot (per_bfd->demangled_names_hash,
827 &entry, INSERT));
828
829 /* If this name is not in the hash table, add it. */
830 if (*slot == NULL
831 /* A C version of the symbol may have already snuck into the table.
832 This happens to, e.g., main.init (__go_init_main). Cope. */
833 || (gsymbol->language == language_go
834 && (*slot)->demangled[0] == '\0'))
835 {
836 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
837
838 /* Suppose we have demangled_name==NULL, copy_name==0, and
839 linkage_name_copy==linkage_name. In this case, we already have the
840 mangled name saved, and we don't have a demangled name. So,
841 you might think we could save a little space by not recording
842 this in the hash table at all.
843
844 It turns out that it is actually important to still save such
845 an entry in the hash table, because storing this name gives
846 us better bcache hit rates for partial symbols. */
847 if (!copy_name && linkage_name_copy == linkage_name)
848 {
849 *slot
850 = ((struct demangled_name_entry *)
851 obstack_alloc (&per_bfd->storage_obstack,
852 offsetof (struct demangled_name_entry, demangled)
853 + demangled_len + 1));
854 (*slot)->mangled = linkage_name;
855 }
856 else
857 {
858 char *mangled_ptr;
859
860 /* If we must copy the mangled name, put it directly after
861 the demangled name so we can have a single
862 allocation. */
863 *slot
864 = ((struct demangled_name_entry *)
865 obstack_alloc (&per_bfd->storage_obstack,
866 offsetof (struct demangled_name_entry, demangled)
867 + len + demangled_len + 2));
868 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
869 strcpy (mangled_ptr, linkage_name_copy);
870 (*slot)->mangled = mangled_ptr;
871 }
872
873 if (demangled_name != NULL)
874 strcpy ((*slot)->demangled, demangled_name.get());
875 else
876 (*slot)->demangled[0] = '\0';
877 }
878
879 gsymbol->name = (*slot)->mangled;
880 if ((*slot)->demangled[0] != '\0')
881 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
882 &per_bfd->storage_obstack);
883 else
884 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
885 }
886
887 /* Return the source code name of a symbol. In languages where
888 demangling is necessary, this is the demangled name. */
889
890 const char *
891 symbol_natural_name (const struct general_symbol_info *gsymbol)
892 {
893 switch (gsymbol->language)
894 {
895 case language_cplus:
896 case language_d:
897 case language_go:
898 case language_objc:
899 case language_fortran:
900 if (symbol_get_demangled_name (gsymbol) != NULL)
901 return symbol_get_demangled_name (gsymbol);
902 break;
903 case language_ada:
904 return ada_decode_symbol (gsymbol);
905 default:
906 break;
907 }
908 return gsymbol->name;
909 }
910
911 /* Return the demangled name for a symbol based on the language for
912 that symbol. If no demangled name exists, return NULL. */
913
914 const char *
915 symbol_demangled_name (const struct general_symbol_info *gsymbol)
916 {
917 const char *dem_name = NULL;
918
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_objc:
925 case language_fortran:
926 dem_name = symbol_get_demangled_name (gsymbol);
927 break;
928 case language_ada:
929 dem_name = ada_decode_symbol (gsymbol);
930 break;
931 default:
932 break;
933 }
934 return dem_name;
935 }
936
937 /* Return the search name of a symbol---generally the demangled or
938 linkage name of the symbol, depending on how it will be searched for.
939 If there is no distinct demangled name, then returns the same value
940 (same pointer) as SYMBOL_LINKAGE_NAME. */
941
942 const char *
943 symbol_search_name (const struct general_symbol_info *gsymbol)
944 {
945 if (gsymbol->language == language_ada)
946 return gsymbol->name;
947 else
948 return symbol_natural_name (gsymbol);
949 }
950
951 /* See symtab.h. */
952
953 bool
954 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
955 const lookup_name_info &name)
956 {
957 symbol_name_matcher_ftype *name_match
958 = get_symbol_name_matcher (language_def (gsymbol->language), name);
959 return name_match (symbol_search_name (gsymbol), name, NULL);
960 }
961
962 \f
963
964 /* Return 1 if the two sections are the same, or if they could
965 plausibly be copies of each other, one in an original object
966 file and another in a separated debug file. */
967
968 int
969 matching_obj_sections (struct obj_section *obj_first,
970 struct obj_section *obj_second)
971 {
972 asection *first = obj_first? obj_first->the_bfd_section : NULL;
973 asection *second = obj_second? obj_second->the_bfd_section : NULL;
974 struct objfile *obj;
975
976 /* If they're the same section, then they match. */
977 if (first == second)
978 return 1;
979
980 /* If either is NULL, give up. */
981 if (first == NULL || second == NULL)
982 return 0;
983
984 /* This doesn't apply to absolute symbols. */
985 if (first->owner == NULL || second->owner == NULL)
986 return 0;
987
988 /* If they're in the same object file, they must be different sections. */
989 if (first->owner == second->owner)
990 return 0;
991
992 /* Check whether the two sections are potentially corresponding. They must
993 have the same size, address, and name. We can't compare section indexes,
994 which would be more reliable, because some sections may have been
995 stripped. */
996 if (bfd_get_section_size (first) != bfd_get_section_size (second))
997 return 0;
998
999 /* In-memory addresses may start at a different offset, relativize them. */
1000 if (bfd_get_section_vma (first->owner, first)
1001 - bfd_get_start_address (first->owner)
1002 != bfd_get_section_vma (second->owner, second)
1003 - bfd_get_start_address (second->owner))
1004 return 0;
1005
1006 if (bfd_get_section_name (first->owner, first) == NULL
1007 || bfd_get_section_name (second->owner, second) == NULL
1008 || strcmp (bfd_get_section_name (first->owner, first),
1009 bfd_get_section_name (second->owner, second)) != 0)
1010 return 0;
1011
1012 /* Otherwise check that they are in corresponding objfiles. */
1013
1014 for (objfile *objfile : all_objfiles (current_program_space))
1015 if (objfile->obfd == first->owner)
1016 {
1017 obj = objfile;
1018 break;
1019 }
1020 gdb_assert (obj != NULL);
1021
1022 if (obj->separate_debug_objfile != NULL
1023 && obj->separate_debug_objfile->obfd == second->owner)
1024 return 1;
1025 if (obj->separate_debug_objfile_backlink != NULL
1026 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1027 return 1;
1028
1029 return 0;
1030 }
1031
1032 /* See symtab.h. */
1033
1034 void
1035 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1036 {
1037 struct bound_minimal_symbol msymbol;
1038
1039 /* If we know that this is not a text address, return failure. This is
1040 necessary because we loop based on texthigh and textlow, which do
1041 not include the data ranges. */
1042 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1043 if (msymbol.minsym
1044 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1047 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1048 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1049 return;
1050
1051 for (objfile *objfile : all_objfiles (current_program_space))
1052 {
1053 struct compunit_symtab *cust = NULL;
1054
1055 if (objfile->sf)
1056 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1057 pc, section, 0);
1058 if (cust)
1059 return;
1060 }
1061 }
1062 \f
1063 /* Hash function for the symbol cache. */
1064
1065 static unsigned int
1066 hash_symbol_entry (const struct objfile *objfile_context,
1067 const char *name, domain_enum domain)
1068 {
1069 unsigned int hash = (uintptr_t) objfile_context;
1070
1071 if (name != NULL)
1072 hash += htab_hash_string (name);
1073
1074 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1075 to map to the same slot. */
1076 if (domain == STRUCT_DOMAIN)
1077 hash += VAR_DOMAIN * 7;
1078 else
1079 hash += domain * 7;
1080
1081 return hash;
1082 }
1083
1084 /* Equality function for the symbol cache. */
1085
1086 static int
1087 eq_symbol_entry (const struct symbol_cache_slot *slot,
1088 const struct objfile *objfile_context,
1089 const char *name, domain_enum domain)
1090 {
1091 const char *slot_name;
1092 domain_enum slot_domain;
1093
1094 if (slot->state == SYMBOL_SLOT_UNUSED)
1095 return 0;
1096
1097 if (slot->objfile_context != objfile_context)
1098 return 0;
1099
1100 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1101 {
1102 slot_name = slot->value.not_found.name;
1103 slot_domain = slot->value.not_found.domain;
1104 }
1105 else
1106 {
1107 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1108 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1109 }
1110
1111 /* NULL names match. */
1112 if (slot_name == NULL && name == NULL)
1113 {
1114 /* But there's no point in calling symbol_matches_domain in the
1115 SYMBOL_SLOT_FOUND case. */
1116 if (slot_domain != domain)
1117 return 0;
1118 }
1119 else if (slot_name != NULL && name != NULL)
1120 {
1121 /* It's important that we use the same comparison that was done
1122 the first time through. If the slot records a found symbol,
1123 then this means using the symbol name comparison function of
1124 the symbol's language with SYMBOL_SEARCH_NAME. See
1125 dictionary.c. It also means using symbol_matches_domain for
1126 found symbols. See block.c.
1127
1128 If the slot records a not-found symbol, then require a precise match.
1129 We could still be lax with whitespace like strcmp_iw though. */
1130
1131 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1132 {
1133 if (strcmp (slot_name, name) != 0)
1134 return 0;
1135 if (slot_domain != domain)
1136 return 0;
1137 }
1138 else
1139 {
1140 struct symbol *sym = slot->value.found.symbol;
1141 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1142
1143 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1144 return 0;
1145
1146 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1147 slot_domain, domain))
1148 return 0;
1149 }
1150 }
1151 else
1152 {
1153 /* Only one name is NULL. */
1154 return 0;
1155 }
1156
1157 return 1;
1158 }
1159
1160 /* Given a cache of size SIZE, return the size of the struct (with variable
1161 length array) in bytes. */
1162
1163 static size_t
1164 symbol_cache_byte_size (unsigned int size)
1165 {
1166 return (sizeof (struct block_symbol_cache)
1167 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1168 }
1169
1170 /* Resize CACHE. */
1171
1172 static void
1173 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1174 {
1175 /* If there's no change in size, don't do anything.
1176 All caches have the same size, so we can just compare with the size
1177 of the global symbols cache. */
1178 if ((cache->global_symbols != NULL
1179 && cache->global_symbols->size == new_size)
1180 || (cache->global_symbols == NULL
1181 && new_size == 0))
1182 return;
1183
1184 xfree (cache->global_symbols);
1185 xfree (cache->static_symbols);
1186
1187 if (new_size == 0)
1188 {
1189 cache->global_symbols = NULL;
1190 cache->static_symbols = NULL;
1191 }
1192 else
1193 {
1194 size_t total_size = symbol_cache_byte_size (new_size);
1195
1196 cache->global_symbols
1197 = (struct block_symbol_cache *) xcalloc (1, total_size);
1198 cache->static_symbols
1199 = (struct block_symbol_cache *) xcalloc (1, total_size);
1200 cache->global_symbols->size = new_size;
1201 cache->static_symbols->size = new_size;
1202 }
1203 }
1204
1205 /* Make a symbol cache of size SIZE. */
1206
1207 static struct symbol_cache *
1208 make_symbol_cache (unsigned int size)
1209 {
1210 struct symbol_cache *cache;
1211
1212 cache = XCNEW (struct symbol_cache);
1213 resize_symbol_cache (cache, symbol_cache_size);
1214 return cache;
1215 }
1216
1217 /* Free the space used by CACHE. */
1218
1219 static void
1220 free_symbol_cache (struct symbol_cache *cache)
1221 {
1222 xfree (cache->global_symbols);
1223 xfree (cache->static_symbols);
1224 xfree (cache);
1225 }
1226
1227 /* Return the symbol cache of PSPACE.
1228 Create one if it doesn't exist yet. */
1229
1230 static struct symbol_cache *
1231 get_symbol_cache (struct program_space *pspace)
1232 {
1233 struct symbol_cache *cache
1234 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1235
1236 if (cache == NULL)
1237 {
1238 cache = make_symbol_cache (symbol_cache_size);
1239 set_program_space_data (pspace, symbol_cache_key, cache);
1240 }
1241
1242 return cache;
1243 }
1244
1245 /* Delete the symbol cache of PSPACE.
1246 Called when PSPACE is destroyed. */
1247
1248 static void
1249 symbol_cache_cleanup (struct program_space *pspace, void *data)
1250 {
1251 struct symbol_cache *cache = (struct symbol_cache *) data;
1252
1253 free_symbol_cache (cache);
1254 }
1255
1256 /* Set the size of the symbol cache in all program spaces. */
1257
1258 static void
1259 set_symbol_cache_size (unsigned int new_size)
1260 {
1261 struct program_space *pspace;
1262
1263 ALL_PSPACES (pspace)
1264 {
1265 struct symbol_cache *cache
1266 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1267
1268 /* The pspace could have been created but not have a cache yet. */
1269 if (cache != NULL)
1270 resize_symbol_cache (cache, new_size);
1271 }
1272 }
1273
1274 /* Called when symbol-cache-size is set. */
1275
1276 static void
1277 set_symbol_cache_size_handler (const char *args, int from_tty,
1278 struct cmd_list_element *c)
1279 {
1280 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1281 {
1282 /* Restore the previous value.
1283 This is the value the "show" command prints. */
1284 new_symbol_cache_size = symbol_cache_size;
1285
1286 error (_("Symbol cache size is too large, max is %u."),
1287 MAX_SYMBOL_CACHE_SIZE);
1288 }
1289 symbol_cache_size = new_symbol_cache_size;
1290
1291 set_symbol_cache_size (symbol_cache_size);
1292 }
1293
1294 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1295 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1296 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1297 failed (and thus this one will too), or NULL if the symbol is not present
1298 in the cache.
1299 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1300 set to the cache and slot of the symbol to save the result of a full lookup
1301 attempt. */
1302
1303 static struct block_symbol
1304 symbol_cache_lookup (struct symbol_cache *cache,
1305 struct objfile *objfile_context, int block,
1306 const char *name, domain_enum domain,
1307 struct block_symbol_cache **bsc_ptr,
1308 struct symbol_cache_slot **slot_ptr)
1309 {
1310 struct block_symbol_cache *bsc;
1311 unsigned int hash;
1312 struct symbol_cache_slot *slot;
1313
1314 if (block == GLOBAL_BLOCK)
1315 bsc = cache->global_symbols;
1316 else
1317 bsc = cache->static_symbols;
1318 if (bsc == NULL)
1319 {
1320 *bsc_ptr = NULL;
1321 *slot_ptr = NULL;
1322 return (struct block_symbol) {NULL, NULL};
1323 }
1324
1325 hash = hash_symbol_entry (objfile_context, name, domain);
1326 slot = bsc->symbols + hash % bsc->size;
1327
1328 if (eq_symbol_entry (slot, objfile_context, name, domain))
1329 {
1330 if (symbol_lookup_debug)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "%s block symbol cache hit%s for %s, %s\n",
1333 block == GLOBAL_BLOCK ? "Global" : "Static",
1334 slot->state == SYMBOL_SLOT_NOT_FOUND
1335 ? " (not found)" : "",
1336 name, domain_name (domain));
1337 ++bsc->hits;
1338 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1339 return SYMBOL_LOOKUP_FAILED;
1340 return slot->value.found;
1341 }
1342
1343 /* Symbol is not present in the cache. */
1344
1345 *bsc_ptr = bsc;
1346 *slot_ptr = slot;
1347
1348 if (symbol_lookup_debug)
1349 {
1350 fprintf_unfiltered (gdb_stdlog,
1351 "%s block symbol cache miss for %s, %s\n",
1352 block == GLOBAL_BLOCK ? "Global" : "Static",
1353 name, domain_name (domain));
1354 }
1355 ++bsc->misses;
1356 return (struct block_symbol) {NULL, NULL};
1357 }
1358
1359 /* Clear out SLOT. */
1360
1361 static void
1362 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1363 {
1364 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1365 xfree (slot->value.not_found.name);
1366 slot->state = SYMBOL_SLOT_UNUSED;
1367 }
1368
1369 /* Mark SYMBOL as found in SLOT.
1370 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1371 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1372 necessarily the objfile the symbol was found in. */
1373
1374 static void
1375 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1376 struct symbol_cache_slot *slot,
1377 struct objfile *objfile_context,
1378 struct symbol *symbol,
1379 const struct block *block)
1380 {
1381 if (bsc == NULL)
1382 return;
1383 if (slot->state != SYMBOL_SLOT_UNUSED)
1384 {
1385 ++bsc->collisions;
1386 symbol_cache_clear_slot (slot);
1387 }
1388 slot->state = SYMBOL_SLOT_FOUND;
1389 slot->objfile_context = objfile_context;
1390 slot->value.found.symbol = symbol;
1391 slot->value.found.block = block;
1392 }
1393
1394 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1395 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1396 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1397
1398 static void
1399 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1400 struct symbol_cache_slot *slot,
1401 struct objfile *objfile_context,
1402 const char *name, domain_enum domain)
1403 {
1404 if (bsc == NULL)
1405 return;
1406 if (slot->state != SYMBOL_SLOT_UNUSED)
1407 {
1408 ++bsc->collisions;
1409 symbol_cache_clear_slot (slot);
1410 }
1411 slot->state = SYMBOL_SLOT_NOT_FOUND;
1412 slot->objfile_context = objfile_context;
1413 slot->value.not_found.name = xstrdup (name);
1414 slot->value.not_found.domain = domain;
1415 }
1416
1417 /* Flush the symbol cache of PSPACE. */
1418
1419 static void
1420 symbol_cache_flush (struct program_space *pspace)
1421 {
1422 struct symbol_cache *cache
1423 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1424 int pass;
1425
1426 if (cache == NULL)
1427 return;
1428 if (cache->global_symbols == NULL)
1429 {
1430 gdb_assert (symbol_cache_size == 0);
1431 gdb_assert (cache->static_symbols == NULL);
1432 return;
1433 }
1434
1435 /* If the cache is untouched since the last flush, early exit.
1436 This is important for performance during the startup of a program linked
1437 with 100s (or 1000s) of shared libraries. */
1438 if (cache->global_symbols->misses == 0
1439 && cache->static_symbols->misses == 0)
1440 return;
1441
1442 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1443 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1444
1445 for (pass = 0; pass < 2; ++pass)
1446 {
1447 struct block_symbol_cache *bsc
1448 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1449 unsigned int i;
1450
1451 for (i = 0; i < bsc->size; ++i)
1452 symbol_cache_clear_slot (&bsc->symbols[i]);
1453 }
1454
1455 cache->global_symbols->hits = 0;
1456 cache->global_symbols->misses = 0;
1457 cache->global_symbols->collisions = 0;
1458 cache->static_symbols->hits = 0;
1459 cache->static_symbols->misses = 0;
1460 cache->static_symbols->collisions = 0;
1461 }
1462
1463 /* Dump CACHE. */
1464
1465 static void
1466 symbol_cache_dump (const struct symbol_cache *cache)
1467 {
1468 int pass;
1469
1470 if (cache->global_symbols == NULL)
1471 {
1472 printf_filtered (" <disabled>\n");
1473 return;
1474 }
1475
1476 for (pass = 0; pass < 2; ++pass)
1477 {
1478 const struct block_symbol_cache *bsc
1479 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1480 unsigned int i;
1481
1482 if (pass == 0)
1483 printf_filtered ("Global symbols:\n");
1484 else
1485 printf_filtered ("Static symbols:\n");
1486
1487 for (i = 0; i < bsc->size; ++i)
1488 {
1489 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1490
1491 QUIT;
1492
1493 switch (slot->state)
1494 {
1495 case SYMBOL_SLOT_UNUSED:
1496 break;
1497 case SYMBOL_SLOT_NOT_FOUND:
1498 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1499 host_address_to_string (slot->objfile_context),
1500 slot->value.not_found.name,
1501 domain_name (slot->value.not_found.domain));
1502 break;
1503 case SYMBOL_SLOT_FOUND:
1504 {
1505 struct symbol *found = slot->value.found.symbol;
1506 const struct objfile *context = slot->objfile_context;
1507
1508 printf_filtered (" [%4u] = %s, %s %s\n", i,
1509 host_address_to_string (context),
1510 SYMBOL_PRINT_NAME (found),
1511 domain_name (SYMBOL_DOMAIN (found)));
1512 break;
1513 }
1514 }
1515 }
1516 }
1517 }
1518
1519 /* The "mt print symbol-cache" command. */
1520
1521 static void
1522 maintenance_print_symbol_cache (const char *args, int from_tty)
1523 {
1524 struct program_space *pspace;
1525
1526 ALL_PSPACES (pspace)
1527 {
1528 struct symbol_cache *cache;
1529
1530 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1531 pspace->num,
1532 pspace->symfile_object_file != NULL
1533 ? objfile_name (pspace->symfile_object_file)
1534 : "(no object file)");
1535
1536 /* If the cache hasn't been created yet, avoid creating one. */
1537 cache
1538 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1539 if (cache == NULL)
1540 printf_filtered (" <empty>\n");
1541 else
1542 symbol_cache_dump (cache);
1543 }
1544 }
1545
1546 /* The "mt flush-symbol-cache" command. */
1547
1548 static void
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1550 {
1551 struct program_space *pspace;
1552
1553 ALL_PSPACES (pspace)
1554 {
1555 symbol_cache_flush (pspace);
1556 }
1557 }
1558
1559 /* Print usage statistics of CACHE. */
1560
1561 static void
1562 symbol_cache_stats (struct symbol_cache *cache)
1563 {
1564 int pass;
1565
1566 if (cache->global_symbols == NULL)
1567 {
1568 printf_filtered (" <disabled>\n");
1569 return;
1570 }
1571
1572 for (pass = 0; pass < 2; ++pass)
1573 {
1574 const struct block_symbol_cache *bsc
1575 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1576
1577 QUIT;
1578
1579 if (pass == 0)
1580 printf_filtered ("Global block cache stats:\n");
1581 else
1582 printf_filtered ("Static block cache stats:\n");
1583
1584 printf_filtered (" size: %u\n", bsc->size);
1585 printf_filtered (" hits: %u\n", bsc->hits);
1586 printf_filtered (" misses: %u\n", bsc->misses);
1587 printf_filtered (" collisions: %u\n", bsc->collisions);
1588 }
1589 }
1590
1591 /* The "mt print symbol-cache-statistics" command. */
1592
1593 static void
1594 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1595 {
1596 struct program_space *pspace;
1597
1598 ALL_PSPACES (pspace)
1599 {
1600 struct symbol_cache *cache;
1601
1602 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1603 pspace->num,
1604 pspace->symfile_object_file != NULL
1605 ? objfile_name (pspace->symfile_object_file)
1606 : "(no object file)");
1607
1608 /* If the cache hasn't been created yet, avoid creating one. */
1609 cache
1610 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1611 if (cache == NULL)
1612 printf_filtered (" empty, no stats available\n");
1613 else
1614 symbol_cache_stats (cache);
1615 }
1616 }
1617
1618 /* This module's 'new_objfile' observer. */
1619
1620 static void
1621 symtab_new_objfile_observer (struct objfile *objfile)
1622 {
1623 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1624 symbol_cache_flush (current_program_space);
1625 }
1626
1627 /* This module's 'free_objfile' observer. */
1628
1629 static void
1630 symtab_free_objfile_observer (struct objfile *objfile)
1631 {
1632 symbol_cache_flush (objfile->pspace);
1633 }
1634 \f
1635 /* Debug symbols usually don't have section information. We need to dig that
1636 out of the minimal symbols and stash that in the debug symbol. */
1637
1638 void
1639 fixup_section (struct general_symbol_info *ginfo,
1640 CORE_ADDR addr, struct objfile *objfile)
1641 {
1642 struct minimal_symbol *msym;
1643
1644 /* First, check whether a minimal symbol with the same name exists
1645 and points to the same address. The address check is required
1646 e.g. on PowerPC64, where the minimal symbol for a function will
1647 point to the function descriptor, while the debug symbol will
1648 point to the actual function code. */
1649 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1650 if (msym)
1651 ginfo->section = MSYMBOL_SECTION (msym);
1652 else
1653 {
1654 /* Static, function-local variables do appear in the linker
1655 (minimal) symbols, but are frequently given names that won't
1656 be found via lookup_minimal_symbol(). E.g., it has been
1657 observed in frv-uclinux (ELF) executables that a static,
1658 function-local variable named "foo" might appear in the
1659 linker symbols as "foo.6" or "foo.3". Thus, there is no
1660 point in attempting to extend the lookup-by-name mechanism to
1661 handle this case due to the fact that there can be multiple
1662 names.
1663
1664 So, instead, search the section table when lookup by name has
1665 failed. The ``addr'' and ``endaddr'' fields may have already
1666 been relocated. If so, the relocation offset (i.e. the
1667 ANOFFSET value) needs to be subtracted from these values when
1668 performing the comparison. We unconditionally subtract it,
1669 because, when no relocation has been performed, the ANOFFSET
1670 value will simply be zero.
1671
1672 The address of the symbol whose section we're fixing up HAS
1673 NOT BEEN adjusted (relocated) yet. It can't have been since
1674 the section isn't yet known and knowing the section is
1675 necessary in order to add the correct relocation value. In
1676 other words, we wouldn't even be in this function (attempting
1677 to compute the section) if it were already known.
1678
1679 Note that it is possible to search the minimal symbols
1680 (subtracting the relocation value if necessary) to find the
1681 matching minimal symbol, but this is overkill and much less
1682 efficient. It is not necessary to find the matching minimal
1683 symbol, only its section.
1684
1685 Note that this technique (of doing a section table search)
1686 can fail when unrelocated section addresses overlap. For
1687 this reason, we still attempt a lookup by name prior to doing
1688 a search of the section table. */
1689
1690 struct obj_section *s;
1691 int fallback = -1;
1692
1693 ALL_OBJFILE_OSECTIONS (objfile, s)
1694 {
1695 int idx = s - objfile->sections;
1696 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1697
1698 if (fallback == -1)
1699 fallback = idx;
1700
1701 if (obj_section_addr (s) - offset <= addr
1702 && addr < obj_section_endaddr (s) - offset)
1703 {
1704 ginfo->section = idx;
1705 return;
1706 }
1707 }
1708
1709 /* If we didn't find the section, assume it is in the first
1710 section. If there is no allocated section, then it hardly
1711 matters what we pick, so just pick zero. */
1712 if (fallback == -1)
1713 ginfo->section = 0;
1714 else
1715 ginfo->section = fallback;
1716 }
1717 }
1718
1719 struct symbol *
1720 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1721 {
1722 CORE_ADDR addr;
1723
1724 if (!sym)
1725 return NULL;
1726
1727 if (!SYMBOL_OBJFILE_OWNED (sym))
1728 return sym;
1729
1730 /* We either have an OBJFILE, or we can get at it from the sym's
1731 symtab. Anything else is a bug. */
1732 gdb_assert (objfile || symbol_symtab (sym));
1733
1734 if (objfile == NULL)
1735 objfile = symbol_objfile (sym);
1736
1737 if (SYMBOL_OBJ_SECTION (objfile, sym))
1738 return sym;
1739
1740 /* We should have an objfile by now. */
1741 gdb_assert (objfile);
1742
1743 switch (SYMBOL_CLASS (sym))
1744 {
1745 case LOC_STATIC:
1746 case LOC_LABEL:
1747 addr = SYMBOL_VALUE_ADDRESS (sym);
1748 break;
1749 case LOC_BLOCK:
1750 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1751 break;
1752
1753 default:
1754 /* Nothing else will be listed in the minsyms -- no use looking
1755 it up. */
1756 return sym;
1757 }
1758
1759 fixup_section (&sym->ginfo, addr, objfile);
1760
1761 return sym;
1762 }
1763
1764 /* See symtab.h. */
1765
1766 demangle_for_lookup_info::demangle_for_lookup_info
1767 (const lookup_name_info &lookup_name, language lang)
1768 {
1769 demangle_result_storage storage;
1770
1771 if (lookup_name.ignore_parameters () && lang == language_cplus)
1772 {
1773 gdb::unique_xmalloc_ptr<char> without_params
1774 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1775 lookup_name.completion_mode ());
1776
1777 if (without_params != NULL)
1778 {
1779 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1780 m_demangled_name = demangle_for_lookup (without_params.get (),
1781 lang, storage);
1782 return;
1783 }
1784 }
1785
1786 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1787 m_demangled_name = lookup_name.name ();
1788 else
1789 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1790 lang, storage);
1791 }
1792
1793 /* See symtab.h. */
1794
1795 const lookup_name_info &
1796 lookup_name_info::match_any ()
1797 {
1798 /* Lookup any symbol that "" would complete. I.e., this matches all
1799 symbol names. */
1800 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1801 true);
1802
1803 return lookup_name;
1804 }
1805
1806 /* Compute the demangled form of NAME as used by the various symbol
1807 lookup functions. The result can either be the input NAME
1808 directly, or a pointer to a buffer owned by the STORAGE object.
1809
1810 For Ada, this function just returns NAME, unmodified.
1811 Normally, Ada symbol lookups are performed using the encoded name
1812 rather than the demangled name, and so it might seem to make sense
1813 for this function to return an encoded version of NAME.
1814 Unfortunately, we cannot do this, because this function is used in
1815 circumstances where it is not appropriate to try to encode NAME.
1816 For instance, when displaying the frame info, we demangle the name
1817 of each parameter, and then perform a symbol lookup inside our
1818 function using that demangled name. In Ada, certain functions
1819 have internally-generated parameters whose name contain uppercase
1820 characters. Encoding those name would result in those uppercase
1821 characters to become lowercase, and thus cause the symbol lookup
1822 to fail. */
1823
1824 const char *
1825 demangle_for_lookup (const char *name, enum language lang,
1826 demangle_result_storage &storage)
1827 {
1828 /* If we are using C++, D, or Go, demangle the name before doing a
1829 lookup, so we can always binary search. */
1830 if (lang == language_cplus)
1831 {
1832 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1833 if (demangled_name != NULL)
1834 return storage.set_malloc_ptr (demangled_name);
1835
1836 /* If we were given a non-mangled name, canonicalize it
1837 according to the language (so far only for C++). */
1838 std::string canon = cp_canonicalize_string (name);
1839 if (!canon.empty ())
1840 return storage.swap_string (canon);
1841 }
1842 else if (lang == language_d)
1843 {
1844 char *demangled_name = d_demangle (name, 0);
1845 if (demangled_name != NULL)
1846 return storage.set_malloc_ptr (demangled_name);
1847 }
1848 else if (lang == language_go)
1849 {
1850 char *demangled_name = go_demangle (name, 0);
1851 if (demangled_name != NULL)
1852 return storage.set_malloc_ptr (demangled_name);
1853 }
1854
1855 return name;
1856 }
1857
1858 /* See symtab.h. */
1859
1860 unsigned int
1861 search_name_hash (enum language language, const char *search_name)
1862 {
1863 return language_def (language)->la_search_name_hash (search_name);
1864 }
1865
1866 /* See symtab.h.
1867
1868 This function (or rather its subordinates) have a bunch of loops and
1869 it would seem to be attractive to put in some QUIT's (though I'm not really
1870 sure whether it can run long enough to be really important). But there
1871 are a few calls for which it would appear to be bad news to quit
1872 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1873 that there is C++ code below which can error(), but that probably
1874 doesn't affect these calls since they are looking for a known
1875 variable and thus can probably assume it will never hit the C++
1876 code). */
1877
1878 struct block_symbol
1879 lookup_symbol_in_language (const char *name, const struct block *block,
1880 const domain_enum domain, enum language lang,
1881 struct field_of_this_result *is_a_field_of_this)
1882 {
1883 demangle_result_storage storage;
1884 const char *modified_name = demangle_for_lookup (name, lang, storage);
1885
1886 return lookup_symbol_aux (modified_name,
1887 symbol_name_match_type::FULL,
1888 block, domain, lang,
1889 is_a_field_of_this);
1890 }
1891
1892 /* See symtab.h. */
1893
1894 struct block_symbol
1895 lookup_symbol (const char *name, const struct block *block,
1896 domain_enum domain,
1897 struct field_of_this_result *is_a_field_of_this)
1898 {
1899 return lookup_symbol_in_language (name, block, domain,
1900 current_language->la_language,
1901 is_a_field_of_this);
1902 }
1903
1904 /* See symtab.h. */
1905
1906 struct block_symbol
1907 lookup_symbol_search_name (const char *search_name, const struct block *block,
1908 domain_enum domain)
1909 {
1910 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1911 block, domain, language_asm, NULL);
1912 }
1913
1914 /* See symtab.h. */
1915
1916 struct block_symbol
1917 lookup_language_this (const struct language_defn *lang,
1918 const struct block *block)
1919 {
1920 if (lang->la_name_of_this == NULL || block == NULL)
1921 return (struct block_symbol) {NULL, NULL};
1922
1923 if (symbol_lookup_debug > 1)
1924 {
1925 struct objfile *objfile = lookup_objfile_from_block (block);
1926
1927 fprintf_unfiltered (gdb_stdlog,
1928 "lookup_language_this (%s, %s (objfile %s))",
1929 lang->la_name, host_address_to_string (block),
1930 objfile_debug_name (objfile));
1931 }
1932
1933 while (block)
1934 {
1935 struct symbol *sym;
1936
1937 sym = block_lookup_symbol (block, lang->la_name_of_this,
1938 symbol_name_match_type::SEARCH_NAME,
1939 VAR_DOMAIN);
1940 if (sym != NULL)
1941 {
1942 if (symbol_lookup_debug > 1)
1943 {
1944 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1945 SYMBOL_PRINT_NAME (sym),
1946 host_address_to_string (sym),
1947 host_address_to_string (block));
1948 }
1949 return (struct block_symbol) {sym, block};
1950 }
1951 if (BLOCK_FUNCTION (block))
1952 break;
1953 block = BLOCK_SUPERBLOCK (block);
1954 }
1955
1956 if (symbol_lookup_debug > 1)
1957 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1958 return (struct block_symbol) {NULL, NULL};
1959 }
1960
1961 /* Given TYPE, a structure/union,
1962 return 1 if the component named NAME from the ultimate target
1963 structure/union is defined, otherwise, return 0. */
1964
1965 static int
1966 check_field (struct type *type, const char *name,
1967 struct field_of_this_result *is_a_field_of_this)
1968 {
1969 int i;
1970
1971 /* The type may be a stub. */
1972 type = check_typedef (type);
1973
1974 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1975 {
1976 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1977
1978 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1979 {
1980 is_a_field_of_this->type = type;
1981 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1982 return 1;
1983 }
1984 }
1985
1986 /* C++: If it was not found as a data field, then try to return it
1987 as a pointer to a method. */
1988
1989 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1990 {
1991 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1992 {
1993 is_a_field_of_this->type = type;
1994 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1995 return 1;
1996 }
1997 }
1998
1999 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2000 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2001 return 1;
2002
2003 return 0;
2004 }
2005
2006 /* Behave like lookup_symbol except that NAME is the natural name
2007 (e.g., demangled name) of the symbol that we're looking for. */
2008
2009 static struct block_symbol
2010 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2011 const struct block *block,
2012 const domain_enum domain, enum language language,
2013 struct field_of_this_result *is_a_field_of_this)
2014 {
2015 struct block_symbol result;
2016 const struct language_defn *langdef;
2017
2018 if (symbol_lookup_debug)
2019 {
2020 struct objfile *objfile = lookup_objfile_from_block (block);
2021
2022 fprintf_unfiltered (gdb_stdlog,
2023 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2024 name, host_address_to_string (block),
2025 objfile != NULL
2026 ? objfile_debug_name (objfile) : "NULL",
2027 domain_name (domain), language_str (language));
2028 }
2029
2030 /* Make sure we do something sensible with is_a_field_of_this, since
2031 the callers that set this parameter to some non-null value will
2032 certainly use it later. If we don't set it, the contents of
2033 is_a_field_of_this are undefined. */
2034 if (is_a_field_of_this != NULL)
2035 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2036
2037 /* Search specified block and its superiors. Don't search
2038 STATIC_BLOCK or GLOBAL_BLOCK. */
2039
2040 result = lookup_local_symbol (name, match_type, block, domain, language);
2041 if (result.symbol != NULL)
2042 {
2043 if (symbol_lookup_debug)
2044 {
2045 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2046 host_address_to_string (result.symbol));
2047 }
2048 return result;
2049 }
2050
2051 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2052 check to see if NAME is a field of `this'. */
2053
2054 langdef = language_def (language);
2055
2056 /* Don't do this check if we are searching for a struct. It will
2057 not be found by check_field, but will be found by other
2058 means. */
2059 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2060 {
2061 result = lookup_language_this (langdef, block);
2062
2063 if (result.symbol)
2064 {
2065 struct type *t = result.symbol->type;
2066
2067 /* I'm not really sure that type of this can ever
2068 be typedefed; just be safe. */
2069 t = check_typedef (t);
2070 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2071 t = TYPE_TARGET_TYPE (t);
2072
2073 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2074 && TYPE_CODE (t) != TYPE_CODE_UNION)
2075 error (_("Internal error: `%s' is not an aggregate"),
2076 langdef->la_name_of_this);
2077
2078 if (check_field (t, name, is_a_field_of_this))
2079 {
2080 if (symbol_lookup_debug)
2081 {
2082 fprintf_unfiltered (gdb_stdlog,
2083 "lookup_symbol_aux (...) = NULL\n");
2084 }
2085 return (struct block_symbol) {NULL, NULL};
2086 }
2087 }
2088 }
2089
2090 /* Now do whatever is appropriate for LANGUAGE to look
2091 up static and global variables. */
2092
2093 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2094 if (result.symbol != NULL)
2095 {
2096 if (symbol_lookup_debug)
2097 {
2098 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2099 host_address_to_string (result.symbol));
2100 }
2101 return result;
2102 }
2103
2104 /* Now search all static file-level symbols. Not strictly correct,
2105 but more useful than an error. */
2106
2107 result = lookup_static_symbol (name, domain);
2108 if (symbol_lookup_debug)
2109 {
2110 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2111 result.symbol != NULL
2112 ? host_address_to_string (result.symbol)
2113 : "NULL");
2114 }
2115 return result;
2116 }
2117
2118 /* Check to see if the symbol is defined in BLOCK or its superiors.
2119 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2120
2121 static struct block_symbol
2122 lookup_local_symbol (const char *name,
2123 symbol_name_match_type match_type,
2124 const struct block *block,
2125 const domain_enum domain,
2126 enum language language)
2127 {
2128 struct symbol *sym;
2129 const struct block *static_block = block_static_block (block);
2130 const char *scope = block_scope (block);
2131
2132 /* Check if either no block is specified or it's a global block. */
2133
2134 if (static_block == NULL)
2135 return (struct block_symbol) {NULL, NULL};
2136
2137 while (block != static_block)
2138 {
2139 sym = lookup_symbol_in_block (name, match_type, block, domain);
2140 if (sym != NULL)
2141 return (struct block_symbol) {sym, block};
2142
2143 if (language == language_cplus || language == language_fortran)
2144 {
2145 struct block_symbol blocksym
2146 = cp_lookup_symbol_imports_or_template (scope, name, block,
2147 domain);
2148
2149 if (blocksym.symbol != NULL)
2150 return blocksym;
2151 }
2152
2153 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2154 break;
2155 block = BLOCK_SUPERBLOCK (block);
2156 }
2157
2158 /* We've reached the end of the function without finding a result. */
2159
2160 return (struct block_symbol) {NULL, NULL};
2161 }
2162
2163 /* See symtab.h. */
2164
2165 struct objfile *
2166 lookup_objfile_from_block (const struct block *block)
2167 {
2168 if (block == NULL)
2169 return NULL;
2170
2171 block = block_global_block (block);
2172 /* Look through all blockvectors. */
2173 for (objfile *obj : all_objfiles (current_program_space))
2174 {
2175 for (compunit_symtab *cust : objfile_compunits (obj))
2176 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2177 GLOBAL_BLOCK))
2178 {
2179 if (obj->separate_debug_objfile_backlink)
2180 obj = obj->separate_debug_objfile_backlink;
2181
2182 return obj;
2183 }
2184 }
2185
2186 return NULL;
2187 }
2188
2189 /* See symtab.h. */
2190
2191 struct symbol *
2192 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2193 const struct block *block,
2194 const domain_enum domain)
2195 {
2196 struct symbol *sym;
2197
2198 if (symbol_lookup_debug > 1)
2199 {
2200 struct objfile *objfile = lookup_objfile_from_block (block);
2201
2202 fprintf_unfiltered (gdb_stdlog,
2203 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2204 name, host_address_to_string (block),
2205 objfile_debug_name (objfile),
2206 domain_name (domain));
2207 }
2208
2209 sym = block_lookup_symbol (block, name, match_type, domain);
2210 if (sym)
2211 {
2212 if (symbol_lookup_debug > 1)
2213 {
2214 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2215 host_address_to_string (sym));
2216 }
2217 return fixup_symbol_section (sym, NULL);
2218 }
2219
2220 if (symbol_lookup_debug > 1)
2221 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2222 return NULL;
2223 }
2224
2225 /* See symtab.h. */
2226
2227 struct block_symbol
2228 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2229 const char *name,
2230 const domain_enum domain)
2231 {
2232 struct objfile *objfile;
2233
2234 for (objfile = main_objfile;
2235 objfile;
2236 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2237 {
2238 struct block_symbol result
2239 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2240
2241 if (result.symbol != NULL)
2242 return result;
2243 }
2244
2245 return (struct block_symbol) {NULL, NULL};
2246 }
2247
2248 /* Check to see if the symbol is defined in one of the OBJFILE's
2249 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2250 depending on whether or not we want to search global symbols or
2251 static symbols. */
2252
2253 static struct block_symbol
2254 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2255 const char *name, const domain_enum domain)
2256 {
2257 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2258
2259 if (symbol_lookup_debug > 1)
2260 {
2261 fprintf_unfiltered (gdb_stdlog,
2262 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2263 objfile_debug_name (objfile),
2264 block_index == GLOBAL_BLOCK
2265 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2266 name, domain_name (domain));
2267 }
2268
2269 for (compunit_symtab *cust : objfile_compunits (objfile))
2270 {
2271 const struct blockvector *bv;
2272 const struct block *block;
2273 struct block_symbol result;
2274
2275 bv = COMPUNIT_BLOCKVECTOR (cust);
2276 block = BLOCKVECTOR_BLOCK (bv, block_index);
2277 result.symbol = block_lookup_symbol_primary (block, name, domain);
2278 result.block = block;
2279 if (result.symbol != NULL)
2280 {
2281 if (symbol_lookup_debug > 1)
2282 {
2283 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2284 host_address_to_string (result.symbol),
2285 host_address_to_string (block));
2286 }
2287 result.symbol = fixup_symbol_section (result.symbol, objfile);
2288 return result;
2289
2290 }
2291 }
2292
2293 if (symbol_lookup_debug > 1)
2294 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2295 return (struct block_symbol) {NULL, NULL};
2296 }
2297
2298 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2299 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2300 and all associated separate debug objfiles.
2301
2302 Normally we only look in OBJFILE, and not any separate debug objfiles
2303 because the outer loop will cause them to be searched too. This case is
2304 different. Here we're called from search_symbols where it will only
2305 call us for the the objfile that contains a matching minsym. */
2306
2307 static struct block_symbol
2308 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2309 const char *linkage_name,
2310 domain_enum domain)
2311 {
2312 enum language lang = current_language->la_language;
2313 struct objfile *main_objfile, *cur_objfile;
2314
2315 demangle_result_storage storage;
2316 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2317
2318 if (objfile->separate_debug_objfile_backlink)
2319 main_objfile = objfile->separate_debug_objfile_backlink;
2320 else
2321 main_objfile = objfile;
2322
2323 for (cur_objfile = main_objfile;
2324 cur_objfile;
2325 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2326 {
2327 struct block_symbol result;
2328
2329 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2330 modified_name, domain);
2331 if (result.symbol == NULL)
2332 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2333 modified_name, domain);
2334 if (result.symbol != NULL)
2335 return result;
2336 }
2337
2338 return (struct block_symbol) {NULL, NULL};
2339 }
2340
2341 /* A helper function that throws an exception when a symbol was found
2342 in a psymtab but not in a symtab. */
2343
2344 static void ATTRIBUTE_NORETURN
2345 error_in_psymtab_expansion (int block_index, const char *name,
2346 struct compunit_symtab *cust)
2347 {
2348 error (_("\
2349 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2350 %s may be an inlined function, or may be a template function\n \
2351 (if a template, try specifying an instantiation: %s<type>)."),
2352 block_index == GLOBAL_BLOCK ? "global" : "static",
2353 name,
2354 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2355 name, name);
2356 }
2357
2358 /* A helper function for various lookup routines that interfaces with
2359 the "quick" symbol table functions. */
2360
2361 static struct block_symbol
2362 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2363 const char *name, const domain_enum domain)
2364 {
2365 struct compunit_symtab *cust;
2366 const struct blockvector *bv;
2367 const struct block *block;
2368 struct block_symbol result;
2369
2370 if (!objfile->sf)
2371 return (struct block_symbol) {NULL, NULL};
2372
2373 if (symbol_lookup_debug > 1)
2374 {
2375 fprintf_unfiltered (gdb_stdlog,
2376 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2377 objfile_debug_name (objfile),
2378 block_index == GLOBAL_BLOCK
2379 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2380 name, domain_name (domain));
2381 }
2382
2383 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2384 if (cust == NULL)
2385 {
2386 if (symbol_lookup_debug > 1)
2387 {
2388 fprintf_unfiltered (gdb_stdlog,
2389 "lookup_symbol_via_quick_fns (...) = NULL\n");
2390 }
2391 return (struct block_symbol) {NULL, NULL};
2392 }
2393
2394 bv = COMPUNIT_BLOCKVECTOR (cust);
2395 block = BLOCKVECTOR_BLOCK (bv, block_index);
2396 result.symbol = block_lookup_symbol (block, name,
2397 symbol_name_match_type::FULL, domain);
2398 if (result.symbol == NULL)
2399 error_in_psymtab_expansion (block_index, name, cust);
2400
2401 if (symbol_lookup_debug > 1)
2402 {
2403 fprintf_unfiltered (gdb_stdlog,
2404 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2405 host_address_to_string (result.symbol),
2406 host_address_to_string (block));
2407 }
2408
2409 result.symbol = fixup_symbol_section (result.symbol, objfile);
2410 result.block = block;
2411 return result;
2412 }
2413
2414 /* See symtab.h. */
2415
2416 struct block_symbol
2417 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2418 const char *name,
2419 const struct block *block,
2420 const domain_enum domain)
2421 {
2422 struct block_symbol result;
2423
2424 /* NOTE: carlton/2003-05-19: The comments below were written when
2425 this (or what turned into this) was part of lookup_symbol_aux;
2426 I'm much less worried about these questions now, since these
2427 decisions have turned out well, but I leave these comments here
2428 for posterity. */
2429
2430 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2431 not it would be appropriate to search the current global block
2432 here as well. (That's what this code used to do before the
2433 is_a_field_of_this check was moved up.) On the one hand, it's
2434 redundant with the lookup in all objfiles search that happens
2435 next. On the other hand, if decode_line_1 is passed an argument
2436 like filename:var, then the user presumably wants 'var' to be
2437 searched for in filename. On the third hand, there shouldn't be
2438 multiple global variables all of which are named 'var', and it's
2439 not like decode_line_1 has ever restricted its search to only
2440 global variables in a single filename. All in all, only
2441 searching the static block here seems best: it's correct and it's
2442 cleanest. */
2443
2444 /* NOTE: carlton/2002-12-05: There's also a possible performance
2445 issue here: if you usually search for global symbols in the
2446 current file, then it would be slightly better to search the
2447 current global block before searching all the symtabs. But there
2448 are other factors that have a much greater effect on performance
2449 than that one, so I don't think we should worry about that for
2450 now. */
2451
2452 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2453 the current objfile. Searching the current objfile first is useful
2454 for both matching user expectations as well as performance. */
2455
2456 result = lookup_symbol_in_static_block (name, block, domain);
2457 if (result.symbol != NULL)
2458 return result;
2459
2460 /* If we didn't find a definition for a builtin type in the static block,
2461 search for it now. This is actually the right thing to do and can be
2462 a massive performance win. E.g., when debugging a program with lots of
2463 shared libraries we could search all of them only to find out the
2464 builtin type isn't defined in any of them. This is common for types
2465 like "void". */
2466 if (domain == VAR_DOMAIN)
2467 {
2468 struct gdbarch *gdbarch;
2469
2470 if (block == NULL)
2471 gdbarch = target_gdbarch ();
2472 else
2473 gdbarch = block_gdbarch (block);
2474 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2475 gdbarch, name);
2476 result.block = NULL;
2477 if (result.symbol != NULL)
2478 return result;
2479 }
2480
2481 return lookup_global_symbol (name, block, domain);
2482 }
2483
2484 /* See symtab.h. */
2485
2486 struct block_symbol
2487 lookup_symbol_in_static_block (const char *name,
2488 const struct block *block,
2489 const domain_enum domain)
2490 {
2491 const struct block *static_block = block_static_block (block);
2492 struct symbol *sym;
2493
2494 if (static_block == NULL)
2495 return (struct block_symbol) {NULL, NULL};
2496
2497 if (symbol_lookup_debug)
2498 {
2499 struct objfile *objfile = lookup_objfile_from_block (static_block);
2500
2501 fprintf_unfiltered (gdb_stdlog,
2502 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2503 " %s)\n",
2504 name,
2505 host_address_to_string (block),
2506 objfile_debug_name (objfile),
2507 domain_name (domain));
2508 }
2509
2510 sym = lookup_symbol_in_block (name,
2511 symbol_name_match_type::FULL,
2512 static_block, domain);
2513 if (symbol_lookup_debug)
2514 {
2515 fprintf_unfiltered (gdb_stdlog,
2516 "lookup_symbol_in_static_block (...) = %s\n",
2517 sym != NULL ? host_address_to_string (sym) : "NULL");
2518 }
2519 return (struct block_symbol) {sym, static_block};
2520 }
2521
2522 /* Perform the standard symbol lookup of NAME in OBJFILE:
2523 1) First search expanded symtabs, and if not found
2524 2) Search the "quick" symtabs (partial or .gdb_index).
2525 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2526
2527 static struct block_symbol
2528 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2529 const char *name, const domain_enum domain)
2530 {
2531 struct block_symbol result;
2532
2533 if (symbol_lookup_debug)
2534 {
2535 fprintf_unfiltered (gdb_stdlog,
2536 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2537 objfile_debug_name (objfile),
2538 block_index == GLOBAL_BLOCK
2539 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2540 name, domain_name (domain));
2541 }
2542
2543 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2544 name, domain);
2545 if (result.symbol != NULL)
2546 {
2547 if (symbol_lookup_debug)
2548 {
2549 fprintf_unfiltered (gdb_stdlog,
2550 "lookup_symbol_in_objfile (...) = %s"
2551 " (in symtabs)\n",
2552 host_address_to_string (result.symbol));
2553 }
2554 return result;
2555 }
2556
2557 result = lookup_symbol_via_quick_fns (objfile, block_index,
2558 name, domain);
2559 if (symbol_lookup_debug)
2560 {
2561 fprintf_unfiltered (gdb_stdlog,
2562 "lookup_symbol_in_objfile (...) = %s%s\n",
2563 result.symbol != NULL
2564 ? host_address_to_string (result.symbol)
2565 : "NULL",
2566 result.symbol != NULL ? " (via quick fns)" : "");
2567 }
2568 return result;
2569 }
2570
2571 /* See symtab.h. */
2572
2573 struct block_symbol
2574 lookup_static_symbol (const char *name, const domain_enum domain)
2575 {
2576 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2577 struct block_symbol result;
2578 struct block_symbol_cache *bsc;
2579 struct symbol_cache_slot *slot;
2580
2581 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2582 NULL for OBJFILE_CONTEXT. */
2583 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2584 &bsc, &slot);
2585 if (result.symbol != NULL)
2586 {
2587 if (SYMBOL_LOOKUP_FAILED_P (result))
2588 return (struct block_symbol) {NULL, NULL};
2589 return result;
2590 }
2591
2592 for (objfile *objfile : all_objfiles (current_program_space))
2593 {
2594 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2595 if (result.symbol != NULL)
2596 {
2597 /* Still pass NULL for OBJFILE_CONTEXT here. */
2598 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2599 result.block);
2600 return result;
2601 }
2602 }
2603
2604 /* Still pass NULL for OBJFILE_CONTEXT here. */
2605 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2606 return (struct block_symbol) {NULL, NULL};
2607 }
2608
2609 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2610
2611 struct global_sym_lookup_data
2612 {
2613 /* The name of the symbol we are searching for. */
2614 const char *name;
2615
2616 /* The domain to use for our search. */
2617 domain_enum domain;
2618
2619 /* The field where the callback should store the symbol if found.
2620 It should be initialized to {NULL, NULL} before the search is started. */
2621 struct block_symbol result;
2622 };
2623
2624 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2625 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2626 OBJFILE. The arguments for the search are passed via CB_DATA,
2627 which in reality is a pointer to struct global_sym_lookup_data. */
2628
2629 static int
2630 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2631 void *cb_data)
2632 {
2633 struct global_sym_lookup_data *data =
2634 (struct global_sym_lookup_data *) cb_data;
2635
2636 gdb_assert (data->result.symbol == NULL
2637 && data->result.block == NULL);
2638
2639 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2640 data->name, data->domain);
2641
2642 /* If we found a match, tell the iterator to stop. Otherwise,
2643 keep going. */
2644 return (data->result.symbol != NULL);
2645 }
2646
2647 /* See symtab.h. */
2648
2649 struct block_symbol
2650 lookup_global_symbol (const char *name,
2651 const struct block *block,
2652 const domain_enum domain)
2653 {
2654 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2655 struct block_symbol result;
2656 struct objfile *objfile;
2657 struct global_sym_lookup_data lookup_data;
2658 struct block_symbol_cache *bsc;
2659 struct symbol_cache_slot *slot;
2660
2661 objfile = lookup_objfile_from_block (block);
2662
2663 /* First see if we can find the symbol in the cache.
2664 This works because we use the current objfile to qualify the lookup. */
2665 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2666 &bsc, &slot);
2667 if (result.symbol != NULL)
2668 {
2669 if (SYMBOL_LOOKUP_FAILED_P (result))
2670 return (struct block_symbol) {NULL, NULL};
2671 return result;
2672 }
2673
2674 /* Call library-specific lookup procedure. */
2675 if (objfile != NULL)
2676 result = solib_global_lookup (objfile, name, domain);
2677
2678 /* If that didn't work go a global search (of global blocks, heh). */
2679 if (result.symbol == NULL)
2680 {
2681 memset (&lookup_data, 0, sizeof (lookup_data));
2682 lookup_data.name = name;
2683 lookup_data.domain = domain;
2684 gdbarch_iterate_over_objfiles_in_search_order
2685 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2686 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2687 result = lookup_data.result;
2688 }
2689
2690 if (result.symbol != NULL)
2691 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2692 else
2693 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2694
2695 return result;
2696 }
2697
2698 int
2699 symbol_matches_domain (enum language symbol_language,
2700 domain_enum symbol_domain,
2701 domain_enum domain)
2702 {
2703 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2704 Similarly, any Ada type declaration implicitly defines a typedef. */
2705 if (symbol_language == language_cplus
2706 || symbol_language == language_d
2707 || symbol_language == language_ada
2708 || symbol_language == language_rust)
2709 {
2710 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2711 && symbol_domain == STRUCT_DOMAIN)
2712 return 1;
2713 }
2714 /* For all other languages, strict match is required. */
2715 return (symbol_domain == domain);
2716 }
2717
2718 /* See symtab.h. */
2719
2720 struct type *
2721 lookup_transparent_type (const char *name)
2722 {
2723 return current_language->la_lookup_transparent_type (name);
2724 }
2725
2726 /* A helper for basic_lookup_transparent_type that interfaces with the
2727 "quick" symbol table functions. */
2728
2729 static struct type *
2730 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2731 const char *name)
2732 {
2733 struct compunit_symtab *cust;
2734 const struct blockvector *bv;
2735 struct block *block;
2736 struct symbol *sym;
2737
2738 if (!objfile->sf)
2739 return NULL;
2740 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2741 STRUCT_DOMAIN);
2742 if (cust == NULL)
2743 return NULL;
2744
2745 bv = COMPUNIT_BLOCKVECTOR (cust);
2746 block = BLOCKVECTOR_BLOCK (bv, block_index);
2747 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2748 block_find_non_opaque_type, NULL);
2749 if (sym == NULL)
2750 error_in_psymtab_expansion (block_index, name, cust);
2751 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2752 return SYMBOL_TYPE (sym);
2753 }
2754
2755 /* Subroutine of basic_lookup_transparent_type to simplify it.
2756 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2757 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2758
2759 static struct type *
2760 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2761 const char *name)
2762 {
2763 const struct blockvector *bv;
2764 const struct block *block;
2765 const struct symbol *sym;
2766
2767 for (compunit_symtab *cust : objfile_compunits (objfile))
2768 {
2769 bv = COMPUNIT_BLOCKVECTOR (cust);
2770 block = BLOCKVECTOR_BLOCK (bv, block_index);
2771 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2772 block_find_non_opaque_type, NULL);
2773 if (sym != NULL)
2774 {
2775 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2776 return SYMBOL_TYPE (sym);
2777 }
2778 }
2779
2780 return NULL;
2781 }
2782
2783 /* The standard implementation of lookup_transparent_type. This code
2784 was modeled on lookup_symbol -- the parts not relevant to looking
2785 up types were just left out. In particular it's assumed here that
2786 types are available in STRUCT_DOMAIN and only in file-static or
2787 global blocks. */
2788
2789 struct type *
2790 basic_lookup_transparent_type (const char *name)
2791 {
2792 struct type *t;
2793
2794 /* Now search all the global symbols. Do the symtab's first, then
2795 check the psymtab's. If a psymtab indicates the existence
2796 of the desired name as a global, then do psymtab-to-symtab
2797 conversion on the fly and return the found symbol. */
2798
2799 for (objfile *objfile : all_objfiles (current_program_space))
2800 {
2801 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2802 if (t)
2803 return t;
2804 }
2805
2806 for (objfile *objfile : all_objfiles (current_program_space))
2807 {
2808 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2809 if (t)
2810 return t;
2811 }
2812
2813 /* Now search the static file-level symbols.
2814 Not strictly correct, but more useful than an error.
2815 Do the symtab's first, then
2816 check the psymtab's. If a psymtab indicates the existence
2817 of the desired name as a file-level static, then do psymtab-to-symtab
2818 conversion on the fly and return the found symbol. */
2819
2820 for (objfile *objfile : all_objfiles (current_program_space))
2821 {
2822 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2823 if (t)
2824 return t;
2825 }
2826
2827 for (objfile *objfile : all_objfiles (current_program_space))
2828 {
2829 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2830 if (t)
2831 return t;
2832 }
2833
2834 return (struct type *) 0;
2835 }
2836
2837 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2838
2839 For each symbol that matches, CALLBACK is called. The symbol is
2840 passed to the callback.
2841
2842 If CALLBACK returns false, the iteration ends. Otherwise, the
2843 search continues. */
2844
2845 void
2846 iterate_over_symbols (const struct block *block,
2847 const lookup_name_info &name,
2848 const domain_enum domain,
2849 gdb::function_view<symbol_found_callback_ftype> callback)
2850 {
2851 struct block_iterator iter;
2852 struct symbol *sym;
2853
2854 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2855 {
2856 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2857 SYMBOL_DOMAIN (sym), domain))
2858 {
2859 struct block_symbol block_sym = {sym, block};
2860
2861 if (!callback (&block_sym))
2862 return;
2863 }
2864 }
2865 }
2866
2867 /* Find the compunit symtab associated with PC and SECTION.
2868 This will read in debug info as necessary. */
2869
2870 struct compunit_symtab *
2871 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2872 {
2873 struct compunit_symtab *best_cust = NULL;
2874 CORE_ADDR distance = 0;
2875 struct bound_minimal_symbol msymbol;
2876
2877 /* If we know that this is not a text address, return failure. This is
2878 necessary because we loop based on the block's high and low code
2879 addresses, which do not include the data ranges, and because
2880 we call find_pc_sect_psymtab which has a similar restriction based
2881 on the partial_symtab's texthigh and textlow. */
2882 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2883 if (msymbol.minsym
2884 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2885 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2886 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2887 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2888 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2889 return NULL;
2890
2891 /* Search all symtabs for the one whose file contains our address, and which
2892 is the smallest of all the ones containing the address. This is designed
2893 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2894 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2895 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2896
2897 This happens for native ecoff format, where code from included files
2898 gets its own symtab. The symtab for the included file should have
2899 been read in already via the dependency mechanism.
2900 It might be swifter to create several symtabs with the same name
2901 like xcoff does (I'm not sure).
2902
2903 It also happens for objfiles that have their functions reordered.
2904 For these, the symtab we are looking for is not necessarily read in. */
2905
2906 for (objfile *obj_file : all_objfiles (current_program_space))
2907 {
2908 for (compunit_symtab *cust : objfile_compunits (obj_file))
2909 {
2910 struct block *b;
2911 const struct blockvector *bv;
2912
2913 bv = COMPUNIT_BLOCKVECTOR (cust);
2914 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2915
2916 if (BLOCK_START (b) <= pc
2917 && BLOCK_END (b) > pc
2918 && (distance == 0
2919 || BLOCK_END (b) - BLOCK_START (b) < distance))
2920 {
2921 /* For an objfile that has its functions reordered,
2922 find_pc_psymtab will find the proper partial symbol table
2923 and we simply return its corresponding symtab. */
2924 /* In order to better support objfiles that contain both
2925 stabs and coff debugging info, we continue on if a psymtab
2926 can't be found. */
2927 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2928 {
2929 struct compunit_symtab *result;
2930
2931 result
2932 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2933 msymbol,
2934 pc,
2935 section,
2936 0);
2937 if (result != NULL)
2938 return result;
2939 }
2940 if (section != 0)
2941 {
2942 struct block_iterator iter;
2943 struct symbol *sym = NULL;
2944
2945 ALL_BLOCK_SYMBOLS (b, iter, sym)
2946 {
2947 fixup_symbol_section (sym, obj_file);
2948 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2949 sym),
2950 section))
2951 break;
2952 }
2953 if (sym == NULL)
2954 continue; /* No symbol in this symtab matches
2955 section. */
2956 }
2957 distance = BLOCK_END (b) - BLOCK_START (b);
2958 best_cust = cust;
2959 }
2960 }
2961 }
2962
2963 if (best_cust != NULL)
2964 return best_cust;
2965
2966 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2967
2968 for (objfile *objf : all_objfiles (current_program_space))
2969 {
2970 struct compunit_symtab *result;
2971
2972 if (!objf->sf)
2973 continue;
2974 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2975 msymbol,
2976 pc, section,
2977 1);
2978 if (result != NULL)
2979 return result;
2980 }
2981
2982 return NULL;
2983 }
2984
2985 /* Find the compunit symtab associated with PC.
2986 This will read in debug info as necessary.
2987 Backward compatibility, no section. */
2988
2989 struct compunit_symtab *
2990 find_pc_compunit_symtab (CORE_ADDR pc)
2991 {
2992 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2993 }
2994
2995 /* See symtab.h. */
2996
2997 struct symbol *
2998 find_symbol_at_address (CORE_ADDR address)
2999 {
3000 for (objfile *objfile : all_objfiles (current_program_space))
3001 {
3002 if (objfile->sf == NULL
3003 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3004 continue;
3005
3006 struct compunit_symtab *symtab
3007 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3008 if (symtab != NULL)
3009 {
3010 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3011
3012 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3013 {
3014 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3015 struct block_iterator iter;
3016 struct symbol *sym;
3017
3018 ALL_BLOCK_SYMBOLS (b, iter, sym)
3019 {
3020 if (SYMBOL_CLASS (sym) == LOC_STATIC
3021 && SYMBOL_VALUE_ADDRESS (sym) == address)
3022 return sym;
3023 }
3024 }
3025 }
3026 }
3027
3028 return NULL;
3029 }
3030
3031 \f
3032
3033 /* Find the source file and line number for a given PC value and SECTION.
3034 Return a structure containing a symtab pointer, a line number,
3035 and a pc range for the entire source line.
3036 The value's .pc field is NOT the specified pc.
3037 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3038 use the line that ends there. Otherwise, in that case, the line
3039 that begins there is used. */
3040
3041 /* The big complication here is that a line may start in one file, and end just
3042 before the start of another file. This usually occurs when you #include
3043 code in the middle of a subroutine. To properly find the end of a line's PC
3044 range, we must search all symtabs associated with this compilation unit, and
3045 find the one whose first PC is closer than that of the next line in this
3046 symtab. */
3047
3048 struct symtab_and_line
3049 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3050 {
3051 struct compunit_symtab *cust;
3052 struct linetable *l;
3053 int len;
3054 struct linetable_entry *item;
3055 const struct blockvector *bv;
3056 struct bound_minimal_symbol msymbol;
3057
3058 /* Info on best line seen so far, and where it starts, and its file. */
3059
3060 struct linetable_entry *best = NULL;
3061 CORE_ADDR best_end = 0;
3062 struct symtab *best_symtab = 0;
3063
3064 /* Store here the first line number
3065 of a file which contains the line at the smallest pc after PC.
3066 If we don't find a line whose range contains PC,
3067 we will use a line one less than this,
3068 with a range from the start of that file to the first line's pc. */
3069 struct linetable_entry *alt = NULL;
3070
3071 /* Info on best line seen in this file. */
3072
3073 struct linetable_entry *prev;
3074
3075 /* If this pc is not from the current frame,
3076 it is the address of the end of a call instruction.
3077 Quite likely that is the start of the following statement.
3078 But what we want is the statement containing the instruction.
3079 Fudge the pc to make sure we get that. */
3080
3081 /* It's tempting to assume that, if we can't find debugging info for
3082 any function enclosing PC, that we shouldn't search for line
3083 number info, either. However, GAS can emit line number info for
3084 assembly files --- very helpful when debugging hand-written
3085 assembly code. In such a case, we'd have no debug info for the
3086 function, but we would have line info. */
3087
3088 if (notcurrent)
3089 pc -= 1;
3090
3091 /* elz: added this because this function returned the wrong
3092 information if the pc belongs to a stub (import/export)
3093 to call a shlib function. This stub would be anywhere between
3094 two functions in the target, and the line info was erroneously
3095 taken to be the one of the line before the pc. */
3096
3097 /* RT: Further explanation:
3098
3099 * We have stubs (trampolines) inserted between procedures.
3100 *
3101 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3102 * exists in the main image.
3103 *
3104 * In the minimal symbol table, we have a bunch of symbols
3105 * sorted by start address. The stubs are marked as "trampoline",
3106 * the others appear as text. E.g.:
3107 *
3108 * Minimal symbol table for main image
3109 * main: code for main (text symbol)
3110 * shr1: stub (trampoline symbol)
3111 * foo: code for foo (text symbol)
3112 * ...
3113 * Minimal symbol table for "shr1" image:
3114 * ...
3115 * shr1: code for shr1 (text symbol)
3116 * ...
3117 *
3118 * So the code below is trying to detect if we are in the stub
3119 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3120 * and if found, do the symbolization from the real-code address
3121 * rather than the stub address.
3122 *
3123 * Assumptions being made about the minimal symbol table:
3124 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3125 * if we're really in the trampoline.s If we're beyond it (say
3126 * we're in "foo" in the above example), it'll have a closer
3127 * symbol (the "foo" text symbol for example) and will not
3128 * return the trampoline.
3129 * 2. lookup_minimal_symbol_text() will find a real text symbol
3130 * corresponding to the trampoline, and whose address will
3131 * be different than the trampoline address. I put in a sanity
3132 * check for the address being the same, to avoid an
3133 * infinite recursion.
3134 */
3135 msymbol = lookup_minimal_symbol_by_pc (pc);
3136 if (msymbol.minsym != NULL)
3137 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3138 {
3139 struct bound_minimal_symbol mfunsym
3140 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3141 NULL);
3142
3143 if (mfunsym.minsym == NULL)
3144 /* I eliminated this warning since it is coming out
3145 * in the following situation:
3146 * gdb shmain // test program with shared libraries
3147 * (gdb) break shr1 // function in shared lib
3148 * Warning: In stub for ...
3149 * In the above situation, the shared lib is not loaded yet,
3150 * so of course we can't find the real func/line info,
3151 * but the "break" still works, and the warning is annoying.
3152 * So I commented out the warning. RT */
3153 /* warning ("In stub for %s; unable to find real function/line info",
3154 SYMBOL_LINKAGE_NAME (msymbol)); */
3155 ;
3156 /* fall through */
3157 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3158 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3159 /* Avoid infinite recursion */
3160 /* See above comment about why warning is commented out. */
3161 /* warning ("In stub for %s; unable to find real function/line info",
3162 SYMBOL_LINKAGE_NAME (msymbol)); */
3163 ;
3164 /* fall through */
3165 else
3166 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3167 }
3168
3169 symtab_and_line val;
3170 val.pspace = current_program_space;
3171
3172 cust = find_pc_sect_compunit_symtab (pc, section);
3173 if (cust == NULL)
3174 {
3175 /* If no symbol information, return previous pc. */
3176 if (notcurrent)
3177 pc++;
3178 val.pc = pc;
3179 return val;
3180 }
3181
3182 bv = COMPUNIT_BLOCKVECTOR (cust);
3183
3184 /* Look at all the symtabs that share this blockvector.
3185 They all have the same apriori range, that we found was right;
3186 but they have different line tables. */
3187
3188 for (symtab *iter_s : compunit_filetabs (cust))
3189 {
3190 /* Find the best line in this symtab. */
3191 l = SYMTAB_LINETABLE (iter_s);
3192 if (!l)
3193 continue;
3194 len = l->nitems;
3195 if (len <= 0)
3196 {
3197 /* I think len can be zero if the symtab lacks line numbers
3198 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3199 I'm not sure which, and maybe it depends on the symbol
3200 reader). */
3201 continue;
3202 }
3203
3204 prev = NULL;
3205 item = l->item; /* Get first line info. */
3206
3207 /* Is this file's first line closer than the first lines of other files?
3208 If so, record this file, and its first line, as best alternate. */
3209 if (item->pc > pc && (!alt || item->pc < alt->pc))
3210 alt = item;
3211
3212 auto pc_compare = [](const CORE_ADDR & comp_pc,
3213 const struct linetable_entry & lhs)->bool
3214 {
3215 return comp_pc < lhs.pc;
3216 };
3217
3218 struct linetable_entry *first = item;
3219 struct linetable_entry *last = item + len;
3220 item = std::upper_bound (first, last, pc, pc_compare);
3221 if (item != first)
3222 prev = item - 1; /* Found a matching item. */
3223
3224 /* At this point, prev points at the line whose start addr is <= pc, and
3225 item points at the next line. If we ran off the end of the linetable
3226 (pc >= start of the last line), then prev == item. If pc < start of
3227 the first line, prev will not be set. */
3228
3229 /* Is this file's best line closer than the best in the other files?
3230 If so, record this file, and its best line, as best so far. Don't
3231 save prev if it represents the end of a function (i.e. line number
3232 0) instead of a real line. */
3233
3234 if (prev && prev->line && (!best || prev->pc > best->pc))
3235 {
3236 best = prev;
3237 best_symtab = iter_s;
3238
3239 /* Discard BEST_END if it's before the PC of the current BEST. */
3240 if (best_end <= best->pc)
3241 best_end = 0;
3242 }
3243
3244 /* If another line (denoted by ITEM) is in the linetable and its
3245 PC is after BEST's PC, but before the current BEST_END, then
3246 use ITEM's PC as the new best_end. */
3247 if (best && item < last && item->pc > best->pc
3248 && (best_end == 0 || best_end > item->pc))
3249 best_end = item->pc;
3250 }
3251
3252 if (!best_symtab)
3253 {
3254 /* If we didn't find any line number info, just return zeros.
3255 We used to return alt->line - 1 here, but that could be
3256 anywhere; if we don't have line number info for this PC,
3257 don't make some up. */
3258 val.pc = pc;
3259 }
3260 else if (best->line == 0)
3261 {
3262 /* If our best fit is in a range of PC's for which no line
3263 number info is available (line number is zero) then we didn't
3264 find any valid line information. */
3265 val.pc = pc;
3266 }
3267 else
3268 {
3269 val.symtab = best_symtab;
3270 val.line = best->line;
3271 val.pc = best->pc;
3272 if (best_end && (!alt || best_end < alt->pc))
3273 val.end = best_end;
3274 else if (alt)
3275 val.end = alt->pc;
3276 else
3277 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3278 }
3279 val.section = section;
3280 return val;
3281 }
3282
3283 /* Backward compatibility (no section). */
3284
3285 struct symtab_and_line
3286 find_pc_line (CORE_ADDR pc, int notcurrent)
3287 {
3288 struct obj_section *section;
3289
3290 section = find_pc_overlay (pc);
3291 if (pc_in_unmapped_range (pc, section))
3292 pc = overlay_mapped_address (pc, section);
3293 return find_pc_sect_line (pc, section, notcurrent);
3294 }
3295
3296 /* See symtab.h. */
3297
3298 struct symtab *
3299 find_pc_line_symtab (CORE_ADDR pc)
3300 {
3301 struct symtab_and_line sal;
3302
3303 /* This always passes zero for NOTCURRENT to find_pc_line.
3304 There are currently no callers that ever pass non-zero. */
3305 sal = find_pc_line (pc, 0);
3306 return sal.symtab;
3307 }
3308 \f
3309 /* Find line number LINE in any symtab whose name is the same as
3310 SYMTAB.
3311
3312 If found, return the symtab that contains the linetable in which it was
3313 found, set *INDEX to the index in the linetable of the best entry
3314 found, and set *EXACT_MATCH nonzero if the value returned is an
3315 exact match.
3316
3317 If not found, return NULL. */
3318
3319 struct symtab *
3320 find_line_symtab (struct symtab *sym_tab, int line,
3321 int *index, int *exact_match)
3322 {
3323 int exact = 0; /* Initialized here to avoid a compiler warning. */
3324
3325 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3326 so far seen. */
3327
3328 int best_index;
3329 struct linetable *best_linetable;
3330 struct symtab *best_symtab;
3331
3332 /* First try looking it up in the given symtab. */
3333 best_linetable = SYMTAB_LINETABLE (sym_tab);
3334 best_symtab = sym_tab;
3335 best_index = find_line_common (best_linetable, line, &exact, 0);
3336 if (best_index < 0 || !exact)
3337 {
3338 /* Didn't find an exact match. So we better keep looking for
3339 another symtab with the same name. In the case of xcoff,
3340 multiple csects for one source file (produced by IBM's FORTRAN
3341 compiler) produce multiple symtabs (this is unavoidable
3342 assuming csects can be at arbitrary places in memory and that
3343 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3344
3345 /* BEST is the smallest linenumber > LINE so far seen,
3346 or 0 if none has been seen so far.
3347 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3348 int best;
3349
3350 if (best_index >= 0)
3351 best = best_linetable->item[best_index].line;
3352 else
3353 best = 0;
3354
3355 for (objfile *objfile : all_objfiles (current_program_space))
3356 {
3357 if (objfile->sf)
3358 objfile->sf->qf->expand_symtabs_with_fullname
3359 (objfile, symtab_to_fullname (sym_tab));
3360 }
3361
3362 struct objfile *objfile;
3363 ALL_FILETABS (objfile, cu, s)
3364 {
3365 struct linetable *l;
3366 int ind;
3367
3368 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3369 continue;
3370 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3371 symtab_to_fullname (s)) != 0)
3372 continue;
3373 l = SYMTAB_LINETABLE (s);
3374 ind = find_line_common (l, line, &exact, 0);
3375 if (ind >= 0)
3376 {
3377 if (exact)
3378 {
3379 best_index = ind;
3380 best_linetable = l;
3381 best_symtab = s;
3382 goto done;
3383 }
3384 if (best == 0 || l->item[ind].line < best)
3385 {
3386 best = l->item[ind].line;
3387 best_index = ind;
3388 best_linetable = l;
3389 best_symtab = s;
3390 }
3391 }
3392 }
3393 }
3394 done:
3395 if (best_index < 0)
3396 return NULL;
3397
3398 if (index)
3399 *index = best_index;
3400 if (exact_match)
3401 *exact_match = exact;
3402
3403 return best_symtab;
3404 }
3405
3406 /* Given SYMTAB, returns all the PCs function in the symtab that
3407 exactly match LINE. Returns an empty vector if there are no exact
3408 matches, but updates BEST_ITEM in this case. */
3409
3410 std::vector<CORE_ADDR>
3411 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3412 struct linetable_entry **best_item)
3413 {
3414 int start = 0;
3415 std::vector<CORE_ADDR> result;
3416
3417 /* First, collect all the PCs that are at this line. */
3418 while (1)
3419 {
3420 int was_exact;
3421 int idx;
3422
3423 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3424 start);
3425 if (idx < 0)
3426 break;
3427
3428 if (!was_exact)
3429 {
3430 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3431
3432 if (*best_item == NULL || item->line < (*best_item)->line)
3433 *best_item = item;
3434
3435 break;
3436 }
3437
3438 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3439 start = idx + 1;
3440 }
3441
3442 return result;
3443 }
3444
3445 \f
3446 /* Set the PC value for a given source file and line number and return true.
3447 Returns zero for invalid line number (and sets the PC to 0).
3448 The source file is specified with a struct symtab. */
3449
3450 int
3451 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3452 {
3453 struct linetable *l;
3454 int ind;
3455
3456 *pc = 0;
3457 if (symtab == 0)
3458 return 0;
3459
3460 symtab = find_line_symtab (symtab, line, &ind, NULL);
3461 if (symtab != NULL)
3462 {
3463 l = SYMTAB_LINETABLE (symtab);
3464 *pc = l->item[ind].pc;
3465 return 1;
3466 }
3467 else
3468 return 0;
3469 }
3470
3471 /* Find the range of pc values in a line.
3472 Store the starting pc of the line into *STARTPTR
3473 and the ending pc (start of next line) into *ENDPTR.
3474 Returns 1 to indicate success.
3475 Returns 0 if could not find the specified line. */
3476
3477 int
3478 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3479 CORE_ADDR *endptr)
3480 {
3481 CORE_ADDR startaddr;
3482 struct symtab_and_line found_sal;
3483
3484 startaddr = sal.pc;
3485 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3486 return 0;
3487
3488 /* This whole function is based on address. For example, if line 10 has
3489 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3490 "info line *0x123" should say the line goes from 0x100 to 0x200
3491 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3492 This also insures that we never give a range like "starts at 0x134
3493 and ends at 0x12c". */
3494
3495 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3496 if (found_sal.line != sal.line)
3497 {
3498 /* The specified line (sal) has zero bytes. */
3499 *startptr = found_sal.pc;
3500 *endptr = found_sal.pc;
3501 }
3502 else
3503 {
3504 *startptr = found_sal.pc;
3505 *endptr = found_sal.end;
3506 }
3507 return 1;
3508 }
3509
3510 /* Given a line table and a line number, return the index into the line
3511 table for the pc of the nearest line whose number is >= the specified one.
3512 Return -1 if none is found. The value is >= 0 if it is an index.
3513 START is the index at which to start searching the line table.
3514
3515 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3516
3517 static int
3518 find_line_common (struct linetable *l, int lineno,
3519 int *exact_match, int start)
3520 {
3521 int i;
3522 int len;
3523
3524 /* BEST is the smallest linenumber > LINENO so far seen,
3525 or 0 if none has been seen so far.
3526 BEST_INDEX identifies the item for it. */
3527
3528 int best_index = -1;
3529 int best = 0;
3530
3531 *exact_match = 0;
3532
3533 if (lineno <= 0)
3534 return -1;
3535 if (l == 0)
3536 return -1;
3537
3538 len = l->nitems;
3539 for (i = start; i < len; i++)
3540 {
3541 struct linetable_entry *item = &(l->item[i]);
3542
3543 if (item->line == lineno)
3544 {
3545 /* Return the first (lowest address) entry which matches. */
3546 *exact_match = 1;
3547 return i;
3548 }
3549
3550 if (item->line > lineno && (best == 0 || item->line < best))
3551 {
3552 best = item->line;
3553 best_index = i;
3554 }
3555 }
3556
3557 /* If we got here, we didn't get an exact match. */
3558 return best_index;
3559 }
3560
3561 int
3562 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3563 {
3564 struct symtab_and_line sal;
3565
3566 sal = find_pc_line (pc, 0);
3567 *startptr = sal.pc;
3568 *endptr = sal.end;
3569 return sal.symtab != 0;
3570 }
3571
3572 /* Helper for find_function_start_sal. Does most of the work, except
3573 setting the sal's symbol. */
3574
3575 static symtab_and_line
3576 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3577 bool funfirstline)
3578 {
3579 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3580
3581 if (funfirstline && sal.symtab != NULL
3582 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3583 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3584 {
3585 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3586
3587 sal.pc = func_addr;
3588 if (gdbarch_skip_entrypoint_p (gdbarch))
3589 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3590 return sal;
3591 }
3592
3593 /* We always should have a line for the function start address.
3594 If we don't, something is odd. Create a plain SAL referring
3595 just the PC and hope that skip_prologue_sal (if requested)
3596 can find a line number for after the prologue. */
3597 if (sal.pc < func_addr)
3598 {
3599 sal = {};
3600 sal.pspace = current_program_space;
3601 sal.pc = func_addr;
3602 sal.section = section;
3603 }
3604
3605 if (funfirstline)
3606 skip_prologue_sal (&sal);
3607
3608 return sal;
3609 }
3610
3611 /* See symtab.h. */
3612
3613 symtab_and_line
3614 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3615 bool funfirstline)
3616 {
3617 symtab_and_line sal
3618 = find_function_start_sal_1 (func_addr, section, funfirstline);
3619
3620 /* find_function_start_sal_1 does a linetable search, so it finds
3621 the symtab and linenumber, but not a symbol. Fill in the
3622 function symbol too. */
3623 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3624
3625 return sal;
3626 }
3627
3628 /* See symtab.h. */
3629
3630 symtab_and_line
3631 find_function_start_sal (symbol *sym, bool funfirstline)
3632 {
3633 fixup_symbol_section (sym, NULL);
3634 symtab_and_line sal
3635 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3636 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3637 funfirstline);
3638 sal.symbol = sym;
3639 return sal;
3640 }
3641
3642
3643 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3644 address for that function that has an entry in SYMTAB's line info
3645 table. If such an entry cannot be found, return FUNC_ADDR
3646 unaltered. */
3647
3648 static CORE_ADDR
3649 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3650 {
3651 CORE_ADDR func_start, func_end;
3652 struct linetable *l;
3653 int i;
3654
3655 /* Give up if this symbol has no lineinfo table. */
3656 l = SYMTAB_LINETABLE (symtab);
3657 if (l == NULL)
3658 return func_addr;
3659
3660 /* Get the range for the function's PC values, or give up if we
3661 cannot, for some reason. */
3662 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3663 return func_addr;
3664
3665 /* Linetable entries are ordered by PC values, see the commentary in
3666 symtab.h where `struct linetable' is defined. Thus, the first
3667 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3668 address we are looking for. */
3669 for (i = 0; i < l->nitems; i++)
3670 {
3671 struct linetable_entry *item = &(l->item[i]);
3672
3673 /* Don't use line numbers of zero, they mark special entries in
3674 the table. See the commentary on symtab.h before the
3675 definition of struct linetable. */
3676 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3677 return item->pc;
3678 }
3679
3680 return func_addr;
3681 }
3682
3683 /* Adjust SAL to the first instruction past the function prologue.
3684 If the PC was explicitly specified, the SAL is not changed.
3685 If the line number was explicitly specified, at most the SAL's PC
3686 is updated. If SAL is already past the prologue, then do nothing. */
3687
3688 void
3689 skip_prologue_sal (struct symtab_and_line *sal)
3690 {
3691 struct symbol *sym;
3692 struct symtab_and_line start_sal;
3693 CORE_ADDR pc, saved_pc;
3694 struct obj_section *section;
3695 const char *name;
3696 struct objfile *objfile;
3697 struct gdbarch *gdbarch;
3698 const struct block *b, *function_block;
3699 int force_skip, skip;
3700
3701 /* Do not change the SAL if PC was specified explicitly. */
3702 if (sal->explicit_pc)
3703 return;
3704
3705 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3706
3707 switch_to_program_space_and_thread (sal->pspace);
3708
3709 sym = find_pc_sect_function (sal->pc, sal->section);
3710 if (sym != NULL)
3711 {
3712 fixup_symbol_section (sym, NULL);
3713
3714 objfile = symbol_objfile (sym);
3715 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3716 section = SYMBOL_OBJ_SECTION (objfile, sym);
3717 name = SYMBOL_LINKAGE_NAME (sym);
3718 }
3719 else
3720 {
3721 struct bound_minimal_symbol msymbol
3722 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3723
3724 if (msymbol.minsym == NULL)
3725 return;
3726
3727 objfile = msymbol.objfile;
3728 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3729 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3730 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3731 }
3732
3733 gdbarch = get_objfile_arch (objfile);
3734
3735 /* Process the prologue in two passes. In the first pass try to skip the
3736 prologue (SKIP is true) and verify there is a real need for it (indicated
3737 by FORCE_SKIP). If no such reason was found run a second pass where the
3738 prologue is not skipped (SKIP is false). */
3739
3740 skip = 1;
3741 force_skip = 1;
3742
3743 /* Be conservative - allow direct PC (without skipping prologue) only if we
3744 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3745 have to be set by the caller so we use SYM instead. */
3746 if (sym != NULL
3747 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3748 force_skip = 0;
3749
3750 saved_pc = pc;
3751 do
3752 {
3753 pc = saved_pc;
3754
3755 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3756 so that gdbarch_skip_prologue has something unique to work on. */
3757 if (section_is_overlay (section) && !section_is_mapped (section))
3758 pc = overlay_unmapped_address (pc, section);
3759
3760 /* Skip "first line" of function (which is actually its prologue). */
3761 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3762 if (gdbarch_skip_entrypoint_p (gdbarch))
3763 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3764 if (skip)
3765 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3766
3767 /* For overlays, map pc back into its mapped VMA range. */
3768 pc = overlay_mapped_address (pc, section);
3769
3770 /* Calculate line number. */
3771 start_sal = find_pc_sect_line (pc, section, 0);
3772
3773 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3774 line is still part of the same function. */
3775 if (skip && start_sal.pc != pc
3776 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3777 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3778 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3779 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3780 {
3781 /* First pc of next line */
3782 pc = start_sal.end;
3783 /* Recalculate the line number (might not be N+1). */
3784 start_sal = find_pc_sect_line (pc, section, 0);
3785 }
3786
3787 /* On targets with executable formats that don't have a concept of
3788 constructors (ELF with .init has, PE doesn't), gcc emits a call
3789 to `__main' in `main' between the prologue and before user
3790 code. */
3791 if (gdbarch_skip_main_prologue_p (gdbarch)
3792 && name && strcmp_iw (name, "main") == 0)
3793 {
3794 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3795 /* Recalculate the line number (might not be N+1). */
3796 start_sal = find_pc_sect_line (pc, section, 0);
3797 force_skip = 1;
3798 }
3799 }
3800 while (!force_skip && skip--);
3801
3802 /* If we still don't have a valid source line, try to find the first
3803 PC in the lineinfo table that belongs to the same function. This
3804 happens with COFF debug info, which does not seem to have an
3805 entry in lineinfo table for the code after the prologue which has
3806 no direct relation to source. For example, this was found to be
3807 the case with the DJGPP target using "gcc -gcoff" when the
3808 compiler inserted code after the prologue to make sure the stack
3809 is aligned. */
3810 if (!force_skip && sym && start_sal.symtab == NULL)
3811 {
3812 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3813 /* Recalculate the line number. */
3814 start_sal = find_pc_sect_line (pc, section, 0);
3815 }
3816
3817 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3818 forward SAL to the end of the prologue. */
3819 if (sal->pc >= pc)
3820 return;
3821
3822 sal->pc = pc;
3823 sal->section = section;
3824
3825 /* Unless the explicit_line flag was set, update the SAL line
3826 and symtab to correspond to the modified PC location. */
3827 if (sal->explicit_line)
3828 return;
3829
3830 sal->symtab = start_sal.symtab;
3831 sal->line = start_sal.line;
3832 sal->end = start_sal.end;
3833
3834 /* Check if we are now inside an inlined function. If we can,
3835 use the call site of the function instead. */
3836 b = block_for_pc_sect (sal->pc, sal->section);
3837 function_block = NULL;
3838 while (b != NULL)
3839 {
3840 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3841 function_block = b;
3842 else if (BLOCK_FUNCTION (b) != NULL)
3843 break;
3844 b = BLOCK_SUPERBLOCK (b);
3845 }
3846 if (function_block != NULL
3847 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3848 {
3849 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3850 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3851 }
3852 }
3853
3854 /* Given PC at the function's start address, attempt to find the
3855 prologue end using SAL information. Return zero if the skip fails.
3856
3857 A non-optimized prologue traditionally has one SAL for the function
3858 and a second for the function body. A single line function has
3859 them both pointing at the same line.
3860
3861 An optimized prologue is similar but the prologue may contain
3862 instructions (SALs) from the instruction body. Need to skip those
3863 while not getting into the function body.
3864
3865 The functions end point and an increasing SAL line are used as
3866 indicators of the prologue's endpoint.
3867
3868 This code is based on the function refine_prologue_limit
3869 (found in ia64). */
3870
3871 CORE_ADDR
3872 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3873 {
3874 struct symtab_and_line prologue_sal;
3875 CORE_ADDR start_pc;
3876 CORE_ADDR end_pc;
3877 const struct block *bl;
3878
3879 /* Get an initial range for the function. */
3880 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3881 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3882
3883 prologue_sal = find_pc_line (start_pc, 0);
3884 if (prologue_sal.line != 0)
3885 {
3886 /* For languages other than assembly, treat two consecutive line
3887 entries at the same address as a zero-instruction prologue.
3888 The GNU assembler emits separate line notes for each instruction
3889 in a multi-instruction macro, but compilers generally will not
3890 do this. */
3891 if (prologue_sal.symtab->language != language_asm)
3892 {
3893 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3894 int idx = 0;
3895
3896 /* Skip any earlier lines, and any end-of-sequence marker
3897 from a previous function. */
3898 while (linetable->item[idx].pc != prologue_sal.pc
3899 || linetable->item[idx].line == 0)
3900 idx++;
3901
3902 if (idx+1 < linetable->nitems
3903 && linetable->item[idx+1].line != 0
3904 && linetable->item[idx+1].pc == start_pc)
3905 return start_pc;
3906 }
3907
3908 /* If there is only one sal that covers the entire function,
3909 then it is probably a single line function, like
3910 "foo(){}". */
3911 if (prologue_sal.end >= end_pc)
3912 return 0;
3913
3914 while (prologue_sal.end < end_pc)
3915 {
3916 struct symtab_and_line sal;
3917
3918 sal = find_pc_line (prologue_sal.end, 0);
3919 if (sal.line == 0)
3920 break;
3921 /* Assume that a consecutive SAL for the same (or larger)
3922 line mark the prologue -> body transition. */
3923 if (sal.line >= prologue_sal.line)
3924 break;
3925 /* Likewise if we are in a different symtab altogether
3926 (e.g. within a file included via #include).  */
3927 if (sal.symtab != prologue_sal.symtab)
3928 break;
3929
3930 /* The line number is smaller. Check that it's from the
3931 same function, not something inlined. If it's inlined,
3932 then there is no point comparing the line numbers. */
3933 bl = block_for_pc (prologue_sal.end);
3934 while (bl)
3935 {
3936 if (block_inlined_p (bl))
3937 break;
3938 if (BLOCK_FUNCTION (bl))
3939 {
3940 bl = NULL;
3941 break;
3942 }
3943 bl = BLOCK_SUPERBLOCK (bl);
3944 }
3945 if (bl != NULL)
3946 break;
3947
3948 /* The case in which compiler's optimizer/scheduler has
3949 moved instructions into the prologue. We look ahead in
3950 the function looking for address ranges whose
3951 corresponding line number is less the first one that we
3952 found for the function. This is more conservative then
3953 refine_prologue_limit which scans a large number of SALs
3954 looking for any in the prologue. */
3955 prologue_sal = sal;
3956 }
3957 }
3958
3959 if (prologue_sal.end < end_pc)
3960 /* Return the end of this line, or zero if we could not find a
3961 line. */
3962 return prologue_sal.end;
3963 else
3964 /* Don't return END_PC, which is past the end of the function. */
3965 return prologue_sal.pc;
3966 }
3967
3968 /* See symtab.h. */
3969
3970 symbol *
3971 find_function_alias_target (bound_minimal_symbol msymbol)
3972 {
3973 CORE_ADDR func_addr;
3974 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3975 return NULL;
3976
3977 symbol *sym = find_pc_function (func_addr);
3978 if (sym != NULL
3979 && SYMBOL_CLASS (sym) == LOC_BLOCK
3980 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3981 return sym;
3982
3983 return NULL;
3984 }
3985
3986 \f
3987 /* If P is of the form "operator[ \t]+..." where `...' is
3988 some legitimate operator text, return a pointer to the
3989 beginning of the substring of the operator text.
3990 Otherwise, return "". */
3991
3992 static const char *
3993 operator_chars (const char *p, const char **end)
3994 {
3995 *end = "";
3996 if (!startswith (p, CP_OPERATOR_STR))
3997 return *end;
3998 p += CP_OPERATOR_LEN;
3999
4000 /* Don't get faked out by `operator' being part of a longer
4001 identifier. */
4002 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4003 return *end;
4004
4005 /* Allow some whitespace between `operator' and the operator symbol. */
4006 while (*p == ' ' || *p == '\t')
4007 p++;
4008
4009 /* Recognize 'operator TYPENAME'. */
4010
4011 if (isalpha (*p) || *p == '_' || *p == '$')
4012 {
4013 const char *q = p + 1;
4014
4015 while (isalnum (*q) || *q == '_' || *q == '$')
4016 q++;
4017 *end = q;
4018 return p;
4019 }
4020
4021 while (*p)
4022 switch (*p)
4023 {
4024 case '\\': /* regexp quoting */
4025 if (p[1] == '*')
4026 {
4027 if (p[2] == '=') /* 'operator\*=' */
4028 *end = p + 3;
4029 else /* 'operator\*' */
4030 *end = p + 2;
4031 return p;
4032 }
4033 else if (p[1] == '[')
4034 {
4035 if (p[2] == ']')
4036 error (_("mismatched quoting on brackets, "
4037 "try 'operator\\[\\]'"));
4038 else if (p[2] == '\\' && p[3] == ']')
4039 {
4040 *end = p + 4; /* 'operator\[\]' */
4041 return p;
4042 }
4043 else
4044 error (_("nothing is allowed between '[' and ']'"));
4045 }
4046 else
4047 {
4048 /* Gratuitous qoute: skip it and move on. */
4049 p++;
4050 continue;
4051 }
4052 break;
4053 case '!':
4054 case '=':
4055 case '*':
4056 case '/':
4057 case '%':
4058 case '^':
4059 if (p[1] == '=')
4060 *end = p + 2;
4061 else
4062 *end = p + 1;
4063 return p;
4064 case '<':
4065 case '>':
4066 case '+':
4067 case '-':
4068 case '&':
4069 case '|':
4070 if (p[0] == '-' && p[1] == '>')
4071 {
4072 /* Struct pointer member operator 'operator->'. */
4073 if (p[2] == '*')
4074 {
4075 *end = p + 3; /* 'operator->*' */
4076 return p;
4077 }
4078 else if (p[2] == '\\')
4079 {
4080 *end = p + 4; /* Hopefully 'operator->\*' */
4081 return p;
4082 }
4083 else
4084 {
4085 *end = p + 2; /* 'operator->' */
4086 return p;
4087 }
4088 }
4089 if (p[1] == '=' || p[1] == p[0])
4090 *end = p + 2;
4091 else
4092 *end = p + 1;
4093 return p;
4094 case '~':
4095 case ',':
4096 *end = p + 1;
4097 return p;
4098 case '(':
4099 if (p[1] != ')')
4100 error (_("`operator ()' must be specified "
4101 "without whitespace in `()'"));
4102 *end = p + 2;
4103 return p;
4104 case '?':
4105 if (p[1] != ':')
4106 error (_("`operator ?:' must be specified "
4107 "without whitespace in `?:'"));
4108 *end = p + 2;
4109 return p;
4110 case '[':
4111 if (p[1] != ']')
4112 error (_("`operator []' must be specified "
4113 "without whitespace in `[]'"));
4114 *end = p + 2;
4115 return p;
4116 default:
4117 error (_("`operator %s' not supported"), p);
4118 break;
4119 }
4120
4121 *end = "";
4122 return *end;
4123 }
4124 \f
4125
4126 /* Data structure to maintain printing state for output_source_filename. */
4127
4128 struct output_source_filename_data
4129 {
4130 /* Cache of what we've seen so far. */
4131 struct filename_seen_cache *filename_seen_cache;
4132
4133 /* Flag of whether we're printing the first one. */
4134 int first;
4135 };
4136
4137 /* Slave routine for sources_info. Force line breaks at ,'s.
4138 NAME is the name to print.
4139 DATA contains the state for printing and watching for duplicates. */
4140
4141 static void
4142 output_source_filename (const char *name,
4143 struct output_source_filename_data *data)
4144 {
4145 /* Since a single source file can result in several partial symbol
4146 tables, we need to avoid printing it more than once. Note: if
4147 some of the psymtabs are read in and some are not, it gets
4148 printed both under "Source files for which symbols have been
4149 read" and "Source files for which symbols will be read in on
4150 demand". I consider this a reasonable way to deal with the
4151 situation. I'm not sure whether this can also happen for
4152 symtabs; it doesn't hurt to check. */
4153
4154 /* Was NAME already seen? */
4155 if (data->filename_seen_cache->seen (name))
4156 {
4157 /* Yes; don't print it again. */
4158 return;
4159 }
4160
4161 /* No; print it and reset *FIRST. */
4162 if (! data->first)
4163 printf_filtered (", ");
4164 data->first = 0;
4165
4166 wrap_here ("");
4167 fputs_filtered (name, gdb_stdout);
4168 }
4169
4170 /* A callback for map_partial_symbol_filenames. */
4171
4172 static void
4173 output_partial_symbol_filename (const char *filename, const char *fullname,
4174 void *data)
4175 {
4176 output_source_filename (fullname ? fullname : filename,
4177 (struct output_source_filename_data *) data);
4178 }
4179
4180 static void
4181 info_sources_command (const char *ignore, int from_tty)
4182 {
4183 struct objfile *objfile;
4184 struct output_source_filename_data data;
4185
4186 if (!have_full_symbols () && !have_partial_symbols ())
4187 {
4188 error (_("No symbol table is loaded. Use the \"file\" command."));
4189 }
4190
4191 filename_seen_cache filenames_seen;
4192
4193 data.filename_seen_cache = &filenames_seen;
4194
4195 printf_filtered ("Source files for which symbols have been read in:\n\n");
4196
4197 data.first = 1;
4198 ALL_FILETABS (objfile, cu, s)
4199 {
4200 const char *fullname = symtab_to_fullname (s);
4201
4202 output_source_filename (fullname, &data);
4203 }
4204 printf_filtered ("\n\n");
4205
4206 printf_filtered ("Source files for which symbols "
4207 "will be read in on demand:\n\n");
4208
4209 filenames_seen.clear ();
4210 data.first = 1;
4211 map_symbol_filenames (output_partial_symbol_filename, &data,
4212 1 /*need_fullname*/);
4213 printf_filtered ("\n");
4214 }
4215
4216 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4217 non-zero compare only lbasename of FILES. */
4218
4219 static int
4220 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4221 {
4222 int i;
4223
4224 if (file != NULL && nfiles != 0)
4225 {
4226 for (i = 0; i < nfiles; i++)
4227 {
4228 if (compare_filenames_for_search (file, (basenames
4229 ? lbasename (files[i])
4230 : files[i])))
4231 return 1;
4232 }
4233 }
4234 else if (nfiles == 0)
4235 return 1;
4236 return 0;
4237 }
4238
4239 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4240 sort symbols, not minimal symbols. */
4241
4242 int
4243 symbol_search::compare_search_syms (const symbol_search &sym_a,
4244 const symbol_search &sym_b)
4245 {
4246 int c;
4247
4248 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4249 symbol_symtab (sym_b.symbol)->filename);
4250 if (c != 0)
4251 return c;
4252
4253 if (sym_a.block != sym_b.block)
4254 return sym_a.block - sym_b.block;
4255
4256 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4257 SYMBOL_PRINT_NAME (sym_b.symbol));
4258 }
4259
4260 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4261 If SYM has no symbol_type or symbol_name, returns false. */
4262
4263 bool
4264 treg_matches_sym_type_name (const compiled_regex &treg,
4265 const struct symbol *sym)
4266 {
4267 struct type *sym_type;
4268 std::string printed_sym_type_name;
4269
4270 if (symbol_lookup_debug > 1)
4271 {
4272 fprintf_unfiltered (gdb_stdlog,
4273 "treg_matches_sym_type_name\n sym %s\n",
4274 SYMBOL_NATURAL_NAME (sym));
4275 }
4276
4277 sym_type = SYMBOL_TYPE (sym);
4278 if (sym_type == NULL)
4279 return false;
4280
4281 {
4282 scoped_switch_to_sym_language_if_auto l (sym);
4283
4284 printed_sym_type_name = type_to_string (sym_type);
4285 }
4286
4287
4288 if (symbol_lookup_debug > 1)
4289 {
4290 fprintf_unfiltered (gdb_stdlog,
4291 " sym_type_name %s\n",
4292 printed_sym_type_name.c_str ());
4293 }
4294
4295
4296 if (printed_sym_type_name.empty ())
4297 return false;
4298
4299 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4300 }
4301
4302
4303 /* Sort the symbols in RESULT and remove duplicates. */
4304
4305 static void
4306 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4307 {
4308 std::sort (result->begin (), result->end ());
4309 result->erase (std::unique (result->begin (), result->end ()),
4310 result->end ());
4311 }
4312
4313 /* Search the symbol table for matches to the regular expression REGEXP,
4314 returning the results.
4315
4316 Only symbols of KIND are searched:
4317 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4318 and constants (enums).
4319 if T_REGEXP is not NULL, only returns var that have
4320 a type matching regular expression T_REGEXP.
4321 FUNCTIONS_DOMAIN - search all functions
4322 TYPES_DOMAIN - search all type names
4323 ALL_DOMAIN - an internal error for this function
4324
4325 Within each file the results are sorted locally; each symtab's global and
4326 static blocks are separately alphabetized.
4327 Duplicate entries are removed. */
4328
4329 std::vector<symbol_search>
4330 search_symbols (const char *regexp, enum search_domain kind,
4331 const char *t_regexp,
4332 int nfiles, const char *files[])
4333 {
4334 const struct blockvector *bv;
4335 struct block *b;
4336 int i = 0;
4337 struct block_iterator iter;
4338 struct symbol *sym;
4339 int found_misc = 0;
4340 static const enum minimal_symbol_type types[]
4341 = {mst_data, mst_text, mst_abs};
4342 static const enum minimal_symbol_type types2[]
4343 = {mst_bss, mst_file_text, mst_abs};
4344 static const enum minimal_symbol_type types3[]
4345 = {mst_file_data, mst_solib_trampoline, mst_abs};
4346 static const enum minimal_symbol_type types4[]
4347 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4348 enum minimal_symbol_type ourtype;
4349 enum minimal_symbol_type ourtype2;
4350 enum minimal_symbol_type ourtype3;
4351 enum minimal_symbol_type ourtype4;
4352 std::vector<symbol_search> result;
4353 gdb::optional<compiled_regex> preg;
4354 gdb::optional<compiled_regex> treg;
4355
4356 gdb_assert (kind <= TYPES_DOMAIN);
4357
4358 ourtype = types[kind];
4359 ourtype2 = types2[kind];
4360 ourtype3 = types3[kind];
4361 ourtype4 = types4[kind];
4362
4363 if (regexp != NULL)
4364 {
4365 /* Make sure spacing is right for C++ operators.
4366 This is just a courtesy to make the matching less sensitive
4367 to how many spaces the user leaves between 'operator'
4368 and <TYPENAME> or <OPERATOR>. */
4369 const char *opend;
4370 const char *opname = operator_chars (regexp, &opend);
4371
4372 if (*opname)
4373 {
4374 int fix = -1; /* -1 means ok; otherwise number of
4375 spaces needed. */
4376
4377 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4378 {
4379 /* There should 1 space between 'operator' and 'TYPENAME'. */
4380 if (opname[-1] != ' ' || opname[-2] == ' ')
4381 fix = 1;
4382 }
4383 else
4384 {
4385 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4386 if (opname[-1] == ' ')
4387 fix = 0;
4388 }
4389 /* If wrong number of spaces, fix it. */
4390 if (fix >= 0)
4391 {
4392 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4393
4394 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4395 regexp = tmp;
4396 }
4397 }
4398
4399 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4400 ? REG_ICASE : 0);
4401 preg.emplace (regexp, cflags, _("Invalid regexp"));
4402 }
4403
4404 if (t_regexp != NULL)
4405 {
4406 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4407 ? REG_ICASE : 0);
4408 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4409 }
4410
4411 /* Search through the partial symtabs *first* for all symbols
4412 matching the regexp. That way we don't have to reproduce all of
4413 the machinery below. */
4414 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4415 {
4416 return file_matches (filename, files, nfiles,
4417 basenames);
4418 },
4419 lookup_name_info::match_any (),
4420 [&] (const char *symname)
4421 {
4422 return (!preg.has_value ()
4423 || preg->exec (symname,
4424 0, NULL, 0) == 0);
4425 },
4426 NULL,
4427 kind);
4428
4429 /* Here, we search through the minimal symbol tables for functions
4430 and variables that match, and force their symbols to be read.
4431 This is in particular necessary for demangled variable names,
4432 which are no longer put into the partial symbol tables.
4433 The symbol will then be found during the scan of symtabs below.
4434
4435 For functions, find_pc_symtab should succeed if we have debug info
4436 for the function, for variables we have to call
4437 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4438 has debug info.
4439 If the lookup fails, set found_misc so that we will rescan to print
4440 any matching symbols without debug info.
4441 We only search the objfile the msymbol came from, we no longer search
4442 all objfiles. In large programs (1000s of shared libs) searching all
4443 objfiles is not worth the pain. */
4444
4445 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4446 {
4447 for (objfile *objfile : all_objfiles (current_program_space))
4448 {
4449 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
4450 {
4451 QUIT;
4452
4453 if (msymbol->created_by_gdb)
4454 continue;
4455
4456 if (MSYMBOL_TYPE (msymbol) == ourtype
4457 || MSYMBOL_TYPE (msymbol) == ourtype2
4458 || MSYMBOL_TYPE (msymbol) == ourtype3
4459 || MSYMBOL_TYPE (msymbol) == ourtype4)
4460 {
4461 if (!preg.has_value ()
4462 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4463 NULL, 0) == 0)
4464 {
4465 /* Note: An important side-effect of these
4466 lookup functions is to expand the symbol
4467 table if msymbol is found, for the benefit of
4468 the next loop on compunits. */
4469 if (kind == FUNCTIONS_DOMAIN
4470 ? (find_pc_compunit_symtab
4471 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4472 == NULL)
4473 : (lookup_symbol_in_objfile_from_linkage_name
4474 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4475 VAR_DOMAIN)
4476 .symbol == NULL))
4477 found_misc = 1;
4478 }
4479 }
4480 }
4481 }
4482 }
4483
4484 for (objfile *objfile : all_objfiles (current_program_space))
4485 {
4486 for (compunit_symtab *cust : objfile_compunits (objfile))
4487 {
4488 bv = COMPUNIT_BLOCKVECTOR (cust);
4489 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4490 {
4491 b = BLOCKVECTOR_BLOCK (bv, i);
4492 ALL_BLOCK_SYMBOLS (b, iter, sym)
4493 {
4494 struct symtab *real_symtab = symbol_symtab (sym);
4495
4496 QUIT;
4497
4498 /* Check first sole REAL_SYMTAB->FILENAME. It does
4499 not need to be a substring of symtab_to_fullname as
4500 it may contain "./" etc. */
4501 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4502 || ((basenames_may_differ
4503 || file_matches (lbasename (real_symtab->filename),
4504 files, nfiles, 1))
4505 && file_matches (symtab_to_fullname (real_symtab),
4506 files, nfiles, 0)))
4507 && ((!preg.has_value ()
4508 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4509 NULL, 0) == 0)
4510 && ((kind == VARIABLES_DOMAIN
4511 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4512 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4513 && SYMBOL_CLASS (sym) != LOC_BLOCK
4514 /* LOC_CONST can be used for more than
4515 just enums, e.g., c++ static const
4516 members. We only want to skip enums
4517 here. */
4518 && !(SYMBOL_CLASS (sym) == LOC_CONST
4519 && (TYPE_CODE (SYMBOL_TYPE (sym))
4520 == TYPE_CODE_ENUM))
4521 && (!treg.has_value ()
4522 || treg_matches_sym_type_name (*treg, sym)))
4523 || (kind == FUNCTIONS_DOMAIN
4524 && SYMBOL_CLASS (sym) == LOC_BLOCK
4525 && (!treg.has_value ()
4526 || treg_matches_sym_type_name (*treg,
4527 sym)))
4528 || (kind == TYPES_DOMAIN
4529 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4530 {
4531 /* match */
4532 result.emplace_back (i, sym);
4533 }
4534 }
4535 }
4536 }
4537 }
4538
4539 if (!result.empty ())
4540 sort_search_symbols_remove_dups (&result);
4541
4542 /* If there are no eyes, avoid all contact. I mean, if there are
4543 no debug symbols, then add matching minsyms. But if the user wants
4544 to see symbols matching a type regexp, then never give a minimal symbol,
4545 as we assume that a minimal symbol does not have a type. */
4546
4547 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4548 && !treg.has_value ())
4549 {
4550 for (objfile *objfile : all_objfiles (current_program_space))
4551 {
4552 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
4553 {
4554 QUIT;
4555
4556 if (msymbol->created_by_gdb)
4557 continue;
4558
4559 if (MSYMBOL_TYPE (msymbol) == ourtype
4560 || MSYMBOL_TYPE (msymbol) == ourtype2
4561 || MSYMBOL_TYPE (msymbol) == ourtype3
4562 || MSYMBOL_TYPE (msymbol) == ourtype4)
4563 {
4564 if (!preg.has_value ()
4565 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4566 NULL, 0) == 0)
4567 {
4568 /* For functions we can do a quick check of whether the
4569 symbol might be found via find_pc_symtab. */
4570 if (kind != FUNCTIONS_DOMAIN
4571 || (find_pc_compunit_symtab
4572 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4573 == NULL))
4574 {
4575 if (lookup_symbol_in_objfile_from_linkage_name
4576 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4577 VAR_DOMAIN)
4578 .symbol == NULL)
4579 {
4580 /* match */
4581 result.emplace_back (i, msymbol, objfile);
4582 }
4583 }
4584 }
4585 }
4586 }
4587 }
4588 }
4589
4590 return result;
4591 }
4592
4593 /* Helper function for symtab_symbol_info, this function uses
4594 the data returned from search_symbols() to print information
4595 regarding the match to gdb_stdout. If LAST is not NULL,
4596 print file and line number information for the symbol as
4597 well. Skip printing the filename if it matches LAST. */
4598
4599 static void
4600 print_symbol_info (enum search_domain kind,
4601 struct symbol *sym,
4602 int block, const char *last)
4603 {
4604 scoped_switch_to_sym_language_if_auto l (sym);
4605 struct symtab *s = symbol_symtab (sym);
4606
4607 if (last != NULL)
4608 {
4609 const char *s_filename = symtab_to_filename_for_display (s);
4610
4611 if (filename_cmp (last, s_filename) != 0)
4612 {
4613 fputs_filtered ("\nFile ", gdb_stdout);
4614 fputs_filtered (s_filename, gdb_stdout);
4615 fputs_filtered (":\n", gdb_stdout);
4616 }
4617
4618 if (SYMBOL_LINE (sym) != 0)
4619 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4620 else
4621 puts_filtered ("\t");
4622 }
4623
4624 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4625 printf_filtered ("static ");
4626
4627 /* Typedef that is not a C++ class. */
4628 if (kind == TYPES_DOMAIN
4629 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4630 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4631 /* variable, func, or typedef-that-is-c++-class. */
4632 else if (kind < TYPES_DOMAIN
4633 || (kind == TYPES_DOMAIN
4634 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4635 {
4636 type_print (SYMBOL_TYPE (sym),
4637 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4638 ? "" : SYMBOL_PRINT_NAME (sym)),
4639 gdb_stdout, 0);
4640
4641 printf_filtered (";\n");
4642 }
4643 }
4644
4645 /* This help function for symtab_symbol_info() prints information
4646 for non-debugging symbols to gdb_stdout. */
4647
4648 static void
4649 print_msymbol_info (struct bound_minimal_symbol msymbol)
4650 {
4651 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4652 char *tmp;
4653
4654 if (gdbarch_addr_bit (gdbarch) <= 32)
4655 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4656 & (CORE_ADDR) 0xffffffff,
4657 8);
4658 else
4659 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4660 16);
4661 printf_filtered ("%s %s\n",
4662 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4663 }
4664
4665 /* This is the guts of the commands "info functions", "info types", and
4666 "info variables". It calls search_symbols to find all matches and then
4667 print_[m]symbol_info to print out some useful information about the
4668 matches. */
4669
4670 static void
4671 symtab_symbol_info (bool quiet,
4672 const char *regexp, enum search_domain kind,
4673 const char *t_regexp, int from_tty)
4674 {
4675 static const char * const classnames[] =
4676 {"variable", "function", "type"};
4677 const char *last_filename = "";
4678 int first = 1;
4679
4680 gdb_assert (kind <= TYPES_DOMAIN);
4681
4682 /* Must make sure that if we're interrupted, symbols gets freed. */
4683 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4684 t_regexp, 0, NULL);
4685
4686 if (!quiet)
4687 {
4688 if (regexp != NULL)
4689 {
4690 if (t_regexp != NULL)
4691 printf_filtered
4692 (_("All %ss matching regular expression \"%s\""
4693 " with type matching regulation expression \"%s\":\n"),
4694 classnames[kind], regexp, t_regexp);
4695 else
4696 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4697 classnames[kind], regexp);
4698 }
4699 else
4700 {
4701 if (t_regexp != NULL)
4702 printf_filtered
4703 (_("All defined %ss"
4704 " with type matching regulation expression \"%s\" :\n"),
4705 classnames[kind], t_regexp);
4706 else
4707 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4708 }
4709 }
4710
4711 for (const symbol_search &p : symbols)
4712 {
4713 QUIT;
4714
4715 if (p.msymbol.minsym != NULL)
4716 {
4717 if (first)
4718 {
4719 if (!quiet)
4720 printf_filtered (_("\nNon-debugging symbols:\n"));
4721 first = 0;
4722 }
4723 print_msymbol_info (p.msymbol);
4724 }
4725 else
4726 {
4727 print_symbol_info (kind,
4728 p.symbol,
4729 p.block,
4730 last_filename);
4731 last_filename
4732 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4733 }
4734 }
4735 }
4736
4737 static void
4738 info_variables_command (const char *args, int from_tty)
4739 {
4740 std::string regexp;
4741 std::string t_regexp;
4742 bool quiet = false;
4743
4744 while (args != NULL
4745 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4746 ;
4747
4748 if (args != NULL)
4749 report_unrecognized_option_error ("info variables", args);
4750
4751 symtab_symbol_info (quiet,
4752 regexp.empty () ? NULL : regexp.c_str (),
4753 VARIABLES_DOMAIN,
4754 t_regexp.empty () ? NULL : t_regexp.c_str (),
4755 from_tty);
4756 }
4757
4758
4759 static void
4760 info_functions_command (const char *args, int from_tty)
4761 {
4762 std::string regexp;
4763 std::string t_regexp;
4764 bool quiet = false;
4765
4766 while (args != NULL
4767 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4768 ;
4769
4770 if (args != NULL)
4771 report_unrecognized_option_error ("info functions", args);
4772
4773 symtab_symbol_info (quiet,
4774 regexp.empty () ? NULL : regexp.c_str (),
4775 FUNCTIONS_DOMAIN,
4776 t_regexp.empty () ? NULL : t_regexp.c_str (),
4777 from_tty);
4778 }
4779
4780
4781 static void
4782 info_types_command (const char *regexp, int from_tty)
4783 {
4784 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4785 }
4786
4787 /* Breakpoint all functions matching regular expression. */
4788
4789 void
4790 rbreak_command_wrapper (char *regexp, int from_tty)
4791 {
4792 rbreak_command (regexp, from_tty);
4793 }
4794
4795 static void
4796 rbreak_command (const char *regexp, int from_tty)
4797 {
4798 std::string string;
4799 const char **files = NULL;
4800 const char *file_name;
4801 int nfiles = 0;
4802
4803 if (regexp)
4804 {
4805 const char *colon = strchr (regexp, ':');
4806
4807 if (colon && *(colon + 1) != ':')
4808 {
4809 int colon_index;
4810 char *local_name;
4811
4812 colon_index = colon - regexp;
4813 local_name = (char *) alloca (colon_index + 1);
4814 memcpy (local_name, regexp, colon_index);
4815 local_name[colon_index--] = 0;
4816 while (isspace (local_name[colon_index]))
4817 local_name[colon_index--] = 0;
4818 file_name = local_name;
4819 files = &file_name;
4820 nfiles = 1;
4821 regexp = skip_spaces (colon + 1);
4822 }
4823 }
4824
4825 std::vector<symbol_search> symbols = search_symbols (regexp,
4826 FUNCTIONS_DOMAIN,
4827 NULL,
4828 nfiles, files);
4829
4830 scoped_rbreak_breakpoints finalize;
4831 for (const symbol_search &p : symbols)
4832 {
4833 if (p.msymbol.minsym == NULL)
4834 {
4835 struct symtab *symtab = symbol_symtab (p.symbol);
4836 const char *fullname = symtab_to_fullname (symtab);
4837
4838 string = string_printf ("%s:'%s'", fullname,
4839 SYMBOL_LINKAGE_NAME (p.symbol));
4840 break_command (&string[0], from_tty);
4841 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4842 }
4843 else
4844 {
4845 string = string_printf ("'%s'",
4846 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4847
4848 break_command (&string[0], from_tty);
4849 printf_filtered ("<function, no debug info> %s;\n",
4850 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4851 }
4852 }
4853 }
4854 \f
4855
4856 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4857
4858 static int
4859 compare_symbol_name (const char *symbol_name, language symbol_language,
4860 const lookup_name_info &lookup_name,
4861 completion_match_result &match_res)
4862 {
4863 const language_defn *lang = language_def (symbol_language);
4864
4865 symbol_name_matcher_ftype *name_match
4866 = get_symbol_name_matcher (lang, lookup_name);
4867
4868 return name_match (symbol_name, lookup_name, &match_res);
4869 }
4870
4871 /* See symtab.h. */
4872
4873 void
4874 completion_list_add_name (completion_tracker &tracker,
4875 language symbol_language,
4876 const char *symname,
4877 const lookup_name_info &lookup_name,
4878 const char *text, const char *word)
4879 {
4880 completion_match_result &match_res
4881 = tracker.reset_completion_match_result ();
4882
4883 /* Clip symbols that cannot match. */
4884 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4885 return;
4886
4887 /* Refresh SYMNAME from the match string. It's potentially
4888 different depending on language. (E.g., on Ada, the match may be
4889 the encoded symbol name wrapped in "<>"). */
4890 symname = match_res.match.match ();
4891 gdb_assert (symname != NULL);
4892
4893 /* We have a match for a completion, so add SYMNAME to the current list
4894 of matches. Note that the name is moved to freshly malloc'd space. */
4895
4896 {
4897 gdb::unique_xmalloc_ptr<char> completion
4898 = make_completion_match_str (symname, text, word);
4899
4900 /* Here we pass the match-for-lcd object to add_completion. Some
4901 languages match the user text against substrings of symbol
4902 names in some cases. E.g., in C++, "b push_ba" completes to
4903 "std::vector::push_back", "std::string::push_back", etc., and
4904 in this case we want the completion lowest common denominator
4905 to be "push_back" instead of "std::". */
4906 tracker.add_completion (std::move (completion),
4907 &match_res.match_for_lcd, text, word);
4908 }
4909 }
4910
4911 /* completion_list_add_name wrapper for struct symbol. */
4912
4913 static void
4914 completion_list_add_symbol (completion_tracker &tracker,
4915 symbol *sym,
4916 const lookup_name_info &lookup_name,
4917 const char *text, const char *word)
4918 {
4919 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4920 SYMBOL_NATURAL_NAME (sym),
4921 lookup_name, text, word);
4922 }
4923
4924 /* completion_list_add_name wrapper for struct minimal_symbol. */
4925
4926 static void
4927 completion_list_add_msymbol (completion_tracker &tracker,
4928 minimal_symbol *sym,
4929 const lookup_name_info &lookup_name,
4930 const char *text, const char *word)
4931 {
4932 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4933 MSYMBOL_NATURAL_NAME (sym),
4934 lookup_name, text, word);
4935 }
4936
4937
4938 /* ObjC: In case we are completing on a selector, look as the msymbol
4939 again and feed all the selectors into the mill. */
4940
4941 static void
4942 completion_list_objc_symbol (completion_tracker &tracker,
4943 struct minimal_symbol *msymbol,
4944 const lookup_name_info &lookup_name,
4945 const char *text, const char *word)
4946 {
4947 static char *tmp = NULL;
4948 static unsigned int tmplen = 0;
4949
4950 const char *method, *category, *selector;
4951 char *tmp2 = NULL;
4952
4953 method = MSYMBOL_NATURAL_NAME (msymbol);
4954
4955 /* Is it a method? */
4956 if ((method[0] != '-') && (method[0] != '+'))
4957 return;
4958
4959 if (text[0] == '[')
4960 /* Complete on shortened method method. */
4961 completion_list_add_name (tracker, language_objc,
4962 method + 1,
4963 lookup_name,
4964 text, word);
4965
4966 while ((strlen (method) + 1) >= tmplen)
4967 {
4968 if (tmplen == 0)
4969 tmplen = 1024;
4970 else
4971 tmplen *= 2;
4972 tmp = (char *) xrealloc (tmp, tmplen);
4973 }
4974 selector = strchr (method, ' ');
4975 if (selector != NULL)
4976 selector++;
4977
4978 category = strchr (method, '(');
4979
4980 if ((category != NULL) && (selector != NULL))
4981 {
4982 memcpy (tmp, method, (category - method));
4983 tmp[category - method] = ' ';
4984 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4985 completion_list_add_name (tracker, language_objc, tmp,
4986 lookup_name, text, word);
4987 if (text[0] == '[')
4988 completion_list_add_name (tracker, language_objc, tmp + 1,
4989 lookup_name, text, word);
4990 }
4991
4992 if (selector != NULL)
4993 {
4994 /* Complete on selector only. */
4995 strcpy (tmp, selector);
4996 tmp2 = strchr (tmp, ']');
4997 if (tmp2 != NULL)
4998 *tmp2 = '\0';
4999
5000 completion_list_add_name (tracker, language_objc, tmp,
5001 lookup_name, text, word);
5002 }
5003 }
5004
5005 /* Break the non-quoted text based on the characters which are in
5006 symbols. FIXME: This should probably be language-specific. */
5007
5008 static const char *
5009 language_search_unquoted_string (const char *text, const char *p)
5010 {
5011 for (; p > text; --p)
5012 {
5013 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5014 continue;
5015 else
5016 {
5017 if ((current_language->la_language == language_objc))
5018 {
5019 if (p[-1] == ':') /* Might be part of a method name. */
5020 continue;
5021 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5022 p -= 2; /* Beginning of a method name. */
5023 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5024 { /* Might be part of a method name. */
5025 const char *t = p;
5026
5027 /* Seeing a ' ' or a '(' is not conclusive evidence
5028 that we are in the middle of a method name. However,
5029 finding "-[" or "+[" should be pretty un-ambiguous.
5030 Unfortunately we have to find it now to decide. */
5031
5032 while (t > text)
5033 if (isalnum (t[-1]) || t[-1] == '_' ||
5034 t[-1] == ' ' || t[-1] == ':' ||
5035 t[-1] == '(' || t[-1] == ')')
5036 --t;
5037 else
5038 break;
5039
5040 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5041 p = t - 2; /* Method name detected. */
5042 /* Else we leave with p unchanged. */
5043 }
5044 }
5045 break;
5046 }
5047 }
5048 return p;
5049 }
5050
5051 static void
5052 completion_list_add_fields (completion_tracker &tracker,
5053 struct symbol *sym,
5054 const lookup_name_info &lookup_name,
5055 const char *text, const char *word)
5056 {
5057 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5058 {
5059 struct type *t = SYMBOL_TYPE (sym);
5060 enum type_code c = TYPE_CODE (t);
5061 int j;
5062
5063 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5064 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5065 if (TYPE_FIELD_NAME (t, j))
5066 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5067 TYPE_FIELD_NAME (t, j),
5068 lookup_name, text, word);
5069 }
5070 }
5071
5072 /* See symtab.h. */
5073
5074 bool
5075 symbol_is_function_or_method (symbol *sym)
5076 {
5077 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5078 {
5079 case TYPE_CODE_FUNC:
5080 case TYPE_CODE_METHOD:
5081 return true;
5082 default:
5083 return false;
5084 }
5085 }
5086
5087 /* See symtab.h. */
5088
5089 bool
5090 symbol_is_function_or_method (minimal_symbol *msymbol)
5091 {
5092 switch (MSYMBOL_TYPE (msymbol))
5093 {
5094 case mst_text:
5095 case mst_text_gnu_ifunc:
5096 case mst_solib_trampoline:
5097 case mst_file_text:
5098 return true;
5099 default:
5100 return false;
5101 }
5102 }
5103
5104 /* See symtab.h. */
5105
5106 bound_minimal_symbol
5107 find_gnu_ifunc (const symbol *sym)
5108 {
5109 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5110 return {};
5111
5112 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5113 symbol_name_match_type::SEARCH_NAME);
5114 struct objfile *objfile = symbol_objfile (sym);
5115
5116 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5117 minimal_symbol *ifunc = NULL;
5118
5119 iterate_over_minimal_symbols (objfile, lookup_name,
5120 [&] (minimal_symbol *minsym)
5121 {
5122 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5123 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5124 {
5125 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5126 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5127 {
5128 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5129 msym_addr
5130 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5131 msym_addr,
5132 current_top_target ());
5133 }
5134 if (msym_addr == address)
5135 {
5136 ifunc = minsym;
5137 return true;
5138 }
5139 }
5140 return false;
5141 });
5142
5143 if (ifunc != NULL)
5144 return {ifunc, objfile};
5145 return {};
5146 }
5147
5148 /* Add matching symbols from SYMTAB to the current completion list. */
5149
5150 static void
5151 add_symtab_completions (struct compunit_symtab *cust,
5152 completion_tracker &tracker,
5153 complete_symbol_mode mode,
5154 const lookup_name_info &lookup_name,
5155 const char *text, const char *word,
5156 enum type_code code)
5157 {
5158 struct symbol *sym;
5159 const struct block *b;
5160 struct block_iterator iter;
5161 int i;
5162
5163 if (cust == NULL)
5164 return;
5165
5166 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5167 {
5168 QUIT;
5169 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5170 ALL_BLOCK_SYMBOLS (b, iter, sym)
5171 {
5172 if (completion_skip_symbol (mode, sym))
5173 continue;
5174
5175 if (code == TYPE_CODE_UNDEF
5176 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5177 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5178 completion_list_add_symbol (tracker, sym,
5179 lookup_name,
5180 text, word);
5181 }
5182 }
5183 }
5184
5185 void
5186 default_collect_symbol_completion_matches_break_on
5187 (completion_tracker &tracker, complete_symbol_mode mode,
5188 symbol_name_match_type name_match_type,
5189 const char *text, const char *word,
5190 const char *break_on, enum type_code code)
5191 {
5192 /* Problem: All of the symbols have to be copied because readline
5193 frees them. I'm not going to worry about this; hopefully there
5194 won't be that many. */
5195
5196 struct symbol *sym;
5197 const struct block *b;
5198 const struct block *surrounding_static_block, *surrounding_global_block;
5199 struct block_iterator iter;
5200 /* The symbol we are completing on. Points in same buffer as text. */
5201 const char *sym_text;
5202
5203 /* Now look for the symbol we are supposed to complete on. */
5204 if (mode == complete_symbol_mode::LINESPEC)
5205 sym_text = text;
5206 else
5207 {
5208 const char *p;
5209 char quote_found;
5210 const char *quote_pos = NULL;
5211
5212 /* First see if this is a quoted string. */
5213 quote_found = '\0';
5214 for (p = text; *p != '\0'; ++p)
5215 {
5216 if (quote_found != '\0')
5217 {
5218 if (*p == quote_found)
5219 /* Found close quote. */
5220 quote_found = '\0';
5221 else if (*p == '\\' && p[1] == quote_found)
5222 /* A backslash followed by the quote character
5223 doesn't end the string. */
5224 ++p;
5225 }
5226 else if (*p == '\'' || *p == '"')
5227 {
5228 quote_found = *p;
5229 quote_pos = p;
5230 }
5231 }
5232 if (quote_found == '\'')
5233 /* A string within single quotes can be a symbol, so complete on it. */
5234 sym_text = quote_pos + 1;
5235 else if (quote_found == '"')
5236 /* A double-quoted string is never a symbol, nor does it make sense
5237 to complete it any other way. */
5238 {
5239 return;
5240 }
5241 else
5242 {
5243 /* It is not a quoted string. Break it based on the characters
5244 which are in symbols. */
5245 while (p > text)
5246 {
5247 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5248 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5249 --p;
5250 else
5251 break;
5252 }
5253 sym_text = p;
5254 }
5255 }
5256
5257 lookup_name_info lookup_name (sym_text, name_match_type, true);
5258
5259 /* At this point scan through the misc symbol vectors and add each
5260 symbol you find to the list. Eventually we want to ignore
5261 anything that isn't a text symbol (everything else will be
5262 handled by the psymtab code below). */
5263
5264 if (code == TYPE_CODE_UNDEF)
5265 {
5266 for (objfile *objfile : all_objfiles (current_program_space))
5267 {
5268 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
5269 {
5270 QUIT;
5271
5272 if (completion_skip_symbol (mode, msymbol))
5273 continue;
5274
5275 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5276 sym_text, word);
5277
5278 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5279 sym_text, word);
5280 }
5281 }
5282 }
5283
5284 /* Add completions for all currently loaded symbol tables. */
5285 for (objfile *objfile : all_objfiles (current_program_space))
5286 {
5287 for (compunit_symtab *cust : objfile_compunits (objfile))
5288 add_symtab_completions (cust, tracker, mode, lookup_name,
5289 sym_text, word, code);
5290 }
5291
5292 /* Look through the partial symtabs for all symbols which begin by
5293 matching SYM_TEXT. Expand all CUs that you find to the list. */
5294 expand_symtabs_matching (NULL,
5295 lookup_name,
5296 NULL,
5297 [&] (compunit_symtab *symtab) /* expansion notify */
5298 {
5299 add_symtab_completions (symtab,
5300 tracker, mode, lookup_name,
5301 sym_text, word, code);
5302 },
5303 ALL_DOMAIN);
5304
5305 /* Search upwards from currently selected frame (so that we can
5306 complete on local vars). Also catch fields of types defined in
5307 this places which match our text string. Only complete on types
5308 visible from current context. */
5309
5310 b = get_selected_block (0);
5311 surrounding_static_block = block_static_block (b);
5312 surrounding_global_block = block_global_block (b);
5313 if (surrounding_static_block != NULL)
5314 while (b != surrounding_static_block)
5315 {
5316 QUIT;
5317
5318 ALL_BLOCK_SYMBOLS (b, iter, sym)
5319 {
5320 if (code == TYPE_CODE_UNDEF)
5321 {
5322 completion_list_add_symbol (tracker, sym, lookup_name,
5323 sym_text, word);
5324 completion_list_add_fields (tracker, sym, lookup_name,
5325 sym_text, word);
5326 }
5327 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5328 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5329 completion_list_add_symbol (tracker, sym, lookup_name,
5330 sym_text, word);
5331 }
5332
5333 /* Stop when we encounter an enclosing function. Do not stop for
5334 non-inlined functions - the locals of the enclosing function
5335 are in scope for a nested function. */
5336 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5337 break;
5338 b = BLOCK_SUPERBLOCK (b);
5339 }
5340
5341 /* Add fields from the file's types; symbols will be added below. */
5342
5343 if (code == TYPE_CODE_UNDEF)
5344 {
5345 if (surrounding_static_block != NULL)
5346 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5347 completion_list_add_fields (tracker, sym, lookup_name,
5348 sym_text, word);
5349
5350 if (surrounding_global_block != NULL)
5351 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5352 completion_list_add_fields (tracker, sym, lookup_name,
5353 sym_text, word);
5354 }
5355
5356 /* Skip macros if we are completing a struct tag -- arguable but
5357 usually what is expected. */
5358 if (current_language->la_macro_expansion == macro_expansion_c
5359 && code == TYPE_CODE_UNDEF)
5360 {
5361 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5362
5363 /* This adds a macro's name to the current completion list. */
5364 auto add_macro_name = [&] (const char *macro_name,
5365 const macro_definition *,
5366 macro_source_file *,
5367 int)
5368 {
5369 completion_list_add_name (tracker, language_c, macro_name,
5370 lookup_name, sym_text, word);
5371 };
5372
5373 /* Add any macros visible in the default scope. Note that this
5374 may yield the occasional wrong result, because an expression
5375 might be evaluated in a scope other than the default. For
5376 example, if the user types "break file:line if <TAB>", the
5377 resulting expression will be evaluated at "file:line" -- but
5378 at there does not seem to be a way to detect this at
5379 completion time. */
5380 scope = default_macro_scope ();
5381 if (scope)
5382 macro_for_each_in_scope (scope->file, scope->line,
5383 add_macro_name);
5384
5385 /* User-defined macros are always visible. */
5386 macro_for_each (macro_user_macros, add_macro_name);
5387 }
5388 }
5389
5390 void
5391 default_collect_symbol_completion_matches (completion_tracker &tracker,
5392 complete_symbol_mode mode,
5393 symbol_name_match_type name_match_type,
5394 const char *text, const char *word,
5395 enum type_code code)
5396 {
5397 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5398 name_match_type,
5399 text, word, "",
5400 code);
5401 }
5402
5403 /* Collect all symbols (regardless of class) which begin by matching
5404 TEXT. */
5405
5406 void
5407 collect_symbol_completion_matches (completion_tracker &tracker,
5408 complete_symbol_mode mode,
5409 symbol_name_match_type name_match_type,
5410 const char *text, const char *word)
5411 {
5412 current_language->la_collect_symbol_completion_matches (tracker, mode,
5413 name_match_type,
5414 text, word,
5415 TYPE_CODE_UNDEF);
5416 }
5417
5418 /* Like collect_symbol_completion_matches, but only collect
5419 STRUCT_DOMAIN symbols whose type code is CODE. */
5420
5421 void
5422 collect_symbol_completion_matches_type (completion_tracker &tracker,
5423 const char *text, const char *word,
5424 enum type_code code)
5425 {
5426 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5427 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5428
5429 gdb_assert (code == TYPE_CODE_UNION
5430 || code == TYPE_CODE_STRUCT
5431 || code == TYPE_CODE_ENUM);
5432 current_language->la_collect_symbol_completion_matches (tracker, mode,
5433 name_match_type,
5434 text, word, code);
5435 }
5436
5437 /* Like collect_symbol_completion_matches, but collects a list of
5438 symbols defined in all source files named SRCFILE. */
5439
5440 void
5441 collect_file_symbol_completion_matches (completion_tracker &tracker,
5442 complete_symbol_mode mode,
5443 symbol_name_match_type name_match_type,
5444 const char *text, const char *word,
5445 const char *srcfile)
5446 {
5447 /* The symbol we are completing on. Points in same buffer as text. */
5448 const char *sym_text;
5449
5450 /* Now look for the symbol we are supposed to complete on.
5451 FIXME: This should be language-specific. */
5452 if (mode == complete_symbol_mode::LINESPEC)
5453 sym_text = text;
5454 else
5455 {
5456 const char *p;
5457 char quote_found;
5458 const char *quote_pos = NULL;
5459
5460 /* First see if this is a quoted string. */
5461 quote_found = '\0';
5462 for (p = text; *p != '\0'; ++p)
5463 {
5464 if (quote_found != '\0')
5465 {
5466 if (*p == quote_found)
5467 /* Found close quote. */
5468 quote_found = '\0';
5469 else if (*p == '\\' && p[1] == quote_found)
5470 /* A backslash followed by the quote character
5471 doesn't end the string. */
5472 ++p;
5473 }
5474 else if (*p == '\'' || *p == '"')
5475 {
5476 quote_found = *p;
5477 quote_pos = p;
5478 }
5479 }
5480 if (quote_found == '\'')
5481 /* A string within single quotes can be a symbol, so complete on it. */
5482 sym_text = quote_pos + 1;
5483 else if (quote_found == '"')
5484 /* A double-quoted string is never a symbol, nor does it make sense
5485 to complete it any other way. */
5486 {
5487 return;
5488 }
5489 else
5490 {
5491 /* Not a quoted string. */
5492 sym_text = language_search_unquoted_string (text, p);
5493 }
5494 }
5495
5496 lookup_name_info lookup_name (sym_text, name_match_type, true);
5497
5498 /* Go through symtabs for SRCFILE and check the externs and statics
5499 for symbols which match. */
5500 iterate_over_symtabs (srcfile, [&] (symtab *s)
5501 {
5502 add_symtab_completions (SYMTAB_COMPUNIT (s),
5503 tracker, mode, lookup_name,
5504 sym_text, word, TYPE_CODE_UNDEF);
5505 return false;
5506 });
5507 }
5508
5509 /* A helper function for make_source_files_completion_list. It adds
5510 another file name to a list of possible completions, growing the
5511 list as necessary. */
5512
5513 static void
5514 add_filename_to_list (const char *fname, const char *text, const char *word,
5515 completion_list *list)
5516 {
5517 list->emplace_back (make_completion_match_str (fname, text, word));
5518 }
5519
5520 static int
5521 not_interesting_fname (const char *fname)
5522 {
5523 static const char *illegal_aliens[] = {
5524 "_globals_", /* inserted by coff_symtab_read */
5525 NULL
5526 };
5527 int i;
5528
5529 for (i = 0; illegal_aliens[i]; i++)
5530 {
5531 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5532 return 1;
5533 }
5534 return 0;
5535 }
5536
5537 /* An object of this type is passed as the user_data argument to
5538 map_partial_symbol_filenames. */
5539 struct add_partial_filename_data
5540 {
5541 struct filename_seen_cache *filename_seen_cache;
5542 const char *text;
5543 const char *word;
5544 int text_len;
5545 completion_list *list;
5546 };
5547
5548 /* A callback for map_partial_symbol_filenames. */
5549
5550 static void
5551 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5552 void *user_data)
5553 {
5554 struct add_partial_filename_data *data
5555 = (struct add_partial_filename_data *) user_data;
5556
5557 if (not_interesting_fname (filename))
5558 return;
5559 if (!data->filename_seen_cache->seen (filename)
5560 && filename_ncmp (filename, data->text, data->text_len) == 0)
5561 {
5562 /* This file matches for a completion; add it to the
5563 current list of matches. */
5564 add_filename_to_list (filename, data->text, data->word, data->list);
5565 }
5566 else
5567 {
5568 const char *base_name = lbasename (filename);
5569
5570 if (base_name != filename
5571 && !data->filename_seen_cache->seen (base_name)
5572 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5573 add_filename_to_list (base_name, data->text, data->word, data->list);
5574 }
5575 }
5576
5577 /* Return a list of all source files whose names begin with matching
5578 TEXT. The file names are looked up in the symbol tables of this
5579 program. */
5580
5581 completion_list
5582 make_source_files_completion_list (const char *text, const char *word)
5583 {
5584 struct objfile *objfile;
5585 size_t text_len = strlen (text);
5586 completion_list list;
5587 const char *base_name;
5588 struct add_partial_filename_data datum;
5589
5590 if (!have_full_symbols () && !have_partial_symbols ())
5591 return list;
5592
5593 filename_seen_cache filenames_seen;
5594
5595 ALL_FILETABS (objfile, cu, s)
5596 {
5597 if (not_interesting_fname (s->filename))
5598 continue;
5599 if (!filenames_seen.seen (s->filename)
5600 && filename_ncmp (s->filename, text, text_len) == 0)
5601 {
5602 /* This file matches for a completion; add it to the current
5603 list of matches. */
5604 add_filename_to_list (s->filename, text, word, &list);
5605 }
5606 else
5607 {
5608 /* NOTE: We allow the user to type a base name when the
5609 debug info records leading directories, but not the other
5610 way around. This is what subroutines of breakpoint
5611 command do when they parse file names. */
5612 base_name = lbasename (s->filename);
5613 if (base_name != s->filename
5614 && !filenames_seen.seen (base_name)
5615 && filename_ncmp (base_name, text, text_len) == 0)
5616 add_filename_to_list (base_name, text, word, &list);
5617 }
5618 }
5619
5620 datum.filename_seen_cache = &filenames_seen;
5621 datum.text = text;
5622 datum.word = word;
5623 datum.text_len = text_len;
5624 datum.list = &list;
5625 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5626 0 /*need_fullname*/);
5627
5628 return list;
5629 }
5630 \f
5631 /* Track MAIN */
5632
5633 /* Return the "main_info" object for the current program space. If
5634 the object has not yet been created, create it and fill in some
5635 default values. */
5636
5637 static struct main_info *
5638 get_main_info (void)
5639 {
5640 struct main_info *info
5641 = (struct main_info *) program_space_data (current_program_space,
5642 main_progspace_key);
5643
5644 if (info == NULL)
5645 {
5646 /* It may seem strange to store the main name in the progspace
5647 and also in whatever objfile happens to see a main name in
5648 its debug info. The reason for this is mainly historical:
5649 gdb returned "main" as the name even if no function named
5650 "main" was defined the program; and this approach lets us
5651 keep compatibility. */
5652 info = XCNEW (struct main_info);
5653 info->language_of_main = language_unknown;
5654 set_program_space_data (current_program_space, main_progspace_key,
5655 info);
5656 }
5657
5658 return info;
5659 }
5660
5661 /* A cleanup to destroy a struct main_info when a progspace is
5662 destroyed. */
5663
5664 static void
5665 main_info_cleanup (struct program_space *pspace, void *data)
5666 {
5667 struct main_info *info = (struct main_info *) data;
5668
5669 if (info != NULL)
5670 xfree (info->name_of_main);
5671 xfree (info);
5672 }
5673
5674 static void
5675 set_main_name (const char *name, enum language lang)
5676 {
5677 struct main_info *info = get_main_info ();
5678
5679 if (info->name_of_main != NULL)
5680 {
5681 xfree (info->name_of_main);
5682 info->name_of_main = NULL;
5683 info->language_of_main = language_unknown;
5684 }
5685 if (name != NULL)
5686 {
5687 info->name_of_main = xstrdup (name);
5688 info->language_of_main = lang;
5689 }
5690 }
5691
5692 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5693 accordingly. */
5694
5695 static void
5696 find_main_name (void)
5697 {
5698 const char *new_main_name;
5699
5700 /* First check the objfiles to see whether a debuginfo reader has
5701 picked up the appropriate main name. Historically the main name
5702 was found in a more or less random way; this approach instead
5703 relies on the order of objfile creation -- which still isn't
5704 guaranteed to get the correct answer, but is just probably more
5705 accurate. */
5706 for (objfile *objfile : all_objfiles (current_program_space))
5707 {
5708 if (objfile->per_bfd->name_of_main != NULL)
5709 {
5710 set_main_name (objfile->per_bfd->name_of_main,
5711 objfile->per_bfd->language_of_main);
5712 return;
5713 }
5714 }
5715
5716 /* Try to see if the main procedure is in Ada. */
5717 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5718 be to add a new method in the language vector, and call this
5719 method for each language until one of them returns a non-empty
5720 name. This would allow us to remove this hard-coded call to
5721 an Ada function. It is not clear that this is a better approach
5722 at this point, because all methods need to be written in a way
5723 such that false positives never be returned. For instance, it is
5724 important that a method does not return a wrong name for the main
5725 procedure if the main procedure is actually written in a different
5726 language. It is easy to guaranty this with Ada, since we use a
5727 special symbol generated only when the main in Ada to find the name
5728 of the main procedure. It is difficult however to see how this can
5729 be guarantied for languages such as C, for instance. This suggests
5730 that order of call for these methods becomes important, which means
5731 a more complicated approach. */
5732 new_main_name = ada_main_name ();
5733 if (new_main_name != NULL)
5734 {
5735 set_main_name (new_main_name, language_ada);
5736 return;
5737 }
5738
5739 new_main_name = d_main_name ();
5740 if (new_main_name != NULL)
5741 {
5742 set_main_name (new_main_name, language_d);
5743 return;
5744 }
5745
5746 new_main_name = go_main_name ();
5747 if (new_main_name != NULL)
5748 {
5749 set_main_name (new_main_name, language_go);
5750 return;
5751 }
5752
5753 new_main_name = pascal_main_name ();
5754 if (new_main_name != NULL)
5755 {
5756 set_main_name (new_main_name, language_pascal);
5757 return;
5758 }
5759
5760 /* The languages above didn't identify the name of the main procedure.
5761 Fallback to "main". */
5762 set_main_name ("main", language_unknown);
5763 }
5764
5765 char *
5766 main_name (void)
5767 {
5768 struct main_info *info = get_main_info ();
5769
5770 if (info->name_of_main == NULL)
5771 find_main_name ();
5772
5773 return info->name_of_main;
5774 }
5775
5776 /* Return the language of the main function. If it is not known,
5777 return language_unknown. */
5778
5779 enum language
5780 main_language (void)
5781 {
5782 struct main_info *info = get_main_info ();
5783
5784 if (info->name_of_main == NULL)
5785 find_main_name ();
5786
5787 return info->language_of_main;
5788 }
5789
5790 /* Handle ``executable_changed'' events for the symtab module. */
5791
5792 static void
5793 symtab_observer_executable_changed (void)
5794 {
5795 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5796 set_main_name (NULL, language_unknown);
5797 }
5798
5799 /* Return 1 if the supplied producer string matches the ARM RealView
5800 compiler (armcc). */
5801
5802 int
5803 producer_is_realview (const char *producer)
5804 {
5805 static const char *const arm_idents[] = {
5806 "ARM C Compiler, ADS",
5807 "Thumb C Compiler, ADS",
5808 "ARM C++ Compiler, ADS",
5809 "Thumb C++ Compiler, ADS",
5810 "ARM/Thumb C/C++ Compiler, RVCT",
5811 "ARM C/C++ Compiler, RVCT"
5812 };
5813 int i;
5814
5815 if (producer == NULL)
5816 return 0;
5817
5818 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5819 if (startswith (producer, arm_idents[i]))
5820 return 1;
5821
5822 return 0;
5823 }
5824
5825 \f
5826
5827 /* The next index to hand out in response to a registration request. */
5828
5829 static int next_aclass_value = LOC_FINAL_VALUE;
5830
5831 /* The maximum number of "aclass" registrations we support. This is
5832 constant for convenience. */
5833 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5834
5835 /* The objects representing the various "aclass" values. The elements
5836 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5837 elements are those registered at gdb initialization time. */
5838
5839 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5840
5841 /* The globally visible pointer. This is separate from 'symbol_impl'
5842 so that it can be const. */
5843
5844 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5845
5846 /* Make sure we saved enough room in struct symbol. */
5847
5848 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5849
5850 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5851 is the ops vector associated with this index. This returns the new
5852 index, which should be used as the aclass_index field for symbols
5853 of this type. */
5854
5855 int
5856 register_symbol_computed_impl (enum address_class aclass,
5857 const struct symbol_computed_ops *ops)
5858 {
5859 int result = next_aclass_value++;
5860
5861 gdb_assert (aclass == LOC_COMPUTED);
5862 gdb_assert (result < MAX_SYMBOL_IMPLS);
5863 symbol_impl[result].aclass = aclass;
5864 symbol_impl[result].ops_computed = ops;
5865
5866 /* Sanity check OPS. */
5867 gdb_assert (ops != NULL);
5868 gdb_assert (ops->tracepoint_var_ref != NULL);
5869 gdb_assert (ops->describe_location != NULL);
5870 gdb_assert (ops->get_symbol_read_needs != NULL);
5871 gdb_assert (ops->read_variable != NULL);
5872
5873 return result;
5874 }
5875
5876 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5877 OPS is the ops vector associated with this index. This returns the
5878 new index, which should be used as the aclass_index field for symbols
5879 of this type. */
5880
5881 int
5882 register_symbol_block_impl (enum address_class aclass,
5883 const struct symbol_block_ops *ops)
5884 {
5885 int result = next_aclass_value++;
5886
5887 gdb_assert (aclass == LOC_BLOCK);
5888 gdb_assert (result < MAX_SYMBOL_IMPLS);
5889 symbol_impl[result].aclass = aclass;
5890 symbol_impl[result].ops_block = ops;
5891
5892 /* Sanity check OPS. */
5893 gdb_assert (ops != NULL);
5894 gdb_assert (ops->find_frame_base_location != NULL);
5895
5896 return result;
5897 }
5898
5899 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5900 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5901 this index. This returns the new index, which should be used as
5902 the aclass_index field for symbols of this type. */
5903
5904 int
5905 register_symbol_register_impl (enum address_class aclass,
5906 const struct symbol_register_ops *ops)
5907 {
5908 int result = next_aclass_value++;
5909
5910 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5911 gdb_assert (result < MAX_SYMBOL_IMPLS);
5912 symbol_impl[result].aclass = aclass;
5913 symbol_impl[result].ops_register = ops;
5914
5915 return result;
5916 }
5917
5918 /* Initialize elements of 'symbol_impl' for the constants in enum
5919 address_class. */
5920
5921 static void
5922 initialize_ordinary_address_classes (void)
5923 {
5924 int i;
5925
5926 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5927 symbol_impl[i].aclass = (enum address_class) i;
5928 }
5929
5930 \f
5931
5932 /* Helper function to initialize the fields of an objfile-owned symbol.
5933 It assumed that *SYM is already all zeroes. */
5934
5935 static void
5936 initialize_objfile_symbol_1 (struct symbol *sym)
5937 {
5938 SYMBOL_OBJFILE_OWNED (sym) = 1;
5939 SYMBOL_SECTION (sym) = -1;
5940 }
5941
5942 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5943
5944 void
5945 initialize_objfile_symbol (struct symbol *sym)
5946 {
5947 memset (sym, 0, sizeof (*sym));
5948 initialize_objfile_symbol_1 (sym);
5949 }
5950
5951 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5952 obstack. */
5953
5954 struct symbol *
5955 allocate_symbol (struct objfile *objfile)
5956 {
5957 struct symbol *result;
5958
5959 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5960 initialize_objfile_symbol_1 (result);
5961
5962 return result;
5963 }
5964
5965 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5966 obstack. */
5967
5968 struct template_symbol *
5969 allocate_template_symbol (struct objfile *objfile)
5970 {
5971 struct template_symbol *result;
5972
5973 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5974 initialize_objfile_symbol_1 (result);
5975
5976 return result;
5977 }
5978
5979 /* See symtab.h. */
5980
5981 struct objfile *
5982 symbol_objfile (const struct symbol *symbol)
5983 {
5984 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5985 return SYMTAB_OBJFILE (symbol->owner.symtab);
5986 }
5987
5988 /* See symtab.h. */
5989
5990 struct gdbarch *
5991 symbol_arch (const struct symbol *symbol)
5992 {
5993 if (!SYMBOL_OBJFILE_OWNED (symbol))
5994 return symbol->owner.arch;
5995 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5996 }
5997
5998 /* See symtab.h. */
5999
6000 struct symtab *
6001 symbol_symtab (const struct symbol *symbol)
6002 {
6003 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6004 return symbol->owner.symtab;
6005 }
6006
6007 /* See symtab.h. */
6008
6009 void
6010 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6011 {
6012 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6013 symbol->owner.symtab = symtab;
6014 }
6015
6016 \f
6017
6018 void
6019 _initialize_symtab (void)
6020 {
6021 initialize_ordinary_address_classes ();
6022
6023 main_progspace_key
6024 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6025
6026 symbol_cache_key
6027 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6028
6029 add_info ("variables", info_variables_command,
6030 info_print_args_help (_("\
6031 All global and static variable names or those matching REGEXPs.\n\
6032 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6033 Prints the global and static variables.\n"),
6034 _("global and static variables")));
6035 if (dbx_commands)
6036 add_com ("whereis", class_info, info_variables_command,
6037 info_print_args_help (_("\
6038 All global and static variable names, or those matching REGEXPs.\n\
6039 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6040 Prints the global and static variables.\n"),
6041 _("global and static variables")));
6042
6043 add_info ("functions", info_functions_command,
6044 info_print_args_help (_("\
6045 All function names or those matching REGEXPs.\n\
6046 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6047 Prints the functions.\n"),
6048 _("functions")));
6049
6050 /* FIXME: This command has at least the following problems:
6051 1. It prints builtin types (in a very strange and confusing fashion).
6052 2. It doesn't print right, e.g. with
6053 typedef struct foo *FOO
6054 type_print prints "FOO" when we want to make it (in this situation)
6055 print "struct foo *".
6056 I also think "ptype" or "whatis" is more likely to be useful (but if
6057 there is much disagreement "info types" can be fixed). */
6058 add_info ("types", info_types_command,
6059 _("All type names, or those matching REGEXP."));
6060
6061 add_info ("sources", info_sources_command,
6062 _("Source files in the program."));
6063
6064 add_com ("rbreak", class_breakpoint, rbreak_command,
6065 _("Set a breakpoint for all functions matching REGEXP."));
6066
6067 add_setshow_enum_cmd ("multiple-symbols", no_class,
6068 multiple_symbols_modes, &multiple_symbols_mode,
6069 _("\
6070 Set the debugger behavior when more than one symbol are possible matches\n\
6071 in an expression."), _("\
6072 Show how the debugger handles ambiguities in expressions."), _("\
6073 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6074 NULL, NULL, &setlist, &showlist);
6075
6076 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6077 &basenames_may_differ, _("\
6078 Set whether a source file may have multiple base names."), _("\
6079 Show whether a source file may have multiple base names."), _("\
6080 (A \"base name\" is the name of a file with the directory part removed.\n\
6081 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6082 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6083 before comparing them. Canonicalization is an expensive operation,\n\
6084 but it allows the same file be known by more than one base name.\n\
6085 If not set (the default), all source files are assumed to have just\n\
6086 one base name, and gdb will do file name comparisons more efficiently."),
6087 NULL, NULL,
6088 &setlist, &showlist);
6089
6090 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6091 _("Set debugging of symbol table creation."),
6092 _("Show debugging of symbol table creation."), _("\
6093 When enabled (non-zero), debugging messages are printed when building\n\
6094 symbol tables. A value of 1 (one) normally provides enough information.\n\
6095 A value greater than 1 provides more verbose information."),
6096 NULL,
6097 NULL,
6098 &setdebuglist, &showdebuglist);
6099
6100 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6101 _("\
6102 Set debugging of symbol lookup."), _("\
6103 Show debugging of symbol lookup."), _("\
6104 When enabled (non-zero), symbol lookups are logged."),
6105 NULL, NULL,
6106 &setdebuglist, &showdebuglist);
6107
6108 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6109 &new_symbol_cache_size,
6110 _("Set the size of the symbol cache."),
6111 _("Show the size of the symbol cache."), _("\
6112 The size of the symbol cache.\n\
6113 If zero then the symbol cache is disabled."),
6114 set_symbol_cache_size_handler, NULL,
6115 &maintenance_set_cmdlist,
6116 &maintenance_show_cmdlist);
6117
6118 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6119 _("Dump the symbol cache for each program space."),
6120 &maintenanceprintlist);
6121
6122 add_cmd ("symbol-cache-statistics", class_maintenance,
6123 maintenance_print_symbol_cache_statistics,
6124 _("Print symbol cache statistics for each program space."),
6125 &maintenanceprintlist);
6126
6127 add_cmd ("flush-symbol-cache", class_maintenance,
6128 maintenance_flush_symbol_cache,
6129 _("Flush the symbol cache for each program space."),
6130 &maintenancelist);
6131
6132 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6133 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6134 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6135 }
This page took 0.156945 seconds and 4 git commands to generate.