d116e57663688dd0b780861e031e2177539a2b50
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "source.h"
37 #include "filenames.h" /* for FILENAME_CMP */
38 #include "objc-lang.h"
39 #include "d-lang.h"
40 #include "ada-lang.h"
41 #include "go-lang.h"
42 #include "p-lang.h"
43 #include "addrmap.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 int *is_a_field_of_this);
85
86 static
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 static void print_msymbol_info (struct minimal_symbol *);
104
105 void _initialize_symtab (void);
106
107 /* */
108
109 /* When non-zero, print debugging messages related to symtab creation. */
110 int symtab_create_debug = 0;
111
112 /* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115 int basenames_may_differ = 0;
116
117 /* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121 const char multiple_symbols_ask[] = "ask";
122 const char multiple_symbols_all[] = "all";
123 const char multiple_symbols_cancel[] = "cancel";
124 static const char *const multiple_symbols_modes[] =
125 {
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130 };
131 static const char *multiple_symbols_mode = multiple_symbols_all;
132
133 /* Read-only accessor to AUTO_SELECT_MODE. */
134
135 const char *
136 multiple_symbols_select_mode (void)
137 {
138 return multiple_symbols_mode;
139 }
140
141 /* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145 const struct block *block_found;
146
147 /* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). SEARCH_LEN is the length of
150 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
151 Returns true if they match, false otherwise. */
152
153 int
154 compare_filenames_for_search (const char *filename, const char *search_name,
155 int search_len)
156 {
157 int len = strlen (filename);
158
159 if (len < search_len)
160 return 0;
161
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
165
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator. */
169 return (len == search_len
170 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
171 || (HAS_DRIVE_SPEC (filename)
172 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
173 }
174
175 /* Check for a symtab of a specific name by searching some symtabs.
176 This is a helper function for callbacks of iterate_over_symtabs.
177
178 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
179 are identical to the `map_symtabs_matching_filename' method of
180 quick_symbol_functions.
181
182 FIRST and AFTER_LAST indicate the range of symtabs to search.
183 AFTER_LAST is one past the last symtab to search; NULL means to
184 search until the end of the list. */
185
186 int
187 iterate_over_some_symtabs (const char *name,
188 const char *full_path,
189 const char *real_path,
190 int (*callback) (struct symtab *symtab,
191 void *data),
192 void *data,
193 struct symtab *first,
194 struct symtab *after_last)
195 {
196 struct symtab *s = NULL;
197 const char* base_name = lbasename (name);
198 int name_len = strlen (name);
199 int is_abs = IS_ABSOLUTE_PATH (name);
200
201 for (s = first; s != NULL && s != after_last; s = s->next)
202 {
203 /* Exact match is always ok. */
204 if (FILENAME_CMP (name, s->filename) == 0)
205 {
206 if (callback (s, data))
207 return 1;
208 }
209
210 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
211 {
212 if (callback (s, data))
213 return 1;
214 }
215
216 /* Before we invoke realpath, which can get expensive when many
217 files are involved, do a quick comparison of the basenames. */
218 if (! basenames_may_differ
219 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
220 continue;
221
222 /* If the user gave us an absolute path, try to find the file in
223 this symtab and use its absolute path. */
224
225 if (full_path != NULL)
226 {
227 const char *fp = symtab_to_fullname (s);
228
229 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
230 {
231 if (callback (s, data))
232 return 1;
233 }
234
235 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
236 name_len))
237 {
238 if (callback (s, data))
239 return 1;
240 }
241 }
242
243 if (real_path != NULL)
244 {
245 char *fullname = symtab_to_fullname (s);
246
247 if (fullname != NULL)
248 {
249 char *rp = gdb_realpath (fullname);
250
251 make_cleanup (xfree, rp);
252 if (FILENAME_CMP (real_path, rp) == 0)
253 {
254 if (callback (s, data))
255 return 1;
256 }
257
258 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
259 {
260 if (callback (s, data))
261 return 1;
262 }
263 }
264 }
265 }
266
267 return 0;
268 }
269
270 /* Check for a symtab of a specific name; first in symtabs, then in
271 psymtabs. *If* there is no '/' in the name, a match after a '/'
272 in the symtab filename will also work.
273
274 Calls CALLBACK with each symtab that is found and with the supplied
275 DATA. If CALLBACK returns true, the search stops. */
276
277 void
278 iterate_over_symtabs (const char *name,
279 int (*callback) (struct symtab *symtab,
280 void *data),
281 void *data)
282 {
283 struct symtab *s = NULL;
284 struct objfile *objfile;
285 char *real_path = NULL;
286 char *full_path = NULL;
287 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
288
289 /* Here we are interested in canonicalizing an absolute path, not
290 absolutizing a relative path. */
291 if (IS_ABSOLUTE_PATH (name))
292 {
293 full_path = xfullpath (name);
294 make_cleanup (xfree, full_path);
295 real_path = gdb_realpath (name);
296 make_cleanup (xfree, real_path);
297 }
298
299 ALL_OBJFILES (objfile)
300 {
301 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
302 objfile->symtabs, NULL))
303 {
304 do_cleanups (cleanups);
305 return;
306 }
307 }
308
309 /* Same search rules as above apply here, but now we look thru the
310 psymtabs. */
311
312 ALL_OBJFILES (objfile)
313 {
314 if (objfile->sf
315 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
316 name,
317 full_path,
318 real_path,
319 callback,
320 data))
321 {
322 do_cleanups (cleanups);
323 return;
324 }
325 }
326
327 do_cleanups (cleanups);
328 }
329
330 /* The callback function used by lookup_symtab. */
331
332 static int
333 lookup_symtab_callback (struct symtab *symtab, void *data)
334 {
335 struct symtab **result_ptr = data;
336
337 *result_ptr = symtab;
338 return 1;
339 }
340
341 /* A wrapper for iterate_over_symtabs that returns the first matching
342 symtab, or NULL. */
343
344 struct symtab *
345 lookup_symtab (const char *name)
346 {
347 struct symtab *result = NULL;
348
349 iterate_over_symtabs (name, lookup_symtab_callback, &result);
350 return result;
351 }
352
353 \f
354 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
355 full method name, which consist of the class name (from T), the unadorned
356 method name from METHOD_ID, and the signature for the specific overload,
357 specified by SIGNATURE_ID. Note that this function is g++ specific. */
358
359 char *
360 gdb_mangle_name (struct type *type, int method_id, int signature_id)
361 {
362 int mangled_name_len;
363 char *mangled_name;
364 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
365 struct fn_field *method = &f[signature_id];
366 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
367 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
368 const char *newname = type_name_no_tag (type);
369
370 /* Does the form of physname indicate that it is the full mangled name
371 of a constructor (not just the args)? */
372 int is_full_physname_constructor;
373
374 int is_constructor;
375 int is_destructor = is_destructor_name (physname);
376 /* Need a new type prefix. */
377 char *const_prefix = method->is_const ? "C" : "";
378 char *volatile_prefix = method->is_volatile ? "V" : "";
379 char buf[20];
380 int len = (newname == NULL ? 0 : strlen (newname));
381
382 /* Nothing to do if physname already contains a fully mangled v3 abi name
383 or an operator name. */
384 if ((physname[0] == '_' && physname[1] == 'Z')
385 || is_operator_name (field_name))
386 return xstrdup (physname);
387
388 is_full_physname_constructor = is_constructor_name (physname);
389
390 is_constructor = is_full_physname_constructor
391 || (newname && strcmp (field_name, newname) == 0);
392
393 if (!is_destructor)
394 is_destructor = (strncmp (physname, "__dt", 4) == 0);
395
396 if (is_destructor || is_full_physname_constructor)
397 {
398 mangled_name = (char *) xmalloc (strlen (physname) + 1);
399 strcpy (mangled_name, physname);
400 return mangled_name;
401 }
402
403 if (len == 0)
404 {
405 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
406 }
407 else if (physname[0] == 't' || physname[0] == 'Q')
408 {
409 /* The physname for template and qualified methods already includes
410 the class name. */
411 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
412 newname = NULL;
413 len = 0;
414 }
415 else
416 {
417 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
418 }
419 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
420 + strlen (buf) + len + strlen (physname) + 1);
421
422 mangled_name = (char *) xmalloc (mangled_name_len);
423 if (is_constructor)
424 mangled_name[0] = '\0';
425 else
426 strcpy (mangled_name, field_name);
427
428 strcat (mangled_name, buf);
429 /* If the class doesn't have a name, i.e. newname NULL, then we just
430 mangle it using 0 for the length of the class. Thus it gets mangled
431 as something starting with `::' rather than `classname::'. */
432 if (newname != NULL)
433 strcat (mangled_name, newname);
434
435 strcat (mangled_name, physname);
436 return (mangled_name);
437 }
438
439 /* Initialize the cplus_specific structure. 'cplus_specific' should
440 only be allocated for use with cplus symbols. */
441
442 static void
443 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
444 struct objfile *objfile)
445 {
446 /* A language_specific structure should not have been previously
447 initialized. */
448 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
449 gdb_assert (objfile != NULL);
450
451 gsymbol->language_specific.cplus_specific =
452 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
453 }
454
455 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
456 correctly allocated. For C++ symbols a cplus_specific struct is
457 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
458 OBJFILE can be NULL. */
459
460 void
461 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
462 char *name,
463 struct objfile *objfile)
464 {
465 if (gsymbol->language == language_cplus)
466 {
467 if (gsymbol->language_specific.cplus_specific == NULL)
468 symbol_init_cplus_specific (gsymbol, objfile);
469
470 gsymbol->language_specific.cplus_specific->demangled_name = name;
471 }
472 else
473 gsymbol->language_specific.mangled_lang.demangled_name = name;
474 }
475
476 /* Return the demangled name of GSYMBOL. */
477
478 const char *
479 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
480 {
481 if (gsymbol->language == language_cplus)
482 {
483 if (gsymbol->language_specific.cplus_specific != NULL)
484 return gsymbol->language_specific.cplus_specific->demangled_name;
485 else
486 return NULL;
487 }
488 else
489 return gsymbol->language_specific.mangled_lang.demangled_name;
490 }
491
492 \f
493 /* Initialize the language dependent portion of a symbol
494 depending upon the language for the symbol. */
495
496 void
497 symbol_set_language (struct general_symbol_info *gsymbol,
498 enum language language)
499 {
500 gsymbol->language = language;
501 if (gsymbol->language == language_d
502 || gsymbol->language == language_go
503 || gsymbol->language == language_java
504 || gsymbol->language == language_objc
505 || gsymbol->language == language_fortran)
506 {
507 symbol_set_demangled_name (gsymbol, NULL, NULL);
508 }
509 else if (gsymbol->language == language_cplus)
510 gsymbol->language_specific.cplus_specific = NULL;
511 else
512 {
513 memset (&gsymbol->language_specific, 0,
514 sizeof (gsymbol->language_specific));
515 }
516 }
517
518 /* Functions to initialize a symbol's mangled name. */
519
520 /* Objects of this type are stored in the demangled name hash table. */
521 struct demangled_name_entry
522 {
523 char *mangled;
524 char demangled[1];
525 };
526
527 /* Hash function for the demangled name hash. */
528
529 static hashval_t
530 hash_demangled_name_entry (const void *data)
531 {
532 const struct demangled_name_entry *e = data;
533
534 return htab_hash_string (e->mangled);
535 }
536
537 /* Equality function for the demangled name hash. */
538
539 static int
540 eq_demangled_name_entry (const void *a, const void *b)
541 {
542 const struct demangled_name_entry *da = a;
543 const struct demangled_name_entry *db = b;
544
545 return strcmp (da->mangled, db->mangled) == 0;
546 }
547
548 /* Create the hash table used for demangled names. Each hash entry is
549 a pair of strings; one for the mangled name and one for the demangled
550 name. The entry is hashed via just the mangled name. */
551
552 static void
553 create_demangled_names_hash (struct objfile *objfile)
554 {
555 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
556 The hash table code will round this up to the next prime number.
557 Choosing a much larger table size wastes memory, and saves only about
558 1% in symbol reading. */
559
560 objfile->demangled_names_hash = htab_create_alloc
561 (256, hash_demangled_name_entry, eq_demangled_name_entry,
562 NULL, xcalloc, xfree);
563 }
564
565 /* Try to determine the demangled name for a symbol, based on the
566 language of that symbol. If the language is set to language_auto,
567 it will attempt to find any demangling algorithm that works and
568 then set the language appropriately. The returned name is allocated
569 by the demangler and should be xfree'd. */
570
571 static char *
572 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
573 const char *mangled)
574 {
575 char *demangled = NULL;
576
577 if (gsymbol->language == language_unknown)
578 gsymbol->language = language_auto;
579
580 if (gsymbol->language == language_objc
581 || gsymbol->language == language_auto)
582 {
583 demangled =
584 objc_demangle (mangled, 0);
585 if (demangled != NULL)
586 {
587 gsymbol->language = language_objc;
588 return demangled;
589 }
590 }
591 if (gsymbol->language == language_cplus
592 || gsymbol->language == language_auto)
593 {
594 demangled =
595 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
596 if (demangled != NULL)
597 {
598 gsymbol->language = language_cplus;
599 return demangled;
600 }
601 }
602 if (gsymbol->language == language_java)
603 {
604 demangled =
605 cplus_demangle (mangled,
606 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
607 if (demangled != NULL)
608 {
609 gsymbol->language = language_java;
610 return demangled;
611 }
612 }
613 if (gsymbol->language == language_d
614 || gsymbol->language == language_auto)
615 {
616 demangled = d_demangle(mangled, 0);
617 if (demangled != NULL)
618 {
619 gsymbol->language = language_d;
620 return demangled;
621 }
622 }
623 /* FIXME(dje): Continually adding languages here is clumsy.
624 Better to just call la_demangle if !auto, and if auto then call
625 a utility routine that tries successive languages in turn and reports
626 which one it finds. I realize the la_demangle options may be different
627 for different languages but there's already a FIXME for that. */
628 if (gsymbol->language == language_go
629 || gsymbol->language == language_auto)
630 {
631 demangled = go_demangle (mangled, 0);
632 if (demangled != NULL)
633 {
634 gsymbol->language = language_go;
635 return demangled;
636 }
637 }
638
639 /* We could support `gsymbol->language == language_fortran' here to provide
640 module namespaces also for inferiors with only minimal symbol table (ELF
641 symbols). Just the mangling standard is not standardized across compilers
642 and there is no DW_AT_producer available for inferiors with only the ELF
643 symbols to check the mangling kind. */
644 return NULL;
645 }
646
647 /* Set both the mangled and demangled (if any) names for GSYMBOL based
648 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
649 objfile's obstack; but if COPY_NAME is 0 and if NAME is
650 NUL-terminated, then this function assumes that NAME is already
651 correctly saved (either permanently or with a lifetime tied to the
652 objfile), and it will not be copied.
653
654 The hash table corresponding to OBJFILE is used, and the memory
655 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
656 so the pointer can be discarded after calling this function. */
657
658 /* We have to be careful when dealing with Java names: when we run
659 into a Java minimal symbol, we don't know it's a Java symbol, so it
660 gets demangled as a C++ name. This is unfortunate, but there's not
661 much we can do about it: but when demangling partial symbols and
662 regular symbols, we'd better not reuse the wrong demangled name.
663 (See PR gdb/1039.) We solve this by putting a distinctive prefix
664 on Java names when storing them in the hash table. */
665
666 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
667 don't mind the Java prefix so much: different languages have
668 different demangling requirements, so it's only natural that we
669 need to keep language data around in our demangling cache. But
670 it's not good that the minimal symbol has the wrong demangled name.
671 Unfortunately, I can't think of any easy solution to that
672 problem. */
673
674 #define JAVA_PREFIX "##JAVA$$"
675 #define JAVA_PREFIX_LEN 8
676
677 void
678 symbol_set_names (struct general_symbol_info *gsymbol,
679 const char *linkage_name, int len, int copy_name,
680 struct objfile *objfile)
681 {
682 struct demangled_name_entry **slot;
683 /* A 0-terminated copy of the linkage name. */
684 const char *linkage_name_copy;
685 /* A copy of the linkage name that might have a special Java prefix
686 added to it, for use when looking names up in the hash table. */
687 const char *lookup_name;
688 /* The length of lookup_name. */
689 int lookup_len;
690 struct demangled_name_entry entry;
691
692 if (gsymbol->language == language_ada)
693 {
694 /* In Ada, we do the symbol lookups using the mangled name, so
695 we can save some space by not storing the demangled name.
696
697 As a side note, we have also observed some overlap between
698 the C++ mangling and Ada mangling, similarly to what has
699 been observed with Java. Because we don't store the demangled
700 name with the symbol, we don't need to use the same trick
701 as Java. */
702 if (!copy_name)
703 gsymbol->name = linkage_name;
704 else
705 {
706 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
707
708 memcpy (name, linkage_name, len);
709 name[len] = '\0';
710 gsymbol->name = name;
711 }
712 symbol_set_demangled_name (gsymbol, NULL, NULL);
713
714 return;
715 }
716
717 if (objfile->demangled_names_hash == NULL)
718 create_demangled_names_hash (objfile);
719
720 /* The stabs reader generally provides names that are not
721 NUL-terminated; most of the other readers don't do this, so we
722 can just use the given copy, unless we're in the Java case. */
723 if (gsymbol->language == language_java)
724 {
725 char *alloc_name;
726
727 lookup_len = len + JAVA_PREFIX_LEN;
728 alloc_name = alloca (lookup_len + 1);
729 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
730 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
731 alloc_name[lookup_len] = '\0';
732
733 lookup_name = alloc_name;
734 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
735 }
736 else if (linkage_name[len] != '\0')
737 {
738 char *alloc_name;
739
740 lookup_len = len;
741 alloc_name = alloca (lookup_len + 1);
742 memcpy (alloc_name, linkage_name, len);
743 alloc_name[lookup_len] = '\0';
744
745 lookup_name = alloc_name;
746 linkage_name_copy = alloc_name;
747 }
748 else
749 {
750 lookup_len = len;
751 lookup_name = linkage_name;
752 linkage_name_copy = linkage_name;
753 }
754
755 entry.mangled = (char *) lookup_name;
756 slot = ((struct demangled_name_entry **)
757 htab_find_slot (objfile->demangled_names_hash,
758 &entry, INSERT));
759
760 /* If this name is not in the hash table, add it. */
761 if (*slot == NULL
762 /* A C version of the symbol may have already snuck into the table.
763 This happens to, e.g., main.init (__go_init_main). Cope. */
764 || (gsymbol->language == language_go
765 && (*slot)->demangled[0] == '\0'))
766 {
767 char *demangled_name = symbol_find_demangled_name (gsymbol,
768 linkage_name_copy);
769 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
770
771 /* Suppose we have demangled_name==NULL, copy_name==0, and
772 lookup_name==linkage_name. In this case, we already have the
773 mangled name saved, and we don't have a demangled name. So,
774 you might think we could save a little space by not recording
775 this in the hash table at all.
776
777 It turns out that it is actually important to still save such
778 an entry in the hash table, because storing this name gives
779 us better bcache hit rates for partial symbols. */
780 if (!copy_name && lookup_name == linkage_name)
781 {
782 *slot = obstack_alloc (&objfile->objfile_obstack,
783 offsetof (struct demangled_name_entry,
784 demangled)
785 + demangled_len + 1);
786 (*slot)->mangled = (char *) lookup_name;
787 }
788 else
789 {
790 /* If we must copy the mangled name, put it directly after
791 the demangled name so we can have a single
792 allocation. */
793 *slot = obstack_alloc (&objfile->objfile_obstack,
794 offsetof (struct demangled_name_entry,
795 demangled)
796 + lookup_len + demangled_len + 2);
797 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
798 strcpy ((*slot)->mangled, lookup_name);
799 }
800
801 if (demangled_name != NULL)
802 {
803 strcpy ((*slot)->demangled, demangled_name);
804 xfree (demangled_name);
805 }
806 else
807 (*slot)->demangled[0] = '\0';
808 }
809
810 gsymbol->name = (*slot)->mangled + lookup_len - len;
811 if ((*slot)->demangled[0] != '\0')
812 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
813 else
814 symbol_set_demangled_name (gsymbol, NULL, objfile);
815 }
816
817 /* Return the source code name of a symbol. In languages where
818 demangling is necessary, this is the demangled name. */
819
820 const char *
821 symbol_natural_name (const struct general_symbol_info *gsymbol)
822 {
823 switch (gsymbol->language)
824 {
825 case language_cplus:
826 case language_d:
827 case language_go:
828 case language_java:
829 case language_objc:
830 case language_fortran:
831 if (symbol_get_demangled_name (gsymbol) != NULL)
832 return symbol_get_demangled_name (gsymbol);
833 break;
834 case language_ada:
835 if (symbol_get_demangled_name (gsymbol) != NULL)
836 return symbol_get_demangled_name (gsymbol);
837 else
838 return ada_decode_symbol (gsymbol);
839 break;
840 default:
841 break;
842 }
843 return gsymbol->name;
844 }
845
846 /* Return the demangled name for a symbol based on the language for
847 that symbol. If no demangled name exists, return NULL. */
848
849 const char *
850 symbol_demangled_name (const struct general_symbol_info *gsymbol)
851 {
852 const char *dem_name = NULL;
853
854 switch (gsymbol->language)
855 {
856 case language_cplus:
857 case language_d:
858 case language_go:
859 case language_java:
860 case language_objc:
861 case language_fortran:
862 dem_name = symbol_get_demangled_name (gsymbol);
863 break;
864 case language_ada:
865 dem_name = symbol_get_demangled_name (gsymbol);
866 if (dem_name == NULL)
867 dem_name = ada_decode_symbol (gsymbol);
868 break;
869 default:
870 break;
871 }
872 return dem_name;
873 }
874
875 /* Return the search name of a symbol---generally the demangled or
876 linkage name of the symbol, depending on how it will be searched for.
877 If there is no distinct demangled name, then returns the same value
878 (same pointer) as SYMBOL_LINKAGE_NAME. */
879
880 const char *
881 symbol_search_name (const struct general_symbol_info *gsymbol)
882 {
883 if (gsymbol->language == language_ada)
884 return gsymbol->name;
885 else
886 return symbol_natural_name (gsymbol);
887 }
888
889 /* Initialize the structure fields to zero values. */
890
891 void
892 init_sal (struct symtab_and_line *sal)
893 {
894 sal->pspace = NULL;
895 sal->symtab = 0;
896 sal->section = 0;
897 sal->line = 0;
898 sal->pc = 0;
899 sal->end = 0;
900 sal->explicit_pc = 0;
901 sal->explicit_line = 0;
902 sal->probe = NULL;
903 }
904 \f
905
906 /* Return 1 if the two sections are the same, or if they could
907 plausibly be copies of each other, one in an original object
908 file and another in a separated debug file. */
909
910 int
911 matching_obj_sections (struct obj_section *obj_first,
912 struct obj_section *obj_second)
913 {
914 asection *first = obj_first? obj_first->the_bfd_section : NULL;
915 asection *second = obj_second? obj_second->the_bfd_section : NULL;
916 struct objfile *obj;
917
918 /* If they're the same section, then they match. */
919 if (first == second)
920 return 1;
921
922 /* If either is NULL, give up. */
923 if (first == NULL || second == NULL)
924 return 0;
925
926 /* This doesn't apply to absolute symbols. */
927 if (first->owner == NULL || second->owner == NULL)
928 return 0;
929
930 /* If they're in the same object file, they must be different sections. */
931 if (first->owner == second->owner)
932 return 0;
933
934 /* Check whether the two sections are potentially corresponding. They must
935 have the same size, address, and name. We can't compare section indexes,
936 which would be more reliable, because some sections may have been
937 stripped. */
938 if (bfd_get_section_size (first) != bfd_get_section_size (second))
939 return 0;
940
941 /* In-memory addresses may start at a different offset, relativize them. */
942 if (bfd_get_section_vma (first->owner, first)
943 - bfd_get_start_address (first->owner)
944 != bfd_get_section_vma (second->owner, second)
945 - bfd_get_start_address (second->owner))
946 return 0;
947
948 if (bfd_get_section_name (first->owner, first) == NULL
949 || bfd_get_section_name (second->owner, second) == NULL
950 || strcmp (bfd_get_section_name (first->owner, first),
951 bfd_get_section_name (second->owner, second)) != 0)
952 return 0;
953
954 /* Otherwise check that they are in corresponding objfiles. */
955
956 ALL_OBJFILES (obj)
957 if (obj->obfd == first->owner)
958 break;
959 gdb_assert (obj != NULL);
960
961 if (obj->separate_debug_objfile != NULL
962 && obj->separate_debug_objfile->obfd == second->owner)
963 return 1;
964 if (obj->separate_debug_objfile_backlink != NULL
965 && obj->separate_debug_objfile_backlink->obfd == second->owner)
966 return 1;
967
968 return 0;
969 }
970
971 struct symtab *
972 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
973 {
974 struct objfile *objfile;
975 struct minimal_symbol *msymbol;
976
977 /* If we know that this is not a text address, return failure. This is
978 necessary because we loop based on texthigh and textlow, which do
979 not include the data ranges. */
980 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
981 if (msymbol
982 && (MSYMBOL_TYPE (msymbol) == mst_data
983 || MSYMBOL_TYPE (msymbol) == mst_bss
984 || MSYMBOL_TYPE (msymbol) == mst_abs
985 || MSYMBOL_TYPE (msymbol) == mst_file_data
986 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
987 return NULL;
988
989 ALL_OBJFILES (objfile)
990 {
991 struct symtab *result = NULL;
992
993 if (objfile->sf)
994 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
995 pc, section, 0);
996 if (result)
997 return result;
998 }
999
1000 return NULL;
1001 }
1002 \f
1003 /* Debug symbols usually don't have section information. We need to dig that
1004 out of the minimal symbols and stash that in the debug symbol. */
1005
1006 void
1007 fixup_section (struct general_symbol_info *ginfo,
1008 CORE_ADDR addr, struct objfile *objfile)
1009 {
1010 struct minimal_symbol *msym;
1011
1012 /* First, check whether a minimal symbol with the same name exists
1013 and points to the same address. The address check is required
1014 e.g. on PowerPC64, where the minimal symbol for a function will
1015 point to the function descriptor, while the debug symbol will
1016 point to the actual function code. */
1017 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1018 if (msym)
1019 {
1020 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1021 ginfo->section = SYMBOL_SECTION (msym);
1022 }
1023 else
1024 {
1025 /* Static, function-local variables do appear in the linker
1026 (minimal) symbols, but are frequently given names that won't
1027 be found via lookup_minimal_symbol(). E.g., it has been
1028 observed in frv-uclinux (ELF) executables that a static,
1029 function-local variable named "foo" might appear in the
1030 linker symbols as "foo.6" or "foo.3". Thus, there is no
1031 point in attempting to extend the lookup-by-name mechanism to
1032 handle this case due to the fact that there can be multiple
1033 names.
1034
1035 So, instead, search the section table when lookup by name has
1036 failed. The ``addr'' and ``endaddr'' fields may have already
1037 been relocated. If so, the relocation offset (i.e. the
1038 ANOFFSET value) needs to be subtracted from these values when
1039 performing the comparison. We unconditionally subtract it,
1040 because, when no relocation has been performed, the ANOFFSET
1041 value will simply be zero.
1042
1043 The address of the symbol whose section we're fixing up HAS
1044 NOT BEEN adjusted (relocated) yet. It can't have been since
1045 the section isn't yet known and knowing the section is
1046 necessary in order to add the correct relocation value. In
1047 other words, we wouldn't even be in this function (attempting
1048 to compute the section) if it were already known.
1049
1050 Note that it is possible to search the minimal symbols
1051 (subtracting the relocation value if necessary) to find the
1052 matching minimal symbol, but this is overkill and much less
1053 efficient. It is not necessary to find the matching minimal
1054 symbol, only its section.
1055
1056 Note that this technique (of doing a section table search)
1057 can fail when unrelocated section addresses overlap. For
1058 this reason, we still attempt a lookup by name prior to doing
1059 a search of the section table. */
1060
1061 struct obj_section *s;
1062
1063 ALL_OBJFILE_OSECTIONS (objfile, s)
1064 {
1065 int idx = s->the_bfd_section->index;
1066 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1067
1068 if (obj_section_addr (s) - offset <= addr
1069 && addr < obj_section_endaddr (s) - offset)
1070 {
1071 ginfo->obj_section = s;
1072 ginfo->section = idx;
1073 return;
1074 }
1075 }
1076 }
1077 }
1078
1079 struct symbol *
1080 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1081 {
1082 CORE_ADDR addr;
1083
1084 if (!sym)
1085 return NULL;
1086
1087 if (SYMBOL_OBJ_SECTION (sym))
1088 return sym;
1089
1090 /* We either have an OBJFILE, or we can get at it from the sym's
1091 symtab. Anything else is a bug. */
1092 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1093
1094 if (objfile == NULL)
1095 objfile = SYMBOL_SYMTAB (sym)->objfile;
1096
1097 /* We should have an objfile by now. */
1098 gdb_assert (objfile);
1099
1100 switch (SYMBOL_CLASS (sym))
1101 {
1102 case LOC_STATIC:
1103 case LOC_LABEL:
1104 addr = SYMBOL_VALUE_ADDRESS (sym);
1105 break;
1106 case LOC_BLOCK:
1107 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1108 break;
1109
1110 default:
1111 /* Nothing else will be listed in the minsyms -- no use looking
1112 it up. */
1113 return sym;
1114 }
1115
1116 fixup_section (&sym->ginfo, addr, objfile);
1117
1118 return sym;
1119 }
1120
1121 /* Compute the demangled form of NAME as used by the various symbol
1122 lookup functions. The result is stored in *RESULT_NAME. Returns a
1123 cleanup which can be used to clean up the result.
1124
1125 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1126 Normally, Ada symbol lookups are performed using the encoded name
1127 rather than the demangled name, and so it might seem to make sense
1128 for this function to return an encoded version of NAME.
1129 Unfortunately, we cannot do this, because this function is used in
1130 circumstances where it is not appropriate to try to encode NAME.
1131 For instance, when displaying the frame info, we demangle the name
1132 of each parameter, and then perform a symbol lookup inside our
1133 function using that demangled name. In Ada, certain functions
1134 have internally-generated parameters whose name contain uppercase
1135 characters. Encoding those name would result in those uppercase
1136 characters to become lowercase, and thus cause the symbol lookup
1137 to fail. */
1138
1139 struct cleanup *
1140 demangle_for_lookup (const char *name, enum language lang,
1141 const char **result_name)
1142 {
1143 char *demangled_name = NULL;
1144 const char *modified_name = NULL;
1145 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1146
1147 modified_name = name;
1148
1149 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1150 lookup, so we can always binary search. */
1151 if (lang == language_cplus)
1152 {
1153 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1154 if (demangled_name)
1155 {
1156 modified_name = demangled_name;
1157 make_cleanup (xfree, demangled_name);
1158 }
1159 else
1160 {
1161 /* If we were given a non-mangled name, canonicalize it
1162 according to the language (so far only for C++). */
1163 demangled_name = cp_canonicalize_string (name);
1164 if (demangled_name)
1165 {
1166 modified_name = demangled_name;
1167 make_cleanup (xfree, demangled_name);
1168 }
1169 }
1170 }
1171 else if (lang == language_java)
1172 {
1173 demangled_name = cplus_demangle (name,
1174 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1175 if (demangled_name)
1176 {
1177 modified_name = demangled_name;
1178 make_cleanup (xfree, demangled_name);
1179 }
1180 }
1181 else if (lang == language_d)
1182 {
1183 demangled_name = d_demangle (name, 0);
1184 if (demangled_name)
1185 {
1186 modified_name = demangled_name;
1187 make_cleanup (xfree, demangled_name);
1188 }
1189 }
1190 else if (lang == language_go)
1191 {
1192 demangled_name = go_demangle (name, 0);
1193 if (demangled_name)
1194 {
1195 modified_name = demangled_name;
1196 make_cleanup (xfree, demangled_name);
1197 }
1198 }
1199
1200 *result_name = modified_name;
1201 return cleanup;
1202 }
1203
1204 /* Find the definition for a specified symbol name NAME
1205 in domain DOMAIN, visible from lexical block BLOCK.
1206 Returns the struct symbol pointer, or zero if no symbol is found.
1207 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1208 NAME is a field of the current implied argument `this'. If so set
1209 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1210 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1211 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1212
1213 /* This function (or rather its subordinates) have a bunch of loops and
1214 it would seem to be attractive to put in some QUIT's (though I'm not really
1215 sure whether it can run long enough to be really important). But there
1216 are a few calls for which it would appear to be bad news to quit
1217 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1218 that there is C++ code below which can error(), but that probably
1219 doesn't affect these calls since they are looking for a known
1220 variable and thus can probably assume it will never hit the C++
1221 code). */
1222
1223 struct symbol *
1224 lookup_symbol_in_language (const char *name, const struct block *block,
1225 const domain_enum domain, enum language lang,
1226 int *is_a_field_of_this)
1227 {
1228 const char *modified_name;
1229 struct symbol *returnval;
1230 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1231
1232 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1233 is_a_field_of_this);
1234 do_cleanups (cleanup);
1235
1236 return returnval;
1237 }
1238
1239 /* Behave like lookup_symbol_in_language, but performed with the
1240 current language. */
1241
1242 struct symbol *
1243 lookup_symbol (const char *name, const struct block *block,
1244 domain_enum domain, int *is_a_field_of_this)
1245 {
1246 return lookup_symbol_in_language (name, block, domain,
1247 current_language->la_language,
1248 is_a_field_of_this);
1249 }
1250
1251 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1252 found, or NULL if not found. */
1253
1254 struct symbol *
1255 lookup_language_this (const struct language_defn *lang,
1256 const struct block *block)
1257 {
1258 if (lang->la_name_of_this == NULL || block == NULL)
1259 return NULL;
1260
1261 while (block)
1262 {
1263 struct symbol *sym;
1264
1265 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1266 if (sym != NULL)
1267 {
1268 block_found = block;
1269 return sym;
1270 }
1271 if (BLOCK_FUNCTION (block))
1272 break;
1273 block = BLOCK_SUPERBLOCK (block);
1274 }
1275
1276 return NULL;
1277 }
1278
1279 /* Behave like lookup_symbol except that NAME is the natural name
1280 (e.g., demangled name) of the symbol that we're looking for. */
1281
1282 static struct symbol *
1283 lookup_symbol_aux (const char *name, const struct block *block,
1284 const domain_enum domain, enum language language,
1285 int *is_a_field_of_this)
1286 {
1287 struct symbol *sym;
1288 const struct language_defn *langdef;
1289
1290 /* Make sure we do something sensible with is_a_field_of_this, since
1291 the callers that set this parameter to some non-null value will
1292 certainly use it later and expect it to be either 0 or 1.
1293 If we don't set it, the contents of is_a_field_of_this are
1294 undefined. */
1295 if (is_a_field_of_this != NULL)
1296 *is_a_field_of_this = 0;
1297
1298 /* Search specified block and its superiors. Don't search
1299 STATIC_BLOCK or GLOBAL_BLOCK. */
1300
1301 sym = lookup_symbol_aux_local (name, block, domain, language);
1302 if (sym != NULL)
1303 return sym;
1304
1305 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1306 check to see if NAME is a field of `this'. */
1307
1308 langdef = language_def (language);
1309
1310 if (is_a_field_of_this != NULL)
1311 {
1312 struct symbol *sym = lookup_language_this (langdef, block);
1313
1314 if (sym)
1315 {
1316 struct type *t = sym->type;
1317
1318 /* I'm not really sure that type of this can ever
1319 be typedefed; just be safe. */
1320 CHECK_TYPEDEF (t);
1321 if (TYPE_CODE (t) == TYPE_CODE_PTR
1322 || TYPE_CODE (t) == TYPE_CODE_REF)
1323 t = TYPE_TARGET_TYPE (t);
1324
1325 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1326 && TYPE_CODE (t) != TYPE_CODE_UNION)
1327 error (_("Internal error: `%s' is not an aggregate"),
1328 langdef->la_name_of_this);
1329
1330 if (check_field (t, name))
1331 {
1332 *is_a_field_of_this = 1;
1333 return NULL;
1334 }
1335 }
1336 }
1337
1338 /* Now do whatever is appropriate for LANGUAGE to look
1339 up static and global variables. */
1340
1341 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1342 if (sym != NULL)
1343 return sym;
1344
1345 /* Now search all static file-level symbols. Not strictly correct,
1346 but more useful than an error. */
1347
1348 return lookup_static_symbol_aux (name, domain);
1349 }
1350
1351 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1352 first, then check the psymtabs. If a psymtab indicates the existence of the
1353 desired name as a file-level static, then do psymtab-to-symtab conversion on
1354 the fly and return the found symbol. */
1355
1356 struct symbol *
1357 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1358 {
1359 struct objfile *objfile;
1360 struct symbol *sym;
1361
1362 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1363 if (sym != NULL)
1364 return sym;
1365
1366 ALL_OBJFILES (objfile)
1367 {
1368 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1369 if (sym != NULL)
1370 return sym;
1371 }
1372
1373 return NULL;
1374 }
1375
1376 /* Check to see if the symbol is defined in BLOCK or its superiors.
1377 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1378
1379 static struct symbol *
1380 lookup_symbol_aux_local (const char *name, const struct block *block,
1381 const domain_enum domain,
1382 enum language language)
1383 {
1384 struct symbol *sym;
1385 const struct block *static_block = block_static_block (block);
1386 const char *scope = block_scope (block);
1387
1388 /* Check if either no block is specified or it's a global block. */
1389
1390 if (static_block == NULL)
1391 return NULL;
1392
1393 while (block != static_block)
1394 {
1395 sym = lookup_symbol_aux_block (name, block, domain);
1396 if (sym != NULL)
1397 return sym;
1398
1399 if (language == language_cplus || language == language_fortran)
1400 {
1401 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1402 domain);
1403 if (sym != NULL)
1404 return sym;
1405 }
1406
1407 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1408 break;
1409 block = BLOCK_SUPERBLOCK (block);
1410 }
1411
1412 /* We've reached the edge of the function without finding a result. */
1413
1414 return NULL;
1415 }
1416
1417 /* Look up OBJFILE to BLOCK. */
1418
1419 struct objfile *
1420 lookup_objfile_from_block (const struct block *block)
1421 {
1422 struct objfile *obj;
1423 struct symtab *s;
1424
1425 if (block == NULL)
1426 return NULL;
1427
1428 block = block_global_block (block);
1429 /* Go through SYMTABS. */
1430 ALL_SYMTABS (obj, s)
1431 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1432 {
1433 if (obj->separate_debug_objfile_backlink)
1434 obj = obj->separate_debug_objfile_backlink;
1435
1436 return obj;
1437 }
1438
1439 return NULL;
1440 }
1441
1442 /* Look up a symbol in a block; if found, fixup the symbol, and set
1443 block_found appropriately. */
1444
1445 struct symbol *
1446 lookup_symbol_aux_block (const char *name, const struct block *block,
1447 const domain_enum domain)
1448 {
1449 struct symbol *sym;
1450
1451 sym = lookup_block_symbol (block, name, domain);
1452 if (sym)
1453 {
1454 block_found = block;
1455 return fixup_symbol_section (sym, NULL);
1456 }
1457
1458 return NULL;
1459 }
1460
1461 /* Check all global symbols in OBJFILE in symtabs and
1462 psymtabs. */
1463
1464 struct symbol *
1465 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1466 const char *name,
1467 const domain_enum domain)
1468 {
1469 const struct objfile *objfile;
1470 struct symbol *sym;
1471 struct blockvector *bv;
1472 const struct block *block;
1473 struct symtab *s;
1474
1475 for (objfile = main_objfile;
1476 objfile;
1477 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1478 {
1479 /* Go through symtabs. */
1480 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1481 {
1482 bv = BLOCKVECTOR (s);
1483 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1484 sym = lookup_block_symbol (block, name, domain);
1485 if (sym)
1486 {
1487 block_found = block;
1488 return fixup_symbol_section (sym, (struct objfile *)objfile);
1489 }
1490 }
1491
1492 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1493 name, domain);
1494 if (sym)
1495 return sym;
1496 }
1497
1498 return NULL;
1499 }
1500
1501 /* Check to see if the symbol is defined in one of the OBJFILE's
1502 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1503 depending on whether or not we want to search global symbols or
1504 static symbols. */
1505
1506 static struct symbol *
1507 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1508 const char *name, const domain_enum domain)
1509 {
1510 struct symbol *sym = NULL;
1511 struct blockvector *bv;
1512 const struct block *block;
1513 struct symtab *s;
1514
1515 if (objfile->sf)
1516 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1517 name, domain);
1518
1519 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1520 {
1521 bv = BLOCKVECTOR (s);
1522 block = BLOCKVECTOR_BLOCK (bv, block_index);
1523 sym = lookup_block_symbol (block, name, domain);
1524 if (sym)
1525 {
1526 block_found = block;
1527 return fixup_symbol_section (sym, objfile);
1528 }
1529 }
1530
1531 return NULL;
1532 }
1533
1534 /* Same as lookup_symbol_aux_objfile, except that it searches all
1535 objfiles. Return the first match found. */
1536
1537 static struct symbol *
1538 lookup_symbol_aux_symtabs (int block_index, const char *name,
1539 const domain_enum domain)
1540 {
1541 struct symbol *sym;
1542 struct objfile *objfile;
1543
1544 ALL_OBJFILES (objfile)
1545 {
1546 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1547 if (sym)
1548 return sym;
1549 }
1550
1551 return NULL;
1552 }
1553
1554 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1555 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1556 and all related objfiles. */
1557
1558 static struct symbol *
1559 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1560 const char *linkage_name,
1561 domain_enum domain)
1562 {
1563 enum language lang = current_language->la_language;
1564 const char *modified_name;
1565 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1566 &modified_name);
1567 struct objfile *main_objfile, *cur_objfile;
1568
1569 if (objfile->separate_debug_objfile_backlink)
1570 main_objfile = objfile->separate_debug_objfile_backlink;
1571 else
1572 main_objfile = objfile;
1573
1574 for (cur_objfile = main_objfile;
1575 cur_objfile;
1576 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1577 {
1578 struct symbol *sym;
1579
1580 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1581 modified_name, domain);
1582 if (sym == NULL)
1583 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1584 modified_name, domain);
1585 if (sym != NULL)
1586 {
1587 do_cleanups (cleanup);
1588 return sym;
1589 }
1590 }
1591
1592 do_cleanups (cleanup);
1593 return NULL;
1594 }
1595
1596 /* A helper function for lookup_symbol_aux that interfaces with the
1597 "quick" symbol table functions. */
1598
1599 static struct symbol *
1600 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1601 const char *name, const domain_enum domain)
1602 {
1603 struct symtab *symtab;
1604 struct blockvector *bv;
1605 const struct block *block;
1606 struct symbol *sym;
1607
1608 if (!objfile->sf)
1609 return NULL;
1610 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1611 if (!symtab)
1612 return NULL;
1613
1614 bv = BLOCKVECTOR (symtab);
1615 block = BLOCKVECTOR_BLOCK (bv, kind);
1616 sym = lookup_block_symbol (block, name, domain);
1617 if (!sym)
1618 {
1619 /* This shouldn't be necessary, but as a last resort try
1620 looking in the statics even though the psymtab claimed
1621 the symbol was global, or vice-versa. It's possible
1622 that the psymtab gets it wrong in some cases. */
1623
1624 /* FIXME: carlton/2002-09-30: Should we really do that?
1625 If that happens, isn't it likely to be a GDB error, in
1626 which case we should fix the GDB error rather than
1627 silently dealing with it here? So I'd vote for
1628 removing the check for the symbol in the other
1629 block. */
1630 block = BLOCKVECTOR_BLOCK (bv,
1631 kind == GLOBAL_BLOCK ?
1632 STATIC_BLOCK : GLOBAL_BLOCK);
1633 sym = lookup_block_symbol (block, name, domain);
1634 if (!sym)
1635 error (_("\
1636 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1637 %s may be an inlined function, or may be a template function\n\
1638 (if a template, try specifying an instantiation: %s<type>)."),
1639 kind == GLOBAL_BLOCK ? "global" : "static",
1640 name, symtab->filename, name, name);
1641 }
1642 return fixup_symbol_section (sym, objfile);
1643 }
1644
1645 /* A default version of lookup_symbol_nonlocal for use by languages
1646 that can't think of anything better to do. This implements the C
1647 lookup rules. */
1648
1649 struct symbol *
1650 basic_lookup_symbol_nonlocal (const char *name,
1651 const struct block *block,
1652 const domain_enum domain)
1653 {
1654 struct symbol *sym;
1655
1656 /* NOTE: carlton/2003-05-19: The comments below were written when
1657 this (or what turned into this) was part of lookup_symbol_aux;
1658 I'm much less worried about these questions now, since these
1659 decisions have turned out well, but I leave these comments here
1660 for posterity. */
1661
1662 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1663 not it would be appropriate to search the current global block
1664 here as well. (That's what this code used to do before the
1665 is_a_field_of_this check was moved up.) On the one hand, it's
1666 redundant with the lookup_symbol_aux_symtabs search that happens
1667 next. On the other hand, if decode_line_1 is passed an argument
1668 like filename:var, then the user presumably wants 'var' to be
1669 searched for in filename. On the third hand, there shouldn't be
1670 multiple global variables all of which are named 'var', and it's
1671 not like decode_line_1 has ever restricted its search to only
1672 global variables in a single filename. All in all, only
1673 searching the static block here seems best: it's correct and it's
1674 cleanest. */
1675
1676 /* NOTE: carlton/2002-12-05: There's also a possible performance
1677 issue here: if you usually search for global symbols in the
1678 current file, then it would be slightly better to search the
1679 current global block before searching all the symtabs. But there
1680 are other factors that have a much greater effect on performance
1681 than that one, so I don't think we should worry about that for
1682 now. */
1683
1684 sym = lookup_symbol_static (name, block, domain);
1685 if (sym != NULL)
1686 return sym;
1687
1688 return lookup_symbol_global (name, block, domain);
1689 }
1690
1691 /* Lookup a symbol in the static block associated to BLOCK, if there
1692 is one; do nothing if BLOCK is NULL or a global block. */
1693
1694 struct symbol *
1695 lookup_symbol_static (const char *name,
1696 const struct block *block,
1697 const domain_enum domain)
1698 {
1699 const struct block *static_block = block_static_block (block);
1700
1701 if (static_block != NULL)
1702 return lookup_symbol_aux_block (name, static_block, domain);
1703 else
1704 return NULL;
1705 }
1706
1707 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1708
1709 struct global_sym_lookup_data
1710 {
1711 /* The name of the symbol we are searching for. */
1712 const char *name;
1713
1714 /* The domain to use for our search. */
1715 domain_enum domain;
1716
1717 /* The field where the callback should store the symbol if found.
1718 It should be initialized to NULL before the search is started. */
1719 struct symbol *result;
1720 };
1721
1722 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1723 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1724 OBJFILE. The arguments for the search are passed via CB_DATA,
1725 which in reality is a pointer to struct global_sym_lookup_data. */
1726
1727 static int
1728 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1729 void *cb_data)
1730 {
1731 struct global_sym_lookup_data *data =
1732 (struct global_sym_lookup_data *) cb_data;
1733
1734 gdb_assert (data->result == NULL);
1735
1736 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1737 data->name, data->domain);
1738 if (data->result == NULL)
1739 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1740 data->name, data->domain);
1741
1742 /* If we found a match, tell the iterator to stop. Otherwise,
1743 keep going. */
1744 return (data->result != NULL);
1745 }
1746
1747 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1748 necessary). */
1749
1750 struct symbol *
1751 lookup_symbol_global (const char *name,
1752 const struct block *block,
1753 const domain_enum domain)
1754 {
1755 struct symbol *sym = NULL;
1756 struct objfile *objfile = NULL;
1757 struct global_sym_lookup_data lookup_data;
1758
1759 /* Call library-specific lookup procedure. */
1760 objfile = lookup_objfile_from_block (block);
1761 if (objfile != NULL)
1762 sym = solib_global_lookup (objfile, name, domain);
1763 if (sym != NULL)
1764 return sym;
1765
1766 memset (&lookup_data, 0, sizeof (lookup_data));
1767 lookup_data.name = name;
1768 lookup_data.domain = domain;
1769 gdbarch_iterate_over_objfiles_in_search_order
1770 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch,
1771 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1772
1773 return lookup_data.result;
1774 }
1775
1776 int
1777 symbol_matches_domain (enum language symbol_language,
1778 domain_enum symbol_domain,
1779 domain_enum domain)
1780 {
1781 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1782 A Java class declaration also defines a typedef for the class.
1783 Similarly, any Ada type declaration implicitly defines a typedef. */
1784 if (symbol_language == language_cplus
1785 || symbol_language == language_d
1786 || symbol_language == language_java
1787 || symbol_language == language_ada)
1788 {
1789 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1790 && symbol_domain == STRUCT_DOMAIN)
1791 return 1;
1792 }
1793 /* For all other languages, strict match is required. */
1794 return (symbol_domain == domain);
1795 }
1796
1797 /* Look up a type named NAME in the struct_domain. The type returned
1798 must not be opaque -- i.e., must have at least one field
1799 defined. */
1800
1801 struct type *
1802 lookup_transparent_type (const char *name)
1803 {
1804 return current_language->la_lookup_transparent_type (name);
1805 }
1806
1807 /* A helper for basic_lookup_transparent_type that interfaces with the
1808 "quick" symbol table functions. */
1809
1810 static struct type *
1811 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1812 const char *name)
1813 {
1814 struct symtab *symtab;
1815 struct blockvector *bv;
1816 struct block *block;
1817 struct symbol *sym;
1818
1819 if (!objfile->sf)
1820 return NULL;
1821 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1822 if (!symtab)
1823 return NULL;
1824
1825 bv = BLOCKVECTOR (symtab);
1826 block = BLOCKVECTOR_BLOCK (bv, kind);
1827 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1828 if (!sym)
1829 {
1830 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1831
1832 /* This shouldn't be necessary, but as a last resort
1833 * try looking in the 'other kind' even though the psymtab
1834 * claimed the symbol was one thing. It's possible that
1835 * the psymtab gets it wrong in some cases.
1836 */
1837 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1838 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1839 if (!sym)
1840 /* FIXME; error is wrong in one case. */
1841 error (_("\
1842 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1843 %s may be an inlined function, or may be a template function\n\
1844 (if a template, try specifying an instantiation: %s<type>)."),
1845 name, symtab->filename, name, name);
1846 }
1847 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1848 return SYMBOL_TYPE (sym);
1849
1850 return NULL;
1851 }
1852
1853 /* The standard implementation of lookup_transparent_type. This code
1854 was modeled on lookup_symbol -- the parts not relevant to looking
1855 up types were just left out. In particular it's assumed here that
1856 types are available in struct_domain and only at file-static or
1857 global blocks. */
1858
1859 struct type *
1860 basic_lookup_transparent_type (const char *name)
1861 {
1862 struct symbol *sym;
1863 struct symtab *s = NULL;
1864 struct blockvector *bv;
1865 struct objfile *objfile;
1866 struct block *block;
1867 struct type *t;
1868
1869 /* Now search all the global symbols. Do the symtab's first, then
1870 check the psymtab's. If a psymtab indicates the existence
1871 of the desired name as a global, then do psymtab-to-symtab
1872 conversion on the fly and return the found symbol. */
1873
1874 ALL_OBJFILES (objfile)
1875 {
1876 if (objfile->sf)
1877 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1878 GLOBAL_BLOCK,
1879 name, STRUCT_DOMAIN);
1880
1881 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1882 {
1883 bv = BLOCKVECTOR (s);
1884 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1885 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1886 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1887 {
1888 return SYMBOL_TYPE (sym);
1889 }
1890 }
1891 }
1892
1893 ALL_OBJFILES (objfile)
1894 {
1895 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1896 if (t)
1897 return t;
1898 }
1899
1900 /* Now search the static file-level symbols.
1901 Not strictly correct, but more useful than an error.
1902 Do the symtab's first, then
1903 check the psymtab's. If a psymtab indicates the existence
1904 of the desired name as a file-level static, then do psymtab-to-symtab
1905 conversion on the fly and return the found symbol. */
1906
1907 ALL_OBJFILES (objfile)
1908 {
1909 if (objfile->sf)
1910 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1911 name, STRUCT_DOMAIN);
1912
1913 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1914 {
1915 bv = BLOCKVECTOR (s);
1916 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1917 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1918 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1919 {
1920 return SYMBOL_TYPE (sym);
1921 }
1922 }
1923 }
1924
1925 ALL_OBJFILES (objfile)
1926 {
1927 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1928 if (t)
1929 return t;
1930 }
1931
1932 return (struct type *) 0;
1933 }
1934
1935 /* Find the name of the file containing main(). */
1936 /* FIXME: What about languages without main() or specially linked
1937 executables that have no main() ? */
1938
1939 const char *
1940 find_main_filename (void)
1941 {
1942 struct objfile *objfile;
1943 char *name = main_name ();
1944
1945 ALL_OBJFILES (objfile)
1946 {
1947 const char *result;
1948
1949 if (!objfile->sf)
1950 continue;
1951 result = objfile->sf->qf->find_symbol_file (objfile, name);
1952 if (result)
1953 return result;
1954 }
1955 return (NULL);
1956 }
1957
1958 /* Search BLOCK for symbol NAME in DOMAIN.
1959
1960 Note that if NAME is the demangled form of a C++ symbol, we will fail
1961 to find a match during the binary search of the non-encoded names, but
1962 for now we don't worry about the slight inefficiency of looking for
1963 a match we'll never find, since it will go pretty quick. Once the
1964 binary search terminates, we drop through and do a straight linear
1965 search on the symbols. Each symbol which is marked as being a ObjC/C++
1966 symbol (language_cplus or language_objc set) has both the encoded and
1967 non-encoded names tested for a match. */
1968
1969 struct symbol *
1970 lookup_block_symbol (const struct block *block, const char *name,
1971 const domain_enum domain)
1972 {
1973 struct block_iterator iter;
1974 struct symbol *sym;
1975
1976 if (!BLOCK_FUNCTION (block))
1977 {
1978 for (sym = block_iter_name_first (block, name, &iter);
1979 sym != NULL;
1980 sym = block_iter_name_next (name, &iter))
1981 {
1982 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1983 SYMBOL_DOMAIN (sym), domain))
1984 return sym;
1985 }
1986 return NULL;
1987 }
1988 else
1989 {
1990 /* Note that parameter symbols do not always show up last in the
1991 list; this loop makes sure to take anything else other than
1992 parameter symbols first; it only uses parameter symbols as a
1993 last resort. Note that this only takes up extra computation
1994 time on a match. */
1995
1996 struct symbol *sym_found = NULL;
1997
1998 for (sym = block_iter_name_first (block, name, &iter);
1999 sym != NULL;
2000 sym = block_iter_name_next (name, &iter))
2001 {
2002 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2003 SYMBOL_DOMAIN (sym), domain))
2004 {
2005 sym_found = sym;
2006 if (!SYMBOL_IS_ARGUMENT (sym))
2007 {
2008 break;
2009 }
2010 }
2011 }
2012 return (sym_found); /* Will be NULL if not found. */
2013 }
2014 }
2015
2016 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2017 BLOCK.
2018
2019 For each symbol that matches, CALLBACK is called. The symbol and
2020 DATA are passed to the callback.
2021
2022 If CALLBACK returns zero, the iteration ends. Otherwise, the
2023 search continues. This function iterates upward through blocks.
2024 When the outermost block has been finished, the function
2025 returns. */
2026
2027 void
2028 iterate_over_symbols (const struct block *block, const char *name,
2029 const domain_enum domain,
2030 symbol_found_callback_ftype *callback,
2031 void *data)
2032 {
2033 while (block)
2034 {
2035 struct block_iterator iter;
2036 struct symbol *sym;
2037
2038 for (sym = block_iter_name_first (block, name, &iter);
2039 sym != NULL;
2040 sym = block_iter_name_next (name, &iter))
2041 {
2042 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2043 SYMBOL_DOMAIN (sym), domain))
2044 {
2045 if (!callback (sym, data))
2046 return;
2047 }
2048 }
2049
2050 block = BLOCK_SUPERBLOCK (block);
2051 }
2052 }
2053
2054 /* Find the symtab associated with PC and SECTION. Look through the
2055 psymtabs and read in another symtab if necessary. */
2056
2057 struct symtab *
2058 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2059 {
2060 struct block *b;
2061 struct blockvector *bv;
2062 struct symtab *s = NULL;
2063 struct symtab *best_s = NULL;
2064 struct objfile *objfile;
2065 struct program_space *pspace;
2066 CORE_ADDR distance = 0;
2067 struct minimal_symbol *msymbol;
2068
2069 pspace = current_program_space;
2070
2071 /* If we know that this is not a text address, return failure. This is
2072 necessary because we loop based on the block's high and low code
2073 addresses, which do not include the data ranges, and because
2074 we call find_pc_sect_psymtab which has a similar restriction based
2075 on the partial_symtab's texthigh and textlow. */
2076 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2077 if (msymbol
2078 && (MSYMBOL_TYPE (msymbol) == mst_data
2079 || MSYMBOL_TYPE (msymbol) == mst_bss
2080 || MSYMBOL_TYPE (msymbol) == mst_abs
2081 || MSYMBOL_TYPE (msymbol) == mst_file_data
2082 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2083 return NULL;
2084
2085 /* Search all symtabs for the one whose file contains our address, and which
2086 is the smallest of all the ones containing the address. This is designed
2087 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2088 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2089 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2090
2091 This happens for native ecoff format, where code from included files
2092 gets its own symtab. The symtab for the included file should have
2093 been read in already via the dependency mechanism.
2094 It might be swifter to create several symtabs with the same name
2095 like xcoff does (I'm not sure).
2096
2097 It also happens for objfiles that have their functions reordered.
2098 For these, the symtab we are looking for is not necessarily read in. */
2099
2100 ALL_PRIMARY_SYMTABS (objfile, s)
2101 {
2102 bv = BLOCKVECTOR (s);
2103 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2104
2105 if (BLOCK_START (b) <= pc
2106 && BLOCK_END (b) > pc
2107 && (distance == 0
2108 || BLOCK_END (b) - BLOCK_START (b) < distance))
2109 {
2110 /* For an objfile that has its functions reordered,
2111 find_pc_psymtab will find the proper partial symbol table
2112 and we simply return its corresponding symtab. */
2113 /* In order to better support objfiles that contain both
2114 stabs and coff debugging info, we continue on if a psymtab
2115 can't be found. */
2116 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2117 {
2118 struct symtab *result;
2119
2120 result
2121 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2122 msymbol,
2123 pc, section,
2124 0);
2125 if (result)
2126 return result;
2127 }
2128 if (section != 0)
2129 {
2130 struct block_iterator iter;
2131 struct symbol *sym = NULL;
2132
2133 ALL_BLOCK_SYMBOLS (b, iter, sym)
2134 {
2135 fixup_symbol_section (sym, objfile);
2136 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2137 break;
2138 }
2139 if (sym == NULL)
2140 continue; /* No symbol in this symtab matches
2141 section. */
2142 }
2143 distance = BLOCK_END (b) - BLOCK_START (b);
2144 best_s = s;
2145 }
2146 }
2147
2148 if (best_s != NULL)
2149 return (best_s);
2150
2151 ALL_OBJFILES (objfile)
2152 {
2153 struct symtab *result;
2154
2155 if (!objfile->sf)
2156 continue;
2157 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2158 msymbol,
2159 pc, section,
2160 1);
2161 if (result)
2162 return result;
2163 }
2164
2165 return NULL;
2166 }
2167
2168 /* Find the symtab associated with PC. Look through the psymtabs and read
2169 in another symtab if necessary. Backward compatibility, no section. */
2170
2171 struct symtab *
2172 find_pc_symtab (CORE_ADDR pc)
2173 {
2174 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2175 }
2176 \f
2177
2178 /* Find the source file and line number for a given PC value and SECTION.
2179 Return a structure containing a symtab pointer, a line number,
2180 and a pc range for the entire source line.
2181 The value's .pc field is NOT the specified pc.
2182 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2183 use the line that ends there. Otherwise, in that case, the line
2184 that begins there is used. */
2185
2186 /* The big complication here is that a line may start in one file, and end just
2187 before the start of another file. This usually occurs when you #include
2188 code in the middle of a subroutine. To properly find the end of a line's PC
2189 range, we must search all symtabs associated with this compilation unit, and
2190 find the one whose first PC is closer than that of the next line in this
2191 symtab. */
2192
2193 /* If it's worth the effort, we could be using a binary search. */
2194
2195 struct symtab_and_line
2196 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2197 {
2198 struct symtab *s;
2199 struct linetable *l;
2200 int len;
2201 int i;
2202 struct linetable_entry *item;
2203 struct symtab_and_line val;
2204 struct blockvector *bv;
2205 struct minimal_symbol *msymbol;
2206 struct minimal_symbol *mfunsym;
2207 struct objfile *objfile;
2208
2209 /* Info on best line seen so far, and where it starts, and its file. */
2210
2211 struct linetable_entry *best = NULL;
2212 CORE_ADDR best_end = 0;
2213 struct symtab *best_symtab = 0;
2214
2215 /* Store here the first line number
2216 of a file which contains the line at the smallest pc after PC.
2217 If we don't find a line whose range contains PC,
2218 we will use a line one less than this,
2219 with a range from the start of that file to the first line's pc. */
2220 struct linetable_entry *alt = NULL;
2221 struct symtab *alt_symtab = 0;
2222
2223 /* Info on best line seen in this file. */
2224
2225 struct linetable_entry *prev;
2226
2227 /* If this pc is not from the current frame,
2228 it is the address of the end of a call instruction.
2229 Quite likely that is the start of the following statement.
2230 But what we want is the statement containing the instruction.
2231 Fudge the pc to make sure we get that. */
2232
2233 init_sal (&val); /* initialize to zeroes */
2234
2235 val.pspace = current_program_space;
2236
2237 /* It's tempting to assume that, if we can't find debugging info for
2238 any function enclosing PC, that we shouldn't search for line
2239 number info, either. However, GAS can emit line number info for
2240 assembly files --- very helpful when debugging hand-written
2241 assembly code. In such a case, we'd have no debug info for the
2242 function, but we would have line info. */
2243
2244 if (notcurrent)
2245 pc -= 1;
2246
2247 /* elz: added this because this function returned the wrong
2248 information if the pc belongs to a stub (import/export)
2249 to call a shlib function. This stub would be anywhere between
2250 two functions in the target, and the line info was erroneously
2251 taken to be the one of the line before the pc. */
2252
2253 /* RT: Further explanation:
2254
2255 * We have stubs (trampolines) inserted between procedures.
2256 *
2257 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2258 * exists in the main image.
2259 *
2260 * In the minimal symbol table, we have a bunch of symbols
2261 * sorted by start address. The stubs are marked as "trampoline",
2262 * the others appear as text. E.g.:
2263 *
2264 * Minimal symbol table for main image
2265 * main: code for main (text symbol)
2266 * shr1: stub (trampoline symbol)
2267 * foo: code for foo (text symbol)
2268 * ...
2269 * Minimal symbol table for "shr1" image:
2270 * ...
2271 * shr1: code for shr1 (text symbol)
2272 * ...
2273 *
2274 * So the code below is trying to detect if we are in the stub
2275 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2276 * and if found, do the symbolization from the real-code address
2277 * rather than the stub address.
2278 *
2279 * Assumptions being made about the minimal symbol table:
2280 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2281 * if we're really in the trampoline.s If we're beyond it (say
2282 * we're in "foo" in the above example), it'll have a closer
2283 * symbol (the "foo" text symbol for example) and will not
2284 * return the trampoline.
2285 * 2. lookup_minimal_symbol_text() will find a real text symbol
2286 * corresponding to the trampoline, and whose address will
2287 * be different than the trampoline address. I put in a sanity
2288 * check for the address being the same, to avoid an
2289 * infinite recursion.
2290 */
2291 msymbol = lookup_minimal_symbol_by_pc (pc);
2292 if (msymbol != NULL)
2293 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2294 {
2295 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2296 NULL);
2297 if (mfunsym == NULL)
2298 /* I eliminated this warning since it is coming out
2299 * in the following situation:
2300 * gdb shmain // test program with shared libraries
2301 * (gdb) break shr1 // function in shared lib
2302 * Warning: In stub for ...
2303 * In the above situation, the shared lib is not loaded yet,
2304 * so of course we can't find the real func/line info,
2305 * but the "break" still works, and the warning is annoying.
2306 * So I commented out the warning. RT */
2307 /* warning ("In stub for %s; unable to find real function/line info",
2308 SYMBOL_LINKAGE_NAME (msymbol)); */
2309 ;
2310 /* fall through */
2311 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2312 == SYMBOL_VALUE_ADDRESS (msymbol))
2313 /* Avoid infinite recursion */
2314 /* See above comment about why warning is commented out. */
2315 /* warning ("In stub for %s; unable to find real function/line info",
2316 SYMBOL_LINKAGE_NAME (msymbol)); */
2317 ;
2318 /* fall through */
2319 else
2320 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2321 }
2322
2323
2324 s = find_pc_sect_symtab (pc, section);
2325 if (!s)
2326 {
2327 /* If no symbol information, return previous pc. */
2328 if (notcurrent)
2329 pc++;
2330 val.pc = pc;
2331 return val;
2332 }
2333
2334 bv = BLOCKVECTOR (s);
2335 objfile = s->objfile;
2336
2337 /* Look at all the symtabs that share this blockvector.
2338 They all have the same apriori range, that we found was right;
2339 but they have different line tables. */
2340
2341 ALL_OBJFILE_SYMTABS (objfile, s)
2342 {
2343 if (BLOCKVECTOR (s) != bv)
2344 continue;
2345
2346 /* Find the best line in this symtab. */
2347 l = LINETABLE (s);
2348 if (!l)
2349 continue;
2350 len = l->nitems;
2351 if (len <= 0)
2352 {
2353 /* I think len can be zero if the symtab lacks line numbers
2354 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2355 I'm not sure which, and maybe it depends on the symbol
2356 reader). */
2357 continue;
2358 }
2359
2360 prev = NULL;
2361 item = l->item; /* Get first line info. */
2362
2363 /* Is this file's first line closer than the first lines of other files?
2364 If so, record this file, and its first line, as best alternate. */
2365 if (item->pc > pc && (!alt || item->pc < alt->pc))
2366 {
2367 alt = item;
2368 alt_symtab = s;
2369 }
2370
2371 for (i = 0; i < len; i++, item++)
2372 {
2373 /* Leave prev pointing to the linetable entry for the last line
2374 that started at or before PC. */
2375 if (item->pc > pc)
2376 break;
2377
2378 prev = item;
2379 }
2380
2381 /* At this point, prev points at the line whose start addr is <= pc, and
2382 item points at the next line. If we ran off the end of the linetable
2383 (pc >= start of the last line), then prev == item. If pc < start of
2384 the first line, prev will not be set. */
2385
2386 /* Is this file's best line closer than the best in the other files?
2387 If so, record this file, and its best line, as best so far. Don't
2388 save prev if it represents the end of a function (i.e. line number
2389 0) instead of a real line. */
2390
2391 if (prev && prev->line && (!best || prev->pc > best->pc))
2392 {
2393 best = prev;
2394 best_symtab = s;
2395
2396 /* Discard BEST_END if it's before the PC of the current BEST. */
2397 if (best_end <= best->pc)
2398 best_end = 0;
2399 }
2400
2401 /* If another line (denoted by ITEM) is in the linetable and its
2402 PC is after BEST's PC, but before the current BEST_END, then
2403 use ITEM's PC as the new best_end. */
2404 if (best && i < len && item->pc > best->pc
2405 && (best_end == 0 || best_end > item->pc))
2406 best_end = item->pc;
2407 }
2408
2409 if (!best_symtab)
2410 {
2411 /* If we didn't find any line number info, just return zeros.
2412 We used to return alt->line - 1 here, but that could be
2413 anywhere; if we don't have line number info for this PC,
2414 don't make some up. */
2415 val.pc = pc;
2416 }
2417 else if (best->line == 0)
2418 {
2419 /* If our best fit is in a range of PC's for which no line
2420 number info is available (line number is zero) then we didn't
2421 find any valid line information. */
2422 val.pc = pc;
2423 }
2424 else
2425 {
2426 val.symtab = best_symtab;
2427 val.line = best->line;
2428 val.pc = best->pc;
2429 if (best_end && (!alt || best_end < alt->pc))
2430 val.end = best_end;
2431 else if (alt)
2432 val.end = alt->pc;
2433 else
2434 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2435 }
2436 val.section = section;
2437 return val;
2438 }
2439
2440 /* Backward compatibility (no section). */
2441
2442 struct symtab_and_line
2443 find_pc_line (CORE_ADDR pc, int notcurrent)
2444 {
2445 struct obj_section *section;
2446
2447 section = find_pc_overlay (pc);
2448 if (pc_in_unmapped_range (pc, section))
2449 pc = overlay_mapped_address (pc, section);
2450 return find_pc_sect_line (pc, section, notcurrent);
2451 }
2452 \f
2453 /* Find line number LINE in any symtab whose name is the same as
2454 SYMTAB.
2455
2456 If found, return the symtab that contains the linetable in which it was
2457 found, set *INDEX to the index in the linetable of the best entry
2458 found, and set *EXACT_MATCH nonzero if the value returned is an
2459 exact match.
2460
2461 If not found, return NULL. */
2462
2463 struct symtab *
2464 find_line_symtab (struct symtab *symtab, int line,
2465 int *index, int *exact_match)
2466 {
2467 int exact = 0; /* Initialized here to avoid a compiler warning. */
2468
2469 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2470 so far seen. */
2471
2472 int best_index;
2473 struct linetable *best_linetable;
2474 struct symtab *best_symtab;
2475
2476 /* First try looking it up in the given symtab. */
2477 best_linetable = LINETABLE (symtab);
2478 best_symtab = symtab;
2479 best_index = find_line_common (best_linetable, line, &exact, 0);
2480 if (best_index < 0 || !exact)
2481 {
2482 /* Didn't find an exact match. So we better keep looking for
2483 another symtab with the same name. In the case of xcoff,
2484 multiple csects for one source file (produced by IBM's FORTRAN
2485 compiler) produce multiple symtabs (this is unavoidable
2486 assuming csects can be at arbitrary places in memory and that
2487 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2488
2489 /* BEST is the smallest linenumber > LINE so far seen,
2490 or 0 if none has been seen so far.
2491 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2492 int best;
2493
2494 struct objfile *objfile;
2495 struct symtab *s;
2496
2497 if (best_index >= 0)
2498 best = best_linetable->item[best_index].line;
2499 else
2500 best = 0;
2501
2502 ALL_OBJFILES (objfile)
2503 {
2504 if (objfile->sf)
2505 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2506 symtab->filename);
2507 }
2508
2509 /* Get symbol full file name if possible. */
2510 symtab_to_fullname (symtab);
2511
2512 ALL_SYMTABS (objfile, s)
2513 {
2514 struct linetable *l;
2515 int ind;
2516
2517 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2518 continue;
2519 if (symtab->fullname != NULL
2520 && symtab_to_fullname (s) != NULL
2521 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2522 continue;
2523 l = LINETABLE (s);
2524 ind = find_line_common (l, line, &exact, 0);
2525 if (ind >= 0)
2526 {
2527 if (exact)
2528 {
2529 best_index = ind;
2530 best_linetable = l;
2531 best_symtab = s;
2532 goto done;
2533 }
2534 if (best == 0 || l->item[ind].line < best)
2535 {
2536 best = l->item[ind].line;
2537 best_index = ind;
2538 best_linetable = l;
2539 best_symtab = s;
2540 }
2541 }
2542 }
2543 }
2544 done:
2545 if (best_index < 0)
2546 return NULL;
2547
2548 if (index)
2549 *index = best_index;
2550 if (exact_match)
2551 *exact_match = exact;
2552
2553 return best_symtab;
2554 }
2555
2556 /* Given SYMTAB, returns all the PCs function in the symtab that
2557 exactly match LINE. Returns NULL if there are no exact matches,
2558 but updates BEST_ITEM in this case. */
2559
2560 VEC (CORE_ADDR) *
2561 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2562 struct linetable_entry **best_item)
2563 {
2564 int start = 0, ix;
2565 struct symbol *previous_function = NULL;
2566 VEC (CORE_ADDR) *result = NULL;
2567
2568 /* First, collect all the PCs that are at this line. */
2569 while (1)
2570 {
2571 int was_exact;
2572 int idx;
2573
2574 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2575 if (idx < 0)
2576 break;
2577
2578 if (!was_exact)
2579 {
2580 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2581
2582 if (*best_item == NULL || item->line < (*best_item)->line)
2583 *best_item = item;
2584
2585 break;
2586 }
2587
2588 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2589 start = idx + 1;
2590 }
2591
2592 return result;
2593 }
2594
2595 \f
2596 /* Set the PC value for a given source file and line number and return true.
2597 Returns zero for invalid line number (and sets the PC to 0).
2598 The source file is specified with a struct symtab. */
2599
2600 int
2601 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2602 {
2603 struct linetable *l;
2604 int ind;
2605
2606 *pc = 0;
2607 if (symtab == 0)
2608 return 0;
2609
2610 symtab = find_line_symtab (symtab, line, &ind, NULL);
2611 if (symtab != NULL)
2612 {
2613 l = LINETABLE (symtab);
2614 *pc = l->item[ind].pc;
2615 return 1;
2616 }
2617 else
2618 return 0;
2619 }
2620
2621 /* Find the range of pc values in a line.
2622 Store the starting pc of the line into *STARTPTR
2623 and the ending pc (start of next line) into *ENDPTR.
2624 Returns 1 to indicate success.
2625 Returns 0 if could not find the specified line. */
2626
2627 int
2628 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2629 CORE_ADDR *endptr)
2630 {
2631 CORE_ADDR startaddr;
2632 struct symtab_and_line found_sal;
2633
2634 startaddr = sal.pc;
2635 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2636 return 0;
2637
2638 /* This whole function is based on address. For example, if line 10 has
2639 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2640 "info line *0x123" should say the line goes from 0x100 to 0x200
2641 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2642 This also insures that we never give a range like "starts at 0x134
2643 and ends at 0x12c". */
2644
2645 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2646 if (found_sal.line != sal.line)
2647 {
2648 /* The specified line (sal) has zero bytes. */
2649 *startptr = found_sal.pc;
2650 *endptr = found_sal.pc;
2651 }
2652 else
2653 {
2654 *startptr = found_sal.pc;
2655 *endptr = found_sal.end;
2656 }
2657 return 1;
2658 }
2659
2660 /* Given a line table and a line number, return the index into the line
2661 table for the pc of the nearest line whose number is >= the specified one.
2662 Return -1 if none is found. The value is >= 0 if it is an index.
2663 START is the index at which to start searching the line table.
2664
2665 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2666
2667 static int
2668 find_line_common (struct linetable *l, int lineno,
2669 int *exact_match, int start)
2670 {
2671 int i;
2672 int len;
2673
2674 /* BEST is the smallest linenumber > LINENO so far seen,
2675 or 0 if none has been seen so far.
2676 BEST_INDEX identifies the item for it. */
2677
2678 int best_index = -1;
2679 int best = 0;
2680
2681 *exact_match = 0;
2682
2683 if (lineno <= 0)
2684 return -1;
2685 if (l == 0)
2686 return -1;
2687
2688 len = l->nitems;
2689 for (i = start; i < len; i++)
2690 {
2691 struct linetable_entry *item = &(l->item[i]);
2692
2693 if (item->line == lineno)
2694 {
2695 /* Return the first (lowest address) entry which matches. */
2696 *exact_match = 1;
2697 return i;
2698 }
2699
2700 if (item->line > lineno && (best == 0 || item->line < best))
2701 {
2702 best = item->line;
2703 best_index = i;
2704 }
2705 }
2706
2707 /* If we got here, we didn't get an exact match. */
2708 return best_index;
2709 }
2710
2711 int
2712 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2713 {
2714 struct symtab_and_line sal;
2715
2716 sal = find_pc_line (pc, 0);
2717 *startptr = sal.pc;
2718 *endptr = sal.end;
2719 return sal.symtab != 0;
2720 }
2721
2722 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2723 address for that function that has an entry in SYMTAB's line info
2724 table. If such an entry cannot be found, return FUNC_ADDR
2725 unaltered. */
2726
2727 static CORE_ADDR
2728 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2729 {
2730 CORE_ADDR func_start, func_end;
2731 struct linetable *l;
2732 int i;
2733
2734 /* Give up if this symbol has no lineinfo table. */
2735 l = LINETABLE (symtab);
2736 if (l == NULL)
2737 return func_addr;
2738
2739 /* Get the range for the function's PC values, or give up if we
2740 cannot, for some reason. */
2741 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2742 return func_addr;
2743
2744 /* Linetable entries are ordered by PC values, see the commentary in
2745 symtab.h where `struct linetable' is defined. Thus, the first
2746 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2747 address we are looking for. */
2748 for (i = 0; i < l->nitems; i++)
2749 {
2750 struct linetable_entry *item = &(l->item[i]);
2751
2752 /* Don't use line numbers of zero, they mark special entries in
2753 the table. See the commentary on symtab.h before the
2754 definition of struct linetable. */
2755 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2756 return item->pc;
2757 }
2758
2759 return func_addr;
2760 }
2761
2762 /* Given a function symbol SYM, find the symtab and line for the start
2763 of the function.
2764 If the argument FUNFIRSTLINE is nonzero, we want the first line
2765 of real code inside the function. */
2766
2767 struct symtab_and_line
2768 find_function_start_sal (struct symbol *sym, int funfirstline)
2769 {
2770 struct symtab_and_line sal;
2771
2772 fixup_symbol_section (sym, NULL);
2773 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2774 SYMBOL_OBJ_SECTION (sym), 0);
2775
2776 /* We always should have a line for the function start address.
2777 If we don't, something is odd. Create a plain SAL refering
2778 just the PC and hope that skip_prologue_sal (if requested)
2779 can find a line number for after the prologue. */
2780 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2781 {
2782 init_sal (&sal);
2783 sal.pspace = current_program_space;
2784 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2785 sal.section = SYMBOL_OBJ_SECTION (sym);
2786 }
2787
2788 if (funfirstline)
2789 skip_prologue_sal (&sal);
2790
2791 return sal;
2792 }
2793
2794 /* Adjust SAL to the first instruction past the function prologue.
2795 If the PC was explicitly specified, the SAL is not changed.
2796 If the line number was explicitly specified, at most the SAL's PC
2797 is updated. If SAL is already past the prologue, then do nothing. */
2798
2799 void
2800 skip_prologue_sal (struct symtab_and_line *sal)
2801 {
2802 struct symbol *sym;
2803 struct symtab_and_line start_sal;
2804 struct cleanup *old_chain;
2805 CORE_ADDR pc, saved_pc;
2806 struct obj_section *section;
2807 const char *name;
2808 struct objfile *objfile;
2809 struct gdbarch *gdbarch;
2810 struct block *b, *function_block;
2811 int force_skip, skip;
2812
2813 /* Do not change the SAL is PC was specified explicitly. */
2814 if (sal->explicit_pc)
2815 return;
2816
2817 old_chain = save_current_space_and_thread ();
2818 switch_to_program_space_and_thread (sal->pspace);
2819
2820 sym = find_pc_sect_function (sal->pc, sal->section);
2821 if (sym != NULL)
2822 {
2823 fixup_symbol_section (sym, NULL);
2824
2825 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2826 section = SYMBOL_OBJ_SECTION (sym);
2827 name = SYMBOL_LINKAGE_NAME (sym);
2828 objfile = SYMBOL_SYMTAB (sym)->objfile;
2829 }
2830 else
2831 {
2832 struct minimal_symbol *msymbol
2833 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2834
2835 if (msymbol == NULL)
2836 {
2837 do_cleanups (old_chain);
2838 return;
2839 }
2840
2841 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2842 section = SYMBOL_OBJ_SECTION (msymbol);
2843 name = SYMBOL_LINKAGE_NAME (msymbol);
2844 objfile = msymbol_objfile (msymbol);
2845 }
2846
2847 gdbarch = get_objfile_arch (objfile);
2848
2849 /* Process the prologue in two passes. In the first pass try to skip the
2850 prologue (SKIP is true) and verify there is a real need for it (indicated
2851 by FORCE_SKIP). If no such reason was found run a second pass where the
2852 prologue is not skipped (SKIP is false). */
2853
2854 skip = 1;
2855 force_skip = 1;
2856
2857 /* Be conservative - allow direct PC (without skipping prologue) only if we
2858 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2859 have to be set by the caller so we use SYM instead. */
2860 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2861 force_skip = 0;
2862
2863 saved_pc = pc;
2864 do
2865 {
2866 pc = saved_pc;
2867
2868 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2869 so that gdbarch_skip_prologue has something unique to work on. */
2870 if (section_is_overlay (section) && !section_is_mapped (section))
2871 pc = overlay_unmapped_address (pc, section);
2872
2873 /* Skip "first line" of function (which is actually its prologue). */
2874 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2875 if (skip)
2876 pc = gdbarch_skip_prologue (gdbarch, pc);
2877
2878 /* For overlays, map pc back into its mapped VMA range. */
2879 pc = overlay_mapped_address (pc, section);
2880
2881 /* Calculate line number. */
2882 start_sal = find_pc_sect_line (pc, section, 0);
2883
2884 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2885 line is still part of the same function. */
2886 if (skip && start_sal.pc != pc
2887 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2888 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2889 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2890 == lookup_minimal_symbol_by_pc_section (pc, section))))
2891 {
2892 /* First pc of next line */
2893 pc = start_sal.end;
2894 /* Recalculate the line number (might not be N+1). */
2895 start_sal = find_pc_sect_line (pc, section, 0);
2896 }
2897
2898 /* On targets with executable formats that don't have a concept of
2899 constructors (ELF with .init has, PE doesn't), gcc emits a call
2900 to `__main' in `main' between the prologue and before user
2901 code. */
2902 if (gdbarch_skip_main_prologue_p (gdbarch)
2903 && name && strcmp_iw (name, "main") == 0)
2904 {
2905 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2906 /* Recalculate the line number (might not be N+1). */
2907 start_sal = find_pc_sect_line (pc, section, 0);
2908 force_skip = 1;
2909 }
2910 }
2911 while (!force_skip && skip--);
2912
2913 /* If we still don't have a valid source line, try to find the first
2914 PC in the lineinfo table that belongs to the same function. This
2915 happens with COFF debug info, which does not seem to have an
2916 entry in lineinfo table for the code after the prologue which has
2917 no direct relation to source. For example, this was found to be
2918 the case with the DJGPP target using "gcc -gcoff" when the
2919 compiler inserted code after the prologue to make sure the stack
2920 is aligned. */
2921 if (!force_skip && sym && start_sal.symtab == NULL)
2922 {
2923 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2924 /* Recalculate the line number. */
2925 start_sal = find_pc_sect_line (pc, section, 0);
2926 }
2927
2928 do_cleanups (old_chain);
2929
2930 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2931 forward SAL to the end of the prologue. */
2932 if (sal->pc >= pc)
2933 return;
2934
2935 sal->pc = pc;
2936 sal->section = section;
2937
2938 /* Unless the explicit_line flag was set, update the SAL line
2939 and symtab to correspond to the modified PC location. */
2940 if (sal->explicit_line)
2941 return;
2942
2943 sal->symtab = start_sal.symtab;
2944 sal->line = start_sal.line;
2945 sal->end = start_sal.end;
2946
2947 /* Check if we are now inside an inlined function. If we can,
2948 use the call site of the function instead. */
2949 b = block_for_pc_sect (sal->pc, sal->section);
2950 function_block = NULL;
2951 while (b != NULL)
2952 {
2953 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2954 function_block = b;
2955 else if (BLOCK_FUNCTION (b) != NULL)
2956 break;
2957 b = BLOCK_SUPERBLOCK (b);
2958 }
2959 if (function_block != NULL
2960 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2961 {
2962 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2963 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2964 }
2965 }
2966
2967 /* If P is of the form "operator[ \t]+..." where `...' is
2968 some legitimate operator text, return a pointer to the
2969 beginning of the substring of the operator text.
2970 Otherwise, return "". */
2971
2972 static char *
2973 operator_chars (char *p, char **end)
2974 {
2975 *end = "";
2976 if (strncmp (p, "operator", 8))
2977 return *end;
2978 p += 8;
2979
2980 /* Don't get faked out by `operator' being part of a longer
2981 identifier. */
2982 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2983 return *end;
2984
2985 /* Allow some whitespace between `operator' and the operator symbol. */
2986 while (*p == ' ' || *p == '\t')
2987 p++;
2988
2989 /* Recognize 'operator TYPENAME'. */
2990
2991 if (isalpha (*p) || *p == '_' || *p == '$')
2992 {
2993 char *q = p + 1;
2994
2995 while (isalnum (*q) || *q == '_' || *q == '$')
2996 q++;
2997 *end = q;
2998 return p;
2999 }
3000
3001 while (*p)
3002 switch (*p)
3003 {
3004 case '\\': /* regexp quoting */
3005 if (p[1] == '*')
3006 {
3007 if (p[2] == '=') /* 'operator\*=' */
3008 *end = p + 3;
3009 else /* 'operator\*' */
3010 *end = p + 2;
3011 return p;
3012 }
3013 else if (p[1] == '[')
3014 {
3015 if (p[2] == ']')
3016 error (_("mismatched quoting on brackets, "
3017 "try 'operator\\[\\]'"));
3018 else if (p[2] == '\\' && p[3] == ']')
3019 {
3020 *end = p + 4; /* 'operator\[\]' */
3021 return p;
3022 }
3023 else
3024 error (_("nothing is allowed between '[' and ']'"));
3025 }
3026 else
3027 {
3028 /* Gratuitous qoute: skip it and move on. */
3029 p++;
3030 continue;
3031 }
3032 break;
3033 case '!':
3034 case '=':
3035 case '*':
3036 case '/':
3037 case '%':
3038 case '^':
3039 if (p[1] == '=')
3040 *end = p + 2;
3041 else
3042 *end = p + 1;
3043 return p;
3044 case '<':
3045 case '>':
3046 case '+':
3047 case '-':
3048 case '&':
3049 case '|':
3050 if (p[0] == '-' && p[1] == '>')
3051 {
3052 /* Struct pointer member operator 'operator->'. */
3053 if (p[2] == '*')
3054 {
3055 *end = p + 3; /* 'operator->*' */
3056 return p;
3057 }
3058 else if (p[2] == '\\')
3059 {
3060 *end = p + 4; /* Hopefully 'operator->\*' */
3061 return p;
3062 }
3063 else
3064 {
3065 *end = p + 2; /* 'operator->' */
3066 return p;
3067 }
3068 }
3069 if (p[1] == '=' || p[1] == p[0])
3070 *end = p + 2;
3071 else
3072 *end = p + 1;
3073 return p;
3074 case '~':
3075 case ',':
3076 *end = p + 1;
3077 return p;
3078 case '(':
3079 if (p[1] != ')')
3080 error (_("`operator ()' must be specified "
3081 "without whitespace in `()'"));
3082 *end = p + 2;
3083 return p;
3084 case '?':
3085 if (p[1] != ':')
3086 error (_("`operator ?:' must be specified "
3087 "without whitespace in `?:'"));
3088 *end = p + 2;
3089 return p;
3090 case '[':
3091 if (p[1] != ']')
3092 error (_("`operator []' must be specified "
3093 "without whitespace in `[]'"));
3094 *end = p + 2;
3095 return p;
3096 default:
3097 error (_("`operator %s' not supported"), p);
3098 break;
3099 }
3100
3101 *end = "";
3102 return *end;
3103 }
3104 \f
3105
3106 /* Cache to watch for file names already seen by filename_seen. */
3107
3108 struct filename_seen_cache
3109 {
3110 /* Table of files seen so far. */
3111 const char **tab;
3112
3113 /* Allocated size of tab in elements. */
3114 int tab_alloc_size;
3115 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3116
3117 /* Current size of tab in elements. */
3118 int tab_cur_size;
3119 };
3120
3121 /* filename_seen_cache constructor. */
3122
3123 static struct filename_seen_cache *
3124 create_filename_seen_cache (void)
3125 {
3126 struct filename_seen_cache *cache;
3127
3128 cache = XNEW (struct filename_seen_cache);
3129 cache->tab_alloc_size = INITIAL_FILENAME_SEEN_CACHE_SIZE;
3130 cache->tab = XNEWVEC (const char *, cache->tab_alloc_size);
3131 cache->tab_cur_size = 0;
3132
3133 return cache;
3134 }
3135
3136 /* Empty the cache, but do not delete it. */
3137
3138 static void
3139 clear_filename_seen_cache (struct filename_seen_cache * cache)
3140 {
3141 cache->tab_cur_size = 0;
3142 }
3143
3144 /* filename_seen_cache destructor.
3145 This takes a void * argument as it is generally used as a cleanup. */
3146
3147 static void
3148 delete_filename_seen_cache (void *ptr)
3149 {
3150 struct filename_seen_cache *cache = ptr;
3151
3152 xfree (cache->tab);
3153 xfree (cache);
3154 }
3155
3156 /* If FILE is not already in the table of files in CACHE, return zero;
3157 otherwise return non-zero. Optionally add FILE to the table if ADD
3158 is non-zero. */
3159
3160 static int
3161 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3162 {
3163 const char **p;
3164
3165 /* Is FILE in tab? */
3166 for (p = cache->tab; p < cache->tab + cache->tab_cur_size; p++)
3167 if (filename_cmp (*p, file) == 0)
3168 return 1;
3169
3170 /* No; maybe add it to tab. */
3171 if (add)
3172 {
3173 if (cache->tab_cur_size == cache->tab_alloc_size)
3174 {
3175 cache->tab_alloc_size *= 2;
3176 cache->tab = XRESIZEVEC (const char *, cache->tab,
3177 cache->tab_alloc_size);
3178 }
3179 cache->tab[cache->tab_cur_size++] = file;
3180 }
3181
3182 return 0;
3183 }
3184
3185 /* Data structure to maintain printing state for output_source_filename. */
3186
3187 struct output_source_filename_data
3188 {
3189 /* Cache of what we've seen so far. */
3190 struct filename_seen_cache *filename_seen_cache;
3191
3192 /* Flag of whether we're printing the first one. */
3193 int first;
3194 };
3195
3196 /* Slave routine for sources_info. Force line breaks at ,'s.
3197 NAME is the name to print.
3198 DATA contains the state for printing and watching for duplicates. */
3199
3200 static void
3201 output_source_filename (const char *name,
3202 struct output_source_filename_data *data)
3203 {
3204 /* Since a single source file can result in several partial symbol
3205 tables, we need to avoid printing it more than once. Note: if
3206 some of the psymtabs are read in and some are not, it gets
3207 printed both under "Source files for which symbols have been
3208 read" and "Source files for which symbols will be read in on
3209 demand". I consider this a reasonable way to deal with the
3210 situation. I'm not sure whether this can also happen for
3211 symtabs; it doesn't hurt to check. */
3212
3213 /* Was NAME already seen? */
3214 if (filename_seen (data->filename_seen_cache, name, 1))
3215 {
3216 /* Yes; don't print it again. */
3217 return;
3218 }
3219
3220 /* No; print it and reset *FIRST. */
3221 if (! data->first)
3222 printf_filtered (", ");
3223 data->first = 0;
3224
3225 wrap_here ("");
3226 fputs_filtered (name, gdb_stdout);
3227 }
3228
3229 /* A callback for map_partial_symbol_filenames. */
3230
3231 static void
3232 output_partial_symbol_filename (const char *filename, const char *fullname,
3233 void *data)
3234 {
3235 output_source_filename (fullname ? fullname : filename, data);
3236 }
3237
3238 static void
3239 sources_info (char *ignore, int from_tty)
3240 {
3241 struct symtab *s;
3242 struct objfile *objfile;
3243 struct output_source_filename_data data;
3244 struct cleanup *cleanups;
3245
3246 if (!have_full_symbols () && !have_partial_symbols ())
3247 {
3248 error (_("No symbol table is loaded. Use the \"file\" command."));
3249 }
3250
3251 data.filename_seen_cache = create_filename_seen_cache ();
3252 cleanups = make_cleanup (delete_filename_seen_cache,
3253 data.filename_seen_cache);
3254
3255 printf_filtered ("Source files for which symbols have been read in:\n\n");
3256
3257 data.first = 1;
3258 ALL_SYMTABS (objfile, s)
3259 {
3260 const char *fullname = symtab_to_fullname (s);
3261
3262 output_source_filename (fullname ? fullname : s->filename, &data);
3263 }
3264 printf_filtered ("\n\n");
3265
3266 printf_filtered ("Source files for which symbols "
3267 "will be read in on demand:\n\n");
3268
3269 clear_filename_seen_cache (data.filename_seen_cache);
3270 data.first = 1;
3271 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3272 1 /*need_fullname*/);
3273 printf_filtered ("\n");
3274
3275 do_cleanups (cleanups);
3276 }
3277
3278 static int
3279 file_matches (const char *file, char *files[], int nfiles)
3280 {
3281 int i;
3282
3283 if (file != NULL && nfiles != 0)
3284 {
3285 for (i = 0; i < nfiles; i++)
3286 {
3287 if (filename_cmp (files[i], lbasename (file)) == 0)
3288 return 1;
3289 }
3290 }
3291 else if (nfiles == 0)
3292 return 1;
3293 return 0;
3294 }
3295
3296 /* Free any memory associated with a search. */
3297
3298 void
3299 free_search_symbols (struct symbol_search *symbols)
3300 {
3301 struct symbol_search *p;
3302 struct symbol_search *next;
3303
3304 for (p = symbols; p != NULL; p = next)
3305 {
3306 next = p->next;
3307 xfree (p);
3308 }
3309 }
3310
3311 static void
3312 do_free_search_symbols_cleanup (void *symbols)
3313 {
3314 free_search_symbols (symbols);
3315 }
3316
3317 struct cleanup *
3318 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3319 {
3320 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3321 }
3322
3323 /* Helper function for sort_search_symbols and qsort. Can only
3324 sort symbols, not minimal symbols. */
3325
3326 static int
3327 compare_search_syms (const void *sa, const void *sb)
3328 {
3329 struct symbol_search **sym_a = (struct symbol_search **) sa;
3330 struct symbol_search **sym_b = (struct symbol_search **) sb;
3331
3332 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3333 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3334 }
3335
3336 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3337 prevtail where it is, but update its next pointer to point to
3338 the first of the sorted symbols. */
3339
3340 static struct symbol_search *
3341 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3342 {
3343 struct symbol_search **symbols, *symp, *old_next;
3344 int i;
3345
3346 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3347 * nfound);
3348 symp = prevtail->next;
3349 for (i = 0; i < nfound; i++)
3350 {
3351 symbols[i] = symp;
3352 symp = symp->next;
3353 }
3354 /* Generally NULL. */
3355 old_next = symp;
3356
3357 qsort (symbols, nfound, sizeof (struct symbol_search *),
3358 compare_search_syms);
3359
3360 symp = prevtail;
3361 for (i = 0; i < nfound; i++)
3362 {
3363 symp->next = symbols[i];
3364 symp = symp->next;
3365 }
3366 symp->next = old_next;
3367
3368 xfree (symbols);
3369 return symp;
3370 }
3371
3372 /* An object of this type is passed as the user_data to the
3373 expand_symtabs_matching method. */
3374 struct search_symbols_data
3375 {
3376 int nfiles;
3377 char **files;
3378
3379 /* It is true if PREG contains valid data, false otherwise. */
3380 unsigned preg_p : 1;
3381 regex_t preg;
3382 };
3383
3384 /* A callback for expand_symtabs_matching. */
3385
3386 static int
3387 search_symbols_file_matches (const char *filename, void *user_data)
3388 {
3389 struct search_symbols_data *data = user_data;
3390
3391 return file_matches (filename, data->files, data->nfiles);
3392 }
3393
3394 /* A callback for expand_symtabs_matching. */
3395
3396 static int
3397 search_symbols_name_matches (const char *symname, void *user_data)
3398 {
3399 struct search_symbols_data *data = user_data;
3400
3401 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3402 }
3403
3404 /* Search the symbol table for matches to the regular expression REGEXP,
3405 returning the results in *MATCHES.
3406
3407 Only symbols of KIND are searched:
3408 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3409 and constants (enums)
3410 FUNCTIONS_DOMAIN - search all functions
3411 TYPES_DOMAIN - search all type names
3412 ALL_DOMAIN - an internal error for this function
3413
3414 free_search_symbols should be called when *MATCHES is no longer needed.
3415
3416 The results are sorted locally; each symtab's global and static blocks are
3417 separately alphabetized. */
3418
3419 void
3420 search_symbols (char *regexp, enum search_domain kind,
3421 int nfiles, char *files[],
3422 struct symbol_search **matches)
3423 {
3424 struct symtab *s;
3425 struct blockvector *bv;
3426 struct block *b;
3427 int i = 0;
3428 struct block_iterator iter;
3429 struct symbol *sym;
3430 struct objfile *objfile;
3431 struct minimal_symbol *msymbol;
3432 int found_misc = 0;
3433 static const enum minimal_symbol_type types[]
3434 = {mst_data, mst_text, mst_abs};
3435 static const enum minimal_symbol_type types2[]
3436 = {mst_bss, mst_file_text, mst_abs};
3437 static const enum minimal_symbol_type types3[]
3438 = {mst_file_data, mst_solib_trampoline, mst_abs};
3439 static const enum minimal_symbol_type types4[]
3440 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3441 enum minimal_symbol_type ourtype;
3442 enum minimal_symbol_type ourtype2;
3443 enum minimal_symbol_type ourtype3;
3444 enum minimal_symbol_type ourtype4;
3445 struct symbol_search *sr;
3446 struct symbol_search *psr;
3447 struct symbol_search *tail;
3448 struct search_symbols_data datum;
3449
3450 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3451 CLEANUP_CHAIN is freed only in the case of an error. */
3452 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3453 struct cleanup *retval_chain;
3454
3455 gdb_assert (kind <= TYPES_DOMAIN);
3456
3457 ourtype = types[kind];
3458 ourtype2 = types2[kind];
3459 ourtype3 = types3[kind];
3460 ourtype4 = types4[kind];
3461
3462 sr = *matches = NULL;
3463 tail = NULL;
3464 datum.preg_p = 0;
3465
3466 if (regexp != NULL)
3467 {
3468 /* Make sure spacing is right for C++ operators.
3469 This is just a courtesy to make the matching less sensitive
3470 to how many spaces the user leaves between 'operator'
3471 and <TYPENAME> or <OPERATOR>. */
3472 char *opend;
3473 char *opname = operator_chars (regexp, &opend);
3474 int errcode;
3475
3476 if (*opname)
3477 {
3478 int fix = -1; /* -1 means ok; otherwise number of
3479 spaces needed. */
3480
3481 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3482 {
3483 /* There should 1 space between 'operator' and 'TYPENAME'. */
3484 if (opname[-1] != ' ' || opname[-2] == ' ')
3485 fix = 1;
3486 }
3487 else
3488 {
3489 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3490 if (opname[-1] == ' ')
3491 fix = 0;
3492 }
3493 /* If wrong number of spaces, fix it. */
3494 if (fix >= 0)
3495 {
3496 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3497
3498 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3499 regexp = tmp;
3500 }
3501 }
3502
3503 errcode = regcomp (&datum.preg, regexp,
3504 REG_NOSUB | (case_sensitivity == case_sensitive_off
3505 ? REG_ICASE : 0));
3506 if (errcode != 0)
3507 {
3508 char *err = get_regcomp_error (errcode, &datum.preg);
3509
3510 make_cleanup (xfree, err);
3511 error (_("Invalid regexp (%s): %s"), err, regexp);
3512 }
3513 datum.preg_p = 1;
3514 make_regfree_cleanup (&datum.preg);
3515 }
3516
3517 /* Search through the partial symtabs *first* for all symbols
3518 matching the regexp. That way we don't have to reproduce all of
3519 the machinery below. */
3520
3521 datum.nfiles = nfiles;
3522 datum.files = files;
3523 ALL_OBJFILES (objfile)
3524 {
3525 if (objfile->sf)
3526 objfile->sf->qf->expand_symtabs_matching (objfile,
3527 (nfiles == 0
3528 ? NULL
3529 : search_symbols_file_matches),
3530 search_symbols_name_matches,
3531 kind,
3532 &datum);
3533 }
3534
3535 retval_chain = old_chain;
3536
3537 /* Here, we search through the minimal symbol tables for functions
3538 and variables that match, and force their symbols to be read.
3539 This is in particular necessary for demangled variable names,
3540 which are no longer put into the partial symbol tables.
3541 The symbol will then be found during the scan of symtabs below.
3542
3543 For functions, find_pc_symtab should succeed if we have debug info
3544 for the function, for variables we have to call
3545 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3546 has debug info.
3547 If the lookup fails, set found_misc so that we will rescan to print
3548 any matching symbols without debug info.
3549 We only search the objfile the msymbol came from, we no longer search
3550 all objfiles. In large programs (1000s of shared libs) searching all
3551 objfiles is not worth the pain. */
3552
3553 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3554 {
3555 ALL_MSYMBOLS (objfile, msymbol)
3556 {
3557 QUIT;
3558
3559 if (msymbol->created_by_gdb)
3560 continue;
3561
3562 if (MSYMBOL_TYPE (msymbol) == ourtype
3563 || MSYMBOL_TYPE (msymbol) == ourtype2
3564 || MSYMBOL_TYPE (msymbol) == ourtype3
3565 || MSYMBOL_TYPE (msymbol) == ourtype4)
3566 {
3567 if (!datum.preg_p
3568 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3569 NULL, 0) == 0)
3570 {
3571 /* Note: An important side-effect of these lookup functions
3572 is to expand the symbol table if msymbol is found, for the
3573 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3574 if (kind == FUNCTIONS_DOMAIN
3575 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3576 : (lookup_symbol_in_objfile_from_linkage_name
3577 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3578 == NULL))
3579 found_misc = 1;
3580 }
3581 }
3582 }
3583 }
3584
3585 ALL_PRIMARY_SYMTABS (objfile, s)
3586 {
3587 bv = BLOCKVECTOR (s);
3588 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3589 {
3590 struct symbol_search *prevtail = tail;
3591 int nfound = 0;
3592
3593 b = BLOCKVECTOR_BLOCK (bv, i);
3594 ALL_BLOCK_SYMBOLS (b, iter, sym)
3595 {
3596 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3597
3598 QUIT;
3599
3600 if (file_matches (real_symtab->filename, files, nfiles)
3601 && ((!datum.preg_p
3602 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3603 NULL, 0) == 0)
3604 && ((kind == VARIABLES_DOMAIN
3605 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3606 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3607 && SYMBOL_CLASS (sym) != LOC_BLOCK
3608 /* LOC_CONST can be used for more than just enums,
3609 e.g., c++ static const members.
3610 We only want to skip enums here. */
3611 && !(SYMBOL_CLASS (sym) == LOC_CONST
3612 && TYPE_CODE (SYMBOL_TYPE (sym))
3613 == TYPE_CODE_ENUM))
3614 || (kind == FUNCTIONS_DOMAIN
3615 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3616 || (kind == TYPES_DOMAIN
3617 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3618 {
3619 /* match */
3620 psr = (struct symbol_search *)
3621 xmalloc (sizeof (struct symbol_search));
3622 psr->block = i;
3623 psr->symtab = real_symtab;
3624 psr->symbol = sym;
3625 psr->msymbol = NULL;
3626 psr->next = NULL;
3627 if (tail == NULL)
3628 sr = psr;
3629 else
3630 tail->next = psr;
3631 tail = psr;
3632 nfound ++;
3633 }
3634 }
3635 if (nfound > 0)
3636 {
3637 if (prevtail == NULL)
3638 {
3639 struct symbol_search dummy;
3640
3641 dummy.next = sr;
3642 tail = sort_search_symbols (&dummy, nfound);
3643 sr = dummy.next;
3644
3645 make_cleanup_free_search_symbols (sr);
3646 }
3647 else
3648 tail = sort_search_symbols (prevtail, nfound);
3649 }
3650 }
3651 }
3652
3653 /* If there are no eyes, avoid all contact. I mean, if there are
3654 no debug symbols, then print directly from the msymbol_vector. */
3655
3656 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3657 {
3658 ALL_MSYMBOLS (objfile, msymbol)
3659 {
3660 QUIT;
3661
3662 if (msymbol->created_by_gdb)
3663 continue;
3664
3665 if (MSYMBOL_TYPE (msymbol) == ourtype
3666 || MSYMBOL_TYPE (msymbol) == ourtype2
3667 || MSYMBOL_TYPE (msymbol) == ourtype3
3668 || MSYMBOL_TYPE (msymbol) == ourtype4)
3669 {
3670 if (!datum.preg_p
3671 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3672 NULL, 0) == 0)
3673 {
3674 /* For functions we can do a quick check of whether the
3675 symbol might be found via find_pc_symtab. */
3676 if (kind != FUNCTIONS_DOMAIN
3677 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3678 {
3679 if (lookup_symbol_in_objfile_from_linkage_name
3680 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3681 == NULL)
3682 {
3683 /* match */
3684 psr = (struct symbol_search *)
3685 xmalloc (sizeof (struct symbol_search));
3686 psr->block = i;
3687 psr->msymbol = msymbol;
3688 psr->symtab = NULL;
3689 psr->symbol = NULL;
3690 psr->next = NULL;
3691 if (tail == NULL)
3692 {
3693 sr = psr;
3694 make_cleanup_free_search_symbols (sr);
3695 }
3696 else
3697 tail->next = psr;
3698 tail = psr;
3699 }
3700 }
3701 }
3702 }
3703 }
3704 }
3705
3706 discard_cleanups (retval_chain);
3707 do_cleanups (old_chain);
3708 *matches = sr;
3709 }
3710
3711 /* Helper function for symtab_symbol_info, this function uses
3712 the data returned from search_symbols() to print information
3713 regarding the match to gdb_stdout. */
3714
3715 static void
3716 print_symbol_info (enum search_domain kind,
3717 struct symtab *s, struct symbol *sym,
3718 int block, char *last)
3719 {
3720 if (last == NULL || filename_cmp (last, s->filename) != 0)
3721 {
3722 fputs_filtered ("\nFile ", gdb_stdout);
3723 fputs_filtered (s->filename, gdb_stdout);
3724 fputs_filtered (":\n", gdb_stdout);
3725 }
3726
3727 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3728 printf_filtered ("static ");
3729
3730 /* Typedef that is not a C++ class. */
3731 if (kind == TYPES_DOMAIN
3732 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3733 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3734 /* variable, func, or typedef-that-is-c++-class. */
3735 else if (kind < TYPES_DOMAIN
3736 || (kind == TYPES_DOMAIN
3737 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3738 {
3739 type_print (SYMBOL_TYPE (sym),
3740 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3741 ? "" : SYMBOL_PRINT_NAME (sym)),
3742 gdb_stdout, 0);
3743
3744 printf_filtered (";\n");
3745 }
3746 }
3747
3748 /* This help function for symtab_symbol_info() prints information
3749 for non-debugging symbols to gdb_stdout. */
3750
3751 static void
3752 print_msymbol_info (struct minimal_symbol *msymbol)
3753 {
3754 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3755 char *tmp;
3756
3757 if (gdbarch_addr_bit (gdbarch) <= 32)
3758 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3759 & (CORE_ADDR) 0xffffffff,
3760 8);
3761 else
3762 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3763 16);
3764 printf_filtered ("%s %s\n",
3765 tmp, SYMBOL_PRINT_NAME (msymbol));
3766 }
3767
3768 /* This is the guts of the commands "info functions", "info types", and
3769 "info variables". It calls search_symbols to find all matches and then
3770 print_[m]symbol_info to print out some useful information about the
3771 matches. */
3772
3773 static void
3774 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3775 {
3776 static const char * const classnames[] =
3777 {"variable", "function", "type"};
3778 struct symbol_search *symbols;
3779 struct symbol_search *p;
3780 struct cleanup *old_chain;
3781 char *last_filename = NULL;
3782 int first = 1;
3783
3784 gdb_assert (kind <= TYPES_DOMAIN);
3785
3786 /* Must make sure that if we're interrupted, symbols gets freed. */
3787 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3788 old_chain = make_cleanup_free_search_symbols (symbols);
3789
3790 printf_filtered (regexp
3791 ? "All %ss matching regular expression \"%s\":\n"
3792 : "All defined %ss:\n",
3793 classnames[kind], regexp);
3794
3795 for (p = symbols; p != NULL; p = p->next)
3796 {
3797 QUIT;
3798
3799 if (p->msymbol != NULL)
3800 {
3801 if (first)
3802 {
3803 printf_filtered ("\nNon-debugging symbols:\n");
3804 first = 0;
3805 }
3806 print_msymbol_info (p->msymbol);
3807 }
3808 else
3809 {
3810 print_symbol_info (kind,
3811 p->symtab,
3812 p->symbol,
3813 p->block,
3814 last_filename);
3815 last_filename = p->symtab->filename;
3816 }
3817 }
3818
3819 do_cleanups (old_chain);
3820 }
3821
3822 static void
3823 variables_info (char *regexp, int from_tty)
3824 {
3825 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3826 }
3827
3828 static void
3829 functions_info (char *regexp, int from_tty)
3830 {
3831 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3832 }
3833
3834
3835 static void
3836 types_info (char *regexp, int from_tty)
3837 {
3838 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3839 }
3840
3841 /* Breakpoint all functions matching regular expression. */
3842
3843 void
3844 rbreak_command_wrapper (char *regexp, int from_tty)
3845 {
3846 rbreak_command (regexp, from_tty);
3847 }
3848
3849 /* A cleanup function that calls end_rbreak_breakpoints. */
3850
3851 static void
3852 do_end_rbreak_breakpoints (void *ignore)
3853 {
3854 end_rbreak_breakpoints ();
3855 }
3856
3857 static void
3858 rbreak_command (char *regexp, int from_tty)
3859 {
3860 struct symbol_search *ss;
3861 struct symbol_search *p;
3862 struct cleanup *old_chain;
3863 char *string = NULL;
3864 int len = 0;
3865 char **files = NULL, *file_name;
3866 int nfiles = 0;
3867
3868 if (regexp)
3869 {
3870 char *colon = strchr (regexp, ':');
3871
3872 if (colon && *(colon + 1) != ':')
3873 {
3874 int colon_index;
3875
3876 colon_index = colon - regexp;
3877 file_name = alloca (colon_index + 1);
3878 memcpy (file_name, regexp, colon_index);
3879 file_name[colon_index--] = 0;
3880 while (isspace (file_name[colon_index]))
3881 file_name[colon_index--] = 0;
3882 files = &file_name;
3883 nfiles = 1;
3884 regexp = colon + 1;
3885 while (isspace (*regexp)) regexp++;
3886 }
3887 }
3888
3889 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3890 old_chain = make_cleanup_free_search_symbols (ss);
3891 make_cleanup (free_current_contents, &string);
3892
3893 start_rbreak_breakpoints ();
3894 make_cleanup (do_end_rbreak_breakpoints, NULL);
3895 for (p = ss; p != NULL; p = p->next)
3896 {
3897 if (p->msymbol == NULL)
3898 {
3899 int newlen = (strlen (p->symtab->filename)
3900 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3901 + 4);
3902
3903 if (newlen > len)
3904 {
3905 string = xrealloc (string, newlen);
3906 len = newlen;
3907 }
3908 strcpy (string, p->symtab->filename);
3909 strcat (string, ":'");
3910 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3911 strcat (string, "'");
3912 break_command (string, from_tty);
3913 print_symbol_info (FUNCTIONS_DOMAIN,
3914 p->symtab,
3915 p->symbol,
3916 p->block,
3917 p->symtab->filename);
3918 }
3919 else
3920 {
3921 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3922
3923 if (newlen > len)
3924 {
3925 string = xrealloc (string, newlen);
3926 len = newlen;
3927 }
3928 strcpy (string, "'");
3929 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3930 strcat (string, "'");
3931
3932 break_command (string, from_tty);
3933 printf_filtered ("<function, no debug info> %s;\n",
3934 SYMBOL_PRINT_NAME (p->msymbol));
3935 }
3936 }
3937
3938 do_cleanups (old_chain);
3939 }
3940 \f
3941
3942 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3943
3944 Either sym_text[sym_text_len] != '(' and then we search for any
3945 symbol starting with SYM_TEXT text.
3946
3947 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3948 be terminated at that point. Partial symbol tables do not have parameters
3949 information. */
3950
3951 static int
3952 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3953 {
3954 int (*ncmp) (const char *, const char *, size_t);
3955
3956 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3957
3958 if (ncmp (name, sym_text, sym_text_len) != 0)
3959 return 0;
3960
3961 if (sym_text[sym_text_len] == '(')
3962 {
3963 /* User searches for `name(someth...'. Require NAME to be terminated.
3964 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3965 present but accept even parameters presence. In this case this
3966 function is in fact strcmp_iw but whitespace skipping is not supported
3967 for tab completion. */
3968
3969 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3970 return 0;
3971 }
3972
3973 return 1;
3974 }
3975
3976 /* Free any memory associated with a completion list. */
3977
3978 static void
3979 free_completion_list (VEC (char_ptr) **list_ptr)
3980 {
3981 int i;
3982 char *p;
3983
3984 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3985 xfree (p);
3986 VEC_free (char_ptr, *list_ptr);
3987 }
3988
3989 /* Callback for make_cleanup. */
3990
3991 static void
3992 do_free_completion_list (void *list)
3993 {
3994 free_completion_list (list);
3995 }
3996
3997 /* Helper routine for make_symbol_completion_list. */
3998
3999 static VEC (char_ptr) *return_val;
4000
4001 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4002 completion_list_add_name \
4003 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4004
4005 /* Test to see if the symbol specified by SYMNAME (which is already
4006 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4007 characters. If so, add it to the current completion list. */
4008
4009 static void
4010 completion_list_add_name (const char *symname,
4011 const char *sym_text, int sym_text_len,
4012 const char *text, const char *word)
4013 {
4014 int newsize;
4015
4016 /* Clip symbols that cannot match. */
4017 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4018 return;
4019
4020 /* We have a match for a completion, so add SYMNAME to the current list
4021 of matches. Note that the name is moved to freshly malloc'd space. */
4022
4023 {
4024 char *new;
4025
4026 if (word == sym_text)
4027 {
4028 new = xmalloc (strlen (symname) + 5);
4029 strcpy (new, symname);
4030 }
4031 else if (word > sym_text)
4032 {
4033 /* Return some portion of symname. */
4034 new = xmalloc (strlen (symname) + 5);
4035 strcpy (new, symname + (word - sym_text));
4036 }
4037 else
4038 {
4039 /* Return some of SYM_TEXT plus symname. */
4040 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4041 strncpy (new, word, sym_text - word);
4042 new[sym_text - word] = '\0';
4043 strcat (new, symname);
4044 }
4045
4046 VEC_safe_push (char_ptr, return_val, new);
4047 }
4048 }
4049
4050 /* ObjC: In case we are completing on a selector, look as the msymbol
4051 again and feed all the selectors into the mill. */
4052
4053 static void
4054 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4055 const char *sym_text, int sym_text_len,
4056 const char *text, const char *word)
4057 {
4058 static char *tmp = NULL;
4059 static unsigned int tmplen = 0;
4060
4061 const char *method, *category, *selector;
4062 char *tmp2 = NULL;
4063
4064 method = SYMBOL_NATURAL_NAME (msymbol);
4065
4066 /* Is it a method? */
4067 if ((method[0] != '-') && (method[0] != '+'))
4068 return;
4069
4070 if (sym_text[0] == '[')
4071 /* Complete on shortened method method. */
4072 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4073
4074 while ((strlen (method) + 1) >= tmplen)
4075 {
4076 if (tmplen == 0)
4077 tmplen = 1024;
4078 else
4079 tmplen *= 2;
4080 tmp = xrealloc (tmp, tmplen);
4081 }
4082 selector = strchr (method, ' ');
4083 if (selector != NULL)
4084 selector++;
4085
4086 category = strchr (method, '(');
4087
4088 if ((category != NULL) && (selector != NULL))
4089 {
4090 memcpy (tmp, method, (category - method));
4091 tmp[category - method] = ' ';
4092 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4093 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4094 if (sym_text[0] == '[')
4095 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4096 }
4097
4098 if (selector != NULL)
4099 {
4100 /* Complete on selector only. */
4101 strcpy (tmp, selector);
4102 tmp2 = strchr (tmp, ']');
4103 if (tmp2 != NULL)
4104 *tmp2 = '\0';
4105
4106 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4107 }
4108 }
4109
4110 /* Break the non-quoted text based on the characters which are in
4111 symbols. FIXME: This should probably be language-specific. */
4112
4113 static char *
4114 language_search_unquoted_string (char *text, char *p)
4115 {
4116 for (; p > text; --p)
4117 {
4118 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4119 continue;
4120 else
4121 {
4122 if ((current_language->la_language == language_objc))
4123 {
4124 if (p[-1] == ':') /* Might be part of a method name. */
4125 continue;
4126 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4127 p -= 2; /* Beginning of a method name. */
4128 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4129 { /* Might be part of a method name. */
4130 char *t = p;
4131
4132 /* Seeing a ' ' or a '(' is not conclusive evidence
4133 that we are in the middle of a method name. However,
4134 finding "-[" or "+[" should be pretty un-ambiguous.
4135 Unfortunately we have to find it now to decide. */
4136
4137 while (t > text)
4138 if (isalnum (t[-1]) || t[-1] == '_' ||
4139 t[-1] == ' ' || t[-1] == ':' ||
4140 t[-1] == '(' || t[-1] == ')')
4141 --t;
4142 else
4143 break;
4144
4145 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4146 p = t - 2; /* Method name detected. */
4147 /* Else we leave with p unchanged. */
4148 }
4149 }
4150 break;
4151 }
4152 }
4153 return p;
4154 }
4155
4156 static void
4157 completion_list_add_fields (struct symbol *sym, char *sym_text,
4158 int sym_text_len, char *text, char *word)
4159 {
4160 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4161 {
4162 struct type *t = SYMBOL_TYPE (sym);
4163 enum type_code c = TYPE_CODE (t);
4164 int j;
4165
4166 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4167 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4168 if (TYPE_FIELD_NAME (t, j))
4169 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4170 sym_text, sym_text_len, text, word);
4171 }
4172 }
4173
4174 /* Type of the user_data argument passed to add_macro_name or
4175 expand_partial_symbol_name. The contents are simply whatever is
4176 needed by completion_list_add_name. */
4177 struct add_name_data
4178 {
4179 char *sym_text;
4180 int sym_text_len;
4181 char *text;
4182 char *word;
4183 };
4184
4185 /* A callback used with macro_for_each and macro_for_each_in_scope.
4186 This adds a macro's name to the current completion list. */
4187
4188 static void
4189 add_macro_name (const char *name, const struct macro_definition *ignore,
4190 struct macro_source_file *ignore2, int ignore3,
4191 void *user_data)
4192 {
4193 struct add_name_data *datum = (struct add_name_data *) user_data;
4194
4195 completion_list_add_name ((char *) name,
4196 datum->sym_text, datum->sym_text_len,
4197 datum->text, datum->word);
4198 }
4199
4200 /* A callback for expand_partial_symbol_names. */
4201
4202 static int
4203 expand_partial_symbol_name (const char *name, void *user_data)
4204 {
4205 struct add_name_data *datum = (struct add_name_data *) user_data;
4206
4207 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4208 }
4209
4210 VEC (char_ptr) *
4211 default_make_symbol_completion_list_break_on (char *text, char *word,
4212 const char *break_on)
4213 {
4214 /* Problem: All of the symbols have to be copied because readline
4215 frees them. I'm not going to worry about this; hopefully there
4216 won't be that many. */
4217
4218 struct symbol *sym;
4219 struct symtab *s;
4220 struct minimal_symbol *msymbol;
4221 struct objfile *objfile;
4222 struct block *b;
4223 const struct block *surrounding_static_block, *surrounding_global_block;
4224 struct block_iterator iter;
4225 /* The symbol we are completing on. Points in same buffer as text. */
4226 char *sym_text;
4227 /* Length of sym_text. */
4228 int sym_text_len;
4229 struct add_name_data datum;
4230 struct cleanup *back_to;
4231
4232 /* Now look for the symbol we are supposed to complete on. */
4233 {
4234 char *p;
4235 char quote_found;
4236 char *quote_pos = NULL;
4237
4238 /* First see if this is a quoted string. */
4239 quote_found = '\0';
4240 for (p = text; *p != '\0'; ++p)
4241 {
4242 if (quote_found != '\0')
4243 {
4244 if (*p == quote_found)
4245 /* Found close quote. */
4246 quote_found = '\0';
4247 else if (*p == '\\' && p[1] == quote_found)
4248 /* A backslash followed by the quote character
4249 doesn't end the string. */
4250 ++p;
4251 }
4252 else if (*p == '\'' || *p == '"')
4253 {
4254 quote_found = *p;
4255 quote_pos = p;
4256 }
4257 }
4258 if (quote_found == '\'')
4259 /* A string within single quotes can be a symbol, so complete on it. */
4260 sym_text = quote_pos + 1;
4261 else if (quote_found == '"')
4262 /* A double-quoted string is never a symbol, nor does it make sense
4263 to complete it any other way. */
4264 {
4265 return NULL;
4266 }
4267 else
4268 {
4269 /* It is not a quoted string. Break it based on the characters
4270 which are in symbols. */
4271 while (p > text)
4272 {
4273 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4274 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4275 --p;
4276 else
4277 break;
4278 }
4279 sym_text = p;
4280 }
4281 }
4282
4283 sym_text_len = strlen (sym_text);
4284
4285 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4286
4287 if (current_language->la_language == language_cplus
4288 || current_language->la_language == language_java
4289 || current_language->la_language == language_fortran)
4290 {
4291 /* These languages may have parameters entered by user but they are never
4292 present in the partial symbol tables. */
4293
4294 const char *cs = memchr (sym_text, '(', sym_text_len);
4295
4296 if (cs)
4297 sym_text_len = cs - sym_text;
4298 }
4299 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4300
4301 return_val = NULL;
4302 back_to = make_cleanup (do_free_completion_list, &return_val);
4303
4304 datum.sym_text = sym_text;
4305 datum.sym_text_len = sym_text_len;
4306 datum.text = text;
4307 datum.word = word;
4308
4309 /* Look through the partial symtabs for all symbols which begin
4310 by matching SYM_TEXT. Expand all CUs that you find to the list.
4311 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4312 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4313
4314 /* At this point scan through the misc symbol vectors and add each
4315 symbol you find to the list. Eventually we want to ignore
4316 anything that isn't a text symbol (everything else will be
4317 handled by the psymtab code above). */
4318
4319 ALL_MSYMBOLS (objfile, msymbol)
4320 {
4321 QUIT;
4322 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4323
4324 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4325 }
4326
4327 /* Search upwards from currently selected frame (so that we can
4328 complete on local vars). Also catch fields of types defined in
4329 this places which match our text string. Only complete on types
4330 visible from current context. */
4331
4332 b = get_selected_block (0);
4333 surrounding_static_block = block_static_block (b);
4334 surrounding_global_block = block_global_block (b);
4335 if (surrounding_static_block != NULL)
4336 while (b != surrounding_static_block)
4337 {
4338 QUIT;
4339
4340 ALL_BLOCK_SYMBOLS (b, iter, sym)
4341 {
4342 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4343 word);
4344 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4345 word);
4346 }
4347
4348 /* Stop when we encounter an enclosing function. Do not stop for
4349 non-inlined functions - the locals of the enclosing function
4350 are in scope for a nested function. */
4351 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4352 break;
4353 b = BLOCK_SUPERBLOCK (b);
4354 }
4355
4356 /* Add fields from the file's types; symbols will be added below. */
4357
4358 if (surrounding_static_block != NULL)
4359 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4360 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4361
4362 if (surrounding_global_block != NULL)
4363 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4364 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4365
4366 /* Go through the symtabs and check the externs and statics for
4367 symbols which match. */
4368
4369 ALL_PRIMARY_SYMTABS (objfile, s)
4370 {
4371 QUIT;
4372 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4373 ALL_BLOCK_SYMBOLS (b, iter, sym)
4374 {
4375 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4376 }
4377 }
4378
4379 ALL_PRIMARY_SYMTABS (objfile, s)
4380 {
4381 QUIT;
4382 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4383 ALL_BLOCK_SYMBOLS (b, iter, sym)
4384 {
4385 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4386 }
4387 }
4388
4389 if (current_language->la_macro_expansion == macro_expansion_c)
4390 {
4391 struct macro_scope *scope;
4392
4393 /* Add any macros visible in the default scope. Note that this
4394 may yield the occasional wrong result, because an expression
4395 might be evaluated in a scope other than the default. For
4396 example, if the user types "break file:line if <TAB>", the
4397 resulting expression will be evaluated at "file:line" -- but
4398 at there does not seem to be a way to detect this at
4399 completion time. */
4400 scope = default_macro_scope ();
4401 if (scope)
4402 {
4403 macro_for_each_in_scope (scope->file, scope->line,
4404 add_macro_name, &datum);
4405 xfree (scope);
4406 }
4407
4408 /* User-defined macros are always visible. */
4409 macro_for_each (macro_user_macros, add_macro_name, &datum);
4410 }
4411
4412 discard_cleanups (back_to);
4413 return (return_val);
4414 }
4415
4416 VEC (char_ptr) *
4417 default_make_symbol_completion_list (char *text, char *word)
4418 {
4419 return default_make_symbol_completion_list_break_on (text, word, "");
4420 }
4421
4422 /* Return a vector of all symbols (regardless of class) which begin by
4423 matching TEXT. If the answer is no symbols, then the return value
4424 is NULL. */
4425
4426 VEC (char_ptr) *
4427 make_symbol_completion_list (char *text, char *word)
4428 {
4429 return current_language->la_make_symbol_completion_list (text, word);
4430 }
4431
4432 /* Like make_symbol_completion_list, but suitable for use as a
4433 completion function. */
4434
4435 VEC (char_ptr) *
4436 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4437 char *text, char *word)
4438 {
4439 return make_symbol_completion_list (text, word);
4440 }
4441
4442 /* Like make_symbol_completion_list, but returns a list of symbols
4443 defined in a source file FILE. */
4444
4445 VEC (char_ptr) *
4446 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4447 {
4448 struct symbol *sym;
4449 struct symtab *s;
4450 struct block *b;
4451 struct block_iterator iter;
4452 /* The symbol we are completing on. Points in same buffer as text. */
4453 char *sym_text;
4454 /* Length of sym_text. */
4455 int sym_text_len;
4456
4457 /* Now look for the symbol we are supposed to complete on.
4458 FIXME: This should be language-specific. */
4459 {
4460 char *p;
4461 char quote_found;
4462 char *quote_pos = NULL;
4463
4464 /* First see if this is a quoted string. */
4465 quote_found = '\0';
4466 for (p = text; *p != '\0'; ++p)
4467 {
4468 if (quote_found != '\0')
4469 {
4470 if (*p == quote_found)
4471 /* Found close quote. */
4472 quote_found = '\0';
4473 else if (*p == '\\' && p[1] == quote_found)
4474 /* A backslash followed by the quote character
4475 doesn't end the string. */
4476 ++p;
4477 }
4478 else if (*p == '\'' || *p == '"')
4479 {
4480 quote_found = *p;
4481 quote_pos = p;
4482 }
4483 }
4484 if (quote_found == '\'')
4485 /* A string within single quotes can be a symbol, so complete on it. */
4486 sym_text = quote_pos + 1;
4487 else if (quote_found == '"')
4488 /* A double-quoted string is never a symbol, nor does it make sense
4489 to complete it any other way. */
4490 {
4491 return NULL;
4492 }
4493 else
4494 {
4495 /* Not a quoted string. */
4496 sym_text = language_search_unquoted_string (text, p);
4497 }
4498 }
4499
4500 sym_text_len = strlen (sym_text);
4501
4502 return_val = NULL;
4503
4504 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4505 in). */
4506 s = lookup_symtab (srcfile);
4507 if (s == NULL)
4508 {
4509 /* Maybe they typed the file with leading directories, while the
4510 symbol tables record only its basename. */
4511 const char *tail = lbasename (srcfile);
4512
4513 if (tail > srcfile)
4514 s = lookup_symtab (tail);
4515 }
4516
4517 /* If we have no symtab for that file, return an empty list. */
4518 if (s == NULL)
4519 return (return_val);
4520
4521 /* Go through this symtab and check the externs and statics for
4522 symbols which match. */
4523
4524 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4525 ALL_BLOCK_SYMBOLS (b, iter, sym)
4526 {
4527 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4528 }
4529
4530 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4531 ALL_BLOCK_SYMBOLS (b, iter, sym)
4532 {
4533 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4534 }
4535
4536 return (return_val);
4537 }
4538
4539 /* A helper function for make_source_files_completion_list. It adds
4540 another file name to a list of possible completions, growing the
4541 list as necessary. */
4542
4543 static void
4544 add_filename_to_list (const char *fname, char *text, char *word,
4545 VEC (char_ptr) **list)
4546 {
4547 char *new;
4548 size_t fnlen = strlen (fname);
4549
4550 if (word == text)
4551 {
4552 /* Return exactly fname. */
4553 new = xmalloc (fnlen + 5);
4554 strcpy (new, fname);
4555 }
4556 else if (word > text)
4557 {
4558 /* Return some portion of fname. */
4559 new = xmalloc (fnlen + 5);
4560 strcpy (new, fname + (word - text));
4561 }
4562 else
4563 {
4564 /* Return some of TEXT plus fname. */
4565 new = xmalloc (fnlen + (text - word) + 5);
4566 strncpy (new, word, text - word);
4567 new[text - word] = '\0';
4568 strcat (new, fname);
4569 }
4570 VEC_safe_push (char_ptr, *list, new);
4571 }
4572
4573 static int
4574 not_interesting_fname (const char *fname)
4575 {
4576 static const char *illegal_aliens[] = {
4577 "_globals_", /* inserted by coff_symtab_read */
4578 NULL
4579 };
4580 int i;
4581
4582 for (i = 0; illegal_aliens[i]; i++)
4583 {
4584 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4585 return 1;
4586 }
4587 return 0;
4588 }
4589
4590 /* An object of this type is passed as the user_data argument to
4591 map_partial_symbol_filenames. */
4592 struct add_partial_filename_data
4593 {
4594 struct filename_seen_cache *filename_seen_cache;
4595 char *text;
4596 char *word;
4597 int text_len;
4598 VEC (char_ptr) **list;
4599 };
4600
4601 /* A callback for map_partial_symbol_filenames. */
4602
4603 static void
4604 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4605 void *user_data)
4606 {
4607 struct add_partial_filename_data *data = user_data;
4608
4609 if (not_interesting_fname (filename))
4610 return;
4611 if (!filename_seen (data->filename_seen_cache, filename, 1)
4612 && filename_ncmp (filename, data->text, data->text_len) == 0)
4613 {
4614 /* This file matches for a completion; add it to the
4615 current list of matches. */
4616 add_filename_to_list (filename, data->text, data->word, data->list);
4617 }
4618 else
4619 {
4620 const char *base_name = lbasename (filename);
4621
4622 if (base_name != filename
4623 && !filename_seen (data->filename_seen_cache, base_name, 1)
4624 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4625 add_filename_to_list (base_name, data->text, data->word, data->list);
4626 }
4627 }
4628
4629 /* Return a vector of all source files whose names begin with matching
4630 TEXT. The file names are looked up in the symbol tables of this
4631 program. If the answer is no matchess, then the return value is
4632 NULL. */
4633
4634 VEC (char_ptr) *
4635 make_source_files_completion_list (char *text, char *word)
4636 {
4637 struct symtab *s;
4638 struct objfile *objfile;
4639 size_t text_len = strlen (text);
4640 VEC (char_ptr) *list = NULL;
4641 const char *base_name;
4642 struct add_partial_filename_data datum;
4643 struct filename_seen_cache *filename_seen_cache;
4644 struct cleanup *back_to, *cache_cleanup;
4645
4646 if (!have_full_symbols () && !have_partial_symbols ())
4647 return list;
4648
4649 back_to = make_cleanup (do_free_completion_list, &list);
4650
4651 filename_seen_cache = create_filename_seen_cache ();
4652 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4653 filename_seen_cache);
4654
4655 ALL_SYMTABS (objfile, s)
4656 {
4657 if (not_interesting_fname (s->filename))
4658 continue;
4659 if (!filename_seen (filename_seen_cache, s->filename, 1)
4660 && filename_ncmp (s->filename, text, text_len) == 0)
4661 {
4662 /* This file matches for a completion; add it to the current
4663 list of matches. */
4664 add_filename_to_list (s->filename, text, word, &list);
4665 }
4666 else
4667 {
4668 /* NOTE: We allow the user to type a base name when the
4669 debug info records leading directories, but not the other
4670 way around. This is what subroutines of breakpoint
4671 command do when they parse file names. */
4672 base_name = lbasename (s->filename);
4673 if (base_name != s->filename
4674 && !filename_seen (filename_seen_cache, base_name, 1)
4675 && filename_ncmp (base_name, text, text_len) == 0)
4676 add_filename_to_list (base_name, text, word, &list);
4677 }
4678 }
4679
4680 datum.filename_seen_cache = filename_seen_cache;
4681 datum.text = text;
4682 datum.word = word;
4683 datum.text_len = text_len;
4684 datum.list = &list;
4685 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4686 0 /*need_fullname*/);
4687
4688 do_cleanups (cache_cleanup);
4689 discard_cleanups (back_to);
4690
4691 return list;
4692 }
4693
4694 /* Determine if PC is in the prologue of a function. The prologue is the area
4695 between the first instruction of a function, and the first executable line.
4696 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4697
4698 If non-zero, func_start is where we think the prologue starts, possibly
4699 by previous examination of symbol table information. */
4700
4701 int
4702 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4703 {
4704 struct symtab_and_line sal;
4705 CORE_ADDR func_addr, func_end;
4706
4707 /* We have several sources of information we can consult to figure
4708 this out.
4709 - Compilers usually emit line number info that marks the prologue
4710 as its own "source line". So the ending address of that "line"
4711 is the end of the prologue. If available, this is the most
4712 reliable method.
4713 - The minimal symbols and partial symbols, which can usually tell
4714 us the starting and ending addresses of a function.
4715 - If we know the function's start address, we can call the
4716 architecture-defined gdbarch_skip_prologue function to analyze the
4717 instruction stream and guess where the prologue ends.
4718 - Our `func_start' argument; if non-zero, this is the caller's
4719 best guess as to the function's entry point. At the time of
4720 this writing, handle_inferior_event doesn't get this right, so
4721 it should be our last resort. */
4722
4723 /* Consult the partial symbol table, to find which function
4724 the PC is in. */
4725 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4726 {
4727 CORE_ADDR prologue_end;
4728
4729 /* We don't even have minsym information, so fall back to using
4730 func_start, if given. */
4731 if (! func_start)
4732 return 1; /* We *might* be in a prologue. */
4733
4734 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4735
4736 return func_start <= pc && pc < prologue_end;
4737 }
4738
4739 /* If we have line number information for the function, that's
4740 usually pretty reliable. */
4741 sal = find_pc_line (func_addr, 0);
4742
4743 /* Now sal describes the source line at the function's entry point,
4744 which (by convention) is the prologue. The end of that "line",
4745 sal.end, is the end of the prologue.
4746
4747 Note that, for functions whose source code is all on a single
4748 line, the line number information doesn't always end up this way.
4749 So we must verify that our purported end-of-prologue address is
4750 *within* the function, not at its start or end. */
4751 if (sal.line == 0
4752 || sal.end <= func_addr
4753 || func_end <= sal.end)
4754 {
4755 /* We don't have any good line number info, so use the minsym
4756 information, together with the architecture-specific prologue
4757 scanning code. */
4758 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4759
4760 return func_addr <= pc && pc < prologue_end;
4761 }
4762
4763 /* We have line number info, and it looks good. */
4764 return func_addr <= pc && pc < sal.end;
4765 }
4766
4767 /* Given PC at the function's start address, attempt to find the
4768 prologue end using SAL information. Return zero if the skip fails.
4769
4770 A non-optimized prologue traditionally has one SAL for the function
4771 and a second for the function body. A single line function has
4772 them both pointing at the same line.
4773
4774 An optimized prologue is similar but the prologue may contain
4775 instructions (SALs) from the instruction body. Need to skip those
4776 while not getting into the function body.
4777
4778 The functions end point and an increasing SAL line are used as
4779 indicators of the prologue's endpoint.
4780
4781 This code is based on the function refine_prologue_limit
4782 (found in ia64). */
4783
4784 CORE_ADDR
4785 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4786 {
4787 struct symtab_and_line prologue_sal;
4788 CORE_ADDR start_pc;
4789 CORE_ADDR end_pc;
4790 struct block *bl;
4791
4792 /* Get an initial range for the function. */
4793 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4794 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4795
4796 prologue_sal = find_pc_line (start_pc, 0);
4797 if (prologue_sal.line != 0)
4798 {
4799 /* For languages other than assembly, treat two consecutive line
4800 entries at the same address as a zero-instruction prologue.
4801 The GNU assembler emits separate line notes for each instruction
4802 in a multi-instruction macro, but compilers generally will not
4803 do this. */
4804 if (prologue_sal.symtab->language != language_asm)
4805 {
4806 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4807 int idx = 0;
4808
4809 /* Skip any earlier lines, and any end-of-sequence marker
4810 from a previous function. */
4811 while (linetable->item[idx].pc != prologue_sal.pc
4812 || linetable->item[idx].line == 0)
4813 idx++;
4814
4815 if (idx+1 < linetable->nitems
4816 && linetable->item[idx+1].line != 0
4817 && linetable->item[idx+1].pc == start_pc)
4818 return start_pc;
4819 }
4820
4821 /* If there is only one sal that covers the entire function,
4822 then it is probably a single line function, like
4823 "foo(){}". */
4824 if (prologue_sal.end >= end_pc)
4825 return 0;
4826
4827 while (prologue_sal.end < end_pc)
4828 {
4829 struct symtab_and_line sal;
4830
4831 sal = find_pc_line (prologue_sal.end, 0);
4832 if (sal.line == 0)
4833 break;
4834 /* Assume that a consecutive SAL for the same (or larger)
4835 line mark the prologue -> body transition. */
4836 if (sal.line >= prologue_sal.line)
4837 break;
4838
4839 /* The line number is smaller. Check that it's from the
4840 same function, not something inlined. If it's inlined,
4841 then there is no point comparing the line numbers. */
4842 bl = block_for_pc (prologue_sal.end);
4843 while (bl)
4844 {
4845 if (block_inlined_p (bl))
4846 break;
4847 if (BLOCK_FUNCTION (bl))
4848 {
4849 bl = NULL;
4850 break;
4851 }
4852 bl = BLOCK_SUPERBLOCK (bl);
4853 }
4854 if (bl != NULL)
4855 break;
4856
4857 /* The case in which compiler's optimizer/scheduler has
4858 moved instructions into the prologue. We look ahead in
4859 the function looking for address ranges whose
4860 corresponding line number is less the first one that we
4861 found for the function. This is more conservative then
4862 refine_prologue_limit which scans a large number of SALs
4863 looking for any in the prologue. */
4864 prologue_sal = sal;
4865 }
4866 }
4867
4868 if (prologue_sal.end < end_pc)
4869 /* Return the end of this line, or zero if we could not find a
4870 line. */
4871 return prologue_sal.end;
4872 else
4873 /* Don't return END_PC, which is past the end of the function. */
4874 return prologue_sal.pc;
4875 }
4876 \f
4877 /* Track MAIN */
4878 static char *name_of_main;
4879 enum language language_of_main = language_unknown;
4880
4881 void
4882 set_main_name (const char *name)
4883 {
4884 if (name_of_main != NULL)
4885 {
4886 xfree (name_of_main);
4887 name_of_main = NULL;
4888 language_of_main = language_unknown;
4889 }
4890 if (name != NULL)
4891 {
4892 name_of_main = xstrdup (name);
4893 language_of_main = language_unknown;
4894 }
4895 }
4896
4897 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4898 accordingly. */
4899
4900 static void
4901 find_main_name (void)
4902 {
4903 const char *new_main_name;
4904
4905 /* Try to see if the main procedure is in Ada. */
4906 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4907 be to add a new method in the language vector, and call this
4908 method for each language until one of them returns a non-empty
4909 name. This would allow us to remove this hard-coded call to
4910 an Ada function. It is not clear that this is a better approach
4911 at this point, because all methods need to be written in a way
4912 such that false positives never be returned. For instance, it is
4913 important that a method does not return a wrong name for the main
4914 procedure if the main procedure is actually written in a different
4915 language. It is easy to guaranty this with Ada, since we use a
4916 special symbol generated only when the main in Ada to find the name
4917 of the main procedure. It is difficult however to see how this can
4918 be guarantied for languages such as C, for instance. This suggests
4919 that order of call for these methods becomes important, which means
4920 a more complicated approach. */
4921 new_main_name = ada_main_name ();
4922 if (new_main_name != NULL)
4923 {
4924 set_main_name (new_main_name);
4925 return;
4926 }
4927
4928 new_main_name = go_main_name ();
4929 if (new_main_name != NULL)
4930 {
4931 set_main_name (new_main_name);
4932 return;
4933 }
4934
4935 new_main_name = pascal_main_name ();
4936 if (new_main_name != NULL)
4937 {
4938 set_main_name (new_main_name);
4939 return;
4940 }
4941
4942 /* The languages above didn't identify the name of the main procedure.
4943 Fallback to "main". */
4944 set_main_name ("main");
4945 }
4946
4947 char *
4948 main_name (void)
4949 {
4950 if (name_of_main == NULL)
4951 find_main_name ();
4952
4953 return name_of_main;
4954 }
4955
4956 /* Handle ``executable_changed'' events for the symtab module. */
4957
4958 static void
4959 symtab_observer_executable_changed (void)
4960 {
4961 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4962 set_main_name (NULL);
4963 }
4964
4965 /* Return 1 if the supplied producer string matches the ARM RealView
4966 compiler (armcc). */
4967
4968 int
4969 producer_is_realview (const char *producer)
4970 {
4971 static const char *const arm_idents[] = {
4972 "ARM C Compiler, ADS",
4973 "Thumb C Compiler, ADS",
4974 "ARM C++ Compiler, ADS",
4975 "Thumb C++ Compiler, ADS",
4976 "ARM/Thumb C/C++ Compiler, RVCT",
4977 "ARM C/C++ Compiler, RVCT"
4978 };
4979 int i;
4980
4981 if (producer == NULL)
4982 return 0;
4983
4984 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4985 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4986 return 1;
4987
4988 return 0;
4989 }
4990
4991 void
4992 _initialize_symtab (void)
4993 {
4994 add_info ("variables", variables_info, _("\
4995 All global and static variable names, or those matching REGEXP."));
4996 if (dbx_commands)
4997 add_com ("whereis", class_info, variables_info, _("\
4998 All global and static variable names, or those matching REGEXP."));
4999
5000 add_info ("functions", functions_info,
5001 _("All function names, or those matching REGEXP."));
5002
5003 /* FIXME: This command has at least the following problems:
5004 1. It prints builtin types (in a very strange and confusing fashion).
5005 2. It doesn't print right, e.g. with
5006 typedef struct foo *FOO
5007 type_print prints "FOO" when we want to make it (in this situation)
5008 print "struct foo *".
5009 I also think "ptype" or "whatis" is more likely to be useful (but if
5010 there is much disagreement "info types" can be fixed). */
5011 add_info ("types", types_info,
5012 _("All type names, or those matching REGEXP."));
5013
5014 add_info ("sources", sources_info,
5015 _("Source files in the program."));
5016
5017 add_com ("rbreak", class_breakpoint, rbreak_command,
5018 _("Set a breakpoint for all functions matching REGEXP."));
5019
5020 if (xdb_commands)
5021 {
5022 add_com ("lf", class_info, sources_info,
5023 _("Source files in the program"));
5024 add_com ("lg", class_info, variables_info, _("\
5025 All global and static variable names, or those matching REGEXP."));
5026 }
5027
5028 add_setshow_enum_cmd ("multiple-symbols", no_class,
5029 multiple_symbols_modes, &multiple_symbols_mode,
5030 _("\
5031 Set the debugger behavior when more than one symbol are possible matches\n\
5032 in an expression."), _("\
5033 Show how the debugger handles ambiguities in expressions."), _("\
5034 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5035 NULL, NULL, &setlist, &showlist);
5036
5037 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5038 &basenames_may_differ, _("\
5039 Set whether a source file may have multiple base names."), _("\
5040 Show whether a source file may have multiple base names."), _("\
5041 (A \"base name\" is the name of a file with the directory part removed.\n\
5042 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5043 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5044 before comparing them. Canonicalization is an expensive operation,\n\
5045 but it allows the same file be known by more than one base name.\n\
5046 If not set (the default), all source files are assumed to have just\n\
5047 one base name, and gdb will do file name comparisons more efficiently."),
5048 NULL, NULL,
5049 &setlist, &showlist);
5050
5051 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5052 _("Set debugging of symbol table creation."),
5053 _("Show debugging of symbol table creation."), _("\
5054 When enabled, debugging messages are printed when building symbol tables."),
5055 NULL,
5056 NULL,
5057 &setdebuglist, &showdebuglist);
5058
5059 observer_attach_executable_changed (symtab_observer_executable_changed);
5060 }
This page took 0.124743 seconds and 3 git commands to generate.