*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "call-cmds.h"
34 #include "gdb_regex.h"
35 #include "expression.h"
36 #include "language.h"
37 #include "demangle.h"
38 #include "inferior.h"
39 #include "linespec.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41
42 #include "obstack.h"
43
44 #include <sys/types.h>
45 #include <fcntl.h>
46 #include "gdb_string.h"
47 #include "gdb_stat.h"
48 #include <ctype.h>
49 #include "cp-abi.h"
50
51 /* Prototype for one function in parser-defs.h,
52 instead of including that entire file. */
53
54 extern char *find_template_name_end (char *);
55
56 /* Prototypes for local functions */
57
58 static void completion_list_add_name (char *, char *, int, char *, char *);
59
60 static void rbreak_command (char *, int);
61
62 static void types_info (char *, int);
63
64 static void functions_info (char *, int);
65
66 static void variables_info (char *, int);
67
68 static void sources_info (char *, int);
69
70 static void output_source_filename (char *, int *);
71
72 static int find_line_common (struct linetable *, int, int *);
73
74 /* This one is used by linespec.c */
75
76 char *operator_chars (char *p, char **end);
77
78 static struct partial_symbol *lookup_partial_symbol (struct partial_symtab *,
79 const char *, int,
80 namespace_enum);
81
82 static struct symbol *lookup_symbol_aux (const char *name, const
83 struct block *block, const
84 namespace_enum namespace, int
85 *is_a_field_of_this, struct
86 symtab **symtab);
87
88
89 static struct symbol *find_active_alias (struct symbol *sym, CORE_ADDR addr);
90
91 /* This flag is used in hppa-tdep.c, and set in hp-symtab-read.c */
92 /* Signals the presence of objects compiled by HP compilers */
93 int hp_som_som_object_present = 0;
94
95 static void fixup_section (struct general_symbol_info *, struct objfile *);
96
97 static int file_matches (char *, char **, int);
98
99 static void print_symbol_info (namespace_enum,
100 struct symtab *, struct symbol *, int, char *);
101
102 static void print_msymbol_info (struct minimal_symbol *);
103
104 static void symtab_symbol_info (char *, namespace_enum, int);
105
106 static void overload_list_add_symbol (struct symbol *sym, char *oload_name);
107
108 void _initialize_symtab (void);
109
110 /* */
111
112 /* The single non-language-specific builtin type */
113 struct type *builtin_type_error;
114
115 /* Block in which the most recently searched-for symbol was found.
116 Might be better to make this a parameter to lookup_symbol and
117 value_of_this. */
118
119 const struct block *block_found;
120
121 /* While the C++ support is still in flux, issue a possibly helpful hint on
122 using the new command completion feature on single quoted demangled C++
123 symbols. Remove when loose ends are cleaned up. FIXME -fnf */
124
125 static void
126 cplusplus_hint (char *name)
127 {
128 while (*name == '\'')
129 name++;
130 printf_filtered ("Hint: try '%s<TAB> or '%s<ESC-?>\n", name, name);
131 printf_filtered ("(Note leading single quote.)\n");
132 }
133
134 /* Check for a symtab of a specific name; first in symtabs, then in
135 psymtabs. *If* there is no '/' in the name, a match after a '/'
136 in the symtab filename will also work. */
137
138 struct symtab *
139 lookup_symtab (const char *name)
140 {
141 register struct symtab *s;
142 register struct partial_symtab *ps;
143 register struct objfile *objfile;
144
145 got_symtab:
146
147 /* First, search for an exact match */
148
149 ALL_SYMTABS (objfile, s)
150 if (FILENAME_CMP (name, s->filename) == 0)
151 return s;
152
153 /* Now, search for a matching tail (only if name doesn't have any dirs) */
154
155 if (lbasename (name) == name)
156 ALL_SYMTABS (objfile, s)
157 {
158 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
159 return s;
160 }
161
162 /* Same search rules as above apply here, but now we look thru the
163 psymtabs. */
164
165 ps = lookup_partial_symtab (name);
166 if (!ps)
167 return (NULL);
168
169 if (ps->readin)
170 error ("Internal: readin %s pst for `%s' found when no symtab found.",
171 ps->filename, name);
172
173 s = PSYMTAB_TO_SYMTAB (ps);
174
175 if (s)
176 return s;
177
178 /* At this point, we have located the psymtab for this file, but
179 the conversion to a symtab has failed. This usually happens
180 when we are looking up an include file. In this case,
181 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
182 been created. So, we need to run through the symtabs again in
183 order to find the file.
184 XXX - This is a crock, and should be fixed inside of the the
185 symbol parsing routines. */
186 goto got_symtab;
187 }
188
189 /* Lookup the partial symbol table of a source file named NAME.
190 *If* there is no '/' in the name, a match after a '/'
191 in the psymtab filename will also work. */
192
193 struct partial_symtab *
194 lookup_partial_symtab (const char *name)
195 {
196 register struct partial_symtab *pst;
197 register struct objfile *objfile;
198
199 ALL_PSYMTABS (objfile, pst)
200 {
201 if (FILENAME_CMP (name, pst->filename) == 0)
202 {
203 return (pst);
204 }
205 }
206
207 /* Now, search for a matching tail (only if name doesn't have any dirs) */
208
209 if (lbasename (name) == name)
210 ALL_PSYMTABS (objfile, pst)
211 {
212 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
213 return (pst);
214 }
215
216 return (NULL);
217 }
218 \f
219 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
220 full method name, which consist of the class name (from T), the unadorned
221 method name from METHOD_ID, and the signature for the specific overload,
222 specified by SIGNATURE_ID. Note that this function is g++ specific. */
223
224 char *
225 gdb_mangle_name (struct type *type, int method_id, int signature_id)
226 {
227 int mangled_name_len;
228 char *mangled_name;
229 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
230 struct fn_field *method = &f[signature_id];
231 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
232 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
233 char *newname = type_name_no_tag (type);
234
235 /* Does the form of physname indicate that it is the full mangled name
236 of a constructor (not just the args)? */
237 int is_full_physname_constructor;
238
239 int is_constructor;
240 int is_destructor = is_destructor_name (physname);
241 /* Need a new type prefix. */
242 char *const_prefix = method->is_const ? "C" : "";
243 char *volatile_prefix = method->is_volatile ? "V" : "";
244 char buf[20];
245 int len = (newname == NULL ? 0 : strlen (newname));
246
247 if (is_operator_name (field_name))
248 return xstrdup (physname);
249
250 is_full_physname_constructor = is_constructor_name (physname);
251
252 is_constructor =
253 is_full_physname_constructor || (newname && STREQ (field_name, newname));
254
255 if (!is_destructor)
256 is_destructor = (strncmp (physname, "__dt", 4) == 0);
257
258 if (is_destructor || is_full_physname_constructor)
259 {
260 mangled_name = (char *) xmalloc (strlen (physname) + 1);
261 strcpy (mangled_name, physname);
262 return mangled_name;
263 }
264
265 if (len == 0)
266 {
267 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
268 }
269 else if (physname[0] == 't' || physname[0] == 'Q')
270 {
271 /* The physname for template and qualified methods already includes
272 the class name. */
273 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
274 newname = NULL;
275 len = 0;
276 }
277 else
278 {
279 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
280 }
281 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
282 + strlen (buf) + len + strlen (physname) + 1);
283
284 {
285 mangled_name = (char *) xmalloc (mangled_name_len);
286 if (is_constructor)
287 mangled_name[0] = '\0';
288 else
289 strcpy (mangled_name, field_name);
290 }
291 strcat (mangled_name, buf);
292 /* If the class doesn't have a name, i.e. newname NULL, then we just
293 mangle it using 0 for the length of the class. Thus it gets mangled
294 as something starting with `::' rather than `classname::'. */
295 if (newname != NULL)
296 strcat (mangled_name, newname);
297
298 strcat (mangled_name, physname);
299 return (mangled_name);
300 }
301 \f
302
303
304 /* Find which partial symtab on contains PC and SECTION. Return 0 if none. */
305
306 struct partial_symtab *
307 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
308 {
309 register struct partial_symtab *pst;
310 register struct objfile *objfile;
311
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (pc >= pst->textlow && pc < pst->texthigh)
315 {
316 struct minimal_symbol *msymbol;
317 struct partial_symtab *tpst;
318
319 /* An objfile that has its functions reordered might have
320 many partial symbol tables containing the PC, but
321 we want the partial symbol table that contains the
322 function containing the PC. */
323 if (!(objfile->flags & OBJF_REORDERED) &&
324 section == 0) /* can't validate section this way */
325 return (pst);
326
327 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
328 if (msymbol == NULL)
329 return (pst);
330
331 for (tpst = pst; tpst != NULL; tpst = tpst->next)
332 {
333 if (pc >= tpst->textlow && pc < tpst->texthigh)
334 {
335 struct partial_symbol *p;
336
337 p = find_pc_sect_psymbol (tpst, pc, section);
338 if (p != NULL
339 && SYMBOL_VALUE_ADDRESS (p)
340 == SYMBOL_VALUE_ADDRESS (msymbol))
341 return (tpst);
342 }
343 }
344 return (pst);
345 }
346 }
347 return (NULL);
348 }
349
350 /* Find which partial symtab contains PC. Return 0 if none.
351 Backward compatibility, no section */
352
353 struct partial_symtab *
354 find_pc_psymtab (CORE_ADDR pc)
355 {
356 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
357 }
358
359 /* Find which partial symbol within a psymtab matches PC and SECTION.
360 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
361
362 struct partial_symbol *
363 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
364 asection *section)
365 {
366 struct partial_symbol *best = NULL, *p, **pp;
367 CORE_ADDR best_pc;
368
369 if (!psymtab)
370 psymtab = find_pc_sect_psymtab (pc, section);
371 if (!psymtab)
372 return 0;
373
374 /* Cope with programs that start at address 0 */
375 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
376
377 /* Search the global symbols as well as the static symbols, so that
378 find_pc_partial_function doesn't use a minimal symbol and thus
379 cache a bad endaddr. */
380 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
381 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
382 < psymtab->n_global_syms);
383 pp++)
384 {
385 p = *pp;
386 if (SYMBOL_NAMESPACE (p) == VAR_NAMESPACE
387 && SYMBOL_CLASS (p) == LOC_BLOCK
388 && pc >= SYMBOL_VALUE_ADDRESS (p)
389 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
390 || (psymtab->textlow == 0
391 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
392 {
393 if (section) /* match on a specific section */
394 {
395 fixup_psymbol_section (p, psymtab->objfile);
396 if (SYMBOL_BFD_SECTION (p) != section)
397 continue;
398 }
399 best_pc = SYMBOL_VALUE_ADDRESS (p);
400 best = p;
401 }
402 }
403
404 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
405 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
406 < psymtab->n_static_syms);
407 pp++)
408 {
409 p = *pp;
410 if (SYMBOL_NAMESPACE (p) == VAR_NAMESPACE
411 && SYMBOL_CLASS (p) == LOC_BLOCK
412 && pc >= SYMBOL_VALUE_ADDRESS (p)
413 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
414 || (psymtab->textlow == 0
415 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
416 {
417 if (section) /* match on a specific section */
418 {
419 fixup_psymbol_section (p, psymtab->objfile);
420 if (SYMBOL_BFD_SECTION (p) != section)
421 continue;
422 }
423 best_pc = SYMBOL_VALUE_ADDRESS (p);
424 best = p;
425 }
426 }
427
428 return best;
429 }
430
431 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
432 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
433
434 struct partial_symbol *
435 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
436 {
437 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
438 }
439 \f
440 /* Debug symbols usually don't have section information. We need to dig that
441 out of the minimal symbols and stash that in the debug symbol. */
442
443 static void
444 fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
445 {
446 struct minimal_symbol *msym;
447 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
448
449 if (msym)
450 {
451 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
452 ginfo->section = SYMBOL_SECTION (msym);
453 }
454 }
455
456 struct symbol *
457 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
458 {
459 if (!sym)
460 return NULL;
461
462 if (SYMBOL_BFD_SECTION (sym))
463 return sym;
464
465 fixup_section (&sym->ginfo, objfile);
466
467 return sym;
468 }
469
470 struct partial_symbol *
471 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
472 {
473 if (!psym)
474 return NULL;
475
476 if (SYMBOL_BFD_SECTION (psym))
477 return psym;
478
479 fixup_section (&psym->ginfo, objfile);
480
481 return psym;
482 }
483
484 /* Find the definition for a specified symbol name NAME
485 in namespace NAMESPACE, visible from lexical block BLOCK.
486 Returns the struct symbol pointer, or zero if no symbol is found.
487 If SYMTAB is non-NULL, store the symbol table in which the
488 symbol was found there, or NULL if not found.
489 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
490 NAME is a field of the current implied argument `this'. If so set
491 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
492 BLOCK_FOUND is set to the block in which NAME is found (in the case of
493 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
494
495 /* This function has a bunch of loops in it and it would seem to be
496 attractive to put in some QUIT's (though I'm not really sure
497 whether it can run long enough to be really important). But there
498 are a few calls for which it would appear to be bad news to quit
499 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c, and
500 nindy_frame_chain_valid in nindy-tdep.c. (Note that there is C++
501 code below which can error(), but that probably doesn't affect
502 these calls since they are looking for a known variable and thus
503 can probably assume it will never hit the C++ code). */
504
505 struct symbol *
506 lookup_symbol (const char *name, const struct block *block,
507 const namespace_enum namespace, int *is_a_field_of_this,
508 struct symtab **symtab)
509 {
510 char *modified_name = NULL;
511 char *modified_name2 = NULL;
512 int needtofreename = 0;
513 struct symbol *returnval;
514
515 if (case_sensitivity == case_sensitive_off)
516 {
517 char *copy;
518 int len, i;
519
520 len = strlen (name);
521 copy = (char *) alloca (len + 1);
522 for (i= 0; i < len; i++)
523 copy[i] = tolower (name[i]);
524 copy[len] = 0;
525 modified_name = copy;
526 }
527 else
528 modified_name = (char *) name;
529
530 /* If we are using C++ language, demangle the name before doing a lookup, so
531 we can always binary search. */
532 if (current_language->la_language == language_cplus)
533 {
534 modified_name2 = cplus_demangle (modified_name, DMGL_ANSI | DMGL_PARAMS);
535 if (modified_name2)
536 {
537 modified_name = modified_name2;
538 needtofreename = 1;
539 }
540 }
541
542 returnval = lookup_symbol_aux (modified_name, block, namespace,
543 is_a_field_of_this, symtab);
544 if (needtofreename)
545 xfree (modified_name2);
546
547 return returnval;
548 }
549
550 static struct symbol *
551 lookup_symbol_aux (const char *name, const struct block *block,
552 const namespace_enum namespace, int *is_a_field_of_this,
553 struct symtab **symtab)
554 {
555 register struct symbol *sym;
556 register struct symtab *s = NULL;
557 register struct partial_symtab *ps;
558 register struct blockvector *bv;
559 register struct objfile *objfile = NULL;
560 register struct block *b;
561 register struct minimal_symbol *msymbol;
562
563
564 /* Search specified block and its superiors. */
565
566 while (block != 0)
567 {
568 sym = lookup_block_symbol (block, name, namespace);
569 if (sym)
570 {
571 block_found = block;
572 if (symtab != NULL)
573 {
574 /* Search the list of symtabs for one which contains the
575 address of the start of this block. */
576 ALL_SYMTABS (objfile, s)
577 {
578 bv = BLOCKVECTOR (s);
579 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
580 if (BLOCK_START (b) <= BLOCK_START (block)
581 && BLOCK_END (b) > BLOCK_START (block))
582 goto found;
583 }
584 found:
585 *symtab = s;
586 }
587
588 return fixup_symbol_section (sym, objfile);
589 }
590 block = BLOCK_SUPERBLOCK (block);
591 }
592
593 /* FIXME: this code is never executed--block is always NULL at this
594 point. What is it trying to do, anyway? We already should have
595 checked the STATIC_BLOCK above (it is the superblock of top-level
596 blocks). Why is VAR_NAMESPACE special-cased? */
597 /* Don't need to mess with the psymtabs; if we have a block,
598 that file is read in. If we don't, then we deal later with
599 all the psymtab stuff that needs checking. */
600 /* Note (RT): The following never-executed code looks unnecessary to me also.
601 * If we change the code to use the original (passed-in)
602 * value of 'block', we could cause it to execute, but then what
603 * would it do? The STATIC_BLOCK of the symtab containing the passed-in
604 * 'block' was already searched by the above code. And the STATIC_BLOCK's
605 * of *other* symtabs (those files not containing 'block' lexically)
606 * should not contain 'block' address-wise. So we wouldn't expect this
607 * code to find any 'sym''s that were not found above. I vote for
608 * deleting the following paragraph of code.
609 */
610 if (namespace == VAR_NAMESPACE && block != NULL)
611 {
612 struct block *b;
613 /* Find the right symtab. */
614 ALL_SYMTABS (objfile, s)
615 {
616 bv = BLOCKVECTOR (s);
617 b = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
618 if (BLOCK_START (b) <= BLOCK_START (block)
619 && BLOCK_END (b) > BLOCK_START (block))
620 {
621 sym = lookup_block_symbol (b, name, VAR_NAMESPACE);
622 if (sym)
623 {
624 block_found = b;
625 if (symtab != NULL)
626 *symtab = s;
627 return fixup_symbol_section (sym, objfile);
628 }
629 }
630 }
631 }
632
633
634 /* C++: If requested to do so by the caller,
635 check to see if NAME is a field of `this'. */
636 if (is_a_field_of_this)
637 {
638 struct value *v = value_of_this (0);
639
640 *is_a_field_of_this = 0;
641 if (v && check_field (v, name))
642 {
643 *is_a_field_of_this = 1;
644 if (symtab != NULL)
645 *symtab = NULL;
646 return NULL;
647 }
648 }
649
650 /* Now search all global blocks. Do the symtab's first, then
651 check the psymtab's. If a psymtab indicates the existence
652 of the desired name as a global, then do psymtab-to-symtab
653 conversion on the fly and return the found symbol. */
654
655 ALL_SYMTABS (objfile, s)
656 {
657 bv = BLOCKVECTOR (s);
658 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
659 sym = lookup_block_symbol (block, name, namespace);
660 if (sym)
661 {
662 block_found = block;
663 if (symtab != NULL)
664 *symtab = s;
665 return fixup_symbol_section (sym, objfile);
666 }
667 }
668
669 #ifndef HPUXHPPA
670
671 /* Check for the possibility of the symbol being a function or
672 a mangled variable that is stored in one of the minimal symbol tables.
673 Eventually, all global symbols might be resolved in this way. */
674
675 if (namespace == VAR_NAMESPACE)
676 {
677 msymbol = lookup_minimal_symbol (name, NULL, NULL);
678 if (msymbol != NULL)
679 {
680 s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol),
681 SYMBOL_BFD_SECTION (msymbol));
682 if (s != NULL)
683 {
684 /* This is a function which has a symtab for its address. */
685 bv = BLOCKVECTOR (s);
686 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
687 sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol),
688 namespace);
689 /* We kept static functions in minimal symbol table as well as
690 in static scope. We want to find them in the symbol table. */
691 if (!sym)
692 {
693 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
694 sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol),
695 namespace);
696 }
697
698 /* sym == 0 if symbol was found in the minimal symbol table
699 but not in the symtab.
700 Return 0 to use the msymbol definition of "foo_".
701
702 This happens for Fortran "foo_" symbols,
703 which are "foo" in the symtab.
704
705 This can also happen if "asm" is used to make a
706 regular symbol but not a debugging symbol, e.g.
707 asm(".globl _main");
708 asm("_main:");
709 */
710
711 if (symtab != NULL)
712 *symtab = s;
713 return fixup_symbol_section (sym, objfile);
714 }
715 else if (MSYMBOL_TYPE (msymbol) != mst_text
716 && MSYMBOL_TYPE (msymbol) != mst_file_text
717 && !STREQ (name, SYMBOL_NAME (msymbol)))
718 {
719 /* This is a mangled variable, look it up by its
720 mangled name. */
721 return lookup_symbol_aux (SYMBOL_NAME (msymbol), block,
722 namespace, is_a_field_of_this, symtab);
723 }
724 /* There are no debug symbols for this file, or we are looking
725 for an unmangled variable.
726 Try to find a matching static symbol below. */
727 }
728 }
729
730 #endif
731
732 ALL_PSYMTABS (objfile, ps)
733 {
734 if (!ps->readin && lookup_partial_symbol (ps, name, 1, namespace))
735 {
736 s = PSYMTAB_TO_SYMTAB (ps);
737 bv = BLOCKVECTOR (s);
738 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
739 sym = lookup_block_symbol (block, name, namespace);
740 if (!sym)
741 {
742 /* This shouldn't be necessary, but as a last resort
743 * try looking in the statics even though the psymtab
744 * claimed the symbol was global. It's possible that
745 * the psymtab gets it wrong in some cases.
746 */
747 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
748 sym = lookup_block_symbol (block, name, namespace);
749 if (!sym)
750 error ("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
751 %s may be an inlined function, or may be a template function\n\
752 (if a template, try specifying an instantiation: %s<type>).",
753 name, ps->filename, name, name);
754 }
755 if (symtab != NULL)
756 *symtab = s;
757 return fixup_symbol_section (sym, objfile);
758 }
759 }
760
761 /* Now search all static file-level symbols.
762 Not strictly correct, but more useful than an error.
763 Do the symtabs first, then check the psymtabs.
764 If a psymtab indicates the existence
765 of the desired name as a file-level static, then do psymtab-to-symtab
766 conversion on the fly and return the found symbol. */
767
768 ALL_SYMTABS (objfile, s)
769 {
770 bv = BLOCKVECTOR (s);
771 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
772 sym = lookup_block_symbol (block, name, namespace);
773 if (sym)
774 {
775 block_found = block;
776 if (symtab != NULL)
777 *symtab = s;
778 return fixup_symbol_section (sym, objfile);
779 }
780 }
781
782 ALL_PSYMTABS (objfile, ps)
783 {
784 if (!ps->readin && lookup_partial_symbol (ps, name, 0, namespace))
785 {
786 s = PSYMTAB_TO_SYMTAB (ps);
787 bv = BLOCKVECTOR (s);
788 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
789 sym = lookup_block_symbol (block, name, namespace);
790 if (!sym)
791 {
792 /* This shouldn't be necessary, but as a last resort
793 * try looking in the globals even though the psymtab
794 * claimed the symbol was static. It's possible that
795 * the psymtab gets it wrong in some cases.
796 */
797 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
798 sym = lookup_block_symbol (block, name, namespace);
799 if (!sym)
800 error ("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
801 %s may be an inlined function, or may be a template function\n\
802 (if a template, try specifying an instantiation: %s<type>).",
803 name, ps->filename, name, name);
804 }
805 if (symtab != NULL)
806 *symtab = s;
807 return fixup_symbol_section (sym, objfile);
808 }
809 }
810
811 #ifdef HPUXHPPA
812
813 /* Check for the possibility of the symbol being a function or
814 a global variable that is stored in one of the minimal symbol tables.
815 The "minimal symbol table" is built from linker-supplied info.
816
817 RT: I moved this check to last, after the complete search of
818 the global (p)symtab's and static (p)symtab's. For HP-generated
819 symbol tables, this check was causing a premature exit from
820 lookup_symbol with NULL return, and thus messing up symbol lookups
821 of things like "c::f". It seems to me a check of the minimal
822 symbol table ought to be a last resort in any case. I'm vaguely
823 worried about the comment below which talks about FORTRAN routines "foo_"
824 though... is it saying we need to do the "minsym" check before
825 the static check in this case?
826 */
827
828 if (namespace == VAR_NAMESPACE)
829 {
830 msymbol = lookup_minimal_symbol (name, NULL, NULL);
831 if (msymbol != NULL)
832 {
833 /* OK, we found a minimal symbol in spite of not
834 * finding any symbol. There are various possible
835 * explanations for this. One possibility is the symbol
836 * exists in code not compiled -g. Another possibility
837 * is that the 'psymtab' isn't doing its job.
838 * A third possibility, related to #2, is that we were confused
839 * by name-mangling. For instance, maybe the psymtab isn't
840 * doing its job because it only know about demangled
841 * names, but we were given a mangled name...
842 */
843
844 /* We first use the address in the msymbol to try to
845 * locate the appropriate symtab. Note that find_pc_symtab()
846 * has a side-effect of doing psymtab-to-symtab expansion,
847 * for the found symtab.
848 */
849 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
850 if (s != NULL)
851 {
852 bv = BLOCKVECTOR (s);
853 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
854 sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol),
855 namespace);
856 /* We kept static functions in minimal symbol table as well as
857 in static scope. We want to find them in the symbol table. */
858 if (!sym)
859 {
860 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
861 sym = lookup_block_symbol (block, SYMBOL_NAME (msymbol),
862 namespace);
863 }
864 /* If we found one, return it */
865 if (sym)
866 {
867 if (symtab != NULL)
868 *symtab = s;
869 return sym;
870 }
871
872 /* If we get here with sym == 0, the symbol was
873 found in the minimal symbol table
874 but not in the symtab.
875 Fall through and return 0 to use the msymbol
876 definition of "foo_".
877 (Note that outer code generally follows up a call
878 to this routine with a call to lookup_minimal_symbol(),
879 so a 0 return means we'll just flow into that other routine).
880
881 This happens for Fortran "foo_" symbols,
882 which are "foo" in the symtab.
883
884 This can also happen if "asm" is used to make a
885 regular symbol but not a debugging symbol, e.g.
886 asm(".globl _main");
887 asm("_main:");
888 */
889 }
890
891 /* If the lookup-by-address fails, try repeating the
892 * entire lookup process with the symbol name from
893 * the msymbol (if different from the original symbol name).
894 */
895 else if (MSYMBOL_TYPE (msymbol) != mst_text
896 && MSYMBOL_TYPE (msymbol) != mst_file_text
897 && !STREQ (name, SYMBOL_NAME (msymbol)))
898 {
899 return lookup_symbol_aux (SYMBOL_NAME (msymbol), block,
900 namespace, is_a_field_of_this, symtab);
901 }
902 }
903 }
904
905 #endif
906
907 if (symtab != NULL)
908 *symtab = NULL;
909 return 0;
910 }
911
912 /* Look, in partial_symtab PST, for symbol NAME. Check the global
913 symbols if GLOBAL, the static symbols if not */
914
915 static struct partial_symbol *
916 lookup_partial_symbol (struct partial_symtab *pst, const char *name, int global,
917 namespace_enum namespace)
918 {
919 struct partial_symbol *temp;
920 struct partial_symbol **start, **psym;
921 struct partial_symbol **top, **bottom, **center;
922 int length = (global ? pst->n_global_syms : pst->n_static_syms);
923 int do_linear_search = 1;
924
925 if (length == 0)
926 {
927 return (NULL);
928 }
929 start = (global ?
930 pst->objfile->global_psymbols.list + pst->globals_offset :
931 pst->objfile->static_psymbols.list + pst->statics_offset);
932
933 if (global) /* This means we can use a binary search. */
934 {
935 do_linear_search = 0;
936
937 /* Binary search. This search is guaranteed to end with center
938 pointing at the earliest partial symbol with the correct
939 name. At that point *all* partial symbols with that name
940 will be checked against the correct namespace. */
941
942 bottom = start;
943 top = start + length - 1;
944 while (top > bottom)
945 {
946 center = bottom + (top - bottom) / 2;
947 if (!(center < top))
948 internal_error (__FILE__, __LINE__, "failed internal consistency check");
949 if (!do_linear_search
950 && (SYMBOL_LANGUAGE (*center) == language_java))
951 {
952 do_linear_search = 1;
953 }
954 if (strcmp (SYMBOL_SOURCE_NAME (*center), name) >= 0)
955 {
956 top = center;
957 }
958 else
959 {
960 bottom = center + 1;
961 }
962 }
963 if (!(top == bottom))
964 internal_error (__FILE__, __LINE__, "failed internal consistency check");
965
966 /* djb - 2000-06-03 - Use SYMBOL_MATCHES_NAME, not a strcmp, so
967 we don't have to force a linear search on C++. Probably holds true
968 for JAVA as well, no way to check.*/
969 while (SYMBOL_MATCHES_NAME (*top,name))
970 {
971 if (SYMBOL_NAMESPACE (*top) == namespace)
972 {
973 return (*top);
974 }
975 top++;
976 }
977 }
978
979 /* Can't use a binary search or else we found during the binary search that
980 we should also do a linear search. */
981
982 if (do_linear_search)
983 {
984 for (psym = start; psym < start + length; psym++)
985 {
986 if (namespace == SYMBOL_NAMESPACE (*psym))
987 {
988 if (SYMBOL_MATCHES_NAME (*psym, name))
989 {
990 return (*psym);
991 }
992 }
993 }
994 }
995
996 return (NULL);
997 }
998
999 /* Look up a type named NAME in the struct_namespace. The type returned
1000 must not be opaque -- i.e., must have at least one field defined
1001
1002 This code was modelled on lookup_symbol -- the parts not relevant to looking
1003 up types were just left out. In particular it's assumed here that types
1004 are available in struct_namespace and only at file-static or global blocks. */
1005
1006
1007 struct type *
1008 lookup_transparent_type (const char *name)
1009 {
1010 register struct symbol *sym;
1011 register struct symtab *s = NULL;
1012 register struct partial_symtab *ps;
1013 struct blockvector *bv;
1014 register struct objfile *objfile;
1015 register struct block *block;
1016
1017 /* Now search all the global symbols. Do the symtab's first, then
1018 check the psymtab's. If a psymtab indicates the existence
1019 of the desired name as a global, then do psymtab-to-symtab
1020 conversion on the fly and return the found symbol. */
1021
1022 ALL_SYMTABS (objfile, s)
1023 {
1024 bv = BLOCKVECTOR (s);
1025 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1026 sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
1027 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1028 {
1029 return SYMBOL_TYPE (sym);
1030 }
1031 }
1032
1033 ALL_PSYMTABS (objfile, ps)
1034 {
1035 if (!ps->readin && lookup_partial_symbol (ps, name, 1, STRUCT_NAMESPACE))
1036 {
1037 s = PSYMTAB_TO_SYMTAB (ps);
1038 bv = BLOCKVECTOR (s);
1039 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1040 sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
1041 if (!sym)
1042 {
1043 /* This shouldn't be necessary, but as a last resort
1044 * try looking in the statics even though the psymtab
1045 * claimed the symbol was global. It's possible that
1046 * the psymtab gets it wrong in some cases.
1047 */
1048 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1049 sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
1050 if (!sym)
1051 error ("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1052 %s may be an inlined function, or may be a template function\n\
1053 (if a template, try specifying an instantiation: %s<type>).",
1054 name, ps->filename, name, name);
1055 }
1056 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1057 return SYMBOL_TYPE (sym);
1058 }
1059 }
1060
1061 /* Now search the static file-level symbols.
1062 Not strictly correct, but more useful than an error.
1063 Do the symtab's first, then
1064 check the psymtab's. If a psymtab indicates the existence
1065 of the desired name as a file-level static, then do psymtab-to-symtab
1066 conversion on the fly and return the found symbol.
1067 */
1068
1069 ALL_SYMTABS (objfile, s)
1070 {
1071 bv = BLOCKVECTOR (s);
1072 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1073 sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
1074 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1075 {
1076 return SYMBOL_TYPE (sym);
1077 }
1078 }
1079
1080 ALL_PSYMTABS (objfile, ps)
1081 {
1082 if (!ps->readin && lookup_partial_symbol (ps, name, 0, STRUCT_NAMESPACE))
1083 {
1084 s = PSYMTAB_TO_SYMTAB (ps);
1085 bv = BLOCKVECTOR (s);
1086 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1087 sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
1088 if (!sym)
1089 {
1090 /* This shouldn't be necessary, but as a last resort
1091 * try looking in the globals even though the psymtab
1092 * claimed the symbol was static. It's possible that
1093 * the psymtab gets it wrong in some cases.
1094 */
1095 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1096 sym = lookup_block_symbol (block, name, STRUCT_NAMESPACE);
1097 if (!sym)
1098 error ("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1099 %s may be an inlined function, or may be a template function\n\
1100 (if a template, try specifying an instantiation: %s<type>).",
1101 name, ps->filename, name, name);
1102 }
1103 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1104 return SYMBOL_TYPE (sym);
1105 }
1106 }
1107 return (struct type *) 0;
1108 }
1109
1110
1111 /* Find the psymtab containing main(). */
1112 /* FIXME: What about languages without main() or specially linked
1113 executables that have no main() ? */
1114
1115 struct partial_symtab *
1116 find_main_psymtab (void)
1117 {
1118 register struct partial_symtab *pst;
1119 register struct objfile *objfile;
1120
1121 ALL_PSYMTABS (objfile, pst)
1122 {
1123 if (lookup_partial_symbol (pst, main_name (), 1, VAR_NAMESPACE))
1124 {
1125 return (pst);
1126 }
1127 }
1128 return (NULL);
1129 }
1130
1131 /* Search BLOCK for symbol NAME in NAMESPACE.
1132
1133 Note that if NAME is the demangled form of a C++ symbol, we will fail
1134 to find a match during the binary search of the non-encoded names, but
1135 for now we don't worry about the slight inefficiency of looking for
1136 a match we'll never find, since it will go pretty quick. Once the
1137 binary search terminates, we drop through and do a straight linear
1138 search on the symbols. Each symbol which is marked as being a C++
1139 symbol (language_cplus set) has both the encoded and non-encoded names
1140 tested for a match. */
1141
1142 struct symbol *
1143 lookup_block_symbol (register const struct block *block, const char *name,
1144 const namespace_enum namespace)
1145 {
1146 register int bot, top, inc;
1147 register struct symbol *sym;
1148 register struct symbol *sym_found = NULL;
1149 register int do_linear_search = 1;
1150
1151 /* If the blocks's symbols were sorted, start with a binary search. */
1152
1153 if (BLOCK_SHOULD_SORT (block))
1154 {
1155 /* Reset the linear search flag so if the binary search fails, we
1156 won't do the linear search once unless we find some reason to
1157 do so */
1158
1159 do_linear_search = 0;
1160 top = BLOCK_NSYMS (block);
1161 bot = 0;
1162
1163 /* Advance BOT to not far before the first symbol whose name is NAME. */
1164
1165 while (1)
1166 {
1167 inc = (top - bot + 1);
1168 /* No need to keep binary searching for the last few bits worth. */
1169 if (inc < 4)
1170 {
1171 break;
1172 }
1173 inc = (inc >> 1) + bot;
1174 sym = BLOCK_SYM (block, inc);
1175 if (!do_linear_search && (SYMBOL_LANGUAGE (sym) == language_java))
1176 {
1177 do_linear_search = 1;
1178 }
1179 if (SYMBOL_SOURCE_NAME (sym)[0] < name[0])
1180 {
1181 bot = inc;
1182 }
1183 else if (SYMBOL_SOURCE_NAME (sym)[0] > name[0])
1184 {
1185 top = inc;
1186 }
1187 else if (strcmp (SYMBOL_SOURCE_NAME (sym), name) < 0)
1188 {
1189 bot = inc;
1190 }
1191 else
1192 {
1193 top = inc;
1194 }
1195 }
1196
1197 /* Now scan forward until we run out of symbols, find one whose
1198 name is greater than NAME, or find one we want. If there is
1199 more than one symbol with the right name and namespace, we
1200 return the first one; I believe it is now impossible for us
1201 to encounter two symbols with the same name and namespace
1202 here, because blocks containing argument symbols are no
1203 longer sorted. */
1204
1205 top = BLOCK_NSYMS (block);
1206 while (bot < top)
1207 {
1208 sym = BLOCK_SYM (block, bot);
1209 if (SYMBOL_NAMESPACE (sym) == namespace &&
1210 SYMBOL_MATCHES_NAME (sym, name))
1211 {
1212 return sym;
1213 }
1214 if (SYMBOL_SOURCE_NAME (sym)[0] > name[0])
1215 {
1216 break;
1217 }
1218 bot++;
1219 }
1220 }
1221
1222 /* Here if block isn't sorted, or we fail to find a match during the
1223 binary search above. If during the binary search above, we find a
1224 symbol which is a Java symbol, then we have re-enabled the linear
1225 search flag which was reset when starting the binary search.
1226
1227 This loop is equivalent to the loop above, but hacked greatly for speed.
1228
1229 Note that parameter symbols do not always show up last in the
1230 list; this loop makes sure to take anything else other than
1231 parameter symbols first; it only uses parameter symbols as a
1232 last resort. Note that this only takes up extra computation
1233 time on a match. */
1234
1235 if (do_linear_search)
1236 {
1237 top = BLOCK_NSYMS (block);
1238 bot = 0;
1239 while (bot < top)
1240 {
1241 sym = BLOCK_SYM (block, bot);
1242 if (SYMBOL_NAMESPACE (sym) == namespace &&
1243 SYMBOL_MATCHES_NAME (sym, name))
1244 {
1245 /* If SYM has aliases, then use any alias that is active
1246 at the current PC. If no alias is active at the current
1247 PC, then use the main symbol.
1248
1249 ?!? Is checking the current pc correct? Is this routine
1250 ever called to look up a symbol from another context?
1251
1252 FIXME: No, it's not correct. If someone sets a
1253 conditional breakpoint at an address, then the
1254 breakpoint's `struct expression' should refer to the
1255 `struct symbol' appropriate for the breakpoint's
1256 address, which may not be the PC.
1257
1258 Even if it were never called from another context,
1259 it's totally bizarre for lookup_symbol's behavior to
1260 depend on the value of the inferior's current PC. We
1261 should pass in the appropriate PC as well as the
1262 block. The interface to lookup_symbol should change
1263 to require the caller to provide a PC. */
1264
1265 if (SYMBOL_ALIASES (sym))
1266 sym = find_active_alias (sym, read_pc ());
1267
1268 sym_found = sym;
1269 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1270 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1271 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1272 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1273 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1274 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG)
1275 {
1276 break;
1277 }
1278 }
1279 bot++;
1280 }
1281 }
1282 return (sym_found); /* Will be NULL if not found. */
1283 }
1284
1285 /* Given a main symbol SYM and ADDR, search through the alias
1286 list to determine if an alias is active at ADDR and return
1287 the active alias.
1288
1289 If no alias is active, then return SYM. */
1290
1291 static struct symbol *
1292 find_active_alias (struct symbol *sym, CORE_ADDR addr)
1293 {
1294 struct range_list *r;
1295 struct alias_list *aliases;
1296
1297 /* If we have aliases, check them first. */
1298 aliases = SYMBOL_ALIASES (sym);
1299
1300 while (aliases)
1301 {
1302 if (!SYMBOL_RANGES (aliases->sym))
1303 return aliases->sym;
1304 for (r = SYMBOL_RANGES (aliases->sym); r; r = r->next)
1305 {
1306 if (r->start <= addr && r->end > addr)
1307 return aliases->sym;
1308 }
1309 aliases = aliases->next;
1310 }
1311
1312 /* Nothing found, return the main symbol. */
1313 return sym;
1314 }
1315 \f
1316
1317 /* Return the symbol for the function which contains a specified
1318 lexical block, described by a struct block BL. */
1319
1320 struct symbol *
1321 block_function (struct block *bl)
1322 {
1323 while (BLOCK_FUNCTION (bl) == 0 && BLOCK_SUPERBLOCK (bl) != 0)
1324 bl = BLOCK_SUPERBLOCK (bl);
1325
1326 return BLOCK_FUNCTION (bl);
1327 }
1328
1329 /* Find the symtab associated with PC and SECTION. Look through the
1330 psymtabs and read in another symtab if necessary. */
1331
1332 struct symtab *
1333 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1334 {
1335 register struct block *b;
1336 struct blockvector *bv;
1337 register struct symtab *s = NULL;
1338 register struct symtab *best_s = NULL;
1339 register struct partial_symtab *ps;
1340 register struct objfile *objfile;
1341 CORE_ADDR distance = 0;
1342
1343 /* Search all symtabs for the one whose file contains our address, and which
1344 is the smallest of all the ones containing the address. This is designed
1345 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1346 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1347 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1348
1349 This happens for native ecoff format, where code from included files
1350 gets its own symtab. The symtab for the included file should have
1351 been read in already via the dependency mechanism.
1352 It might be swifter to create several symtabs with the same name
1353 like xcoff does (I'm not sure).
1354
1355 It also happens for objfiles that have their functions reordered.
1356 For these, the symtab we are looking for is not necessarily read in. */
1357
1358 ALL_SYMTABS (objfile, s)
1359 {
1360 bv = BLOCKVECTOR (s);
1361 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1362
1363 if (BLOCK_START (b) <= pc
1364 && BLOCK_END (b) > pc
1365 && (distance == 0
1366 || BLOCK_END (b) - BLOCK_START (b) < distance))
1367 {
1368 /* For an objfile that has its functions reordered,
1369 find_pc_psymtab will find the proper partial symbol table
1370 and we simply return its corresponding symtab. */
1371 /* In order to better support objfiles that contain both
1372 stabs and coff debugging info, we continue on if a psymtab
1373 can't be found. */
1374 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
1375 {
1376 ps = find_pc_sect_psymtab (pc, section);
1377 if (ps)
1378 return PSYMTAB_TO_SYMTAB (ps);
1379 }
1380 if (section != 0)
1381 {
1382 int i;
1383
1384 for (i = 0; i < b->nsyms; i++)
1385 {
1386 fixup_symbol_section (b->sym[i], objfile);
1387 if (section == SYMBOL_BFD_SECTION (b->sym[i]))
1388 break;
1389 }
1390 if (i >= b->nsyms)
1391 continue; /* no symbol in this symtab matches section */
1392 }
1393 distance = BLOCK_END (b) - BLOCK_START (b);
1394 best_s = s;
1395 }
1396 }
1397
1398 if (best_s != NULL)
1399 return (best_s);
1400
1401 s = NULL;
1402 ps = find_pc_sect_psymtab (pc, section);
1403 if (ps)
1404 {
1405 if (ps->readin)
1406 /* Might want to error() here (in case symtab is corrupt and
1407 will cause a core dump), but maybe we can successfully
1408 continue, so let's not. */
1409 warning ("\
1410 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n",
1411 paddr_nz (pc));
1412 s = PSYMTAB_TO_SYMTAB (ps);
1413 }
1414 return (s);
1415 }
1416
1417 /* Find the symtab associated with PC. Look through the psymtabs and
1418 read in another symtab if necessary. Backward compatibility, no section */
1419
1420 struct symtab *
1421 find_pc_symtab (CORE_ADDR pc)
1422 {
1423 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1424 }
1425 \f
1426
1427 #if 0
1428
1429 /* Find the closest symbol value (of any sort -- function or variable)
1430 for a given address value. Slow but complete. (currently unused,
1431 mainly because it is too slow. We could fix it if each symtab and
1432 psymtab had contained in it the addresses ranges of each of its
1433 sections, which also would be required to make things like "info
1434 line *0x2345" cause psymtabs to be converted to symtabs). */
1435
1436 struct symbol *
1437 find_addr_symbol (CORE_ADDR addr, struct symtab **symtabp, CORE_ADDR *symaddrp)
1438 {
1439 struct symtab *symtab, *best_symtab;
1440 struct objfile *objfile;
1441 register int bot, top;
1442 register struct symbol *sym;
1443 register CORE_ADDR sym_addr;
1444 struct block *block;
1445 int blocknum;
1446
1447 /* Info on best symbol seen so far */
1448
1449 register CORE_ADDR best_sym_addr = 0;
1450 struct symbol *best_sym = 0;
1451
1452 /* FIXME -- we should pull in all the psymtabs, too! */
1453 ALL_SYMTABS (objfile, symtab)
1454 {
1455 /* Search the global and static blocks in this symtab for
1456 the closest symbol-address to the desired address. */
1457
1458 for (blocknum = GLOBAL_BLOCK; blocknum <= STATIC_BLOCK; blocknum++)
1459 {
1460 QUIT;
1461 block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), blocknum);
1462 top = BLOCK_NSYMS (block);
1463 for (bot = 0; bot < top; bot++)
1464 {
1465 sym = BLOCK_SYM (block, bot);
1466 switch (SYMBOL_CLASS (sym))
1467 {
1468 case LOC_STATIC:
1469 case LOC_LABEL:
1470 sym_addr = SYMBOL_VALUE_ADDRESS (sym);
1471 break;
1472
1473 case LOC_INDIRECT:
1474 sym_addr = SYMBOL_VALUE_ADDRESS (sym);
1475 /* An indirect symbol really lives at *sym_addr,
1476 * so an indirection needs to be done.
1477 * However, I am leaving this commented out because it's
1478 * expensive, and it's possible that symbolization
1479 * could be done without an active process (in
1480 * case this read_memory will fail). RT
1481 sym_addr = read_memory_unsigned_integer
1482 (sym_addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1483 */
1484 break;
1485
1486 case LOC_BLOCK:
1487 sym_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1488 break;
1489
1490 default:
1491 continue;
1492 }
1493
1494 if (sym_addr <= addr)
1495 if (sym_addr > best_sym_addr)
1496 {
1497 /* Quit if we found an exact match. */
1498 best_sym = sym;
1499 best_sym_addr = sym_addr;
1500 best_symtab = symtab;
1501 if (sym_addr == addr)
1502 goto done;
1503 }
1504 }
1505 }
1506 }
1507
1508 done:
1509 if (symtabp)
1510 *symtabp = best_symtab;
1511 if (symaddrp)
1512 *symaddrp = best_sym_addr;
1513 return best_sym;
1514 }
1515 #endif /* 0 */
1516
1517 /* Find the source file and line number for a given PC value and SECTION.
1518 Return a structure containing a symtab pointer, a line number,
1519 and a pc range for the entire source line.
1520 The value's .pc field is NOT the specified pc.
1521 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1522 use the line that ends there. Otherwise, in that case, the line
1523 that begins there is used. */
1524
1525 /* The big complication here is that a line may start in one file, and end just
1526 before the start of another file. This usually occurs when you #include
1527 code in the middle of a subroutine. To properly find the end of a line's PC
1528 range, we must search all symtabs associated with this compilation unit, and
1529 find the one whose first PC is closer than that of the next line in this
1530 symtab. */
1531
1532 /* If it's worth the effort, we could be using a binary search. */
1533
1534 struct symtab_and_line
1535 find_pc_sect_line (CORE_ADDR pc, struct sec *section, int notcurrent)
1536 {
1537 struct symtab *s;
1538 register struct linetable *l;
1539 register int len;
1540 register int i;
1541 register struct linetable_entry *item;
1542 struct symtab_and_line val;
1543 struct blockvector *bv;
1544 struct minimal_symbol *msymbol;
1545 struct minimal_symbol *mfunsym;
1546
1547 /* Info on best line seen so far, and where it starts, and its file. */
1548
1549 struct linetable_entry *best = NULL;
1550 CORE_ADDR best_end = 0;
1551 struct symtab *best_symtab = 0;
1552
1553 /* Store here the first line number
1554 of a file which contains the line at the smallest pc after PC.
1555 If we don't find a line whose range contains PC,
1556 we will use a line one less than this,
1557 with a range from the start of that file to the first line's pc. */
1558 struct linetable_entry *alt = NULL;
1559 struct symtab *alt_symtab = 0;
1560
1561 /* Info on best line seen in this file. */
1562
1563 struct linetable_entry *prev;
1564
1565 /* If this pc is not from the current frame,
1566 it is the address of the end of a call instruction.
1567 Quite likely that is the start of the following statement.
1568 But what we want is the statement containing the instruction.
1569 Fudge the pc to make sure we get that. */
1570
1571 INIT_SAL (&val); /* initialize to zeroes */
1572
1573 if (notcurrent)
1574 pc -= 1;
1575
1576 /* elz: added this because this function returned the wrong
1577 information if the pc belongs to a stub (import/export)
1578 to call a shlib function. This stub would be anywhere between
1579 two functions in the target, and the line info was erroneously
1580 taken to be the one of the line before the pc.
1581 */
1582 /* RT: Further explanation:
1583
1584 * We have stubs (trampolines) inserted between procedures.
1585 *
1586 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1587 * exists in the main image.
1588 *
1589 * In the minimal symbol table, we have a bunch of symbols
1590 * sorted by start address. The stubs are marked as "trampoline",
1591 * the others appear as text. E.g.:
1592 *
1593 * Minimal symbol table for main image
1594 * main: code for main (text symbol)
1595 * shr1: stub (trampoline symbol)
1596 * foo: code for foo (text symbol)
1597 * ...
1598 * Minimal symbol table for "shr1" image:
1599 * ...
1600 * shr1: code for shr1 (text symbol)
1601 * ...
1602 *
1603 * So the code below is trying to detect if we are in the stub
1604 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1605 * and if found, do the symbolization from the real-code address
1606 * rather than the stub address.
1607 *
1608 * Assumptions being made about the minimal symbol table:
1609 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1610 * if we're really in the trampoline. If we're beyond it (say
1611 * we're in "foo" in the above example), it'll have a closer
1612 * symbol (the "foo" text symbol for example) and will not
1613 * return the trampoline.
1614 * 2. lookup_minimal_symbol_text() will find a real text symbol
1615 * corresponding to the trampoline, and whose address will
1616 * be different than the trampoline address. I put in a sanity
1617 * check for the address being the same, to avoid an
1618 * infinite recursion.
1619 */
1620 msymbol = lookup_minimal_symbol_by_pc (pc);
1621 if (msymbol != NULL)
1622 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1623 {
1624 mfunsym = lookup_minimal_symbol_text (SYMBOL_NAME (msymbol), NULL, NULL);
1625 if (mfunsym == NULL)
1626 /* I eliminated this warning since it is coming out
1627 * in the following situation:
1628 * gdb shmain // test program with shared libraries
1629 * (gdb) break shr1 // function in shared lib
1630 * Warning: In stub for ...
1631 * In the above situation, the shared lib is not loaded yet,
1632 * so of course we can't find the real func/line info,
1633 * but the "break" still works, and the warning is annoying.
1634 * So I commented out the warning. RT */
1635 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_NAME(msymbol)) */ ;
1636 /* fall through */
1637 else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol))
1638 /* Avoid infinite recursion */
1639 /* See above comment about why warning is commented out */
1640 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_NAME(msymbol)) */ ;
1641 /* fall through */
1642 else
1643 return find_pc_line (SYMBOL_VALUE (mfunsym), 0);
1644 }
1645
1646
1647 s = find_pc_sect_symtab (pc, section);
1648 if (!s)
1649 {
1650 /* if no symbol information, return previous pc */
1651 if (notcurrent)
1652 pc++;
1653 val.pc = pc;
1654 return val;
1655 }
1656
1657 bv = BLOCKVECTOR (s);
1658
1659 /* Look at all the symtabs that share this blockvector.
1660 They all have the same apriori range, that we found was right;
1661 but they have different line tables. */
1662
1663 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1664 {
1665 /* Find the best line in this symtab. */
1666 l = LINETABLE (s);
1667 if (!l)
1668 continue;
1669 len = l->nitems;
1670 if (len <= 0)
1671 {
1672 /* I think len can be zero if the symtab lacks line numbers
1673 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1674 I'm not sure which, and maybe it depends on the symbol
1675 reader). */
1676 continue;
1677 }
1678
1679 prev = NULL;
1680 item = l->item; /* Get first line info */
1681
1682 /* Is this file's first line closer than the first lines of other files?
1683 If so, record this file, and its first line, as best alternate. */
1684 if (item->pc > pc && (!alt || item->pc < alt->pc))
1685 {
1686 alt = item;
1687 alt_symtab = s;
1688 }
1689
1690 for (i = 0; i < len; i++, item++)
1691 {
1692 /* Leave prev pointing to the linetable entry for the last line
1693 that started at or before PC. */
1694 if (item->pc > pc)
1695 break;
1696
1697 prev = item;
1698 }
1699
1700 /* At this point, prev points at the line whose start addr is <= pc, and
1701 item points at the next line. If we ran off the end of the linetable
1702 (pc >= start of the last line), then prev == item. If pc < start of
1703 the first line, prev will not be set. */
1704
1705 /* Is this file's best line closer than the best in the other files?
1706 If so, record this file, and its best line, as best so far. */
1707
1708 if (prev && (!best || prev->pc > best->pc))
1709 {
1710 best = prev;
1711 best_symtab = s;
1712
1713 /* Discard BEST_END if it's before the PC of the current BEST. */
1714 if (best_end <= best->pc)
1715 best_end = 0;
1716 }
1717
1718 /* If another line (denoted by ITEM) is in the linetable and its
1719 PC is after BEST's PC, but before the current BEST_END, then
1720 use ITEM's PC as the new best_end. */
1721 if (best && i < len && item->pc > best->pc
1722 && (best_end == 0 || best_end > item->pc))
1723 best_end = item->pc;
1724 }
1725
1726 if (!best_symtab)
1727 {
1728 if (!alt_symtab)
1729 { /* If we didn't find any line # info, just
1730 return zeros. */
1731 val.pc = pc;
1732 }
1733 else
1734 {
1735 val.symtab = alt_symtab;
1736 val.line = alt->line - 1;
1737
1738 /* Don't return line 0, that means that we didn't find the line. */
1739 if (val.line == 0)
1740 ++val.line;
1741
1742 val.pc = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
1743 val.end = alt->pc;
1744 }
1745 }
1746 else
1747 {
1748 val.symtab = best_symtab;
1749 val.line = best->line;
1750 val.pc = best->pc;
1751 if (best_end && (!alt || best_end < alt->pc))
1752 val.end = best_end;
1753 else if (alt)
1754 val.end = alt->pc;
1755 else
1756 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
1757 }
1758 val.section = section;
1759 return val;
1760 }
1761
1762 /* Backward compatibility (no section) */
1763
1764 struct symtab_and_line
1765 find_pc_line (CORE_ADDR pc, int notcurrent)
1766 {
1767 asection *section;
1768
1769 section = find_pc_overlay (pc);
1770 if (pc_in_unmapped_range (pc, section))
1771 pc = overlay_mapped_address (pc, section);
1772 return find_pc_sect_line (pc, section, notcurrent);
1773 }
1774 \f
1775 /* Find line number LINE in any symtab whose name is the same as
1776 SYMTAB.
1777
1778 If found, return the symtab that contains the linetable in which it was
1779 found, set *INDEX to the index in the linetable of the best entry
1780 found, and set *EXACT_MATCH nonzero if the value returned is an
1781 exact match.
1782
1783 If not found, return NULL. */
1784
1785 struct symtab *
1786 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
1787 {
1788 int exact;
1789
1790 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
1791 so far seen. */
1792
1793 int best_index;
1794 struct linetable *best_linetable;
1795 struct symtab *best_symtab;
1796
1797 /* First try looking it up in the given symtab. */
1798 best_linetable = LINETABLE (symtab);
1799 best_symtab = symtab;
1800 best_index = find_line_common (best_linetable, line, &exact);
1801 if (best_index < 0 || !exact)
1802 {
1803 /* Didn't find an exact match. So we better keep looking for
1804 another symtab with the same name. In the case of xcoff,
1805 multiple csects for one source file (produced by IBM's FORTRAN
1806 compiler) produce multiple symtabs (this is unavoidable
1807 assuming csects can be at arbitrary places in memory and that
1808 the GLOBAL_BLOCK of a symtab has a begin and end address). */
1809
1810 /* BEST is the smallest linenumber > LINE so far seen,
1811 or 0 if none has been seen so far.
1812 BEST_INDEX and BEST_LINETABLE identify the item for it. */
1813 int best;
1814
1815 struct objfile *objfile;
1816 struct symtab *s;
1817
1818 if (best_index >= 0)
1819 best = best_linetable->item[best_index].line;
1820 else
1821 best = 0;
1822
1823 ALL_SYMTABS (objfile, s)
1824 {
1825 struct linetable *l;
1826 int ind;
1827
1828 if (!STREQ (symtab->filename, s->filename))
1829 continue;
1830 l = LINETABLE (s);
1831 ind = find_line_common (l, line, &exact);
1832 if (ind >= 0)
1833 {
1834 if (exact)
1835 {
1836 best_index = ind;
1837 best_linetable = l;
1838 best_symtab = s;
1839 goto done;
1840 }
1841 if (best == 0 || l->item[ind].line < best)
1842 {
1843 best = l->item[ind].line;
1844 best_index = ind;
1845 best_linetable = l;
1846 best_symtab = s;
1847 }
1848 }
1849 }
1850 }
1851 done:
1852 if (best_index < 0)
1853 return NULL;
1854
1855 if (index)
1856 *index = best_index;
1857 if (exact_match)
1858 *exact_match = exact;
1859
1860 return best_symtab;
1861 }
1862 \f
1863 /* Set the PC value for a given source file and line number and return true.
1864 Returns zero for invalid line number (and sets the PC to 0).
1865 The source file is specified with a struct symtab. */
1866
1867 int
1868 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
1869 {
1870 struct linetable *l;
1871 int ind;
1872
1873 *pc = 0;
1874 if (symtab == 0)
1875 return 0;
1876
1877 symtab = find_line_symtab (symtab, line, &ind, NULL);
1878 if (symtab != NULL)
1879 {
1880 l = LINETABLE (symtab);
1881 *pc = l->item[ind].pc;
1882 return 1;
1883 }
1884 else
1885 return 0;
1886 }
1887
1888 /* Find the range of pc values in a line.
1889 Store the starting pc of the line into *STARTPTR
1890 and the ending pc (start of next line) into *ENDPTR.
1891 Returns 1 to indicate success.
1892 Returns 0 if could not find the specified line. */
1893
1894 int
1895 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
1896 CORE_ADDR *endptr)
1897 {
1898 CORE_ADDR startaddr;
1899 struct symtab_and_line found_sal;
1900
1901 startaddr = sal.pc;
1902 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
1903 return 0;
1904
1905 /* This whole function is based on address. For example, if line 10 has
1906 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
1907 "info line *0x123" should say the line goes from 0x100 to 0x200
1908 and "info line *0x355" should say the line goes from 0x300 to 0x400.
1909 This also insures that we never give a range like "starts at 0x134
1910 and ends at 0x12c". */
1911
1912 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
1913 if (found_sal.line != sal.line)
1914 {
1915 /* The specified line (sal) has zero bytes. */
1916 *startptr = found_sal.pc;
1917 *endptr = found_sal.pc;
1918 }
1919 else
1920 {
1921 *startptr = found_sal.pc;
1922 *endptr = found_sal.end;
1923 }
1924 return 1;
1925 }
1926
1927 /* Given a line table and a line number, return the index into the line
1928 table for the pc of the nearest line whose number is >= the specified one.
1929 Return -1 if none is found. The value is >= 0 if it is an index.
1930
1931 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
1932
1933 static int
1934 find_line_common (register struct linetable *l, register int lineno,
1935 int *exact_match)
1936 {
1937 register int i;
1938 register int len;
1939
1940 /* BEST is the smallest linenumber > LINENO so far seen,
1941 or 0 if none has been seen so far.
1942 BEST_INDEX identifies the item for it. */
1943
1944 int best_index = -1;
1945 int best = 0;
1946
1947 if (lineno <= 0)
1948 return -1;
1949 if (l == 0)
1950 return -1;
1951
1952 len = l->nitems;
1953 for (i = 0; i < len; i++)
1954 {
1955 register struct linetable_entry *item = &(l->item[i]);
1956
1957 if (item->line == lineno)
1958 {
1959 /* Return the first (lowest address) entry which matches. */
1960 *exact_match = 1;
1961 return i;
1962 }
1963
1964 if (item->line > lineno && (best == 0 || item->line < best))
1965 {
1966 best = item->line;
1967 best_index = i;
1968 }
1969 }
1970
1971 /* If we got here, we didn't get an exact match. */
1972
1973 *exact_match = 0;
1974 return best_index;
1975 }
1976
1977 int
1978 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
1979 {
1980 struct symtab_and_line sal;
1981 sal = find_pc_line (pc, 0);
1982 *startptr = sal.pc;
1983 *endptr = sal.end;
1984 return sal.symtab != 0;
1985 }
1986
1987 /* Given a function symbol SYM, find the symtab and line for the start
1988 of the function.
1989 If the argument FUNFIRSTLINE is nonzero, we want the first line
1990 of real code inside the function. */
1991
1992 struct symtab_and_line
1993 find_function_start_sal (struct symbol *sym, int funfirstline)
1994 {
1995 CORE_ADDR pc;
1996 struct symtab_and_line sal;
1997
1998 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1999 fixup_symbol_section (sym, NULL);
2000 if (funfirstline)
2001 { /* skip "first line" of function (which is actually its prologue) */
2002 asection *section = SYMBOL_BFD_SECTION (sym);
2003 /* If function is in an unmapped overlay, use its unmapped LMA
2004 address, so that SKIP_PROLOGUE has something unique to work on */
2005 if (section_is_overlay (section) &&
2006 !section_is_mapped (section))
2007 pc = overlay_unmapped_address (pc, section);
2008
2009 pc += FUNCTION_START_OFFSET;
2010 pc = SKIP_PROLOGUE (pc);
2011
2012 /* For overlays, map pc back into its mapped VMA range */
2013 pc = overlay_mapped_address (pc, section);
2014 }
2015 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2016
2017 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
2018 /* Convex: no need to suppress code on first line, if any */
2019 sal.pc = pc;
2020 #else
2021 /* Check if SKIP_PROLOGUE left us in mid-line, and the next
2022 line is still part of the same function. */
2023 if (sal.pc != pc
2024 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end
2025 && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2026 {
2027 /* First pc of next line */
2028 pc = sal.end;
2029 /* Recalculate the line number (might not be N+1). */
2030 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2031 }
2032 sal.pc = pc;
2033 #endif
2034
2035 return sal;
2036 }
2037
2038 /* If P is of the form "operator[ \t]+..." where `...' is
2039 some legitimate operator text, return a pointer to the
2040 beginning of the substring of the operator text.
2041 Otherwise, return "". */
2042 char *
2043 operator_chars (char *p, char **end)
2044 {
2045 *end = "";
2046 if (strncmp (p, "operator", 8))
2047 return *end;
2048 p += 8;
2049
2050 /* Don't get faked out by `operator' being part of a longer
2051 identifier. */
2052 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2053 return *end;
2054
2055 /* Allow some whitespace between `operator' and the operator symbol. */
2056 while (*p == ' ' || *p == '\t')
2057 p++;
2058
2059 /* Recognize 'operator TYPENAME'. */
2060
2061 if (isalpha (*p) || *p == '_' || *p == '$')
2062 {
2063 register char *q = p + 1;
2064 while (isalnum (*q) || *q == '_' || *q == '$')
2065 q++;
2066 *end = q;
2067 return p;
2068 }
2069
2070 switch (*p)
2071 {
2072 case '!':
2073 case '=':
2074 case '*':
2075 case '/':
2076 case '%':
2077 case '^':
2078 if (p[1] == '=')
2079 *end = p + 2;
2080 else
2081 *end = p + 1;
2082 return p;
2083 case '<':
2084 case '>':
2085 case '+':
2086 case '-':
2087 case '&':
2088 case '|':
2089 if (p[1] == '=' || p[1] == p[0])
2090 *end = p + 2;
2091 else
2092 *end = p + 1;
2093 return p;
2094 case '~':
2095 case ',':
2096 *end = p + 1;
2097 return p;
2098 case '(':
2099 if (p[1] != ')')
2100 error ("`operator ()' must be specified without whitespace in `()'");
2101 *end = p + 2;
2102 return p;
2103 case '?':
2104 if (p[1] != ':')
2105 error ("`operator ?:' must be specified without whitespace in `?:'");
2106 *end = p + 2;
2107 return p;
2108 case '[':
2109 if (p[1] != ']')
2110 error ("`operator []' must be specified without whitespace in `[]'");
2111 *end = p + 2;
2112 return p;
2113 default:
2114 error ("`operator %s' not supported", p);
2115 break;
2116 }
2117 *end = "";
2118 return *end;
2119 }
2120 \f
2121
2122 /* If FILE is not already in the table of files, return zero;
2123 otherwise return non-zero. Optionally add FILE to the table if ADD
2124 is non-zero. If *FIRST is non-zero, forget the old table
2125 contents. */
2126 static int
2127 filename_seen (const char *file, int add, int *first)
2128 {
2129 /* Table of files seen so far. */
2130 static const char **tab = NULL;
2131 /* Allocated size of tab in elements.
2132 Start with one 256-byte block (when using GNU malloc.c).
2133 24 is the malloc overhead when range checking is in effect. */
2134 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2135 /* Current size of tab in elements. */
2136 static int tab_cur_size;
2137 const char **p;
2138
2139 if (*first)
2140 {
2141 if (tab == NULL)
2142 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2143 tab_cur_size = 0;
2144 }
2145
2146 /* Is FILE in tab? */
2147 for (p = tab; p < tab + tab_cur_size; p++)
2148 if (strcmp (*p, file) == 0)
2149 return 1;
2150
2151 /* No; maybe add it to tab. */
2152 if (add)
2153 {
2154 if (tab_cur_size == tab_alloc_size)
2155 {
2156 tab_alloc_size *= 2;
2157 tab = (const char **) xrealloc ((char *) tab,
2158 tab_alloc_size * sizeof (*tab));
2159 }
2160 tab[tab_cur_size++] = file;
2161 }
2162
2163 return 0;
2164 }
2165
2166 /* Slave routine for sources_info. Force line breaks at ,'s.
2167 NAME is the name to print and *FIRST is nonzero if this is the first
2168 name printed. Set *FIRST to zero. */
2169 static void
2170 output_source_filename (char *name, int *first)
2171 {
2172 /* Since a single source file can result in several partial symbol
2173 tables, we need to avoid printing it more than once. Note: if
2174 some of the psymtabs are read in and some are not, it gets
2175 printed both under "Source files for which symbols have been
2176 read" and "Source files for which symbols will be read in on
2177 demand". I consider this a reasonable way to deal with the
2178 situation. I'm not sure whether this can also happen for
2179 symtabs; it doesn't hurt to check. */
2180
2181 /* Was NAME already seen? */
2182 if (filename_seen (name, 1, first))
2183 {
2184 /* Yes; don't print it again. */
2185 return;
2186 }
2187 /* No; print it and reset *FIRST. */
2188 if (*first)
2189 {
2190 *first = 0;
2191 }
2192 else
2193 {
2194 printf_filtered (", ");
2195 }
2196
2197 wrap_here ("");
2198 fputs_filtered (name, gdb_stdout);
2199 }
2200
2201 static void
2202 sources_info (char *ignore, int from_tty)
2203 {
2204 register struct symtab *s;
2205 register struct partial_symtab *ps;
2206 register struct objfile *objfile;
2207 int first;
2208
2209 if (!have_full_symbols () && !have_partial_symbols ())
2210 {
2211 error ("No symbol table is loaded. Use the \"file\" command.");
2212 }
2213
2214 printf_filtered ("Source files for which symbols have been read in:\n\n");
2215
2216 first = 1;
2217 ALL_SYMTABS (objfile, s)
2218 {
2219 output_source_filename (s->filename, &first);
2220 }
2221 printf_filtered ("\n\n");
2222
2223 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2224
2225 first = 1;
2226 ALL_PSYMTABS (objfile, ps)
2227 {
2228 if (!ps->readin)
2229 {
2230 output_source_filename (ps->filename, &first);
2231 }
2232 }
2233 printf_filtered ("\n");
2234 }
2235
2236 static int
2237 file_matches (char *file, char *files[], int nfiles)
2238 {
2239 int i;
2240
2241 if (file != NULL && nfiles != 0)
2242 {
2243 for (i = 0; i < nfiles; i++)
2244 {
2245 if (strcmp (files[i], lbasename (file)) == 0)
2246 return 1;
2247 }
2248 }
2249 else if (nfiles == 0)
2250 return 1;
2251 return 0;
2252 }
2253
2254 /* Free any memory associated with a search. */
2255 void
2256 free_search_symbols (struct symbol_search *symbols)
2257 {
2258 struct symbol_search *p;
2259 struct symbol_search *next;
2260
2261 for (p = symbols; p != NULL; p = next)
2262 {
2263 next = p->next;
2264 xfree (p);
2265 }
2266 }
2267
2268 static void
2269 do_free_search_symbols_cleanup (void *symbols)
2270 {
2271 free_search_symbols (symbols);
2272 }
2273
2274 struct cleanup *
2275 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2276 {
2277 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2278 }
2279
2280
2281 /* Search the symbol table for matches to the regular expression REGEXP,
2282 returning the results in *MATCHES.
2283
2284 Only symbols of KIND are searched:
2285 FUNCTIONS_NAMESPACE - search all functions
2286 TYPES_NAMESPACE - search all type names
2287 METHODS_NAMESPACE - search all methods NOT IMPLEMENTED
2288 VARIABLES_NAMESPACE - search all symbols, excluding functions, type names,
2289 and constants (enums)
2290
2291 free_search_symbols should be called when *MATCHES is no longer needed.
2292 */
2293 void
2294 search_symbols (char *regexp, namespace_enum kind, int nfiles, char *files[],
2295 struct symbol_search **matches)
2296 {
2297 register struct symtab *s;
2298 register struct partial_symtab *ps;
2299 register struct blockvector *bv;
2300 struct blockvector *prev_bv = 0;
2301 register struct block *b;
2302 register int i = 0;
2303 register int j;
2304 register struct symbol *sym;
2305 struct partial_symbol **psym;
2306 struct objfile *objfile;
2307 struct minimal_symbol *msymbol;
2308 char *val;
2309 int found_misc = 0;
2310 static enum minimal_symbol_type types[]
2311 =
2312 {mst_data, mst_text, mst_abs, mst_unknown};
2313 static enum minimal_symbol_type types2[]
2314 =
2315 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2316 static enum minimal_symbol_type types3[]
2317 =
2318 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2319 static enum minimal_symbol_type types4[]
2320 =
2321 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2322 enum minimal_symbol_type ourtype;
2323 enum minimal_symbol_type ourtype2;
2324 enum minimal_symbol_type ourtype3;
2325 enum minimal_symbol_type ourtype4;
2326 struct symbol_search *sr;
2327 struct symbol_search *psr;
2328 struct symbol_search *tail;
2329 struct cleanup *old_chain = NULL;
2330
2331 if (kind < VARIABLES_NAMESPACE)
2332 error ("must search on specific namespace");
2333
2334 ourtype = types[(int) (kind - VARIABLES_NAMESPACE)];
2335 ourtype2 = types2[(int) (kind - VARIABLES_NAMESPACE)];
2336 ourtype3 = types3[(int) (kind - VARIABLES_NAMESPACE)];
2337 ourtype4 = types4[(int) (kind - VARIABLES_NAMESPACE)];
2338
2339 sr = *matches = NULL;
2340 tail = NULL;
2341
2342 if (regexp != NULL)
2343 {
2344 /* Make sure spacing is right for C++ operators.
2345 This is just a courtesy to make the matching less sensitive
2346 to how many spaces the user leaves between 'operator'
2347 and <TYPENAME> or <OPERATOR>. */
2348 char *opend;
2349 char *opname = operator_chars (regexp, &opend);
2350 if (*opname)
2351 {
2352 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2353 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2354 {
2355 /* There should 1 space between 'operator' and 'TYPENAME'. */
2356 if (opname[-1] != ' ' || opname[-2] == ' ')
2357 fix = 1;
2358 }
2359 else
2360 {
2361 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2362 if (opname[-1] == ' ')
2363 fix = 0;
2364 }
2365 /* If wrong number of spaces, fix it. */
2366 if (fix >= 0)
2367 {
2368 char *tmp = (char *) alloca (opend - opname + 10);
2369 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2370 regexp = tmp;
2371 }
2372 }
2373
2374 if (0 != (val = re_comp (regexp)))
2375 error ("Invalid regexp (%s): %s", val, regexp);
2376 }
2377
2378 /* Search through the partial symtabs *first* for all symbols
2379 matching the regexp. That way we don't have to reproduce all of
2380 the machinery below. */
2381
2382 ALL_PSYMTABS (objfile, ps)
2383 {
2384 struct partial_symbol **bound, **gbound, **sbound;
2385 int keep_going = 1;
2386
2387 if (ps->readin)
2388 continue;
2389
2390 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
2391 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
2392 bound = gbound;
2393
2394 /* Go through all of the symbols stored in a partial
2395 symtab in one loop. */
2396 psym = objfile->global_psymbols.list + ps->globals_offset;
2397 while (keep_going)
2398 {
2399 if (psym >= bound)
2400 {
2401 if (bound == gbound && ps->n_static_syms != 0)
2402 {
2403 psym = objfile->static_psymbols.list + ps->statics_offset;
2404 bound = sbound;
2405 }
2406 else
2407 keep_going = 0;
2408 continue;
2409 }
2410 else
2411 {
2412 QUIT;
2413
2414 /* If it would match (logic taken from loop below)
2415 load the file and go on to the next one */
2416 if (file_matches (ps->filename, files, nfiles)
2417 && ((regexp == NULL || SYMBOL_MATCHES_REGEXP (*psym))
2418 && ((kind == VARIABLES_NAMESPACE && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
2419 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
2420 || (kind == FUNCTIONS_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_BLOCK)
2421 || (kind == TYPES_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
2422 || (kind == METHODS_NAMESPACE && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
2423 {
2424 PSYMTAB_TO_SYMTAB (ps);
2425 keep_going = 0;
2426 }
2427 }
2428 psym++;
2429 }
2430 }
2431
2432 /* Here, we search through the minimal symbol tables for functions
2433 and variables that match, and force their symbols to be read.
2434 This is in particular necessary for demangled variable names,
2435 which are no longer put into the partial symbol tables.
2436 The symbol will then be found during the scan of symtabs below.
2437
2438 For functions, find_pc_symtab should succeed if we have debug info
2439 for the function, for variables we have to call lookup_symbol
2440 to determine if the variable has debug info.
2441 If the lookup fails, set found_misc so that we will rescan to print
2442 any matching symbols without debug info.
2443 */
2444
2445 if (nfiles == 0 && (kind == VARIABLES_NAMESPACE || kind == FUNCTIONS_NAMESPACE))
2446 {
2447 ALL_MSYMBOLS (objfile, msymbol)
2448 {
2449 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2450 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2451 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2452 MSYMBOL_TYPE (msymbol) == ourtype4)
2453 {
2454 if (regexp == NULL || SYMBOL_MATCHES_REGEXP (msymbol))
2455 {
2456 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
2457 {
2458 if (kind == FUNCTIONS_NAMESPACE
2459 || lookup_symbol (SYMBOL_NAME (msymbol),
2460 (struct block *) NULL,
2461 VAR_NAMESPACE,
2462 0, (struct symtab **) NULL) == NULL)
2463 found_misc = 1;
2464 }
2465 }
2466 }
2467 }
2468 }
2469
2470 ALL_SYMTABS (objfile, s)
2471 {
2472 bv = BLOCKVECTOR (s);
2473 /* Often many files share a blockvector.
2474 Scan each blockvector only once so that
2475 we don't get every symbol many times.
2476 It happens that the first symtab in the list
2477 for any given blockvector is the main file. */
2478 if (bv != prev_bv)
2479 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
2480 {
2481 b = BLOCKVECTOR_BLOCK (bv, i);
2482 /* Skip the sort if this block is always sorted. */
2483 if (!BLOCK_SHOULD_SORT (b))
2484 sort_block_syms (b);
2485 for (j = 0; j < BLOCK_NSYMS (b); j++)
2486 {
2487 QUIT;
2488 sym = BLOCK_SYM (b, j);
2489 if (file_matches (s->filename, files, nfiles)
2490 && ((regexp == NULL || SYMBOL_MATCHES_REGEXP (sym))
2491 && ((kind == VARIABLES_NAMESPACE && SYMBOL_CLASS (sym) != LOC_TYPEDEF
2492 && SYMBOL_CLASS (sym) != LOC_BLOCK
2493 && SYMBOL_CLASS (sym) != LOC_CONST)
2494 || (kind == FUNCTIONS_NAMESPACE && SYMBOL_CLASS (sym) == LOC_BLOCK)
2495 || (kind == TYPES_NAMESPACE && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
2496 || (kind == METHODS_NAMESPACE && SYMBOL_CLASS (sym) == LOC_BLOCK))))
2497 {
2498 /* match */
2499 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
2500 psr->block = i;
2501 psr->symtab = s;
2502 psr->symbol = sym;
2503 psr->msymbol = NULL;
2504 psr->next = NULL;
2505 if (tail == NULL)
2506 {
2507 sr = psr;
2508 old_chain = make_cleanup_free_search_symbols (sr);
2509 }
2510 else
2511 tail->next = psr;
2512 tail = psr;
2513 }
2514 }
2515 }
2516 prev_bv = bv;
2517 }
2518
2519 /* If there are no eyes, avoid all contact. I mean, if there are
2520 no debug symbols, then print directly from the msymbol_vector. */
2521
2522 if (found_misc || kind != FUNCTIONS_NAMESPACE)
2523 {
2524 ALL_MSYMBOLS (objfile, msymbol)
2525 {
2526 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2527 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2528 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2529 MSYMBOL_TYPE (msymbol) == ourtype4)
2530 {
2531 if (regexp == NULL || SYMBOL_MATCHES_REGEXP (msymbol))
2532 {
2533 /* Functions: Look up by address. */
2534 if (kind != FUNCTIONS_NAMESPACE ||
2535 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
2536 {
2537 /* Variables/Absolutes: Look up by name */
2538 if (lookup_symbol (SYMBOL_NAME (msymbol),
2539 (struct block *) NULL, VAR_NAMESPACE,
2540 0, (struct symtab **) NULL) == NULL)
2541 {
2542 /* match */
2543 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
2544 psr->block = i;
2545 psr->msymbol = msymbol;
2546 psr->symtab = NULL;
2547 psr->symbol = NULL;
2548 psr->next = NULL;
2549 if (tail == NULL)
2550 {
2551 sr = psr;
2552 old_chain = make_cleanup_free_search_symbols (sr);
2553 }
2554 else
2555 tail->next = psr;
2556 tail = psr;
2557 }
2558 }
2559 }
2560 }
2561 }
2562 }
2563
2564 *matches = sr;
2565 if (sr != NULL)
2566 discard_cleanups (old_chain);
2567 }
2568
2569 /* Helper function for symtab_symbol_info, this function uses
2570 the data returned from search_symbols() to print information
2571 regarding the match to gdb_stdout.
2572 */
2573 static void
2574 print_symbol_info (namespace_enum kind, struct symtab *s, struct symbol *sym,
2575 int block, char *last)
2576 {
2577 if (last == NULL || strcmp (last, s->filename) != 0)
2578 {
2579 fputs_filtered ("\nFile ", gdb_stdout);
2580 fputs_filtered (s->filename, gdb_stdout);
2581 fputs_filtered (":\n", gdb_stdout);
2582 }
2583
2584 if (kind != TYPES_NAMESPACE && block == STATIC_BLOCK)
2585 printf_filtered ("static ");
2586
2587 /* Typedef that is not a C++ class */
2588 if (kind == TYPES_NAMESPACE
2589 && SYMBOL_NAMESPACE (sym) != STRUCT_NAMESPACE)
2590 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
2591 /* variable, func, or typedef-that-is-c++-class */
2592 else if (kind < TYPES_NAMESPACE ||
2593 (kind == TYPES_NAMESPACE &&
2594 SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE))
2595 {
2596 type_print (SYMBOL_TYPE (sym),
2597 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
2598 ? "" : SYMBOL_SOURCE_NAME (sym)),
2599 gdb_stdout, 0);
2600
2601 printf_filtered (";\n");
2602 }
2603 else
2604 {
2605 #if 0
2606 /* Tiemann says: "info methods was never implemented." */
2607 char *demangled_name;
2608 c_type_print_base (TYPE_FN_FIELD_TYPE (t, block),
2609 gdb_stdout, 0, 0);
2610 c_type_print_varspec_prefix (TYPE_FN_FIELD_TYPE (t, block),
2611 gdb_stdout, 0);
2612 if (TYPE_FN_FIELD_STUB (t, block))
2613 check_stub_method (TYPE_DOMAIN_TYPE (type), j, block);
2614 demangled_name =
2615 cplus_demangle (TYPE_FN_FIELD_PHYSNAME (t, block),
2616 DMGL_ANSI | DMGL_PARAMS);
2617 if (demangled_name == NULL)
2618 fprintf_filtered (stream, "<badly mangled name %s>",
2619 TYPE_FN_FIELD_PHYSNAME (t, block));
2620 else
2621 {
2622 fputs_filtered (demangled_name, stream);
2623 xfree (demangled_name);
2624 }
2625 #endif
2626 }
2627 }
2628
2629 /* This help function for symtab_symbol_info() prints information
2630 for non-debugging symbols to gdb_stdout.
2631 */
2632 static void
2633 print_msymbol_info (struct minimal_symbol *msymbol)
2634 {
2635 char *tmp;
2636
2637 if (TARGET_ADDR_BIT <= 32)
2638 tmp = longest_local_hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
2639 & (CORE_ADDR) 0xffffffff,
2640 "08l");
2641 else
2642 tmp = longest_local_hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
2643 "016l");
2644 printf_filtered ("%s %s\n",
2645 tmp, SYMBOL_SOURCE_NAME (msymbol));
2646 }
2647
2648 /* This is the guts of the commands "info functions", "info types", and
2649 "info variables". It calls search_symbols to find all matches and then
2650 print_[m]symbol_info to print out some useful information about the
2651 matches.
2652 */
2653 static void
2654 symtab_symbol_info (char *regexp, namespace_enum kind, int from_tty)
2655 {
2656 static char *classnames[]
2657 =
2658 {"variable", "function", "type", "method"};
2659 struct symbol_search *symbols;
2660 struct symbol_search *p;
2661 struct cleanup *old_chain;
2662 char *last_filename = NULL;
2663 int first = 1;
2664
2665 /* must make sure that if we're interrupted, symbols gets freed */
2666 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
2667 old_chain = make_cleanup_free_search_symbols (symbols);
2668
2669 printf_filtered (regexp
2670 ? "All %ss matching regular expression \"%s\":\n"
2671 : "All defined %ss:\n",
2672 classnames[(int) (kind - VARIABLES_NAMESPACE)], regexp);
2673
2674 for (p = symbols; p != NULL; p = p->next)
2675 {
2676 QUIT;
2677
2678 if (p->msymbol != NULL)
2679 {
2680 if (first)
2681 {
2682 printf_filtered ("\nNon-debugging symbols:\n");
2683 first = 0;
2684 }
2685 print_msymbol_info (p->msymbol);
2686 }
2687 else
2688 {
2689 print_symbol_info (kind,
2690 p->symtab,
2691 p->symbol,
2692 p->block,
2693 last_filename);
2694 last_filename = p->symtab->filename;
2695 }
2696 }
2697
2698 do_cleanups (old_chain);
2699 }
2700
2701 static void
2702 variables_info (char *regexp, int from_tty)
2703 {
2704 symtab_symbol_info (regexp, VARIABLES_NAMESPACE, from_tty);
2705 }
2706
2707 static void
2708 functions_info (char *regexp, int from_tty)
2709 {
2710 symtab_symbol_info (regexp, FUNCTIONS_NAMESPACE, from_tty);
2711 }
2712
2713
2714 static void
2715 types_info (char *regexp, int from_tty)
2716 {
2717 symtab_symbol_info (regexp, TYPES_NAMESPACE, from_tty);
2718 }
2719
2720 #if 0
2721 /* Tiemann says: "info methods was never implemented." */
2722 static void
2723 methods_info (char *regexp)
2724 {
2725 symtab_symbol_info (regexp, METHODS_NAMESPACE, 0, from_tty);
2726 }
2727 #endif /* 0 */
2728
2729 /* Breakpoint all functions matching regular expression. */
2730 #ifdef UI_OUT
2731 void
2732 rbreak_command_wrapper (char *regexp, int from_tty)
2733 {
2734 rbreak_command (regexp, from_tty);
2735 }
2736 #endif
2737 static void
2738 rbreak_command (char *regexp, int from_tty)
2739 {
2740 struct symbol_search *ss;
2741 struct symbol_search *p;
2742 struct cleanup *old_chain;
2743
2744 search_symbols (regexp, FUNCTIONS_NAMESPACE, 0, (char **) NULL, &ss);
2745 old_chain = make_cleanup_free_search_symbols (ss);
2746
2747 for (p = ss; p != NULL; p = p->next)
2748 {
2749 if (p->msymbol == NULL)
2750 {
2751 char *string = (char *) alloca (strlen (p->symtab->filename)
2752 + strlen (SYMBOL_NAME (p->symbol))
2753 + 4);
2754 strcpy (string, p->symtab->filename);
2755 strcat (string, ":'");
2756 strcat (string, SYMBOL_NAME (p->symbol));
2757 strcat (string, "'");
2758 break_command (string, from_tty);
2759 print_symbol_info (FUNCTIONS_NAMESPACE,
2760 p->symtab,
2761 p->symbol,
2762 p->block,
2763 p->symtab->filename);
2764 }
2765 else
2766 {
2767 break_command (SYMBOL_NAME (p->msymbol), from_tty);
2768 printf_filtered ("<function, no debug info> %s;\n",
2769 SYMBOL_SOURCE_NAME (p->msymbol));
2770 }
2771 }
2772
2773 do_cleanups (old_chain);
2774 }
2775 \f
2776
2777 /* Return Nonzero if block a is lexically nested within block b,
2778 or if a and b have the same pc range.
2779 Return zero otherwise. */
2780 int
2781 contained_in (struct block *a, struct block *b)
2782 {
2783 if (!a || !b)
2784 return 0;
2785 return BLOCK_START (a) >= BLOCK_START (b)
2786 && BLOCK_END (a) <= BLOCK_END (b);
2787 }
2788 \f
2789
2790 /* Helper routine for make_symbol_completion_list. */
2791
2792 static int return_val_size;
2793 static int return_val_index;
2794 static char **return_val;
2795
2796 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
2797 do { \
2798 if (SYMBOL_DEMANGLED_NAME (symbol) != NULL) \
2799 /* Put only the mangled name on the list. */ \
2800 /* Advantage: "b foo<TAB>" completes to "b foo(int, int)" */ \
2801 /* Disadvantage: "b foo__i<TAB>" doesn't complete. */ \
2802 completion_list_add_name \
2803 (SYMBOL_DEMANGLED_NAME (symbol), (sym_text), (len), (text), (word)); \
2804 else \
2805 completion_list_add_name \
2806 (SYMBOL_NAME (symbol), (sym_text), (len), (text), (word)); \
2807 } while (0)
2808
2809 /* Test to see if the symbol specified by SYMNAME (which is already
2810 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
2811 characters. If so, add it to the current completion list. */
2812
2813 static void
2814 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
2815 char *text, char *word)
2816 {
2817 int newsize;
2818 int i;
2819
2820 /* clip symbols that cannot match */
2821
2822 if (strncmp (symname, sym_text, sym_text_len) != 0)
2823 {
2824 return;
2825 }
2826
2827 /* We have a match for a completion, so add SYMNAME to the current list
2828 of matches. Note that the name is moved to freshly malloc'd space. */
2829
2830 {
2831 char *new;
2832 if (word == sym_text)
2833 {
2834 new = xmalloc (strlen (symname) + 5);
2835 strcpy (new, symname);
2836 }
2837 else if (word > sym_text)
2838 {
2839 /* Return some portion of symname. */
2840 new = xmalloc (strlen (symname) + 5);
2841 strcpy (new, symname + (word - sym_text));
2842 }
2843 else
2844 {
2845 /* Return some of SYM_TEXT plus symname. */
2846 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
2847 strncpy (new, word, sym_text - word);
2848 new[sym_text - word] = '\0';
2849 strcat (new, symname);
2850 }
2851
2852 if (return_val_index + 3 > return_val_size)
2853 {
2854 newsize = (return_val_size *= 2) * sizeof (char *);
2855 return_val = (char **) xrealloc ((char *) return_val, newsize);
2856 }
2857 return_val[return_val_index++] = new;
2858 return_val[return_val_index] = NULL;
2859 }
2860 }
2861
2862 /* Return a NULL terminated array of all symbols (regardless of class)
2863 which begin by matching TEXT. If the answer is no symbols, then
2864 the return value is an array which contains only a NULL pointer.
2865
2866 Problem: All of the symbols have to be copied because readline frees them.
2867 I'm not going to worry about this; hopefully there won't be that many. */
2868
2869 char **
2870 make_symbol_completion_list (char *text, char *word)
2871 {
2872 register struct symbol *sym;
2873 register struct symtab *s;
2874 register struct partial_symtab *ps;
2875 register struct minimal_symbol *msymbol;
2876 register struct objfile *objfile;
2877 register struct block *b, *surrounding_static_block = 0;
2878 register int i, j;
2879 struct partial_symbol **psym;
2880 /* The symbol we are completing on. Points in same buffer as text. */
2881 char *sym_text;
2882 /* Length of sym_text. */
2883 int sym_text_len;
2884
2885 /* Now look for the symbol we are supposed to complete on.
2886 FIXME: This should be language-specific. */
2887 {
2888 char *p;
2889 char quote_found;
2890 char *quote_pos = NULL;
2891
2892 /* First see if this is a quoted string. */
2893 quote_found = '\0';
2894 for (p = text; *p != '\0'; ++p)
2895 {
2896 if (quote_found != '\0')
2897 {
2898 if (*p == quote_found)
2899 /* Found close quote. */
2900 quote_found = '\0';
2901 else if (*p == '\\' && p[1] == quote_found)
2902 /* A backslash followed by the quote character
2903 doesn't end the string. */
2904 ++p;
2905 }
2906 else if (*p == '\'' || *p == '"')
2907 {
2908 quote_found = *p;
2909 quote_pos = p;
2910 }
2911 }
2912 if (quote_found == '\'')
2913 /* A string within single quotes can be a symbol, so complete on it. */
2914 sym_text = quote_pos + 1;
2915 else if (quote_found == '"')
2916 /* A double-quoted string is never a symbol, nor does it make sense
2917 to complete it any other way. */
2918 {
2919 return_val = (char **) xmalloc (sizeof (char *));
2920 return_val[0] = NULL;
2921 return return_val;
2922 }
2923 else
2924 {
2925 /* It is not a quoted string. Break it based on the characters
2926 which are in symbols. */
2927 while (p > text)
2928 {
2929 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
2930 --p;
2931 else
2932 break;
2933 }
2934 sym_text = p;
2935 }
2936 }
2937
2938 sym_text_len = strlen (sym_text);
2939
2940 return_val_size = 100;
2941 return_val_index = 0;
2942 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
2943 return_val[0] = NULL;
2944
2945 /* Look through the partial symtabs for all symbols which begin
2946 by matching SYM_TEXT. Add each one that you find to the list. */
2947
2948 ALL_PSYMTABS (objfile, ps)
2949 {
2950 /* If the psymtab's been read in we'll get it when we search
2951 through the blockvector. */
2952 if (ps->readin)
2953 continue;
2954
2955 for (psym = objfile->global_psymbols.list + ps->globals_offset;
2956 psym < (objfile->global_psymbols.list + ps->globals_offset
2957 + ps->n_global_syms);
2958 psym++)
2959 {
2960 /* If interrupted, then quit. */
2961 QUIT;
2962 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
2963 }
2964
2965 for (psym = objfile->static_psymbols.list + ps->statics_offset;
2966 psym < (objfile->static_psymbols.list + ps->statics_offset
2967 + ps->n_static_syms);
2968 psym++)
2969 {
2970 QUIT;
2971 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
2972 }
2973 }
2974
2975 /* At this point scan through the misc symbol vectors and add each
2976 symbol you find to the list. Eventually we want to ignore
2977 anything that isn't a text symbol (everything else will be
2978 handled by the psymtab code above). */
2979
2980 ALL_MSYMBOLS (objfile, msymbol)
2981 {
2982 QUIT;
2983 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
2984 }
2985
2986 /* Search upwards from currently selected frame (so that we can
2987 complete on local vars. */
2988
2989 for (b = get_selected_block (); b != NULL; b = BLOCK_SUPERBLOCK (b))
2990 {
2991 if (!BLOCK_SUPERBLOCK (b))
2992 {
2993 surrounding_static_block = b; /* For elmin of dups */
2994 }
2995
2996 /* Also catch fields of types defined in this places which match our
2997 text string. Only complete on types visible from current context. */
2998
2999 ALL_BLOCK_SYMBOLS (b, i, sym)
3000 {
3001 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3002 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3003 {
3004 struct type *t = SYMBOL_TYPE (sym);
3005 enum type_code c = TYPE_CODE (t);
3006
3007 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3008 {
3009 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3010 {
3011 if (TYPE_FIELD_NAME (t, j))
3012 {
3013 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3014 sym_text, sym_text_len, text, word);
3015 }
3016 }
3017 }
3018 }
3019 }
3020 }
3021
3022 /* Go through the symtabs and check the externs and statics for
3023 symbols which match. */
3024
3025 ALL_SYMTABS (objfile, s)
3026 {
3027 QUIT;
3028 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3029 ALL_BLOCK_SYMBOLS (b, i, sym)
3030 {
3031 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3032 }
3033 }
3034
3035 ALL_SYMTABS (objfile, s)
3036 {
3037 QUIT;
3038 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3039 /* Don't do this block twice. */
3040 if (b == surrounding_static_block)
3041 continue;
3042 ALL_BLOCK_SYMBOLS (b, i, sym)
3043 {
3044 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3045 }
3046 }
3047
3048 return (return_val);
3049 }
3050
3051 /* Like make_symbol_completion_list, but returns a list of symbols
3052 defined in a source file FILE. */
3053
3054 char **
3055 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3056 {
3057 register struct symbol *sym;
3058 register struct symtab *s;
3059 register struct block *b;
3060 register int i;
3061 /* The symbol we are completing on. Points in same buffer as text. */
3062 char *sym_text;
3063 /* Length of sym_text. */
3064 int sym_text_len;
3065
3066 /* Now look for the symbol we are supposed to complete on.
3067 FIXME: This should be language-specific. */
3068 {
3069 char *p;
3070 char quote_found;
3071 char *quote_pos = NULL;
3072
3073 /* First see if this is a quoted string. */
3074 quote_found = '\0';
3075 for (p = text; *p != '\0'; ++p)
3076 {
3077 if (quote_found != '\0')
3078 {
3079 if (*p == quote_found)
3080 /* Found close quote. */
3081 quote_found = '\0';
3082 else if (*p == '\\' && p[1] == quote_found)
3083 /* A backslash followed by the quote character
3084 doesn't end the string. */
3085 ++p;
3086 }
3087 else if (*p == '\'' || *p == '"')
3088 {
3089 quote_found = *p;
3090 quote_pos = p;
3091 }
3092 }
3093 if (quote_found == '\'')
3094 /* A string within single quotes can be a symbol, so complete on it. */
3095 sym_text = quote_pos + 1;
3096 else if (quote_found == '"')
3097 /* A double-quoted string is never a symbol, nor does it make sense
3098 to complete it any other way. */
3099 {
3100 return_val = (char **) xmalloc (sizeof (char *));
3101 return_val[0] = NULL;
3102 return return_val;
3103 }
3104 else
3105 {
3106 /* It is not a quoted string. Break it based on the characters
3107 which are in symbols. */
3108 while (p > text)
3109 {
3110 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3111 --p;
3112 else
3113 break;
3114 }
3115 sym_text = p;
3116 }
3117 }
3118
3119 sym_text_len = strlen (sym_text);
3120
3121 return_val_size = 10;
3122 return_val_index = 0;
3123 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3124 return_val[0] = NULL;
3125
3126 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3127 in). */
3128 s = lookup_symtab (srcfile);
3129 if (s == NULL)
3130 {
3131 /* Maybe they typed the file with leading directories, while the
3132 symbol tables record only its basename. */
3133 const char *tail = lbasename (srcfile);
3134
3135 if (tail > srcfile)
3136 s = lookup_symtab (tail);
3137 }
3138
3139 /* If we have no symtab for that file, return an empty list. */
3140 if (s == NULL)
3141 return (return_val);
3142
3143 /* Go through this symtab and check the externs and statics for
3144 symbols which match. */
3145
3146 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3147 ALL_BLOCK_SYMBOLS (b, i, sym)
3148 {
3149 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3150 }
3151
3152 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3153 ALL_BLOCK_SYMBOLS (b, i, sym)
3154 {
3155 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3156 }
3157
3158 return (return_val);
3159 }
3160
3161 /* A helper function for make_source_files_completion_list. It adds
3162 another file name to a list of possible completions, growing the
3163 list as necessary. */
3164
3165 static void
3166 add_filename_to_list (const char *fname, char *text, char *word,
3167 char ***list, int *list_used, int *list_alloced)
3168 {
3169 char *new;
3170 size_t fnlen = strlen (fname);
3171
3172 if (*list_used + 1 >= *list_alloced)
3173 {
3174 *list_alloced *= 2;
3175 *list = (char **) xrealloc ((char *) *list,
3176 *list_alloced * sizeof (char *));
3177 }
3178
3179 if (word == text)
3180 {
3181 /* Return exactly fname. */
3182 new = xmalloc (fnlen + 5);
3183 strcpy (new, fname);
3184 }
3185 else if (word > text)
3186 {
3187 /* Return some portion of fname. */
3188 new = xmalloc (fnlen + 5);
3189 strcpy (new, fname + (word - text));
3190 }
3191 else
3192 {
3193 /* Return some of TEXT plus fname. */
3194 new = xmalloc (fnlen + (text - word) + 5);
3195 strncpy (new, word, text - word);
3196 new[text - word] = '\0';
3197 strcat (new, fname);
3198 }
3199 (*list)[*list_used] = new;
3200 (*list)[++*list_used] = NULL;
3201 }
3202
3203 static int
3204 not_interesting_fname (const char *fname)
3205 {
3206 static const char *illegal_aliens[] = {
3207 "_globals_", /* inserted by coff_symtab_read */
3208 NULL
3209 };
3210 int i;
3211
3212 for (i = 0; illegal_aliens[i]; i++)
3213 {
3214 if (strcmp (fname, illegal_aliens[i]) == 0)
3215 return 1;
3216 }
3217 return 0;
3218 }
3219
3220 /* Return a NULL terminated array of all source files whose names
3221 begin with matching TEXT. The file names are looked up in the
3222 symbol tables of this program. If the answer is no matchess, then
3223 the return value is an array which contains only a NULL pointer. */
3224
3225 char **
3226 make_source_files_completion_list (char *text, char *word)
3227 {
3228 register struct symtab *s;
3229 register struct partial_symtab *ps;
3230 register struct objfile *objfile;
3231 int first = 1;
3232 int list_alloced = 1;
3233 int list_used = 0;
3234 size_t text_len = strlen (text);
3235 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3236 const char *base_name;
3237
3238 list[0] = NULL;
3239
3240 if (!have_full_symbols () && !have_partial_symbols ())
3241 return list;
3242
3243 ALL_SYMTABS (objfile, s)
3244 {
3245 if (not_interesting_fname (s->filename))
3246 continue;
3247 if (!filename_seen (s->filename, 1, &first)
3248 #if HAVE_DOS_BASED_FILE_SYSTEM
3249 && strncasecmp (s->filename, text, text_len) == 0
3250 #else
3251 && strncmp (s->filename, text, text_len) == 0
3252 #endif
3253 )
3254 {
3255 /* This file matches for a completion; add it to the current
3256 list of matches. */
3257 add_filename_to_list (s->filename, text, word,
3258 &list, &list_used, &list_alloced);
3259 }
3260 else
3261 {
3262 /* NOTE: We allow the user to type a base name when the
3263 debug info records leading directories, but not the other
3264 way around. This is what subroutines of breakpoint
3265 command do when they parse file names. */
3266 base_name = lbasename (s->filename);
3267 if (base_name != s->filename
3268 && !filename_seen (base_name, 1, &first)
3269 #if HAVE_DOS_BASED_FILE_SYSTEM
3270 && strncasecmp (base_name, text, text_len) == 0
3271 #else
3272 && strncmp (base_name, text, text_len) == 0
3273 #endif
3274 )
3275 add_filename_to_list (base_name, text, word,
3276 &list, &list_used, &list_alloced);
3277 }
3278 }
3279
3280 ALL_PSYMTABS (objfile, ps)
3281 {
3282 if (not_interesting_fname (ps->filename))
3283 continue;
3284 if (!ps->readin)
3285 {
3286 if (!filename_seen (ps->filename, 1, &first)
3287 #if HAVE_DOS_BASED_FILE_SYSTEM
3288 && strncasecmp (ps->filename, text, text_len) == 0
3289 #else
3290 && strncmp (ps->filename, text, text_len) == 0
3291 #endif
3292 )
3293 {
3294 /* This file matches for a completion; add it to the
3295 current list of matches. */
3296 add_filename_to_list (ps->filename, text, word,
3297 &list, &list_used, &list_alloced);
3298
3299 }
3300 else
3301 {
3302 base_name = lbasename (ps->filename);
3303 if (base_name != ps->filename
3304 && !filename_seen (base_name, 1, &first)
3305 #if HAVE_DOS_BASED_FILE_SYSTEM
3306 && strncasecmp (base_name, text, text_len) == 0
3307 #else
3308 && strncmp (base_name, text, text_len) == 0
3309 #endif
3310 )
3311 add_filename_to_list (base_name, text, word,
3312 &list, &list_used, &list_alloced);
3313 }
3314 }
3315 }
3316
3317 return list;
3318 }
3319
3320 /* Determine if PC is in the prologue of a function. The prologue is the area
3321 between the first instruction of a function, and the first executable line.
3322 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3323
3324 If non-zero, func_start is where we think the prologue starts, possibly
3325 by previous examination of symbol table information.
3326 */
3327
3328 int
3329 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
3330 {
3331 struct symtab_and_line sal;
3332 CORE_ADDR func_addr, func_end;
3333
3334 /* We have several sources of information we can consult to figure
3335 this out.
3336 - Compilers usually emit line number info that marks the prologue
3337 as its own "source line". So the ending address of that "line"
3338 is the end of the prologue. If available, this is the most
3339 reliable method.
3340 - The minimal symbols and partial symbols, which can usually tell
3341 us the starting and ending addresses of a function.
3342 - If we know the function's start address, we can call the
3343 architecture-defined SKIP_PROLOGUE function to analyze the
3344 instruction stream and guess where the prologue ends.
3345 - Our `func_start' argument; if non-zero, this is the caller's
3346 best guess as to the function's entry point. At the time of
3347 this writing, handle_inferior_event doesn't get this right, so
3348 it should be our last resort. */
3349
3350 /* Consult the partial symbol table, to find which function
3351 the PC is in. */
3352 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3353 {
3354 CORE_ADDR prologue_end;
3355
3356 /* We don't even have minsym information, so fall back to using
3357 func_start, if given. */
3358 if (! func_start)
3359 return 1; /* We *might* be in a prologue. */
3360
3361 prologue_end = SKIP_PROLOGUE (func_start);
3362
3363 return func_start <= pc && pc < prologue_end;
3364 }
3365
3366 /* If we have line number information for the function, that's
3367 usually pretty reliable. */
3368 sal = find_pc_line (func_addr, 0);
3369
3370 /* Now sal describes the source line at the function's entry point,
3371 which (by convention) is the prologue. The end of that "line",
3372 sal.end, is the end of the prologue.
3373
3374 Note that, for functions whose source code is all on a single
3375 line, the line number information doesn't always end up this way.
3376 So we must verify that our purported end-of-prologue address is
3377 *within* the function, not at its start or end. */
3378 if (sal.line == 0
3379 || sal.end <= func_addr
3380 || func_end <= sal.end)
3381 {
3382 /* We don't have any good line number info, so use the minsym
3383 information, together with the architecture-specific prologue
3384 scanning code. */
3385 CORE_ADDR prologue_end = SKIP_PROLOGUE (func_addr);
3386
3387 return func_addr <= pc && pc < prologue_end;
3388 }
3389
3390 /* We have line number info, and it looks good. */
3391 return func_addr <= pc && pc < sal.end;
3392 }
3393
3394
3395 /* Begin overload resolution functions */
3396 /* Helper routine for make_symbol_completion_list. */
3397
3398 static int sym_return_val_size;
3399 static int sym_return_val_index;
3400 static struct symbol **sym_return_val;
3401
3402 /* Test to see if the symbol specified by SYMNAME (which is already
3403 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3404 characters. If so, add it to the current completion list. */
3405
3406 static void
3407 overload_list_add_symbol (struct symbol *sym, char *oload_name)
3408 {
3409 int newsize;
3410 int i;
3411
3412 /* Get the demangled name without parameters */
3413 char *sym_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ARM | DMGL_ANSI);
3414 if (!sym_name)
3415 {
3416 sym_name = (char *) xmalloc (strlen (SYMBOL_NAME (sym)) + 1);
3417 strcpy (sym_name, SYMBOL_NAME (sym));
3418 }
3419
3420 /* skip symbols that cannot match */
3421 if (strcmp (sym_name, oload_name) != 0)
3422 {
3423 xfree (sym_name);
3424 return;
3425 }
3426
3427 /* If there is no type information, we can't do anything, so skip */
3428 if (SYMBOL_TYPE (sym) == NULL)
3429 return;
3430
3431 /* skip any symbols that we've already considered. */
3432 for (i = 0; i < sym_return_val_index; ++i)
3433 if (!strcmp (SYMBOL_NAME (sym), SYMBOL_NAME (sym_return_val[i])))
3434 return;
3435
3436 /* We have a match for an overload instance, so add SYM to the current list
3437 * of overload instances */
3438 if (sym_return_val_index + 3 > sym_return_val_size)
3439 {
3440 newsize = (sym_return_val_size *= 2) * sizeof (struct symbol *);
3441 sym_return_val = (struct symbol **) xrealloc ((char *) sym_return_val, newsize);
3442 }
3443 sym_return_val[sym_return_val_index++] = sym;
3444 sym_return_val[sym_return_val_index] = NULL;
3445
3446 xfree (sym_name);
3447 }
3448
3449 /* Return a null-terminated list of pointers to function symbols that
3450 * match name of the supplied symbol FSYM.
3451 * This is used in finding all overloaded instances of a function name.
3452 * This has been modified from make_symbol_completion_list. */
3453
3454
3455 struct symbol **
3456 make_symbol_overload_list (struct symbol *fsym)
3457 {
3458 register struct symbol *sym;
3459 register struct symtab *s;
3460 register struct partial_symtab *ps;
3461 register struct objfile *objfile;
3462 register struct block *b, *surrounding_static_block = 0;
3463 register int i;
3464 /* The name we are completing on. */
3465 char *oload_name = NULL;
3466 /* Length of name. */
3467 int oload_name_len = 0;
3468
3469 /* Look for the symbol we are supposed to complete on.
3470 * FIXME: This should be language-specific. */
3471
3472 oload_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_ARM | DMGL_ANSI);
3473 if (!oload_name)
3474 {
3475 oload_name = (char *) xmalloc (strlen (SYMBOL_NAME (fsym)) + 1);
3476 strcpy (oload_name, SYMBOL_NAME (fsym));
3477 }
3478 oload_name_len = strlen (oload_name);
3479
3480 sym_return_val_size = 100;
3481 sym_return_val_index = 0;
3482 sym_return_val = (struct symbol **) xmalloc ((sym_return_val_size + 1) * sizeof (struct symbol *));
3483 sym_return_val[0] = NULL;
3484
3485 /* Look through the partial symtabs for all symbols which begin
3486 by matching OLOAD_NAME. Make sure we read that symbol table in. */
3487
3488 ALL_PSYMTABS (objfile, ps)
3489 {
3490 struct partial_symbol **psym;
3491
3492 /* If the psymtab's been read in we'll get it when we search
3493 through the blockvector. */
3494 if (ps->readin)
3495 continue;
3496
3497 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3498 psym < (objfile->global_psymbols.list + ps->globals_offset
3499 + ps->n_global_syms);
3500 psym++)
3501 {
3502 /* If interrupted, then quit. */
3503 QUIT;
3504 /* This will cause the symbol table to be read if it has not yet been */
3505 s = PSYMTAB_TO_SYMTAB (ps);
3506 }
3507
3508 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3509 psym < (objfile->static_psymbols.list + ps->statics_offset
3510 + ps->n_static_syms);
3511 psym++)
3512 {
3513 QUIT;
3514 /* This will cause the symbol table to be read if it has not yet been */
3515 s = PSYMTAB_TO_SYMTAB (ps);
3516 }
3517 }
3518
3519 /* Search upwards from currently selected frame (so that we can
3520 complete on local vars. */
3521
3522 for (b = get_selected_block (); b != NULL; b = BLOCK_SUPERBLOCK (b))
3523 {
3524 if (!BLOCK_SUPERBLOCK (b))
3525 {
3526 surrounding_static_block = b; /* For elimination of dups */
3527 }
3528
3529 /* Also catch fields of types defined in this places which match our
3530 text string. Only complete on types visible from current context. */
3531
3532 ALL_BLOCK_SYMBOLS (b, i, sym)
3533 {
3534 overload_list_add_symbol (sym, oload_name);
3535 }
3536 }
3537
3538 /* Go through the symtabs and check the externs and statics for
3539 symbols which match. */
3540
3541 ALL_SYMTABS (objfile, s)
3542 {
3543 QUIT;
3544 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3545 ALL_BLOCK_SYMBOLS (b, i, sym)
3546 {
3547 overload_list_add_symbol (sym, oload_name);
3548 }
3549 }
3550
3551 ALL_SYMTABS (objfile, s)
3552 {
3553 QUIT;
3554 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3555 /* Don't do this block twice. */
3556 if (b == surrounding_static_block)
3557 continue;
3558 ALL_BLOCK_SYMBOLS (b, i, sym)
3559 {
3560 overload_list_add_symbol (sym, oload_name);
3561 }
3562 }
3563
3564 xfree (oload_name);
3565
3566 return (sym_return_val);
3567 }
3568
3569 /* End of overload resolution functions */
3570 \f
3571 struct symtabs_and_lines
3572 decode_line_spec (char *string, int funfirstline)
3573 {
3574 struct symtabs_and_lines sals;
3575 if (string == 0)
3576 error ("Empty line specification.");
3577 sals = decode_line_1 (&string, funfirstline,
3578 current_source_symtab, current_source_line,
3579 (char ***) NULL);
3580 if (*string)
3581 error ("Junk at end of line specification: %s", string);
3582 return sals;
3583 }
3584
3585 /* Track MAIN */
3586 static char *name_of_main;
3587
3588 void
3589 set_main_name (const char *name)
3590 {
3591 if (name_of_main != NULL)
3592 {
3593 xfree (name_of_main);
3594 name_of_main = NULL;
3595 }
3596 if (name != NULL)
3597 {
3598 name_of_main = xstrdup (name);
3599 }
3600 }
3601
3602 char *
3603 main_name (void)
3604 {
3605 if (name_of_main != NULL)
3606 return name_of_main;
3607 else
3608 return "main";
3609 }
3610
3611
3612 void
3613 _initialize_symtab (void)
3614 {
3615 add_info ("variables", variables_info,
3616 "All global and static variable names, or those matching REGEXP.");
3617 if (dbx_commands)
3618 add_com ("whereis", class_info, variables_info,
3619 "All global and static variable names, or those matching REGEXP.");
3620
3621 add_info ("functions", functions_info,
3622 "All function names, or those matching REGEXP.");
3623
3624
3625 /* FIXME: This command has at least the following problems:
3626 1. It prints builtin types (in a very strange and confusing fashion).
3627 2. It doesn't print right, e.g. with
3628 typedef struct foo *FOO
3629 type_print prints "FOO" when we want to make it (in this situation)
3630 print "struct foo *".
3631 I also think "ptype" or "whatis" is more likely to be useful (but if
3632 there is much disagreement "info types" can be fixed). */
3633 add_info ("types", types_info,
3634 "All type names, or those matching REGEXP.");
3635
3636 #if 0
3637 add_info ("methods", methods_info,
3638 "All method names, or those matching REGEXP::REGEXP.\n\
3639 If the class qualifier is omitted, it is assumed to be the current scope.\n\
3640 If the first REGEXP is omitted, then all methods matching the second REGEXP\n\
3641 are listed.");
3642 #endif
3643 add_info ("sources", sources_info,
3644 "Source files in the program.");
3645
3646 add_com ("rbreak", class_breakpoint, rbreak_command,
3647 "Set a breakpoint for all functions matching REGEXP.");
3648
3649 if (xdb_commands)
3650 {
3651 add_com ("lf", class_info, sources_info, "Source files in the program");
3652 add_com ("lg", class_info, variables_info,
3653 "All global and static variable names, or those matching REGEXP.");
3654 }
3655
3656 /* Initialize the one built-in type that isn't language dependent... */
3657 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
3658 "<unknown type>", (struct objfile *) NULL);
3659 }
This page took 0.114556 seconds and 4 git commands to generate.