c697b1bcca0bcc391fe8af0d7c9f66cb8c3a1486
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_via_quick_fns (struct objfile *objfile,
84 int block_index,
85 const char *name,
86 const domain_enum domain);
87
88 extern initialize_file_ftype _initialize_symtab;
89
90 /* Program space key for finding name and language of "main". */
91
92 static const struct program_space_data *main_progspace_key;
93
94 /* Type of the data stored on the program space. */
95
96 struct main_info
97 {
98 /* Name of "main". */
99
100 char *name_of_main;
101
102 /* Language of "main". */
103
104 enum language language_of_main;
105 };
106
107 /* When non-zero, print debugging messages related to symtab creation. */
108 unsigned int symtab_create_debug = 0;
109
110 /* Non-zero if a file may be known by two different basenames.
111 This is the uncommon case, and significantly slows down gdb.
112 Default set to "off" to not slow down the common case. */
113 int basenames_may_differ = 0;
114
115 /* Allow the user to configure the debugger behavior with respect
116 to multiple-choice menus when more than one symbol matches during
117 a symbol lookup. */
118
119 const char multiple_symbols_ask[] = "ask";
120 const char multiple_symbols_all[] = "all";
121 const char multiple_symbols_cancel[] = "cancel";
122 static const char *const multiple_symbols_modes[] =
123 {
124 multiple_symbols_ask,
125 multiple_symbols_all,
126 multiple_symbols_cancel,
127 NULL
128 };
129 static const char *multiple_symbols_mode = multiple_symbols_all;
130
131 /* Read-only accessor to AUTO_SELECT_MODE. */
132
133 const char *
134 multiple_symbols_select_mode (void)
135 {
136 return multiple_symbols_mode;
137 }
138
139 /* Block in which the most recently searched-for symbol was found.
140 Might be better to make this a parameter to lookup_symbol and
141 value_of_this. */
142
143 const struct block *block_found;
144
145 /* Return the name of a domain_enum. */
146
147 const char *
148 domain_name (domain_enum e)
149 {
150 switch (e)
151 {
152 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
153 case VAR_DOMAIN: return "VAR_DOMAIN";
154 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
155 case LABEL_DOMAIN: return "LABEL_DOMAIN";
156 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
157 default: gdb_assert_not_reached ("bad domain_enum");
158 }
159 }
160
161 /* Return the name of a search_domain . */
162
163 const char *
164 search_domain_name (enum search_domain e)
165 {
166 switch (e)
167 {
168 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
169 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
170 case TYPES_DOMAIN: return "TYPES_DOMAIN";
171 case ALL_DOMAIN: return "ALL_DOMAIN";
172 default: gdb_assert_not_reached ("bad search_domain");
173 }
174 }
175
176 /* See symtab.h. */
177
178 struct symtab *
179 compunit_primary_filetab (const struct compunit_symtab *cust)
180 {
181 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
182
183 /* The primary file symtab is the first one in the list. */
184 return COMPUNIT_FILETABS (cust);
185 }
186
187 /* See symtab.h. */
188
189 enum language
190 compunit_language (const struct compunit_symtab *cust)
191 {
192 struct symtab *symtab = compunit_primary_filetab (cust);
193
194 /* The language of the compunit symtab is the language of its primary
195 source file. */
196 return SYMTAB_LANGUAGE (symtab);
197 }
198
199 /* See whether FILENAME matches SEARCH_NAME using the rule that we
200 advertise to the user. (The manual's description of linespecs
201 describes what we advertise). Returns true if they match, false
202 otherwise. */
203
204 int
205 compare_filenames_for_search (const char *filename, const char *search_name)
206 {
207 int len = strlen (filename);
208 size_t search_len = strlen (search_name);
209
210 if (len < search_len)
211 return 0;
212
213 /* The tail of FILENAME must match. */
214 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
215 return 0;
216
217 /* Either the names must completely match, or the character
218 preceding the trailing SEARCH_NAME segment of FILENAME must be a
219 directory separator.
220
221 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
222 cannot match FILENAME "/path//dir/file.c" - as user has requested
223 absolute path. The sama applies for "c:\file.c" possibly
224 incorrectly hypothetically matching "d:\dir\c:\file.c".
225
226 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
227 compatible with SEARCH_NAME "file.c". In such case a compiler had
228 to put the "c:file.c" name into debug info. Such compatibility
229 works only on GDB built for DOS host. */
230 return (len == search_len
231 || (!IS_ABSOLUTE_PATH (search_name)
232 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
233 || (HAS_DRIVE_SPEC (filename)
234 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
235 }
236
237 /* Check for a symtab of a specific name by searching some symtabs.
238 This is a helper function for callbacks of iterate_over_symtabs.
239
240 If NAME is not absolute, then REAL_PATH is NULL
241 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
242
243 The return value, NAME, REAL_PATH, CALLBACK, and DATA
244 are identical to the `map_symtabs_matching_filename' method of
245 quick_symbol_functions.
246
247 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
248 Each symtab within the specified compunit symtab is also searched.
249 AFTER_LAST is one past the last compunit symtab to search; NULL means to
250 search until the end of the list. */
251
252 int
253 iterate_over_some_symtabs (const char *name,
254 const char *real_path,
255 int (*callback) (struct symtab *symtab,
256 void *data),
257 void *data,
258 struct compunit_symtab *first,
259 struct compunit_symtab *after_last)
260 {
261 struct compunit_symtab *cust;
262 struct symtab *s;
263 const char* base_name = lbasename (name);
264
265 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
266 {
267 ALL_COMPUNIT_FILETABS (cust, s)
268 {
269 if (compare_filenames_for_search (s->filename, name))
270 {
271 if (callback (s, data))
272 return 1;
273 continue;
274 }
275
276 /* Before we invoke realpath, which can get expensive when many
277 files are involved, do a quick comparison of the basenames. */
278 if (! basenames_may_differ
279 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
280 continue;
281
282 if (compare_filenames_for_search (symtab_to_fullname (s), name))
283 {
284 if (callback (s, data))
285 return 1;
286 continue;
287 }
288
289 /* If the user gave us an absolute path, try to find the file in
290 this symtab and use its absolute path. */
291 if (real_path != NULL)
292 {
293 const char *fullname = symtab_to_fullname (s);
294
295 gdb_assert (IS_ABSOLUTE_PATH (real_path));
296 gdb_assert (IS_ABSOLUTE_PATH (name));
297 if (FILENAME_CMP (real_path, fullname) == 0)
298 {
299 if (callback (s, data))
300 return 1;
301 continue;
302 }
303 }
304 }
305 }
306
307 return 0;
308 }
309
310 /* Check for a symtab of a specific name; first in symtabs, then in
311 psymtabs. *If* there is no '/' in the name, a match after a '/'
312 in the symtab filename will also work.
313
314 Calls CALLBACK with each symtab that is found and with the supplied
315 DATA. If CALLBACK returns true, the search stops. */
316
317 void
318 iterate_over_symtabs (const char *name,
319 int (*callback) (struct symtab *symtab,
320 void *data),
321 void *data)
322 {
323 struct objfile *objfile;
324 char *real_path = NULL;
325 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
326
327 /* Here we are interested in canonicalizing an absolute path, not
328 absolutizing a relative path. */
329 if (IS_ABSOLUTE_PATH (name))
330 {
331 real_path = gdb_realpath (name);
332 make_cleanup (xfree, real_path);
333 gdb_assert (IS_ABSOLUTE_PATH (real_path));
334 }
335
336 ALL_OBJFILES (objfile)
337 {
338 if (iterate_over_some_symtabs (name, real_path, callback, data,
339 objfile->compunit_symtabs, NULL))
340 {
341 do_cleanups (cleanups);
342 return;
343 }
344 }
345
346 /* Same search rules as above apply here, but now we look thru the
347 psymtabs. */
348
349 ALL_OBJFILES (objfile)
350 {
351 if (objfile->sf
352 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
353 name,
354 real_path,
355 callback,
356 data))
357 {
358 do_cleanups (cleanups);
359 return;
360 }
361 }
362
363 do_cleanups (cleanups);
364 }
365
366 /* The callback function used by lookup_symtab. */
367
368 static int
369 lookup_symtab_callback (struct symtab *symtab, void *data)
370 {
371 struct symtab **result_ptr = data;
372
373 *result_ptr = symtab;
374 return 1;
375 }
376
377 /* A wrapper for iterate_over_symtabs that returns the first matching
378 symtab, or NULL. */
379
380 struct symtab *
381 lookup_symtab (const char *name)
382 {
383 struct symtab *result = NULL;
384
385 iterate_over_symtabs (name, lookup_symtab_callback, &result);
386 return result;
387 }
388
389 \f
390 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
391 full method name, which consist of the class name (from T), the unadorned
392 method name from METHOD_ID, and the signature for the specific overload,
393 specified by SIGNATURE_ID. Note that this function is g++ specific. */
394
395 char *
396 gdb_mangle_name (struct type *type, int method_id, int signature_id)
397 {
398 int mangled_name_len;
399 char *mangled_name;
400 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
401 struct fn_field *method = &f[signature_id];
402 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
403 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
404 const char *newname = type_name_no_tag (type);
405
406 /* Does the form of physname indicate that it is the full mangled name
407 of a constructor (not just the args)? */
408 int is_full_physname_constructor;
409
410 int is_constructor;
411 int is_destructor = is_destructor_name (physname);
412 /* Need a new type prefix. */
413 char *const_prefix = method->is_const ? "C" : "";
414 char *volatile_prefix = method->is_volatile ? "V" : "";
415 char buf[20];
416 int len = (newname == NULL ? 0 : strlen (newname));
417
418 /* Nothing to do if physname already contains a fully mangled v3 abi name
419 or an operator name. */
420 if ((physname[0] == '_' && physname[1] == 'Z')
421 || is_operator_name (field_name))
422 return xstrdup (physname);
423
424 is_full_physname_constructor = is_constructor_name (physname);
425
426 is_constructor = is_full_physname_constructor
427 || (newname && strcmp (field_name, newname) == 0);
428
429 if (!is_destructor)
430 is_destructor = (strncmp (physname, "__dt", 4) == 0);
431
432 if (is_destructor || is_full_physname_constructor)
433 {
434 mangled_name = (char *) xmalloc (strlen (physname) + 1);
435 strcpy (mangled_name, physname);
436 return mangled_name;
437 }
438
439 if (len == 0)
440 {
441 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
442 }
443 else if (physname[0] == 't' || physname[0] == 'Q')
444 {
445 /* The physname for template and qualified methods already includes
446 the class name. */
447 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
448 newname = NULL;
449 len = 0;
450 }
451 else
452 {
453 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
454 volatile_prefix, len);
455 }
456 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
457 + strlen (buf) + len + strlen (physname) + 1);
458
459 mangled_name = (char *) xmalloc (mangled_name_len);
460 if (is_constructor)
461 mangled_name[0] = '\0';
462 else
463 strcpy (mangled_name, field_name);
464
465 strcat (mangled_name, buf);
466 /* If the class doesn't have a name, i.e. newname NULL, then we just
467 mangle it using 0 for the length of the class. Thus it gets mangled
468 as something starting with `::' rather than `classname::'. */
469 if (newname != NULL)
470 strcat (mangled_name, newname);
471
472 strcat (mangled_name, physname);
473 return (mangled_name);
474 }
475
476 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
477 correctly allocated. */
478
479 void
480 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
481 const char *name,
482 struct obstack *obstack)
483 {
484 if (gsymbol->language == language_ada)
485 {
486 if (name == NULL)
487 {
488 gsymbol->ada_mangled = 0;
489 gsymbol->language_specific.obstack = obstack;
490 }
491 else
492 {
493 gsymbol->ada_mangled = 1;
494 gsymbol->language_specific.mangled_lang.demangled_name = name;
495 }
496 }
497 else
498 gsymbol->language_specific.mangled_lang.demangled_name = name;
499 }
500
501 /* Return the demangled name of GSYMBOL. */
502
503 const char *
504 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
505 {
506 if (gsymbol->language == language_ada)
507 {
508 if (!gsymbol->ada_mangled)
509 return NULL;
510 /* Fall through. */
511 }
512
513 return gsymbol->language_specific.mangled_lang.demangled_name;
514 }
515
516 \f
517 /* Initialize the language dependent portion of a symbol
518 depending upon the language for the symbol. */
519
520 void
521 symbol_set_language (struct general_symbol_info *gsymbol,
522 enum language language,
523 struct obstack *obstack)
524 {
525 gsymbol->language = language;
526 if (gsymbol->language == language_cplus
527 || gsymbol->language == language_d
528 || gsymbol->language == language_go
529 || gsymbol->language == language_java
530 || gsymbol->language == language_objc
531 || gsymbol->language == language_fortran)
532 {
533 symbol_set_demangled_name (gsymbol, NULL, obstack);
534 }
535 else if (gsymbol->language == language_ada)
536 {
537 gdb_assert (gsymbol->ada_mangled == 0);
538 gsymbol->language_specific.obstack = obstack;
539 }
540 else
541 {
542 memset (&gsymbol->language_specific, 0,
543 sizeof (gsymbol->language_specific));
544 }
545 }
546
547 /* Functions to initialize a symbol's mangled name. */
548
549 /* Objects of this type are stored in the demangled name hash table. */
550 struct demangled_name_entry
551 {
552 const char *mangled;
553 char demangled[1];
554 };
555
556 /* Hash function for the demangled name hash. */
557
558 static hashval_t
559 hash_demangled_name_entry (const void *data)
560 {
561 const struct demangled_name_entry *e = data;
562
563 return htab_hash_string (e->mangled);
564 }
565
566 /* Equality function for the demangled name hash. */
567
568 static int
569 eq_demangled_name_entry (const void *a, const void *b)
570 {
571 const struct demangled_name_entry *da = a;
572 const struct demangled_name_entry *db = b;
573
574 return strcmp (da->mangled, db->mangled) == 0;
575 }
576
577 /* Create the hash table used for demangled names. Each hash entry is
578 a pair of strings; one for the mangled name and one for the demangled
579 name. The entry is hashed via just the mangled name. */
580
581 static void
582 create_demangled_names_hash (struct objfile *objfile)
583 {
584 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
585 The hash table code will round this up to the next prime number.
586 Choosing a much larger table size wastes memory, and saves only about
587 1% in symbol reading. */
588
589 objfile->per_bfd->demangled_names_hash = htab_create_alloc
590 (256, hash_demangled_name_entry, eq_demangled_name_entry,
591 NULL, xcalloc, xfree);
592 }
593
594 /* Try to determine the demangled name for a symbol, based on the
595 language of that symbol. If the language is set to language_auto,
596 it will attempt to find any demangling algorithm that works and
597 then set the language appropriately. The returned name is allocated
598 by the demangler and should be xfree'd. */
599
600 static char *
601 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
602 const char *mangled)
603 {
604 char *demangled = NULL;
605
606 if (gsymbol->language == language_unknown)
607 gsymbol->language = language_auto;
608
609 if (gsymbol->language == language_objc
610 || gsymbol->language == language_auto)
611 {
612 demangled =
613 objc_demangle (mangled, 0);
614 if (demangled != NULL)
615 {
616 gsymbol->language = language_objc;
617 return demangled;
618 }
619 }
620 if (gsymbol->language == language_cplus
621 || gsymbol->language == language_auto)
622 {
623 demangled =
624 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
625 if (demangled != NULL)
626 {
627 gsymbol->language = language_cplus;
628 return demangled;
629 }
630 }
631 if (gsymbol->language == language_java)
632 {
633 demangled =
634 gdb_demangle (mangled,
635 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
636 if (demangled != NULL)
637 {
638 gsymbol->language = language_java;
639 return demangled;
640 }
641 }
642 if (gsymbol->language == language_d
643 || gsymbol->language == language_auto)
644 {
645 demangled = d_demangle(mangled, 0);
646 if (demangled != NULL)
647 {
648 gsymbol->language = language_d;
649 return demangled;
650 }
651 }
652 /* FIXME(dje): Continually adding languages here is clumsy.
653 Better to just call la_demangle if !auto, and if auto then call
654 a utility routine that tries successive languages in turn and reports
655 which one it finds. I realize the la_demangle options may be different
656 for different languages but there's already a FIXME for that. */
657 if (gsymbol->language == language_go
658 || gsymbol->language == language_auto)
659 {
660 demangled = go_demangle (mangled, 0);
661 if (demangled != NULL)
662 {
663 gsymbol->language = language_go;
664 return demangled;
665 }
666 }
667
668 /* We could support `gsymbol->language == language_fortran' here to provide
669 module namespaces also for inferiors with only minimal symbol table (ELF
670 symbols). Just the mangling standard is not standardized across compilers
671 and there is no DW_AT_producer available for inferiors with only the ELF
672 symbols to check the mangling kind. */
673
674 /* Check for Ada symbols last. See comment below explaining why. */
675
676 if (gsymbol->language == language_auto)
677 {
678 const char *demangled = ada_decode (mangled);
679
680 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
681 {
682 /* Set the gsymbol language to Ada, but still return NULL.
683 Two reasons for that:
684
685 1. For Ada, we prefer computing the symbol's decoded name
686 on the fly rather than pre-compute it, in order to save
687 memory (Ada projects are typically very large).
688
689 2. There are some areas in the definition of the GNAT
690 encoding where, with a bit of bad luck, we might be able
691 to decode a non-Ada symbol, generating an incorrect
692 demangled name (Eg: names ending with "TB" for instance
693 are identified as task bodies and so stripped from
694 the decoded name returned).
695
696 Returning NULL, here, helps us get a little bit of
697 the best of both worlds. Because we're last, we should
698 not affect any of the other languages that were able to
699 demangle the symbol before us; we get to correctly tag
700 Ada symbols as such; and even if we incorrectly tagged
701 a non-Ada symbol, which should be rare, any routing
702 through the Ada language should be transparent (Ada
703 tries to behave much like C/C++ with non-Ada symbols). */
704 gsymbol->language = language_ada;
705 return NULL;
706 }
707 }
708
709 return NULL;
710 }
711
712 /* Set both the mangled and demangled (if any) names for GSYMBOL based
713 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
714 objfile's obstack; but if COPY_NAME is 0 and if NAME is
715 NUL-terminated, then this function assumes that NAME is already
716 correctly saved (either permanently or with a lifetime tied to the
717 objfile), and it will not be copied.
718
719 The hash table corresponding to OBJFILE is used, and the memory
720 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
721 so the pointer can be discarded after calling this function. */
722
723 /* We have to be careful when dealing with Java names: when we run
724 into a Java minimal symbol, we don't know it's a Java symbol, so it
725 gets demangled as a C++ name. This is unfortunate, but there's not
726 much we can do about it: but when demangling partial symbols and
727 regular symbols, we'd better not reuse the wrong demangled name.
728 (See PR gdb/1039.) We solve this by putting a distinctive prefix
729 on Java names when storing them in the hash table. */
730
731 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
732 don't mind the Java prefix so much: different languages have
733 different demangling requirements, so it's only natural that we
734 need to keep language data around in our demangling cache. But
735 it's not good that the minimal symbol has the wrong demangled name.
736 Unfortunately, I can't think of any easy solution to that
737 problem. */
738
739 #define JAVA_PREFIX "##JAVA$$"
740 #define JAVA_PREFIX_LEN 8
741
742 void
743 symbol_set_names (struct general_symbol_info *gsymbol,
744 const char *linkage_name, int len, int copy_name,
745 struct objfile *objfile)
746 {
747 struct demangled_name_entry **slot;
748 /* A 0-terminated copy of the linkage name. */
749 const char *linkage_name_copy;
750 /* A copy of the linkage name that might have a special Java prefix
751 added to it, for use when looking names up in the hash table. */
752 const char *lookup_name;
753 /* The length of lookup_name. */
754 int lookup_len;
755 struct demangled_name_entry entry;
756 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
757
758 if (gsymbol->language == language_ada)
759 {
760 /* In Ada, we do the symbol lookups using the mangled name, so
761 we can save some space by not storing the demangled name.
762
763 As a side note, we have also observed some overlap between
764 the C++ mangling and Ada mangling, similarly to what has
765 been observed with Java. Because we don't store the demangled
766 name with the symbol, we don't need to use the same trick
767 as Java. */
768 if (!copy_name)
769 gsymbol->name = linkage_name;
770 else
771 {
772 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
773
774 memcpy (name, linkage_name, len);
775 name[len] = '\0';
776 gsymbol->name = name;
777 }
778 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
779
780 return;
781 }
782
783 if (per_bfd->demangled_names_hash == NULL)
784 create_demangled_names_hash (objfile);
785
786 /* The stabs reader generally provides names that are not
787 NUL-terminated; most of the other readers don't do this, so we
788 can just use the given copy, unless we're in the Java case. */
789 if (gsymbol->language == language_java)
790 {
791 char *alloc_name;
792
793 lookup_len = len + JAVA_PREFIX_LEN;
794 alloc_name = alloca (lookup_len + 1);
795 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
796 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
797 alloc_name[lookup_len] = '\0';
798
799 lookup_name = alloc_name;
800 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
801 }
802 else if (linkage_name[len] != '\0')
803 {
804 char *alloc_name;
805
806 lookup_len = len;
807 alloc_name = alloca (lookup_len + 1);
808 memcpy (alloc_name, linkage_name, len);
809 alloc_name[lookup_len] = '\0';
810
811 lookup_name = alloc_name;
812 linkage_name_copy = alloc_name;
813 }
814 else
815 {
816 lookup_len = len;
817 lookup_name = linkage_name;
818 linkage_name_copy = linkage_name;
819 }
820
821 entry.mangled = lookup_name;
822 slot = ((struct demangled_name_entry **)
823 htab_find_slot (per_bfd->demangled_names_hash,
824 &entry, INSERT));
825
826 /* If this name is not in the hash table, add it. */
827 if (*slot == NULL
828 /* A C version of the symbol may have already snuck into the table.
829 This happens to, e.g., main.init (__go_init_main). Cope. */
830 || (gsymbol->language == language_go
831 && (*slot)->demangled[0] == '\0'))
832 {
833 char *demangled_name = symbol_find_demangled_name (gsymbol,
834 linkage_name_copy);
835 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
836
837 /* Suppose we have demangled_name==NULL, copy_name==0, and
838 lookup_name==linkage_name. In this case, we already have the
839 mangled name saved, and we don't have a demangled name. So,
840 you might think we could save a little space by not recording
841 this in the hash table at all.
842
843 It turns out that it is actually important to still save such
844 an entry in the hash table, because storing this name gives
845 us better bcache hit rates for partial symbols. */
846 if (!copy_name && lookup_name == linkage_name)
847 {
848 *slot = obstack_alloc (&per_bfd->storage_obstack,
849 offsetof (struct demangled_name_entry,
850 demangled)
851 + demangled_len + 1);
852 (*slot)->mangled = lookup_name;
853 }
854 else
855 {
856 char *mangled_ptr;
857
858 /* If we must copy the mangled name, put it directly after
859 the demangled name so we can have a single
860 allocation. */
861 *slot = obstack_alloc (&per_bfd->storage_obstack,
862 offsetof (struct demangled_name_entry,
863 demangled)
864 + lookup_len + demangled_len + 2);
865 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
866 strcpy (mangled_ptr, lookup_name);
867 (*slot)->mangled = mangled_ptr;
868 }
869
870 if (demangled_name != NULL)
871 {
872 strcpy ((*slot)->demangled, demangled_name);
873 xfree (demangled_name);
874 }
875 else
876 (*slot)->demangled[0] = '\0';
877 }
878
879 gsymbol->name = (*slot)->mangled + lookup_len - len;
880 if ((*slot)->demangled[0] != '\0')
881 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
882 &per_bfd->storage_obstack);
883 else
884 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
885 }
886
887 /* Return the source code name of a symbol. In languages where
888 demangling is necessary, this is the demangled name. */
889
890 const char *
891 symbol_natural_name (const struct general_symbol_info *gsymbol)
892 {
893 switch (gsymbol->language)
894 {
895 case language_cplus:
896 case language_d:
897 case language_go:
898 case language_java:
899 case language_objc:
900 case language_fortran:
901 if (symbol_get_demangled_name (gsymbol) != NULL)
902 return symbol_get_demangled_name (gsymbol);
903 break;
904 case language_ada:
905 return ada_decode_symbol (gsymbol);
906 default:
907 break;
908 }
909 return gsymbol->name;
910 }
911
912 /* Return the demangled name for a symbol based on the language for
913 that symbol. If no demangled name exists, return NULL. */
914
915 const char *
916 symbol_demangled_name (const struct general_symbol_info *gsymbol)
917 {
918 const char *dem_name = NULL;
919
920 switch (gsymbol->language)
921 {
922 case language_cplus:
923 case language_d:
924 case language_go:
925 case language_java:
926 case language_objc:
927 case language_fortran:
928 dem_name = symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 dem_name = ada_decode_symbol (gsymbol);
932 break;
933 default:
934 break;
935 }
936 return dem_name;
937 }
938
939 /* Return the search name of a symbol---generally the demangled or
940 linkage name of the symbol, depending on how it will be searched for.
941 If there is no distinct demangled name, then returns the same value
942 (same pointer) as SYMBOL_LINKAGE_NAME. */
943
944 const char *
945 symbol_search_name (const struct general_symbol_info *gsymbol)
946 {
947 if (gsymbol->language == language_ada)
948 return gsymbol->name;
949 else
950 return symbol_natural_name (gsymbol);
951 }
952
953 /* Initialize the structure fields to zero values. */
954
955 void
956 init_sal (struct symtab_and_line *sal)
957 {
958 memset (sal, 0, sizeof (*sal));
959 }
960 \f
961
962 /* Return 1 if the two sections are the same, or if they could
963 plausibly be copies of each other, one in an original object
964 file and another in a separated debug file. */
965
966 int
967 matching_obj_sections (struct obj_section *obj_first,
968 struct obj_section *obj_second)
969 {
970 asection *first = obj_first? obj_first->the_bfd_section : NULL;
971 asection *second = obj_second? obj_second->the_bfd_section : NULL;
972 struct objfile *obj;
973
974 /* If they're the same section, then they match. */
975 if (first == second)
976 return 1;
977
978 /* If either is NULL, give up. */
979 if (first == NULL || second == NULL)
980 return 0;
981
982 /* This doesn't apply to absolute symbols. */
983 if (first->owner == NULL || second->owner == NULL)
984 return 0;
985
986 /* If they're in the same object file, they must be different sections. */
987 if (first->owner == second->owner)
988 return 0;
989
990 /* Check whether the two sections are potentially corresponding. They must
991 have the same size, address, and name. We can't compare section indexes,
992 which would be more reliable, because some sections may have been
993 stripped. */
994 if (bfd_get_section_size (first) != bfd_get_section_size (second))
995 return 0;
996
997 /* In-memory addresses may start at a different offset, relativize them. */
998 if (bfd_get_section_vma (first->owner, first)
999 - bfd_get_start_address (first->owner)
1000 != bfd_get_section_vma (second->owner, second)
1001 - bfd_get_start_address (second->owner))
1002 return 0;
1003
1004 if (bfd_get_section_name (first->owner, first) == NULL
1005 || bfd_get_section_name (second->owner, second) == NULL
1006 || strcmp (bfd_get_section_name (first->owner, first),
1007 bfd_get_section_name (second->owner, second)) != 0)
1008 return 0;
1009
1010 /* Otherwise check that they are in corresponding objfiles. */
1011
1012 ALL_OBJFILES (obj)
1013 if (obj->obfd == first->owner)
1014 break;
1015 gdb_assert (obj != NULL);
1016
1017 if (obj->separate_debug_objfile != NULL
1018 && obj->separate_debug_objfile->obfd == second->owner)
1019 return 1;
1020 if (obj->separate_debug_objfile_backlink != NULL
1021 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1022 return 1;
1023
1024 return 0;
1025 }
1026
1027 /* See symtab.h. */
1028
1029 void
1030 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1031 {
1032 struct objfile *objfile;
1033 struct bound_minimal_symbol msymbol;
1034
1035 /* If we know that this is not a text address, return failure. This is
1036 necessary because we loop based on texthigh and textlow, which do
1037 not include the data ranges. */
1038 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1039 if (msymbol.minsym
1040 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1041 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1042 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1043 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1044 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1045 return;
1046
1047 ALL_OBJFILES (objfile)
1048 {
1049 struct compunit_symtab *cust = NULL;
1050
1051 if (objfile->sf)
1052 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1053 pc, section, 0);
1054 if (cust)
1055 return;
1056 }
1057 }
1058 \f
1059 /* Debug symbols usually don't have section information. We need to dig that
1060 out of the minimal symbols and stash that in the debug symbol. */
1061
1062 void
1063 fixup_section (struct general_symbol_info *ginfo,
1064 CORE_ADDR addr, struct objfile *objfile)
1065 {
1066 struct minimal_symbol *msym;
1067
1068 /* First, check whether a minimal symbol with the same name exists
1069 and points to the same address. The address check is required
1070 e.g. on PowerPC64, where the minimal symbol for a function will
1071 point to the function descriptor, while the debug symbol will
1072 point to the actual function code. */
1073 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1074 if (msym)
1075 ginfo->section = MSYMBOL_SECTION (msym);
1076 else
1077 {
1078 /* Static, function-local variables do appear in the linker
1079 (minimal) symbols, but are frequently given names that won't
1080 be found via lookup_minimal_symbol(). E.g., it has been
1081 observed in frv-uclinux (ELF) executables that a static,
1082 function-local variable named "foo" might appear in the
1083 linker symbols as "foo.6" or "foo.3". Thus, there is no
1084 point in attempting to extend the lookup-by-name mechanism to
1085 handle this case due to the fact that there can be multiple
1086 names.
1087
1088 So, instead, search the section table when lookup by name has
1089 failed. The ``addr'' and ``endaddr'' fields may have already
1090 been relocated. If so, the relocation offset (i.e. the
1091 ANOFFSET value) needs to be subtracted from these values when
1092 performing the comparison. We unconditionally subtract it,
1093 because, when no relocation has been performed, the ANOFFSET
1094 value will simply be zero.
1095
1096 The address of the symbol whose section we're fixing up HAS
1097 NOT BEEN adjusted (relocated) yet. It can't have been since
1098 the section isn't yet known and knowing the section is
1099 necessary in order to add the correct relocation value. In
1100 other words, we wouldn't even be in this function (attempting
1101 to compute the section) if it were already known.
1102
1103 Note that it is possible to search the minimal symbols
1104 (subtracting the relocation value if necessary) to find the
1105 matching minimal symbol, but this is overkill and much less
1106 efficient. It is not necessary to find the matching minimal
1107 symbol, only its section.
1108
1109 Note that this technique (of doing a section table search)
1110 can fail when unrelocated section addresses overlap. For
1111 this reason, we still attempt a lookup by name prior to doing
1112 a search of the section table. */
1113
1114 struct obj_section *s;
1115 int fallback = -1;
1116
1117 ALL_OBJFILE_OSECTIONS (objfile, s)
1118 {
1119 int idx = s - objfile->sections;
1120 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1121
1122 if (fallback == -1)
1123 fallback = idx;
1124
1125 if (obj_section_addr (s) - offset <= addr
1126 && addr < obj_section_endaddr (s) - offset)
1127 {
1128 ginfo->section = idx;
1129 return;
1130 }
1131 }
1132
1133 /* If we didn't find the section, assume it is in the first
1134 section. If there is no allocated section, then it hardly
1135 matters what we pick, so just pick zero. */
1136 if (fallback == -1)
1137 ginfo->section = 0;
1138 else
1139 ginfo->section = fallback;
1140 }
1141 }
1142
1143 struct symbol *
1144 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1145 {
1146 CORE_ADDR addr;
1147
1148 if (!sym)
1149 return NULL;
1150
1151 /* We either have an OBJFILE, or we can get at it from the sym's
1152 symtab. Anything else is a bug. */
1153 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1154
1155 if (objfile == NULL)
1156 objfile = SYMBOL_OBJFILE (sym);
1157
1158 if (SYMBOL_OBJ_SECTION (objfile, sym))
1159 return sym;
1160
1161 /* We should have an objfile by now. */
1162 gdb_assert (objfile);
1163
1164 switch (SYMBOL_CLASS (sym))
1165 {
1166 case LOC_STATIC:
1167 case LOC_LABEL:
1168 addr = SYMBOL_VALUE_ADDRESS (sym);
1169 break;
1170 case LOC_BLOCK:
1171 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1172 break;
1173
1174 default:
1175 /* Nothing else will be listed in the minsyms -- no use looking
1176 it up. */
1177 return sym;
1178 }
1179
1180 fixup_section (&sym->ginfo, addr, objfile);
1181
1182 return sym;
1183 }
1184
1185 /* Compute the demangled form of NAME as used by the various symbol
1186 lookup functions. The result is stored in *RESULT_NAME. Returns a
1187 cleanup which can be used to clean up the result.
1188
1189 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1190 Normally, Ada symbol lookups are performed using the encoded name
1191 rather than the demangled name, and so it might seem to make sense
1192 for this function to return an encoded version of NAME.
1193 Unfortunately, we cannot do this, because this function is used in
1194 circumstances where it is not appropriate to try to encode NAME.
1195 For instance, when displaying the frame info, we demangle the name
1196 of each parameter, and then perform a symbol lookup inside our
1197 function using that demangled name. In Ada, certain functions
1198 have internally-generated parameters whose name contain uppercase
1199 characters. Encoding those name would result in those uppercase
1200 characters to become lowercase, and thus cause the symbol lookup
1201 to fail. */
1202
1203 struct cleanup *
1204 demangle_for_lookup (const char *name, enum language lang,
1205 const char **result_name)
1206 {
1207 char *demangled_name = NULL;
1208 const char *modified_name = NULL;
1209 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1210
1211 modified_name = name;
1212
1213 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1214 lookup, so we can always binary search. */
1215 if (lang == language_cplus)
1216 {
1217 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1218 if (demangled_name)
1219 {
1220 modified_name = demangled_name;
1221 make_cleanup (xfree, demangled_name);
1222 }
1223 else
1224 {
1225 /* If we were given a non-mangled name, canonicalize it
1226 according to the language (so far only for C++). */
1227 demangled_name = cp_canonicalize_string (name);
1228 if (demangled_name)
1229 {
1230 modified_name = demangled_name;
1231 make_cleanup (xfree, demangled_name);
1232 }
1233 }
1234 }
1235 else if (lang == language_java)
1236 {
1237 demangled_name = gdb_demangle (name,
1238 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1239 if (demangled_name)
1240 {
1241 modified_name = demangled_name;
1242 make_cleanup (xfree, demangled_name);
1243 }
1244 }
1245 else if (lang == language_d)
1246 {
1247 demangled_name = d_demangle (name, 0);
1248 if (demangled_name)
1249 {
1250 modified_name = demangled_name;
1251 make_cleanup (xfree, demangled_name);
1252 }
1253 }
1254 else if (lang == language_go)
1255 {
1256 demangled_name = go_demangle (name, 0);
1257 if (demangled_name)
1258 {
1259 modified_name = demangled_name;
1260 make_cleanup (xfree, demangled_name);
1261 }
1262 }
1263
1264 *result_name = modified_name;
1265 return cleanup;
1266 }
1267
1268 /* See symtab.h.
1269
1270 This function (or rather its subordinates) have a bunch of loops and
1271 it would seem to be attractive to put in some QUIT's (though I'm not really
1272 sure whether it can run long enough to be really important). But there
1273 are a few calls for which it would appear to be bad news to quit
1274 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1275 that there is C++ code below which can error(), but that probably
1276 doesn't affect these calls since they are looking for a known
1277 variable and thus can probably assume it will never hit the C++
1278 code). */
1279
1280 struct symbol *
1281 lookup_symbol_in_language (const char *name, const struct block *block,
1282 const domain_enum domain, enum language lang,
1283 struct field_of_this_result *is_a_field_of_this)
1284 {
1285 const char *modified_name;
1286 struct symbol *returnval;
1287 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1288
1289 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1290 is_a_field_of_this);
1291 do_cleanups (cleanup);
1292
1293 return returnval;
1294 }
1295
1296 /* See symtab.h. */
1297
1298 struct symbol *
1299 lookup_symbol (const char *name, const struct block *block,
1300 domain_enum domain,
1301 struct field_of_this_result *is_a_field_of_this)
1302 {
1303 return lookup_symbol_in_language (name, block, domain,
1304 current_language->la_language,
1305 is_a_field_of_this);
1306 }
1307
1308 /* See symtab.h. */
1309
1310 struct symbol *
1311 lookup_language_this (const struct language_defn *lang,
1312 const struct block *block)
1313 {
1314 if (lang->la_name_of_this == NULL || block == NULL)
1315 return NULL;
1316
1317 while (block)
1318 {
1319 struct symbol *sym;
1320
1321 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1322 if (sym != NULL)
1323 {
1324 block_found = block;
1325 return sym;
1326 }
1327 if (BLOCK_FUNCTION (block))
1328 break;
1329 block = BLOCK_SUPERBLOCK (block);
1330 }
1331
1332 return NULL;
1333 }
1334
1335 /* Given TYPE, a structure/union,
1336 return 1 if the component named NAME from the ultimate target
1337 structure/union is defined, otherwise, return 0. */
1338
1339 static int
1340 check_field (struct type *type, const char *name,
1341 struct field_of_this_result *is_a_field_of_this)
1342 {
1343 int i;
1344
1345 /* The type may be a stub. */
1346 CHECK_TYPEDEF (type);
1347
1348 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1349 {
1350 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1351
1352 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1353 {
1354 is_a_field_of_this->type = type;
1355 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1356 return 1;
1357 }
1358 }
1359
1360 /* C++: If it was not found as a data field, then try to return it
1361 as a pointer to a method. */
1362
1363 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1364 {
1365 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1366 {
1367 is_a_field_of_this->type = type;
1368 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1369 return 1;
1370 }
1371 }
1372
1373 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1374 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1375 return 1;
1376
1377 return 0;
1378 }
1379
1380 /* Behave like lookup_symbol except that NAME is the natural name
1381 (e.g., demangled name) of the symbol that we're looking for. */
1382
1383 static struct symbol *
1384 lookup_symbol_aux (const char *name, const struct block *block,
1385 const domain_enum domain, enum language language,
1386 struct field_of_this_result *is_a_field_of_this)
1387 {
1388 struct symbol *sym;
1389 const struct language_defn *langdef;
1390
1391 /* Make sure we do something sensible with is_a_field_of_this, since
1392 the callers that set this parameter to some non-null value will
1393 certainly use it later. If we don't set it, the contents of
1394 is_a_field_of_this are undefined. */
1395 if (is_a_field_of_this != NULL)
1396 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1397
1398 /* Search specified block and its superiors. Don't search
1399 STATIC_BLOCK or GLOBAL_BLOCK. */
1400
1401 sym = lookup_local_symbol (name, block, domain, language);
1402 if (sym != NULL)
1403 return sym;
1404
1405 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1406 check to see if NAME is a field of `this'. */
1407
1408 langdef = language_def (language);
1409
1410 /* Don't do this check if we are searching for a struct. It will
1411 not be found by check_field, but will be found by other
1412 means. */
1413 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1414 {
1415 struct symbol *sym = lookup_language_this (langdef, block);
1416
1417 if (sym)
1418 {
1419 struct type *t = sym->type;
1420
1421 /* I'm not really sure that type of this can ever
1422 be typedefed; just be safe. */
1423 CHECK_TYPEDEF (t);
1424 if (TYPE_CODE (t) == TYPE_CODE_PTR
1425 || TYPE_CODE (t) == TYPE_CODE_REF)
1426 t = TYPE_TARGET_TYPE (t);
1427
1428 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1429 && TYPE_CODE (t) != TYPE_CODE_UNION)
1430 error (_("Internal error: `%s' is not an aggregate"),
1431 langdef->la_name_of_this);
1432
1433 if (check_field (t, name, is_a_field_of_this))
1434 return NULL;
1435 }
1436 }
1437
1438 /* Now do whatever is appropriate for LANGUAGE to look
1439 up static and global variables. */
1440
1441 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1442 if (sym != NULL)
1443 return sym;
1444
1445 /* Now search all static file-level symbols. Not strictly correct,
1446 but more useful than an error. */
1447
1448 return lookup_static_symbol (name, domain);
1449 }
1450
1451 /* Check to see if the symbol is defined in BLOCK or its superiors.
1452 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1453
1454 static struct symbol *
1455 lookup_local_symbol (const char *name, const struct block *block,
1456 const domain_enum domain,
1457 enum language language)
1458 {
1459 struct symbol *sym;
1460 const struct block *static_block = block_static_block (block);
1461 const char *scope = block_scope (block);
1462
1463 /* Check if either no block is specified or it's a global block. */
1464
1465 if (static_block == NULL)
1466 return NULL;
1467
1468 while (block != static_block)
1469 {
1470 sym = lookup_symbol_in_block (name, block, domain);
1471 if (sym != NULL)
1472 return sym;
1473
1474 if (language == language_cplus || language == language_fortran)
1475 {
1476 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1477 domain);
1478 if (sym != NULL)
1479 return sym;
1480 }
1481
1482 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1483 break;
1484 block = BLOCK_SUPERBLOCK (block);
1485 }
1486
1487 /* We've reached the end of the function without finding a result. */
1488
1489 return NULL;
1490 }
1491
1492 /* See symtab.h. */
1493
1494 struct objfile *
1495 lookup_objfile_from_block (const struct block *block)
1496 {
1497 struct objfile *obj;
1498 struct compunit_symtab *cust;
1499
1500 if (block == NULL)
1501 return NULL;
1502
1503 block = block_global_block (block);
1504 /* Look through all blockvectors. */
1505 ALL_COMPUNITS (obj, cust)
1506 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
1507 GLOBAL_BLOCK))
1508 {
1509 if (obj->separate_debug_objfile_backlink)
1510 obj = obj->separate_debug_objfile_backlink;
1511
1512 return obj;
1513 }
1514
1515 return NULL;
1516 }
1517
1518 /* See symtab.h. */
1519
1520 struct symbol *
1521 lookup_symbol_in_block (const char *name, const struct block *block,
1522 const domain_enum domain)
1523 {
1524 struct symbol *sym;
1525
1526 sym = block_lookup_symbol (block, name, domain);
1527 if (sym)
1528 {
1529 block_found = block;
1530 return fixup_symbol_section (sym, NULL);
1531 }
1532
1533 return NULL;
1534 }
1535
1536 /* See symtab.h. */
1537
1538 struct symbol *
1539 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
1540 const char *name,
1541 const domain_enum domain)
1542 {
1543 struct objfile *objfile;
1544
1545 for (objfile = main_objfile;
1546 objfile;
1547 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1548 {
1549 struct compunit_symtab *cust;
1550 struct symbol *sym;
1551
1552 /* Go through symtabs. */
1553 ALL_OBJFILE_COMPUNITS (objfile, cust)
1554 {
1555 const struct blockvector *bv;
1556 const struct block *block;
1557
1558 bv = COMPUNIT_BLOCKVECTOR (cust);
1559 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1560 sym = block_lookup_symbol (block, name, domain);
1561 if (sym)
1562 {
1563 block_found = block;
1564 return fixup_symbol_section (sym, objfile);
1565 }
1566 }
1567
1568 sym = lookup_symbol_via_quick_fns (objfile, GLOBAL_BLOCK, name, domain);
1569 if (sym)
1570 return sym;
1571 }
1572
1573 return NULL;
1574 }
1575
1576 /* Check to see if the symbol is defined in one of the OBJFILE's
1577 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1578 depending on whether or not we want to search global symbols or
1579 static symbols. */
1580
1581 static struct symbol *
1582 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1583 const char *name, const domain_enum domain)
1584 {
1585 struct compunit_symtab *cust;
1586
1587 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
1588
1589 ALL_OBJFILE_COMPUNITS (objfile, cust)
1590 {
1591 const struct blockvector *bv;
1592 const struct block *block;
1593 struct symbol *sym;
1594
1595 bv = COMPUNIT_BLOCKVECTOR (cust);
1596 block = BLOCKVECTOR_BLOCK (bv, block_index);
1597 sym = block_lookup_symbol_primary (block, name, domain);
1598 if (sym)
1599 {
1600 block_found = block;
1601 return fixup_symbol_section (sym, objfile);
1602 }
1603 }
1604
1605 return NULL;
1606 }
1607
1608 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1609 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1610 and all associated separate debug objfiles.
1611
1612 Normally we only look in OBJFILE, and not any separate debug objfiles
1613 because the outer loop will cause them to be searched too. This case is
1614 different. Here we're called from search_symbols where it will only
1615 call us for the the objfile that contains a matching minsym. */
1616
1617 static struct symbol *
1618 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1619 const char *linkage_name,
1620 domain_enum domain)
1621 {
1622 enum language lang = current_language->la_language;
1623 const char *modified_name;
1624 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1625 &modified_name);
1626 struct objfile *main_objfile, *cur_objfile;
1627
1628 if (objfile->separate_debug_objfile_backlink)
1629 main_objfile = objfile->separate_debug_objfile_backlink;
1630 else
1631 main_objfile = objfile;
1632
1633 for (cur_objfile = main_objfile;
1634 cur_objfile;
1635 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1636 {
1637 struct symbol *sym;
1638
1639 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1640 modified_name, domain);
1641 if (sym == NULL)
1642 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1643 modified_name, domain);
1644 if (sym != NULL)
1645 {
1646 do_cleanups (cleanup);
1647 return sym;
1648 }
1649 }
1650
1651 do_cleanups (cleanup);
1652 return NULL;
1653 }
1654
1655 /* A helper function that throws an exception when a symbol was found
1656 in a psymtab but not in a symtab. */
1657
1658 static void ATTRIBUTE_NORETURN
1659 error_in_psymtab_expansion (int block_index, const char *name,
1660 struct compunit_symtab *cust)
1661 {
1662 error (_("\
1663 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1664 %s may be an inlined function, or may be a template function\n \
1665 (if a template, try specifying an instantiation: %s<type>)."),
1666 block_index == GLOBAL_BLOCK ? "global" : "static",
1667 name,
1668 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
1669 name, name);
1670 }
1671
1672 /* A helper function for various lookup routines that interfaces with
1673 the "quick" symbol table functions. */
1674
1675 static struct symbol *
1676 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1677 const char *name, const domain_enum domain)
1678 {
1679 struct compunit_symtab *cust;
1680 const struct blockvector *bv;
1681 const struct block *block;
1682 struct symbol *sym;
1683
1684 if (!objfile->sf)
1685 return NULL;
1686 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1687 if (cust == NULL)
1688 return NULL;
1689
1690 bv = COMPUNIT_BLOCKVECTOR (cust);
1691 block = BLOCKVECTOR_BLOCK (bv, block_index);
1692 sym = block_lookup_symbol (block, name, domain);
1693 if (!sym)
1694 error_in_psymtab_expansion (block_index, name, cust);
1695 block_found = block;
1696 return fixup_symbol_section (sym, objfile);
1697 }
1698
1699 /* See symtab.h. */
1700
1701 struct symbol *
1702 basic_lookup_symbol_nonlocal (const char *name,
1703 const struct block *block,
1704 const domain_enum domain)
1705 {
1706 struct symbol *sym;
1707
1708 /* NOTE: carlton/2003-05-19: The comments below were written when
1709 this (or what turned into this) was part of lookup_symbol_aux;
1710 I'm much less worried about these questions now, since these
1711 decisions have turned out well, but I leave these comments here
1712 for posterity. */
1713
1714 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1715 not it would be appropriate to search the current global block
1716 here as well. (That's what this code used to do before the
1717 is_a_field_of_this check was moved up.) On the one hand, it's
1718 redundant with the lookup in all objfiles search that happens
1719 next. On the other hand, if decode_line_1 is passed an argument
1720 like filename:var, then the user presumably wants 'var' to be
1721 searched for in filename. On the third hand, there shouldn't be
1722 multiple global variables all of which are named 'var', and it's
1723 not like decode_line_1 has ever restricted its search to only
1724 global variables in a single filename. All in all, only
1725 searching the static block here seems best: it's correct and it's
1726 cleanest. */
1727
1728 /* NOTE: carlton/2002-12-05: There's also a possible performance
1729 issue here: if you usually search for global symbols in the
1730 current file, then it would be slightly better to search the
1731 current global block before searching all the symtabs. But there
1732 are other factors that have a much greater effect on performance
1733 than that one, so I don't think we should worry about that for
1734 now. */
1735
1736 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
1737 the current objfile. Searching the current objfile first is useful
1738 for both matching user expectations as well as performance. */
1739
1740 sym = lookup_symbol_in_static_block (name, block, domain);
1741 if (sym != NULL)
1742 return sym;
1743
1744 return lookup_global_symbol (name, block, domain);
1745 }
1746
1747 /* See symtab.h. */
1748
1749 struct symbol *
1750 lookup_symbol_in_static_block (const char *name,
1751 const struct block *block,
1752 const domain_enum domain)
1753 {
1754 const struct block *static_block = block_static_block (block);
1755
1756 if (static_block != NULL)
1757 return lookup_symbol_in_block (name, static_block, domain);
1758 else
1759 return NULL;
1760 }
1761
1762 /* Perform the standard symbol lookup of NAME in OBJFILE:
1763 1) First search expanded symtabs, and if not found
1764 2) Search the "quick" symtabs (partial or .gdb_index).
1765 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
1766
1767 static struct symbol *
1768 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
1769 const char *name, const domain_enum domain)
1770 {
1771 struct symbol *result;
1772
1773 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
1774 name, domain);
1775 if (result == NULL)
1776 {
1777 result = lookup_symbol_via_quick_fns (objfile, block_index,
1778 name, domain);
1779 }
1780
1781 return result;
1782 }
1783
1784 /* See symtab.h. */
1785
1786 struct symbol *
1787 lookup_static_symbol (const char *name, const domain_enum domain)
1788 {
1789 struct objfile *objfile;
1790 struct symbol *result;
1791
1792 ALL_OBJFILES (objfile)
1793 {
1794 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
1795 if (result != NULL)
1796 return result;
1797 }
1798
1799 return NULL;
1800 }
1801
1802 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1803
1804 struct global_sym_lookup_data
1805 {
1806 /* The name of the symbol we are searching for. */
1807 const char *name;
1808
1809 /* The domain to use for our search. */
1810 domain_enum domain;
1811
1812 /* The field where the callback should store the symbol if found.
1813 It should be initialized to NULL before the search is started. */
1814 struct symbol *result;
1815 };
1816
1817 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1818 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1819 OBJFILE. The arguments for the search are passed via CB_DATA,
1820 which in reality is a pointer to struct global_sym_lookup_data. */
1821
1822 static int
1823 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1824 void *cb_data)
1825 {
1826 struct global_sym_lookup_data *data =
1827 (struct global_sym_lookup_data *) cb_data;
1828
1829 gdb_assert (data->result == NULL);
1830
1831 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1832 data->name, data->domain);
1833
1834 /* If we found a match, tell the iterator to stop. Otherwise,
1835 keep going. */
1836 return (data->result != NULL);
1837 }
1838
1839 /* See symtab.h. */
1840
1841 struct symbol *
1842 lookup_global_symbol (const char *name,
1843 const struct block *block,
1844 const domain_enum domain)
1845 {
1846 struct symbol *sym = NULL;
1847 struct objfile *objfile = NULL;
1848 struct global_sym_lookup_data lookup_data;
1849
1850 /* Call library-specific lookup procedure. */
1851 objfile = lookup_objfile_from_block (block);
1852 if (objfile != NULL)
1853 sym = solib_global_lookup (objfile, name, domain);
1854 if (sym != NULL)
1855 return sym;
1856
1857 memset (&lookup_data, 0, sizeof (lookup_data));
1858 lookup_data.name = name;
1859 lookup_data.domain = domain;
1860 gdbarch_iterate_over_objfiles_in_search_order
1861 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1862 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1863
1864 return lookup_data.result;
1865 }
1866
1867 int
1868 symbol_matches_domain (enum language symbol_language,
1869 domain_enum symbol_domain,
1870 domain_enum domain)
1871 {
1872 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1873 A Java class declaration also defines a typedef for the class.
1874 Similarly, any Ada type declaration implicitly defines a typedef. */
1875 if (symbol_language == language_cplus
1876 || symbol_language == language_d
1877 || symbol_language == language_java
1878 || symbol_language == language_ada)
1879 {
1880 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1881 && symbol_domain == STRUCT_DOMAIN)
1882 return 1;
1883 }
1884 /* For all other languages, strict match is required. */
1885 return (symbol_domain == domain);
1886 }
1887
1888 /* See symtab.h. */
1889
1890 struct type *
1891 lookup_transparent_type (const char *name)
1892 {
1893 return current_language->la_lookup_transparent_type (name);
1894 }
1895
1896 /* A helper for basic_lookup_transparent_type that interfaces with the
1897 "quick" symbol table functions. */
1898
1899 static struct type *
1900 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1901 const char *name)
1902 {
1903 struct compunit_symtab *cust;
1904 const struct blockvector *bv;
1905 struct block *block;
1906 struct symbol *sym;
1907
1908 if (!objfile->sf)
1909 return NULL;
1910 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1911 STRUCT_DOMAIN);
1912 if (cust == NULL)
1913 return NULL;
1914
1915 bv = COMPUNIT_BLOCKVECTOR (cust);
1916 block = BLOCKVECTOR_BLOCK (bv, block_index);
1917 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1918 if (!sym)
1919 error_in_psymtab_expansion (block_index, name, cust);
1920
1921 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1922 return SYMBOL_TYPE (sym);
1923
1924 return NULL;
1925 }
1926
1927 /* The standard implementation of lookup_transparent_type. This code
1928 was modeled on lookup_symbol -- the parts not relevant to looking
1929 up types were just left out. In particular it's assumed here that
1930 types are available in STRUCT_DOMAIN and only in file-static or
1931 global blocks. */
1932
1933 struct type *
1934 basic_lookup_transparent_type (const char *name)
1935 {
1936 struct symbol *sym;
1937 struct compunit_symtab *cust;
1938 const struct blockvector *bv;
1939 struct objfile *objfile;
1940 struct block *block;
1941 struct type *t;
1942
1943 /* Now search all the global symbols. Do the symtab's first, then
1944 check the psymtab's. If a psymtab indicates the existence
1945 of the desired name as a global, then do psymtab-to-symtab
1946 conversion on the fly and return the found symbol. */
1947
1948 ALL_OBJFILES (objfile)
1949 {
1950 ALL_OBJFILE_COMPUNITS (objfile, cust)
1951 {
1952 bv = COMPUNIT_BLOCKVECTOR (cust);
1953 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1954 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1955 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1956 {
1957 return SYMBOL_TYPE (sym);
1958 }
1959 }
1960 }
1961
1962 ALL_OBJFILES (objfile)
1963 {
1964 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1965 if (t)
1966 return t;
1967 }
1968
1969 /* Now search the static file-level symbols.
1970 Not strictly correct, but more useful than an error.
1971 Do the symtab's first, then
1972 check the psymtab's. If a psymtab indicates the existence
1973 of the desired name as a file-level static, then do psymtab-to-symtab
1974 conversion on the fly and return the found symbol. */
1975
1976 ALL_OBJFILES (objfile)
1977 {
1978 ALL_OBJFILE_COMPUNITS (objfile, cust)
1979 {
1980 bv = COMPUNIT_BLOCKVECTOR (cust);
1981 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1982 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1983 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1984 {
1985 return SYMBOL_TYPE (sym);
1986 }
1987 }
1988 }
1989
1990 ALL_OBJFILES (objfile)
1991 {
1992 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1993 if (t)
1994 return t;
1995 }
1996
1997 return (struct type *) 0;
1998 }
1999
2000 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2001
2002 For each symbol that matches, CALLBACK is called. The symbol and
2003 DATA are passed to the callback.
2004
2005 If CALLBACK returns zero, the iteration ends. Otherwise, the
2006 search continues. */
2007
2008 void
2009 iterate_over_symbols (const struct block *block, const char *name,
2010 const domain_enum domain,
2011 symbol_found_callback_ftype *callback,
2012 void *data)
2013 {
2014 struct block_iterator iter;
2015 struct symbol *sym;
2016
2017 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2018 {
2019 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2020 SYMBOL_DOMAIN (sym), domain))
2021 {
2022 if (!callback (sym, data))
2023 return;
2024 }
2025 }
2026 }
2027
2028 /* Find the compunit symtab associated with PC and SECTION.
2029 This will read in debug info as necessary. */
2030
2031 struct compunit_symtab *
2032 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2033 {
2034 struct compunit_symtab *cust;
2035 struct compunit_symtab *best_cust = NULL;
2036 struct objfile *objfile;
2037 CORE_ADDR distance = 0;
2038 struct bound_minimal_symbol msymbol;
2039
2040 /* If we know that this is not a text address, return failure. This is
2041 necessary because we loop based on the block's high and low code
2042 addresses, which do not include the data ranges, and because
2043 we call find_pc_sect_psymtab which has a similar restriction based
2044 on the partial_symtab's texthigh and textlow. */
2045 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2046 if (msymbol.minsym
2047 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2048 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2049 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2050 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2051 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2052 return NULL;
2053
2054 /* Search all symtabs for the one whose file contains our address, and which
2055 is the smallest of all the ones containing the address. This is designed
2056 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2057 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2058 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2059
2060 This happens for native ecoff format, where code from included files
2061 gets its own symtab. The symtab for the included file should have
2062 been read in already via the dependency mechanism.
2063 It might be swifter to create several symtabs with the same name
2064 like xcoff does (I'm not sure).
2065
2066 It also happens for objfiles that have their functions reordered.
2067 For these, the symtab we are looking for is not necessarily read in. */
2068
2069 ALL_COMPUNITS (objfile, cust)
2070 {
2071 struct block *b;
2072 const struct blockvector *bv;
2073
2074 bv = COMPUNIT_BLOCKVECTOR (cust);
2075 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2076
2077 if (BLOCK_START (b) <= pc
2078 && BLOCK_END (b) > pc
2079 && (distance == 0
2080 || BLOCK_END (b) - BLOCK_START (b) < distance))
2081 {
2082 /* For an objfile that has its functions reordered,
2083 find_pc_psymtab will find the proper partial symbol table
2084 and we simply return its corresponding symtab. */
2085 /* In order to better support objfiles that contain both
2086 stabs and coff debugging info, we continue on if a psymtab
2087 can't be found. */
2088 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2089 {
2090 struct compunit_symtab *result;
2091
2092 result
2093 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2094 msymbol,
2095 pc, section,
2096 0);
2097 if (result != NULL)
2098 return result;
2099 }
2100 if (section != 0)
2101 {
2102 struct block_iterator iter;
2103 struct symbol *sym = NULL;
2104
2105 ALL_BLOCK_SYMBOLS (b, iter, sym)
2106 {
2107 fixup_symbol_section (sym, objfile);
2108 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2109 section))
2110 break;
2111 }
2112 if (sym == NULL)
2113 continue; /* No symbol in this symtab matches
2114 section. */
2115 }
2116 distance = BLOCK_END (b) - BLOCK_START (b);
2117 best_cust = cust;
2118 }
2119 }
2120
2121 if (best_cust != NULL)
2122 return best_cust;
2123
2124 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2125
2126 ALL_OBJFILES (objfile)
2127 {
2128 struct compunit_symtab *result;
2129
2130 if (!objfile->sf)
2131 continue;
2132 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2133 msymbol,
2134 pc, section,
2135 1);
2136 if (result != NULL)
2137 return result;
2138 }
2139
2140 return NULL;
2141 }
2142
2143 /* Find the compunit symtab associated with PC.
2144 This will read in debug info as necessary.
2145 Backward compatibility, no section. */
2146
2147 struct compunit_symtab *
2148 find_pc_compunit_symtab (CORE_ADDR pc)
2149 {
2150 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2151 }
2152 \f
2153
2154 /* Find the source file and line number for a given PC value and SECTION.
2155 Return a structure containing a symtab pointer, a line number,
2156 and a pc range for the entire source line.
2157 The value's .pc field is NOT the specified pc.
2158 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2159 use the line that ends there. Otherwise, in that case, the line
2160 that begins there is used. */
2161
2162 /* The big complication here is that a line may start in one file, and end just
2163 before the start of another file. This usually occurs when you #include
2164 code in the middle of a subroutine. To properly find the end of a line's PC
2165 range, we must search all symtabs associated with this compilation unit, and
2166 find the one whose first PC is closer than that of the next line in this
2167 symtab. */
2168
2169 /* If it's worth the effort, we could be using a binary search. */
2170
2171 struct symtab_and_line
2172 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2173 {
2174 struct compunit_symtab *cust;
2175 struct symtab *iter_s;
2176 struct linetable *l;
2177 int len;
2178 int i;
2179 struct linetable_entry *item;
2180 struct symtab_and_line val;
2181 const struct blockvector *bv;
2182 struct bound_minimal_symbol msymbol;
2183
2184 /* Info on best line seen so far, and where it starts, and its file. */
2185
2186 struct linetable_entry *best = NULL;
2187 CORE_ADDR best_end = 0;
2188 struct symtab *best_symtab = 0;
2189
2190 /* Store here the first line number
2191 of a file which contains the line at the smallest pc after PC.
2192 If we don't find a line whose range contains PC,
2193 we will use a line one less than this,
2194 with a range from the start of that file to the first line's pc. */
2195 struct linetable_entry *alt = NULL;
2196
2197 /* Info on best line seen in this file. */
2198
2199 struct linetable_entry *prev;
2200
2201 /* If this pc is not from the current frame,
2202 it is the address of the end of a call instruction.
2203 Quite likely that is the start of the following statement.
2204 But what we want is the statement containing the instruction.
2205 Fudge the pc to make sure we get that. */
2206
2207 init_sal (&val); /* initialize to zeroes */
2208
2209 val.pspace = current_program_space;
2210
2211 /* It's tempting to assume that, if we can't find debugging info for
2212 any function enclosing PC, that we shouldn't search for line
2213 number info, either. However, GAS can emit line number info for
2214 assembly files --- very helpful when debugging hand-written
2215 assembly code. In such a case, we'd have no debug info for the
2216 function, but we would have line info. */
2217
2218 if (notcurrent)
2219 pc -= 1;
2220
2221 /* elz: added this because this function returned the wrong
2222 information if the pc belongs to a stub (import/export)
2223 to call a shlib function. This stub would be anywhere between
2224 two functions in the target, and the line info was erroneously
2225 taken to be the one of the line before the pc. */
2226
2227 /* RT: Further explanation:
2228
2229 * We have stubs (trampolines) inserted between procedures.
2230 *
2231 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2232 * exists in the main image.
2233 *
2234 * In the minimal symbol table, we have a bunch of symbols
2235 * sorted by start address. The stubs are marked as "trampoline",
2236 * the others appear as text. E.g.:
2237 *
2238 * Minimal symbol table for main image
2239 * main: code for main (text symbol)
2240 * shr1: stub (trampoline symbol)
2241 * foo: code for foo (text symbol)
2242 * ...
2243 * Minimal symbol table for "shr1" image:
2244 * ...
2245 * shr1: code for shr1 (text symbol)
2246 * ...
2247 *
2248 * So the code below is trying to detect if we are in the stub
2249 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2250 * and if found, do the symbolization from the real-code address
2251 * rather than the stub address.
2252 *
2253 * Assumptions being made about the minimal symbol table:
2254 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2255 * if we're really in the trampoline.s If we're beyond it (say
2256 * we're in "foo" in the above example), it'll have a closer
2257 * symbol (the "foo" text symbol for example) and will not
2258 * return the trampoline.
2259 * 2. lookup_minimal_symbol_text() will find a real text symbol
2260 * corresponding to the trampoline, and whose address will
2261 * be different than the trampoline address. I put in a sanity
2262 * check for the address being the same, to avoid an
2263 * infinite recursion.
2264 */
2265 msymbol = lookup_minimal_symbol_by_pc (pc);
2266 if (msymbol.minsym != NULL)
2267 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2268 {
2269 struct bound_minimal_symbol mfunsym
2270 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2271 NULL);
2272
2273 if (mfunsym.minsym == NULL)
2274 /* I eliminated this warning since it is coming out
2275 * in the following situation:
2276 * gdb shmain // test program with shared libraries
2277 * (gdb) break shr1 // function in shared lib
2278 * Warning: In stub for ...
2279 * In the above situation, the shared lib is not loaded yet,
2280 * so of course we can't find the real func/line info,
2281 * but the "break" still works, and the warning is annoying.
2282 * So I commented out the warning. RT */
2283 /* warning ("In stub for %s; unable to find real function/line info",
2284 SYMBOL_LINKAGE_NAME (msymbol)); */
2285 ;
2286 /* fall through */
2287 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2288 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2289 /* Avoid infinite recursion */
2290 /* See above comment about why warning is commented out. */
2291 /* warning ("In stub for %s; unable to find real function/line info",
2292 SYMBOL_LINKAGE_NAME (msymbol)); */
2293 ;
2294 /* fall through */
2295 else
2296 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2297 }
2298
2299
2300 cust = find_pc_sect_compunit_symtab (pc, section);
2301 if (cust == NULL)
2302 {
2303 /* If no symbol information, return previous pc. */
2304 if (notcurrent)
2305 pc++;
2306 val.pc = pc;
2307 return val;
2308 }
2309
2310 bv = COMPUNIT_BLOCKVECTOR (cust);
2311
2312 /* Look at all the symtabs that share this blockvector.
2313 They all have the same apriori range, that we found was right;
2314 but they have different line tables. */
2315
2316 ALL_COMPUNIT_FILETABS (cust, iter_s)
2317 {
2318 /* Find the best line in this symtab. */
2319 l = SYMTAB_LINETABLE (iter_s);
2320 if (!l)
2321 continue;
2322 len = l->nitems;
2323 if (len <= 0)
2324 {
2325 /* I think len can be zero if the symtab lacks line numbers
2326 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2327 I'm not sure which, and maybe it depends on the symbol
2328 reader). */
2329 continue;
2330 }
2331
2332 prev = NULL;
2333 item = l->item; /* Get first line info. */
2334
2335 /* Is this file's first line closer than the first lines of other files?
2336 If so, record this file, and its first line, as best alternate. */
2337 if (item->pc > pc && (!alt || item->pc < alt->pc))
2338 alt = item;
2339
2340 for (i = 0; i < len; i++, item++)
2341 {
2342 /* Leave prev pointing to the linetable entry for the last line
2343 that started at or before PC. */
2344 if (item->pc > pc)
2345 break;
2346
2347 prev = item;
2348 }
2349
2350 /* At this point, prev points at the line whose start addr is <= pc, and
2351 item points at the next line. If we ran off the end of the linetable
2352 (pc >= start of the last line), then prev == item. If pc < start of
2353 the first line, prev will not be set. */
2354
2355 /* Is this file's best line closer than the best in the other files?
2356 If so, record this file, and its best line, as best so far. Don't
2357 save prev if it represents the end of a function (i.e. line number
2358 0) instead of a real line. */
2359
2360 if (prev && prev->line && (!best || prev->pc > best->pc))
2361 {
2362 best = prev;
2363 best_symtab = iter_s;
2364
2365 /* Discard BEST_END if it's before the PC of the current BEST. */
2366 if (best_end <= best->pc)
2367 best_end = 0;
2368 }
2369
2370 /* If another line (denoted by ITEM) is in the linetable and its
2371 PC is after BEST's PC, but before the current BEST_END, then
2372 use ITEM's PC as the new best_end. */
2373 if (best && i < len && item->pc > best->pc
2374 && (best_end == 0 || best_end > item->pc))
2375 best_end = item->pc;
2376 }
2377
2378 if (!best_symtab)
2379 {
2380 /* If we didn't find any line number info, just return zeros.
2381 We used to return alt->line - 1 here, but that could be
2382 anywhere; if we don't have line number info for this PC,
2383 don't make some up. */
2384 val.pc = pc;
2385 }
2386 else if (best->line == 0)
2387 {
2388 /* If our best fit is in a range of PC's for which no line
2389 number info is available (line number is zero) then we didn't
2390 find any valid line information. */
2391 val.pc = pc;
2392 }
2393 else
2394 {
2395 val.symtab = best_symtab;
2396 val.line = best->line;
2397 val.pc = best->pc;
2398 if (best_end && (!alt || best_end < alt->pc))
2399 val.end = best_end;
2400 else if (alt)
2401 val.end = alt->pc;
2402 else
2403 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2404 }
2405 val.section = section;
2406 return val;
2407 }
2408
2409 /* Backward compatibility (no section). */
2410
2411 struct symtab_and_line
2412 find_pc_line (CORE_ADDR pc, int notcurrent)
2413 {
2414 struct obj_section *section;
2415
2416 section = find_pc_overlay (pc);
2417 if (pc_in_unmapped_range (pc, section))
2418 pc = overlay_mapped_address (pc, section);
2419 return find_pc_sect_line (pc, section, notcurrent);
2420 }
2421
2422 /* See symtab.h. */
2423
2424 struct symtab *
2425 find_pc_line_symtab (CORE_ADDR pc)
2426 {
2427 struct symtab_and_line sal;
2428
2429 /* This always passes zero for NOTCURRENT to find_pc_line.
2430 There are currently no callers that ever pass non-zero. */
2431 sal = find_pc_line (pc, 0);
2432 return sal.symtab;
2433 }
2434 \f
2435 /* Find line number LINE in any symtab whose name is the same as
2436 SYMTAB.
2437
2438 If found, return the symtab that contains the linetable in which it was
2439 found, set *INDEX to the index in the linetable of the best entry
2440 found, and set *EXACT_MATCH nonzero if the value returned is an
2441 exact match.
2442
2443 If not found, return NULL. */
2444
2445 struct symtab *
2446 find_line_symtab (struct symtab *symtab, int line,
2447 int *index, int *exact_match)
2448 {
2449 int exact = 0; /* Initialized here to avoid a compiler warning. */
2450
2451 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2452 so far seen. */
2453
2454 int best_index;
2455 struct linetable *best_linetable;
2456 struct symtab *best_symtab;
2457
2458 /* First try looking it up in the given symtab. */
2459 best_linetable = SYMTAB_LINETABLE (symtab);
2460 best_symtab = symtab;
2461 best_index = find_line_common (best_linetable, line, &exact, 0);
2462 if (best_index < 0 || !exact)
2463 {
2464 /* Didn't find an exact match. So we better keep looking for
2465 another symtab with the same name. In the case of xcoff,
2466 multiple csects for one source file (produced by IBM's FORTRAN
2467 compiler) produce multiple symtabs (this is unavoidable
2468 assuming csects can be at arbitrary places in memory and that
2469 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2470
2471 /* BEST is the smallest linenumber > LINE so far seen,
2472 or 0 if none has been seen so far.
2473 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2474 int best;
2475
2476 struct objfile *objfile;
2477 struct compunit_symtab *cu;
2478 struct symtab *s;
2479
2480 if (best_index >= 0)
2481 best = best_linetable->item[best_index].line;
2482 else
2483 best = 0;
2484
2485 ALL_OBJFILES (objfile)
2486 {
2487 if (objfile->sf)
2488 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2489 symtab_to_fullname (symtab));
2490 }
2491
2492 ALL_FILETABS (objfile, cu, s)
2493 {
2494 struct linetable *l;
2495 int ind;
2496
2497 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2498 continue;
2499 if (FILENAME_CMP (symtab_to_fullname (symtab),
2500 symtab_to_fullname (s)) != 0)
2501 continue;
2502 l = SYMTAB_LINETABLE (s);
2503 ind = find_line_common (l, line, &exact, 0);
2504 if (ind >= 0)
2505 {
2506 if (exact)
2507 {
2508 best_index = ind;
2509 best_linetable = l;
2510 best_symtab = s;
2511 goto done;
2512 }
2513 if (best == 0 || l->item[ind].line < best)
2514 {
2515 best = l->item[ind].line;
2516 best_index = ind;
2517 best_linetable = l;
2518 best_symtab = s;
2519 }
2520 }
2521 }
2522 }
2523 done:
2524 if (best_index < 0)
2525 return NULL;
2526
2527 if (index)
2528 *index = best_index;
2529 if (exact_match)
2530 *exact_match = exact;
2531
2532 return best_symtab;
2533 }
2534
2535 /* Given SYMTAB, returns all the PCs function in the symtab that
2536 exactly match LINE. Returns NULL if there are no exact matches,
2537 but updates BEST_ITEM in this case. */
2538
2539 VEC (CORE_ADDR) *
2540 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2541 struct linetable_entry **best_item)
2542 {
2543 int start = 0;
2544 VEC (CORE_ADDR) *result = NULL;
2545
2546 /* First, collect all the PCs that are at this line. */
2547 while (1)
2548 {
2549 int was_exact;
2550 int idx;
2551
2552 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
2553 start);
2554 if (idx < 0)
2555 break;
2556
2557 if (!was_exact)
2558 {
2559 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
2560
2561 if (*best_item == NULL || item->line < (*best_item)->line)
2562 *best_item = item;
2563
2564 break;
2565 }
2566
2567 VEC_safe_push (CORE_ADDR, result,
2568 SYMTAB_LINETABLE (symtab)->item[idx].pc);
2569 start = idx + 1;
2570 }
2571
2572 return result;
2573 }
2574
2575 \f
2576 /* Set the PC value for a given source file and line number and return true.
2577 Returns zero for invalid line number (and sets the PC to 0).
2578 The source file is specified with a struct symtab. */
2579
2580 int
2581 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2582 {
2583 struct linetable *l;
2584 int ind;
2585
2586 *pc = 0;
2587 if (symtab == 0)
2588 return 0;
2589
2590 symtab = find_line_symtab (symtab, line, &ind, NULL);
2591 if (symtab != NULL)
2592 {
2593 l = SYMTAB_LINETABLE (symtab);
2594 *pc = l->item[ind].pc;
2595 return 1;
2596 }
2597 else
2598 return 0;
2599 }
2600
2601 /* Find the range of pc values in a line.
2602 Store the starting pc of the line into *STARTPTR
2603 and the ending pc (start of next line) into *ENDPTR.
2604 Returns 1 to indicate success.
2605 Returns 0 if could not find the specified line. */
2606
2607 int
2608 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2609 CORE_ADDR *endptr)
2610 {
2611 CORE_ADDR startaddr;
2612 struct symtab_and_line found_sal;
2613
2614 startaddr = sal.pc;
2615 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2616 return 0;
2617
2618 /* This whole function is based on address. For example, if line 10 has
2619 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2620 "info line *0x123" should say the line goes from 0x100 to 0x200
2621 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2622 This also insures that we never give a range like "starts at 0x134
2623 and ends at 0x12c". */
2624
2625 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2626 if (found_sal.line != sal.line)
2627 {
2628 /* The specified line (sal) has zero bytes. */
2629 *startptr = found_sal.pc;
2630 *endptr = found_sal.pc;
2631 }
2632 else
2633 {
2634 *startptr = found_sal.pc;
2635 *endptr = found_sal.end;
2636 }
2637 return 1;
2638 }
2639
2640 /* Given a line table and a line number, return the index into the line
2641 table for the pc of the nearest line whose number is >= the specified one.
2642 Return -1 if none is found. The value is >= 0 if it is an index.
2643 START is the index at which to start searching the line table.
2644
2645 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2646
2647 static int
2648 find_line_common (struct linetable *l, int lineno,
2649 int *exact_match, int start)
2650 {
2651 int i;
2652 int len;
2653
2654 /* BEST is the smallest linenumber > LINENO so far seen,
2655 or 0 if none has been seen so far.
2656 BEST_INDEX identifies the item for it. */
2657
2658 int best_index = -1;
2659 int best = 0;
2660
2661 *exact_match = 0;
2662
2663 if (lineno <= 0)
2664 return -1;
2665 if (l == 0)
2666 return -1;
2667
2668 len = l->nitems;
2669 for (i = start; i < len; i++)
2670 {
2671 struct linetable_entry *item = &(l->item[i]);
2672
2673 if (item->line == lineno)
2674 {
2675 /* Return the first (lowest address) entry which matches. */
2676 *exact_match = 1;
2677 return i;
2678 }
2679
2680 if (item->line > lineno && (best == 0 || item->line < best))
2681 {
2682 best = item->line;
2683 best_index = i;
2684 }
2685 }
2686
2687 /* If we got here, we didn't get an exact match. */
2688 return best_index;
2689 }
2690
2691 int
2692 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2693 {
2694 struct symtab_and_line sal;
2695
2696 sal = find_pc_line (pc, 0);
2697 *startptr = sal.pc;
2698 *endptr = sal.end;
2699 return sal.symtab != 0;
2700 }
2701
2702 /* Given a function symbol SYM, find the symtab and line for the start
2703 of the function.
2704 If the argument FUNFIRSTLINE is nonzero, we want the first line
2705 of real code inside the function. */
2706
2707 struct symtab_and_line
2708 find_function_start_sal (struct symbol *sym, int funfirstline)
2709 {
2710 struct symtab_and_line sal;
2711
2712 fixup_symbol_section (sym, NULL);
2713 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2714 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2715
2716 /* We always should have a line for the function start address.
2717 If we don't, something is odd. Create a plain SAL refering
2718 just the PC and hope that skip_prologue_sal (if requested)
2719 can find a line number for after the prologue. */
2720 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2721 {
2722 init_sal (&sal);
2723 sal.pspace = current_program_space;
2724 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2725 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2726 }
2727
2728 if (funfirstline)
2729 skip_prologue_sal (&sal);
2730
2731 return sal;
2732 }
2733
2734 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2735 address for that function that has an entry in SYMTAB's line info
2736 table. If such an entry cannot be found, return FUNC_ADDR
2737 unaltered. */
2738
2739 static CORE_ADDR
2740 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2741 {
2742 CORE_ADDR func_start, func_end;
2743 struct linetable *l;
2744 int i;
2745
2746 /* Give up if this symbol has no lineinfo table. */
2747 l = SYMTAB_LINETABLE (symtab);
2748 if (l == NULL)
2749 return func_addr;
2750
2751 /* Get the range for the function's PC values, or give up if we
2752 cannot, for some reason. */
2753 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2754 return func_addr;
2755
2756 /* Linetable entries are ordered by PC values, see the commentary in
2757 symtab.h where `struct linetable' is defined. Thus, the first
2758 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2759 address we are looking for. */
2760 for (i = 0; i < l->nitems; i++)
2761 {
2762 struct linetable_entry *item = &(l->item[i]);
2763
2764 /* Don't use line numbers of zero, they mark special entries in
2765 the table. See the commentary on symtab.h before the
2766 definition of struct linetable. */
2767 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2768 return item->pc;
2769 }
2770
2771 return func_addr;
2772 }
2773
2774 /* Adjust SAL to the first instruction past the function prologue.
2775 If the PC was explicitly specified, the SAL is not changed.
2776 If the line number was explicitly specified, at most the SAL's PC
2777 is updated. If SAL is already past the prologue, then do nothing. */
2778
2779 void
2780 skip_prologue_sal (struct symtab_and_line *sal)
2781 {
2782 struct symbol *sym;
2783 struct symtab_and_line start_sal;
2784 struct cleanup *old_chain;
2785 CORE_ADDR pc, saved_pc;
2786 struct obj_section *section;
2787 const char *name;
2788 struct objfile *objfile;
2789 struct gdbarch *gdbarch;
2790 const struct block *b, *function_block;
2791 int force_skip, skip;
2792
2793 /* Do not change the SAL if PC was specified explicitly. */
2794 if (sal->explicit_pc)
2795 return;
2796
2797 old_chain = save_current_space_and_thread ();
2798 switch_to_program_space_and_thread (sal->pspace);
2799
2800 sym = find_pc_sect_function (sal->pc, sal->section);
2801 if (sym != NULL)
2802 {
2803 fixup_symbol_section (sym, NULL);
2804
2805 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2806 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2807 name = SYMBOL_LINKAGE_NAME (sym);
2808 objfile = SYMBOL_OBJFILE (sym);
2809 }
2810 else
2811 {
2812 struct bound_minimal_symbol msymbol
2813 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2814
2815 if (msymbol.minsym == NULL)
2816 {
2817 do_cleanups (old_chain);
2818 return;
2819 }
2820
2821 objfile = msymbol.objfile;
2822 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2823 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2824 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2825 }
2826
2827 gdbarch = get_objfile_arch (objfile);
2828
2829 /* Process the prologue in two passes. In the first pass try to skip the
2830 prologue (SKIP is true) and verify there is a real need for it (indicated
2831 by FORCE_SKIP). If no such reason was found run a second pass where the
2832 prologue is not skipped (SKIP is false). */
2833
2834 skip = 1;
2835 force_skip = 1;
2836
2837 /* Be conservative - allow direct PC (without skipping prologue) only if we
2838 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2839 have to be set by the caller so we use SYM instead. */
2840 if (sym && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (SYMBOL_SYMTAB (sym))))
2841 force_skip = 0;
2842
2843 saved_pc = pc;
2844 do
2845 {
2846 pc = saved_pc;
2847
2848 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2849 so that gdbarch_skip_prologue has something unique to work on. */
2850 if (section_is_overlay (section) && !section_is_mapped (section))
2851 pc = overlay_unmapped_address (pc, section);
2852
2853 /* Skip "first line" of function (which is actually its prologue). */
2854 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2855 if (gdbarch_skip_entrypoint_p (gdbarch))
2856 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2857 if (skip)
2858 pc = gdbarch_skip_prologue (gdbarch, pc);
2859
2860 /* For overlays, map pc back into its mapped VMA range. */
2861 pc = overlay_mapped_address (pc, section);
2862
2863 /* Calculate line number. */
2864 start_sal = find_pc_sect_line (pc, section, 0);
2865
2866 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2867 line is still part of the same function. */
2868 if (skip && start_sal.pc != pc
2869 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2870 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2871 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2872 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2873 {
2874 /* First pc of next line */
2875 pc = start_sal.end;
2876 /* Recalculate the line number (might not be N+1). */
2877 start_sal = find_pc_sect_line (pc, section, 0);
2878 }
2879
2880 /* On targets with executable formats that don't have a concept of
2881 constructors (ELF with .init has, PE doesn't), gcc emits a call
2882 to `__main' in `main' between the prologue and before user
2883 code. */
2884 if (gdbarch_skip_main_prologue_p (gdbarch)
2885 && name && strcmp_iw (name, "main") == 0)
2886 {
2887 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2888 /* Recalculate the line number (might not be N+1). */
2889 start_sal = find_pc_sect_line (pc, section, 0);
2890 force_skip = 1;
2891 }
2892 }
2893 while (!force_skip && skip--);
2894
2895 /* If we still don't have a valid source line, try to find the first
2896 PC in the lineinfo table that belongs to the same function. This
2897 happens with COFF debug info, which does not seem to have an
2898 entry in lineinfo table for the code after the prologue which has
2899 no direct relation to source. For example, this was found to be
2900 the case with the DJGPP target using "gcc -gcoff" when the
2901 compiler inserted code after the prologue to make sure the stack
2902 is aligned. */
2903 if (!force_skip && sym && start_sal.symtab == NULL)
2904 {
2905 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2906 /* Recalculate the line number. */
2907 start_sal = find_pc_sect_line (pc, section, 0);
2908 }
2909
2910 do_cleanups (old_chain);
2911
2912 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2913 forward SAL to the end of the prologue. */
2914 if (sal->pc >= pc)
2915 return;
2916
2917 sal->pc = pc;
2918 sal->section = section;
2919
2920 /* Unless the explicit_line flag was set, update the SAL line
2921 and symtab to correspond to the modified PC location. */
2922 if (sal->explicit_line)
2923 return;
2924
2925 sal->symtab = start_sal.symtab;
2926 sal->line = start_sal.line;
2927 sal->end = start_sal.end;
2928
2929 /* Check if we are now inside an inlined function. If we can,
2930 use the call site of the function instead. */
2931 b = block_for_pc_sect (sal->pc, sal->section);
2932 function_block = NULL;
2933 while (b != NULL)
2934 {
2935 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2936 function_block = b;
2937 else if (BLOCK_FUNCTION (b) != NULL)
2938 break;
2939 b = BLOCK_SUPERBLOCK (b);
2940 }
2941 if (function_block != NULL
2942 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2943 {
2944 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2945 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2946 }
2947 }
2948
2949 /* Given PC at the function's start address, attempt to find the
2950 prologue end using SAL information. Return zero if the skip fails.
2951
2952 A non-optimized prologue traditionally has one SAL for the function
2953 and a second for the function body. A single line function has
2954 them both pointing at the same line.
2955
2956 An optimized prologue is similar but the prologue may contain
2957 instructions (SALs) from the instruction body. Need to skip those
2958 while not getting into the function body.
2959
2960 The functions end point and an increasing SAL line are used as
2961 indicators of the prologue's endpoint.
2962
2963 This code is based on the function refine_prologue_limit
2964 (found in ia64). */
2965
2966 CORE_ADDR
2967 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
2968 {
2969 struct symtab_and_line prologue_sal;
2970 CORE_ADDR start_pc;
2971 CORE_ADDR end_pc;
2972 const struct block *bl;
2973
2974 /* Get an initial range for the function. */
2975 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
2976 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
2977
2978 prologue_sal = find_pc_line (start_pc, 0);
2979 if (prologue_sal.line != 0)
2980 {
2981 /* For languages other than assembly, treat two consecutive line
2982 entries at the same address as a zero-instruction prologue.
2983 The GNU assembler emits separate line notes for each instruction
2984 in a multi-instruction macro, but compilers generally will not
2985 do this. */
2986 if (prologue_sal.symtab->language != language_asm)
2987 {
2988 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
2989 int idx = 0;
2990
2991 /* Skip any earlier lines, and any end-of-sequence marker
2992 from a previous function. */
2993 while (linetable->item[idx].pc != prologue_sal.pc
2994 || linetable->item[idx].line == 0)
2995 idx++;
2996
2997 if (idx+1 < linetable->nitems
2998 && linetable->item[idx+1].line != 0
2999 && linetable->item[idx+1].pc == start_pc)
3000 return start_pc;
3001 }
3002
3003 /* If there is only one sal that covers the entire function,
3004 then it is probably a single line function, like
3005 "foo(){}". */
3006 if (prologue_sal.end >= end_pc)
3007 return 0;
3008
3009 while (prologue_sal.end < end_pc)
3010 {
3011 struct symtab_and_line sal;
3012
3013 sal = find_pc_line (prologue_sal.end, 0);
3014 if (sal.line == 0)
3015 break;
3016 /* Assume that a consecutive SAL for the same (or larger)
3017 line mark the prologue -> body transition. */
3018 if (sal.line >= prologue_sal.line)
3019 break;
3020 /* Likewise if we are in a different symtab altogether
3021 (e.g. within a file included via #include).  */
3022 if (sal.symtab != prologue_sal.symtab)
3023 break;
3024
3025 /* The line number is smaller. Check that it's from the
3026 same function, not something inlined. If it's inlined,
3027 then there is no point comparing the line numbers. */
3028 bl = block_for_pc (prologue_sal.end);
3029 while (bl)
3030 {
3031 if (block_inlined_p (bl))
3032 break;
3033 if (BLOCK_FUNCTION (bl))
3034 {
3035 bl = NULL;
3036 break;
3037 }
3038 bl = BLOCK_SUPERBLOCK (bl);
3039 }
3040 if (bl != NULL)
3041 break;
3042
3043 /* The case in which compiler's optimizer/scheduler has
3044 moved instructions into the prologue. We look ahead in
3045 the function looking for address ranges whose
3046 corresponding line number is less the first one that we
3047 found for the function. This is more conservative then
3048 refine_prologue_limit which scans a large number of SALs
3049 looking for any in the prologue. */
3050 prologue_sal = sal;
3051 }
3052 }
3053
3054 if (prologue_sal.end < end_pc)
3055 /* Return the end of this line, or zero if we could not find a
3056 line. */
3057 return prologue_sal.end;
3058 else
3059 /* Don't return END_PC, which is past the end of the function. */
3060 return prologue_sal.pc;
3061 }
3062 \f
3063 /* If P is of the form "operator[ \t]+..." where `...' is
3064 some legitimate operator text, return a pointer to the
3065 beginning of the substring of the operator text.
3066 Otherwise, return "". */
3067
3068 static const char *
3069 operator_chars (const char *p, const char **end)
3070 {
3071 *end = "";
3072 if (strncmp (p, "operator", 8))
3073 return *end;
3074 p += 8;
3075
3076 /* Don't get faked out by `operator' being part of a longer
3077 identifier. */
3078 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3079 return *end;
3080
3081 /* Allow some whitespace between `operator' and the operator symbol. */
3082 while (*p == ' ' || *p == '\t')
3083 p++;
3084
3085 /* Recognize 'operator TYPENAME'. */
3086
3087 if (isalpha (*p) || *p == '_' || *p == '$')
3088 {
3089 const char *q = p + 1;
3090
3091 while (isalnum (*q) || *q == '_' || *q == '$')
3092 q++;
3093 *end = q;
3094 return p;
3095 }
3096
3097 while (*p)
3098 switch (*p)
3099 {
3100 case '\\': /* regexp quoting */
3101 if (p[1] == '*')
3102 {
3103 if (p[2] == '=') /* 'operator\*=' */
3104 *end = p + 3;
3105 else /* 'operator\*' */
3106 *end = p + 2;
3107 return p;
3108 }
3109 else if (p[1] == '[')
3110 {
3111 if (p[2] == ']')
3112 error (_("mismatched quoting on brackets, "
3113 "try 'operator\\[\\]'"));
3114 else if (p[2] == '\\' && p[3] == ']')
3115 {
3116 *end = p + 4; /* 'operator\[\]' */
3117 return p;
3118 }
3119 else
3120 error (_("nothing is allowed between '[' and ']'"));
3121 }
3122 else
3123 {
3124 /* Gratuitous qoute: skip it and move on. */
3125 p++;
3126 continue;
3127 }
3128 break;
3129 case '!':
3130 case '=':
3131 case '*':
3132 case '/':
3133 case '%':
3134 case '^':
3135 if (p[1] == '=')
3136 *end = p + 2;
3137 else
3138 *end = p + 1;
3139 return p;
3140 case '<':
3141 case '>':
3142 case '+':
3143 case '-':
3144 case '&':
3145 case '|':
3146 if (p[0] == '-' && p[1] == '>')
3147 {
3148 /* Struct pointer member operator 'operator->'. */
3149 if (p[2] == '*')
3150 {
3151 *end = p + 3; /* 'operator->*' */
3152 return p;
3153 }
3154 else if (p[2] == '\\')
3155 {
3156 *end = p + 4; /* Hopefully 'operator->\*' */
3157 return p;
3158 }
3159 else
3160 {
3161 *end = p + 2; /* 'operator->' */
3162 return p;
3163 }
3164 }
3165 if (p[1] == '=' || p[1] == p[0])
3166 *end = p + 2;
3167 else
3168 *end = p + 1;
3169 return p;
3170 case '~':
3171 case ',':
3172 *end = p + 1;
3173 return p;
3174 case '(':
3175 if (p[1] != ')')
3176 error (_("`operator ()' must be specified "
3177 "without whitespace in `()'"));
3178 *end = p + 2;
3179 return p;
3180 case '?':
3181 if (p[1] != ':')
3182 error (_("`operator ?:' must be specified "
3183 "without whitespace in `?:'"));
3184 *end = p + 2;
3185 return p;
3186 case '[':
3187 if (p[1] != ']')
3188 error (_("`operator []' must be specified "
3189 "without whitespace in `[]'"));
3190 *end = p + 2;
3191 return p;
3192 default:
3193 error (_("`operator %s' not supported"), p);
3194 break;
3195 }
3196
3197 *end = "";
3198 return *end;
3199 }
3200 \f
3201
3202 /* Cache to watch for file names already seen by filename_seen. */
3203
3204 struct filename_seen_cache
3205 {
3206 /* Table of files seen so far. */
3207 htab_t tab;
3208 /* Initial size of the table. It automagically grows from here. */
3209 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3210 };
3211
3212 /* filename_seen_cache constructor. */
3213
3214 static struct filename_seen_cache *
3215 create_filename_seen_cache (void)
3216 {
3217 struct filename_seen_cache *cache;
3218
3219 cache = XNEW (struct filename_seen_cache);
3220 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3221 filename_hash, filename_eq,
3222 NULL, xcalloc, xfree);
3223
3224 return cache;
3225 }
3226
3227 /* Empty the cache, but do not delete it. */
3228
3229 static void
3230 clear_filename_seen_cache (struct filename_seen_cache *cache)
3231 {
3232 htab_empty (cache->tab);
3233 }
3234
3235 /* filename_seen_cache destructor.
3236 This takes a void * argument as it is generally used as a cleanup. */
3237
3238 static void
3239 delete_filename_seen_cache (void *ptr)
3240 {
3241 struct filename_seen_cache *cache = ptr;
3242
3243 htab_delete (cache->tab);
3244 xfree (cache);
3245 }
3246
3247 /* If FILE is not already in the table of files in CACHE, return zero;
3248 otherwise return non-zero. Optionally add FILE to the table if ADD
3249 is non-zero.
3250
3251 NOTE: We don't manage space for FILE, we assume FILE lives as long
3252 as the caller needs. */
3253
3254 static int
3255 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3256 {
3257 void **slot;
3258
3259 /* Is FILE in tab? */
3260 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3261 if (*slot != NULL)
3262 return 1;
3263
3264 /* No; maybe add it to tab. */
3265 if (add)
3266 *slot = (char *) file;
3267
3268 return 0;
3269 }
3270
3271 /* Data structure to maintain printing state for output_source_filename. */
3272
3273 struct output_source_filename_data
3274 {
3275 /* Cache of what we've seen so far. */
3276 struct filename_seen_cache *filename_seen_cache;
3277
3278 /* Flag of whether we're printing the first one. */
3279 int first;
3280 };
3281
3282 /* Slave routine for sources_info. Force line breaks at ,'s.
3283 NAME is the name to print.
3284 DATA contains the state for printing and watching for duplicates. */
3285
3286 static void
3287 output_source_filename (const char *name,
3288 struct output_source_filename_data *data)
3289 {
3290 /* Since a single source file can result in several partial symbol
3291 tables, we need to avoid printing it more than once. Note: if
3292 some of the psymtabs are read in and some are not, it gets
3293 printed both under "Source files for which symbols have been
3294 read" and "Source files for which symbols will be read in on
3295 demand". I consider this a reasonable way to deal with the
3296 situation. I'm not sure whether this can also happen for
3297 symtabs; it doesn't hurt to check. */
3298
3299 /* Was NAME already seen? */
3300 if (filename_seen (data->filename_seen_cache, name, 1))
3301 {
3302 /* Yes; don't print it again. */
3303 return;
3304 }
3305
3306 /* No; print it and reset *FIRST. */
3307 if (! data->first)
3308 printf_filtered (", ");
3309 data->first = 0;
3310
3311 wrap_here ("");
3312 fputs_filtered (name, gdb_stdout);
3313 }
3314
3315 /* A callback for map_partial_symbol_filenames. */
3316
3317 static void
3318 output_partial_symbol_filename (const char *filename, const char *fullname,
3319 void *data)
3320 {
3321 output_source_filename (fullname ? fullname : filename, data);
3322 }
3323
3324 static void
3325 sources_info (char *ignore, int from_tty)
3326 {
3327 struct compunit_symtab *cu;
3328 struct symtab *s;
3329 struct objfile *objfile;
3330 struct output_source_filename_data data;
3331 struct cleanup *cleanups;
3332
3333 if (!have_full_symbols () && !have_partial_symbols ())
3334 {
3335 error (_("No symbol table is loaded. Use the \"file\" command."));
3336 }
3337
3338 data.filename_seen_cache = create_filename_seen_cache ();
3339 cleanups = make_cleanup (delete_filename_seen_cache,
3340 data.filename_seen_cache);
3341
3342 printf_filtered ("Source files for which symbols have been read in:\n\n");
3343
3344 data.first = 1;
3345 ALL_FILETABS (objfile, cu, s)
3346 {
3347 const char *fullname = symtab_to_fullname (s);
3348
3349 output_source_filename (fullname, &data);
3350 }
3351 printf_filtered ("\n\n");
3352
3353 printf_filtered ("Source files for which symbols "
3354 "will be read in on demand:\n\n");
3355
3356 clear_filename_seen_cache (data.filename_seen_cache);
3357 data.first = 1;
3358 map_symbol_filenames (output_partial_symbol_filename, &data,
3359 1 /*need_fullname*/);
3360 printf_filtered ("\n");
3361
3362 do_cleanups (cleanups);
3363 }
3364
3365 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3366 non-zero compare only lbasename of FILES. */
3367
3368 static int
3369 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3370 {
3371 int i;
3372
3373 if (file != NULL && nfiles != 0)
3374 {
3375 for (i = 0; i < nfiles; i++)
3376 {
3377 if (compare_filenames_for_search (file, (basenames
3378 ? lbasename (files[i])
3379 : files[i])))
3380 return 1;
3381 }
3382 }
3383 else if (nfiles == 0)
3384 return 1;
3385 return 0;
3386 }
3387
3388 /* Free any memory associated with a search. */
3389
3390 void
3391 free_search_symbols (struct symbol_search *symbols)
3392 {
3393 struct symbol_search *p;
3394 struct symbol_search *next;
3395
3396 for (p = symbols; p != NULL; p = next)
3397 {
3398 next = p->next;
3399 xfree (p);
3400 }
3401 }
3402
3403 static void
3404 do_free_search_symbols_cleanup (void *symbolsp)
3405 {
3406 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3407
3408 free_search_symbols (symbols);
3409 }
3410
3411 struct cleanup *
3412 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3413 {
3414 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3415 }
3416
3417 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3418 sort symbols, not minimal symbols. */
3419
3420 static int
3421 compare_search_syms (const void *sa, const void *sb)
3422 {
3423 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3424 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3425 int c;
3426
3427 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3428 if (c != 0)
3429 return c;
3430
3431 if (sym_a->block != sym_b->block)
3432 return sym_a->block - sym_b->block;
3433
3434 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3435 SYMBOL_PRINT_NAME (sym_b->symbol));
3436 }
3437
3438 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3439 The duplicates are freed, and the new list is returned in
3440 *NEW_HEAD, *NEW_TAIL. */
3441
3442 static void
3443 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3444 struct symbol_search **new_head,
3445 struct symbol_search **new_tail)
3446 {
3447 struct symbol_search **symbols, *symp, *old_next;
3448 int i, j, nunique;
3449
3450 gdb_assert (found != NULL && nfound > 0);
3451
3452 /* Build an array out of the list so we can easily sort them. */
3453 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3454 * nfound);
3455 symp = found;
3456 for (i = 0; i < nfound; i++)
3457 {
3458 gdb_assert (symp != NULL);
3459 gdb_assert (symp->block >= 0 && symp->block <= 1);
3460 symbols[i] = symp;
3461 symp = symp->next;
3462 }
3463 gdb_assert (symp == NULL);
3464
3465 qsort (symbols, nfound, sizeof (struct symbol_search *),
3466 compare_search_syms);
3467
3468 /* Collapse out the dups. */
3469 for (i = 1, j = 1; i < nfound; ++i)
3470 {
3471 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3472 symbols[j++] = symbols[i];
3473 else
3474 xfree (symbols[i]);
3475 }
3476 nunique = j;
3477 symbols[j - 1]->next = NULL;
3478
3479 /* Rebuild the linked list. */
3480 for (i = 0; i < nunique - 1; i++)
3481 symbols[i]->next = symbols[i + 1];
3482 symbols[nunique - 1]->next = NULL;
3483
3484 *new_head = symbols[0];
3485 *new_tail = symbols[nunique - 1];
3486 xfree (symbols);
3487 }
3488
3489 /* An object of this type is passed as the user_data to the
3490 expand_symtabs_matching method. */
3491 struct search_symbols_data
3492 {
3493 int nfiles;
3494 const char **files;
3495
3496 /* It is true if PREG contains valid data, false otherwise. */
3497 unsigned preg_p : 1;
3498 regex_t preg;
3499 };
3500
3501 /* A callback for expand_symtabs_matching. */
3502
3503 static int
3504 search_symbols_file_matches (const char *filename, void *user_data,
3505 int basenames)
3506 {
3507 struct search_symbols_data *data = user_data;
3508
3509 return file_matches (filename, data->files, data->nfiles, basenames);
3510 }
3511
3512 /* A callback for expand_symtabs_matching. */
3513
3514 static int
3515 search_symbols_name_matches (const char *symname, void *user_data)
3516 {
3517 struct search_symbols_data *data = user_data;
3518
3519 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3520 }
3521
3522 /* Search the symbol table for matches to the regular expression REGEXP,
3523 returning the results in *MATCHES.
3524
3525 Only symbols of KIND are searched:
3526 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3527 and constants (enums)
3528 FUNCTIONS_DOMAIN - search all functions
3529 TYPES_DOMAIN - search all type names
3530 ALL_DOMAIN - an internal error for this function
3531
3532 free_search_symbols should be called when *MATCHES is no longer needed.
3533
3534 Within each file the results are sorted locally; each symtab's global and
3535 static blocks are separately alphabetized.
3536 Duplicate entries are removed. */
3537
3538 void
3539 search_symbols (const char *regexp, enum search_domain kind,
3540 int nfiles, const char *files[],
3541 struct symbol_search **matches)
3542 {
3543 struct compunit_symtab *cust;
3544 const struct blockvector *bv;
3545 struct block *b;
3546 int i = 0;
3547 struct block_iterator iter;
3548 struct symbol *sym;
3549 struct objfile *objfile;
3550 struct minimal_symbol *msymbol;
3551 int found_misc = 0;
3552 static const enum minimal_symbol_type types[]
3553 = {mst_data, mst_text, mst_abs};
3554 static const enum minimal_symbol_type types2[]
3555 = {mst_bss, mst_file_text, mst_abs};
3556 static const enum minimal_symbol_type types3[]
3557 = {mst_file_data, mst_solib_trampoline, mst_abs};
3558 static const enum minimal_symbol_type types4[]
3559 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3560 enum minimal_symbol_type ourtype;
3561 enum minimal_symbol_type ourtype2;
3562 enum minimal_symbol_type ourtype3;
3563 enum minimal_symbol_type ourtype4;
3564 struct symbol_search *found;
3565 struct symbol_search *tail;
3566 struct search_symbols_data datum;
3567 int nfound;
3568
3569 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3570 CLEANUP_CHAIN is freed only in the case of an error. */
3571 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3572 struct cleanup *retval_chain;
3573
3574 gdb_assert (kind <= TYPES_DOMAIN);
3575
3576 ourtype = types[kind];
3577 ourtype2 = types2[kind];
3578 ourtype3 = types3[kind];
3579 ourtype4 = types4[kind];
3580
3581 *matches = NULL;
3582 datum.preg_p = 0;
3583
3584 if (regexp != NULL)
3585 {
3586 /* Make sure spacing is right for C++ operators.
3587 This is just a courtesy to make the matching less sensitive
3588 to how many spaces the user leaves between 'operator'
3589 and <TYPENAME> or <OPERATOR>. */
3590 const char *opend;
3591 const char *opname = operator_chars (regexp, &opend);
3592 int errcode;
3593
3594 if (*opname)
3595 {
3596 int fix = -1; /* -1 means ok; otherwise number of
3597 spaces needed. */
3598
3599 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3600 {
3601 /* There should 1 space between 'operator' and 'TYPENAME'. */
3602 if (opname[-1] != ' ' || opname[-2] == ' ')
3603 fix = 1;
3604 }
3605 else
3606 {
3607 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3608 if (opname[-1] == ' ')
3609 fix = 0;
3610 }
3611 /* If wrong number of spaces, fix it. */
3612 if (fix >= 0)
3613 {
3614 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3615
3616 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3617 regexp = tmp;
3618 }
3619 }
3620
3621 errcode = regcomp (&datum.preg, regexp,
3622 REG_NOSUB | (case_sensitivity == case_sensitive_off
3623 ? REG_ICASE : 0));
3624 if (errcode != 0)
3625 {
3626 char *err = get_regcomp_error (errcode, &datum.preg);
3627
3628 make_cleanup (xfree, err);
3629 error (_("Invalid regexp (%s): %s"), err, regexp);
3630 }
3631 datum.preg_p = 1;
3632 make_regfree_cleanup (&datum.preg);
3633 }
3634
3635 /* Search through the partial symtabs *first* for all symbols
3636 matching the regexp. That way we don't have to reproduce all of
3637 the machinery below. */
3638
3639 datum.nfiles = nfiles;
3640 datum.files = files;
3641 expand_symtabs_matching ((nfiles == 0
3642 ? NULL
3643 : search_symbols_file_matches),
3644 search_symbols_name_matches,
3645 kind, &datum);
3646
3647 /* Here, we search through the minimal symbol tables for functions
3648 and variables that match, and force their symbols to be read.
3649 This is in particular necessary for demangled variable names,
3650 which are no longer put into the partial symbol tables.
3651 The symbol will then be found during the scan of symtabs below.
3652
3653 For functions, find_pc_symtab should succeed if we have debug info
3654 for the function, for variables we have to call
3655 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3656 has debug info.
3657 If the lookup fails, set found_misc so that we will rescan to print
3658 any matching symbols without debug info.
3659 We only search the objfile the msymbol came from, we no longer search
3660 all objfiles. In large programs (1000s of shared libs) searching all
3661 objfiles is not worth the pain. */
3662
3663 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3664 {
3665 ALL_MSYMBOLS (objfile, msymbol)
3666 {
3667 QUIT;
3668
3669 if (msymbol->created_by_gdb)
3670 continue;
3671
3672 if (MSYMBOL_TYPE (msymbol) == ourtype
3673 || MSYMBOL_TYPE (msymbol) == ourtype2
3674 || MSYMBOL_TYPE (msymbol) == ourtype3
3675 || MSYMBOL_TYPE (msymbol) == ourtype4)
3676 {
3677 if (!datum.preg_p
3678 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3679 NULL, 0) == 0)
3680 {
3681 /* Note: An important side-effect of these lookup functions
3682 is to expand the symbol table if msymbol is found, for the
3683 benefit of the next loop on ALL_COMPUNITS. */
3684 if (kind == FUNCTIONS_DOMAIN
3685 ? (find_pc_compunit_symtab
3686 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
3687 : (lookup_symbol_in_objfile_from_linkage_name
3688 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3689 == NULL))
3690 found_misc = 1;
3691 }
3692 }
3693 }
3694 }
3695
3696 found = NULL;
3697 tail = NULL;
3698 nfound = 0;
3699 retval_chain = make_cleanup_free_search_symbols (&found);
3700
3701 ALL_COMPUNITS (objfile, cust)
3702 {
3703 bv = COMPUNIT_BLOCKVECTOR (cust);
3704 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3705 {
3706 b = BLOCKVECTOR_BLOCK (bv, i);
3707 ALL_BLOCK_SYMBOLS (b, iter, sym)
3708 {
3709 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3710
3711 QUIT;
3712
3713 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3714 a substring of symtab_to_fullname as it may contain "./" etc. */
3715 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3716 || ((basenames_may_differ
3717 || file_matches (lbasename (real_symtab->filename),
3718 files, nfiles, 1))
3719 && file_matches (symtab_to_fullname (real_symtab),
3720 files, nfiles, 0)))
3721 && ((!datum.preg_p
3722 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3723 NULL, 0) == 0)
3724 && ((kind == VARIABLES_DOMAIN
3725 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3726 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3727 && SYMBOL_CLASS (sym) != LOC_BLOCK
3728 /* LOC_CONST can be used for more than just enums,
3729 e.g., c++ static const members.
3730 We only want to skip enums here. */
3731 && !(SYMBOL_CLASS (sym) == LOC_CONST
3732 && (TYPE_CODE (SYMBOL_TYPE (sym))
3733 == TYPE_CODE_ENUM)))
3734 || (kind == FUNCTIONS_DOMAIN
3735 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3736 || (kind == TYPES_DOMAIN
3737 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3738 {
3739 /* match */
3740 struct symbol_search *psr = (struct symbol_search *)
3741 xmalloc (sizeof (struct symbol_search));
3742 psr->block = i;
3743 psr->symtab = real_symtab;
3744 psr->symbol = sym;
3745 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3746 psr->next = NULL;
3747 if (tail == NULL)
3748 found = psr;
3749 else
3750 tail->next = psr;
3751 tail = psr;
3752 nfound ++;
3753 }
3754 }
3755 }
3756 }
3757
3758 if (found != NULL)
3759 {
3760 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3761 /* Note: nfound is no longer useful beyond this point. */
3762 }
3763
3764 /* If there are no eyes, avoid all contact. I mean, if there are
3765 no debug symbols, then add matching minsyms. */
3766
3767 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3768 {
3769 ALL_MSYMBOLS (objfile, msymbol)
3770 {
3771 QUIT;
3772
3773 if (msymbol->created_by_gdb)
3774 continue;
3775
3776 if (MSYMBOL_TYPE (msymbol) == ourtype
3777 || MSYMBOL_TYPE (msymbol) == ourtype2
3778 || MSYMBOL_TYPE (msymbol) == ourtype3
3779 || MSYMBOL_TYPE (msymbol) == ourtype4)
3780 {
3781 if (!datum.preg_p
3782 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3783 NULL, 0) == 0)
3784 {
3785 /* For functions we can do a quick check of whether the
3786 symbol might be found via find_pc_symtab. */
3787 if (kind != FUNCTIONS_DOMAIN
3788 || (find_pc_compunit_symtab
3789 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
3790 {
3791 if (lookup_symbol_in_objfile_from_linkage_name
3792 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3793 == NULL)
3794 {
3795 /* match */
3796 struct symbol_search *psr = (struct symbol_search *)
3797 xmalloc (sizeof (struct symbol_search));
3798 psr->block = i;
3799 psr->msymbol.minsym = msymbol;
3800 psr->msymbol.objfile = objfile;
3801 psr->symtab = NULL;
3802 psr->symbol = NULL;
3803 psr->next = NULL;
3804 if (tail == NULL)
3805 found = psr;
3806 else
3807 tail->next = psr;
3808 tail = psr;
3809 }
3810 }
3811 }
3812 }
3813 }
3814 }
3815
3816 discard_cleanups (retval_chain);
3817 do_cleanups (old_chain);
3818 *matches = found;
3819 }
3820
3821 /* Helper function for symtab_symbol_info, this function uses
3822 the data returned from search_symbols() to print information
3823 regarding the match to gdb_stdout. */
3824
3825 static void
3826 print_symbol_info (enum search_domain kind,
3827 struct symtab *s, struct symbol *sym,
3828 int block, const char *last)
3829 {
3830 const char *s_filename = symtab_to_filename_for_display (s);
3831
3832 if (last == NULL || filename_cmp (last, s_filename) != 0)
3833 {
3834 fputs_filtered ("\nFile ", gdb_stdout);
3835 fputs_filtered (s_filename, gdb_stdout);
3836 fputs_filtered (":\n", gdb_stdout);
3837 }
3838
3839 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3840 printf_filtered ("static ");
3841
3842 /* Typedef that is not a C++ class. */
3843 if (kind == TYPES_DOMAIN
3844 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3845 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3846 /* variable, func, or typedef-that-is-c++-class. */
3847 else if (kind < TYPES_DOMAIN
3848 || (kind == TYPES_DOMAIN
3849 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3850 {
3851 type_print (SYMBOL_TYPE (sym),
3852 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3853 ? "" : SYMBOL_PRINT_NAME (sym)),
3854 gdb_stdout, 0);
3855
3856 printf_filtered (";\n");
3857 }
3858 }
3859
3860 /* This help function for symtab_symbol_info() prints information
3861 for non-debugging symbols to gdb_stdout. */
3862
3863 static void
3864 print_msymbol_info (struct bound_minimal_symbol msymbol)
3865 {
3866 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3867 char *tmp;
3868
3869 if (gdbarch_addr_bit (gdbarch) <= 32)
3870 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3871 & (CORE_ADDR) 0xffffffff,
3872 8);
3873 else
3874 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3875 16);
3876 printf_filtered ("%s %s\n",
3877 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3878 }
3879
3880 /* This is the guts of the commands "info functions", "info types", and
3881 "info variables". It calls search_symbols to find all matches and then
3882 print_[m]symbol_info to print out some useful information about the
3883 matches. */
3884
3885 static void
3886 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3887 {
3888 static const char * const classnames[] =
3889 {"variable", "function", "type"};
3890 struct symbol_search *symbols;
3891 struct symbol_search *p;
3892 struct cleanup *old_chain;
3893 const char *last_filename = NULL;
3894 int first = 1;
3895
3896 gdb_assert (kind <= TYPES_DOMAIN);
3897
3898 /* Must make sure that if we're interrupted, symbols gets freed. */
3899 search_symbols (regexp, kind, 0, NULL, &symbols);
3900 old_chain = make_cleanup_free_search_symbols (&symbols);
3901
3902 if (regexp != NULL)
3903 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3904 classnames[kind], regexp);
3905 else
3906 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3907
3908 for (p = symbols; p != NULL; p = p->next)
3909 {
3910 QUIT;
3911
3912 if (p->msymbol.minsym != NULL)
3913 {
3914 if (first)
3915 {
3916 printf_filtered (_("\nNon-debugging symbols:\n"));
3917 first = 0;
3918 }
3919 print_msymbol_info (p->msymbol);
3920 }
3921 else
3922 {
3923 print_symbol_info (kind,
3924 p->symtab,
3925 p->symbol,
3926 p->block,
3927 last_filename);
3928 last_filename = symtab_to_filename_for_display (p->symtab);
3929 }
3930 }
3931
3932 do_cleanups (old_chain);
3933 }
3934
3935 static void
3936 variables_info (char *regexp, int from_tty)
3937 {
3938 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3939 }
3940
3941 static void
3942 functions_info (char *regexp, int from_tty)
3943 {
3944 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3945 }
3946
3947
3948 static void
3949 types_info (char *regexp, int from_tty)
3950 {
3951 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3952 }
3953
3954 /* Breakpoint all functions matching regular expression. */
3955
3956 void
3957 rbreak_command_wrapper (char *regexp, int from_tty)
3958 {
3959 rbreak_command (regexp, from_tty);
3960 }
3961
3962 /* A cleanup function that calls end_rbreak_breakpoints. */
3963
3964 static void
3965 do_end_rbreak_breakpoints (void *ignore)
3966 {
3967 end_rbreak_breakpoints ();
3968 }
3969
3970 static void
3971 rbreak_command (char *regexp, int from_tty)
3972 {
3973 struct symbol_search *ss;
3974 struct symbol_search *p;
3975 struct cleanup *old_chain;
3976 char *string = NULL;
3977 int len = 0;
3978 const char **files = NULL;
3979 const char *file_name;
3980 int nfiles = 0;
3981
3982 if (regexp)
3983 {
3984 char *colon = strchr (regexp, ':');
3985
3986 if (colon && *(colon + 1) != ':')
3987 {
3988 int colon_index;
3989 char *local_name;
3990
3991 colon_index = colon - regexp;
3992 local_name = alloca (colon_index + 1);
3993 memcpy (local_name, regexp, colon_index);
3994 local_name[colon_index--] = 0;
3995 while (isspace (local_name[colon_index]))
3996 local_name[colon_index--] = 0;
3997 file_name = local_name;
3998 files = &file_name;
3999 nfiles = 1;
4000 regexp = skip_spaces (colon + 1);
4001 }
4002 }
4003
4004 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4005 old_chain = make_cleanup_free_search_symbols (&ss);
4006 make_cleanup (free_current_contents, &string);
4007
4008 start_rbreak_breakpoints ();
4009 make_cleanup (do_end_rbreak_breakpoints, NULL);
4010 for (p = ss; p != NULL; p = p->next)
4011 {
4012 if (p->msymbol.minsym == NULL)
4013 {
4014 const char *fullname = symtab_to_fullname (p->symtab);
4015
4016 int newlen = (strlen (fullname)
4017 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4018 + 4);
4019
4020 if (newlen > len)
4021 {
4022 string = xrealloc (string, newlen);
4023 len = newlen;
4024 }
4025 strcpy (string, fullname);
4026 strcat (string, ":'");
4027 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4028 strcat (string, "'");
4029 break_command (string, from_tty);
4030 print_symbol_info (FUNCTIONS_DOMAIN,
4031 p->symtab,
4032 p->symbol,
4033 p->block,
4034 symtab_to_filename_for_display (p->symtab));
4035 }
4036 else
4037 {
4038 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4039
4040 if (newlen > len)
4041 {
4042 string = xrealloc (string, newlen);
4043 len = newlen;
4044 }
4045 strcpy (string, "'");
4046 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4047 strcat (string, "'");
4048
4049 break_command (string, from_tty);
4050 printf_filtered ("<function, no debug info> %s;\n",
4051 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4052 }
4053 }
4054
4055 do_cleanups (old_chain);
4056 }
4057 \f
4058
4059 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4060
4061 Either sym_text[sym_text_len] != '(' and then we search for any
4062 symbol starting with SYM_TEXT text.
4063
4064 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4065 be terminated at that point. Partial symbol tables do not have parameters
4066 information. */
4067
4068 static int
4069 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4070 {
4071 int (*ncmp) (const char *, const char *, size_t);
4072
4073 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4074
4075 if (ncmp (name, sym_text, sym_text_len) != 0)
4076 return 0;
4077
4078 if (sym_text[sym_text_len] == '(')
4079 {
4080 /* User searches for `name(someth...'. Require NAME to be terminated.
4081 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4082 present but accept even parameters presence. In this case this
4083 function is in fact strcmp_iw but whitespace skipping is not supported
4084 for tab completion. */
4085
4086 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4087 return 0;
4088 }
4089
4090 return 1;
4091 }
4092
4093 /* Free any memory associated with a completion list. */
4094
4095 static void
4096 free_completion_list (VEC (char_ptr) **list_ptr)
4097 {
4098 int i;
4099 char *p;
4100
4101 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4102 xfree (p);
4103 VEC_free (char_ptr, *list_ptr);
4104 }
4105
4106 /* Callback for make_cleanup. */
4107
4108 static void
4109 do_free_completion_list (void *list)
4110 {
4111 free_completion_list (list);
4112 }
4113
4114 /* Helper routine for make_symbol_completion_list. */
4115
4116 static VEC (char_ptr) *return_val;
4117
4118 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4119 completion_list_add_name \
4120 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4121
4122 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4123 completion_list_add_name \
4124 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4125
4126 /* Test to see if the symbol specified by SYMNAME (which is already
4127 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4128 characters. If so, add it to the current completion list. */
4129
4130 static void
4131 completion_list_add_name (const char *symname,
4132 const char *sym_text, int sym_text_len,
4133 const char *text, const char *word)
4134 {
4135 /* Clip symbols that cannot match. */
4136 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4137 return;
4138
4139 /* We have a match for a completion, so add SYMNAME to the current list
4140 of matches. Note that the name is moved to freshly malloc'd space. */
4141
4142 {
4143 char *new;
4144
4145 if (word == sym_text)
4146 {
4147 new = xmalloc (strlen (symname) + 5);
4148 strcpy (new, symname);
4149 }
4150 else if (word > sym_text)
4151 {
4152 /* Return some portion of symname. */
4153 new = xmalloc (strlen (symname) + 5);
4154 strcpy (new, symname + (word - sym_text));
4155 }
4156 else
4157 {
4158 /* Return some of SYM_TEXT plus symname. */
4159 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4160 strncpy (new, word, sym_text - word);
4161 new[sym_text - word] = '\0';
4162 strcat (new, symname);
4163 }
4164
4165 VEC_safe_push (char_ptr, return_val, new);
4166 }
4167 }
4168
4169 /* ObjC: In case we are completing on a selector, look as the msymbol
4170 again and feed all the selectors into the mill. */
4171
4172 static void
4173 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4174 const char *sym_text, int sym_text_len,
4175 const char *text, const char *word)
4176 {
4177 static char *tmp = NULL;
4178 static unsigned int tmplen = 0;
4179
4180 const char *method, *category, *selector;
4181 char *tmp2 = NULL;
4182
4183 method = MSYMBOL_NATURAL_NAME (msymbol);
4184
4185 /* Is it a method? */
4186 if ((method[0] != '-') && (method[0] != '+'))
4187 return;
4188
4189 if (sym_text[0] == '[')
4190 /* Complete on shortened method method. */
4191 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4192
4193 while ((strlen (method) + 1) >= tmplen)
4194 {
4195 if (tmplen == 0)
4196 tmplen = 1024;
4197 else
4198 tmplen *= 2;
4199 tmp = xrealloc (tmp, tmplen);
4200 }
4201 selector = strchr (method, ' ');
4202 if (selector != NULL)
4203 selector++;
4204
4205 category = strchr (method, '(');
4206
4207 if ((category != NULL) && (selector != NULL))
4208 {
4209 memcpy (tmp, method, (category - method));
4210 tmp[category - method] = ' ';
4211 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4212 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4213 if (sym_text[0] == '[')
4214 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4215 }
4216
4217 if (selector != NULL)
4218 {
4219 /* Complete on selector only. */
4220 strcpy (tmp, selector);
4221 tmp2 = strchr (tmp, ']');
4222 if (tmp2 != NULL)
4223 *tmp2 = '\0';
4224
4225 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4226 }
4227 }
4228
4229 /* Break the non-quoted text based on the characters which are in
4230 symbols. FIXME: This should probably be language-specific. */
4231
4232 static const char *
4233 language_search_unquoted_string (const char *text, const char *p)
4234 {
4235 for (; p > text; --p)
4236 {
4237 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4238 continue;
4239 else
4240 {
4241 if ((current_language->la_language == language_objc))
4242 {
4243 if (p[-1] == ':') /* Might be part of a method name. */
4244 continue;
4245 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4246 p -= 2; /* Beginning of a method name. */
4247 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4248 { /* Might be part of a method name. */
4249 const char *t = p;
4250
4251 /* Seeing a ' ' or a '(' is not conclusive evidence
4252 that we are in the middle of a method name. However,
4253 finding "-[" or "+[" should be pretty un-ambiguous.
4254 Unfortunately we have to find it now to decide. */
4255
4256 while (t > text)
4257 if (isalnum (t[-1]) || t[-1] == '_' ||
4258 t[-1] == ' ' || t[-1] == ':' ||
4259 t[-1] == '(' || t[-1] == ')')
4260 --t;
4261 else
4262 break;
4263
4264 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4265 p = t - 2; /* Method name detected. */
4266 /* Else we leave with p unchanged. */
4267 }
4268 }
4269 break;
4270 }
4271 }
4272 return p;
4273 }
4274
4275 static void
4276 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4277 int sym_text_len, const char *text,
4278 const char *word)
4279 {
4280 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4281 {
4282 struct type *t = SYMBOL_TYPE (sym);
4283 enum type_code c = TYPE_CODE (t);
4284 int j;
4285
4286 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4287 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4288 if (TYPE_FIELD_NAME (t, j))
4289 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4290 sym_text, sym_text_len, text, word);
4291 }
4292 }
4293
4294 /* Type of the user_data argument passed to add_macro_name or
4295 symbol_completion_matcher. The contents are simply whatever is
4296 needed by completion_list_add_name. */
4297 struct add_name_data
4298 {
4299 const char *sym_text;
4300 int sym_text_len;
4301 const char *text;
4302 const char *word;
4303 };
4304
4305 /* A callback used with macro_for_each and macro_for_each_in_scope.
4306 This adds a macro's name to the current completion list. */
4307
4308 static void
4309 add_macro_name (const char *name, const struct macro_definition *ignore,
4310 struct macro_source_file *ignore2, int ignore3,
4311 void *user_data)
4312 {
4313 struct add_name_data *datum = (struct add_name_data *) user_data;
4314
4315 completion_list_add_name (name,
4316 datum->sym_text, datum->sym_text_len,
4317 datum->text, datum->word);
4318 }
4319
4320 /* A callback for expand_symtabs_matching. */
4321
4322 static int
4323 symbol_completion_matcher (const char *name, void *user_data)
4324 {
4325 struct add_name_data *datum = (struct add_name_data *) user_data;
4326
4327 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4328 }
4329
4330 VEC (char_ptr) *
4331 default_make_symbol_completion_list_break_on (const char *text,
4332 const char *word,
4333 const char *break_on,
4334 enum type_code code)
4335 {
4336 /* Problem: All of the symbols have to be copied because readline
4337 frees them. I'm not going to worry about this; hopefully there
4338 won't be that many. */
4339
4340 struct symbol *sym;
4341 struct compunit_symtab *cust;
4342 struct minimal_symbol *msymbol;
4343 struct objfile *objfile;
4344 const struct block *b;
4345 const struct block *surrounding_static_block, *surrounding_global_block;
4346 struct block_iterator iter;
4347 /* The symbol we are completing on. Points in same buffer as text. */
4348 const char *sym_text;
4349 /* Length of sym_text. */
4350 int sym_text_len;
4351 struct add_name_data datum;
4352 struct cleanup *back_to;
4353
4354 /* Now look for the symbol we are supposed to complete on. */
4355 {
4356 const char *p;
4357 char quote_found;
4358 const char *quote_pos = NULL;
4359
4360 /* First see if this is a quoted string. */
4361 quote_found = '\0';
4362 for (p = text; *p != '\0'; ++p)
4363 {
4364 if (quote_found != '\0')
4365 {
4366 if (*p == quote_found)
4367 /* Found close quote. */
4368 quote_found = '\0';
4369 else if (*p == '\\' && p[1] == quote_found)
4370 /* A backslash followed by the quote character
4371 doesn't end the string. */
4372 ++p;
4373 }
4374 else if (*p == '\'' || *p == '"')
4375 {
4376 quote_found = *p;
4377 quote_pos = p;
4378 }
4379 }
4380 if (quote_found == '\'')
4381 /* A string within single quotes can be a symbol, so complete on it. */
4382 sym_text = quote_pos + 1;
4383 else if (quote_found == '"')
4384 /* A double-quoted string is never a symbol, nor does it make sense
4385 to complete it any other way. */
4386 {
4387 return NULL;
4388 }
4389 else
4390 {
4391 /* It is not a quoted string. Break it based on the characters
4392 which are in symbols. */
4393 while (p > text)
4394 {
4395 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4396 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4397 --p;
4398 else
4399 break;
4400 }
4401 sym_text = p;
4402 }
4403 }
4404
4405 sym_text_len = strlen (sym_text);
4406
4407 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4408
4409 if (current_language->la_language == language_cplus
4410 || current_language->la_language == language_java
4411 || current_language->la_language == language_fortran)
4412 {
4413 /* These languages may have parameters entered by user but they are never
4414 present in the partial symbol tables. */
4415
4416 const char *cs = memchr (sym_text, '(', sym_text_len);
4417
4418 if (cs)
4419 sym_text_len = cs - sym_text;
4420 }
4421 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4422
4423 return_val = NULL;
4424 back_to = make_cleanup (do_free_completion_list, &return_val);
4425
4426 datum.sym_text = sym_text;
4427 datum.sym_text_len = sym_text_len;
4428 datum.text = text;
4429 datum.word = word;
4430
4431 /* Look through the partial symtabs for all symbols which begin
4432 by matching SYM_TEXT. Expand all CUs that you find to the list.
4433 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4434 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4435 &datum);
4436
4437 /* At this point scan through the misc symbol vectors and add each
4438 symbol you find to the list. Eventually we want to ignore
4439 anything that isn't a text symbol (everything else will be
4440 handled by the psymtab code above). */
4441
4442 if (code == TYPE_CODE_UNDEF)
4443 {
4444 ALL_MSYMBOLS (objfile, msymbol)
4445 {
4446 QUIT;
4447 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4448 word);
4449
4450 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4451 word);
4452 }
4453 }
4454
4455 /* Search upwards from currently selected frame (so that we can
4456 complete on local vars). Also catch fields of types defined in
4457 this places which match our text string. Only complete on types
4458 visible from current context. */
4459
4460 b = get_selected_block (0);
4461 surrounding_static_block = block_static_block (b);
4462 surrounding_global_block = block_global_block (b);
4463 if (surrounding_static_block != NULL)
4464 while (b != surrounding_static_block)
4465 {
4466 QUIT;
4467
4468 ALL_BLOCK_SYMBOLS (b, iter, sym)
4469 {
4470 if (code == TYPE_CODE_UNDEF)
4471 {
4472 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4473 word);
4474 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4475 word);
4476 }
4477 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4478 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4479 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4480 word);
4481 }
4482
4483 /* Stop when we encounter an enclosing function. Do not stop for
4484 non-inlined functions - the locals of the enclosing function
4485 are in scope for a nested function. */
4486 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4487 break;
4488 b = BLOCK_SUPERBLOCK (b);
4489 }
4490
4491 /* Add fields from the file's types; symbols will be added below. */
4492
4493 if (code == TYPE_CODE_UNDEF)
4494 {
4495 if (surrounding_static_block != NULL)
4496 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4497 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4498
4499 if (surrounding_global_block != NULL)
4500 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4501 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4502 }
4503
4504 /* Go through the symtabs and check the externs and statics for
4505 symbols which match. */
4506
4507 ALL_COMPUNITS (objfile, cust)
4508 {
4509 QUIT;
4510 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), GLOBAL_BLOCK);
4511 ALL_BLOCK_SYMBOLS (b, iter, sym)
4512 {
4513 if (code == TYPE_CODE_UNDEF
4514 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4515 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4516 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4517 }
4518 }
4519
4520 ALL_COMPUNITS (objfile, cust)
4521 {
4522 QUIT;
4523 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), STATIC_BLOCK);
4524 ALL_BLOCK_SYMBOLS (b, iter, sym)
4525 {
4526 if (code == TYPE_CODE_UNDEF
4527 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4528 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4529 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4530 }
4531 }
4532
4533 /* Skip macros if we are completing a struct tag -- arguable but
4534 usually what is expected. */
4535 if (current_language->la_macro_expansion == macro_expansion_c
4536 && code == TYPE_CODE_UNDEF)
4537 {
4538 struct macro_scope *scope;
4539
4540 /* Add any macros visible in the default scope. Note that this
4541 may yield the occasional wrong result, because an expression
4542 might be evaluated in a scope other than the default. For
4543 example, if the user types "break file:line if <TAB>", the
4544 resulting expression will be evaluated at "file:line" -- but
4545 at there does not seem to be a way to detect this at
4546 completion time. */
4547 scope = default_macro_scope ();
4548 if (scope)
4549 {
4550 macro_for_each_in_scope (scope->file, scope->line,
4551 add_macro_name, &datum);
4552 xfree (scope);
4553 }
4554
4555 /* User-defined macros are always visible. */
4556 macro_for_each (macro_user_macros, add_macro_name, &datum);
4557 }
4558
4559 discard_cleanups (back_to);
4560 return (return_val);
4561 }
4562
4563 VEC (char_ptr) *
4564 default_make_symbol_completion_list (const char *text, const char *word,
4565 enum type_code code)
4566 {
4567 return default_make_symbol_completion_list_break_on (text, word, "", code);
4568 }
4569
4570 /* Return a vector of all symbols (regardless of class) which begin by
4571 matching TEXT. If the answer is no symbols, then the return value
4572 is NULL. */
4573
4574 VEC (char_ptr) *
4575 make_symbol_completion_list (const char *text, const char *word)
4576 {
4577 return current_language->la_make_symbol_completion_list (text, word,
4578 TYPE_CODE_UNDEF);
4579 }
4580
4581 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4582 symbols whose type code is CODE. */
4583
4584 VEC (char_ptr) *
4585 make_symbol_completion_type (const char *text, const char *word,
4586 enum type_code code)
4587 {
4588 gdb_assert (code == TYPE_CODE_UNION
4589 || code == TYPE_CODE_STRUCT
4590 || code == TYPE_CODE_ENUM);
4591 return current_language->la_make_symbol_completion_list (text, word, code);
4592 }
4593
4594 /* Like make_symbol_completion_list, but suitable for use as a
4595 completion function. */
4596
4597 VEC (char_ptr) *
4598 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4599 const char *text, const char *word)
4600 {
4601 return make_symbol_completion_list (text, word);
4602 }
4603
4604 /* Like make_symbol_completion_list, but returns a list of symbols
4605 defined in a source file FILE. */
4606
4607 VEC (char_ptr) *
4608 make_file_symbol_completion_list (const char *text, const char *word,
4609 const char *srcfile)
4610 {
4611 struct symbol *sym;
4612 struct symtab *s;
4613 struct block *b;
4614 struct block_iterator iter;
4615 /* The symbol we are completing on. Points in same buffer as text. */
4616 const char *sym_text;
4617 /* Length of sym_text. */
4618 int sym_text_len;
4619
4620 /* Now look for the symbol we are supposed to complete on.
4621 FIXME: This should be language-specific. */
4622 {
4623 const char *p;
4624 char quote_found;
4625 const char *quote_pos = NULL;
4626
4627 /* First see if this is a quoted string. */
4628 quote_found = '\0';
4629 for (p = text; *p != '\0'; ++p)
4630 {
4631 if (quote_found != '\0')
4632 {
4633 if (*p == quote_found)
4634 /* Found close quote. */
4635 quote_found = '\0';
4636 else if (*p == '\\' && p[1] == quote_found)
4637 /* A backslash followed by the quote character
4638 doesn't end the string. */
4639 ++p;
4640 }
4641 else if (*p == '\'' || *p == '"')
4642 {
4643 quote_found = *p;
4644 quote_pos = p;
4645 }
4646 }
4647 if (quote_found == '\'')
4648 /* A string within single quotes can be a symbol, so complete on it. */
4649 sym_text = quote_pos + 1;
4650 else if (quote_found == '"')
4651 /* A double-quoted string is never a symbol, nor does it make sense
4652 to complete it any other way. */
4653 {
4654 return NULL;
4655 }
4656 else
4657 {
4658 /* Not a quoted string. */
4659 sym_text = language_search_unquoted_string (text, p);
4660 }
4661 }
4662
4663 sym_text_len = strlen (sym_text);
4664
4665 return_val = NULL;
4666
4667 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4668 in). */
4669 s = lookup_symtab (srcfile);
4670 if (s == NULL)
4671 {
4672 /* Maybe they typed the file with leading directories, while the
4673 symbol tables record only its basename. */
4674 const char *tail = lbasename (srcfile);
4675
4676 if (tail > srcfile)
4677 s = lookup_symtab (tail);
4678 }
4679
4680 /* If we have no symtab for that file, return an empty list. */
4681 if (s == NULL)
4682 return (return_val);
4683
4684 /* Go through this symtab and check the externs and statics for
4685 symbols which match. */
4686
4687 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
4688 ALL_BLOCK_SYMBOLS (b, iter, sym)
4689 {
4690 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4691 }
4692
4693 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
4694 ALL_BLOCK_SYMBOLS (b, iter, sym)
4695 {
4696 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4697 }
4698
4699 return (return_val);
4700 }
4701
4702 /* A helper function for make_source_files_completion_list. It adds
4703 another file name to a list of possible completions, growing the
4704 list as necessary. */
4705
4706 static void
4707 add_filename_to_list (const char *fname, const char *text, const char *word,
4708 VEC (char_ptr) **list)
4709 {
4710 char *new;
4711 size_t fnlen = strlen (fname);
4712
4713 if (word == text)
4714 {
4715 /* Return exactly fname. */
4716 new = xmalloc (fnlen + 5);
4717 strcpy (new, fname);
4718 }
4719 else if (word > text)
4720 {
4721 /* Return some portion of fname. */
4722 new = xmalloc (fnlen + 5);
4723 strcpy (new, fname + (word - text));
4724 }
4725 else
4726 {
4727 /* Return some of TEXT plus fname. */
4728 new = xmalloc (fnlen + (text - word) + 5);
4729 strncpy (new, word, text - word);
4730 new[text - word] = '\0';
4731 strcat (new, fname);
4732 }
4733 VEC_safe_push (char_ptr, *list, new);
4734 }
4735
4736 static int
4737 not_interesting_fname (const char *fname)
4738 {
4739 static const char *illegal_aliens[] = {
4740 "_globals_", /* inserted by coff_symtab_read */
4741 NULL
4742 };
4743 int i;
4744
4745 for (i = 0; illegal_aliens[i]; i++)
4746 {
4747 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4748 return 1;
4749 }
4750 return 0;
4751 }
4752
4753 /* An object of this type is passed as the user_data argument to
4754 map_partial_symbol_filenames. */
4755 struct add_partial_filename_data
4756 {
4757 struct filename_seen_cache *filename_seen_cache;
4758 const char *text;
4759 const char *word;
4760 int text_len;
4761 VEC (char_ptr) **list;
4762 };
4763
4764 /* A callback for map_partial_symbol_filenames. */
4765
4766 static void
4767 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4768 void *user_data)
4769 {
4770 struct add_partial_filename_data *data = user_data;
4771
4772 if (not_interesting_fname (filename))
4773 return;
4774 if (!filename_seen (data->filename_seen_cache, filename, 1)
4775 && filename_ncmp (filename, data->text, data->text_len) == 0)
4776 {
4777 /* This file matches for a completion; add it to the
4778 current list of matches. */
4779 add_filename_to_list (filename, data->text, data->word, data->list);
4780 }
4781 else
4782 {
4783 const char *base_name = lbasename (filename);
4784
4785 if (base_name != filename
4786 && !filename_seen (data->filename_seen_cache, base_name, 1)
4787 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4788 add_filename_to_list (base_name, data->text, data->word, data->list);
4789 }
4790 }
4791
4792 /* Return a vector of all source files whose names begin with matching
4793 TEXT. The file names are looked up in the symbol tables of this
4794 program. If the answer is no matchess, then the return value is
4795 NULL. */
4796
4797 VEC (char_ptr) *
4798 make_source_files_completion_list (const char *text, const char *word)
4799 {
4800 struct compunit_symtab *cu;
4801 struct symtab *s;
4802 struct objfile *objfile;
4803 size_t text_len = strlen (text);
4804 VEC (char_ptr) *list = NULL;
4805 const char *base_name;
4806 struct add_partial_filename_data datum;
4807 struct filename_seen_cache *filename_seen_cache;
4808 struct cleanup *back_to, *cache_cleanup;
4809
4810 if (!have_full_symbols () && !have_partial_symbols ())
4811 return list;
4812
4813 back_to = make_cleanup (do_free_completion_list, &list);
4814
4815 filename_seen_cache = create_filename_seen_cache ();
4816 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4817 filename_seen_cache);
4818
4819 ALL_FILETABS (objfile, cu, s)
4820 {
4821 if (not_interesting_fname (s->filename))
4822 continue;
4823 if (!filename_seen (filename_seen_cache, s->filename, 1)
4824 && filename_ncmp (s->filename, text, text_len) == 0)
4825 {
4826 /* This file matches for a completion; add it to the current
4827 list of matches. */
4828 add_filename_to_list (s->filename, text, word, &list);
4829 }
4830 else
4831 {
4832 /* NOTE: We allow the user to type a base name when the
4833 debug info records leading directories, but not the other
4834 way around. This is what subroutines of breakpoint
4835 command do when they parse file names. */
4836 base_name = lbasename (s->filename);
4837 if (base_name != s->filename
4838 && !filename_seen (filename_seen_cache, base_name, 1)
4839 && filename_ncmp (base_name, text, text_len) == 0)
4840 add_filename_to_list (base_name, text, word, &list);
4841 }
4842 }
4843
4844 datum.filename_seen_cache = filename_seen_cache;
4845 datum.text = text;
4846 datum.word = word;
4847 datum.text_len = text_len;
4848 datum.list = &list;
4849 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4850 0 /*need_fullname*/);
4851
4852 do_cleanups (cache_cleanup);
4853 discard_cleanups (back_to);
4854
4855 return list;
4856 }
4857 \f
4858 /* Track MAIN */
4859
4860 /* Return the "main_info" object for the current program space. If
4861 the object has not yet been created, create it and fill in some
4862 default values. */
4863
4864 static struct main_info *
4865 get_main_info (void)
4866 {
4867 struct main_info *info = program_space_data (current_program_space,
4868 main_progspace_key);
4869
4870 if (info == NULL)
4871 {
4872 /* It may seem strange to store the main name in the progspace
4873 and also in whatever objfile happens to see a main name in
4874 its debug info. The reason for this is mainly historical:
4875 gdb returned "main" as the name even if no function named
4876 "main" was defined the program; and this approach lets us
4877 keep compatibility. */
4878 info = XCNEW (struct main_info);
4879 info->language_of_main = language_unknown;
4880 set_program_space_data (current_program_space, main_progspace_key,
4881 info);
4882 }
4883
4884 return info;
4885 }
4886
4887 /* A cleanup to destroy a struct main_info when a progspace is
4888 destroyed. */
4889
4890 static void
4891 main_info_cleanup (struct program_space *pspace, void *data)
4892 {
4893 struct main_info *info = data;
4894
4895 if (info != NULL)
4896 xfree (info->name_of_main);
4897 xfree (info);
4898 }
4899
4900 static void
4901 set_main_name (const char *name, enum language lang)
4902 {
4903 struct main_info *info = get_main_info ();
4904
4905 if (info->name_of_main != NULL)
4906 {
4907 xfree (info->name_of_main);
4908 info->name_of_main = NULL;
4909 info->language_of_main = language_unknown;
4910 }
4911 if (name != NULL)
4912 {
4913 info->name_of_main = xstrdup (name);
4914 info->language_of_main = lang;
4915 }
4916 }
4917
4918 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4919 accordingly. */
4920
4921 static void
4922 find_main_name (void)
4923 {
4924 const char *new_main_name;
4925 struct objfile *objfile;
4926
4927 /* First check the objfiles to see whether a debuginfo reader has
4928 picked up the appropriate main name. Historically the main name
4929 was found in a more or less random way; this approach instead
4930 relies on the order of objfile creation -- which still isn't
4931 guaranteed to get the correct answer, but is just probably more
4932 accurate. */
4933 ALL_OBJFILES (objfile)
4934 {
4935 if (objfile->per_bfd->name_of_main != NULL)
4936 {
4937 set_main_name (objfile->per_bfd->name_of_main,
4938 objfile->per_bfd->language_of_main);
4939 return;
4940 }
4941 }
4942
4943 /* Try to see if the main procedure is in Ada. */
4944 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4945 be to add a new method in the language vector, and call this
4946 method for each language until one of them returns a non-empty
4947 name. This would allow us to remove this hard-coded call to
4948 an Ada function. It is not clear that this is a better approach
4949 at this point, because all methods need to be written in a way
4950 such that false positives never be returned. For instance, it is
4951 important that a method does not return a wrong name for the main
4952 procedure if the main procedure is actually written in a different
4953 language. It is easy to guaranty this with Ada, since we use a
4954 special symbol generated only when the main in Ada to find the name
4955 of the main procedure. It is difficult however to see how this can
4956 be guarantied for languages such as C, for instance. This suggests
4957 that order of call for these methods becomes important, which means
4958 a more complicated approach. */
4959 new_main_name = ada_main_name ();
4960 if (new_main_name != NULL)
4961 {
4962 set_main_name (new_main_name, language_ada);
4963 return;
4964 }
4965
4966 new_main_name = d_main_name ();
4967 if (new_main_name != NULL)
4968 {
4969 set_main_name (new_main_name, language_d);
4970 return;
4971 }
4972
4973 new_main_name = go_main_name ();
4974 if (new_main_name != NULL)
4975 {
4976 set_main_name (new_main_name, language_go);
4977 return;
4978 }
4979
4980 new_main_name = pascal_main_name ();
4981 if (new_main_name != NULL)
4982 {
4983 set_main_name (new_main_name, language_pascal);
4984 return;
4985 }
4986
4987 /* The languages above didn't identify the name of the main procedure.
4988 Fallback to "main". */
4989 set_main_name ("main", language_unknown);
4990 }
4991
4992 char *
4993 main_name (void)
4994 {
4995 struct main_info *info = get_main_info ();
4996
4997 if (info->name_of_main == NULL)
4998 find_main_name ();
4999
5000 return info->name_of_main;
5001 }
5002
5003 /* Return the language of the main function. If it is not known,
5004 return language_unknown. */
5005
5006 enum language
5007 main_language (void)
5008 {
5009 struct main_info *info = get_main_info ();
5010
5011 if (info->name_of_main == NULL)
5012 find_main_name ();
5013
5014 return info->language_of_main;
5015 }
5016
5017 /* Handle ``executable_changed'' events for the symtab module. */
5018
5019 static void
5020 symtab_observer_executable_changed (void)
5021 {
5022 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5023 set_main_name (NULL, language_unknown);
5024 }
5025
5026 /* Return 1 if the supplied producer string matches the ARM RealView
5027 compiler (armcc). */
5028
5029 int
5030 producer_is_realview (const char *producer)
5031 {
5032 static const char *const arm_idents[] = {
5033 "ARM C Compiler, ADS",
5034 "Thumb C Compiler, ADS",
5035 "ARM C++ Compiler, ADS",
5036 "Thumb C++ Compiler, ADS",
5037 "ARM/Thumb C/C++ Compiler, RVCT",
5038 "ARM C/C++ Compiler, RVCT"
5039 };
5040 int i;
5041
5042 if (producer == NULL)
5043 return 0;
5044
5045 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5046 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5047 return 1;
5048
5049 return 0;
5050 }
5051
5052 \f
5053
5054 /* The next index to hand out in response to a registration request. */
5055
5056 static int next_aclass_value = LOC_FINAL_VALUE;
5057
5058 /* The maximum number of "aclass" registrations we support. This is
5059 constant for convenience. */
5060 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5061
5062 /* The objects representing the various "aclass" values. The elements
5063 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5064 elements are those registered at gdb initialization time. */
5065
5066 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5067
5068 /* The globally visible pointer. This is separate from 'symbol_impl'
5069 so that it can be const. */
5070
5071 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5072
5073 /* Make sure we saved enough room in struct symbol. */
5074
5075 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5076
5077 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5078 is the ops vector associated with this index. This returns the new
5079 index, which should be used as the aclass_index field for symbols
5080 of this type. */
5081
5082 int
5083 register_symbol_computed_impl (enum address_class aclass,
5084 const struct symbol_computed_ops *ops)
5085 {
5086 int result = next_aclass_value++;
5087
5088 gdb_assert (aclass == LOC_COMPUTED);
5089 gdb_assert (result < MAX_SYMBOL_IMPLS);
5090 symbol_impl[result].aclass = aclass;
5091 symbol_impl[result].ops_computed = ops;
5092
5093 /* Sanity check OPS. */
5094 gdb_assert (ops != NULL);
5095 gdb_assert (ops->tracepoint_var_ref != NULL);
5096 gdb_assert (ops->describe_location != NULL);
5097 gdb_assert (ops->read_needs_frame != NULL);
5098 gdb_assert (ops->read_variable != NULL);
5099
5100 return result;
5101 }
5102
5103 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5104 OPS is the ops vector associated with this index. This returns the
5105 new index, which should be used as the aclass_index field for symbols
5106 of this type. */
5107
5108 int
5109 register_symbol_block_impl (enum address_class aclass,
5110 const struct symbol_block_ops *ops)
5111 {
5112 int result = next_aclass_value++;
5113
5114 gdb_assert (aclass == LOC_BLOCK);
5115 gdb_assert (result < MAX_SYMBOL_IMPLS);
5116 symbol_impl[result].aclass = aclass;
5117 symbol_impl[result].ops_block = ops;
5118
5119 /* Sanity check OPS. */
5120 gdb_assert (ops != NULL);
5121 gdb_assert (ops->find_frame_base_location != NULL);
5122
5123 return result;
5124 }
5125
5126 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5127 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5128 this index. This returns the new index, which should be used as
5129 the aclass_index field for symbols of this type. */
5130
5131 int
5132 register_symbol_register_impl (enum address_class aclass,
5133 const struct symbol_register_ops *ops)
5134 {
5135 int result = next_aclass_value++;
5136
5137 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5138 gdb_assert (result < MAX_SYMBOL_IMPLS);
5139 symbol_impl[result].aclass = aclass;
5140 symbol_impl[result].ops_register = ops;
5141
5142 return result;
5143 }
5144
5145 /* Initialize elements of 'symbol_impl' for the constants in enum
5146 address_class. */
5147
5148 static void
5149 initialize_ordinary_address_classes (void)
5150 {
5151 int i;
5152
5153 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5154 symbol_impl[i].aclass = i;
5155 }
5156
5157 \f
5158
5159 /* Initialize the symbol SYM. */
5160
5161 void
5162 initialize_symbol (struct symbol *sym)
5163 {
5164 memset (sym, 0, sizeof (*sym));
5165 SYMBOL_SECTION (sym) = -1;
5166 }
5167
5168 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5169 obstack. */
5170
5171 struct symbol *
5172 allocate_symbol (struct objfile *objfile)
5173 {
5174 struct symbol *result;
5175
5176 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5177 SYMBOL_SECTION (result) = -1;
5178
5179 return result;
5180 }
5181
5182 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5183 obstack. */
5184
5185 struct template_symbol *
5186 allocate_template_symbol (struct objfile *objfile)
5187 {
5188 struct template_symbol *result;
5189
5190 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5191 SYMBOL_SECTION (&result->base) = -1;
5192
5193 return result;
5194 }
5195
5196 \f
5197
5198 void
5199 _initialize_symtab (void)
5200 {
5201 initialize_ordinary_address_classes ();
5202
5203 main_progspace_key
5204 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5205
5206 add_info ("variables", variables_info, _("\
5207 All global and static variable names, or those matching REGEXP."));
5208 if (dbx_commands)
5209 add_com ("whereis", class_info, variables_info, _("\
5210 All global and static variable names, or those matching REGEXP."));
5211
5212 add_info ("functions", functions_info,
5213 _("All function names, or those matching REGEXP."));
5214
5215 /* FIXME: This command has at least the following problems:
5216 1. It prints builtin types (in a very strange and confusing fashion).
5217 2. It doesn't print right, e.g. with
5218 typedef struct foo *FOO
5219 type_print prints "FOO" when we want to make it (in this situation)
5220 print "struct foo *".
5221 I also think "ptype" or "whatis" is more likely to be useful (but if
5222 there is much disagreement "info types" can be fixed). */
5223 add_info ("types", types_info,
5224 _("All type names, or those matching REGEXP."));
5225
5226 add_info ("sources", sources_info,
5227 _("Source files in the program."));
5228
5229 add_com ("rbreak", class_breakpoint, rbreak_command,
5230 _("Set a breakpoint for all functions matching REGEXP."));
5231
5232 if (xdb_commands)
5233 {
5234 add_com ("lf", class_info, sources_info,
5235 _("Source files in the program"));
5236 add_com ("lg", class_info, variables_info, _("\
5237 All global and static variable names, or those matching REGEXP."));
5238 }
5239
5240 add_setshow_enum_cmd ("multiple-symbols", no_class,
5241 multiple_symbols_modes, &multiple_symbols_mode,
5242 _("\
5243 Set the debugger behavior when more than one symbol are possible matches\n\
5244 in an expression."), _("\
5245 Show how the debugger handles ambiguities in expressions."), _("\
5246 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5247 NULL, NULL, &setlist, &showlist);
5248
5249 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5250 &basenames_may_differ, _("\
5251 Set whether a source file may have multiple base names."), _("\
5252 Show whether a source file may have multiple base names."), _("\
5253 (A \"base name\" is the name of a file with the directory part removed.\n\
5254 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5255 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5256 before comparing them. Canonicalization is an expensive operation,\n\
5257 but it allows the same file be known by more than one base name.\n\
5258 If not set (the default), all source files are assumed to have just\n\
5259 one base name, and gdb will do file name comparisons more efficiently."),
5260 NULL, NULL,
5261 &setlist, &showlist);
5262
5263 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5264 _("Set debugging of symbol table creation."),
5265 _("Show debugging of symbol table creation."), _("\
5266 When enabled (non-zero), debugging messages are printed when building\n\
5267 symbol tables. A value of 1 (one) normally provides enough information.\n\
5268 A value greater than 1 provides more verbose information."),
5269 NULL,
5270 NULL,
5271 &setdebuglist, &showdebuglist);
5272
5273 observer_attach_executable_changed (symtab_observer_executable_changed);
5274 }
This page took 0.156113 seconds and 4 git commands to generate.