Rename gdb.base/tui-layout.exp -> gdb.base/tui-disasm-long-lines.exp
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct block_symbol
72 lookup_symbol_aux (const char *name,
73 const struct block *block,
74 const domain_enum domain,
75 enum language language,
76 struct field_of_this_result *);
77
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language);
83
84 static struct block_symbol
85 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 const char *name, const domain_enum domain);
87
88 /* See symtab.h. */
89 const struct block_symbol null_block_symbol = { NULL, NULL };
90
91 extern initialize_file_ftype _initialize_symtab;
92
93 /* Program space key for finding name and language of "main". */
94
95 static const struct program_space_data *main_progspace_key;
96
97 /* Type of the data stored on the program space. */
98
99 struct main_info
100 {
101 /* Name of "main". */
102
103 char *name_of_main;
104
105 /* Language of "main". */
106
107 enum language language_of_main;
108 };
109
110 /* Program space key for finding its symbol cache. */
111
112 static const struct program_space_data *symbol_cache_key;
113
114 /* The default symbol cache size.
115 There is no extra cpu cost for large N (except when flushing the cache,
116 which is rare). The value here is just a first attempt. A better default
117 value may be higher or lower. A prime number can make up for a bad hash
118 computation, so that's why the number is what it is. */
119 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
120
121 /* The maximum symbol cache size.
122 There's no method to the decision of what value to use here, other than
123 there's no point in allowing a user typo to make gdb consume all memory. */
124 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
125
126 /* symbol_cache_lookup returns this if a previous lookup failed to find the
127 symbol in any objfile. */
128 #define SYMBOL_LOOKUP_FAILED \
129 ((struct block_symbol) {(struct symbol *) 1, NULL})
130 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
131
132 /* Recording lookups that don't find the symbol is just as important, if not
133 more so, than recording found symbols. */
134
135 enum symbol_cache_slot_state
136 {
137 SYMBOL_SLOT_UNUSED,
138 SYMBOL_SLOT_NOT_FOUND,
139 SYMBOL_SLOT_FOUND
140 };
141
142 struct symbol_cache_slot
143 {
144 enum symbol_cache_slot_state state;
145
146 /* The objfile that was current when the symbol was looked up.
147 This is only needed for global blocks, but for simplicity's sake
148 we allocate the space for both. If data shows the extra space used
149 for static blocks is a problem, we can split things up then.
150
151 Global blocks need cache lookup to include the objfile context because
152 we need to account for gdbarch_iterate_over_objfiles_in_search_order
153 which can traverse objfiles in, effectively, any order, depending on
154 the current objfile, thus affecting which symbol is found. Normally,
155 only the current objfile is searched first, and then the rest are
156 searched in recorded order; but putting cache lookup inside
157 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
158 Instead we just make the current objfile part of the context of
159 cache lookup. This means we can record the same symbol multiple times,
160 each with a different "current objfile" that was in effect when the
161 lookup was saved in the cache, but cache space is pretty cheap. */
162 const struct objfile *objfile_context;
163
164 union
165 {
166 struct block_symbol found;
167 struct
168 {
169 char *name;
170 domain_enum domain;
171 } not_found;
172 } value;
173 };
174
175 /* Symbols don't specify global vs static block.
176 So keep them in separate caches. */
177
178 struct block_symbol_cache
179 {
180 unsigned int hits;
181 unsigned int misses;
182 unsigned int collisions;
183
184 /* SYMBOLS is a variable length array of this size.
185 One can imagine that in general one cache (global/static) should be a
186 fraction of the size of the other, but there's no data at the moment
187 on which to decide. */
188 unsigned int size;
189
190 struct symbol_cache_slot symbols[1];
191 };
192
193 /* The symbol cache.
194
195 Searching for symbols in the static and global blocks over multiple objfiles
196 again and again can be slow, as can searching very big objfiles. This is a
197 simple cache to improve symbol lookup performance, which is critical to
198 overall gdb performance.
199
200 Symbols are hashed on the name, its domain, and block.
201 They are also hashed on their objfile for objfile-specific lookups. */
202
203 struct symbol_cache
204 {
205 struct block_symbol_cache *global_symbols;
206 struct block_symbol_cache *static_symbols;
207 };
208
209 /* When non-zero, print debugging messages related to symtab creation. */
210 unsigned int symtab_create_debug = 0;
211
212 /* When non-zero, print debugging messages related to symbol lookup. */
213 unsigned int symbol_lookup_debug = 0;
214
215 /* The size of the cache is staged here. */
216 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
217
218 /* The current value of the symbol cache size.
219 This is saved so that if the user enters a value too big we can restore
220 the original value from here. */
221 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222
223 /* Non-zero if a file may be known by two different basenames.
224 This is the uncommon case, and significantly slows down gdb.
225 Default set to "off" to not slow down the common case. */
226 int basenames_may_differ = 0;
227
228 /* Allow the user to configure the debugger behavior with respect
229 to multiple-choice menus when more than one symbol matches during
230 a symbol lookup. */
231
232 const char multiple_symbols_ask[] = "ask";
233 const char multiple_symbols_all[] = "all";
234 const char multiple_symbols_cancel[] = "cancel";
235 static const char *const multiple_symbols_modes[] =
236 {
237 multiple_symbols_ask,
238 multiple_symbols_all,
239 multiple_symbols_cancel,
240 NULL
241 };
242 static const char *multiple_symbols_mode = multiple_symbols_all;
243
244 /* Read-only accessor to AUTO_SELECT_MODE. */
245
246 const char *
247 multiple_symbols_select_mode (void)
248 {
249 return multiple_symbols_mode;
250 }
251
252 /* Return the name of a domain_enum. */
253
254 const char *
255 domain_name (domain_enum e)
256 {
257 switch (e)
258 {
259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
266 }
267 }
268
269 /* Return the name of a search_domain . */
270
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274 switch (e)
275 {
276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN: return "TYPES_DOMAIN";
279 case ALL_DOMAIN: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
281 }
282 }
283
284 /* See symtab.h. */
285
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust);
293 }
294
295 /* See symtab.h. */
296
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300 struct symtab *symtab = compunit_primary_filetab (cust);
301
302 /* The language of the compunit symtab is the language of its primary
303 source file. */
304 return SYMTAB_LANGUAGE (symtab);
305 }
306
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
310 otherwise. */
311
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315 int len = strlen (filename);
316 size_t search_len = strlen (search_name);
317
318 if (len < search_len)
319 return 0;
320
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323 return 0;
324
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
327 directory separator.
328
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
333
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len == search_len
339 || (!IS_ABSOLUTE_PATH (search_name)
340 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 || (HAS_DRIVE_SPEC (filename)
342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344
345 /* Same as compare_filenames_for_search, but for glob-style patterns.
346 Heads up on the order of the arguments. They match the order of
347 compare_filenames_for_search, but it's the opposite of the order of
348 arguments to gdb_filename_fnmatch. */
349
350 int
351 compare_glob_filenames_for_search (const char *filename,
352 const char *search_name)
353 {
354 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
355 all /s have to be explicitly specified. */
356 int file_path_elements = count_path_elements (filename);
357 int search_path_elements = count_path_elements (search_name);
358
359 if (search_path_elements > file_path_elements)
360 return 0;
361
362 if (IS_ABSOLUTE_PATH (search_name))
363 {
364 return (search_path_elements == file_path_elements
365 && gdb_filename_fnmatch (search_name, filename,
366 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
367 }
368
369 {
370 const char *file_to_compare
371 = strip_leading_path_elements (filename,
372 file_path_elements - search_path_elements);
373
374 return gdb_filename_fnmatch (search_name, file_to_compare,
375 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
376 }
377 }
378
379 /* Check for a symtab of a specific name by searching some symtabs.
380 This is a helper function for callbacks of iterate_over_symtabs.
381
382 If NAME is not absolute, then REAL_PATH is NULL
383 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
384
385 The return value, NAME, REAL_PATH and CALLBACK are identical to the
386 `map_symtabs_matching_filename' method of quick_symbol_functions.
387
388 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
389 Each symtab within the specified compunit symtab is also searched.
390 AFTER_LAST is one past the last compunit symtab to search; NULL means to
391 search until the end of the list. */
392
393 bool
394 iterate_over_some_symtabs (const char *name,
395 const char *real_path,
396 struct compunit_symtab *first,
397 struct compunit_symtab *after_last,
398 gdb::function_view<bool (symtab *)> callback)
399 {
400 struct compunit_symtab *cust;
401 struct symtab *s;
402 const char* base_name = lbasename (name);
403
404 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
405 {
406 ALL_COMPUNIT_FILETABS (cust, s)
407 {
408 if (compare_filenames_for_search (s->filename, name))
409 {
410 if (callback (s))
411 return true;
412 continue;
413 }
414
415 /* Before we invoke realpath, which can get expensive when many
416 files are involved, do a quick comparison of the basenames. */
417 if (! basenames_may_differ
418 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
419 continue;
420
421 if (compare_filenames_for_search (symtab_to_fullname (s), name))
422 {
423 if (callback (s))
424 return true;
425 continue;
426 }
427
428 /* If the user gave us an absolute path, try to find the file in
429 this symtab and use its absolute path. */
430 if (real_path != NULL)
431 {
432 const char *fullname = symtab_to_fullname (s);
433
434 gdb_assert (IS_ABSOLUTE_PATH (real_path));
435 gdb_assert (IS_ABSOLUTE_PATH (name));
436 if (FILENAME_CMP (real_path, fullname) == 0)
437 {
438 if (callback (s))
439 return true;
440 continue;
441 }
442 }
443 }
444 }
445
446 return false;
447 }
448
449 /* Check for a symtab of a specific name; first in symtabs, then in
450 psymtabs. *If* there is no '/' in the name, a match after a '/'
451 in the symtab filename will also work.
452
453 Calls CALLBACK with each symtab that is found. If CALLBACK returns
454 true, the search stops. */
455
456 void
457 iterate_over_symtabs (const char *name,
458 gdb::function_view<bool (symtab *)> callback)
459 {
460 struct objfile *objfile;
461 gdb::unique_xmalloc_ptr<char> real_path;
462
463 /* Here we are interested in canonicalizing an absolute path, not
464 absolutizing a relative path. */
465 if (IS_ABSOLUTE_PATH (name))
466 {
467 real_path.reset (gdb_realpath (name));
468 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
469 }
470
471 ALL_OBJFILES (objfile)
472 {
473 if (iterate_over_some_symtabs (name, real_path.get (),
474 objfile->compunit_symtabs, NULL,
475 callback))
476 return;
477 }
478
479 /* Same search rules as above apply here, but now we look thru the
480 psymtabs. */
481
482 ALL_OBJFILES (objfile)
483 {
484 if (objfile->sf
485 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
486 name,
487 real_path.get (),
488 callback))
489 return;
490 }
491 }
492
493 /* A wrapper for iterate_over_symtabs that returns the first matching
494 symtab, or NULL. */
495
496 struct symtab *
497 lookup_symtab (const char *name)
498 {
499 struct symtab *result = NULL;
500
501 iterate_over_symtabs (name, [&] (symtab *symtab)
502 {
503 result = symtab;
504 return true;
505 });
506
507 return result;
508 }
509
510 \f
511 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
512 full method name, which consist of the class name (from T), the unadorned
513 method name from METHOD_ID, and the signature for the specific overload,
514 specified by SIGNATURE_ID. Note that this function is g++ specific. */
515
516 char *
517 gdb_mangle_name (struct type *type, int method_id, int signature_id)
518 {
519 int mangled_name_len;
520 char *mangled_name;
521 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
522 struct fn_field *method = &f[signature_id];
523 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
524 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
525 const char *newname = type_name_no_tag (type);
526
527 /* Does the form of physname indicate that it is the full mangled name
528 of a constructor (not just the args)? */
529 int is_full_physname_constructor;
530
531 int is_constructor;
532 int is_destructor = is_destructor_name (physname);
533 /* Need a new type prefix. */
534 const char *const_prefix = method->is_const ? "C" : "";
535 const char *volatile_prefix = method->is_volatile ? "V" : "";
536 char buf[20];
537 int len = (newname == NULL ? 0 : strlen (newname));
538
539 /* Nothing to do if physname already contains a fully mangled v3 abi name
540 or an operator name. */
541 if ((physname[0] == '_' && physname[1] == 'Z')
542 || is_operator_name (field_name))
543 return xstrdup (physname);
544
545 is_full_physname_constructor = is_constructor_name (physname);
546
547 is_constructor = is_full_physname_constructor
548 || (newname && strcmp (field_name, newname) == 0);
549
550 if (!is_destructor)
551 is_destructor = (startswith (physname, "__dt"));
552
553 if (is_destructor || is_full_physname_constructor)
554 {
555 mangled_name = (char *) xmalloc (strlen (physname) + 1);
556 strcpy (mangled_name, physname);
557 return mangled_name;
558 }
559
560 if (len == 0)
561 {
562 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
563 }
564 else if (physname[0] == 't' || physname[0] == 'Q')
565 {
566 /* The physname for template and qualified methods already includes
567 the class name. */
568 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
569 newname = NULL;
570 len = 0;
571 }
572 else
573 {
574 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
575 volatile_prefix, len);
576 }
577 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
578 + strlen (buf) + len + strlen (physname) + 1);
579
580 mangled_name = (char *) xmalloc (mangled_name_len);
581 if (is_constructor)
582 mangled_name[0] = '\0';
583 else
584 strcpy (mangled_name, field_name);
585
586 strcat (mangled_name, buf);
587 /* If the class doesn't have a name, i.e. newname NULL, then we just
588 mangle it using 0 for the length of the class. Thus it gets mangled
589 as something starting with `::' rather than `classname::'. */
590 if (newname != NULL)
591 strcat (mangled_name, newname);
592
593 strcat (mangled_name, physname);
594 return (mangled_name);
595 }
596
597 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
598 correctly allocated. */
599
600 void
601 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
602 const char *name,
603 struct obstack *obstack)
604 {
605 if (gsymbol->language == language_ada)
606 {
607 if (name == NULL)
608 {
609 gsymbol->ada_mangled = 0;
610 gsymbol->language_specific.obstack = obstack;
611 }
612 else
613 {
614 gsymbol->ada_mangled = 1;
615 gsymbol->language_specific.demangled_name = name;
616 }
617 }
618 else
619 gsymbol->language_specific.demangled_name = name;
620 }
621
622 /* Return the demangled name of GSYMBOL. */
623
624 const char *
625 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
626 {
627 if (gsymbol->language == language_ada)
628 {
629 if (!gsymbol->ada_mangled)
630 return NULL;
631 /* Fall through. */
632 }
633
634 return gsymbol->language_specific.demangled_name;
635 }
636
637 \f
638 /* Initialize the language dependent portion of a symbol
639 depending upon the language for the symbol. */
640
641 void
642 symbol_set_language (struct general_symbol_info *gsymbol,
643 enum language language,
644 struct obstack *obstack)
645 {
646 gsymbol->language = language;
647 if (gsymbol->language == language_cplus
648 || gsymbol->language == language_d
649 || gsymbol->language == language_go
650 || gsymbol->language == language_objc
651 || gsymbol->language == language_fortran)
652 {
653 symbol_set_demangled_name (gsymbol, NULL, obstack);
654 }
655 else if (gsymbol->language == language_ada)
656 {
657 gdb_assert (gsymbol->ada_mangled == 0);
658 gsymbol->language_specific.obstack = obstack;
659 }
660 else
661 {
662 memset (&gsymbol->language_specific, 0,
663 sizeof (gsymbol->language_specific));
664 }
665 }
666
667 /* Functions to initialize a symbol's mangled name. */
668
669 /* Objects of this type are stored in the demangled name hash table. */
670 struct demangled_name_entry
671 {
672 const char *mangled;
673 char demangled[1];
674 };
675
676 /* Hash function for the demangled name hash. */
677
678 static hashval_t
679 hash_demangled_name_entry (const void *data)
680 {
681 const struct demangled_name_entry *e
682 = (const struct demangled_name_entry *) data;
683
684 return htab_hash_string (e->mangled);
685 }
686
687 /* Equality function for the demangled name hash. */
688
689 static int
690 eq_demangled_name_entry (const void *a, const void *b)
691 {
692 const struct demangled_name_entry *da
693 = (const struct demangled_name_entry *) a;
694 const struct demangled_name_entry *db
695 = (const struct demangled_name_entry *) b;
696
697 return strcmp (da->mangled, db->mangled) == 0;
698 }
699
700 /* Create the hash table used for demangled names. Each hash entry is
701 a pair of strings; one for the mangled name and one for the demangled
702 name. The entry is hashed via just the mangled name. */
703
704 static void
705 create_demangled_names_hash (struct objfile *objfile)
706 {
707 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
708 The hash table code will round this up to the next prime number.
709 Choosing a much larger table size wastes memory, and saves only about
710 1% in symbol reading. */
711
712 objfile->per_bfd->demangled_names_hash = htab_create_alloc
713 (256, hash_demangled_name_entry, eq_demangled_name_entry,
714 NULL, xcalloc, xfree);
715 }
716
717 /* Try to determine the demangled name for a symbol, based on the
718 language of that symbol. If the language is set to language_auto,
719 it will attempt to find any demangling algorithm that works and
720 then set the language appropriately. The returned name is allocated
721 by the demangler and should be xfree'd. */
722
723 static char *
724 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
725 const char *mangled)
726 {
727 char *demangled = NULL;
728 int i;
729 int recognized;
730
731 if (gsymbol->language == language_unknown)
732 gsymbol->language = language_auto;
733
734 if (gsymbol->language != language_auto)
735 {
736 const struct language_defn *lang = language_def (gsymbol->language);
737
738 language_sniff_from_mangled_name (lang, mangled, &demangled);
739 return demangled;
740 }
741
742 for (i = language_unknown; i < nr_languages; ++i)
743 {
744 enum language l = (enum language) i;
745 const struct language_defn *lang = language_def (l);
746
747 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
748 {
749 gsymbol->language = l;
750 return demangled;
751 }
752 }
753
754 return NULL;
755 }
756
757 /* Set both the mangled and demangled (if any) names for GSYMBOL based
758 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
759 objfile's obstack; but if COPY_NAME is 0 and if NAME is
760 NUL-terminated, then this function assumes that NAME is already
761 correctly saved (either permanently or with a lifetime tied to the
762 objfile), and it will not be copied.
763
764 The hash table corresponding to OBJFILE is used, and the memory
765 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
766 so the pointer can be discarded after calling this function. */
767
768 void
769 symbol_set_names (struct general_symbol_info *gsymbol,
770 const char *linkage_name, int len, int copy_name,
771 struct objfile *objfile)
772 {
773 struct demangled_name_entry **slot;
774 /* A 0-terminated copy of the linkage name. */
775 const char *linkage_name_copy;
776 struct demangled_name_entry entry;
777 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
778
779 if (gsymbol->language == language_ada)
780 {
781 /* In Ada, we do the symbol lookups using the mangled name, so
782 we can save some space by not storing the demangled name. */
783 if (!copy_name)
784 gsymbol->name = linkage_name;
785 else
786 {
787 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
788 len + 1);
789
790 memcpy (name, linkage_name, len);
791 name[len] = '\0';
792 gsymbol->name = name;
793 }
794 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
795
796 return;
797 }
798
799 if (per_bfd->demangled_names_hash == NULL)
800 create_demangled_names_hash (objfile);
801
802 if (linkage_name[len] != '\0')
803 {
804 char *alloc_name;
805
806 alloc_name = (char *) alloca (len + 1);
807 memcpy (alloc_name, linkage_name, len);
808 alloc_name[len] = '\0';
809
810 linkage_name_copy = alloc_name;
811 }
812 else
813 linkage_name_copy = linkage_name;
814
815 entry.mangled = linkage_name_copy;
816 slot = ((struct demangled_name_entry **)
817 htab_find_slot (per_bfd->demangled_names_hash,
818 &entry, INSERT));
819
820 /* If this name is not in the hash table, add it. */
821 if (*slot == NULL
822 /* A C version of the symbol may have already snuck into the table.
823 This happens to, e.g., main.init (__go_init_main). Cope. */
824 || (gsymbol->language == language_go
825 && (*slot)->demangled[0] == '\0'))
826 {
827 char *demangled_name = symbol_find_demangled_name (gsymbol,
828 linkage_name_copy);
829 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
830
831 /* Suppose we have demangled_name==NULL, copy_name==0, and
832 linkage_name_copy==linkage_name. In this case, we already have the
833 mangled name saved, and we don't have a demangled name. So,
834 you might think we could save a little space by not recording
835 this in the hash table at all.
836
837 It turns out that it is actually important to still save such
838 an entry in the hash table, because storing this name gives
839 us better bcache hit rates for partial symbols. */
840 if (!copy_name && linkage_name_copy == linkage_name)
841 {
842 *slot
843 = ((struct demangled_name_entry *)
844 obstack_alloc (&per_bfd->storage_obstack,
845 offsetof (struct demangled_name_entry, demangled)
846 + demangled_len + 1));
847 (*slot)->mangled = linkage_name;
848 }
849 else
850 {
851 char *mangled_ptr;
852
853 /* If we must copy the mangled name, put it directly after
854 the demangled name so we can have a single
855 allocation. */
856 *slot
857 = ((struct demangled_name_entry *)
858 obstack_alloc (&per_bfd->storage_obstack,
859 offsetof (struct demangled_name_entry, demangled)
860 + len + demangled_len + 2));
861 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
862 strcpy (mangled_ptr, linkage_name_copy);
863 (*slot)->mangled = mangled_ptr;
864 }
865
866 if (demangled_name != NULL)
867 {
868 strcpy ((*slot)->demangled, demangled_name);
869 xfree (demangled_name);
870 }
871 else
872 (*slot)->demangled[0] = '\0';
873 }
874
875 gsymbol->name = (*slot)->mangled;
876 if ((*slot)->demangled[0] != '\0')
877 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
878 &per_bfd->storage_obstack);
879 else
880 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
881 }
882
883 /* Return the source code name of a symbol. In languages where
884 demangling is necessary, this is the demangled name. */
885
886 const char *
887 symbol_natural_name (const struct general_symbol_info *gsymbol)
888 {
889 switch (gsymbol->language)
890 {
891 case language_cplus:
892 case language_d:
893 case language_go:
894 case language_objc:
895 case language_fortran:
896 if (symbol_get_demangled_name (gsymbol) != NULL)
897 return symbol_get_demangled_name (gsymbol);
898 break;
899 case language_ada:
900 return ada_decode_symbol (gsymbol);
901 default:
902 break;
903 }
904 return gsymbol->name;
905 }
906
907 /* Return the demangled name for a symbol based on the language for
908 that symbol. If no demangled name exists, return NULL. */
909
910 const char *
911 symbol_demangled_name (const struct general_symbol_info *gsymbol)
912 {
913 const char *dem_name = NULL;
914
915 switch (gsymbol->language)
916 {
917 case language_cplus:
918 case language_d:
919 case language_go:
920 case language_objc:
921 case language_fortran:
922 dem_name = symbol_get_demangled_name (gsymbol);
923 break;
924 case language_ada:
925 dem_name = ada_decode_symbol (gsymbol);
926 break;
927 default:
928 break;
929 }
930 return dem_name;
931 }
932
933 /* Return the search name of a symbol---generally the demangled or
934 linkage name of the symbol, depending on how it will be searched for.
935 If there is no distinct demangled name, then returns the same value
936 (same pointer) as SYMBOL_LINKAGE_NAME. */
937
938 const char *
939 symbol_search_name (const struct general_symbol_info *gsymbol)
940 {
941 if (gsymbol->language == language_ada)
942 return gsymbol->name;
943 else
944 return symbol_natural_name (gsymbol);
945 }
946
947 /* Initialize the structure fields to zero values. */
948
949 void
950 init_sal (struct symtab_and_line *sal)
951 {
952 memset (sal, 0, sizeof (*sal));
953 }
954 \f
955
956 /* Return 1 if the two sections are the same, or if they could
957 plausibly be copies of each other, one in an original object
958 file and another in a separated debug file. */
959
960 int
961 matching_obj_sections (struct obj_section *obj_first,
962 struct obj_section *obj_second)
963 {
964 asection *first = obj_first? obj_first->the_bfd_section : NULL;
965 asection *second = obj_second? obj_second->the_bfd_section : NULL;
966 struct objfile *obj;
967
968 /* If they're the same section, then they match. */
969 if (first == second)
970 return 1;
971
972 /* If either is NULL, give up. */
973 if (first == NULL || second == NULL)
974 return 0;
975
976 /* This doesn't apply to absolute symbols. */
977 if (first->owner == NULL || second->owner == NULL)
978 return 0;
979
980 /* If they're in the same object file, they must be different sections. */
981 if (first->owner == second->owner)
982 return 0;
983
984 /* Check whether the two sections are potentially corresponding. They must
985 have the same size, address, and name. We can't compare section indexes,
986 which would be more reliable, because some sections may have been
987 stripped. */
988 if (bfd_get_section_size (first) != bfd_get_section_size (second))
989 return 0;
990
991 /* In-memory addresses may start at a different offset, relativize them. */
992 if (bfd_get_section_vma (first->owner, first)
993 - bfd_get_start_address (first->owner)
994 != bfd_get_section_vma (second->owner, second)
995 - bfd_get_start_address (second->owner))
996 return 0;
997
998 if (bfd_get_section_name (first->owner, first) == NULL
999 || bfd_get_section_name (second->owner, second) == NULL
1000 || strcmp (bfd_get_section_name (first->owner, first),
1001 bfd_get_section_name (second->owner, second)) != 0)
1002 return 0;
1003
1004 /* Otherwise check that they are in corresponding objfiles. */
1005
1006 ALL_OBJFILES (obj)
1007 if (obj->obfd == first->owner)
1008 break;
1009 gdb_assert (obj != NULL);
1010
1011 if (obj->separate_debug_objfile != NULL
1012 && obj->separate_debug_objfile->obfd == second->owner)
1013 return 1;
1014 if (obj->separate_debug_objfile_backlink != NULL
1015 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1016 return 1;
1017
1018 return 0;
1019 }
1020
1021 /* See symtab.h. */
1022
1023 void
1024 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1025 {
1026 struct objfile *objfile;
1027 struct bound_minimal_symbol msymbol;
1028
1029 /* If we know that this is not a text address, return failure. This is
1030 necessary because we loop based on texthigh and textlow, which do
1031 not include the data ranges. */
1032 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1033 if (msymbol.minsym
1034 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1035 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1036 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1037 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1038 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1039 return;
1040
1041 ALL_OBJFILES (objfile)
1042 {
1043 struct compunit_symtab *cust = NULL;
1044
1045 if (objfile->sf)
1046 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1047 pc, section, 0);
1048 if (cust)
1049 return;
1050 }
1051 }
1052 \f
1053 /* Hash function for the symbol cache. */
1054
1055 static unsigned int
1056 hash_symbol_entry (const struct objfile *objfile_context,
1057 const char *name, domain_enum domain)
1058 {
1059 unsigned int hash = (uintptr_t) objfile_context;
1060
1061 if (name != NULL)
1062 hash += htab_hash_string (name);
1063
1064 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1065 to map to the same slot. */
1066 if (domain == STRUCT_DOMAIN)
1067 hash += VAR_DOMAIN * 7;
1068 else
1069 hash += domain * 7;
1070
1071 return hash;
1072 }
1073
1074 /* Equality function for the symbol cache. */
1075
1076 static int
1077 eq_symbol_entry (const struct symbol_cache_slot *slot,
1078 const struct objfile *objfile_context,
1079 const char *name, domain_enum domain)
1080 {
1081 const char *slot_name;
1082 domain_enum slot_domain;
1083
1084 if (slot->state == SYMBOL_SLOT_UNUSED)
1085 return 0;
1086
1087 if (slot->objfile_context != objfile_context)
1088 return 0;
1089
1090 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1091 {
1092 slot_name = slot->value.not_found.name;
1093 slot_domain = slot->value.not_found.domain;
1094 }
1095 else
1096 {
1097 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1098 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1099 }
1100
1101 /* NULL names match. */
1102 if (slot_name == NULL && name == NULL)
1103 {
1104 /* But there's no point in calling symbol_matches_domain in the
1105 SYMBOL_SLOT_FOUND case. */
1106 if (slot_domain != domain)
1107 return 0;
1108 }
1109 else if (slot_name != NULL && name != NULL)
1110 {
1111 /* It's important that we use the same comparison that was done the
1112 first time through. If the slot records a found symbol, then this
1113 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1114 It also means using symbol_matches_domain for found symbols.
1115 See block.c.
1116
1117 If the slot records a not-found symbol, then require a precise match.
1118 We could still be lax with whitespace like strcmp_iw though. */
1119
1120 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1121 {
1122 if (strcmp (slot_name, name) != 0)
1123 return 0;
1124 if (slot_domain != domain)
1125 return 0;
1126 }
1127 else
1128 {
1129 struct symbol *sym = slot->value.found.symbol;
1130
1131 if (strcmp_iw (slot_name, name) != 0)
1132 return 0;
1133 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1134 slot_domain, domain))
1135 return 0;
1136 }
1137 }
1138 else
1139 {
1140 /* Only one name is NULL. */
1141 return 0;
1142 }
1143
1144 return 1;
1145 }
1146
1147 /* Given a cache of size SIZE, return the size of the struct (with variable
1148 length array) in bytes. */
1149
1150 static size_t
1151 symbol_cache_byte_size (unsigned int size)
1152 {
1153 return (sizeof (struct block_symbol_cache)
1154 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1155 }
1156
1157 /* Resize CACHE. */
1158
1159 static void
1160 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1161 {
1162 /* If there's no change in size, don't do anything.
1163 All caches have the same size, so we can just compare with the size
1164 of the global symbols cache. */
1165 if ((cache->global_symbols != NULL
1166 && cache->global_symbols->size == new_size)
1167 || (cache->global_symbols == NULL
1168 && new_size == 0))
1169 return;
1170
1171 xfree (cache->global_symbols);
1172 xfree (cache->static_symbols);
1173
1174 if (new_size == 0)
1175 {
1176 cache->global_symbols = NULL;
1177 cache->static_symbols = NULL;
1178 }
1179 else
1180 {
1181 size_t total_size = symbol_cache_byte_size (new_size);
1182
1183 cache->global_symbols
1184 = (struct block_symbol_cache *) xcalloc (1, total_size);
1185 cache->static_symbols
1186 = (struct block_symbol_cache *) xcalloc (1, total_size);
1187 cache->global_symbols->size = new_size;
1188 cache->static_symbols->size = new_size;
1189 }
1190 }
1191
1192 /* Make a symbol cache of size SIZE. */
1193
1194 static struct symbol_cache *
1195 make_symbol_cache (unsigned int size)
1196 {
1197 struct symbol_cache *cache;
1198
1199 cache = XCNEW (struct symbol_cache);
1200 resize_symbol_cache (cache, symbol_cache_size);
1201 return cache;
1202 }
1203
1204 /* Free the space used by CACHE. */
1205
1206 static void
1207 free_symbol_cache (struct symbol_cache *cache)
1208 {
1209 xfree (cache->global_symbols);
1210 xfree (cache->static_symbols);
1211 xfree (cache);
1212 }
1213
1214 /* Return the symbol cache of PSPACE.
1215 Create one if it doesn't exist yet. */
1216
1217 static struct symbol_cache *
1218 get_symbol_cache (struct program_space *pspace)
1219 {
1220 struct symbol_cache *cache
1221 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1222
1223 if (cache == NULL)
1224 {
1225 cache = make_symbol_cache (symbol_cache_size);
1226 set_program_space_data (pspace, symbol_cache_key, cache);
1227 }
1228
1229 return cache;
1230 }
1231
1232 /* Delete the symbol cache of PSPACE.
1233 Called when PSPACE is destroyed. */
1234
1235 static void
1236 symbol_cache_cleanup (struct program_space *pspace, void *data)
1237 {
1238 struct symbol_cache *cache = (struct symbol_cache *) data;
1239
1240 free_symbol_cache (cache);
1241 }
1242
1243 /* Set the size of the symbol cache in all program spaces. */
1244
1245 static void
1246 set_symbol_cache_size (unsigned int new_size)
1247 {
1248 struct program_space *pspace;
1249
1250 ALL_PSPACES (pspace)
1251 {
1252 struct symbol_cache *cache
1253 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1254
1255 /* The pspace could have been created but not have a cache yet. */
1256 if (cache != NULL)
1257 resize_symbol_cache (cache, new_size);
1258 }
1259 }
1260
1261 /* Called when symbol-cache-size is set. */
1262
1263 static void
1264 set_symbol_cache_size_handler (char *args, int from_tty,
1265 struct cmd_list_element *c)
1266 {
1267 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1268 {
1269 /* Restore the previous value.
1270 This is the value the "show" command prints. */
1271 new_symbol_cache_size = symbol_cache_size;
1272
1273 error (_("Symbol cache size is too large, max is %u."),
1274 MAX_SYMBOL_CACHE_SIZE);
1275 }
1276 symbol_cache_size = new_symbol_cache_size;
1277
1278 set_symbol_cache_size (symbol_cache_size);
1279 }
1280
1281 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1282 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1283 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1284 failed (and thus this one will too), or NULL if the symbol is not present
1285 in the cache.
1286 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1287 set to the cache and slot of the symbol to save the result of a full lookup
1288 attempt. */
1289
1290 static struct block_symbol
1291 symbol_cache_lookup (struct symbol_cache *cache,
1292 struct objfile *objfile_context, int block,
1293 const char *name, domain_enum domain,
1294 struct block_symbol_cache **bsc_ptr,
1295 struct symbol_cache_slot **slot_ptr)
1296 {
1297 struct block_symbol_cache *bsc;
1298 unsigned int hash;
1299 struct symbol_cache_slot *slot;
1300
1301 if (block == GLOBAL_BLOCK)
1302 bsc = cache->global_symbols;
1303 else
1304 bsc = cache->static_symbols;
1305 if (bsc == NULL)
1306 {
1307 *bsc_ptr = NULL;
1308 *slot_ptr = NULL;
1309 return (struct block_symbol) {NULL, NULL};
1310 }
1311
1312 hash = hash_symbol_entry (objfile_context, name, domain);
1313 slot = bsc->symbols + hash % bsc->size;
1314
1315 if (eq_symbol_entry (slot, objfile_context, name, domain))
1316 {
1317 if (symbol_lookup_debug)
1318 fprintf_unfiltered (gdb_stdlog,
1319 "%s block symbol cache hit%s for %s, %s\n",
1320 block == GLOBAL_BLOCK ? "Global" : "Static",
1321 slot->state == SYMBOL_SLOT_NOT_FOUND
1322 ? " (not found)" : "",
1323 name, domain_name (domain));
1324 ++bsc->hits;
1325 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1326 return SYMBOL_LOOKUP_FAILED;
1327 return slot->value.found;
1328 }
1329
1330 /* Symbol is not present in the cache. */
1331
1332 *bsc_ptr = bsc;
1333 *slot_ptr = slot;
1334
1335 if (symbol_lookup_debug)
1336 {
1337 fprintf_unfiltered (gdb_stdlog,
1338 "%s block symbol cache miss for %s, %s\n",
1339 block == GLOBAL_BLOCK ? "Global" : "Static",
1340 name, domain_name (domain));
1341 }
1342 ++bsc->misses;
1343 return (struct block_symbol) {NULL, NULL};
1344 }
1345
1346 /* Clear out SLOT. */
1347
1348 static void
1349 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1350 {
1351 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1352 xfree (slot->value.not_found.name);
1353 slot->state = SYMBOL_SLOT_UNUSED;
1354 }
1355
1356 /* Mark SYMBOL as found in SLOT.
1357 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1358 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1359 necessarily the objfile the symbol was found in. */
1360
1361 static void
1362 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1363 struct symbol_cache_slot *slot,
1364 struct objfile *objfile_context,
1365 struct symbol *symbol,
1366 const struct block *block)
1367 {
1368 if (bsc == NULL)
1369 return;
1370 if (slot->state != SYMBOL_SLOT_UNUSED)
1371 {
1372 ++bsc->collisions;
1373 symbol_cache_clear_slot (slot);
1374 }
1375 slot->state = SYMBOL_SLOT_FOUND;
1376 slot->objfile_context = objfile_context;
1377 slot->value.found.symbol = symbol;
1378 slot->value.found.block = block;
1379 }
1380
1381 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1382 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1383 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1384
1385 static void
1386 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1387 struct symbol_cache_slot *slot,
1388 struct objfile *objfile_context,
1389 const char *name, domain_enum domain)
1390 {
1391 if (bsc == NULL)
1392 return;
1393 if (slot->state != SYMBOL_SLOT_UNUSED)
1394 {
1395 ++bsc->collisions;
1396 symbol_cache_clear_slot (slot);
1397 }
1398 slot->state = SYMBOL_SLOT_NOT_FOUND;
1399 slot->objfile_context = objfile_context;
1400 slot->value.not_found.name = xstrdup (name);
1401 slot->value.not_found.domain = domain;
1402 }
1403
1404 /* Flush the symbol cache of PSPACE. */
1405
1406 static void
1407 symbol_cache_flush (struct program_space *pspace)
1408 {
1409 struct symbol_cache *cache
1410 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1411 int pass;
1412
1413 if (cache == NULL)
1414 return;
1415 if (cache->global_symbols == NULL)
1416 {
1417 gdb_assert (symbol_cache_size == 0);
1418 gdb_assert (cache->static_symbols == NULL);
1419 return;
1420 }
1421
1422 /* If the cache is untouched since the last flush, early exit.
1423 This is important for performance during the startup of a program linked
1424 with 100s (or 1000s) of shared libraries. */
1425 if (cache->global_symbols->misses == 0
1426 && cache->static_symbols->misses == 0)
1427 return;
1428
1429 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1430 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1431
1432 for (pass = 0; pass < 2; ++pass)
1433 {
1434 struct block_symbol_cache *bsc
1435 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1436 unsigned int i;
1437
1438 for (i = 0; i < bsc->size; ++i)
1439 symbol_cache_clear_slot (&bsc->symbols[i]);
1440 }
1441
1442 cache->global_symbols->hits = 0;
1443 cache->global_symbols->misses = 0;
1444 cache->global_symbols->collisions = 0;
1445 cache->static_symbols->hits = 0;
1446 cache->static_symbols->misses = 0;
1447 cache->static_symbols->collisions = 0;
1448 }
1449
1450 /* Dump CACHE. */
1451
1452 static void
1453 symbol_cache_dump (const struct symbol_cache *cache)
1454 {
1455 int pass;
1456
1457 if (cache->global_symbols == NULL)
1458 {
1459 printf_filtered (" <disabled>\n");
1460 return;
1461 }
1462
1463 for (pass = 0; pass < 2; ++pass)
1464 {
1465 const struct block_symbol_cache *bsc
1466 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1467 unsigned int i;
1468
1469 if (pass == 0)
1470 printf_filtered ("Global symbols:\n");
1471 else
1472 printf_filtered ("Static symbols:\n");
1473
1474 for (i = 0; i < bsc->size; ++i)
1475 {
1476 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1477
1478 QUIT;
1479
1480 switch (slot->state)
1481 {
1482 case SYMBOL_SLOT_UNUSED:
1483 break;
1484 case SYMBOL_SLOT_NOT_FOUND:
1485 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1486 host_address_to_string (slot->objfile_context),
1487 slot->value.not_found.name,
1488 domain_name (slot->value.not_found.domain));
1489 break;
1490 case SYMBOL_SLOT_FOUND:
1491 {
1492 struct symbol *found = slot->value.found.symbol;
1493 const struct objfile *context = slot->objfile_context;
1494
1495 printf_filtered (" [%4u] = %s, %s %s\n", i,
1496 host_address_to_string (context),
1497 SYMBOL_PRINT_NAME (found),
1498 domain_name (SYMBOL_DOMAIN (found)));
1499 break;
1500 }
1501 }
1502 }
1503 }
1504 }
1505
1506 /* The "mt print symbol-cache" command. */
1507
1508 static void
1509 maintenance_print_symbol_cache (char *args, int from_tty)
1510 {
1511 struct program_space *pspace;
1512
1513 ALL_PSPACES (pspace)
1514 {
1515 struct symbol_cache *cache;
1516
1517 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1518 pspace->num,
1519 pspace->symfile_object_file != NULL
1520 ? objfile_name (pspace->symfile_object_file)
1521 : "(no object file)");
1522
1523 /* If the cache hasn't been created yet, avoid creating one. */
1524 cache
1525 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1526 if (cache == NULL)
1527 printf_filtered (" <empty>\n");
1528 else
1529 symbol_cache_dump (cache);
1530 }
1531 }
1532
1533 /* The "mt flush-symbol-cache" command. */
1534
1535 static void
1536 maintenance_flush_symbol_cache (char *args, int from_tty)
1537 {
1538 struct program_space *pspace;
1539
1540 ALL_PSPACES (pspace)
1541 {
1542 symbol_cache_flush (pspace);
1543 }
1544 }
1545
1546 /* Print usage statistics of CACHE. */
1547
1548 static void
1549 symbol_cache_stats (struct symbol_cache *cache)
1550 {
1551 int pass;
1552
1553 if (cache->global_symbols == NULL)
1554 {
1555 printf_filtered (" <disabled>\n");
1556 return;
1557 }
1558
1559 for (pass = 0; pass < 2; ++pass)
1560 {
1561 const struct block_symbol_cache *bsc
1562 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1563
1564 QUIT;
1565
1566 if (pass == 0)
1567 printf_filtered ("Global block cache stats:\n");
1568 else
1569 printf_filtered ("Static block cache stats:\n");
1570
1571 printf_filtered (" size: %u\n", bsc->size);
1572 printf_filtered (" hits: %u\n", bsc->hits);
1573 printf_filtered (" misses: %u\n", bsc->misses);
1574 printf_filtered (" collisions: %u\n", bsc->collisions);
1575 }
1576 }
1577
1578 /* The "mt print symbol-cache-statistics" command. */
1579
1580 static void
1581 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1582 {
1583 struct program_space *pspace;
1584
1585 ALL_PSPACES (pspace)
1586 {
1587 struct symbol_cache *cache;
1588
1589 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1590 pspace->num,
1591 pspace->symfile_object_file != NULL
1592 ? objfile_name (pspace->symfile_object_file)
1593 : "(no object file)");
1594
1595 /* If the cache hasn't been created yet, avoid creating one. */
1596 cache
1597 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1598 if (cache == NULL)
1599 printf_filtered (" empty, no stats available\n");
1600 else
1601 symbol_cache_stats (cache);
1602 }
1603 }
1604
1605 /* This module's 'new_objfile' observer. */
1606
1607 static void
1608 symtab_new_objfile_observer (struct objfile *objfile)
1609 {
1610 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1611 symbol_cache_flush (current_program_space);
1612 }
1613
1614 /* This module's 'free_objfile' observer. */
1615
1616 static void
1617 symtab_free_objfile_observer (struct objfile *objfile)
1618 {
1619 symbol_cache_flush (objfile->pspace);
1620 }
1621 \f
1622 /* Debug symbols usually don't have section information. We need to dig that
1623 out of the minimal symbols and stash that in the debug symbol. */
1624
1625 void
1626 fixup_section (struct general_symbol_info *ginfo,
1627 CORE_ADDR addr, struct objfile *objfile)
1628 {
1629 struct minimal_symbol *msym;
1630
1631 /* First, check whether a minimal symbol with the same name exists
1632 and points to the same address. The address check is required
1633 e.g. on PowerPC64, where the minimal symbol for a function will
1634 point to the function descriptor, while the debug symbol will
1635 point to the actual function code. */
1636 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1637 if (msym)
1638 ginfo->section = MSYMBOL_SECTION (msym);
1639 else
1640 {
1641 /* Static, function-local variables do appear in the linker
1642 (minimal) symbols, but are frequently given names that won't
1643 be found via lookup_minimal_symbol(). E.g., it has been
1644 observed in frv-uclinux (ELF) executables that a static,
1645 function-local variable named "foo" might appear in the
1646 linker symbols as "foo.6" or "foo.3". Thus, there is no
1647 point in attempting to extend the lookup-by-name mechanism to
1648 handle this case due to the fact that there can be multiple
1649 names.
1650
1651 So, instead, search the section table when lookup by name has
1652 failed. The ``addr'' and ``endaddr'' fields may have already
1653 been relocated. If so, the relocation offset (i.e. the
1654 ANOFFSET value) needs to be subtracted from these values when
1655 performing the comparison. We unconditionally subtract it,
1656 because, when no relocation has been performed, the ANOFFSET
1657 value will simply be zero.
1658
1659 The address of the symbol whose section we're fixing up HAS
1660 NOT BEEN adjusted (relocated) yet. It can't have been since
1661 the section isn't yet known and knowing the section is
1662 necessary in order to add the correct relocation value. In
1663 other words, we wouldn't even be in this function (attempting
1664 to compute the section) if it were already known.
1665
1666 Note that it is possible to search the minimal symbols
1667 (subtracting the relocation value if necessary) to find the
1668 matching minimal symbol, but this is overkill and much less
1669 efficient. It is not necessary to find the matching minimal
1670 symbol, only its section.
1671
1672 Note that this technique (of doing a section table search)
1673 can fail when unrelocated section addresses overlap. For
1674 this reason, we still attempt a lookup by name prior to doing
1675 a search of the section table. */
1676
1677 struct obj_section *s;
1678 int fallback = -1;
1679
1680 ALL_OBJFILE_OSECTIONS (objfile, s)
1681 {
1682 int idx = s - objfile->sections;
1683 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1684
1685 if (fallback == -1)
1686 fallback = idx;
1687
1688 if (obj_section_addr (s) - offset <= addr
1689 && addr < obj_section_endaddr (s) - offset)
1690 {
1691 ginfo->section = idx;
1692 return;
1693 }
1694 }
1695
1696 /* If we didn't find the section, assume it is in the first
1697 section. If there is no allocated section, then it hardly
1698 matters what we pick, so just pick zero. */
1699 if (fallback == -1)
1700 ginfo->section = 0;
1701 else
1702 ginfo->section = fallback;
1703 }
1704 }
1705
1706 struct symbol *
1707 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1708 {
1709 CORE_ADDR addr;
1710
1711 if (!sym)
1712 return NULL;
1713
1714 if (!SYMBOL_OBJFILE_OWNED (sym))
1715 return sym;
1716
1717 /* We either have an OBJFILE, or we can get at it from the sym's
1718 symtab. Anything else is a bug. */
1719 gdb_assert (objfile || symbol_symtab (sym));
1720
1721 if (objfile == NULL)
1722 objfile = symbol_objfile (sym);
1723
1724 if (SYMBOL_OBJ_SECTION (objfile, sym))
1725 return sym;
1726
1727 /* We should have an objfile by now. */
1728 gdb_assert (objfile);
1729
1730 switch (SYMBOL_CLASS (sym))
1731 {
1732 case LOC_STATIC:
1733 case LOC_LABEL:
1734 addr = SYMBOL_VALUE_ADDRESS (sym);
1735 break;
1736 case LOC_BLOCK:
1737 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1738 break;
1739
1740 default:
1741 /* Nothing else will be listed in the minsyms -- no use looking
1742 it up. */
1743 return sym;
1744 }
1745
1746 fixup_section (&sym->ginfo, addr, objfile);
1747
1748 return sym;
1749 }
1750
1751 /* Compute the demangled form of NAME as used by the various symbol
1752 lookup functions. The result can either be the input NAME
1753 directly, or a pointer to a buffer owned by the STORAGE object.
1754
1755 For Ada, this function just returns NAME, unmodified.
1756 Normally, Ada symbol lookups are performed using the encoded name
1757 rather than the demangled name, and so it might seem to make sense
1758 for this function to return an encoded version of NAME.
1759 Unfortunately, we cannot do this, because this function is used in
1760 circumstances where it is not appropriate to try to encode NAME.
1761 For instance, when displaying the frame info, we demangle the name
1762 of each parameter, and then perform a symbol lookup inside our
1763 function using that demangled name. In Ada, certain functions
1764 have internally-generated parameters whose name contain uppercase
1765 characters. Encoding those name would result in those uppercase
1766 characters to become lowercase, and thus cause the symbol lookup
1767 to fail. */
1768
1769 const char *
1770 demangle_for_lookup (const char *name, enum language lang,
1771 demangle_result_storage &storage)
1772 {
1773 /* If we are using C++, D, or Go, demangle the name before doing a
1774 lookup, so we can always binary search. */
1775 if (lang == language_cplus)
1776 {
1777 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1778 if (demangled_name != NULL)
1779 return storage.set_malloc_ptr (demangled_name);
1780
1781 /* If we were given a non-mangled name, canonicalize it
1782 according to the language (so far only for C++). */
1783 std::string canon = cp_canonicalize_string (name);
1784 if (!canon.empty ())
1785 return storage.swap_string (canon);
1786 }
1787 else if (lang == language_d)
1788 {
1789 char *demangled_name = d_demangle (name, 0);
1790 if (demangled_name != NULL)
1791 return storage.set_malloc_ptr (demangled_name);
1792 }
1793 else if (lang == language_go)
1794 {
1795 char *demangled_name = go_demangle (name, 0);
1796 if (demangled_name != NULL)
1797 return storage.set_malloc_ptr (demangled_name);
1798 }
1799
1800 return name;
1801 }
1802
1803 /* See symtab.h.
1804
1805 This function (or rather its subordinates) have a bunch of loops and
1806 it would seem to be attractive to put in some QUIT's (though I'm not really
1807 sure whether it can run long enough to be really important). But there
1808 are a few calls for which it would appear to be bad news to quit
1809 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1810 that there is C++ code below which can error(), but that probably
1811 doesn't affect these calls since they are looking for a known
1812 variable and thus can probably assume it will never hit the C++
1813 code). */
1814
1815 struct block_symbol
1816 lookup_symbol_in_language (const char *name, const struct block *block,
1817 const domain_enum domain, enum language lang,
1818 struct field_of_this_result *is_a_field_of_this)
1819 {
1820 demangle_result_storage storage;
1821 const char *modified_name = demangle_for_lookup (name, lang, storage);
1822
1823 return lookup_symbol_aux (modified_name, block, domain, lang,
1824 is_a_field_of_this);
1825 }
1826
1827 /* See symtab.h. */
1828
1829 struct block_symbol
1830 lookup_symbol (const char *name, const struct block *block,
1831 domain_enum domain,
1832 struct field_of_this_result *is_a_field_of_this)
1833 {
1834 return lookup_symbol_in_language (name, block, domain,
1835 current_language->la_language,
1836 is_a_field_of_this);
1837 }
1838
1839 /* See symtab.h. */
1840
1841 struct block_symbol
1842 lookup_language_this (const struct language_defn *lang,
1843 const struct block *block)
1844 {
1845 if (lang->la_name_of_this == NULL || block == NULL)
1846 return (struct block_symbol) {NULL, NULL};
1847
1848 if (symbol_lookup_debug > 1)
1849 {
1850 struct objfile *objfile = lookup_objfile_from_block (block);
1851
1852 fprintf_unfiltered (gdb_stdlog,
1853 "lookup_language_this (%s, %s (objfile %s))",
1854 lang->la_name, host_address_to_string (block),
1855 objfile_debug_name (objfile));
1856 }
1857
1858 while (block)
1859 {
1860 struct symbol *sym;
1861
1862 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1863 if (sym != NULL)
1864 {
1865 if (symbol_lookup_debug > 1)
1866 {
1867 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1868 SYMBOL_PRINT_NAME (sym),
1869 host_address_to_string (sym),
1870 host_address_to_string (block));
1871 }
1872 return (struct block_symbol) {sym, block};
1873 }
1874 if (BLOCK_FUNCTION (block))
1875 break;
1876 block = BLOCK_SUPERBLOCK (block);
1877 }
1878
1879 if (symbol_lookup_debug > 1)
1880 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1881 return (struct block_symbol) {NULL, NULL};
1882 }
1883
1884 /* Given TYPE, a structure/union,
1885 return 1 if the component named NAME from the ultimate target
1886 structure/union is defined, otherwise, return 0. */
1887
1888 static int
1889 check_field (struct type *type, const char *name,
1890 struct field_of_this_result *is_a_field_of_this)
1891 {
1892 int i;
1893
1894 /* The type may be a stub. */
1895 type = check_typedef (type);
1896
1897 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1898 {
1899 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1900
1901 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1902 {
1903 is_a_field_of_this->type = type;
1904 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1905 return 1;
1906 }
1907 }
1908
1909 /* C++: If it was not found as a data field, then try to return it
1910 as a pointer to a method. */
1911
1912 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1913 {
1914 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1915 {
1916 is_a_field_of_this->type = type;
1917 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1918 return 1;
1919 }
1920 }
1921
1922 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1923 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1924 return 1;
1925
1926 return 0;
1927 }
1928
1929 /* Behave like lookup_symbol except that NAME is the natural name
1930 (e.g., demangled name) of the symbol that we're looking for. */
1931
1932 static struct block_symbol
1933 lookup_symbol_aux (const char *name, const struct block *block,
1934 const domain_enum domain, enum language language,
1935 struct field_of_this_result *is_a_field_of_this)
1936 {
1937 struct block_symbol result;
1938 const struct language_defn *langdef;
1939
1940 if (symbol_lookup_debug)
1941 {
1942 struct objfile *objfile = lookup_objfile_from_block (block);
1943
1944 fprintf_unfiltered (gdb_stdlog,
1945 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1946 name, host_address_to_string (block),
1947 objfile != NULL
1948 ? objfile_debug_name (objfile) : "NULL",
1949 domain_name (domain), language_str (language));
1950 }
1951
1952 /* Make sure we do something sensible with is_a_field_of_this, since
1953 the callers that set this parameter to some non-null value will
1954 certainly use it later. If we don't set it, the contents of
1955 is_a_field_of_this are undefined. */
1956 if (is_a_field_of_this != NULL)
1957 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1958
1959 /* Search specified block and its superiors. Don't search
1960 STATIC_BLOCK or GLOBAL_BLOCK. */
1961
1962 result = lookup_local_symbol (name, block, domain, language);
1963 if (result.symbol != NULL)
1964 {
1965 if (symbol_lookup_debug)
1966 {
1967 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1968 host_address_to_string (result.symbol));
1969 }
1970 return result;
1971 }
1972
1973 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1974 check to see if NAME is a field of `this'. */
1975
1976 langdef = language_def (language);
1977
1978 /* Don't do this check if we are searching for a struct. It will
1979 not be found by check_field, but will be found by other
1980 means. */
1981 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1982 {
1983 result = lookup_language_this (langdef, block);
1984
1985 if (result.symbol)
1986 {
1987 struct type *t = result.symbol->type;
1988
1989 /* I'm not really sure that type of this can ever
1990 be typedefed; just be safe. */
1991 t = check_typedef (t);
1992 if (TYPE_CODE (t) == TYPE_CODE_PTR
1993 || TYPE_CODE (t) == TYPE_CODE_REF)
1994 t = TYPE_TARGET_TYPE (t);
1995
1996 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1997 && TYPE_CODE (t) != TYPE_CODE_UNION)
1998 error (_("Internal error: `%s' is not an aggregate"),
1999 langdef->la_name_of_this);
2000
2001 if (check_field (t, name, is_a_field_of_this))
2002 {
2003 if (symbol_lookup_debug)
2004 {
2005 fprintf_unfiltered (gdb_stdlog,
2006 "lookup_symbol_aux (...) = NULL\n");
2007 }
2008 return (struct block_symbol) {NULL, NULL};
2009 }
2010 }
2011 }
2012
2013 /* Now do whatever is appropriate for LANGUAGE to look
2014 up static and global variables. */
2015
2016 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2017 if (result.symbol != NULL)
2018 {
2019 if (symbol_lookup_debug)
2020 {
2021 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2022 host_address_to_string (result.symbol));
2023 }
2024 return result;
2025 }
2026
2027 /* Now search all static file-level symbols. Not strictly correct,
2028 but more useful than an error. */
2029
2030 result = lookup_static_symbol (name, domain);
2031 if (symbol_lookup_debug)
2032 {
2033 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2034 result.symbol != NULL
2035 ? host_address_to_string (result.symbol)
2036 : "NULL");
2037 }
2038 return result;
2039 }
2040
2041 /* Check to see if the symbol is defined in BLOCK or its superiors.
2042 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2043
2044 static struct block_symbol
2045 lookup_local_symbol (const char *name, const struct block *block,
2046 const domain_enum domain,
2047 enum language language)
2048 {
2049 struct symbol *sym;
2050 const struct block *static_block = block_static_block (block);
2051 const char *scope = block_scope (block);
2052
2053 /* Check if either no block is specified or it's a global block. */
2054
2055 if (static_block == NULL)
2056 return (struct block_symbol) {NULL, NULL};
2057
2058 while (block != static_block)
2059 {
2060 sym = lookup_symbol_in_block (name, block, domain);
2061 if (sym != NULL)
2062 return (struct block_symbol) {sym, block};
2063
2064 if (language == language_cplus || language == language_fortran)
2065 {
2066 struct block_symbol sym
2067 = cp_lookup_symbol_imports_or_template (scope, name, block,
2068 domain);
2069
2070 if (sym.symbol != NULL)
2071 return sym;
2072 }
2073
2074 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2075 break;
2076 block = BLOCK_SUPERBLOCK (block);
2077 }
2078
2079 /* We've reached the end of the function without finding a result. */
2080
2081 return (struct block_symbol) {NULL, NULL};
2082 }
2083
2084 /* See symtab.h. */
2085
2086 struct objfile *
2087 lookup_objfile_from_block (const struct block *block)
2088 {
2089 struct objfile *obj;
2090 struct compunit_symtab *cust;
2091
2092 if (block == NULL)
2093 return NULL;
2094
2095 block = block_global_block (block);
2096 /* Look through all blockvectors. */
2097 ALL_COMPUNITS (obj, cust)
2098 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2099 GLOBAL_BLOCK))
2100 {
2101 if (obj->separate_debug_objfile_backlink)
2102 obj = obj->separate_debug_objfile_backlink;
2103
2104 return obj;
2105 }
2106
2107 return NULL;
2108 }
2109
2110 /* See symtab.h. */
2111
2112 struct symbol *
2113 lookup_symbol_in_block (const char *name, const struct block *block,
2114 const domain_enum domain)
2115 {
2116 struct symbol *sym;
2117
2118 if (symbol_lookup_debug > 1)
2119 {
2120 struct objfile *objfile = lookup_objfile_from_block (block);
2121
2122 fprintf_unfiltered (gdb_stdlog,
2123 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2124 name, host_address_to_string (block),
2125 objfile_debug_name (objfile),
2126 domain_name (domain));
2127 }
2128
2129 sym = block_lookup_symbol (block, name, domain);
2130 if (sym)
2131 {
2132 if (symbol_lookup_debug > 1)
2133 {
2134 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2135 host_address_to_string (sym));
2136 }
2137 return fixup_symbol_section (sym, NULL);
2138 }
2139
2140 if (symbol_lookup_debug > 1)
2141 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2142 return NULL;
2143 }
2144
2145 /* See symtab.h. */
2146
2147 struct block_symbol
2148 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2149 const char *name,
2150 const domain_enum domain)
2151 {
2152 struct objfile *objfile;
2153
2154 for (objfile = main_objfile;
2155 objfile;
2156 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2157 {
2158 struct block_symbol result
2159 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2160
2161 if (result.symbol != NULL)
2162 return result;
2163 }
2164
2165 return (struct block_symbol) {NULL, NULL};
2166 }
2167
2168 /* Check to see if the symbol is defined in one of the OBJFILE's
2169 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2170 depending on whether or not we want to search global symbols or
2171 static symbols. */
2172
2173 static struct block_symbol
2174 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2175 const char *name, const domain_enum domain)
2176 {
2177 struct compunit_symtab *cust;
2178
2179 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2180
2181 if (symbol_lookup_debug > 1)
2182 {
2183 fprintf_unfiltered (gdb_stdlog,
2184 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2185 objfile_debug_name (objfile),
2186 block_index == GLOBAL_BLOCK
2187 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2188 name, domain_name (domain));
2189 }
2190
2191 ALL_OBJFILE_COMPUNITS (objfile, cust)
2192 {
2193 const struct blockvector *bv;
2194 const struct block *block;
2195 struct block_symbol result;
2196
2197 bv = COMPUNIT_BLOCKVECTOR (cust);
2198 block = BLOCKVECTOR_BLOCK (bv, block_index);
2199 result.symbol = block_lookup_symbol_primary (block, name, domain);
2200 result.block = block;
2201 if (result.symbol != NULL)
2202 {
2203 if (symbol_lookup_debug > 1)
2204 {
2205 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2206 host_address_to_string (result.symbol),
2207 host_address_to_string (block));
2208 }
2209 result.symbol = fixup_symbol_section (result.symbol, objfile);
2210 return result;
2211
2212 }
2213 }
2214
2215 if (symbol_lookup_debug > 1)
2216 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2217 return (struct block_symbol) {NULL, NULL};
2218 }
2219
2220 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2221 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2222 and all associated separate debug objfiles.
2223
2224 Normally we only look in OBJFILE, and not any separate debug objfiles
2225 because the outer loop will cause them to be searched too. This case is
2226 different. Here we're called from search_symbols where it will only
2227 call us for the the objfile that contains a matching minsym. */
2228
2229 static struct block_symbol
2230 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2231 const char *linkage_name,
2232 domain_enum domain)
2233 {
2234 enum language lang = current_language->la_language;
2235 struct objfile *main_objfile, *cur_objfile;
2236
2237 demangle_result_storage storage;
2238 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2239
2240 if (objfile->separate_debug_objfile_backlink)
2241 main_objfile = objfile->separate_debug_objfile_backlink;
2242 else
2243 main_objfile = objfile;
2244
2245 for (cur_objfile = main_objfile;
2246 cur_objfile;
2247 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2248 {
2249 struct block_symbol result;
2250
2251 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2252 modified_name, domain);
2253 if (result.symbol == NULL)
2254 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2255 modified_name, domain);
2256 if (result.symbol != NULL)
2257 return result;
2258 }
2259
2260 return (struct block_symbol) {NULL, NULL};
2261 }
2262
2263 /* A helper function that throws an exception when a symbol was found
2264 in a psymtab but not in a symtab. */
2265
2266 static void ATTRIBUTE_NORETURN
2267 error_in_psymtab_expansion (int block_index, const char *name,
2268 struct compunit_symtab *cust)
2269 {
2270 error (_("\
2271 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2272 %s may be an inlined function, or may be a template function\n \
2273 (if a template, try specifying an instantiation: %s<type>)."),
2274 block_index == GLOBAL_BLOCK ? "global" : "static",
2275 name,
2276 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2277 name, name);
2278 }
2279
2280 /* A helper function for various lookup routines that interfaces with
2281 the "quick" symbol table functions. */
2282
2283 static struct block_symbol
2284 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2285 const char *name, const domain_enum domain)
2286 {
2287 struct compunit_symtab *cust;
2288 const struct blockvector *bv;
2289 const struct block *block;
2290 struct block_symbol result;
2291
2292 if (!objfile->sf)
2293 return (struct block_symbol) {NULL, NULL};
2294
2295 if (symbol_lookup_debug > 1)
2296 {
2297 fprintf_unfiltered (gdb_stdlog,
2298 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2299 objfile_debug_name (objfile),
2300 block_index == GLOBAL_BLOCK
2301 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2302 name, domain_name (domain));
2303 }
2304
2305 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2306 if (cust == NULL)
2307 {
2308 if (symbol_lookup_debug > 1)
2309 {
2310 fprintf_unfiltered (gdb_stdlog,
2311 "lookup_symbol_via_quick_fns (...) = NULL\n");
2312 }
2313 return (struct block_symbol) {NULL, NULL};
2314 }
2315
2316 bv = COMPUNIT_BLOCKVECTOR (cust);
2317 block = BLOCKVECTOR_BLOCK (bv, block_index);
2318 result.symbol = block_lookup_symbol (block, name, domain);
2319 if (result.symbol == NULL)
2320 error_in_psymtab_expansion (block_index, name, cust);
2321
2322 if (symbol_lookup_debug > 1)
2323 {
2324 fprintf_unfiltered (gdb_stdlog,
2325 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2326 host_address_to_string (result.symbol),
2327 host_address_to_string (block));
2328 }
2329
2330 result.symbol = fixup_symbol_section (result.symbol, objfile);
2331 result.block = block;
2332 return result;
2333 }
2334
2335 /* See symtab.h. */
2336
2337 struct block_symbol
2338 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2339 const char *name,
2340 const struct block *block,
2341 const domain_enum domain)
2342 {
2343 struct block_symbol result;
2344
2345 /* NOTE: carlton/2003-05-19: The comments below were written when
2346 this (or what turned into this) was part of lookup_symbol_aux;
2347 I'm much less worried about these questions now, since these
2348 decisions have turned out well, but I leave these comments here
2349 for posterity. */
2350
2351 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2352 not it would be appropriate to search the current global block
2353 here as well. (That's what this code used to do before the
2354 is_a_field_of_this check was moved up.) On the one hand, it's
2355 redundant with the lookup in all objfiles search that happens
2356 next. On the other hand, if decode_line_1 is passed an argument
2357 like filename:var, then the user presumably wants 'var' to be
2358 searched for in filename. On the third hand, there shouldn't be
2359 multiple global variables all of which are named 'var', and it's
2360 not like decode_line_1 has ever restricted its search to only
2361 global variables in a single filename. All in all, only
2362 searching the static block here seems best: it's correct and it's
2363 cleanest. */
2364
2365 /* NOTE: carlton/2002-12-05: There's also a possible performance
2366 issue here: if you usually search for global symbols in the
2367 current file, then it would be slightly better to search the
2368 current global block before searching all the symtabs. But there
2369 are other factors that have a much greater effect on performance
2370 than that one, so I don't think we should worry about that for
2371 now. */
2372
2373 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2374 the current objfile. Searching the current objfile first is useful
2375 for both matching user expectations as well as performance. */
2376
2377 result = lookup_symbol_in_static_block (name, block, domain);
2378 if (result.symbol != NULL)
2379 return result;
2380
2381 /* If we didn't find a definition for a builtin type in the static block,
2382 search for it now. This is actually the right thing to do and can be
2383 a massive performance win. E.g., when debugging a program with lots of
2384 shared libraries we could search all of them only to find out the
2385 builtin type isn't defined in any of them. This is common for types
2386 like "void". */
2387 if (domain == VAR_DOMAIN)
2388 {
2389 struct gdbarch *gdbarch;
2390
2391 if (block == NULL)
2392 gdbarch = target_gdbarch ();
2393 else
2394 gdbarch = block_gdbarch (block);
2395 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2396 gdbarch, name);
2397 result.block = NULL;
2398 if (result.symbol != NULL)
2399 return result;
2400 }
2401
2402 return lookup_global_symbol (name, block, domain);
2403 }
2404
2405 /* See symtab.h. */
2406
2407 struct block_symbol
2408 lookup_symbol_in_static_block (const char *name,
2409 const struct block *block,
2410 const domain_enum domain)
2411 {
2412 const struct block *static_block = block_static_block (block);
2413 struct symbol *sym;
2414
2415 if (static_block == NULL)
2416 return (struct block_symbol) {NULL, NULL};
2417
2418 if (symbol_lookup_debug)
2419 {
2420 struct objfile *objfile = lookup_objfile_from_block (static_block);
2421
2422 fprintf_unfiltered (gdb_stdlog,
2423 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2424 " %s)\n",
2425 name,
2426 host_address_to_string (block),
2427 objfile_debug_name (objfile),
2428 domain_name (domain));
2429 }
2430
2431 sym = lookup_symbol_in_block (name, static_block, domain);
2432 if (symbol_lookup_debug)
2433 {
2434 fprintf_unfiltered (gdb_stdlog,
2435 "lookup_symbol_in_static_block (...) = %s\n",
2436 sym != NULL ? host_address_to_string (sym) : "NULL");
2437 }
2438 return (struct block_symbol) {sym, static_block};
2439 }
2440
2441 /* Perform the standard symbol lookup of NAME in OBJFILE:
2442 1) First search expanded symtabs, and if not found
2443 2) Search the "quick" symtabs (partial or .gdb_index).
2444 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2445
2446 static struct block_symbol
2447 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2448 const char *name, const domain_enum domain)
2449 {
2450 struct block_symbol result;
2451
2452 if (symbol_lookup_debug)
2453 {
2454 fprintf_unfiltered (gdb_stdlog,
2455 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2456 objfile_debug_name (objfile),
2457 block_index == GLOBAL_BLOCK
2458 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2459 name, domain_name (domain));
2460 }
2461
2462 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2463 name, domain);
2464 if (result.symbol != NULL)
2465 {
2466 if (symbol_lookup_debug)
2467 {
2468 fprintf_unfiltered (gdb_stdlog,
2469 "lookup_symbol_in_objfile (...) = %s"
2470 " (in symtabs)\n",
2471 host_address_to_string (result.symbol));
2472 }
2473 return result;
2474 }
2475
2476 result = lookup_symbol_via_quick_fns (objfile, block_index,
2477 name, domain);
2478 if (symbol_lookup_debug)
2479 {
2480 fprintf_unfiltered (gdb_stdlog,
2481 "lookup_symbol_in_objfile (...) = %s%s\n",
2482 result.symbol != NULL
2483 ? host_address_to_string (result.symbol)
2484 : "NULL",
2485 result.symbol != NULL ? " (via quick fns)" : "");
2486 }
2487 return result;
2488 }
2489
2490 /* See symtab.h. */
2491
2492 struct block_symbol
2493 lookup_static_symbol (const char *name, const domain_enum domain)
2494 {
2495 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2496 struct objfile *objfile;
2497 struct block_symbol result;
2498 struct block_symbol_cache *bsc;
2499 struct symbol_cache_slot *slot;
2500
2501 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2502 NULL for OBJFILE_CONTEXT. */
2503 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2504 &bsc, &slot);
2505 if (result.symbol != NULL)
2506 {
2507 if (SYMBOL_LOOKUP_FAILED_P (result))
2508 return (struct block_symbol) {NULL, NULL};
2509 return result;
2510 }
2511
2512 ALL_OBJFILES (objfile)
2513 {
2514 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2515 if (result.symbol != NULL)
2516 {
2517 /* Still pass NULL for OBJFILE_CONTEXT here. */
2518 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2519 result.block);
2520 return result;
2521 }
2522 }
2523
2524 /* Still pass NULL for OBJFILE_CONTEXT here. */
2525 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2526 return (struct block_symbol) {NULL, NULL};
2527 }
2528
2529 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2530
2531 struct global_sym_lookup_data
2532 {
2533 /* The name of the symbol we are searching for. */
2534 const char *name;
2535
2536 /* The domain to use for our search. */
2537 domain_enum domain;
2538
2539 /* The field where the callback should store the symbol if found.
2540 It should be initialized to {NULL, NULL} before the search is started. */
2541 struct block_symbol result;
2542 };
2543
2544 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2545 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2546 OBJFILE. The arguments for the search are passed via CB_DATA,
2547 which in reality is a pointer to struct global_sym_lookup_data. */
2548
2549 static int
2550 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2551 void *cb_data)
2552 {
2553 struct global_sym_lookup_data *data =
2554 (struct global_sym_lookup_data *) cb_data;
2555
2556 gdb_assert (data->result.symbol == NULL
2557 && data->result.block == NULL);
2558
2559 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2560 data->name, data->domain);
2561
2562 /* If we found a match, tell the iterator to stop. Otherwise,
2563 keep going. */
2564 return (data->result.symbol != NULL);
2565 }
2566
2567 /* See symtab.h. */
2568
2569 struct block_symbol
2570 lookup_global_symbol (const char *name,
2571 const struct block *block,
2572 const domain_enum domain)
2573 {
2574 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2575 struct block_symbol result;
2576 struct objfile *objfile;
2577 struct global_sym_lookup_data lookup_data;
2578 struct block_symbol_cache *bsc;
2579 struct symbol_cache_slot *slot;
2580
2581 objfile = lookup_objfile_from_block (block);
2582
2583 /* First see if we can find the symbol in the cache.
2584 This works because we use the current objfile to qualify the lookup. */
2585 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2586 &bsc, &slot);
2587 if (result.symbol != NULL)
2588 {
2589 if (SYMBOL_LOOKUP_FAILED_P (result))
2590 return (struct block_symbol) {NULL, NULL};
2591 return result;
2592 }
2593
2594 /* Call library-specific lookup procedure. */
2595 if (objfile != NULL)
2596 result = solib_global_lookup (objfile, name, domain);
2597
2598 /* If that didn't work go a global search (of global blocks, heh). */
2599 if (result.symbol == NULL)
2600 {
2601 memset (&lookup_data, 0, sizeof (lookup_data));
2602 lookup_data.name = name;
2603 lookup_data.domain = domain;
2604 gdbarch_iterate_over_objfiles_in_search_order
2605 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2606 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2607 result = lookup_data.result;
2608 }
2609
2610 if (result.symbol != NULL)
2611 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2612 else
2613 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2614
2615 return result;
2616 }
2617
2618 int
2619 symbol_matches_domain (enum language symbol_language,
2620 domain_enum symbol_domain,
2621 domain_enum domain)
2622 {
2623 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2624 Similarly, any Ada type declaration implicitly defines a typedef. */
2625 if (symbol_language == language_cplus
2626 || symbol_language == language_d
2627 || symbol_language == language_ada)
2628 {
2629 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2630 && symbol_domain == STRUCT_DOMAIN)
2631 return 1;
2632 }
2633 /* For all other languages, strict match is required. */
2634 return (symbol_domain == domain);
2635 }
2636
2637 /* See symtab.h. */
2638
2639 struct type *
2640 lookup_transparent_type (const char *name)
2641 {
2642 return current_language->la_lookup_transparent_type (name);
2643 }
2644
2645 /* A helper for basic_lookup_transparent_type that interfaces with the
2646 "quick" symbol table functions. */
2647
2648 static struct type *
2649 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2650 const char *name)
2651 {
2652 struct compunit_symtab *cust;
2653 const struct blockvector *bv;
2654 struct block *block;
2655 struct symbol *sym;
2656
2657 if (!objfile->sf)
2658 return NULL;
2659 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2660 STRUCT_DOMAIN);
2661 if (cust == NULL)
2662 return NULL;
2663
2664 bv = COMPUNIT_BLOCKVECTOR (cust);
2665 block = BLOCKVECTOR_BLOCK (bv, block_index);
2666 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2667 block_find_non_opaque_type, NULL);
2668 if (sym == NULL)
2669 error_in_psymtab_expansion (block_index, name, cust);
2670 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2671 return SYMBOL_TYPE (sym);
2672 }
2673
2674 /* Subroutine of basic_lookup_transparent_type to simplify it.
2675 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2676 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2677
2678 static struct type *
2679 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2680 const char *name)
2681 {
2682 const struct compunit_symtab *cust;
2683 const struct blockvector *bv;
2684 const struct block *block;
2685 const struct symbol *sym;
2686
2687 ALL_OBJFILE_COMPUNITS (objfile, cust)
2688 {
2689 bv = COMPUNIT_BLOCKVECTOR (cust);
2690 block = BLOCKVECTOR_BLOCK (bv, block_index);
2691 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2692 block_find_non_opaque_type, NULL);
2693 if (sym != NULL)
2694 {
2695 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2696 return SYMBOL_TYPE (sym);
2697 }
2698 }
2699
2700 return NULL;
2701 }
2702
2703 /* The standard implementation of lookup_transparent_type. This code
2704 was modeled on lookup_symbol -- the parts not relevant to looking
2705 up types were just left out. In particular it's assumed here that
2706 types are available in STRUCT_DOMAIN and only in file-static or
2707 global blocks. */
2708
2709 struct type *
2710 basic_lookup_transparent_type (const char *name)
2711 {
2712 struct objfile *objfile;
2713 struct type *t;
2714
2715 /* Now search all the global symbols. Do the symtab's first, then
2716 check the psymtab's. If a psymtab indicates the existence
2717 of the desired name as a global, then do psymtab-to-symtab
2718 conversion on the fly and return the found symbol. */
2719
2720 ALL_OBJFILES (objfile)
2721 {
2722 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2723 if (t)
2724 return t;
2725 }
2726
2727 ALL_OBJFILES (objfile)
2728 {
2729 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2730 if (t)
2731 return t;
2732 }
2733
2734 /* Now search the static file-level symbols.
2735 Not strictly correct, but more useful than an error.
2736 Do the symtab's first, then
2737 check the psymtab's. If a psymtab indicates the existence
2738 of the desired name as a file-level static, then do psymtab-to-symtab
2739 conversion on the fly and return the found symbol. */
2740
2741 ALL_OBJFILES (objfile)
2742 {
2743 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2744 if (t)
2745 return t;
2746 }
2747
2748 ALL_OBJFILES (objfile)
2749 {
2750 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2751 if (t)
2752 return t;
2753 }
2754
2755 return (struct type *) 0;
2756 }
2757
2758 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2759
2760 For each symbol that matches, CALLBACK is called. The symbol is
2761 passed to the callback.
2762
2763 If CALLBACK returns false, the iteration ends. Otherwise, the
2764 search continues. */
2765
2766 void
2767 iterate_over_symbols (const struct block *block, const char *name,
2768 const domain_enum domain,
2769 gdb::function_view<symbol_found_callback_ftype> callback)
2770 {
2771 struct block_iterator iter;
2772 struct symbol *sym;
2773
2774 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2775 {
2776 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2777 SYMBOL_DOMAIN (sym), domain))
2778 {
2779 if (!callback (sym))
2780 return;
2781 }
2782 }
2783 }
2784
2785 /* Find the compunit symtab associated with PC and SECTION.
2786 This will read in debug info as necessary. */
2787
2788 struct compunit_symtab *
2789 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2790 {
2791 struct compunit_symtab *cust;
2792 struct compunit_symtab *best_cust = NULL;
2793 struct objfile *objfile;
2794 CORE_ADDR distance = 0;
2795 struct bound_minimal_symbol msymbol;
2796
2797 /* If we know that this is not a text address, return failure. This is
2798 necessary because we loop based on the block's high and low code
2799 addresses, which do not include the data ranges, and because
2800 we call find_pc_sect_psymtab which has a similar restriction based
2801 on the partial_symtab's texthigh and textlow. */
2802 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2803 if (msymbol.minsym
2804 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2805 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2806 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2807 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2808 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2809 return NULL;
2810
2811 /* Search all symtabs for the one whose file contains our address, and which
2812 is the smallest of all the ones containing the address. This is designed
2813 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2814 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2815 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2816
2817 This happens for native ecoff format, where code from included files
2818 gets its own symtab. The symtab for the included file should have
2819 been read in already via the dependency mechanism.
2820 It might be swifter to create several symtabs with the same name
2821 like xcoff does (I'm not sure).
2822
2823 It also happens for objfiles that have their functions reordered.
2824 For these, the symtab we are looking for is not necessarily read in. */
2825
2826 ALL_COMPUNITS (objfile, cust)
2827 {
2828 struct block *b;
2829 const struct blockvector *bv;
2830
2831 bv = COMPUNIT_BLOCKVECTOR (cust);
2832 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2833
2834 if (BLOCK_START (b) <= pc
2835 && BLOCK_END (b) > pc
2836 && (distance == 0
2837 || BLOCK_END (b) - BLOCK_START (b) < distance))
2838 {
2839 /* For an objfile that has its functions reordered,
2840 find_pc_psymtab will find the proper partial symbol table
2841 and we simply return its corresponding symtab. */
2842 /* In order to better support objfiles that contain both
2843 stabs and coff debugging info, we continue on if a psymtab
2844 can't be found. */
2845 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2846 {
2847 struct compunit_symtab *result;
2848
2849 result
2850 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2851 msymbol,
2852 pc, section,
2853 0);
2854 if (result != NULL)
2855 return result;
2856 }
2857 if (section != 0)
2858 {
2859 struct block_iterator iter;
2860 struct symbol *sym = NULL;
2861
2862 ALL_BLOCK_SYMBOLS (b, iter, sym)
2863 {
2864 fixup_symbol_section (sym, objfile);
2865 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2866 section))
2867 break;
2868 }
2869 if (sym == NULL)
2870 continue; /* No symbol in this symtab matches
2871 section. */
2872 }
2873 distance = BLOCK_END (b) - BLOCK_START (b);
2874 best_cust = cust;
2875 }
2876 }
2877
2878 if (best_cust != NULL)
2879 return best_cust;
2880
2881 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2882
2883 ALL_OBJFILES (objfile)
2884 {
2885 struct compunit_symtab *result;
2886
2887 if (!objfile->sf)
2888 continue;
2889 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2890 msymbol,
2891 pc, section,
2892 1);
2893 if (result != NULL)
2894 return result;
2895 }
2896
2897 return NULL;
2898 }
2899
2900 /* Find the compunit symtab associated with PC.
2901 This will read in debug info as necessary.
2902 Backward compatibility, no section. */
2903
2904 struct compunit_symtab *
2905 find_pc_compunit_symtab (CORE_ADDR pc)
2906 {
2907 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2908 }
2909 \f
2910
2911 /* Find the source file and line number for a given PC value and SECTION.
2912 Return a structure containing a symtab pointer, a line number,
2913 and a pc range for the entire source line.
2914 The value's .pc field is NOT the specified pc.
2915 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2916 use the line that ends there. Otherwise, in that case, the line
2917 that begins there is used. */
2918
2919 /* The big complication here is that a line may start in one file, and end just
2920 before the start of another file. This usually occurs when you #include
2921 code in the middle of a subroutine. To properly find the end of a line's PC
2922 range, we must search all symtabs associated with this compilation unit, and
2923 find the one whose first PC is closer than that of the next line in this
2924 symtab. */
2925
2926 /* If it's worth the effort, we could be using a binary search. */
2927
2928 struct symtab_and_line
2929 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2930 {
2931 struct compunit_symtab *cust;
2932 struct symtab *iter_s;
2933 struct linetable *l;
2934 int len;
2935 int i;
2936 struct linetable_entry *item;
2937 struct symtab_and_line val;
2938 const struct blockvector *bv;
2939 struct bound_minimal_symbol msymbol;
2940
2941 /* Info on best line seen so far, and where it starts, and its file. */
2942
2943 struct linetable_entry *best = NULL;
2944 CORE_ADDR best_end = 0;
2945 struct symtab *best_symtab = 0;
2946
2947 /* Store here the first line number
2948 of a file which contains the line at the smallest pc after PC.
2949 If we don't find a line whose range contains PC,
2950 we will use a line one less than this,
2951 with a range from the start of that file to the first line's pc. */
2952 struct linetable_entry *alt = NULL;
2953
2954 /* Info on best line seen in this file. */
2955
2956 struct linetable_entry *prev;
2957
2958 /* If this pc is not from the current frame,
2959 it is the address of the end of a call instruction.
2960 Quite likely that is the start of the following statement.
2961 But what we want is the statement containing the instruction.
2962 Fudge the pc to make sure we get that. */
2963
2964 init_sal (&val); /* initialize to zeroes */
2965
2966 val.pspace = current_program_space;
2967
2968 /* It's tempting to assume that, if we can't find debugging info for
2969 any function enclosing PC, that we shouldn't search for line
2970 number info, either. However, GAS can emit line number info for
2971 assembly files --- very helpful when debugging hand-written
2972 assembly code. In such a case, we'd have no debug info for the
2973 function, but we would have line info. */
2974
2975 if (notcurrent)
2976 pc -= 1;
2977
2978 /* elz: added this because this function returned the wrong
2979 information if the pc belongs to a stub (import/export)
2980 to call a shlib function. This stub would be anywhere between
2981 two functions in the target, and the line info was erroneously
2982 taken to be the one of the line before the pc. */
2983
2984 /* RT: Further explanation:
2985
2986 * We have stubs (trampolines) inserted between procedures.
2987 *
2988 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2989 * exists in the main image.
2990 *
2991 * In the minimal symbol table, we have a bunch of symbols
2992 * sorted by start address. The stubs are marked as "trampoline",
2993 * the others appear as text. E.g.:
2994 *
2995 * Minimal symbol table for main image
2996 * main: code for main (text symbol)
2997 * shr1: stub (trampoline symbol)
2998 * foo: code for foo (text symbol)
2999 * ...
3000 * Minimal symbol table for "shr1" image:
3001 * ...
3002 * shr1: code for shr1 (text symbol)
3003 * ...
3004 *
3005 * So the code below is trying to detect if we are in the stub
3006 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3007 * and if found, do the symbolization from the real-code address
3008 * rather than the stub address.
3009 *
3010 * Assumptions being made about the minimal symbol table:
3011 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3012 * if we're really in the trampoline.s If we're beyond it (say
3013 * we're in "foo" in the above example), it'll have a closer
3014 * symbol (the "foo" text symbol for example) and will not
3015 * return the trampoline.
3016 * 2. lookup_minimal_symbol_text() will find a real text symbol
3017 * corresponding to the trampoline, and whose address will
3018 * be different than the trampoline address. I put in a sanity
3019 * check for the address being the same, to avoid an
3020 * infinite recursion.
3021 */
3022 msymbol = lookup_minimal_symbol_by_pc (pc);
3023 if (msymbol.minsym != NULL)
3024 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3025 {
3026 struct bound_minimal_symbol mfunsym
3027 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3028 NULL);
3029
3030 if (mfunsym.minsym == NULL)
3031 /* I eliminated this warning since it is coming out
3032 * in the following situation:
3033 * gdb shmain // test program with shared libraries
3034 * (gdb) break shr1 // function in shared lib
3035 * Warning: In stub for ...
3036 * In the above situation, the shared lib is not loaded yet,
3037 * so of course we can't find the real func/line info,
3038 * but the "break" still works, and the warning is annoying.
3039 * So I commented out the warning. RT */
3040 /* warning ("In stub for %s; unable to find real function/line info",
3041 SYMBOL_LINKAGE_NAME (msymbol)); */
3042 ;
3043 /* fall through */
3044 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3045 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3046 /* Avoid infinite recursion */
3047 /* See above comment about why warning is commented out. */
3048 /* warning ("In stub for %s; unable to find real function/line info",
3049 SYMBOL_LINKAGE_NAME (msymbol)); */
3050 ;
3051 /* fall through */
3052 else
3053 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3054 }
3055
3056
3057 cust = find_pc_sect_compunit_symtab (pc, section);
3058 if (cust == NULL)
3059 {
3060 /* If no symbol information, return previous pc. */
3061 if (notcurrent)
3062 pc++;
3063 val.pc = pc;
3064 return val;
3065 }
3066
3067 bv = COMPUNIT_BLOCKVECTOR (cust);
3068
3069 /* Look at all the symtabs that share this blockvector.
3070 They all have the same apriori range, that we found was right;
3071 but they have different line tables. */
3072
3073 ALL_COMPUNIT_FILETABS (cust, iter_s)
3074 {
3075 /* Find the best line in this symtab. */
3076 l = SYMTAB_LINETABLE (iter_s);
3077 if (!l)
3078 continue;
3079 len = l->nitems;
3080 if (len <= 0)
3081 {
3082 /* I think len can be zero if the symtab lacks line numbers
3083 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3084 I'm not sure which, and maybe it depends on the symbol
3085 reader). */
3086 continue;
3087 }
3088
3089 prev = NULL;
3090 item = l->item; /* Get first line info. */
3091
3092 /* Is this file's first line closer than the first lines of other files?
3093 If so, record this file, and its first line, as best alternate. */
3094 if (item->pc > pc && (!alt || item->pc < alt->pc))
3095 alt = item;
3096
3097 for (i = 0; i < len; i++, item++)
3098 {
3099 /* Leave prev pointing to the linetable entry for the last line
3100 that started at or before PC. */
3101 if (item->pc > pc)
3102 break;
3103
3104 prev = item;
3105 }
3106
3107 /* At this point, prev points at the line whose start addr is <= pc, and
3108 item points at the next line. If we ran off the end of the linetable
3109 (pc >= start of the last line), then prev == item. If pc < start of
3110 the first line, prev will not be set. */
3111
3112 /* Is this file's best line closer than the best in the other files?
3113 If so, record this file, and its best line, as best so far. Don't
3114 save prev if it represents the end of a function (i.e. line number
3115 0) instead of a real line. */
3116
3117 if (prev && prev->line && (!best || prev->pc > best->pc))
3118 {
3119 best = prev;
3120 best_symtab = iter_s;
3121
3122 /* Discard BEST_END if it's before the PC of the current BEST. */
3123 if (best_end <= best->pc)
3124 best_end = 0;
3125 }
3126
3127 /* If another line (denoted by ITEM) is in the linetable and its
3128 PC is after BEST's PC, but before the current BEST_END, then
3129 use ITEM's PC as the new best_end. */
3130 if (best && i < len && item->pc > best->pc
3131 && (best_end == 0 || best_end > item->pc))
3132 best_end = item->pc;
3133 }
3134
3135 if (!best_symtab)
3136 {
3137 /* If we didn't find any line number info, just return zeros.
3138 We used to return alt->line - 1 here, but that could be
3139 anywhere; if we don't have line number info for this PC,
3140 don't make some up. */
3141 val.pc = pc;
3142 }
3143 else if (best->line == 0)
3144 {
3145 /* If our best fit is in a range of PC's for which no line
3146 number info is available (line number is zero) then we didn't
3147 find any valid line information. */
3148 val.pc = pc;
3149 }
3150 else
3151 {
3152 val.symtab = best_symtab;
3153 val.line = best->line;
3154 val.pc = best->pc;
3155 if (best_end && (!alt || best_end < alt->pc))
3156 val.end = best_end;
3157 else if (alt)
3158 val.end = alt->pc;
3159 else
3160 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3161 }
3162 val.section = section;
3163 return val;
3164 }
3165
3166 /* Backward compatibility (no section). */
3167
3168 struct symtab_and_line
3169 find_pc_line (CORE_ADDR pc, int notcurrent)
3170 {
3171 struct obj_section *section;
3172
3173 section = find_pc_overlay (pc);
3174 if (pc_in_unmapped_range (pc, section))
3175 pc = overlay_mapped_address (pc, section);
3176 return find_pc_sect_line (pc, section, notcurrent);
3177 }
3178
3179 /* See symtab.h. */
3180
3181 struct symtab *
3182 find_pc_line_symtab (CORE_ADDR pc)
3183 {
3184 struct symtab_and_line sal;
3185
3186 /* This always passes zero for NOTCURRENT to find_pc_line.
3187 There are currently no callers that ever pass non-zero. */
3188 sal = find_pc_line (pc, 0);
3189 return sal.symtab;
3190 }
3191 \f
3192 /* Find line number LINE in any symtab whose name is the same as
3193 SYMTAB.
3194
3195 If found, return the symtab that contains the linetable in which it was
3196 found, set *INDEX to the index in the linetable of the best entry
3197 found, and set *EXACT_MATCH nonzero if the value returned is an
3198 exact match.
3199
3200 If not found, return NULL. */
3201
3202 struct symtab *
3203 find_line_symtab (struct symtab *symtab, int line,
3204 int *index, int *exact_match)
3205 {
3206 int exact = 0; /* Initialized here to avoid a compiler warning. */
3207
3208 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3209 so far seen. */
3210
3211 int best_index;
3212 struct linetable *best_linetable;
3213 struct symtab *best_symtab;
3214
3215 /* First try looking it up in the given symtab. */
3216 best_linetable = SYMTAB_LINETABLE (symtab);
3217 best_symtab = symtab;
3218 best_index = find_line_common (best_linetable, line, &exact, 0);
3219 if (best_index < 0 || !exact)
3220 {
3221 /* Didn't find an exact match. So we better keep looking for
3222 another symtab with the same name. In the case of xcoff,
3223 multiple csects for one source file (produced by IBM's FORTRAN
3224 compiler) produce multiple symtabs (this is unavoidable
3225 assuming csects can be at arbitrary places in memory and that
3226 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3227
3228 /* BEST is the smallest linenumber > LINE so far seen,
3229 or 0 if none has been seen so far.
3230 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3231 int best;
3232
3233 struct objfile *objfile;
3234 struct compunit_symtab *cu;
3235 struct symtab *s;
3236
3237 if (best_index >= 0)
3238 best = best_linetable->item[best_index].line;
3239 else
3240 best = 0;
3241
3242 ALL_OBJFILES (objfile)
3243 {
3244 if (objfile->sf)
3245 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3246 symtab_to_fullname (symtab));
3247 }
3248
3249 ALL_FILETABS (objfile, cu, s)
3250 {
3251 struct linetable *l;
3252 int ind;
3253
3254 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3255 continue;
3256 if (FILENAME_CMP (symtab_to_fullname (symtab),
3257 symtab_to_fullname (s)) != 0)
3258 continue;
3259 l = SYMTAB_LINETABLE (s);
3260 ind = find_line_common (l, line, &exact, 0);
3261 if (ind >= 0)
3262 {
3263 if (exact)
3264 {
3265 best_index = ind;
3266 best_linetable = l;
3267 best_symtab = s;
3268 goto done;
3269 }
3270 if (best == 0 || l->item[ind].line < best)
3271 {
3272 best = l->item[ind].line;
3273 best_index = ind;
3274 best_linetable = l;
3275 best_symtab = s;
3276 }
3277 }
3278 }
3279 }
3280 done:
3281 if (best_index < 0)
3282 return NULL;
3283
3284 if (index)
3285 *index = best_index;
3286 if (exact_match)
3287 *exact_match = exact;
3288
3289 return best_symtab;
3290 }
3291
3292 /* Given SYMTAB, returns all the PCs function in the symtab that
3293 exactly match LINE. Returns NULL if there are no exact matches,
3294 but updates BEST_ITEM in this case. */
3295
3296 VEC (CORE_ADDR) *
3297 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3298 struct linetable_entry **best_item)
3299 {
3300 int start = 0;
3301 VEC (CORE_ADDR) *result = NULL;
3302
3303 /* First, collect all the PCs that are at this line. */
3304 while (1)
3305 {
3306 int was_exact;
3307 int idx;
3308
3309 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3310 start);
3311 if (idx < 0)
3312 break;
3313
3314 if (!was_exact)
3315 {
3316 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3317
3318 if (*best_item == NULL || item->line < (*best_item)->line)
3319 *best_item = item;
3320
3321 break;
3322 }
3323
3324 VEC_safe_push (CORE_ADDR, result,
3325 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3326 start = idx + 1;
3327 }
3328
3329 return result;
3330 }
3331
3332 \f
3333 /* Set the PC value for a given source file and line number and return true.
3334 Returns zero for invalid line number (and sets the PC to 0).
3335 The source file is specified with a struct symtab. */
3336
3337 int
3338 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3339 {
3340 struct linetable *l;
3341 int ind;
3342
3343 *pc = 0;
3344 if (symtab == 0)
3345 return 0;
3346
3347 symtab = find_line_symtab (symtab, line, &ind, NULL);
3348 if (symtab != NULL)
3349 {
3350 l = SYMTAB_LINETABLE (symtab);
3351 *pc = l->item[ind].pc;
3352 return 1;
3353 }
3354 else
3355 return 0;
3356 }
3357
3358 /* Find the range of pc values in a line.
3359 Store the starting pc of the line into *STARTPTR
3360 and the ending pc (start of next line) into *ENDPTR.
3361 Returns 1 to indicate success.
3362 Returns 0 if could not find the specified line. */
3363
3364 int
3365 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3366 CORE_ADDR *endptr)
3367 {
3368 CORE_ADDR startaddr;
3369 struct symtab_and_line found_sal;
3370
3371 startaddr = sal.pc;
3372 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3373 return 0;
3374
3375 /* This whole function is based on address. For example, if line 10 has
3376 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3377 "info line *0x123" should say the line goes from 0x100 to 0x200
3378 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3379 This also insures that we never give a range like "starts at 0x134
3380 and ends at 0x12c". */
3381
3382 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3383 if (found_sal.line != sal.line)
3384 {
3385 /* The specified line (sal) has zero bytes. */
3386 *startptr = found_sal.pc;
3387 *endptr = found_sal.pc;
3388 }
3389 else
3390 {
3391 *startptr = found_sal.pc;
3392 *endptr = found_sal.end;
3393 }
3394 return 1;
3395 }
3396
3397 /* Given a line table and a line number, return the index into the line
3398 table for the pc of the nearest line whose number is >= the specified one.
3399 Return -1 if none is found. The value is >= 0 if it is an index.
3400 START is the index at which to start searching the line table.
3401
3402 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3403
3404 static int
3405 find_line_common (struct linetable *l, int lineno,
3406 int *exact_match, int start)
3407 {
3408 int i;
3409 int len;
3410
3411 /* BEST is the smallest linenumber > LINENO so far seen,
3412 or 0 if none has been seen so far.
3413 BEST_INDEX identifies the item for it. */
3414
3415 int best_index = -1;
3416 int best = 0;
3417
3418 *exact_match = 0;
3419
3420 if (lineno <= 0)
3421 return -1;
3422 if (l == 0)
3423 return -1;
3424
3425 len = l->nitems;
3426 for (i = start; i < len; i++)
3427 {
3428 struct linetable_entry *item = &(l->item[i]);
3429
3430 if (item->line == lineno)
3431 {
3432 /* Return the first (lowest address) entry which matches. */
3433 *exact_match = 1;
3434 return i;
3435 }
3436
3437 if (item->line > lineno && (best == 0 || item->line < best))
3438 {
3439 best = item->line;
3440 best_index = i;
3441 }
3442 }
3443
3444 /* If we got here, we didn't get an exact match. */
3445 return best_index;
3446 }
3447
3448 int
3449 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3450 {
3451 struct symtab_and_line sal;
3452
3453 sal = find_pc_line (pc, 0);
3454 *startptr = sal.pc;
3455 *endptr = sal.end;
3456 return sal.symtab != 0;
3457 }
3458
3459 /* Given a function symbol SYM, find the symtab and line for the start
3460 of the function.
3461 If the argument FUNFIRSTLINE is nonzero, we want the first line
3462 of real code inside the function.
3463 This function should return SALs matching those from minsym_found,
3464 otherwise false multiple-locations breakpoints could be placed. */
3465
3466 struct symtab_and_line
3467 find_function_start_sal (struct symbol *sym, int funfirstline)
3468 {
3469 struct symtab_and_line sal;
3470 struct obj_section *section;
3471
3472 fixup_symbol_section (sym, NULL);
3473 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3474 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3475
3476 if (funfirstline && sal.symtab != NULL
3477 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3478 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3479 {
3480 struct gdbarch *gdbarch = symbol_arch (sym);
3481
3482 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3483 if (gdbarch_skip_entrypoint_p (gdbarch))
3484 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3485 return sal;
3486 }
3487
3488 /* We always should have a line for the function start address.
3489 If we don't, something is odd. Create a plain SAL refering
3490 just the PC and hope that skip_prologue_sal (if requested)
3491 can find a line number for after the prologue. */
3492 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3493 {
3494 init_sal (&sal);
3495 sal.pspace = current_program_space;
3496 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3497 sal.section = section;
3498 }
3499
3500 if (funfirstline)
3501 skip_prologue_sal (&sal);
3502
3503 return sal;
3504 }
3505
3506 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3507 address for that function that has an entry in SYMTAB's line info
3508 table. If such an entry cannot be found, return FUNC_ADDR
3509 unaltered. */
3510
3511 static CORE_ADDR
3512 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3513 {
3514 CORE_ADDR func_start, func_end;
3515 struct linetable *l;
3516 int i;
3517
3518 /* Give up if this symbol has no lineinfo table. */
3519 l = SYMTAB_LINETABLE (symtab);
3520 if (l == NULL)
3521 return func_addr;
3522
3523 /* Get the range for the function's PC values, or give up if we
3524 cannot, for some reason. */
3525 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3526 return func_addr;
3527
3528 /* Linetable entries are ordered by PC values, see the commentary in
3529 symtab.h where `struct linetable' is defined. Thus, the first
3530 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3531 address we are looking for. */
3532 for (i = 0; i < l->nitems; i++)
3533 {
3534 struct linetable_entry *item = &(l->item[i]);
3535
3536 /* Don't use line numbers of zero, they mark special entries in
3537 the table. See the commentary on symtab.h before the
3538 definition of struct linetable. */
3539 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3540 return item->pc;
3541 }
3542
3543 return func_addr;
3544 }
3545
3546 /* Adjust SAL to the first instruction past the function prologue.
3547 If the PC was explicitly specified, the SAL is not changed.
3548 If the line number was explicitly specified, at most the SAL's PC
3549 is updated. If SAL is already past the prologue, then do nothing. */
3550
3551 void
3552 skip_prologue_sal (struct symtab_and_line *sal)
3553 {
3554 struct symbol *sym;
3555 struct symtab_and_line start_sal;
3556 struct cleanup *old_chain;
3557 CORE_ADDR pc, saved_pc;
3558 struct obj_section *section;
3559 const char *name;
3560 struct objfile *objfile;
3561 struct gdbarch *gdbarch;
3562 const struct block *b, *function_block;
3563 int force_skip, skip;
3564
3565 /* Do not change the SAL if PC was specified explicitly. */
3566 if (sal->explicit_pc)
3567 return;
3568
3569 old_chain = save_current_space_and_thread ();
3570 switch_to_program_space_and_thread (sal->pspace);
3571
3572 sym = find_pc_sect_function (sal->pc, sal->section);
3573 if (sym != NULL)
3574 {
3575 fixup_symbol_section (sym, NULL);
3576
3577 objfile = symbol_objfile (sym);
3578 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3579 section = SYMBOL_OBJ_SECTION (objfile, sym);
3580 name = SYMBOL_LINKAGE_NAME (sym);
3581 }
3582 else
3583 {
3584 struct bound_minimal_symbol msymbol
3585 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3586
3587 if (msymbol.minsym == NULL)
3588 {
3589 do_cleanups (old_chain);
3590 return;
3591 }
3592
3593 objfile = msymbol.objfile;
3594 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3595 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3596 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3597 }
3598
3599 gdbarch = get_objfile_arch (objfile);
3600
3601 /* Process the prologue in two passes. In the first pass try to skip the
3602 prologue (SKIP is true) and verify there is a real need for it (indicated
3603 by FORCE_SKIP). If no such reason was found run a second pass where the
3604 prologue is not skipped (SKIP is false). */
3605
3606 skip = 1;
3607 force_skip = 1;
3608
3609 /* Be conservative - allow direct PC (without skipping prologue) only if we
3610 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3611 have to be set by the caller so we use SYM instead. */
3612 if (sym != NULL
3613 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3614 force_skip = 0;
3615
3616 saved_pc = pc;
3617 do
3618 {
3619 pc = saved_pc;
3620
3621 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3622 so that gdbarch_skip_prologue has something unique to work on. */
3623 if (section_is_overlay (section) && !section_is_mapped (section))
3624 pc = overlay_unmapped_address (pc, section);
3625
3626 /* Skip "first line" of function (which is actually its prologue). */
3627 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3628 if (gdbarch_skip_entrypoint_p (gdbarch))
3629 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3630 if (skip)
3631 pc = gdbarch_skip_prologue (gdbarch, pc);
3632
3633 /* For overlays, map pc back into its mapped VMA range. */
3634 pc = overlay_mapped_address (pc, section);
3635
3636 /* Calculate line number. */
3637 start_sal = find_pc_sect_line (pc, section, 0);
3638
3639 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3640 line is still part of the same function. */
3641 if (skip && start_sal.pc != pc
3642 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3643 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3644 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3645 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3646 {
3647 /* First pc of next line */
3648 pc = start_sal.end;
3649 /* Recalculate the line number (might not be N+1). */
3650 start_sal = find_pc_sect_line (pc, section, 0);
3651 }
3652
3653 /* On targets with executable formats that don't have a concept of
3654 constructors (ELF with .init has, PE doesn't), gcc emits a call
3655 to `__main' in `main' between the prologue and before user
3656 code. */
3657 if (gdbarch_skip_main_prologue_p (gdbarch)
3658 && name && strcmp_iw (name, "main") == 0)
3659 {
3660 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3661 /* Recalculate the line number (might not be N+1). */
3662 start_sal = find_pc_sect_line (pc, section, 0);
3663 force_skip = 1;
3664 }
3665 }
3666 while (!force_skip && skip--);
3667
3668 /* If we still don't have a valid source line, try to find the first
3669 PC in the lineinfo table that belongs to the same function. This
3670 happens with COFF debug info, which does not seem to have an
3671 entry in lineinfo table for the code after the prologue which has
3672 no direct relation to source. For example, this was found to be
3673 the case with the DJGPP target using "gcc -gcoff" when the
3674 compiler inserted code after the prologue to make sure the stack
3675 is aligned. */
3676 if (!force_skip && sym && start_sal.symtab == NULL)
3677 {
3678 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3679 /* Recalculate the line number. */
3680 start_sal = find_pc_sect_line (pc, section, 0);
3681 }
3682
3683 do_cleanups (old_chain);
3684
3685 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3686 forward SAL to the end of the prologue. */
3687 if (sal->pc >= pc)
3688 return;
3689
3690 sal->pc = pc;
3691 sal->section = section;
3692
3693 /* Unless the explicit_line flag was set, update the SAL line
3694 and symtab to correspond to the modified PC location. */
3695 if (sal->explicit_line)
3696 return;
3697
3698 sal->symtab = start_sal.symtab;
3699 sal->line = start_sal.line;
3700 sal->end = start_sal.end;
3701
3702 /* Check if we are now inside an inlined function. If we can,
3703 use the call site of the function instead. */
3704 b = block_for_pc_sect (sal->pc, sal->section);
3705 function_block = NULL;
3706 while (b != NULL)
3707 {
3708 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3709 function_block = b;
3710 else if (BLOCK_FUNCTION (b) != NULL)
3711 break;
3712 b = BLOCK_SUPERBLOCK (b);
3713 }
3714 if (function_block != NULL
3715 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3716 {
3717 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3718 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3719 }
3720 }
3721
3722 /* Given PC at the function's start address, attempt to find the
3723 prologue end using SAL information. Return zero if the skip fails.
3724
3725 A non-optimized prologue traditionally has one SAL for the function
3726 and a second for the function body. A single line function has
3727 them both pointing at the same line.
3728
3729 An optimized prologue is similar but the prologue may contain
3730 instructions (SALs) from the instruction body. Need to skip those
3731 while not getting into the function body.
3732
3733 The functions end point and an increasing SAL line are used as
3734 indicators of the prologue's endpoint.
3735
3736 This code is based on the function refine_prologue_limit
3737 (found in ia64). */
3738
3739 CORE_ADDR
3740 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3741 {
3742 struct symtab_and_line prologue_sal;
3743 CORE_ADDR start_pc;
3744 CORE_ADDR end_pc;
3745 const struct block *bl;
3746
3747 /* Get an initial range for the function. */
3748 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3749 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3750
3751 prologue_sal = find_pc_line (start_pc, 0);
3752 if (prologue_sal.line != 0)
3753 {
3754 /* For languages other than assembly, treat two consecutive line
3755 entries at the same address as a zero-instruction prologue.
3756 The GNU assembler emits separate line notes for each instruction
3757 in a multi-instruction macro, but compilers generally will not
3758 do this. */
3759 if (prologue_sal.symtab->language != language_asm)
3760 {
3761 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3762 int idx = 0;
3763
3764 /* Skip any earlier lines, and any end-of-sequence marker
3765 from a previous function. */
3766 while (linetable->item[idx].pc != prologue_sal.pc
3767 || linetable->item[idx].line == 0)
3768 idx++;
3769
3770 if (idx+1 < linetable->nitems
3771 && linetable->item[idx+1].line != 0
3772 && linetable->item[idx+1].pc == start_pc)
3773 return start_pc;
3774 }
3775
3776 /* If there is only one sal that covers the entire function,
3777 then it is probably a single line function, like
3778 "foo(){}". */
3779 if (prologue_sal.end >= end_pc)
3780 return 0;
3781
3782 while (prologue_sal.end < end_pc)
3783 {
3784 struct symtab_and_line sal;
3785
3786 sal = find_pc_line (prologue_sal.end, 0);
3787 if (sal.line == 0)
3788 break;
3789 /* Assume that a consecutive SAL for the same (or larger)
3790 line mark the prologue -> body transition. */
3791 if (sal.line >= prologue_sal.line)
3792 break;
3793 /* Likewise if we are in a different symtab altogether
3794 (e.g. within a file included via #include).  */
3795 if (sal.symtab != prologue_sal.symtab)
3796 break;
3797
3798 /* The line number is smaller. Check that it's from the
3799 same function, not something inlined. If it's inlined,
3800 then there is no point comparing the line numbers. */
3801 bl = block_for_pc (prologue_sal.end);
3802 while (bl)
3803 {
3804 if (block_inlined_p (bl))
3805 break;
3806 if (BLOCK_FUNCTION (bl))
3807 {
3808 bl = NULL;
3809 break;
3810 }
3811 bl = BLOCK_SUPERBLOCK (bl);
3812 }
3813 if (bl != NULL)
3814 break;
3815
3816 /* The case in which compiler's optimizer/scheduler has
3817 moved instructions into the prologue. We look ahead in
3818 the function looking for address ranges whose
3819 corresponding line number is less the first one that we
3820 found for the function. This is more conservative then
3821 refine_prologue_limit which scans a large number of SALs
3822 looking for any in the prologue. */
3823 prologue_sal = sal;
3824 }
3825 }
3826
3827 if (prologue_sal.end < end_pc)
3828 /* Return the end of this line, or zero if we could not find a
3829 line. */
3830 return prologue_sal.end;
3831 else
3832 /* Don't return END_PC, which is past the end of the function. */
3833 return prologue_sal.pc;
3834 }
3835 \f
3836 /* If P is of the form "operator[ \t]+..." where `...' is
3837 some legitimate operator text, return a pointer to the
3838 beginning of the substring of the operator text.
3839 Otherwise, return "". */
3840
3841 static const char *
3842 operator_chars (const char *p, const char **end)
3843 {
3844 *end = "";
3845 if (!startswith (p, "operator"))
3846 return *end;
3847 p += 8;
3848
3849 /* Don't get faked out by `operator' being part of a longer
3850 identifier. */
3851 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3852 return *end;
3853
3854 /* Allow some whitespace between `operator' and the operator symbol. */
3855 while (*p == ' ' || *p == '\t')
3856 p++;
3857
3858 /* Recognize 'operator TYPENAME'. */
3859
3860 if (isalpha (*p) || *p == '_' || *p == '$')
3861 {
3862 const char *q = p + 1;
3863
3864 while (isalnum (*q) || *q == '_' || *q == '$')
3865 q++;
3866 *end = q;
3867 return p;
3868 }
3869
3870 while (*p)
3871 switch (*p)
3872 {
3873 case '\\': /* regexp quoting */
3874 if (p[1] == '*')
3875 {
3876 if (p[2] == '=') /* 'operator\*=' */
3877 *end = p + 3;
3878 else /* 'operator\*' */
3879 *end = p + 2;
3880 return p;
3881 }
3882 else if (p[1] == '[')
3883 {
3884 if (p[2] == ']')
3885 error (_("mismatched quoting on brackets, "
3886 "try 'operator\\[\\]'"));
3887 else if (p[2] == '\\' && p[3] == ']')
3888 {
3889 *end = p + 4; /* 'operator\[\]' */
3890 return p;
3891 }
3892 else
3893 error (_("nothing is allowed between '[' and ']'"));
3894 }
3895 else
3896 {
3897 /* Gratuitous qoute: skip it and move on. */
3898 p++;
3899 continue;
3900 }
3901 break;
3902 case '!':
3903 case '=':
3904 case '*':
3905 case '/':
3906 case '%':
3907 case '^':
3908 if (p[1] == '=')
3909 *end = p + 2;
3910 else
3911 *end = p + 1;
3912 return p;
3913 case '<':
3914 case '>':
3915 case '+':
3916 case '-':
3917 case '&':
3918 case '|':
3919 if (p[0] == '-' && p[1] == '>')
3920 {
3921 /* Struct pointer member operator 'operator->'. */
3922 if (p[2] == '*')
3923 {
3924 *end = p + 3; /* 'operator->*' */
3925 return p;
3926 }
3927 else if (p[2] == '\\')
3928 {
3929 *end = p + 4; /* Hopefully 'operator->\*' */
3930 return p;
3931 }
3932 else
3933 {
3934 *end = p + 2; /* 'operator->' */
3935 return p;
3936 }
3937 }
3938 if (p[1] == '=' || p[1] == p[0])
3939 *end = p + 2;
3940 else
3941 *end = p + 1;
3942 return p;
3943 case '~':
3944 case ',':
3945 *end = p + 1;
3946 return p;
3947 case '(':
3948 if (p[1] != ')')
3949 error (_("`operator ()' must be specified "
3950 "without whitespace in `()'"));
3951 *end = p + 2;
3952 return p;
3953 case '?':
3954 if (p[1] != ':')
3955 error (_("`operator ?:' must be specified "
3956 "without whitespace in `?:'"));
3957 *end = p + 2;
3958 return p;
3959 case '[':
3960 if (p[1] != ']')
3961 error (_("`operator []' must be specified "
3962 "without whitespace in `[]'"));
3963 *end = p + 2;
3964 return p;
3965 default:
3966 error (_("`operator %s' not supported"), p);
3967 break;
3968 }
3969
3970 *end = "";
3971 return *end;
3972 }
3973 \f
3974
3975 /* Cache to watch for file names already seen by filename_seen. */
3976
3977 struct filename_seen_cache
3978 {
3979 /* Table of files seen so far. */
3980 htab_t tab;
3981 /* Initial size of the table. It automagically grows from here. */
3982 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3983 };
3984
3985 /* filename_seen_cache constructor. */
3986
3987 static struct filename_seen_cache *
3988 create_filename_seen_cache (void)
3989 {
3990 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
3991
3992 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3993 filename_hash, filename_eq,
3994 NULL, xcalloc, xfree);
3995
3996 return cache;
3997 }
3998
3999 /* Empty the cache, but do not delete it. */
4000
4001 static void
4002 clear_filename_seen_cache (struct filename_seen_cache *cache)
4003 {
4004 htab_empty (cache->tab);
4005 }
4006
4007 /* filename_seen_cache destructor.
4008 This takes a void * argument as it is generally used as a cleanup. */
4009
4010 static void
4011 delete_filename_seen_cache (void *ptr)
4012 {
4013 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4014
4015 htab_delete (cache->tab);
4016 xfree (cache);
4017 }
4018
4019 /* If FILE is not already in the table of files in CACHE, return zero;
4020 otherwise return non-zero. Optionally add FILE to the table if ADD
4021 is non-zero.
4022
4023 NOTE: We don't manage space for FILE, we assume FILE lives as long
4024 as the caller needs. */
4025
4026 static int
4027 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4028 {
4029 void **slot;
4030
4031 /* Is FILE in tab? */
4032 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4033 if (*slot != NULL)
4034 return 1;
4035
4036 /* No; maybe add it to tab. */
4037 if (add)
4038 *slot = (char *) file;
4039
4040 return 0;
4041 }
4042
4043 /* Data structure to maintain printing state for output_source_filename. */
4044
4045 struct output_source_filename_data
4046 {
4047 /* Cache of what we've seen so far. */
4048 struct filename_seen_cache *filename_seen_cache;
4049
4050 /* Flag of whether we're printing the first one. */
4051 int first;
4052 };
4053
4054 /* Slave routine for sources_info. Force line breaks at ,'s.
4055 NAME is the name to print.
4056 DATA contains the state for printing and watching for duplicates. */
4057
4058 static void
4059 output_source_filename (const char *name,
4060 struct output_source_filename_data *data)
4061 {
4062 /* Since a single source file can result in several partial symbol
4063 tables, we need to avoid printing it more than once. Note: if
4064 some of the psymtabs are read in and some are not, it gets
4065 printed both under "Source files for which symbols have been
4066 read" and "Source files for which symbols will be read in on
4067 demand". I consider this a reasonable way to deal with the
4068 situation. I'm not sure whether this can also happen for
4069 symtabs; it doesn't hurt to check. */
4070
4071 /* Was NAME already seen? */
4072 if (filename_seen (data->filename_seen_cache, name, 1))
4073 {
4074 /* Yes; don't print it again. */
4075 return;
4076 }
4077
4078 /* No; print it and reset *FIRST. */
4079 if (! data->first)
4080 printf_filtered (", ");
4081 data->first = 0;
4082
4083 wrap_here ("");
4084 fputs_filtered (name, gdb_stdout);
4085 }
4086
4087 /* A callback for map_partial_symbol_filenames. */
4088
4089 static void
4090 output_partial_symbol_filename (const char *filename, const char *fullname,
4091 void *data)
4092 {
4093 output_source_filename (fullname ? fullname : filename,
4094 (struct output_source_filename_data *) data);
4095 }
4096
4097 static void
4098 sources_info (char *ignore, int from_tty)
4099 {
4100 struct compunit_symtab *cu;
4101 struct symtab *s;
4102 struct objfile *objfile;
4103 struct output_source_filename_data data;
4104 struct cleanup *cleanups;
4105
4106 if (!have_full_symbols () && !have_partial_symbols ())
4107 {
4108 error (_("No symbol table is loaded. Use the \"file\" command."));
4109 }
4110
4111 data.filename_seen_cache = create_filename_seen_cache ();
4112 cleanups = make_cleanup (delete_filename_seen_cache,
4113 data.filename_seen_cache);
4114
4115 printf_filtered ("Source files for which symbols have been read in:\n\n");
4116
4117 data.first = 1;
4118 ALL_FILETABS (objfile, cu, s)
4119 {
4120 const char *fullname = symtab_to_fullname (s);
4121
4122 output_source_filename (fullname, &data);
4123 }
4124 printf_filtered ("\n\n");
4125
4126 printf_filtered ("Source files for which symbols "
4127 "will be read in on demand:\n\n");
4128
4129 clear_filename_seen_cache (data.filename_seen_cache);
4130 data.first = 1;
4131 map_symbol_filenames (output_partial_symbol_filename, &data,
4132 1 /*need_fullname*/);
4133 printf_filtered ("\n");
4134
4135 do_cleanups (cleanups);
4136 }
4137
4138 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4139 non-zero compare only lbasename of FILES. */
4140
4141 static int
4142 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4143 {
4144 int i;
4145
4146 if (file != NULL && nfiles != 0)
4147 {
4148 for (i = 0; i < nfiles; i++)
4149 {
4150 if (compare_filenames_for_search (file, (basenames
4151 ? lbasename (files[i])
4152 : files[i])))
4153 return 1;
4154 }
4155 }
4156 else if (nfiles == 0)
4157 return 1;
4158 return 0;
4159 }
4160
4161 /* Free any memory associated with a search. */
4162
4163 void
4164 free_search_symbols (struct symbol_search *symbols)
4165 {
4166 struct symbol_search *p;
4167 struct symbol_search *next;
4168
4169 for (p = symbols; p != NULL; p = next)
4170 {
4171 next = p->next;
4172 xfree (p);
4173 }
4174 }
4175
4176 static void
4177 do_free_search_symbols_cleanup (void *symbolsp)
4178 {
4179 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4180
4181 free_search_symbols (symbols);
4182 }
4183
4184 struct cleanup *
4185 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4186 {
4187 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4188 }
4189
4190 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4191 sort symbols, not minimal symbols. */
4192
4193 static int
4194 compare_search_syms (const void *sa, const void *sb)
4195 {
4196 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4197 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4198 int c;
4199
4200 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4201 symbol_symtab (sym_b->symbol)->filename);
4202 if (c != 0)
4203 return c;
4204
4205 if (sym_a->block != sym_b->block)
4206 return sym_a->block - sym_b->block;
4207
4208 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4209 SYMBOL_PRINT_NAME (sym_b->symbol));
4210 }
4211
4212 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4213 The duplicates are freed, and the new list is returned in
4214 *NEW_HEAD, *NEW_TAIL. */
4215
4216 static void
4217 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4218 struct symbol_search **new_head,
4219 struct symbol_search **new_tail)
4220 {
4221 struct symbol_search **symbols, *symp;
4222 int i, j, nunique;
4223
4224 gdb_assert (found != NULL && nfound > 0);
4225
4226 /* Build an array out of the list so we can easily sort them. */
4227 symbols = XNEWVEC (struct symbol_search *, nfound);
4228
4229 symp = found;
4230 for (i = 0; i < nfound; i++)
4231 {
4232 gdb_assert (symp != NULL);
4233 gdb_assert (symp->block >= 0 && symp->block <= 1);
4234 symbols[i] = symp;
4235 symp = symp->next;
4236 }
4237 gdb_assert (symp == NULL);
4238
4239 qsort (symbols, nfound, sizeof (struct symbol_search *),
4240 compare_search_syms);
4241
4242 /* Collapse out the dups. */
4243 for (i = 1, j = 1; i < nfound; ++i)
4244 {
4245 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4246 symbols[j++] = symbols[i];
4247 else
4248 xfree (symbols[i]);
4249 }
4250 nunique = j;
4251 symbols[j - 1]->next = NULL;
4252
4253 /* Rebuild the linked list. */
4254 for (i = 0; i < nunique - 1; i++)
4255 symbols[i]->next = symbols[i + 1];
4256 symbols[nunique - 1]->next = NULL;
4257
4258 *new_head = symbols[0];
4259 *new_tail = symbols[nunique - 1];
4260 xfree (symbols);
4261 }
4262
4263 /* Search the symbol table for matches to the regular expression REGEXP,
4264 returning the results in *MATCHES.
4265
4266 Only symbols of KIND are searched:
4267 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4268 and constants (enums)
4269 FUNCTIONS_DOMAIN - search all functions
4270 TYPES_DOMAIN - search all type names
4271 ALL_DOMAIN - an internal error for this function
4272
4273 free_search_symbols should be called when *MATCHES is no longer needed.
4274
4275 Within each file the results are sorted locally; each symtab's global and
4276 static blocks are separately alphabetized.
4277 Duplicate entries are removed. */
4278
4279 void
4280 search_symbols (const char *regexp, enum search_domain kind,
4281 int nfiles, const char *files[],
4282 struct symbol_search **matches)
4283 {
4284 struct compunit_symtab *cust;
4285 const struct blockvector *bv;
4286 struct block *b;
4287 int i = 0;
4288 struct block_iterator iter;
4289 struct symbol *sym;
4290 struct objfile *objfile;
4291 struct minimal_symbol *msymbol;
4292 int found_misc = 0;
4293 static const enum minimal_symbol_type types[]
4294 = {mst_data, mst_text, mst_abs};
4295 static const enum minimal_symbol_type types2[]
4296 = {mst_bss, mst_file_text, mst_abs};
4297 static const enum minimal_symbol_type types3[]
4298 = {mst_file_data, mst_solib_trampoline, mst_abs};
4299 static const enum minimal_symbol_type types4[]
4300 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4301 enum minimal_symbol_type ourtype;
4302 enum minimal_symbol_type ourtype2;
4303 enum minimal_symbol_type ourtype3;
4304 enum minimal_symbol_type ourtype4;
4305 struct symbol_search *found;
4306 struct symbol_search *tail;
4307 int nfound;
4308 /* This is true if PREG contains valid data, false otherwise. */
4309 bool preg_p;
4310 regex_t preg;
4311
4312 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4313 CLEANUP_CHAIN is freed only in the case of an error. */
4314 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4315 struct cleanup *retval_chain;
4316
4317 gdb_assert (kind <= TYPES_DOMAIN);
4318
4319 ourtype = types[kind];
4320 ourtype2 = types2[kind];
4321 ourtype3 = types3[kind];
4322 ourtype4 = types4[kind];
4323
4324 *matches = NULL;
4325 preg_p = false;
4326
4327 if (regexp != NULL)
4328 {
4329 /* Make sure spacing is right for C++ operators.
4330 This is just a courtesy to make the matching less sensitive
4331 to how many spaces the user leaves between 'operator'
4332 and <TYPENAME> or <OPERATOR>. */
4333 const char *opend;
4334 const char *opname = operator_chars (regexp, &opend);
4335 int errcode;
4336
4337 if (*opname)
4338 {
4339 int fix = -1; /* -1 means ok; otherwise number of
4340 spaces needed. */
4341
4342 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4343 {
4344 /* There should 1 space between 'operator' and 'TYPENAME'. */
4345 if (opname[-1] != ' ' || opname[-2] == ' ')
4346 fix = 1;
4347 }
4348 else
4349 {
4350 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4351 if (opname[-1] == ' ')
4352 fix = 0;
4353 }
4354 /* If wrong number of spaces, fix it. */
4355 if (fix >= 0)
4356 {
4357 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4358
4359 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4360 regexp = tmp;
4361 }
4362 }
4363
4364 errcode = regcomp (&preg, regexp,
4365 REG_NOSUB | (case_sensitivity == case_sensitive_off
4366 ? REG_ICASE : 0));
4367 if (errcode != 0)
4368 {
4369 char *err = get_regcomp_error (errcode, &preg);
4370
4371 make_cleanup (xfree, err);
4372 error (_("Invalid regexp (%s): %s"), err, regexp);
4373 }
4374 preg_p = true;
4375 make_regfree_cleanup (&preg);
4376 }
4377
4378 /* Search through the partial symtabs *first* for all symbols
4379 matching the regexp. That way we don't have to reproduce all of
4380 the machinery below. */
4381 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4382 {
4383 return file_matches (filename, files, nfiles,
4384 basenames);
4385 },
4386 [&] (const char *symname)
4387 {
4388 return (!preg_p || regexec (&preg, symname,
4389 0, NULL, 0) == 0);
4390 },
4391 NULL,
4392 kind);
4393
4394 /* Here, we search through the minimal symbol tables for functions
4395 and variables that match, and force their symbols to be read.
4396 This is in particular necessary for demangled variable names,
4397 which are no longer put into the partial symbol tables.
4398 The symbol will then be found during the scan of symtabs below.
4399
4400 For functions, find_pc_symtab should succeed if we have debug info
4401 for the function, for variables we have to call
4402 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4403 has debug info.
4404 If the lookup fails, set found_misc so that we will rescan to print
4405 any matching symbols without debug info.
4406 We only search the objfile the msymbol came from, we no longer search
4407 all objfiles. In large programs (1000s of shared libs) searching all
4408 objfiles is not worth the pain. */
4409
4410 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4411 {
4412 ALL_MSYMBOLS (objfile, msymbol)
4413 {
4414 QUIT;
4415
4416 if (msymbol->created_by_gdb)
4417 continue;
4418
4419 if (MSYMBOL_TYPE (msymbol) == ourtype
4420 || MSYMBOL_TYPE (msymbol) == ourtype2
4421 || MSYMBOL_TYPE (msymbol) == ourtype3
4422 || MSYMBOL_TYPE (msymbol) == ourtype4)
4423 {
4424 if (!preg_p
4425 || regexec (&preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4426 NULL, 0) == 0)
4427 {
4428 /* Note: An important side-effect of these lookup functions
4429 is to expand the symbol table if msymbol is found, for the
4430 benefit of the next loop on ALL_COMPUNITS. */
4431 if (kind == FUNCTIONS_DOMAIN
4432 ? (find_pc_compunit_symtab
4433 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4434 : (lookup_symbol_in_objfile_from_linkage_name
4435 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4436 .symbol == NULL))
4437 found_misc = 1;
4438 }
4439 }
4440 }
4441 }
4442
4443 found = NULL;
4444 tail = NULL;
4445 nfound = 0;
4446 retval_chain = make_cleanup_free_search_symbols (&found);
4447
4448 ALL_COMPUNITS (objfile, cust)
4449 {
4450 bv = COMPUNIT_BLOCKVECTOR (cust);
4451 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4452 {
4453 b = BLOCKVECTOR_BLOCK (bv, i);
4454 ALL_BLOCK_SYMBOLS (b, iter, sym)
4455 {
4456 struct symtab *real_symtab = symbol_symtab (sym);
4457
4458 QUIT;
4459
4460 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4461 a substring of symtab_to_fullname as it may contain "./" etc. */
4462 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4463 || ((basenames_may_differ
4464 || file_matches (lbasename (real_symtab->filename),
4465 files, nfiles, 1))
4466 && file_matches (symtab_to_fullname (real_symtab),
4467 files, nfiles, 0)))
4468 && ((!preg_p
4469 || regexec (&preg, SYMBOL_NATURAL_NAME (sym), 0,
4470 NULL, 0) == 0)
4471 && ((kind == VARIABLES_DOMAIN
4472 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4473 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4474 && SYMBOL_CLASS (sym) != LOC_BLOCK
4475 /* LOC_CONST can be used for more than just enums,
4476 e.g., c++ static const members.
4477 We only want to skip enums here. */
4478 && !(SYMBOL_CLASS (sym) == LOC_CONST
4479 && (TYPE_CODE (SYMBOL_TYPE (sym))
4480 == TYPE_CODE_ENUM)))
4481 || (kind == FUNCTIONS_DOMAIN
4482 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4483 || (kind == TYPES_DOMAIN
4484 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4485 {
4486 /* match */
4487 struct symbol_search *psr = XCNEW (struct symbol_search);
4488
4489 psr->block = i;
4490 psr->symbol = sym;
4491 psr->next = NULL;
4492 if (tail == NULL)
4493 found = psr;
4494 else
4495 tail->next = psr;
4496 tail = psr;
4497 nfound ++;
4498 }
4499 }
4500 }
4501 }
4502
4503 if (found != NULL)
4504 {
4505 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4506 /* Note: nfound is no longer useful beyond this point. */
4507 }
4508
4509 /* If there are no eyes, avoid all contact. I mean, if there are
4510 no debug symbols, then add matching minsyms. */
4511
4512 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4513 {
4514 ALL_MSYMBOLS (objfile, msymbol)
4515 {
4516 QUIT;
4517
4518 if (msymbol->created_by_gdb)
4519 continue;
4520
4521 if (MSYMBOL_TYPE (msymbol) == ourtype
4522 || MSYMBOL_TYPE (msymbol) == ourtype2
4523 || MSYMBOL_TYPE (msymbol) == ourtype3
4524 || MSYMBOL_TYPE (msymbol) == ourtype4)
4525 {
4526 if (!preg_p
4527 || regexec (&preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4528 NULL, 0) == 0)
4529 {
4530 /* For functions we can do a quick check of whether the
4531 symbol might be found via find_pc_symtab. */
4532 if (kind != FUNCTIONS_DOMAIN
4533 || (find_pc_compunit_symtab
4534 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4535 {
4536 if (lookup_symbol_in_objfile_from_linkage_name
4537 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4538 .symbol == NULL)
4539 {
4540 /* match */
4541 struct symbol_search *psr = XNEW (struct symbol_search);
4542 psr->block = i;
4543 psr->msymbol.minsym = msymbol;
4544 psr->msymbol.objfile = objfile;
4545 psr->symbol = NULL;
4546 psr->next = NULL;
4547 if (tail == NULL)
4548 found = psr;
4549 else
4550 tail->next = psr;
4551 tail = psr;
4552 }
4553 }
4554 }
4555 }
4556 }
4557 }
4558
4559 discard_cleanups (retval_chain);
4560 do_cleanups (old_chain);
4561 *matches = found;
4562 }
4563
4564 /* Helper function for symtab_symbol_info, this function uses
4565 the data returned from search_symbols() to print information
4566 regarding the match to gdb_stdout. */
4567
4568 static void
4569 print_symbol_info (enum search_domain kind,
4570 struct symbol *sym,
4571 int block, const char *last)
4572 {
4573 struct symtab *s = symbol_symtab (sym);
4574 const char *s_filename = symtab_to_filename_for_display (s);
4575
4576 if (last == NULL || filename_cmp (last, s_filename) != 0)
4577 {
4578 fputs_filtered ("\nFile ", gdb_stdout);
4579 fputs_filtered (s_filename, gdb_stdout);
4580 fputs_filtered (":\n", gdb_stdout);
4581 }
4582
4583 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4584 printf_filtered ("static ");
4585
4586 /* Typedef that is not a C++ class. */
4587 if (kind == TYPES_DOMAIN
4588 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4589 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4590 /* variable, func, or typedef-that-is-c++-class. */
4591 else if (kind < TYPES_DOMAIN
4592 || (kind == TYPES_DOMAIN
4593 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4594 {
4595 type_print (SYMBOL_TYPE (sym),
4596 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4597 ? "" : SYMBOL_PRINT_NAME (sym)),
4598 gdb_stdout, 0);
4599
4600 printf_filtered (";\n");
4601 }
4602 }
4603
4604 /* This help function for symtab_symbol_info() prints information
4605 for non-debugging symbols to gdb_stdout. */
4606
4607 static void
4608 print_msymbol_info (struct bound_minimal_symbol msymbol)
4609 {
4610 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4611 char *tmp;
4612
4613 if (gdbarch_addr_bit (gdbarch) <= 32)
4614 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4615 & (CORE_ADDR) 0xffffffff,
4616 8);
4617 else
4618 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4619 16);
4620 printf_filtered ("%s %s\n",
4621 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4622 }
4623
4624 /* This is the guts of the commands "info functions", "info types", and
4625 "info variables". It calls search_symbols to find all matches and then
4626 print_[m]symbol_info to print out some useful information about the
4627 matches. */
4628
4629 static void
4630 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4631 {
4632 static const char * const classnames[] =
4633 {"variable", "function", "type"};
4634 struct symbol_search *symbols;
4635 struct symbol_search *p;
4636 struct cleanup *old_chain;
4637 const char *last_filename = NULL;
4638 int first = 1;
4639
4640 gdb_assert (kind <= TYPES_DOMAIN);
4641
4642 /* Must make sure that if we're interrupted, symbols gets freed. */
4643 search_symbols (regexp, kind, 0, NULL, &symbols);
4644 old_chain = make_cleanup_free_search_symbols (&symbols);
4645
4646 if (regexp != NULL)
4647 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4648 classnames[kind], regexp);
4649 else
4650 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4651
4652 for (p = symbols; p != NULL; p = p->next)
4653 {
4654 QUIT;
4655
4656 if (p->msymbol.minsym != NULL)
4657 {
4658 if (first)
4659 {
4660 printf_filtered (_("\nNon-debugging symbols:\n"));
4661 first = 0;
4662 }
4663 print_msymbol_info (p->msymbol);
4664 }
4665 else
4666 {
4667 print_symbol_info (kind,
4668 p->symbol,
4669 p->block,
4670 last_filename);
4671 last_filename
4672 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4673 }
4674 }
4675
4676 do_cleanups (old_chain);
4677 }
4678
4679 static void
4680 variables_info (char *regexp, int from_tty)
4681 {
4682 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4683 }
4684
4685 static void
4686 functions_info (char *regexp, int from_tty)
4687 {
4688 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4689 }
4690
4691
4692 static void
4693 types_info (char *regexp, int from_tty)
4694 {
4695 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4696 }
4697
4698 /* Breakpoint all functions matching regular expression. */
4699
4700 void
4701 rbreak_command_wrapper (char *regexp, int from_tty)
4702 {
4703 rbreak_command (regexp, from_tty);
4704 }
4705
4706 /* A cleanup function that calls end_rbreak_breakpoints. */
4707
4708 static void
4709 do_end_rbreak_breakpoints (void *ignore)
4710 {
4711 end_rbreak_breakpoints ();
4712 }
4713
4714 static void
4715 rbreak_command (char *regexp, int from_tty)
4716 {
4717 struct symbol_search *ss;
4718 struct symbol_search *p;
4719 struct cleanup *old_chain;
4720 char *string = NULL;
4721 int len = 0;
4722 const char **files = NULL;
4723 const char *file_name;
4724 int nfiles = 0;
4725
4726 if (regexp)
4727 {
4728 char *colon = strchr (regexp, ':');
4729
4730 if (colon && *(colon + 1) != ':')
4731 {
4732 int colon_index;
4733 char *local_name;
4734
4735 colon_index = colon - regexp;
4736 local_name = (char *) alloca (colon_index + 1);
4737 memcpy (local_name, regexp, colon_index);
4738 local_name[colon_index--] = 0;
4739 while (isspace (local_name[colon_index]))
4740 local_name[colon_index--] = 0;
4741 file_name = local_name;
4742 files = &file_name;
4743 nfiles = 1;
4744 regexp = skip_spaces (colon + 1);
4745 }
4746 }
4747
4748 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4749 old_chain = make_cleanup_free_search_symbols (&ss);
4750 make_cleanup (free_current_contents, &string);
4751
4752 start_rbreak_breakpoints ();
4753 make_cleanup (do_end_rbreak_breakpoints, NULL);
4754 for (p = ss; p != NULL; p = p->next)
4755 {
4756 if (p->msymbol.minsym == NULL)
4757 {
4758 struct symtab *symtab = symbol_symtab (p->symbol);
4759 const char *fullname = symtab_to_fullname (symtab);
4760
4761 int newlen = (strlen (fullname)
4762 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4763 + 4);
4764
4765 if (newlen > len)
4766 {
4767 string = (char *) xrealloc (string, newlen);
4768 len = newlen;
4769 }
4770 strcpy (string, fullname);
4771 strcat (string, ":'");
4772 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4773 strcat (string, "'");
4774 break_command (string, from_tty);
4775 print_symbol_info (FUNCTIONS_DOMAIN,
4776 p->symbol,
4777 p->block,
4778 symtab_to_filename_for_display (symtab));
4779 }
4780 else
4781 {
4782 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4783
4784 if (newlen > len)
4785 {
4786 string = (char *) xrealloc (string, newlen);
4787 len = newlen;
4788 }
4789 strcpy (string, "'");
4790 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4791 strcat (string, "'");
4792
4793 break_command (string, from_tty);
4794 printf_filtered ("<function, no debug info> %s;\n",
4795 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4796 }
4797 }
4798
4799 do_cleanups (old_chain);
4800 }
4801 \f
4802
4803 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4804
4805 Either sym_text[sym_text_len] != '(' and then we search for any
4806 symbol starting with SYM_TEXT text.
4807
4808 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4809 be terminated at that point. Partial symbol tables do not have parameters
4810 information. */
4811
4812 static int
4813 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4814 {
4815 int (*ncmp) (const char *, const char *, size_t);
4816
4817 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4818
4819 if (ncmp (name, sym_text, sym_text_len) != 0)
4820 return 0;
4821
4822 if (sym_text[sym_text_len] == '(')
4823 {
4824 /* User searches for `name(someth...'. Require NAME to be terminated.
4825 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4826 present but accept even parameters presence. In this case this
4827 function is in fact strcmp_iw but whitespace skipping is not supported
4828 for tab completion. */
4829
4830 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4831 return 0;
4832 }
4833
4834 return 1;
4835 }
4836
4837 /* Free any memory associated with a completion list. */
4838
4839 static void
4840 free_completion_list (VEC (char_ptr) **list_ptr)
4841 {
4842 int i;
4843 char *p;
4844
4845 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4846 xfree (p);
4847 VEC_free (char_ptr, *list_ptr);
4848 }
4849
4850 /* Callback for make_cleanup. */
4851
4852 static void
4853 do_free_completion_list (void *list)
4854 {
4855 free_completion_list ((VEC (char_ptr) **) list);
4856 }
4857
4858 /* Helper routine for make_symbol_completion_list. */
4859
4860 static VEC (char_ptr) *return_val;
4861
4862 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4863 completion_list_add_name \
4864 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4865
4866 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4867 completion_list_add_name \
4868 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4869
4870 /* Tracker for how many unique completions have been generated. Used
4871 to terminate completion list generation early if the list has grown
4872 to a size so large as to be useless. This helps avoid GDB seeming
4873 to lock up in the event the user requests to complete on something
4874 vague that necessitates the time consuming expansion of many symbol
4875 tables. */
4876
4877 static completion_tracker_t completion_tracker;
4878
4879 /* Test to see if the symbol specified by SYMNAME (which is already
4880 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4881 characters. If so, add it to the current completion list. */
4882
4883 static void
4884 completion_list_add_name (const char *symname,
4885 const char *sym_text, int sym_text_len,
4886 const char *text, const char *word)
4887 {
4888 /* Clip symbols that cannot match. */
4889 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4890 return;
4891
4892 /* We have a match for a completion, so add SYMNAME to the current list
4893 of matches. Note that the name is moved to freshly malloc'd space. */
4894
4895 {
4896 char *newobj;
4897 enum maybe_add_completion_enum add_status;
4898
4899 if (word == sym_text)
4900 {
4901 newobj = (char *) xmalloc (strlen (symname) + 5);
4902 strcpy (newobj, symname);
4903 }
4904 else if (word > sym_text)
4905 {
4906 /* Return some portion of symname. */
4907 newobj = (char *) xmalloc (strlen (symname) + 5);
4908 strcpy (newobj, symname + (word - sym_text));
4909 }
4910 else
4911 {
4912 /* Return some of SYM_TEXT plus symname. */
4913 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4914 strncpy (newobj, word, sym_text - word);
4915 newobj[sym_text - word] = '\0';
4916 strcat (newobj, symname);
4917 }
4918
4919 add_status = maybe_add_completion (completion_tracker, newobj);
4920
4921 switch (add_status)
4922 {
4923 case MAYBE_ADD_COMPLETION_OK:
4924 VEC_safe_push (char_ptr, return_val, newobj);
4925 break;
4926 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
4927 VEC_safe_push (char_ptr, return_val, newobj);
4928 throw_max_completions_reached_error ();
4929 case MAYBE_ADD_COMPLETION_MAX_REACHED:
4930 xfree (newobj);
4931 throw_max_completions_reached_error ();
4932 case MAYBE_ADD_COMPLETION_DUPLICATE:
4933 xfree (newobj);
4934 break;
4935 }
4936 }
4937 }
4938
4939 /* ObjC: In case we are completing on a selector, look as the msymbol
4940 again and feed all the selectors into the mill. */
4941
4942 static void
4943 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4944 const char *sym_text, int sym_text_len,
4945 const char *text, const char *word)
4946 {
4947 static char *tmp = NULL;
4948 static unsigned int tmplen = 0;
4949
4950 const char *method, *category, *selector;
4951 char *tmp2 = NULL;
4952
4953 method = MSYMBOL_NATURAL_NAME (msymbol);
4954
4955 /* Is it a method? */
4956 if ((method[0] != '-') && (method[0] != '+'))
4957 return;
4958
4959 if (sym_text[0] == '[')
4960 /* Complete on shortened method method. */
4961 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4962
4963 while ((strlen (method) + 1) >= tmplen)
4964 {
4965 if (tmplen == 0)
4966 tmplen = 1024;
4967 else
4968 tmplen *= 2;
4969 tmp = (char *) xrealloc (tmp, tmplen);
4970 }
4971 selector = strchr (method, ' ');
4972 if (selector != NULL)
4973 selector++;
4974
4975 category = strchr (method, '(');
4976
4977 if ((category != NULL) && (selector != NULL))
4978 {
4979 memcpy (tmp, method, (category - method));
4980 tmp[category - method] = ' ';
4981 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4982 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4983 if (sym_text[0] == '[')
4984 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4985 }
4986
4987 if (selector != NULL)
4988 {
4989 /* Complete on selector only. */
4990 strcpy (tmp, selector);
4991 tmp2 = strchr (tmp, ']');
4992 if (tmp2 != NULL)
4993 *tmp2 = '\0';
4994
4995 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4996 }
4997 }
4998
4999 /* Break the non-quoted text based on the characters which are in
5000 symbols. FIXME: This should probably be language-specific. */
5001
5002 static const char *
5003 language_search_unquoted_string (const char *text, const char *p)
5004 {
5005 for (; p > text; --p)
5006 {
5007 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5008 continue;
5009 else
5010 {
5011 if ((current_language->la_language == language_objc))
5012 {
5013 if (p[-1] == ':') /* Might be part of a method name. */
5014 continue;
5015 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5016 p -= 2; /* Beginning of a method name. */
5017 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5018 { /* Might be part of a method name. */
5019 const char *t = p;
5020
5021 /* Seeing a ' ' or a '(' is not conclusive evidence
5022 that we are in the middle of a method name. However,
5023 finding "-[" or "+[" should be pretty un-ambiguous.
5024 Unfortunately we have to find it now to decide. */
5025
5026 while (t > text)
5027 if (isalnum (t[-1]) || t[-1] == '_' ||
5028 t[-1] == ' ' || t[-1] == ':' ||
5029 t[-1] == '(' || t[-1] == ')')
5030 --t;
5031 else
5032 break;
5033
5034 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5035 p = t - 2; /* Method name detected. */
5036 /* Else we leave with p unchanged. */
5037 }
5038 }
5039 break;
5040 }
5041 }
5042 return p;
5043 }
5044
5045 static void
5046 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5047 int sym_text_len, const char *text,
5048 const char *word)
5049 {
5050 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5051 {
5052 struct type *t = SYMBOL_TYPE (sym);
5053 enum type_code c = TYPE_CODE (t);
5054 int j;
5055
5056 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5057 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5058 if (TYPE_FIELD_NAME (t, j))
5059 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5060 sym_text, sym_text_len, text, word);
5061 }
5062 }
5063
5064 /* Add matching symbols from SYMTAB to the current completion list. */
5065
5066 static void
5067 add_symtab_completions (struct compunit_symtab *cust,
5068 const char *sym_text, int sym_text_len,
5069 const char *text, const char *word,
5070 enum type_code code)
5071 {
5072 struct symbol *sym;
5073 const struct block *b;
5074 struct block_iterator iter;
5075 int i;
5076
5077 if (cust == NULL)
5078 return;
5079
5080 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5081 {
5082 QUIT;
5083 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5084 ALL_BLOCK_SYMBOLS (b, iter, sym)
5085 {
5086 if (code == TYPE_CODE_UNDEF
5087 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5088 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5089 COMPLETION_LIST_ADD_SYMBOL (sym,
5090 sym_text, sym_text_len,
5091 text, word);
5092 }
5093 }
5094 }
5095
5096 static void
5097 default_make_symbol_completion_list_break_on_1 (const char *text,
5098 const char *word,
5099 const char *break_on,
5100 enum type_code code)
5101 {
5102 /* Problem: All of the symbols have to be copied because readline
5103 frees them. I'm not going to worry about this; hopefully there
5104 won't be that many. */
5105
5106 struct symbol *sym;
5107 struct compunit_symtab *cust;
5108 struct minimal_symbol *msymbol;
5109 struct objfile *objfile;
5110 const struct block *b;
5111 const struct block *surrounding_static_block, *surrounding_global_block;
5112 struct block_iterator iter;
5113 /* The symbol we are completing on. Points in same buffer as text. */
5114 const char *sym_text;
5115 /* Length of sym_text. */
5116 int sym_text_len;
5117 struct cleanup *cleanups;
5118
5119 /* Now look for the symbol we are supposed to complete on. */
5120 {
5121 const char *p;
5122 char quote_found;
5123 const char *quote_pos = NULL;
5124
5125 /* First see if this is a quoted string. */
5126 quote_found = '\0';
5127 for (p = text; *p != '\0'; ++p)
5128 {
5129 if (quote_found != '\0')
5130 {
5131 if (*p == quote_found)
5132 /* Found close quote. */
5133 quote_found = '\0';
5134 else if (*p == '\\' && p[1] == quote_found)
5135 /* A backslash followed by the quote character
5136 doesn't end the string. */
5137 ++p;
5138 }
5139 else if (*p == '\'' || *p == '"')
5140 {
5141 quote_found = *p;
5142 quote_pos = p;
5143 }
5144 }
5145 if (quote_found == '\'')
5146 /* A string within single quotes can be a symbol, so complete on it. */
5147 sym_text = quote_pos + 1;
5148 else if (quote_found == '"')
5149 /* A double-quoted string is never a symbol, nor does it make sense
5150 to complete it any other way. */
5151 {
5152 return;
5153 }
5154 else
5155 {
5156 /* It is not a quoted string. Break it based on the characters
5157 which are in symbols. */
5158 while (p > text)
5159 {
5160 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5161 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5162 --p;
5163 else
5164 break;
5165 }
5166 sym_text = p;
5167 }
5168 }
5169
5170 sym_text_len = strlen (sym_text);
5171
5172 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5173
5174 if (current_language->la_language == language_cplus
5175 || current_language->la_language == language_fortran)
5176 {
5177 /* These languages may have parameters entered by user but they are never
5178 present in the partial symbol tables. */
5179
5180 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5181
5182 if (cs)
5183 sym_text_len = cs - sym_text;
5184 }
5185 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5186
5187 completion_tracker = new_completion_tracker ();
5188 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5189
5190 /* At this point scan through the misc symbol vectors and add each
5191 symbol you find to the list. Eventually we want to ignore
5192 anything that isn't a text symbol (everything else will be
5193 handled by the psymtab code below). */
5194
5195 if (code == TYPE_CODE_UNDEF)
5196 {
5197 ALL_MSYMBOLS (objfile, msymbol)
5198 {
5199 QUIT;
5200 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5201 word);
5202
5203 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5204 word);
5205 }
5206 }
5207
5208 /* Add completions for all currently loaded symbol tables. */
5209 ALL_COMPUNITS (objfile, cust)
5210 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5211 code);
5212
5213 /* Look through the partial symtabs for all symbols which begin by
5214 matching SYM_TEXT. Expand all CUs that you find to the list. */
5215 expand_symtabs_matching (NULL,
5216 [&] (const char *name) /* symbol matcher */
5217 {
5218 return compare_symbol_name (name,
5219 sym_text,
5220 sym_text_len);
5221 },
5222 [&] (compunit_symtab *symtab) /* expansion notify */
5223 {
5224 add_symtab_completions (symtab,
5225 sym_text, sym_text_len,
5226 text, word, code);
5227 },
5228 ALL_DOMAIN);
5229
5230 /* Search upwards from currently selected frame (so that we can
5231 complete on local vars). Also catch fields of types defined in
5232 this places which match our text string. Only complete on types
5233 visible from current context. */
5234
5235 b = get_selected_block (0);
5236 surrounding_static_block = block_static_block (b);
5237 surrounding_global_block = block_global_block (b);
5238 if (surrounding_static_block != NULL)
5239 while (b != surrounding_static_block)
5240 {
5241 QUIT;
5242
5243 ALL_BLOCK_SYMBOLS (b, iter, sym)
5244 {
5245 if (code == TYPE_CODE_UNDEF)
5246 {
5247 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5248 word);
5249 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5250 word);
5251 }
5252 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5253 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5254 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5255 word);
5256 }
5257
5258 /* Stop when we encounter an enclosing function. Do not stop for
5259 non-inlined functions - the locals of the enclosing function
5260 are in scope for a nested function. */
5261 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5262 break;
5263 b = BLOCK_SUPERBLOCK (b);
5264 }
5265
5266 /* Add fields from the file's types; symbols will be added below. */
5267
5268 if (code == TYPE_CODE_UNDEF)
5269 {
5270 if (surrounding_static_block != NULL)
5271 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5272 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5273
5274 if (surrounding_global_block != NULL)
5275 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5276 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5277 }
5278
5279 /* Skip macros if we are completing a struct tag -- arguable but
5280 usually what is expected. */
5281 if (current_language->la_macro_expansion == macro_expansion_c
5282 && code == TYPE_CODE_UNDEF)
5283 {
5284 struct macro_scope *scope;
5285
5286 /* This adds a macro's name to the current completion list. */
5287 auto add_macro_name = [&] (const char *macro_name,
5288 const macro_definition *,
5289 macro_source_file *,
5290 int)
5291 {
5292 completion_list_add_name (macro_name,
5293 sym_text, sym_text_len,
5294 text, word);
5295 };
5296
5297 /* Add any macros visible in the default scope. Note that this
5298 may yield the occasional wrong result, because an expression
5299 might be evaluated in a scope other than the default. For
5300 example, if the user types "break file:line if <TAB>", the
5301 resulting expression will be evaluated at "file:line" -- but
5302 at there does not seem to be a way to detect this at
5303 completion time. */
5304 scope = default_macro_scope ();
5305 if (scope)
5306 {
5307 macro_for_each_in_scope (scope->file, scope->line,
5308 add_macro_name);
5309 xfree (scope);
5310 }
5311
5312 /* User-defined macros are always visible. */
5313 macro_for_each (macro_user_macros, add_macro_name);
5314 }
5315
5316 do_cleanups (cleanups);
5317 }
5318
5319 VEC (char_ptr) *
5320 default_make_symbol_completion_list_break_on (const char *text,
5321 const char *word,
5322 const char *break_on,
5323 enum type_code code)
5324 {
5325 struct cleanup *back_to;
5326
5327 return_val = NULL;
5328 back_to = make_cleanup (do_free_completion_list, &return_val);
5329
5330 TRY
5331 {
5332 default_make_symbol_completion_list_break_on_1 (text, word,
5333 break_on, code);
5334 }
5335 CATCH (except, RETURN_MASK_ERROR)
5336 {
5337 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5338 throw_exception (except);
5339 }
5340 END_CATCH
5341
5342 discard_cleanups (back_to);
5343 return return_val;
5344 }
5345
5346 VEC (char_ptr) *
5347 default_make_symbol_completion_list (const char *text, const char *word,
5348 enum type_code code)
5349 {
5350 return default_make_symbol_completion_list_break_on (text, word, "", code);
5351 }
5352
5353 /* Return a vector of all symbols (regardless of class) which begin by
5354 matching TEXT. If the answer is no symbols, then the return value
5355 is NULL. */
5356
5357 VEC (char_ptr) *
5358 make_symbol_completion_list (const char *text, const char *word)
5359 {
5360 return current_language->la_make_symbol_completion_list (text, word,
5361 TYPE_CODE_UNDEF);
5362 }
5363
5364 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5365 symbols whose type code is CODE. */
5366
5367 VEC (char_ptr) *
5368 make_symbol_completion_type (const char *text, const char *word,
5369 enum type_code code)
5370 {
5371 gdb_assert (code == TYPE_CODE_UNION
5372 || code == TYPE_CODE_STRUCT
5373 || code == TYPE_CODE_ENUM);
5374 return current_language->la_make_symbol_completion_list (text, word, code);
5375 }
5376
5377 /* Like make_symbol_completion_list, but suitable for use as a
5378 completion function. */
5379
5380 VEC (char_ptr) *
5381 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5382 const char *text, const char *word)
5383 {
5384 return make_symbol_completion_list (text, word);
5385 }
5386
5387 /* Like make_symbol_completion_list, but returns a list of symbols
5388 defined in a source file FILE. */
5389
5390 static VEC (char_ptr) *
5391 make_file_symbol_completion_list_1 (const char *text, const char *word,
5392 const char *srcfile)
5393 {
5394 struct symtab *s;
5395 /* The symbol we are completing on. Points in same buffer as text. */
5396 const char *sym_text;
5397 /* Length of sym_text. */
5398 int sym_text_len;
5399
5400 /* Now look for the symbol we are supposed to complete on.
5401 FIXME: This should be language-specific. */
5402 {
5403 const char *p;
5404 char quote_found;
5405 const char *quote_pos = NULL;
5406
5407 /* First see if this is a quoted string. */
5408 quote_found = '\0';
5409 for (p = text; *p != '\0'; ++p)
5410 {
5411 if (quote_found != '\0')
5412 {
5413 if (*p == quote_found)
5414 /* Found close quote. */
5415 quote_found = '\0';
5416 else if (*p == '\\' && p[1] == quote_found)
5417 /* A backslash followed by the quote character
5418 doesn't end the string. */
5419 ++p;
5420 }
5421 else if (*p == '\'' || *p == '"')
5422 {
5423 quote_found = *p;
5424 quote_pos = p;
5425 }
5426 }
5427 if (quote_found == '\'')
5428 /* A string within single quotes can be a symbol, so complete on it. */
5429 sym_text = quote_pos + 1;
5430 else if (quote_found == '"')
5431 /* A double-quoted string is never a symbol, nor does it make sense
5432 to complete it any other way. */
5433 {
5434 return NULL;
5435 }
5436 else
5437 {
5438 /* Not a quoted string. */
5439 sym_text = language_search_unquoted_string (text, p);
5440 }
5441 }
5442
5443 sym_text_len = strlen (sym_text);
5444
5445 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5446 in). */
5447 s = lookup_symtab (srcfile);
5448 if (s == NULL)
5449 {
5450 /* Maybe they typed the file with leading directories, while the
5451 symbol tables record only its basename. */
5452 const char *tail = lbasename (srcfile);
5453
5454 if (tail > srcfile)
5455 s = lookup_symtab (tail);
5456 }
5457
5458 /* If we have no symtab for that file, return an empty list. */
5459 if (s == NULL)
5460 return (return_val);
5461
5462 /* Go through this symtab and check the externs and statics for
5463 symbols which match. */
5464 add_symtab_completions (SYMTAB_COMPUNIT (s),
5465 sym_text, sym_text_len,
5466 text, word, TYPE_CODE_UNDEF);
5467
5468 return (return_val);
5469 }
5470
5471 /* Wrapper around make_file_symbol_completion_list_1
5472 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5473
5474 VEC (char_ptr) *
5475 make_file_symbol_completion_list (const char *text, const char *word,
5476 const char *srcfile)
5477 {
5478 struct cleanup *back_to, *cleanups;
5479
5480 completion_tracker = new_completion_tracker ();
5481 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5482 return_val = NULL;
5483 back_to = make_cleanup (do_free_completion_list, &return_val);
5484
5485 TRY
5486 {
5487 make_file_symbol_completion_list_1 (text, word, srcfile);
5488 }
5489 CATCH (except, RETURN_MASK_ERROR)
5490 {
5491 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5492 throw_exception (except);
5493 }
5494 END_CATCH
5495
5496 discard_cleanups (back_to);
5497 do_cleanups (cleanups);
5498 return return_val;
5499 }
5500
5501 /* A helper function for make_source_files_completion_list. It adds
5502 another file name to a list of possible completions, growing the
5503 list as necessary. */
5504
5505 static void
5506 add_filename_to_list (const char *fname, const char *text, const char *word,
5507 VEC (char_ptr) **list)
5508 {
5509 char *newobj;
5510 size_t fnlen = strlen (fname);
5511
5512 if (word == text)
5513 {
5514 /* Return exactly fname. */
5515 newobj = (char *) xmalloc (fnlen + 5);
5516 strcpy (newobj, fname);
5517 }
5518 else if (word > text)
5519 {
5520 /* Return some portion of fname. */
5521 newobj = (char *) xmalloc (fnlen + 5);
5522 strcpy (newobj, fname + (word - text));
5523 }
5524 else
5525 {
5526 /* Return some of TEXT plus fname. */
5527 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5528 strncpy (newobj, word, text - word);
5529 newobj[text - word] = '\0';
5530 strcat (newobj, fname);
5531 }
5532 VEC_safe_push (char_ptr, *list, newobj);
5533 }
5534
5535 static int
5536 not_interesting_fname (const char *fname)
5537 {
5538 static const char *illegal_aliens[] = {
5539 "_globals_", /* inserted by coff_symtab_read */
5540 NULL
5541 };
5542 int i;
5543
5544 for (i = 0; illegal_aliens[i]; i++)
5545 {
5546 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5547 return 1;
5548 }
5549 return 0;
5550 }
5551
5552 /* An object of this type is passed as the user_data argument to
5553 map_partial_symbol_filenames. */
5554 struct add_partial_filename_data
5555 {
5556 struct filename_seen_cache *filename_seen_cache;
5557 const char *text;
5558 const char *word;
5559 int text_len;
5560 VEC (char_ptr) **list;
5561 };
5562
5563 /* A callback for map_partial_symbol_filenames. */
5564
5565 static void
5566 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5567 void *user_data)
5568 {
5569 struct add_partial_filename_data *data
5570 = (struct add_partial_filename_data *) user_data;
5571
5572 if (not_interesting_fname (filename))
5573 return;
5574 if (!filename_seen (data->filename_seen_cache, filename, 1)
5575 && filename_ncmp (filename, data->text, data->text_len) == 0)
5576 {
5577 /* This file matches for a completion; add it to the
5578 current list of matches. */
5579 add_filename_to_list (filename, data->text, data->word, data->list);
5580 }
5581 else
5582 {
5583 const char *base_name = lbasename (filename);
5584
5585 if (base_name != filename
5586 && !filename_seen (data->filename_seen_cache, base_name, 1)
5587 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5588 add_filename_to_list (base_name, data->text, data->word, data->list);
5589 }
5590 }
5591
5592 /* Return a vector of all source files whose names begin with matching
5593 TEXT. The file names are looked up in the symbol tables of this
5594 program. If the answer is no matchess, then the return value is
5595 NULL. */
5596
5597 VEC (char_ptr) *
5598 make_source_files_completion_list (const char *text, const char *word)
5599 {
5600 struct compunit_symtab *cu;
5601 struct symtab *s;
5602 struct objfile *objfile;
5603 size_t text_len = strlen (text);
5604 VEC (char_ptr) *list = NULL;
5605 const char *base_name;
5606 struct add_partial_filename_data datum;
5607 struct filename_seen_cache *filename_seen_cache;
5608 struct cleanup *back_to, *cache_cleanup;
5609
5610 if (!have_full_symbols () && !have_partial_symbols ())
5611 return list;
5612
5613 back_to = make_cleanup (do_free_completion_list, &list);
5614
5615 filename_seen_cache = create_filename_seen_cache ();
5616 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5617 filename_seen_cache);
5618
5619 ALL_FILETABS (objfile, cu, s)
5620 {
5621 if (not_interesting_fname (s->filename))
5622 continue;
5623 if (!filename_seen (filename_seen_cache, s->filename, 1)
5624 && filename_ncmp (s->filename, text, text_len) == 0)
5625 {
5626 /* This file matches for a completion; add it to the current
5627 list of matches. */
5628 add_filename_to_list (s->filename, text, word, &list);
5629 }
5630 else
5631 {
5632 /* NOTE: We allow the user to type a base name when the
5633 debug info records leading directories, but not the other
5634 way around. This is what subroutines of breakpoint
5635 command do when they parse file names. */
5636 base_name = lbasename (s->filename);
5637 if (base_name != s->filename
5638 && !filename_seen (filename_seen_cache, base_name, 1)
5639 && filename_ncmp (base_name, text, text_len) == 0)
5640 add_filename_to_list (base_name, text, word, &list);
5641 }
5642 }
5643
5644 datum.filename_seen_cache = filename_seen_cache;
5645 datum.text = text;
5646 datum.word = word;
5647 datum.text_len = text_len;
5648 datum.list = &list;
5649 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5650 0 /*need_fullname*/);
5651
5652 do_cleanups (cache_cleanup);
5653 discard_cleanups (back_to);
5654
5655 return list;
5656 }
5657 \f
5658 /* Track MAIN */
5659
5660 /* Return the "main_info" object for the current program space. If
5661 the object has not yet been created, create it and fill in some
5662 default values. */
5663
5664 static struct main_info *
5665 get_main_info (void)
5666 {
5667 struct main_info *info
5668 = (struct main_info *) program_space_data (current_program_space,
5669 main_progspace_key);
5670
5671 if (info == NULL)
5672 {
5673 /* It may seem strange to store the main name in the progspace
5674 and also in whatever objfile happens to see a main name in
5675 its debug info. The reason for this is mainly historical:
5676 gdb returned "main" as the name even if no function named
5677 "main" was defined the program; and this approach lets us
5678 keep compatibility. */
5679 info = XCNEW (struct main_info);
5680 info->language_of_main = language_unknown;
5681 set_program_space_data (current_program_space, main_progspace_key,
5682 info);
5683 }
5684
5685 return info;
5686 }
5687
5688 /* A cleanup to destroy a struct main_info when a progspace is
5689 destroyed. */
5690
5691 static void
5692 main_info_cleanup (struct program_space *pspace, void *data)
5693 {
5694 struct main_info *info = (struct main_info *) data;
5695
5696 if (info != NULL)
5697 xfree (info->name_of_main);
5698 xfree (info);
5699 }
5700
5701 static void
5702 set_main_name (const char *name, enum language lang)
5703 {
5704 struct main_info *info = get_main_info ();
5705
5706 if (info->name_of_main != NULL)
5707 {
5708 xfree (info->name_of_main);
5709 info->name_of_main = NULL;
5710 info->language_of_main = language_unknown;
5711 }
5712 if (name != NULL)
5713 {
5714 info->name_of_main = xstrdup (name);
5715 info->language_of_main = lang;
5716 }
5717 }
5718
5719 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5720 accordingly. */
5721
5722 static void
5723 find_main_name (void)
5724 {
5725 const char *new_main_name;
5726 struct objfile *objfile;
5727
5728 /* First check the objfiles to see whether a debuginfo reader has
5729 picked up the appropriate main name. Historically the main name
5730 was found in a more or less random way; this approach instead
5731 relies on the order of objfile creation -- which still isn't
5732 guaranteed to get the correct answer, but is just probably more
5733 accurate. */
5734 ALL_OBJFILES (objfile)
5735 {
5736 if (objfile->per_bfd->name_of_main != NULL)
5737 {
5738 set_main_name (objfile->per_bfd->name_of_main,
5739 objfile->per_bfd->language_of_main);
5740 return;
5741 }
5742 }
5743
5744 /* Try to see if the main procedure is in Ada. */
5745 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5746 be to add a new method in the language vector, and call this
5747 method for each language until one of them returns a non-empty
5748 name. This would allow us to remove this hard-coded call to
5749 an Ada function. It is not clear that this is a better approach
5750 at this point, because all methods need to be written in a way
5751 such that false positives never be returned. For instance, it is
5752 important that a method does not return a wrong name for the main
5753 procedure if the main procedure is actually written in a different
5754 language. It is easy to guaranty this with Ada, since we use a
5755 special symbol generated only when the main in Ada to find the name
5756 of the main procedure. It is difficult however to see how this can
5757 be guarantied for languages such as C, for instance. This suggests
5758 that order of call for these methods becomes important, which means
5759 a more complicated approach. */
5760 new_main_name = ada_main_name ();
5761 if (new_main_name != NULL)
5762 {
5763 set_main_name (new_main_name, language_ada);
5764 return;
5765 }
5766
5767 new_main_name = d_main_name ();
5768 if (new_main_name != NULL)
5769 {
5770 set_main_name (new_main_name, language_d);
5771 return;
5772 }
5773
5774 new_main_name = go_main_name ();
5775 if (new_main_name != NULL)
5776 {
5777 set_main_name (new_main_name, language_go);
5778 return;
5779 }
5780
5781 new_main_name = pascal_main_name ();
5782 if (new_main_name != NULL)
5783 {
5784 set_main_name (new_main_name, language_pascal);
5785 return;
5786 }
5787
5788 /* The languages above didn't identify the name of the main procedure.
5789 Fallback to "main". */
5790 set_main_name ("main", language_unknown);
5791 }
5792
5793 char *
5794 main_name (void)
5795 {
5796 struct main_info *info = get_main_info ();
5797
5798 if (info->name_of_main == NULL)
5799 find_main_name ();
5800
5801 return info->name_of_main;
5802 }
5803
5804 /* Return the language of the main function. If it is not known,
5805 return language_unknown. */
5806
5807 enum language
5808 main_language (void)
5809 {
5810 struct main_info *info = get_main_info ();
5811
5812 if (info->name_of_main == NULL)
5813 find_main_name ();
5814
5815 return info->language_of_main;
5816 }
5817
5818 /* Handle ``executable_changed'' events for the symtab module. */
5819
5820 static void
5821 symtab_observer_executable_changed (void)
5822 {
5823 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5824 set_main_name (NULL, language_unknown);
5825 }
5826
5827 /* Return 1 if the supplied producer string matches the ARM RealView
5828 compiler (armcc). */
5829
5830 int
5831 producer_is_realview (const char *producer)
5832 {
5833 static const char *const arm_idents[] = {
5834 "ARM C Compiler, ADS",
5835 "Thumb C Compiler, ADS",
5836 "ARM C++ Compiler, ADS",
5837 "Thumb C++ Compiler, ADS",
5838 "ARM/Thumb C/C++ Compiler, RVCT",
5839 "ARM C/C++ Compiler, RVCT"
5840 };
5841 int i;
5842
5843 if (producer == NULL)
5844 return 0;
5845
5846 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5847 if (startswith (producer, arm_idents[i]))
5848 return 1;
5849
5850 return 0;
5851 }
5852
5853 \f
5854
5855 /* The next index to hand out in response to a registration request. */
5856
5857 static int next_aclass_value = LOC_FINAL_VALUE;
5858
5859 /* The maximum number of "aclass" registrations we support. This is
5860 constant for convenience. */
5861 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5862
5863 /* The objects representing the various "aclass" values. The elements
5864 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5865 elements are those registered at gdb initialization time. */
5866
5867 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5868
5869 /* The globally visible pointer. This is separate from 'symbol_impl'
5870 so that it can be const. */
5871
5872 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5873
5874 /* Make sure we saved enough room in struct symbol. */
5875
5876 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5877
5878 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5879 is the ops vector associated with this index. This returns the new
5880 index, which should be used as the aclass_index field for symbols
5881 of this type. */
5882
5883 int
5884 register_symbol_computed_impl (enum address_class aclass,
5885 const struct symbol_computed_ops *ops)
5886 {
5887 int result = next_aclass_value++;
5888
5889 gdb_assert (aclass == LOC_COMPUTED);
5890 gdb_assert (result < MAX_SYMBOL_IMPLS);
5891 symbol_impl[result].aclass = aclass;
5892 symbol_impl[result].ops_computed = ops;
5893
5894 /* Sanity check OPS. */
5895 gdb_assert (ops != NULL);
5896 gdb_assert (ops->tracepoint_var_ref != NULL);
5897 gdb_assert (ops->describe_location != NULL);
5898 gdb_assert (ops->get_symbol_read_needs != NULL);
5899 gdb_assert (ops->read_variable != NULL);
5900
5901 return result;
5902 }
5903
5904 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5905 OPS is the ops vector associated with this index. This returns the
5906 new index, which should be used as the aclass_index field for symbols
5907 of this type. */
5908
5909 int
5910 register_symbol_block_impl (enum address_class aclass,
5911 const struct symbol_block_ops *ops)
5912 {
5913 int result = next_aclass_value++;
5914
5915 gdb_assert (aclass == LOC_BLOCK);
5916 gdb_assert (result < MAX_SYMBOL_IMPLS);
5917 symbol_impl[result].aclass = aclass;
5918 symbol_impl[result].ops_block = ops;
5919
5920 /* Sanity check OPS. */
5921 gdb_assert (ops != NULL);
5922 gdb_assert (ops->find_frame_base_location != NULL);
5923
5924 return result;
5925 }
5926
5927 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5928 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5929 this index. This returns the new index, which should be used as
5930 the aclass_index field for symbols of this type. */
5931
5932 int
5933 register_symbol_register_impl (enum address_class aclass,
5934 const struct symbol_register_ops *ops)
5935 {
5936 int result = next_aclass_value++;
5937
5938 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5939 gdb_assert (result < MAX_SYMBOL_IMPLS);
5940 symbol_impl[result].aclass = aclass;
5941 symbol_impl[result].ops_register = ops;
5942
5943 return result;
5944 }
5945
5946 /* Initialize elements of 'symbol_impl' for the constants in enum
5947 address_class. */
5948
5949 static void
5950 initialize_ordinary_address_classes (void)
5951 {
5952 int i;
5953
5954 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5955 symbol_impl[i].aclass = (enum address_class) i;
5956 }
5957
5958 \f
5959
5960 /* Helper function to initialize the fields of an objfile-owned symbol.
5961 It assumed that *SYM is already all zeroes. */
5962
5963 static void
5964 initialize_objfile_symbol_1 (struct symbol *sym)
5965 {
5966 SYMBOL_OBJFILE_OWNED (sym) = 1;
5967 SYMBOL_SECTION (sym) = -1;
5968 }
5969
5970 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5971
5972 void
5973 initialize_objfile_symbol (struct symbol *sym)
5974 {
5975 memset (sym, 0, sizeof (*sym));
5976 initialize_objfile_symbol_1 (sym);
5977 }
5978
5979 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5980 obstack. */
5981
5982 struct symbol *
5983 allocate_symbol (struct objfile *objfile)
5984 {
5985 struct symbol *result;
5986
5987 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5988 initialize_objfile_symbol_1 (result);
5989
5990 return result;
5991 }
5992
5993 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5994 obstack. */
5995
5996 struct template_symbol *
5997 allocate_template_symbol (struct objfile *objfile)
5998 {
5999 struct template_symbol *result;
6000
6001 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6002 initialize_objfile_symbol_1 (&result->base);
6003
6004 return result;
6005 }
6006
6007 /* See symtab.h. */
6008
6009 struct objfile *
6010 symbol_objfile (const struct symbol *symbol)
6011 {
6012 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6013 return SYMTAB_OBJFILE (symbol->owner.symtab);
6014 }
6015
6016 /* See symtab.h. */
6017
6018 struct gdbarch *
6019 symbol_arch (const struct symbol *symbol)
6020 {
6021 if (!SYMBOL_OBJFILE_OWNED (symbol))
6022 return symbol->owner.arch;
6023 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6024 }
6025
6026 /* See symtab.h. */
6027
6028 struct symtab *
6029 symbol_symtab (const struct symbol *symbol)
6030 {
6031 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6032 return symbol->owner.symtab;
6033 }
6034
6035 /* See symtab.h. */
6036
6037 void
6038 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6039 {
6040 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6041 symbol->owner.symtab = symtab;
6042 }
6043
6044 \f
6045
6046 void
6047 _initialize_symtab (void)
6048 {
6049 initialize_ordinary_address_classes ();
6050
6051 main_progspace_key
6052 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6053
6054 symbol_cache_key
6055 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6056
6057 add_info ("variables", variables_info, _("\
6058 All global and static variable names, or those matching REGEXP."));
6059 if (dbx_commands)
6060 add_com ("whereis", class_info, variables_info, _("\
6061 All global and static variable names, or those matching REGEXP."));
6062
6063 add_info ("functions", functions_info,
6064 _("All function names, or those matching REGEXP."));
6065
6066 /* FIXME: This command has at least the following problems:
6067 1. It prints builtin types (in a very strange and confusing fashion).
6068 2. It doesn't print right, e.g. with
6069 typedef struct foo *FOO
6070 type_print prints "FOO" when we want to make it (in this situation)
6071 print "struct foo *".
6072 I also think "ptype" or "whatis" is more likely to be useful (but if
6073 there is much disagreement "info types" can be fixed). */
6074 add_info ("types", types_info,
6075 _("All type names, or those matching REGEXP."));
6076
6077 add_info ("sources", sources_info,
6078 _("Source files in the program."));
6079
6080 add_com ("rbreak", class_breakpoint, rbreak_command,
6081 _("Set a breakpoint for all functions matching REGEXP."));
6082
6083 add_setshow_enum_cmd ("multiple-symbols", no_class,
6084 multiple_symbols_modes, &multiple_symbols_mode,
6085 _("\
6086 Set the debugger behavior when more than one symbol are possible matches\n\
6087 in an expression."), _("\
6088 Show how the debugger handles ambiguities in expressions."), _("\
6089 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6090 NULL, NULL, &setlist, &showlist);
6091
6092 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6093 &basenames_may_differ, _("\
6094 Set whether a source file may have multiple base names."), _("\
6095 Show whether a source file may have multiple base names."), _("\
6096 (A \"base name\" is the name of a file with the directory part removed.\n\
6097 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6098 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6099 before comparing them. Canonicalization is an expensive operation,\n\
6100 but it allows the same file be known by more than one base name.\n\
6101 If not set (the default), all source files are assumed to have just\n\
6102 one base name, and gdb will do file name comparisons more efficiently."),
6103 NULL, NULL,
6104 &setlist, &showlist);
6105
6106 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6107 _("Set debugging of symbol table creation."),
6108 _("Show debugging of symbol table creation."), _("\
6109 When enabled (non-zero), debugging messages are printed when building\n\
6110 symbol tables. A value of 1 (one) normally provides enough information.\n\
6111 A value greater than 1 provides more verbose information."),
6112 NULL,
6113 NULL,
6114 &setdebuglist, &showdebuglist);
6115
6116 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6117 _("\
6118 Set debugging of symbol lookup."), _("\
6119 Show debugging of symbol lookup."), _("\
6120 When enabled (non-zero), symbol lookups are logged."),
6121 NULL, NULL,
6122 &setdebuglist, &showdebuglist);
6123
6124 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6125 &new_symbol_cache_size,
6126 _("Set the size of the symbol cache."),
6127 _("Show the size of the symbol cache."), _("\
6128 The size of the symbol cache.\n\
6129 If zero then the symbol cache is disabled."),
6130 set_symbol_cache_size_handler, NULL,
6131 &maintenance_set_cmdlist,
6132 &maintenance_show_cmdlist);
6133
6134 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6135 _("Dump the symbol cache for each program space."),
6136 &maintenanceprintlist);
6137
6138 add_cmd ("symbol-cache-statistics", class_maintenance,
6139 maintenance_print_symbol_cache_statistics,
6140 _("Print symbol cache statistics for each program space."),
6141 &maintenanceprintlist);
6142
6143 add_cmd ("flush-symbol-cache", class_maintenance,
6144 maintenance_flush_symbol_cache,
6145 _("Flush the symbol cache for each program space."),
6146 &maintenancelist);
6147
6148 observer_attach_executable_changed (symtab_observer_executable_changed);
6149 observer_attach_new_objfile (symtab_new_objfile_observer);
6150 observer_attach_free_objfile (symtab_free_objfile_observer);
6151 }
This page took 0.182804 seconds and 4 git commands to generate.