d4f3bfe30405bbf0272fdb9db23cea04fa1b7b00
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61
62 /* Prototypes for local functions */
63
64 static void completion_list_add_name (char *, char *, int, char *, char *);
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static void output_source_filename (const char *, int *);
77
78 static int find_line_common (struct linetable *, int, int *);
79
80 /* This one is used by linespec.c */
81
82 char *operator_chars (char *p, char **end);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const char *linkage_name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 int *is_a_field_of_this);
90
91 static
92 struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_symtabs (int block_index,
99 const char *name,
100 const char *linkage_name,
101 const domain_enum domain);
102
103 static
104 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
105 const char *name,
106 const char *linkage_name,
107 const domain_enum domain);
108
109 static int file_matches (char *, char **, int);
110
111 static void print_symbol_info (domain_enum,
112 struct symtab *, struct symbol *, int, char *);
113
114 static void print_msymbol_info (struct minimal_symbol *);
115
116 static void symtab_symbol_info (char *, domain_enum, int);
117
118 void _initialize_symtab (void);
119
120 /* */
121
122 /* Allow the user to configure the debugger behavior with respect
123 to multiple-choice menus when more than one symbol matches during
124 a symbol lookup. */
125
126 const char multiple_symbols_ask[] = "ask";
127 const char multiple_symbols_all[] = "all";
128 const char multiple_symbols_cancel[] = "cancel";
129 static const char *multiple_symbols_modes[] =
130 {
131 multiple_symbols_ask,
132 multiple_symbols_all,
133 multiple_symbols_cancel,
134 NULL
135 };
136 static const char *multiple_symbols_mode = multiple_symbols_all;
137
138 /* Read-only accessor to AUTO_SELECT_MODE. */
139
140 const char *
141 multiple_symbols_select_mode (void)
142 {
143 return multiple_symbols_mode;
144 }
145
146 /* The single non-language-specific builtin type */
147 struct type *builtin_type_error;
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Create the hash table used for demangled names. Each hash entry is
431 a pair of strings; one for the mangled name and one for the demangled
432 name. The entry is hashed via just the mangled name. */
433
434 static void
435 create_demangled_names_hash (struct objfile *objfile)
436 {
437 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
438 The hash table code will round this up to the next prime number.
439 Choosing a much larger table size wastes memory, and saves only about
440 1% in symbol reading. */
441
442 objfile->demangled_names_hash = htab_create_alloc
443 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
444 NULL, xcalloc, xfree);
445 }
446
447 /* Try to determine the demangled name for a symbol, based on the
448 language of that symbol. If the language is set to language_auto,
449 it will attempt to find any demangling algorithm that works and
450 then set the language appropriately. The returned name is allocated
451 by the demangler and should be xfree'd. */
452
453 static char *
454 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
455 const char *mangled)
456 {
457 char *demangled = NULL;
458
459 if (gsymbol->language == language_unknown)
460 gsymbol->language = language_auto;
461
462 if (gsymbol->language == language_objc
463 || gsymbol->language == language_auto)
464 {
465 demangled =
466 objc_demangle (mangled, 0);
467 if (demangled != NULL)
468 {
469 gsymbol->language = language_objc;
470 return demangled;
471 }
472 }
473 if (gsymbol->language == language_cplus
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_cplus;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_java)
485 {
486 demangled =
487 cplus_demangle (mangled,
488 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_java;
492 return demangled;
493 }
494 }
495 return NULL;
496 }
497
498 /* Set both the mangled and demangled (if any) names for GSYMBOL based
499 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
500 is used, and the memory comes from that objfile's objfile_obstack.
501 LINKAGE_NAME is copied, so the pointer can be discarded after
502 calling this function. */
503
504 /* We have to be careful when dealing with Java names: when we run
505 into a Java minimal symbol, we don't know it's a Java symbol, so it
506 gets demangled as a C++ name. This is unfortunate, but there's not
507 much we can do about it: but when demangling partial symbols and
508 regular symbols, we'd better not reuse the wrong demangled name.
509 (See PR gdb/1039.) We solve this by putting a distinctive prefix
510 on Java names when storing them in the hash table. */
511
512 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
513 don't mind the Java prefix so much: different languages have
514 different demangling requirements, so it's only natural that we
515 need to keep language data around in our demangling cache. But
516 it's not good that the minimal symbol has the wrong demangled name.
517 Unfortunately, I can't think of any easy solution to that
518 problem. */
519
520 #define JAVA_PREFIX "##JAVA$$"
521 #define JAVA_PREFIX_LEN 8
522
523 void
524 symbol_set_names (struct general_symbol_info *gsymbol,
525 const char *linkage_name, int len, struct objfile *objfile)
526 {
527 char **slot;
528 /* A 0-terminated copy of the linkage name. */
529 const char *linkage_name_copy;
530 /* A copy of the linkage name that might have a special Java prefix
531 added to it, for use when looking names up in the hash table. */
532 const char *lookup_name;
533 /* The length of lookup_name. */
534 int lookup_len;
535
536 if (objfile->demangled_names_hash == NULL)
537 create_demangled_names_hash (objfile);
538
539 if (gsymbol->language == language_ada)
540 {
541 /* In Ada, we do the symbol lookups using the mangled name, so
542 we can save some space by not storing the demangled name.
543
544 As a side note, we have also observed some overlap between
545 the C++ mangling and Ada mangling, similarly to what has
546 been observed with Java. Because we don't store the demangled
547 name with the symbol, we don't need to use the same trick
548 as Java. */
549 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
550 memcpy (gsymbol->name, linkage_name, len);
551 gsymbol->name[len] = '\0';
552 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
553
554 return;
555 }
556
557 /* The stabs reader generally provides names that are not
558 NUL-terminated; most of the other readers don't do this, so we
559 can just use the given copy, unless we're in the Java case. */
560 if (gsymbol->language == language_java)
561 {
562 char *alloc_name;
563 lookup_len = len + JAVA_PREFIX_LEN;
564
565 alloc_name = alloca (lookup_len + 1);
566 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
567 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
568 alloc_name[lookup_len] = '\0';
569
570 lookup_name = alloc_name;
571 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
572 }
573 else if (linkage_name[len] != '\0')
574 {
575 char *alloc_name;
576 lookup_len = len;
577
578 alloc_name = alloca (lookup_len + 1);
579 memcpy (alloc_name, linkage_name, len);
580 alloc_name[lookup_len] = '\0';
581
582 lookup_name = alloc_name;
583 linkage_name_copy = alloc_name;
584 }
585 else
586 {
587 lookup_len = len;
588 lookup_name = linkage_name;
589 linkage_name_copy = linkage_name;
590 }
591
592 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
593 lookup_name, INSERT);
594
595 /* If this name is not in the hash table, add it. */
596 if (*slot == NULL)
597 {
598 char *demangled_name = symbol_find_demangled_name (gsymbol,
599 linkage_name_copy);
600 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
601
602 /* If there is a demangled name, place it right after the mangled name.
603 Otherwise, just place a second zero byte after the end of the mangled
604 name. */
605 *slot = obstack_alloc (&objfile->objfile_obstack,
606 lookup_len + demangled_len + 2);
607 memcpy (*slot, lookup_name, lookup_len + 1);
608 if (demangled_name != NULL)
609 {
610 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
611 xfree (demangled_name);
612 }
613 else
614 (*slot)[lookup_len + 1] = '\0';
615 }
616
617 gsymbol->name = *slot + lookup_len - len;
618 if ((*slot)[lookup_len + 1] != '\0')
619 gsymbol->language_specific.cplus_specific.demangled_name
620 = &(*slot)[lookup_len + 1];
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624
625 /* Return the source code name of a symbol. In languages where
626 demangling is necessary, this is the demangled name. */
627
628 char *
629 symbol_natural_name (const struct general_symbol_info *gsymbol)
630 {
631 switch (gsymbol->language)
632 {
633 case language_cplus:
634 case language_java:
635 case language_objc:
636 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
637 return gsymbol->language_specific.cplus_specific.demangled_name;
638 break;
639 case language_ada:
640 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
641 return gsymbol->language_specific.cplus_specific.demangled_name;
642 else
643 return ada_decode_symbol (gsymbol);
644 break;
645 default:
646 break;
647 }
648 return gsymbol->name;
649 }
650
651 /* Return the demangled name for a symbol based on the language for
652 that symbol. If no demangled name exists, return NULL. */
653 char *
654 symbol_demangled_name (struct general_symbol_info *gsymbol)
655 {
656 switch (gsymbol->language)
657 {
658 case language_cplus:
659 case language_java:
660 case language_objc:
661 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
662 return gsymbol->language_specific.cplus_specific.demangled_name;
663 break;
664 case language_ada:
665 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
666 return gsymbol->language_specific.cplus_specific.demangled_name;
667 else
668 return ada_decode_symbol (gsymbol);
669 break;
670 default:
671 break;
672 }
673 return NULL;
674 }
675
676 /* Return the search name of a symbol---generally the demangled or
677 linkage name of the symbol, depending on how it will be searched for.
678 If there is no distinct demangled name, then returns the same value
679 (same pointer) as SYMBOL_LINKAGE_NAME. */
680 char *
681 symbol_search_name (const struct general_symbol_info *gsymbol)
682 {
683 if (gsymbol->language == language_ada)
684 return gsymbol->name;
685 else
686 return symbol_natural_name (gsymbol);
687 }
688
689 /* Initialize the structure fields to zero values. */
690 void
691 init_sal (struct symtab_and_line *sal)
692 {
693 sal->symtab = 0;
694 sal->section = 0;
695 sal->line = 0;
696 sal->pc = 0;
697 sal->end = 0;
698 sal->explicit_pc = 0;
699 sal->explicit_line = 0;
700 }
701 \f
702
703 /* Return 1 if the two sections are the same, or if they could
704 plausibly be copies of each other, one in an original object
705 file and another in a separated debug file. */
706
707 int
708 matching_bfd_sections (asection *first, asection *second)
709 {
710 struct objfile *obj;
711
712 /* If they're the same section, then they match. */
713 if (first == second)
714 return 1;
715
716 /* If either is NULL, give up. */
717 if (first == NULL || second == NULL)
718 return 0;
719
720 /* This doesn't apply to absolute symbols. */
721 if (first->owner == NULL || second->owner == NULL)
722 return 0;
723
724 /* If they're in the same object file, they must be different sections. */
725 if (first->owner == second->owner)
726 return 0;
727
728 /* Check whether the two sections are potentially corresponding. They must
729 have the same size, address, and name. We can't compare section indexes,
730 which would be more reliable, because some sections may have been
731 stripped. */
732 if (bfd_get_section_size (first) != bfd_get_section_size (second))
733 return 0;
734
735 /* In-memory addresses may start at a different offset, relativize them. */
736 if (bfd_get_section_vma (first->owner, first)
737 - bfd_get_start_address (first->owner)
738 != bfd_get_section_vma (second->owner, second)
739 - bfd_get_start_address (second->owner))
740 return 0;
741
742 if (bfd_get_section_name (first->owner, first) == NULL
743 || bfd_get_section_name (second->owner, second) == NULL
744 || strcmp (bfd_get_section_name (first->owner, first),
745 bfd_get_section_name (second->owner, second)) != 0)
746 return 0;
747
748 /* Otherwise check that they are in corresponding objfiles. */
749
750 ALL_OBJFILES (obj)
751 if (obj->obfd == first->owner)
752 break;
753 gdb_assert (obj != NULL);
754
755 if (obj->separate_debug_objfile != NULL
756 && obj->separate_debug_objfile->obfd == second->owner)
757 return 1;
758 if (obj->separate_debug_objfile_backlink != NULL
759 && obj->separate_debug_objfile_backlink->obfd == second->owner)
760 return 1;
761
762 return 0;
763 }
764
765 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
766 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
767
768 struct partial_symtab *
769 find_pc_sect_psymtab_closer (CORE_ADDR pc, asection *section,
770 struct partial_symtab *pst,
771 struct minimal_symbol *msymbol)
772 {
773 struct objfile *objfile = pst->objfile;
774 struct partial_symtab *tpst;
775 struct partial_symtab *best_pst = pst;
776 CORE_ADDR best_addr = pst->textlow;
777
778 /* An objfile that has its functions reordered might have
779 many partial symbol tables containing the PC, but
780 we want the partial symbol table that contains the
781 function containing the PC. */
782 if (!(objfile->flags & OBJF_REORDERED) &&
783 section == 0) /* can't validate section this way */
784 return pst;
785
786 if (msymbol == NULL)
787 return (pst);
788
789 /* The code range of partial symtabs sometimes overlap, so, in
790 the loop below, we need to check all partial symtabs and
791 find the one that fits better for the given PC address. We
792 select the partial symtab that contains a symbol whose
793 address is closest to the PC address. By closest we mean
794 that find_pc_sect_symbol returns the symbol with address
795 that is closest and still less than the given PC. */
796 for (tpst = pst; tpst != NULL; tpst = tpst->next)
797 {
798 if (pc >= tpst->textlow && pc < tpst->texthigh)
799 {
800 struct partial_symbol *p;
801 CORE_ADDR this_addr;
802
803 /* NOTE: This assumes that every psymbol has a
804 corresponding msymbol, which is not necessarily
805 true; the debug info might be much richer than the
806 object's symbol table. */
807 p = find_pc_sect_psymbol (tpst, pc, section);
808 if (p != NULL
809 && SYMBOL_VALUE_ADDRESS (p)
810 == SYMBOL_VALUE_ADDRESS (msymbol))
811 return tpst;
812
813 /* Also accept the textlow value of a psymtab as a
814 "symbol", to provide some support for partial
815 symbol tables with line information but no debug
816 symbols (e.g. those produced by an assembler). */
817 if (p != NULL)
818 this_addr = SYMBOL_VALUE_ADDRESS (p);
819 else
820 this_addr = tpst->textlow;
821
822 /* Check whether it is closer than our current
823 BEST_ADDR. Since this symbol address is
824 necessarily lower or equal to PC, the symbol closer
825 to PC is the symbol which address is the highest.
826 This way we return the psymtab which contains such
827 best match symbol. This can help in cases where the
828 symbol information/debuginfo is not complete, like
829 for instance on IRIX6 with gcc, where no debug info
830 is emitted for statics. (See also the nodebug.exp
831 testcase.) */
832 if (this_addr > best_addr)
833 {
834 best_addr = this_addr;
835 best_pst = tpst;
836 }
837 }
838 }
839 return best_pst;
840 }
841
842 /* Find which partial symtab contains PC and SECTION. Return 0 if
843 none. We return the psymtab that contains a symbol whose address
844 exactly matches PC, or, if we cannot find an exact match, the
845 psymtab that contains a symbol whose address is closest to PC. */
846 struct partial_symtab *
847 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
848 {
849 struct objfile *objfile;
850 struct minimal_symbol *msymbol;
851
852 /* If we know that this is not a text address, return failure. This is
853 necessary because we loop based on texthigh and textlow, which do
854 not include the data ranges. */
855 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
856 if (msymbol
857 && (msymbol->type == mst_data
858 || msymbol->type == mst_bss
859 || msymbol->type == mst_abs
860 || msymbol->type == mst_file_data
861 || msymbol->type == mst_file_bss))
862 return NULL;
863
864 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
865 than the later used TEXTLOW/TEXTHIGH one. */
866
867 ALL_OBJFILES (objfile)
868 if (objfile->psymtabs_addrmap != NULL)
869 {
870 struct partial_symtab *pst;
871
872 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
873 if (pst != NULL)
874 {
875 /* FIXME: addrmaps currently do not handle overlayed sections,
876 so fall back to the non-addrmap case if we're debugging
877 overlays and the addrmap returned the wrong section. */
878 if (overlay_debugging && msymbol && section)
879 {
880 struct partial_symbol *p;
881 /* NOTE: This assumes that every psymbol has a
882 corresponding msymbol, which is not necessarily
883 true; the debug info might be much richer than the
884 object's symbol table. */
885 p = find_pc_sect_psymbol (pst, pc, section);
886 if (!p
887 || SYMBOL_VALUE_ADDRESS (p)
888 != SYMBOL_VALUE_ADDRESS (msymbol))
889 continue;
890 }
891
892 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
893 PSYMTABS_ADDRMAP we used has already the best 1-byte
894 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
895 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
896 overlap. */
897
898 return pst;
899 }
900 }
901
902 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
903 which still have no corresponding full SYMTABs read. But it is not
904 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
905 so far. */
906
907 ALL_OBJFILES (objfile)
908 {
909 struct partial_symtab *pst;
910
911 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
912 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
913 debug info type in single OBJFILE. */
914
915 ALL_OBJFILE_PSYMTABS (objfile, pst)
916 if (pc >= pst->textlow && pc < pst->texthigh)
917 {
918 struct partial_symtab *best_pst;
919
920 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
921 msymbol);
922 if (best_pst != NULL)
923 return best_pst;
924 }
925 }
926
927 return NULL;
928 }
929
930 /* Find which partial symtab contains PC. Return 0 if none.
931 Backward compatibility, no section */
932
933 struct partial_symtab *
934 find_pc_psymtab (CORE_ADDR pc)
935 {
936 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
937 }
938
939 /* Find which partial symbol within a psymtab matches PC and SECTION.
940 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
941
942 struct partial_symbol *
943 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
944 asection *section)
945 {
946 struct partial_symbol *best = NULL, *p, **pp;
947 CORE_ADDR best_pc;
948
949 if (!psymtab)
950 psymtab = find_pc_sect_psymtab (pc, section);
951 if (!psymtab)
952 return 0;
953
954 /* Cope with programs that start at address 0 */
955 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
956
957 /* Search the global symbols as well as the static symbols, so that
958 find_pc_partial_function doesn't use a minimal symbol and thus
959 cache a bad endaddr. */
960 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
961 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
962 < psymtab->n_global_syms);
963 pp++)
964 {
965 p = *pp;
966 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
967 && SYMBOL_CLASS (p) == LOC_BLOCK
968 && pc >= SYMBOL_VALUE_ADDRESS (p)
969 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
970 || (psymtab->textlow == 0
971 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
972 {
973 if (section) /* match on a specific section */
974 {
975 fixup_psymbol_section (p, psymtab->objfile);
976 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
977 continue;
978 }
979 best_pc = SYMBOL_VALUE_ADDRESS (p);
980 best = p;
981 }
982 }
983
984 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
985 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
986 < psymtab->n_static_syms);
987 pp++)
988 {
989 p = *pp;
990 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
991 && SYMBOL_CLASS (p) == LOC_BLOCK
992 && pc >= SYMBOL_VALUE_ADDRESS (p)
993 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
994 || (psymtab->textlow == 0
995 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
996 {
997 if (section) /* match on a specific section */
998 {
999 fixup_psymbol_section (p, psymtab->objfile);
1000 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
1001 continue;
1002 }
1003 best_pc = SYMBOL_VALUE_ADDRESS (p);
1004 best = p;
1005 }
1006 }
1007
1008 return best;
1009 }
1010
1011 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1012 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1013
1014 struct partial_symbol *
1015 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1016 {
1017 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1018 }
1019 \f
1020 /* Debug symbols usually don't have section information. We need to dig that
1021 out of the minimal symbols and stash that in the debug symbol. */
1022
1023 static void
1024 fixup_section (struct general_symbol_info *ginfo,
1025 CORE_ADDR addr, struct objfile *objfile)
1026 {
1027 struct minimal_symbol *msym;
1028
1029 /* First, check whether a minimal symbol with the same name exists
1030 and points to the same address. The address check is required
1031 e.g. on PowerPC64, where the minimal symbol for a function will
1032 point to the function descriptor, while the debug symbol will
1033 point to the actual function code. */
1034 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1035 if (msym)
1036 {
1037 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
1038 ginfo->section = SYMBOL_SECTION (msym);
1039 }
1040 else
1041 {
1042 /* Static, function-local variables do appear in the linker
1043 (minimal) symbols, but are frequently given names that won't
1044 be found via lookup_minimal_symbol(). E.g., it has been
1045 observed in frv-uclinux (ELF) executables that a static,
1046 function-local variable named "foo" might appear in the
1047 linker symbols as "foo.6" or "foo.3". Thus, there is no
1048 point in attempting to extend the lookup-by-name mechanism to
1049 handle this case due to the fact that there can be multiple
1050 names.
1051
1052 So, instead, search the section table when lookup by name has
1053 failed. The ``addr'' and ``endaddr'' fields may have already
1054 been relocated. If so, the relocation offset (i.e. the
1055 ANOFFSET value) needs to be subtracted from these values when
1056 performing the comparison. We unconditionally subtract it,
1057 because, when no relocation has been performed, the ANOFFSET
1058 value will simply be zero.
1059
1060 The address of the symbol whose section we're fixing up HAS
1061 NOT BEEN adjusted (relocated) yet. It can't have been since
1062 the section isn't yet known and knowing the section is
1063 necessary in order to add the correct relocation value. In
1064 other words, we wouldn't even be in this function (attempting
1065 to compute the section) if it were already known.
1066
1067 Note that it is possible to search the minimal symbols
1068 (subtracting the relocation value if necessary) to find the
1069 matching minimal symbol, but this is overkill and much less
1070 efficient. It is not necessary to find the matching minimal
1071 symbol, only its section.
1072
1073 Note that this technique (of doing a section table search)
1074 can fail when unrelocated section addresses overlap. For
1075 this reason, we still attempt a lookup by name prior to doing
1076 a search of the section table. */
1077
1078 struct obj_section *s;
1079 ALL_OBJFILE_OSECTIONS (objfile, s)
1080 {
1081 int idx = s->the_bfd_section->index;
1082 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1083
1084 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1085 {
1086 ginfo->bfd_section = s->the_bfd_section;
1087 ginfo->section = idx;
1088 return;
1089 }
1090 }
1091 }
1092 }
1093
1094 struct symbol *
1095 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1096 {
1097 CORE_ADDR addr;
1098
1099 if (!sym)
1100 return NULL;
1101
1102 if (SYMBOL_BFD_SECTION (sym))
1103 return sym;
1104
1105 /* We either have an OBJFILE, or we can get at it from the sym's
1106 symtab. Anything else is a bug. */
1107 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1108
1109 if (objfile == NULL)
1110 objfile = SYMBOL_SYMTAB (sym)->objfile;
1111
1112 /* We should have an objfile by now. */
1113 gdb_assert (objfile);
1114
1115 switch (SYMBOL_CLASS (sym))
1116 {
1117 case LOC_STATIC:
1118 case LOC_LABEL:
1119 addr = SYMBOL_VALUE_ADDRESS (sym);
1120 break;
1121 case LOC_BLOCK:
1122 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1123 break;
1124
1125 default:
1126 /* Nothing else will be listed in the minsyms -- no use looking
1127 it up. */
1128 return sym;
1129 }
1130
1131 fixup_section (&sym->ginfo, addr, objfile);
1132
1133 return sym;
1134 }
1135
1136 struct partial_symbol *
1137 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1138 {
1139 CORE_ADDR addr;
1140
1141 if (!psym)
1142 return NULL;
1143
1144 if (SYMBOL_BFD_SECTION (psym))
1145 return psym;
1146
1147 gdb_assert (objfile);
1148
1149 switch (SYMBOL_CLASS (psym))
1150 {
1151 case LOC_STATIC:
1152 case LOC_LABEL:
1153 case LOC_BLOCK:
1154 addr = SYMBOL_VALUE_ADDRESS (psym);
1155 break;
1156 default:
1157 /* Nothing else will be listed in the minsyms -- no use looking
1158 it up. */
1159 return psym;
1160 }
1161
1162 fixup_section (&psym->ginfo, addr, objfile);
1163
1164 return psym;
1165 }
1166
1167 /* Find the definition for a specified symbol name NAME
1168 in domain DOMAIN, visible from lexical block BLOCK.
1169 Returns the struct symbol pointer, or zero if no symbol is found.
1170 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1171 NAME is a field of the current implied argument `this'. If so set
1172 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1173 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1174 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1175
1176 /* This function has a bunch of loops in it and it would seem to be
1177 attractive to put in some QUIT's (though I'm not really sure
1178 whether it can run long enough to be really important). But there
1179 are a few calls for which it would appear to be bad news to quit
1180 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1181 that there is C++ code below which can error(), but that probably
1182 doesn't affect these calls since they are looking for a known
1183 variable and thus can probably assume it will never hit the C++
1184 code). */
1185
1186 struct symbol *
1187 lookup_symbol_in_language (const char *name, const struct block *block,
1188 const domain_enum domain, enum language lang,
1189 int *is_a_field_of_this)
1190 {
1191 char *demangled_name = NULL;
1192 const char *modified_name = NULL;
1193 const char *mangled_name = NULL;
1194 int needtofreename = 0;
1195 struct symbol *returnval;
1196
1197 modified_name = name;
1198
1199 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1200 we can always binary search. */
1201 if (lang == language_cplus)
1202 {
1203 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1204 if (demangled_name)
1205 {
1206 mangled_name = name;
1207 modified_name = demangled_name;
1208 needtofreename = 1;
1209 }
1210 }
1211 else if (lang == language_java)
1212 {
1213 demangled_name = cplus_demangle (name,
1214 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1215 if (demangled_name)
1216 {
1217 mangled_name = name;
1218 modified_name = demangled_name;
1219 needtofreename = 1;
1220 }
1221 }
1222
1223 if (case_sensitivity == case_sensitive_off)
1224 {
1225 char *copy;
1226 int len, i;
1227
1228 len = strlen (name);
1229 copy = (char *) alloca (len + 1);
1230 for (i= 0; i < len; i++)
1231 copy[i] = tolower (name[i]);
1232 copy[len] = 0;
1233 modified_name = copy;
1234 }
1235
1236 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1237 domain, lang, is_a_field_of_this);
1238 if (needtofreename)
1239 xfree (demangled_name);
1240
1241 return returnval;
1242 }
1243
1244 /* Behave like lookup_symbol_in_language, but performed with the
1245 current language. */
1246
1247 struct symbol *
1248 lookup_symbol (const char *name, const struct block *block,
1249 domain_enum domain, int *is_a_field_of_this)
1250 {
1251 return lookup_symbol_in_language (name, block, domain,
1252 current_language->la_language,
1253 is_a_field_of_this);
1254 }
1255
1256 /* Behave like lookup_symbol except that NAME is the natural name
1257 of the symbol that we're looking for and, if LINKAGE_NAME is
1258 non-NULL, ensure that the symbol's linkage name matches as
1259 well. */
1260
1261 static struct symbol *
1262 lookup_symbol_aux (const char *name, const char *linkage_name,
1263 const struct block *block, const domain_enum domain,
1264 enum language language, int *is_a_field_of_this)
1265 {
1266 struct symbol *sym;
1267 const struct language_defn *langdef;
1268
1269 /* Make sure we do something sensible with is_a_field_of_this, since
1270 the callers that set this parameter to some non-null value will
1271 certainly use it later and expect it to be either 0 or 1.
1272 If we don't set it, the contents of is_a_field_of_this are
1273 undefined. */
1274 if (is_a_field_of_this != NULL)
1275 *is_a_field_of_this = 0;
1276
1277 /* Search specified block and its superiors. Don't search
1278 STATIC_BLOCK or GLOBAL_BLOCK. */
1279
1280 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1281 if (sym != NULL)
1282 return sym;
1283
1284 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1285 check to see if NAME is a field of `this'. */
1286
1287 langdef = language_def (language);
1288
1289 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1290 && block != NULL)
1291 {
1292 struct symbol *sym = NULL;
1293 /* 'this' is only defined in the function's block, so find the
1294 enclosing function block. */
1295 for (; block && !BLOCK_FUNCTION (block);
1296 block = BLOCK_SUPERBLOCK (block));
1297
1298 if (block && !dict_empty (BLOCK_DICT (block)))
1299 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1300 NULL, VAR_DOMAIN);
1301 if (sym)
1302 {
1303 struct type *t = sym->type;
1304
1305 /* I'm not really sure that type of this can ever
1306 be typedefed; just be safe. */
1307 CHECK_TYPEDEF (t);
1308 if (TYPE_CODE (t) == TYPE_CODE_PTR
1309 || TYPE_CODE (t) == TYPE_CODE_REF)
1310 t = TYPE_TARGET_TYPE (t);
1311
1312 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1313 && TYPE_CODE (t) != TYPE_CODE_UNION)
1314 error (_("Internal error: `%s' is not an aggregate"),
1315 langdef->la_name_of_this);
1316
1317 if (check_field (t, name))
1318 {
1319 *is_a_field_of_this = 1;
1320 return NULL;
1321 }
1322 }
1323 }
1324
1325 /* Now do whatever is appropriate for LANGUAGE to look
1326 up static and global variables. */
1327
1328 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1329 if (sym != NULL)
1330 return sym;
1331
1332 /* Now search all static file-level symbols. Not strictly correct,
1333 but more useful than an error. Do the symtabs first, then check
1334 the psymtabs. If a psymtab indicates the existence of the
1335 desired name as a file-level static, then do psymtab-to-symtab
1336 conversion on the fly and return the found symbol. */
1337
1338 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1339 if (sym != NULL)
1340 return sym;
1341
1342 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1343 if (sym != NULL)
1344 return sym;
1345
1346 return NULL;
1347 }
1348
1349 /* Check to see if the symbol is defined in BLOCK or its superiors.
1350 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1351
1352 static struct symbol *
1353 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1354 const struct block *block,
1355 const domain_enum domain)
1356 {
1357 struct symbol *sym;
1358 const struct block *static_block = block_static_block (block);
1359
1360 /* Check if either no block is specified or it's a global block. */
1361
1362 if (static_block == NULL)
1363 return NULL;
1364
1365 while (block != static_block)
1366 {
1367 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1368 if (sym != NULL)
1369 return sym;
1370 block = BLOCK_SUPERBLOCK (block);
1371 }
1372
1373 /* We've reached the static block without finding a result. */
1374
1375 return NULL;
1376 }
1377
1378 /* Look up OBJFILE to BLOCK. */
1379
1380 static struct objfile *
1381 lookup_objfile_from_block (const struct block *block)
1382 {
1383 struct objfile *obj;
1384 struct symtab *s;
1385
1386 if (block == NULL)
1387 return NULL;
1388
1389 block = block_global_block (block);
1390 /* Go through SYMTABS. */
1391 ALL_SYMTABS (obj, s)
1392 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1393 return obj;
1394
1395 return NULL;
1396 }
1397
1398 /* Look up a symbol in a block; if found, fixup the symbol, and set
1399 block_found appropriately. */
1400
1401 struct symbol *
1402 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1403 const struct block *block,
1404 const domain_enum domain)
1405 {
1406 struct symbol *sym;
1407
1408 sym = lookup_block_symbol (block, name, linkage_name, domain);
1409 if (sym)
1410 {
1411 block_found = block;
1412 return fixup_symbol_section (sym, NULL);
1413 }
1414
1415 return NULL;
1416 }
1417
1418 /* Check all global symbols in OBJFILE in symtabs and
1419 psymtabs. */
1420
1421 struct symbol *
1422 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1423 const char *name,
1424 const char *linkage_name,
1425 const domain_enum domain)
1426 {
1427 struct symbol *sym;
1428 struct blockvector *bv;
1429 const struct block *block;
1430 struct symtab *s;
1431 struct partial_symtab *ps;
1432
1433 /* Go through symtabs. */
1434 ALL_OBJFILE_SYMTABS (objfile, s)
1435 {
1436 bv = BLOCKVECTOR (s);
1437 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1438 sym = lookup_block_symbol (block, name, linkage_name, domain);
1439 if (sym)
1440 {
1441 block_found = block;
1442 return fixup_symbol_section (sym, (struct objfile *)objfile);
1443 }
1444 }
1445
1446 /* Now go through psymtabs. */
1447 ALL_OBJFILE_PSYMTABS (objfile, ps)
1448 {
1449 if (!ps->readin
1450 && lookup_partial_symbol (ps, name, linkage_name,
1451 1, domain))
1452 {
1453 s = PSYMTAB_TO_SYMTAB (ps);
1454 bv = BLOCKVECTOR (s);
1455 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1456 sym = lookup_block_symbol (block, name, linkage_name, domain);
1457 return fixup_symbol_section (sym, (struct objfile *)objfile);
1458 }
1459 }
1460
1461 if (objfile->separate_debug_objfile)
1462 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1463 name, linkage_name, domain);
1464
1465 return NULL;
1466 }
1467
1468 /* Check to see if the symbol is defined in one of the symtabs.
1469 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1470 depending on whether or not we want to search global symbols or
1471 static symbols. */
1472
1473 static struct symbol *
1474 lookup_symbol_aux_symtabs (int block_index,
1475 const char *name, const char *linkage_name,
1476 const domain_enum domain)
1477 {
1478 struct symbol *sym;
1479 struct objfile *objfile;
1480 struct blockvector *bv;
1481 const struct block *block;
1482 struct symtab *s;
1483
1484 ALL_PRIMARY_SYMTABS (objfile, s)
1485 {
1486 bv = BLOCKVECTOR (s);
1487 block = BLOCKVECTOR_BLOCK (bv, block_index);
1488 sym = lookup_block_symbol (block, name, linkage_name, domain);
1489 if (sym)
1490 {
1491 block_found = block;
1492 return fixup_symbol_section (sym, objfile);
1493 }
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check to see if the symbol is defined in one of the partial
1500 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1501 STATIC_BLOCK, depending on whether or not we want to search global
1502 symbols or static symbols. */
1503
1504 static struct symbol *
1505 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1506 const char *linkage_name,
1507 const domain_enum domain)
1508 {
1509 struct symbol *sym;
1510 struct objfile *objfile;
1511 struct blockvector *bv;
1512 const struct block *block;
1513 struct partial_symtab *ps;
1514 struct symtab *s;
1515 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1516
1517 ALL_PSYMTABS (objfile, ps)
1518 {
1519 if (!ps->readin
1520 && lookup_partial_symbol (ps, name, linkage_name,
1521 psymtab_index, domain))
1522 {
1523 s = PSYMTAB_TO_SYMTAB (ps);
1524 bv = BLOCKVECTOR (s);
1525 block = BLOCKVECTOR_BLOCK (bv, block_index);
1526 sym = lookup_block_symbol (block, name, linkage_name, domain);
1527 if (!sym)
1528 {
1529 /* This shouldn't be necessary, but as a last resort try
1530 looking in the statics even though the psymtab claimed
1531 the symbol was global, or vice-versa. It's possible
1532 that the psymtab gets it wrong in some cases. */
1533
1534 /* FIXME: carlton/2002-09-30: Should we really do that?
1535 If that happens, isn't it likely to be a GDB error, in
1536 which case we should fix the GDB error rather than
1537 silently dealing with it here? So I'd vote for
1538 removing the check for the symbol in the other
1539 block. */
1540 block = BLOCKVECTOR_BLOCK (bv,
1541 block_index == GLOBAL_BLOCK ?
1542 STATIC_BLOCK : GLOBAL_BLOCK);
1543 sym = lookup_block_symbol (block, name, linkage_name, domain);
1544 if (!sym)
1545 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1546 block_index == GLOBAL_BLOCK ? "global" : "static",
1547 name, ps->filename, name, name);
1548 }
1549 return fixup_symbol_section (sym, objfile);
1550 }
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* A default version of lookup_symbol_nonlocal for use by languages
1557 that can't think of anything better to do. This implements the C
1558 lookup rules. */
1559
1560 struct symbol *
1561 basic_lookup_symbol_nonlocal (const char *name,
1562 const char *linkage_name,
1563 const struct block *block,
1564 const domain_enum domain)
1565 {
1566 struct symbol *sym;
1567
1568 /* NOTE: carlton/2003-05-19: The comments below were written when
1569 this (or what turned into this) was part of lookup_symbol_aux;
1570 I'm much less worried about these questions now, since these
1571 decisions have turned out well, but I leave these comments here
1572 for posterity. */
1573
1574 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1575 not it would be appropriate to search the current global block
1576 here as well. (That's what this code used to do before the
1577 is_a_field_of_this check was moved up.) On the one hand, it's
1578 redundant with the lookup_symbol_aux_symtabs search that happens
1579 next. On the other hand, if decode_line_1 is passed an argument
1580 like filename:var, then the user presumably wants 'var' to be
1581 searched for in filename. On the third hand, there shouldn't be
1582 multiple global variables all of which are named 'var', and it's
1583 not like decode_line_1 has ever restricted its search to only
1584 global variables in a single filename. All in all, only
1585 searching the static block here seems best: it's correct and it's
1586 cleanest. */
1587
1588 /* NOTE: carlton/2002-12-05: There's also a possible performance
1589 issue here: if you usually search for global symbols in the
1590 current file, then it would be slightly better to search the
1591 current global block before searching all the symtabs. But there
1592 are other factors that have a much greater effect on performance
1593 than that one, so I don't think we should worry about that for
1594 now. */
1595
1596 sym = lookup_symbol_static (name, linkage_name, block, domain);
1597 if (sym != NULL)
1598 return sym;
1599
1600 return lookup_symbol_global (name, linkage_name, block, domain);
1601 }
1602
1603 /* Lookup a symbol in the static block associated to BLOCK, if there
1604 is one; do nothing if BLOCK is NULL or a global block. */
1605
1606 struct symbol *
1607 lookup_symbol_static (const char *name,
1608 const char *linkage_name,
1609 const struct block *block,
1610 const domain_enum domain)
1611 {
1612 const struct block *static_block = block_static_block (block);
1613
1614 if (static_block != NULL)
1615 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1616 else
1617 return NULL;
1618 }
1619
1620 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1621 necessary). */
1622
1623 struct symbol *
1624 lookup_symbol_global (const char *name,
1625 const char *linkage_name,
1626 const struct block *block,
1627 const domain_enum domain)
1628 {
1629 struct symbol *sym = NULL;
1630 struct objfile *objfile = NULL;
1631
1632 /* Call library-specific lookup procedure. */
1633 objfile = lookup_objfile_from_block (block);
1634 if (objfile != NULL)
1635 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1636 if (sym != NULL)
1637 return sym;
1638
1639 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1640 if (sym != NULL)
1641 return sym;
1642
1643 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1644 }
1645
1646 int
1647 symbol_matches_domain (enum language symbol_language,
1648 domain_enum symbol_domain,
1649 domain_enum domain)
1650 {
1651 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1652 A Java class declaration also defines a typedef for the class.
1653 Similarly, any Ada type declaration implicitly defines a typedef. */
1654 if (symbol_language == language_cplus
1655 || symbol_language == language_java
1656 || symbol_language == language_ada)
1657 {
1658 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1659 && symbol_domain == STRUCT_DOMAIN)
1660 return 1;
1661 }
1662 /* For all other languages, strict match is required. */
1663 return (symbol_domain == domain);
1664 }
1665
1666 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1667 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1668 linkage name matches it. Check the global symbols if GLOBAL, the
1669 static symbols if not */
1670
1671 struct partial_symbol *
1672 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1673 const char *linkage_name, int global,
1674 domain_enum domain)
1675 {
1676 struct partial_symbol *temp;
1677 struct partial_symbol **start, **psym;
1678 struct partial_symbol **top, **real_top, **bottom, **center;
1679 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1680 int do_linear_search = 1;
1681
1682 if (length == 0)
1683 {
1684 return (NULL);
1685 }
1686 start = (global ?
1687 pst->objfile->global_psymbols.list + pst->globals_offset :
1688 pst->objfile->static_psymbols.list + pst->statics_offset);
1689
1690 if (global) /* This means we can use a binary search. */
1691 {
1692 do_linear_search = 0;
1693
1694 /* Binary search. This search is guaranteed to end with center
1695 pointing at the earliest partial symbol whose name might be
1696 correct. At that point *all* partial symbols with an
1697 appropriate name will be checked against the correct
1698 domain. */
1699
1700 bottom = start;
1701 top = start + length - 1;
1702 real_top = top;
1703 while (top > bottom)
1704 {
1705 center = bottom + (top - bottom) / 2;
1706 if (!(center < top))
1707 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1708 if (!do_linear_search
1709 && (SYMBOL_LANGUAGE (*center) == language_java))
1710 {
1711 do_linear_search = 1;
1712 }
1713 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1714 {
1715 top = center;
1716 }
1717 else
1718 {
1719 bottom = center + 1;
1720 }
1721 }
1722 if (!(top == bottom))
1723 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1724
1725 while (top <= real_top
1726 && (linkage_name != NULL
1727 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1728 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1729 {
1730 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1731 SYMBOL_DOMAIN (*top), domain))
1732 return (*top);
1733 top++;
1734 }
1735 }
1736
1737 /* Can't use a binary search or else we found during the binary search that
1738 we should also do a linear search. */
1739
1740 if (do_linear_search)
1741 {
1742 for (psym = start; psym < start + length; psym++)
1743 {
1744 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1745 SYMBOL_DOMAIN (*psym), domain))
1746 {
1747 if (linkage_name != NULL
1748 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1749 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1750 {
1751 return (*psym);
1752 }
1753 }
1754 }
1755 }
1756
1757 return (NULL);
1758 }
1759
1760 /* Look up a type named NAME in the struct_domain. The type returned
1761 must not be opaque -- i.e., must have at least one field
1762 defined. */
1763
1764 struct type *
1765 lookup_transparent_type (const char *name)
1766 {
1767 return current_language->la_lookup_transparent_type (name);
1768 }
1769
1770 /* The standard implementation of lookup_transparent_type. This code
1771 was modeled on lookup_symbol -- the parts not relevant to looking
1772 up types were just left out. In particular it's assumed here that
1773 types are available in struct_domain and only at file-static or
1774 global blocks. */
1775
1776 struct type *
1777 basic_lookup_transparent_type (const char *name)
1778 {
1779 struct symbol *sym;
1780 struct symtab *s = NULL;
1781 struct partial_symtab *ps;
1782 struct blockvector *bv;
1783 struct objfile *objfile;
1784 struct block *block;
1785
1786 /* Now search all the global symbols. Do the symtab's first, then
1787 check the psymtab's. If a psymtab indicates the existence
1788 of the desired name as a global, then do psymtab-to-symtab
1789 conversion on the fly and return the found symbol. */
1790
1791 ALL_PRIMARY_SYMTABS (objfile, s)
1792 {
1793 bv = BLOCKVECTOR (s);
1794 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1795 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1796 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1797 {
1798 return SYMBOL_TYPE (sym);
1799 }
1800 }
1801
1802 ALL_PSYMTABS (objfile, ps)
1803 {
1804 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1805 1, STRUCT_DOMAIN))
1806 {
1807 s = PSYMTAB_TO_SYMTAB (ps);
1808 bv = BLOCKVECTOR (s);
1809 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1810 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1811 if (!sym)
1812 {
1813 /* This shouldn't be necessary, but as a last resort
1814 * try looking in the statics even though the psymtab
1815 * claimed the symbol was global. It's possible that
1816 * the psymtab gets it wrong in some cases.
1817 */
1818 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1819 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1820 if (!sym)
1821 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1822 %s may be an inlined function, or may be a template function\n\
1823 (if a template, try specifying an instantiation: %s<type>)."),
1824 name, ps->filename, name, name);
1825 }
1826 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1827 return SYMBOL_TYPE (sym);
1828 }
1829 }
1830
1831 /* Now search the static file-level symbols.
1832 Not strictly correct, but more useful than an error.
1833 Do the symtab's first, then
1834 check the psymtab's. If a psymtab indicates the existence
1835 of the desired name as a file-level static, then do psymtab-to-symtab
1836 conversion on the fly and return the found symbol.
1837 */
1838
1839 ALL_PRIMARY_SYMTABS (objfile, s)
1840 {
1841 bv = BLOCKVECTOR (s);
1842 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1843 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1844 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1845 {
1846 return SYMBOL_TYPE (sym);
1847 }
1848 }
1849
1850 ALL_PSYMTABS (objfile, ps)
1851 {
1852 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1853 {
1854 s = PSYMTAB_TO_SYMTAB (ps);
1855 bv = BLOCKVECTOR (s);
1856 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1857 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1858 if (!sym)
1859 {
1860 /* This shouldn't be necessary, but as a last resort
1861 * try looking in the globals even though the psymtab
1862 * claimed the symbol was static. It's possible that
1863 * the psymtab gets it wrong in some cases.
1864 */
1865 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1866 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1867 if (!sym)
1868 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1869 %s may be an inlined function, or may be a template function\n\
1870 (if a template, try specifying an instantiation: %s<type>)."),
1871 name, ps->filename, name, name);
1872 }
1873 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1874 return SYMBOL_TYPE (sym);
1875 }
1876 }
1877 return (struct type *) 0;
1878 }
1879
1880
1881 /* Find the psymtab containing main(). */
1882 /* FIXME: What about languages without main() or specially linked
1883 executables that have no main() ? */
1884
1885 struct partial_symtab *
1886 find_main_psymtab (void)
1887 {
1888 struct partial_symtab *pst;
1889 struct objfile *objfile;
1890
1891 ALL_PSYMTABS (objfile, pst)
1892 {
1893 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1894 {
1895 return (pst);
1896 }
1897 }
1898 return (NULL);
1899 }
1900
1901 /* Search BLOCK for symbol NAME in DOMAIN.
1902
1903 Note that if NAME is the demangled form of a C++ symbol, we will fail
1904 to find a match during the binary search of the non-encoded names, but
1905 for now we don't worry about the slight inefficiency of looking for
1906 a match we'll never find, since it will go pretty quick. Once the
1907 binary search terminates, we drop through and do a straight linear
1908 search on the symbols. Each symbol which is marked as being a ObjC/C++
1909 symbol (language_cplus or language_objc set) has both the encoded and
1910 non-encoded names tested for a match.
1911
1912 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1913 particular mangled name.
1914 */
1915
1916 struct symbol *
1917 lookup_block_symbol (const struct block *block, const char *name,
1918 const char *linkage_name,
1919 const domain_enum domain)
1920 {
1921 struct dict_iterator iter;
1922 struct symbol *sym;
1923
1924 if (!BLOCK_FUNCTION (block))
1925 {
1926 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1927 sym != NULL;
1928 sym = dict_iter_name_next (name, &iter))
1929 {
1930 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1931 SYMBOL_DOMAIN (sym), domain)
1932 && (linkage_name != NULL
1933 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1934 return sym;
1935 }
1936 return NULL;
1937 }
1938 else
1939 {
1940 /* Note that parameter symbols do not always show up last in the
1941 list; this loop makes sure to take anything else other than
1942 parameter symbols first; it only uses parameter symbols as a
1943 last resort. Note that this only takes up extra computation
1944 time on a match. */
1945
1946 struct symbol *sym_found = NULL;
1947
1948 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1949 sym != NULL;
1950 sym = dict_iter_name_next (name, &iter))
1951 {
1952 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1953 SYMBOL_DOMAIN (sym), domain)
1954 && (linkage_name != NULL
1955 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1956 {
1957 sym_found = sym;
1958 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1959 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1960 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1961 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1962 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1963 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1964 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1965 {
1966 break;
1967 }
1968 }
1969 }
1970 return (sym_found); /* Will be NULL if not found. */
1971 }
1972 }
1973
1974 /* Find the symtab associated with PC and SECTION. Look through the
1975 psymtabs and read in another symtab if necessary. */
1976
1977 struct symtab *
1978 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1979 {
1980 struct block *b;
1981 struct blockvector *bv;
1982 struct symtab *s = NULL;
1983 struct symtab *best_s = NULL;
1984 struct partial_symtab *ps;
1985 struct objfile *objfile;
1986 CORE_ADDR distance = 0;
1987 struct minimal_symbol *msymbol;
1988
1989 /* If we know that this is not a text address, return failure. This is
1990 necessary because we loop based on the block's high and low code
1991 addresses, which do not include the data ranges, and because
1992 we call find_pc_sect_psymtab which has a similar restriction based
1993 on the partial_symtab's texthigh and textlow. */
1994 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1995 if (msymbol
1996 && (msymbol->type == mst_data
1997 || msymbol->type == mst_bss
1998 || msymbol->type == mst_abs
1999 || msymbol->type == mst_file_data
2000 || msymbol->type == mst_file_bss))
2001 return NULL;
2002
2003 /* Search all symtabs for the one whose file contains our address, and which
2004 is the smallest of all the ones containing the address. This is designed
2005 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2006 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2007 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2008
2009 This happens for native ecoff format, where code from included files
2010 gets its own symtab. The symtab for the included file should have
2011 been read in already via the dependency mechanism.
2012 It might be swifter to create several symtabs with the same name
2013 like xcoff does (I'm not sure).
2014
2015 It also happens for objfiles that have their functions reordered.
2016 For these, the symtab we are looking for is not necessarily read in. */
2017
2018 ALL_PRIMARY_SYMTABS (objfile, s)
2019 {
2020 bv = BLOCKVECTOR (s);
2021 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2022
2023 if (BLOCK_START (b) <= pc
2024 && BLOCK_END (b) > pc
2025 && (distance == 0
2026 || BLOCK_END (b) - BLOCK_START (b) < distance))
2027 {
2028 /* For an objfile that has its functions reordered,
2029 find_pc_psymtab will find the proper partial symbol table
2030 and we simply return its corresponding symtab. */
2031 /* In order to better support objfiles that contain both
2032 stabs and coff debugging info, we continue on if a psymtab
2033 can't be found. */
2034 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2035 {
2036 ps = find_pc_sect_psymtab (pc, section);
2037 if (ps)
2038 return PSYMTAB_TO_SYMTAB (ps);
2039 }
2040 if (section != 0)
2041 {
2042 struct dict_iterator iter;
2043 struct symbol *sym = NULL;
2044
2045 ALL_BLOCK_SYMBOLS (b, iter, sym)
2046 {
2047 fixup_symbol_section (sym, objfile);
2048 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
2049 break;
2050 }
2051 if (sym == NULL)
2052 continue; /* no symbol in this symtab matches section */
2053 }
2054 distance = BLOCK_END (b) - BLOCK_START (b);
2055 best_s = s;
2056 }
2057 }
2058
2059 if (best_s != NULL)
2060 return (best_s);
2061
2062 s = NULL;
2063 ps = find_pc_sect_psymtab (pc, section);
2064 if (ps)
2065 {
2066 if (ps->readin)
2067 /* Might want to error() here (in case symtab is corrupt and
2068 will cause a core dump), but maybe we can successfully
2069 continue, so let's not. */
2070 warning (_("\
2071 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2072 paddr_nz (pc));
2073 s = PSYMTAB_TO_SYMTAB (ps);
2074 }
2075 return (s);
2076 }
2077
2078 /* Find the symtab associated with PC. Look through the psymtabs and
2079 read in another symtab if necessary. Backward compatibility, no section */
2080
2081 struct symtab *
2082 find_pc_symtab (CORE_ADDR pc)
2083 {
2084 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2085 }
2086 \f
2087
2088 /* Find the source file and line number for a given PC value and SECTION.
2089 Return a structure containing a symtab pointer, a line number,
2090 and a pc range for the entire source line.
2091 The value's .pc field is NOT the specified pc.
2092 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2093 use the line that ends there. Otherwise, in that case, the line
2094 that begins there is used. */
2095
2096 /* The big complication here is that a line may start in one file, and end just
2097 before the start of another file. This usually occurs when you #include
2098 code in the middle of a subroutine. To properly find the end of a line's PC
2099 range, we must search all symtabs associated with this compilation unit, and
2100 find the one whose first PC is closer than that of the next line in this
2101 symtab. */
2102
2103 /* If it's worth the effort, we could be using a binary search. */
2104
2105 struct symtab_and_line
2106 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2107 {
2108 struct symtab *s;
2109 struct linetable *l;
2110 int len;
2111 int i;
2112 struct linetable_entry *item;
2113 struct symtab_and_line val;
2114 struct blockvector *bv;
2115 struct minimal_symbol *msymbol;
2116 struct minimal_symbol *mfunsym;
2117
2118 /* Info on best line seen so far, and where it starts, and its file. */
2119
2120 struct linetable_entry *best = NULL;
2121 CORE_ADDR best_end = 0;
2122 struct symtab *best_symtab = 0;
2123
2124 /* Store here the first line number
2125 of a file which contains the line at the smallest pc after PC.
2126 If we don't find a line whose range contains PC,
2127 we will use a line one less than this,
2128 with a range from the start of that file to the first line's pc. */
2129 struct linetable_entry *alt = NULL;
2130 struct symtab *alt_symtab = 0;
2131
2132 /* Info on best line seen in this file. */
2133
2134 struct linetable_entry *prev;
2135
2136 /* If this pc is not from the current frame,
2137 it is the address of the end of a call instruction.
2138 Quite likely that is the start of the following statement.
2139 But what we want is the statement containing the instruction.
2140 Fudge the pc to make sure we get that. */
2141
2142 init_sal (&val); /* initialize to zeroes */
2143
2144 /* It's tempting to assume that, if we can't find debugging info for
2145 any function enclosing PC, that we shouldn't search for line
2146 number info, either. However, GAS can emit line number info for
2147 assembly files --- very helpful when debugging hand-written
2148 assembly code. In such a case, we'd have no debug info for the
2149 function, but we would have line info. */
2150
2151 if (notcurrent)
2152 pc -= 1;
2153
2154 /* elz: added this because this function returned the wrong
2155 information if the pc belongs to a stub (import/export)
2156 to call a shlib function. This stub would be anywhere between
2157 two functions in the target, and the line info was erroneously
2158 taken to be the one of the line before the pc.
2159 */
2160 /* RT: Further explanation:
2161
2162 * We have stubs (trampolines) inserted between procedures.
2163 *
2164 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2165 * exists in the main image.
2166 *
2167 * In the minimal symbol table, we have a bunch of symbols
2168 * sorted by start address. The stubs are marked as "trampoline",
2169 * the others appear as text. E.g.:
2170 *
2171 * Minimal symbol table for main image
2172 * main: code for main (text symbol)
2173 * shr1: stub (trampoline symbol)
2174 * foo: code for foo (text symbol)
2175 * ...
2176 * Minimal symbol table for "shr1" image:
2177 * ...
2178 * shr1: code for shr1 (text symbol)
2179 * ...
2180 *
2181 * So the code below is trying to detect if we are in the stub
2182 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2183 * and if found, do the symbolization from the real-code address
2184 * rather than the stub address.
2185 *
2186 * Assumptions being made about the minimal symbol table:
2187 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2188 * if we're really in the trampoline. If we're beyond it (say
2189 * we're in "foo" in the above example), it'll have a closer
2190 * symbol (the "foo" text symbol for example) and will not
2191 * return the trampoline.
2192 * 2. lookup_minimal_symbol_text() will find a real text symbol
2193 * corresponding to the trampoline, and whose address will
2194 * be different than the trampoline address. I put in a sanity
2195 * check for the address being the same, to avoid an
2196 * infinite recursion.
2197 */
2198 msymbol = lookup_minimal_symbol_by_pc (pc);
2199 if (msymbol != NULL)
2200 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2201 {
2202 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2203 NULL);
2204 if (mfunsym == NULL)
2205 /* I eliminated this warning since it is coming out
2206 * in the following situation:
2207 * gdb shmain // test program with shared libraries
2208 * (gdb) break shr1 // function in shared lib
2209 * Warning: In stub for ...
2210 * In the above situation, the shared lib is not loaded yet,
2211 * so of course we can't find the real func/line info,
2212 * but the "break" still works, and the warning is annoying.
2213 * So I commented out the warning. RT */
2214 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2215 /* fall through */
2216 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2217 /* Avoid infinite recursion */
2218 /* See above comment about why warning is commented out */
2219 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2220 /* fall through */
2221 else
2222 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2223 }
2224
2225
2226 s = find_pc_sect_symtab (pc, section);
2227 if (!s)
2228 {
2229 /* if no symbol information, return previous pc */
2230 if (notcurrent)
2231 pc++;
2232 val.pc = pc;
2233 return val;
2234 }
2235
2236 bv = BLOCKVECTOR (s);
2237
2238 /* Look at all the symtabs that share this blockvector.
2239 They all have the same apriori range, that we found was right;
2240 but they have different line tables. */
2241
2242 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2243 {
2244 /* Find the best line in this symtab. */
2245 l = LINETABLE (s);
2246 if (!l)
2247 continue;
2248 len = l->nitems;
2249 if (len <= 0)
2250 {
2251 /* I think len can be zero if the symtab lacks line numbers
2252 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2253 I'm not sure which, and maybe it depends on the symbol
2254 reader). */
2255 continue;
2256 }
2257
2258 prev = NULL;
2259 item = l->item; /* Get first line info */
2260
2261 /* Is this file's first line closer than the first lines of other files?
2262 If so, record this file, and its first line, as best alternate. */
2263 if (item->pc > pc && (!alt || item->pc < alt->pc))
2264 {
2265 alt = item;
2266 alt_symtab = s;
2267 }
2268
2269 for (i = 0; i < len; i++, item++)
2270 {
2271 /* Leave prev pointing to the linetable entry for the last line
2272 that started at or before PC. */
2273 if (item->pc > pc)
2274 break;
2275
2276 prev = item;
2277 }
2278
2279 /* At this point, prev points at the line whose start addr is <= pc, and
2280 item points at the next line. If we ran off the end of the linetable
2281 (pc >= start of the last line), then prev == item. If pc < start of
2282 the first line, prev will not be set. */
2283
2284 /* Is this file's best line closer than the best in the other files?
2285 If so, record this file, and its best line, as best so far. Don't
2286 save prev if it represents the end of a function (i.e. line number
2287 0) instead of a real line. */
2288
2289 if (prev && prev->line && (!best || prev->pc > best->pc))
2290 {
2291 best = prev;
2292 best_symtab = s;
2293
2294 /* Discard BEST_END if it's before the PC of the current BEST. */
2295 if (best_end <= best->pc)
2296 best_end = 0;
2297 }
2298
2299 /* If another line (denoted by ITEM) is in the linetable and its
2300 PC is after BEST's PC, but before the current BEST_END, then
2301 use ITEM's PC as the new best_end. */
2302 if (best && i < len && item->pc > best->pc
2303 && (best_end == 0 || best_end > item->pc))
2304 best_end = item->pc;
2305 }
2306
2307 if (!best_symtab)
2308 {
2309 /* If we didn't find any line number info, just return zeros.
2310 We used to return alt->line - 1 here, but that could be
2311 anywhere; if we don't have line number info for this PC,
2312 don't make some up. */
2313 val.pc = pc;
2314 }
2315 else if (best->line == 0)
2316 {
2317 /* If our best fit is in a range of PC's for which no line
2318 number info is available (line number is zero) then we didn't
2319 find any valid line information. */
2320 val.pc = pc;
2321 }
2322 else
2323 {
2324 val.symtab = best_symtab;
2325 val.line = best->line;
2326 val.pc = best->pc;
2327 if (best_end && (!alt || best_end < alt->pc))
2328 val.end = best_end;
2329 else if (alt)
2330 val.end = alt->pc;
2331 else
2332 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2333 }
2334 val.section = section;
2335 return val;
2336 }
2337
2338 /* Backward compatibility (no section) */
2339
2340 struct symtab_and_line
2341 find_pc_line (CORE_ADDR pc, int notcurrent)
2342 {
2343 asection *section;
2344
2345 section = find_pc_overlay (pc);
2346 if (pc_in_unmapped_range (pc, section))
2347 pc = overlay_mapped_address (pc, section);
2348 return find_pc_sect_line (pc, section, notcurrent);
2349 }
2350 \f
2351 /* Find line number LINE in any symtab whose name is the same as
2352 SYMTAB.
2353
2354 If found, return the symtab that contains the linetable in which it was
2355 found, set *INDEX to the index in the linetable of the best entry
2356 found, and set *EXACT_MATCH nonzero if the value returned is an
2357 exact match.
2358
2359 If not found, return NULL. */
2360
2361 struct symtab *
2362 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2363 {
2364 int exact;
2365
2366 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2367 so far seen. */
2368
2369 int best_index;
2370 struct linetable *best_linetable;
2371 struct symtab *best_symtab;
2372
2373 /* First try looking it up in the given symtab. */
2374 best_linetable = LINETABLE (symtab);
2375 best_symtab = symtab;
2376 best_index = find_line_common (best_linetable, line, &exact);
2377 if (best_index < 0 || !exact)
2378 {
2379 /* Didn't find an exact match. So we better keep looking for
2380 another symtab with the same name. In the case of xcoff,
2381 multiple csects for one source file (produced by IBM's FORTRAN
2382 compiler) produce multiple symtabs (this is unavoidable
2383 assuming csects can be at arbitrary places in memory and that
2384 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2385
2386 /* BEST is the smallest linenumber > LINE so far seen,
2387 or 0 if none has been seen so far.
2388 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2389 int best;
2390
2391 struct objfile *objfile;
2392 struct symtab *s;
2393 struct partial_symtab *p;
2394
2395 if (best_index >= 0)
2396 best = best_linetable->item[best_index].line;
2397 else
2398 best = 0;
2399
2400 ALL_PSYMTABS (objfile, p)
2401 {
2402 if (strcmp (symtab->filename, p->filename) != 0)
2403 continue;
2404 PSYMTAB_TO_SYMTAB (p);
2405 }
2406
2407 ALL_SYMTABS (objfile, s)
2408 {
2409 struct linetable *l;
2410 int ind;
2411
2412 if (strcmp (symtab->filename, s->filename) != 0)
2413 continue;
2414 l = LINETABLE (s);
2415 ind = find_line_common (l, line, &exact);
2416 if (ind >= 0)
2417 {
2418 if (exact)
2419 {
2420 best_index = ind;
2421 best_linetable = l;
2422 best_symtab = s;
2423 goto done;
2424 }
2425 if (best == 0 || l->item[ind].line < best)
2426 {
2427 best = l->item[ind].line;
2428 best_index = ind;
2429 best_linetable = l;
2430 best_symtab = s;
2431 }
2432 }
2433 }
2434 }
2435 done:
2436 if (best_index < 0)
2437 return NULL;
2438
2439 if (index)
2440 *index = best_index;
2441 if (exact_match)
2442 *exact_match = exact;
2443
2444 return best_symtab;
2445 }
2446 \f
2447 /* Set the PC value for a given source file and line number and return true.
2448 Returns zero for invalid line number (and sets the PC to 0).
2449 The source file is specified with a struct symtab. */
2450
2451 int
2452 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2453 {
2454 struct linetable *l;
2455 int ind;
2456
2457 *pc = 0;
2458 if (symtab == 0)
2459 return 0;
2460
2461 symtab = find_line_symtab (symtab, line, &ind, NULL);
2462 if (symtab != NULL)
2463 {
2464 l = LINETABLE (symtab);
2465 *pc = l->item[ind].pc;
2466 return 1;
2467 }
2468 else
2469 return 0;
2470 }
2471
2472 /* Find the range of pc values in a line.
2473 Store the starting pc of the line into *STARTPTR
2474 and the ending pc (start of next line) into *ENDPTR.
2475 Returns 1 to indicate success.
2476 Returns 0 if could not find the specified line. */
2477
2478 int
2479 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2480 CORE_ADDR *endptr)
2481 {
2482 CORE_ADDR startaddr;
2483 struct symtab_and_line found_sal;
2484
2485 startaddr = sal.pc;
2486 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2487 return 0;
2488
2489 /* This whole function is based on address. For example, if line 10 has
2490 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2491 "info line *0x123" should say the line goes from 0x100 to 0x200
2492 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2493 This also insures that we never give a range like "starts at 0x134
2494 and ends at 0x12c". */
2495
2496 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2497 if (found_sal.line != sal.line)
2498 {
2499 /* The specified line (sal) has zero bytes. */
2500 *startptr = found_sal.pc;
2501 *endptr = found_sal.pc;
2502 }
2503 else
2504 {
2505 *startptr = found_sal.pc;
2506 *endptr = found_sal.end;
2507 }
2508 return 1;
2509 }
2510
2511 /* Given a line table and a line number, return the index into the line
2512 table for the pc of the nearest line whose number is >= the specified one.
2513 Return -1 if none is found. The value is >= 0 if it is an index.
2514
2515 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2516
2517 static int
2518 find_line_common (struct linetable *l, int lineno,
2519 int *exact_match)
2520 {
2521 int i;
2522 int len;
2523
2524 /* BEST is the smallest linenumber > LINENO so far seen,
2525 or 0 if none has been seen so far.
2526 BEST_INDEX identifies the item for it. */
2527
2528 int best_index = -1;
2529 int best = 0;
2530
2531 *exact_match = 0;
2532
2533 if (lineno <= 0)
2534 return -1;
2535 if (l == 0)
2536 return -1;
2537
2538 len = l->nitems;
2539 for (i = 0; i < len; i++)
2540 {
2541 struct linetable_entry *item = &(l->item[i]);
2542
2543 if (item->line == lineno)
2544 {
2545 /* Return the first (lowest address) entry which matches. */
2546 *exact_match = 1;
2547 return i;
2548 }
2549
2550 if (item->line > lineno && (best == 0 || item->line < best))
2551 {
2552 best = item->line;
2553 best_index = i;
2554 }
2555 }
2556
2557 /* If we got here, we didn't get an exact match. */
2558 return best_index;
2559 }
2560
2561 int
2562 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2563 {
2564 struct symtab_and_line sal;
2565 sal = find_pc_line (pc, 0);
2566 *startptr = sal.pc;
2567 *endptr = sal.end;
2568 return sal.symtab != 0;
2569 }
2570
2571 /* Given a function start address PC and SECTION, find the first
2572 address after the function prologue. */
2573 CORE_ADDR
2574 find_function_start_pc (struct gdbarch *gdbarch,
2575 CORE_ADDR pc, asection *section)
2576 {
2577 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2578 so that gdbarch_skip_prologue has something unique to work on. */
2579 if (section_is_overlay (section) && !section_is_mapped (section))
2580 pc = overlay_unmapped_address (pc, section);
2581
2582 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2583 pc = gdbarch_skip_prologue (gdbarch, pc);
2584
2585 /* For overlays, map pc back into its mapped VMA range. */
2586 pc = overlay_mapped_address (pc, section);
2587
2588 return pc;
2589 }
2590
2591 /* Given a function symbol SYM, find the symtab and line for the start
2592 of the function.
2593 If the argument FUNFIRSTLINE is nonzero, we want the first line
2594 of real code inside the function. */
2595
2596 struct symtab_and_line
2597 find_function_start_sal (struct symbol *sym, int funfirstline)
2598 {
2599 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2600 struct objfile *objfile = lookup_objfile_from_block (block);
2601 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2602
2603 CORE_ADDR pc;
2604 struct symtab_and_line sal;
2605
2606 pc = BLOCK_START (block);
2607 fixup_symbol_section (sym, objfile);
2608 if (funfirstline)
2609 {
2610 /* Skip "first line" of function (which is actually its prologue). */
2611 pc = find_function_start_pc (gdbarch, pc, SYMBOL_BFD_SECTION (sym));
2612 }
2613 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2614
2615 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2616 line is still part of the same function. */
2617 if (sal.pc != pc
2618 && BLOCK_START (block) <= sal.end
2619 && sal.end < BLOCK_END (block))
2620 {
2621 /* First pc of next line */
2622 pc = sal.end;
2623 /* Recalculate the line number (might not be N+1). */
2624 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2625 }
2626 sal.pc = pc;
2627
2628 return sal;
2629 }
2630
2631 /* If P is of the form "operator[ \t]+..." where `...' is
2632 some legitimate operator text, return a pointer to the
2633 beginning of the substring of the operator text.
2634 Otherwise, return "". */
2635 char *
2636 operator_chars (char *p, char **end)
2637 {
2638 *end = "";
2639 if (strncmp (p, "operator", 8))
2640 return *end;
2641 p += 8;
2642
2643 /* Don't get faked out by `operator' being part of a longer
2644 identifier. */
2645 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2646 return *end;
2647
2648 /* Allow some whitespace between `operator' and the operator symbol. */
2649 while (*p == ' ' || *p == '\t')
2650 p++;
2651
2652 /* Recognize 'operator TYPENAME'. */
2653
2654 if (isalpha (*p) || *p == '_' || *p == '$')
2655 {
2656 char *q = p + 1;
2657 while (isalnum (*q) || *q == '_' || *q == '$')
2658 q++;
2659 *end = q;
2660 return p;
2661 }
2662
2663 while (*p)
2664 switch (*p)
2665 {
2666 case '\\': /* regexp quoting */
2667 if (p[1] == '*')
2668 {
2669 if (p[2] == '=') /* 'operator\*=' */
2670 *end = p + 3;
2671 else /* 'operator\*' */
2672 *end = p + 2;
2673 return p;
2674 }
2675 else if (p[1] == '[')
2676 {
2677 if (p[2] == ']')
2678 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2679 else if (p[2] == '\\' && p[3] == ']')
2680 {
2681 *end = p + 4; /* 'operator\[\]' */
2682 return p;
2683 }
2684 else
2685 error (_("nothing is allowed between '[' and ']'"));
2686 }
2687 else
2688 {
2689 /* Gratuitous qoute: skip it and move on. */
2690 p++;
2691 continue;
2692 }
2693 break;
2694 case '!':
2695 case '=':
2696 case '*':
2697 case '/':
2698 case '%':
2699 case '^':
2700 if (p[1] == '=')
2701 *end = p + 2;
2702 else
2703 *end = p + 1;
2704 return p;
2705 case '<':
2706 case '>':
2707 case '+':
2708 case '-':
2709 case '&':
2710 case '|':
2711 if (p[0] == '-' && p[1] == '>')
2712 {
2713 /* Struct pointer member operator 'operator->'. */
2714 if (p[2] == '*')
2715 {
2716 *end = p + 3; /* 'operator->*' */
2717 return p;
2718 }
2719 else if (p[2] == '\\')
2720 {
2721 *end = p + 4; /* Hopefully 'operator->\*' */
2722 return p;
2723 }
2724 else
2725 {
2726 *end = p + 2; /* 'operator->' */
2727 return p;
2728 }
2729 }
2730 if (p[1] == '=' || p[1] == p[0])
2731 *end = p + 2;
2732 else
2733 *end = p + 1;
2734 return p;
2735 case '~':
2736 case ',':
2737 *end = p + 1;
2738 return p;
2739 case '(':
2740 if (p[1] != ')')
2741 error (_("`operator ()' must be specified without whitespace in `()'"));
2742 *end = p + 2;
2743 return p;
2744 case '?':
2745 if (p[1] != ':')
2746 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2747 *end = p + 2;
2748 return p;
2749 case '[':
2750 if (p[1] != ']')
2751 error (_("`operator []' must be specified without whitespace in `[]'"));
2752 *end = p + 2;
2753 return p;
2754 default:
2755 error (_("`operator %s' not supported"), p);
2756 break;
2757 }
2758
2759 *end = "";
2760 return *end;
2761 }
2762 \f
2763
2764 /* If FILE is not already in the table of files, return zero;
2765 otherwise return non-zero. Optionally add FILE to the table if ADD
2766 is non-zero. If *FIRST is non-zero, forget the old table
2767 contents. */
2768 static int
2769 filename_seen (const char *file, int add, int *first)
2770 {
2771 /* Table of files seen so far. */
2772 static const char **tab = NULL;
2773 /* Allocated size of tab in elements.
2774 Start with one 256-byte block (when using GNU malloc.c).
2775 24 is the malloc overhead when range checking is in effect. */
2776 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2777 /* Current size of tab in elements. */
2778 static int tab_cur_size;
2779 const char **p;
2780
2781 if (*first)
2782 {
2783 if (tab == NULL)
2784 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2785 tab_cur_size = 0;
2786 }
2787
2788 /* Is FILE in tab? */
2789 for (p = tab; p < tab + tab_cur_size; p++)
2790 if (strcmp (*p, file) == 0)
2791 return 1;
2792
2793 /* No; maybe add it to tab. */
2794 if (add)
2795 {
2796 if (tab_cur_size == tab_alloc_size)
2797 {
2798 tab_alloc_size *= 2;
2799 tab = (const char **) xrealloc ((char *) tab,
2800 tab_alloc_size * sizeof (*tab));
2801 }
2802 tab[tab_cur_size++] = file;
2803 }
2804
2805 return 0;
2806 }
2807
2808 /* Slave routine for sources_info. Force line breaks at ,'s.
2809 NAME is the name to print and *FIRST is nonzero if this is the first
2810 name printed. Set *FIRST to zero. */
2811 static void
2812 output_source_filename (const char *name, int *first)
2813 {
2814 /* Since a single source file can result in several partial symbol
2815 tables, we need to avoid printing it more than once. Note: if
2816 some of the psymtabs are read in and some are not, it gets
2817 printed both under "Source files for which symbols have been
2818 read" and "Source files for which symbols will be read in on
2819 demand". I consider this a reasonable way to deal with the
2820 situation. I'm not sure whether this can also happen for
2821 symtabs; it doesn't hurt to check. */
2822
2823 /* Was NAME already seen? */
2824 if (filename_seen (name, 1, first))
2825 {
2826 /* Yes; don't print it again. */
2827 return;
2828 }
2829 /* No; print it and reset *FIRST. */
2830 if (*first)
2831 {
2832 *first = 0;
2833 }
2834 else
2835 {
2836 printf_filtered (", ");
2837 }
2838
2839 wrap_here ("");
2840 fputs_filtered (name, gdb_stdout);
2841 }
2842
2843 static void
2844 sources_info (char *ignore, int from_tty)
2845 {
2846 struct symtab *s;
2847 struct partial_symtab *ps;
2848 struct objfile *objfile;
2849 int first;
2850
2851 if (!have_full_symbols () && !have_partial_symbols ())
2852 {
2853 error (_("No symbol table is loaded. Use the \"file\" command."));
2854 }
2855
2856 printf_filtered ("Source files for which symbols have been read in:\n\n");
2857
2858 first = 1;
2859 ALL_SYMTABS (objfile, s)
2860 {
2861 const char *fullname = symtab_to_fullname (s);
2862 output_source_filename (fullname ? fullname : s->filename, &first);
2863 }
2864 printf_filtered ("\n\n");
2865
2866 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2867
2868 first = 1;
2869 ALL_PSYMTABS (objfile, ps)
2870 {
2871 if (!ps->readin)
2872 {
2873 const char *fullname = psymtab_to_fullname (ps);
2874 output_source_filename (fullname ? fullname : ps->filename, &first);
2875 }
2876 }
2877 printf_filtered ("\n");
2878 }
2879
2880 static int
2881 file_matches (char *file, char *files[], int nfiles)
2882 {
2883 int i;
2884
2885 if (file != NULL && nfiles != 0)
2886 {
2887 for (i = 0; i < nfiles; i++)
2888 {
2889 if (strcmp (files[i], lbasename (file)) == 0)
2890 return 1;
2891 }
2892 }
2893 else if (nfiles == 0)
2894 return 1;
2895 return 0;
2896 }
2897
2898 /* Free any memory associated with a search. */
2899 void
2900 free_search_symbols (struct symbol_search *symbols)
2901 {
2902 struct symbol_search *p;
2903 struct symbol_search *next;
2904
2905 for (p = symbols; p != NULL; p = next)
2906 {
2907 next = p->next;
2908 xfree (p);
2909 }
2910 }
2911
2912 static void
2913 do_free_search_symbols_cleanup (void *symbols)
2914 {
2915 free_search_symbols (symbols);
2916 }
2917
2918 struct cleanup *
2919 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2920 {
2921 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2922 }
2923
2924 /* Helper function for sort_search_symbols and qsort. Can only
2925 sort symbols, not minimal symbols. */
2926 static int
2927 compare_search_syms (const void *sa, const void *sb)
2928 {
2929 struct symbol_search **sym_a = (struct symbol_search **) sa;
2930 struct symbol_search **sym_b = (struct symbol_search **) sb;
2931
2932 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2933 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2934 }
2935
2936 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2937 prevtail where it is, but update its next pointer to point to
2938 the first of the sorted symbols. */
2939 static struct symbol_search *
2940 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2941 {
2942 struct symbol_search **symbols, *symp, *old_next;
2943 int i;
2944
2945 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2946 * nfound);
2947 symp = prevtail->next;
2948 for (i = 0; i < nfound; i++)
2949 {
2950 symbols[i] = symp;
2951 symp = symp->next;
2952 }
2953 /* Generally NULL. */
2954 old_next = symp;
2955
2956 qsort (symbols, nfound, sizeof (struct symbol_search *),
2957 compare_search_syms);
2958
2959 symp = prevtail;
2960 for (i = 0; i < nfound; i++)
2961 {
2962 symp->next = symbols[i];
2963 symp = symp->next;
2964 }
2965 symp->next = old_next;
2966
2967 xfree (symbols);
2968 return symp;
2969 }
2970
2971 /* Search the symbol table for matches to the regular expression REGEXP,
2972 returning the results in *MATCHES.
2973
2974 Only symbols of KIND are searched:
2975 FUNCTIONS_DOMAIN - search all functions
2976 TYPES_DOMAIN - search all type names
2977 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2978 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2979 and constants (enums)
2980
2981 free_search_symbols should be called when *MATCHES is no longer needed.
2982
2983 The results are sorted locally; each symtab's global and static blocks are
2984 separately alphabetized.
2985 */
2986 void
2987 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2988 struct symbol_search **matches)
2989 {
2990 struct symtab *s;
2991 struct partial_symtab *ps;
2992 struct blockvector *bv;
2993 struct block *b;
2994 int i = 0;
2995 struct dict_iterator iter;
2996 struct symbol *sym;
2997 struct partial_symbol **psym;
2998 struct objfile *objfile;
2999 struct minimal_symbol *msymbol;
3000 char *val;
3001 int found_misc = 0;
3002 static enum minimal_symbol_type types[]
3003 =
3004 {mst_data, mst_text, mst_abs, mst_unknown};
3005 static enum minimal_symbol_type types2[]
3006 =
3007 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3008 static enum minimal_symbol_type types3[]
3009 =
3010 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3011 static enum minimal_symbol_type types4[]
3012 =
3013 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3014 enum minimal_symbol_type ourtype;
3015 enum minimal_symbol_type ourtype2;
3016 enum minimal_symbol_type ourtype3;
3017 enum minimal_symbol_type ourtype4;
3018 struct symbol_search *sr;
3019 struct symbol_search *psr;
3020 struct symbol_search *tail;
3021 struct cleanup *old_chain = NULL;
3022
3023 if (kind < VARIABLES_DOMAIN)
3024 error (_("must search on specific domain"));
3025
3026 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3027 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3028 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3029 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3030
3031 sr = *matches = NULL;
3032 tail = NULL;
3033
3034 if (regexp != NULL)
3035 {
3036 /* Make sure spacing is right for C++ operators.
3037 This is just a courtesy to make the matching less sensitive
3038 to how many spaces the user leaves between 'operator'
3039 and <TYPENAME> or <OPERATOR>. */
3040 char *opend;
3041 char *opname = operator_chars (regexp, &opend);
3042 if (*opname)
3043 {
3044 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3045 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3046 {
3047 /* There should 1 space between 'operator' and 'TYPENAME'. */
3048 if (opname[-1] != ' ' || opname[-2] == ' ')
3049 fix = 1;
3050 }
3051 else
3052 {
3053 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3054 if (opname[-1] == ' ')
3055 fix = 0;
3056 }
3057 /* If wrong number of spaces, fix it. */
3058 if (fix >= 0)
3059 {
3060 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3061 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3062 regexp = tmp;
3063 }
3064 }
3065
3066 if (0 != (val = re_comp (regexp)))
3067 error (_("Invalid regexp (%s): %s"), val, regexp);
3068 }
3069
3070 /* Search through the partial symtabs *first* for all symbols
3071 matching the regexp. That way we don't have to reproduce all of
3072 the machinery below. */
3073
3074 ALL_PSYMTABS (objfile, ps)
3075 {
3076 struct partial_symbol **bound, **gbound, **sbound;
3077 int keep_going = 1;
3078
3079 if (ps->readin)
3080 continue;
3081
3082 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3083 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3084 bound = gbound;
3085
3086 /* Go through all of the symbols stored in a partial
3087 symtab in one loop. */
3088 psym = objfile->global_psymbols.list + ps->globals_offset;
3089 while (keep_going)
3090 {
3091 if (psym >= bound)
3092 {
3093 if (bound == gbound && ps->n_static_syms != 0)
3094 {
3095 psym = objfile->static_psymbols.list + ps->statics_offset;
3096 bound = sbound;
3097 }
3098 else
3099 keep_going = 0;
3100 continue;
3101 }
3102 else
3103 {
3104 QUIT;
3105
3106 /* If it would match (logic taken from loop below)
3107 load the file and go on to the next one. We check the
3108 filename here, but that's a bit bogus: we don't know
3109 what file it really comes from until we have full
3110 symtabs. The symbol might be in a header file included by
3111 this psymtab. This only affects Insight. */
3112 if (file_matches (ps->filename, files, nfiles)
3113 && ((regexp == NULL
3114 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3115 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3116 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3117 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3118 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3119 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3120 {
3121 PSYMTAB_TO_SYMTAB (ps);
3122 keep_going = 0;
3123 }
3124 }
3125 psym++;
3126 }
3127 }
3128
3129 /* Here, we search through the minimal symbol tables for functions
3130 and variables that match, and force their symbols to be read.
3131 This is in particular necessary for demangled variable names,
3132 which are no longer put into the partial symbol tables.
3133 The symbol will then be found during the scan of symtabs below.
3134
3135 For functions, find_pc_symtab should succeed if we have debug info
3136 for the function, for variables we have to call lookup_symbol
3137 to determine if the variable has debug info.
3138 If the lookup fails, set found_misc so that we will rescan to print
3139 any matching symbols without debug info.
3140 */
3141
3142 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3143 {
3144 ALL_MSYMBOLS (objfile, msymbol)
3145 {
3146 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3147 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3148 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3149 MSYMBOL_TYPE (msymbol) == ourtype4)
3150 {
3151 if (regexp == NULL
3152 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3153 {
3154 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3155 {
3156 /* FIXME: carlton/2003-02-04: Given that the
3157 semantics of lookup_symbol keeps on changing
3158 slightly, it would be a nice idea if we had a
3159 function lookup_symbol_minsym that found the
3160 symbol associated to a given minimal symbol (if
3161 any). */
3162 if (kind == FUNCTIONS_DOMAIN
3163 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3164 (struct block *) NULL,
3165 VAR_DOMAIN, 0)
3166 == NULL)
3167 found_misc = 1;
3168 }
3169 }
3170 }
3171 }
3172 }
3173
3174 ALL_PRIMARY_SYMTABS (objfile, s)
3175 {
3176 bv = BLOCKVECTOR (s);
3177 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3178 {
3179 struct symbol_search *prevtail = tail;
3180 int nfound = 0;
3181 b = BLOCKVECTOR_BLOCK (bv, i);
3182 ALL_BLOCK_SYMBOLS (b, iter, sym)
3183 {
3184 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3185 QUIT;
3186
3187 if (file_matches (real_symtab->filename, files, nfiles)
3188 && ((regexp == NULL
3189 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3190 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3191 && SYMBOL_CLASS (sym) != LOC_BLOCK
3192 && SYMBOL_CLASS (sym) != LOC_CONST)
3193 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3194 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3195 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3196 {
3197 /* match */
3198 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3199 psr->block = i;
3200 psr->symtab = real_symtab;
3201 psr->symbol = sym;
3202 psr->msymbol = NULL;
3203 psr->next = NULL;
3204 if (tail == NULL)
3205 sr = psr;
3206 else
3207 tail->next = psr;
3208 tail = psr;
3209 nfound ++;
3210 }
3211 }
3212 if (nfound > 0)
3213 {
3214 if (prevtail == NULL)
3215 {
3216 struct symbol_search dummy;
3217
3218 dummy.next = sr;
3219 tail = sort_search_symbols (&dummy, nfound);
3220 sr = dummy.next;
3221
3222 old_chain = make_cleanup_free_search_symbols (sr);
3223 }
3224 else
3225 tail = sort_search_symbols (prevtail, nfound);
3226 }
3227 }
3228 }
3229
3230 /* If there are no eyes, avoid all contact. I mean, if there are
3231 no debug symbols, then print directly from the msymbol_vector. */
3232
3233 if (found_misc || kind != FUNCTIONS_DOMAIN)
3234 {
3235 ALL_MSYMBOLS (objfile, msymbol)
3236 {
3237 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3238 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3239 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3240 MSYMBOL_TYPE (msymbol) == ourtype4)
3241 {
3242 if (regexp == NULL
3243 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3244 {
3245 /* Functions: Look up by address. */
3246 if (kind != FUNCTIONS_DOMAIN ||
3247 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3248 {
3249 /* Variables/Absolutes: Look up by name */
3250 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3251 (struct block *) NULL, VAR_DOMAIN, 0)
3252 == NULL)
3253 {
3254 /* match */
3255 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3256 psr->block = i;
3257 psr->msymbol = msymbol;
3258 psr->symtab = NULL;
3259 psr->symbol = NULL;
3260 psr->next = NULL;
3261 if (tail == NULL)
3262 {
3263 sr = psr;
3264 old_chain = make_cleanup_free_search_symbols (sr);
3265 }
3266 else
3267 tail->next = psr;
3268 tail = psr;
3269 }
3270 }
3271 }
3272 }
3273 }
3274 }
3275
3276 *matches = sr;
3277 if (sr != NULL)
3278 discard_cleanups (old_chain);
3279 }
3280
3281 /* Helper function for symtab_symbol_info, this function uses
3282 the data returned from search_symbols() to print information
3283 regarding the match to gdb_stdout.
3284 */
3285 static void
3286 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3287 int block, char *last)
3288 {
3289 if (last == NULL || strcmp (last, s->filename) != 0)
3290 {
3291 fputs_filtered ("\nFile ", gdb_stdout);
3292 fputs_filtered (s->filename, gdb_stdout);
3293 fputs_filtered (":\n", gdb_stdout);
3294 }
3295
3296 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3297 printf_filtered ("static ");
3298
3299 /* Typedef that is not a C++ class */
3300 if (kind == TYPES_DOMAIN
3301 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3302 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3303 /* variable, func, or typedef-that-is-c++-class */
3304 else if (kind < TYPES_DOMAIN ||
3305 (kind == TYPES_DOMAIN &&
3306 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3307 {
3308 type_print (SYMBOL_TYPE (sym),
3309 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3310 ? "" : SYMBOL_PRINT_NAME (sym)),
3311 gdb_stdout, 0);
3312
3313 printf_filtered (";\n");
3314 }
3315 }
3316
3317 /* This help function for symtab_symbol_info() prints information
3318 for non-debugging symbols to gdb_stdout.
3319 */
3320 static void
3321 print_msymbol_info (struct minimal_symbol *msymbol)
3322 {
3323 char *tmp;
3324
3325 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3326 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3327 & (CORE_ADDR) 0xffffffff,
3328 8);
3329 else
3330 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3331 16);
3332 printf_filtered ("%s %s\n",
3333 tmp, SYMBOL_PRINT_NAME (msymbol));
3334 }
3335
3336 /* This is the guts of the commands "info functions", "info types", and
3337 "info variables". It calls search_symbols to find all matches and then
3338 print_[m]symbol_info to print out some useful information about the
3339 matches.
3340 */
3341 static void
3342 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3343 {
3344 static char *classnames[]
3345 =
3346 {"variable", "function", "type", "method"};
3347 struct symbol_search *symbols;
3348 struct symbol_search *p;
3349 struct cleanup *old_chain;
3350 char *last_filename = NULL;
3351 int first = 1;
3352
3353 /* must make sure that if we're interrupted, symbols gets freed */
3354 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3355 old_chain = make_cleanup_free_search_symbols (symbols);
3356
3357 printf_filtered (regexp
3358 ? "All %ss matching regular expression \"%s\":\n"
3359 : "All defined %ss:\n",
3360 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3361
3362 for (p = symbols; p != NULL; p = p->next)
3363 {
3364 QUIT;
3365
3366 if (p->msymbol != NULL)
3367 {
3368 if (first)
3369 {
3370 printf_filtered ("\nNon-debugging symbols:\n");
3371 first = 0;
3372 }
3373 print_msymbol_info (p->msymbol);
3374 }
3375 else
3376 {
3377 print_symbol_info (kind,
3378 p->symtab,
3379 p->symbol,
3380 p->block,
3381 last_filename);
3382 last_filename = p->symtab->filename;
3383 }
3384 }
3385
3386 do_cleanups (old_chain);
3387 }
3388
3389 static void
3390 variables_info (char *regexp, int from_tty)
3391 {
3392 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3393 }
3394
3395 static void
3396 functions_info (char *regexp, int from_tty)
3397 {
3398 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3399 }
3400
3401
3402 static void
3403 types_info (char *regexp, int from_tty)
3404 {
3405 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3406 }
3407
3408 /* Breakpoint all functions matching regular expression. */
3409
3410 void
3411 rbreak_command_wrapper (char *regexp, int from_tty)
3412 {
3413 rbreak_command (regexp, from_tty);
3414 }
3415
3416 static void
3417 rbreak_command (char *regexp, int from_tty)
3418 {
3419 struct symbol_search *ss;
3420 struct symbol_search *p;
3421 struct cleanup *old_chain;
3422
3423 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3424 old_chain = make_cleanup_free_search_symbols (ss);
3425
3426 for (p = ss; p != NULL; p = p->next)
3427 {
3428 if (p->msymbol == NULL)
3429 {
3430 char *string = alloca (strlen (p->symtab->filename)
3431 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3432 + 4);
3433 strcpy (string, p->symtab->filename);
3434 strcat (string, ":'");
3435 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3436 strcat (string, "'");
3437 break_command (string, from_tty);
3438 print_symbol_info (FUNCTIONS_DOMAIN,
3439 p->symtab,
3440 p->symbol,
3441 p->block,
3442 p->symtab->filename);
3443 }
3444 else
3445 {
3446 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3447 + 3);
3448 strcpy (string, "'");
3449 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3450 strcat (string, "'");
3451
3452 break_command (string, from_tty);
3453 printf_filtered ("<function, no debug info> %s;\n",
3454 SYMBOL_PRINT_NAME (p->msymbol));
3455 }
3456 }
3457
3458 do_cleanups (old_chain);
3459 }
3460 \f
3461
3462 /* Helper routine for make_symbol_completion_list. */
3463
3464 static int return_val_size;
3465 static int return_val_index;
3466 static char **return_val;
3467
3468 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3469 completion_list_add_name \
3470 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3471
3472 /* Test to see if the symbol specified by SYMNAME (which is already
3473 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3474 characters. If so, add it to the current completion list. */
3475
3476 static void
3477 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3478 char *text, char *word)
3479 {
3480 int newsize;
3481 int i;
3482
3483 /* clip symbols that cannot match */
3484
3485 if (strncmp (symname, sym_text, sym_text_len) != 0)
3486 {
3487 return;
3488 }
3489
3490 /* We have a match for a completion, so add SYMNAME to the current list
3491 of matches. Note that the name is moved to freshly malloc'd space. */
3492
3493 {
3494 char *new;
3495 if (word == sym_text)
3496 {
3497 new = xmalloc (strlen (symname) + 5);
3498 strcpy (new, symname);
3499 }
3500 else if (word > sym_text)
3501 {
3502 /* Return some portion of symname. */
3503 new = xmalloc (strlen (symname) + 5);
3504 strcpy (new, symname + (word - sym_text));
3505 }
3506 else
3507 {
3508 /* Return some of SYM_TEXT plus symname. */
3509 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3510 strncpy (new, word, sym_text - word);
3511 new[sym_text - word] = '\0';
3512 strcat (new, symname);
3513 }
3514
3515 if (return_val_index + 3 > return_val_size)
3516 {
3517 newsize = (return_val_size *= 2) * sizeof (char *);
3518 return_val = (char **) xrealloc ((char *) return_val, newsize);
3519 }
3520 return_val[return_val_index++] = new;
3521 return_val[return_val_index] = NULL;
3522 }
3523 }
3524
3525 /* ObjC: In case we are completing on a selector, look as the msymbol
3526 again and feed all the selectors into the mill. */
3527
3528 static void
3529 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3530 int sym_text_len, char *text, char *word)
3531 {
3532 static char *tmp = NULL;
3533 static unsigned int tmplen = 0;
3534
3535 char *method, *category, *selector;
3536 char *tmp2 = NULL;
3537
3538 method = SYMBOL_NATURAL_NAME (msymbol);
3539
3540 /* Is it a method? */
3541 if ((method[0] != '-') && (method[0] != '+'))
3542 return;
3543
3544 if (sym_text[0] == '[')
3545 /* Complete on shortened method method. */
3546 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3547
3548 while ((strlen (method) + 1) >= tmplen)
3549 {
3550 if (tmplen == 0)
3551 tmplen = 1024;
3552 else
3553 tmplen *= 2;
3554 tmp = xrealloc (tmp, tmplen);
3555 }
3556 selector = strchr (method, ' ');
3557 if (selector != NULL)
3558 selector++;
3559
3560 category = strchr (method, '(');
3561
3562 if ((category != NULL) && (selector != NULL))
3563 {
3564 memcpy (tmp, method, (category - method));
3565 tmp[category - method] = ' ';
3566 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3567 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3568 if (sym_text[0] == '[')
3569 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3570 }
3571
3572 if (selector != NULL)
3573 {
3574 /* Complete on selector only. */
3575 strcpy (tmp, selector);
3576 tmp2 = strchr (tmp, ']');
3577 if (tmp2 != NULL)
3578 *tmp2 = '\0';
3579
3580 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3581 }
3582 }
3583
3584 /* Break the non-quoted text based on the characters which are in
3585 symbols. FIXME: This should probably be language-specific. */
3586
3587 static char *
3588 language_search_unquoted_string (char *text, char *p)
3589 {
3590 for (; p > text; --p)
3591 {
3592 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3593 continue;
3594 else
3595 {
3596 if ((current_language->la_language == language_objc))
3597 {
3598 if (p[-1] == ':') /* might be part of a method name */
3599 continue;
3600 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3601 p -= 2; /* beginning of a method name */
3602 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3603 { /* might be part of a method name */
3604 char *t = p;
3605
3606 /* Seeing a ' ' or a '(' is not conclusive evidence
3607 that we are in the middle of a method name. However,
3608 finding "-[" or "+[" should be pretty un-ambiguous.
3609 Unfortunately we have to find it now to decide. */
3610
3611 while (t > text)
3612 if (isalnum (t[-1]) || t[-1] == '_' ||
3613 t[-1] == ' ' || t[-1] == ':' ||
3614 t[-1] == '(' || t[-1] == ')')
3615 --t;
3616 else
3617 break;
3618
3619 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3620 p = t - 2; /* method name detected */
3621 /* else we leave with p unchanged */
3622 }
3623 }
3624 break;
3625 }
3626 }
3627 return p;
3628 }
3629
3630 char **
3631 default_make_symbol_completion_list (char *text, char *word)
3632 {
3633 /* Problem: All of the symbols have to be copied because readline
3634 frees them. I'm not going to worry about this; hopefully there
3635 won't be that many. */
3636
3637 struct symbol *sym;
3638 struct symtab *s;
3639 struct partial_symtab *ps;
3640 struct minimal_symbol *msymbol;
3641 struct objfile *objfile;
3642 struct block *b, *surrounding_static_block = 0;
3643 struct dict_iterator iter;
3644 int j;
3645 struct partial_symbol **psym;
3646 /* The symbol we are completing on. Points in same buffer as text. */
3647 char *sym_text;
3648 /* Length of sym_text. */
3649 int sym_text_len;
3650
3651 /* Now look for the symbol we are supposed to complete on. */
3652 {
3653 char *p;
3654 char quote_found;
3655 char *quote_pos = NULL;
3656
3657 /* First see if this is a quoted string. */
3658 quote_found = '\0';
3659 for (p = text; *p != '\0'; ++p)
3660 {
3661 if (quote_found != '\0')
3662 {
3663 if (*p == quote_found)
3664 /* Found close quote. */
3665 quote_found = '\0';
3666 else if (*p == '\\' && p[1] == quote_found)
3667 /* A backslash followed by the quote character
3668 doesn't end the string. */
3669 ++p;
3670 }
3671 else if (*p == '\'' || *p == '"')
3672 {
3673 quote_found = *p;
3674 quote_pos = p;
3675 }
3676 }
3677 if (quote_found == '\'')
3678 /* A string within single quotes can be a symbol, so complete on it. */
3679 sym_text = quote_pos + 1;
3680 else if (quote_found == '"')
3681 /* A double-quoted string is never a symbol, nor does it make sense
3682 to complete it any other way. */
3683 {
3684 return_val = (char **) xmalloc (sizeof (char *));
3685 return_val[0] = NULL;
3686 return return_val;
3687 }
3688 else
3689 {
3690 /* It is not a quoted string. Break it based on the characters
3691 which are in symbols. */
3692 while (p > text)
3693 {
3694 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3695 --p;
3696 else
3697 break;
3698 }
3699 sym_text = p;
3700 }
3701 }
3702
3703 sym_text_len = strlen (sym_text);
3704
3705 return_val_size = 100;
3706 return_val_index = 0;
3707 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3708 return_val[0] = NULL;
3709
3710 /* Look through the partial symtabs for all symbols which begin
3711 by matching SYM_TEXT. Add each one that you find to the list. */
3712
3713 ALL_PSYMTABS (objfile, ps)
3714 {
3715 /* If the psymtab's been read in we'll get it when we search
3716 through the blockvector. */
3717 if (ps->readin)
3718 continue;
3719
3720 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3721 psym < (objfile->global_psymbols.list + ps->globals_offset
3722 + ps->n_global_syms);
3723 psym++)
3724 {
3725 /* If interrupted, then quit. */
3726 QUIT;
3727 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3728 }
3729
3730 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3731 psym < (objfile->static_psymbols.list + ps->statics_offset
3732 + ps->n_static_syms);
3733 psym++)
3734 {
3735 QUIT;
3736 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3737 }
3738 }
3739
3740 /* At this point scan through the misc symbol vectors and add each
3741 symbol you find to the list. Eventually we want to ignore
3742 anything that isn't a text symbol (everything else will be
3743 handled by the psymtab code above). */
3744
3745 ALL_MSYMBOLS (objfile, msymbol)
3746 {
3747 QUIT;
3748 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3749
3750 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3751 }
3752
3753 /* Search upwards from currently selected frame (so that we can
3754 complete on local vars. */
3755
3756 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3757 {
3758 if (!BLOCK_SUPERBLOCK (b))
3759 {
3760 surrounding_static_block = b; /* For elmin of dups */
3761 }
3762
3763 /* Also catch fields of types defined in this places which match our
3764 text string. Only complete on types visible from current context. */
3765
3766 ALL_BLOCK_SYMBOLS (b, iter, sym)
3767 {
3768 QUIT;
3769 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3770 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3771 {
3772 struct type *t = SYMBOL_TYPE (sym);
3773 enum type_code c = TYPE_CODE (t);
3774
3775 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3776 {
3777 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3778 {
3779 if (TYPE_FIELD_NAME (t, j))
3780 {
3781 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3782 sym_text, sym_text_len, text, word);
3783 }
3784 }
3785 }
3786 }
3787 }
3788 }
3789
3790 /* Go through the symtabs and check the externs and statics for
3791 symbols which match. */
3792
3793 ALL_PRIMARY_SYMTABS (objfile, s)
3794 {
3795 QUIT;
3796 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3797 ALL_BLOCK_SYMBOLS (b, iter, sym)
3798 {
3799 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3800 }
3801 }
3802
3803 ALL_PRIMARY_SYMTABS (objfile, s)
3804 {
3805 QUIT;
3806 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3807 /* Don't do this block twice. */
3808 if (b == surrounding_static_block)
3809 continue;
3810 ALL_BLOCK_SYMBOLS (b, iter, sym)
3811 {
3812 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3813 }
3814 }
3815
3816 return (return_val);
3817 }
3818
3819 /* Return a NULL terminated array of all symbols (regardless of class)
3820 which begin by matching TEXT. If the answer is no symbols, then
3821 the return value is an array which contains only a NULL pointer. */
3822
3823 char **
3824 make_symbol_completion_list (char *text, char *word)
3825 {
3826 return current_language->la_make_symbol_completion_list (text, word);
3827 }
3828
3829 /* Like make_symbol_completion_list, but returns a list of symbols
3830 defined in a source file FILE. */
3831
3832 char **
3833 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3834 {
3835 struct symbol *sym;
3836 struct symtab *s;
3837 struct block *b;
3838 struct dict_iterator iter;
3839 /* The symbol we are completing on. Points in same buffer as text. */
3840 char *sym_text;
3841 /* Length of sym_text. */
3842 int sym_text_len;
3843
3844 /* Now look for the symbol we are supposed to complete on.
3845 FIXME: This should be language-specific. */
3846 {
3847 char *p;
3848 char quote_found;
3849 char *quote_pos = NULL;
3850
3851 /* First see if this is a quoted string. */
3852 quote_found = '\0';
3853 for (p = text; *p != '\0'; ++p)
3854 {
3855 if (quote_found != '\0')
3856 {
3857 if (*p == quote_found)
3858 /* Found close quote. */
3859 quote_found = '\0';
3860 else if (*p == '\\' && p[1] == quote_found)
3861 /* A backslash followed by the quote character
3862 doesn't end the string. */
3863 ++p;
3864 }
3865 else if (*p == '\'' || *p == '"')
3866 {
3867 quote_found = *p;
3868 quote_pos = p;
3869 }
3870 }
3871 if (quote_found == '\'')
3872 /* A string within single quotes can be a symbol, so complete on it. */
3873 sym_text = quote_pos + 1;
3874 else if (quote_found == '"')
3875 /* A double-quoted string is never a symbol, nor does it make sense
3876 to complete it any other way. */
3877 {
3878 return_val = (char **) xmalloc (sizeof (char *));
3879 return_val[0] = NULL;
3880 return return_val;
3881 }
3882 else
3883 {
3884 /* Not a quoted string. */
3885 sym_text = language_search_unquoted_string (text, p);
3886 }
3887 }
3888
3889 sym_text_len = strlen (sym_text);
3890
3891 return_val_size = 10;
3892 return_val_index = 0;
3893 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3894 return_val[0] = NULL;
3895
3896 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3897 in). */
3898 s = lookup_symtab (srcfile);
3899 if (s == NULL)
3900 {
3901 /* Maybe they typed the file with leading directories, while the
3902 symbol tables record only its basename. */
3903 const char *tail = lbasename (srcfile);
3904
3905 if (tail > srcfile)
3906 s = lookup_symtab (tail);
3907 }
3908
3909 /* If we have no symtab for that file, return an empty list. */
3910 if (s == NULL)
3911 return (return_val);
3912
3913 /* Go through this symtab and check the externs and statics for
3914 symbols which match. */
3915
3916 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3917 ALL_BLOCK_SYMBOLS (b, iter, sym)
3918 {
3919 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3920 }
3921
3922 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3923 ALL_BLOCK_SYMBOLS (b, iter, sym)
3924 {
3925 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3926 }
3927
3928 return (return_val);
3929 }
3930
3931 /* A helper function for make_source_files_completion_list. It adds
3932 another file name to a list of possible completions, growing the
3933 list as necessary. */
3934
3935 static void
3936 add_filename_to_list (const char *fname, char *text, char *word,
3937 char ***list, int *list_used, int *list_alloced)
3938 {
3939 char *new;
3940 size_t fnlen = strlen (fname);
3941
3942 if (*list_used + 1 >= *list_alloced)
3943 {
3944 *list_alloced *= 2;
3945 *list = (char **) xrealloc ((char *) *list,
3946 *list_alloced * sizeof (char *));
3947 }
3948
3949 if (word == text)
3950 {
3951 /* Return exactly fname. */
3952 new = xmalloc (fnlen + 5);
3953 strcpy (new, fname);
3954 }
3955 else if (word > text)
3956 {
3957 /* Return some portion of fname. */
3958 new = xmalloc (fnlen + 5);
3959 strcpy (new, fname + (word - text));
3960 }
3961 else
3962 {
3963 /* Return some of TEXT plus fname. */
3964 new = xmalloc (fnlen + (text - word) + 5);
3965 strncpy (new, word, text - word);
3966 new[text - word] = '\0';
3967 strcat (new, fname);
3968 }
3969 (*list)[*list_used] = new;
3970 (*list)[++*list_used] = NULL;
3971 }
3972
3973 static int
3974 not_interesting_fname (const char *fname)
3975 {
3976 static const char *illegal_aliens[] = {
3977 "_globals_", /* inserted by coff_symtab_read */
3978 NULL
3979 };
3980 int i;
3981
3982 for (i = 0; illegal_aliens[i]; i++)
3983 {
3984 if (strcmp (fname, illegal_aliens[i]) == 0)
3985 return 1;
3986 }
3987 return 0;
3988 }
3989
3990 /* Return a NULL terminated array of all source files whose names
3991 begin with matching TEXT. The file names are looked up in the
3992 symbol tables of this program. If the answer is no matchess, then
3993 the return value is an array which contains only a NULL pointer. */
3994
3995 char **
3996 make_source_files_completion_list (char *text, char *word)
3997 {
3998 struct symtab *s;
3999 struct partial_symtab *ps;
4000 struct objfile *objfile;
4001 int first = 1;
4002 int list_alloced = 1;
4003 int list_used = 0;
4004 size_t text_len = strlen (text);
4005 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4006 const char *base_name;
4007
4008 list[0] = NULL;
4009
4010 if (!have_full_symbols () && !have_partial_symbols ())
4011 return list;
4012
4013 ALL_SYMTABS (objfile, s)
4014 {
4015 if (not_interesting_fname (s->filename))
4016 continue;
4017 if (!filename_seen (s->filename, 1, &first)
4018 #if HAVE_DOS_BASED_FILE_SYSTEM
4019 && strncasecmp (s->filename, text, text_len) == 0
4020 #else
4021 && strncmp (s->filename, text, text_len) == 0
4022 #endif
4023 )
4024 {
4025 /* This file matches for a completion; add it to the current
4026 list of matches. */
4027 add_filename_to_list (s->filename, text, word,
4028 &list, &list_used, &list_alloced);
4029 }
4030 else
4031 {
4032 /* NOTE: We allow the user to type a base name when the
4033 debug info records leading directories, but not the other
4034 way around. This is what subroutines of breakpoint
4035 command do when they parse file names. */
4036 base_name = lbasename (s->filename);
4037 if (base_name != s->filename
4038 && !filename_seen (base_name, 1, &first)
4039 #if HAVE_DOS_BASED_FILE_SYSTEM
4040 && strncasecmp (base_name, text, text_len) == 0
4041 #else
4042 && strncmp (base_name, text, text_len) == 0
4043 #endif
4044 )
4045 add_filename_to_list (base_name, text, word,
4046 &list, &list_used, &list_alloced);
4047 }
4048 }
4049
4050 ALL_PSYMTABS (objfile, ps)
4051 {
4052 if (not_interesting_fname (ps->filename))
4053 continue;
4054 if (!ps->readin)
4055 {
4056 if (!filename_seen (ps->filename, 1, &first)
4057 #if HAVE_DOS_BASED_FILE_SYSTEM
4058 && strncasecmp (ps->filename, text, text_len) == 0
4059 #else
4060 && strncmp (ps->filename, text, text_len) == 0
4061 #endif
4062 )
4063 {
4064 /* This file matches for a completion; add it to the
4065 current list of matches. */
4066 add_filename_to_list (ps->filename, text, word,
4067 &list, &list_used, &list_alloced);
4068
4069 }
4070 else
4071 {
4072 base_name = lbasename (ps->filename);
4073 if (base_name != ps->filename
4074 && !filename_seen (base_name, 1, &first)
4075 #if HAVE_DOS_BASED_FILE_SYSTEM
4076 && strncasecmp (base_name, text, text_len) == 0
4077 #else
4078 && strncmp (base_name, text, text_len) == 0
4079 #endif
4080 )
4081 add_filename_to_list (base_name, text, word,
4082 &list, &list_used, &list_alloced);
4083 }
4084 }
4085 }
4086
4087 return list;
4088 }
4089
4090 /* Determine if PC is in the prologue of a function. The prologue is the area
4091 between the first instruction of a function, and the first executable line.
4092 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4093
4094 If non-zero, func_start is where we think the prologue starts, possibly
4095 by previous examination of symbol table information.
4096 */
4097
4098 int
4099 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4100 {
4101 struct symtab_and_line sal;
4102 CORE_ADDR func_addr, func_end;
4103
4104 /* We have several sources of information we can consult to figure
4105 this out.
4106 - Compilers usually emit line number info that marks the prologue
4107 as its own "source line". So the ending address of that "line"
4108 is the end of the prologue. If available, this is the most
4109 reliable method.
4110 - The minimal symbols and partial symbols, which can usually tell
4111 us the starting and ending addresses of a function.
4112 - If we know the function's start address, we can call the
4113 architecture-defined gdbarch_skip_prologue function to analyze the
4114 instruction stream and guess where the prologue ends.
4115 - Our `func_start' argument; if non-zero, this is the caller's
4116 best guess as to the function's entry point. At the time of
4117 this writing, handle_inferior_event doesn't get this right, so
4118 it should be our last resort. */
4119
4120 /* Consult the partial symbol table, to find which function
4121 the PC is in. */
4122 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4123 {
4124 CORE_ADDR prologue_end;
4125
4126 /* We don't even have minsym information, so fall back to using
4127 func_start, if given. */
4128 if (! func_start)
4129 return 1; /* We *might* be in a prologue. */
4130
4131 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4132
4133 return func_start <= pc && pc < prologue_end;
4134 }
4135
4136 /* If we have line number information for the function, that's
4137 usually pretty reliable. */
4138 sal = find_pc_line (func_addr, 0);
4139
4140 /* Now sal describes the source line at the function's entry point,
4141 which (by convention) is the prologue. The end of that "line",
4142 sal.end, is the end of the prologue.
4143
4144 Note that, for functions whose source code is all on a single
4145 line, the line number information doesn't always end up this way.
4146 So we must verify that our purported end-of-prologue address is
4147 *within* the function, not at its start or end. */
4148 if (sal.line == 0
4149 || sal.end <= func_addr
4150 || func_end <= sal.end)
4151 {
4152 /* We don't have any good line number info, so use the minsym
4153 information, together with the architecture-specific prologue
4154 scanning code. */
4155 CORE_ADDR prologue_end = gdbarch_skip_prologue
4156 (current_gdbarch, func_addr);
4157
4158 return func_addr <= pc && pc < prologue_end;
4159 }
4160
4161 /* We have line number info, and it looks good. */
4162 return func_addr <= pc && pc < sal.end;
4163 }
4164
4165 /* Given PC at the function's start address, attempt to find the
4166 prologue end using SAL information. Return zero if the skip fails.
4167
4168 A non-optimized prologue traditionally has one SAL for the function
4169 and a second for the function body. A single line function has
4170 them both pointing at the same line.
4171
4172 An optimized prologue is similar but the prologue may contain
4173 instructions (SALs) from the instruction body. Need to skip those
4174 while not getting into the function body.
4175
4176 The functions end point and an increasing SAL line are used as
4177 indicators of the prologue's endpoint.
4178
4179 This code is based on the function refine_prologue_limit (versions
4180 found in both ia64 and ppc). */
4181
4182 CORE_ADDR
4183 skip_prologue_using_sal (CORE_ADDR func_addr)
4184 {
4185 struct symtab_and_line prologue_sal;
4186 CORE_ADDR start_pc;
4187 CORE_ADDR end_pc;
4188
4189 /* Get an initial range for the function. */
4190 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4191 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4192
4193 prologue_sal = find_pc_line (start_pc, 0);
4194 if (prologue_sal.line != 0)
4195 {
4196 /* If there is only one sal that covers the entire function,
4197 then it is probably a single line function, like
4198 "foo(){}". */
4199 if (prologue_sal.end >= end_pc)
4200 return 0;
4201 while (prologue_sal.end < end_pc)
4202 {
4203 struct symtab_and_line sal;
4204
4205 sal = find_pc_line (prologue_sal.end, 0);
4206 if (sal.line == 0)
4207 break;
4208 /* Assume that a consecutive SAL for the same (or larger)
4209 line mark the prologue -> body transition. */
4210 if (sal.line >= prologue_sal.line)
4211 break;
4212 /* The case in which compiler's optimizer/scheduler has
4213 moved instructions into the prologue. We look ahead in
4214 the function looking for address ranges whose
4215 corresponding line number is less the first one that we
4216 found for the function. This is more conservative then
4217 refine_prologue_limit which scans a large number of SALs
4218 looking for any in the prologue */
4219 prologue_sal = sal;
4220 }
4221 }
4222 return prologue_sal.end;
4223 }
4224 \f
4225 struct symtabs_and_lines
4226 decode_line_spec (char *string, int funfirstline)
4227 {
4228 struct symtabs_and_lines sals;
4229 struct symtab_and_line cursal;
4230
4231 if (string == 0)
4232 error (_("Empty line specification."));
4233
4234 /* We use whatever is set as the current source line. We do not try
4235 and get a default or it will recursively call us! */
4236 cursal = get_current_source_symtab_and_line ();
4237
4238 sals = decode_line_1 (&string, funfirstline,
4239 cursal.symtab, cursal.line,
4240 (char ***) NULL, NULL);
4241
4242 if (*string)
4243 error (_("Junk at end of line specification: %s"), string);
4244 return sals;
4245 }
4246
4247 /* Track MAIN */
4248 static char *name_of_main;
4249
4250 void
4251 set_main_name (const char *name)
4252 {
4253 if (name_of_main != NULL)
4254 {
4255 xfree (name_of_main);
4256 name_of_main = NULL;
4257 }
4258 if (name != NULL)
4259 {
4260 name_of_main = xstrdup (name);
4261 }
4262 }
4263
4264 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4265 accordingly. */
4266
4267 static void
4268 find_main_name (void)
4269 {
4270 const char *new_main_name;
4271
4272 /* Try to see if the main procedure is in Ada. */
4273 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4274 be to add a new method in the language vector, and call this
4275 method for each language until one of them returns a non-empty
4276 name. This would allow us to remove this hard-coded call to
4277 an Ada function. It is not clear that this is a better approach
4278 at this point, because all methods need to be written in a way
4279 such that false positives never be returned. For instance, it is
4280 important that a method does not return a wrong name for the main
4281 procedure if the main procedure is actually written in a different
4282 language. It is easy to guaranty this with Ada, since we use a
4283 special symbol generated only when the main in Ada to find the name
4284 of the main procedure. It is difficult however to see how this can
4285 be guarantied for languages such as C, for instance. This suggests
4286 that order of call for these methods becomes important, which means
4287 a more complicated approach. */
4288 new_main_name = ada_main_name ();
4289 if (new_main_name != NULL)
4290 {
4291 set_main_name (new_main_name);
4292 return;
4293 }
4294
4295 new_main_name = pascal_main_name ();
4296 if (new_main_name != NULL)
4297 {
4298 set_main_name (new_main_name);
4299 return;
4300 }
4301
4302 /* The languages above didn't identify the name of the main procedure.
4303 Fallback to "main". */
4304 set_main_name ("main");
4305 }
4306
4307 char *
4308 main_name (void)
4309 {
4310 if (name_of_main == NULL)
4311 find_main_name ();
4312
4313 return name_of_main;
4314 }
4315
4316 /* Handle ``executable_changed'' events for the symtab module. */
4317
4318 static void
4319 symtab_observer_executable_changed (void *unused)
4320 {
4321 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4322 set_main_name (NULL);
4323 }
4324
4325 /* Helper to expand_line_sal below. Appends new sal to SAL,
4326 initializing it from SYMTAB, LINENO and PC. */
4327 static void
4328 append_expanded_sal (struct symtabs_and_lines *sal,
4329 struct symtab *symtab,
4330 int lineno, CORE_ADDR pc)
4331 {
4332 CORE_ADDR func_addr, func_end;
4333
4334 sal->sals = xrealloc (sal->sals,
4335 sizeof (sal->sals[0])
4336 * (sal->nelts + 1));
4337 init_sal (sal->sals + sal->nelts);
4338 sal->sals[sal->nelts].symtab = symtab;
4339 sal->sals[sal->nelts].section = NULL;
4340 sal->sals[sal->nelts].end = 0;
4341 sal->sals[sal->nelts].line = lineno;
4342 sal->sals[sal->nelts].pc = pc;
4343 ++sal->nelts;
4344 }
4345
4346 /* Compute a set of all sals in
4347 the entire program that correspond to same file
4348 and line as SAL and return those. If there
4349 are several sals that belong to the same block,
4350 only one sal for the block is included in results. */
4351
4352 struct symtabs_and_lines
4353 expand_line_sal (struct symtab_and_line sal)
4354 {
4355 struct symtabs_and_lines ret, this_line;
4356 int i, j;
4357 struct objfile *objfile;
4358 struct partial_symtab *psymtab;
4359 struct symtab *symtab;
4360 int lineno;
4361 int deleted = 0;
4362 struct block **blocks = NULL;
4363 int *filter;
4364
4365 ret.nelts = 0;
4366 ret.sals = NULL;
4367
4368 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4369 {
4370 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4371 ret.sals[0] = sal;
4372 ret.nelts = 1;
4373 return ret;
4374 }
4375 else
4376 {
4377 struct linetable_entry *best_item = 0;
4378 struct symtab *best_symtab = 0;
4379 int exact = 0;
4380
4381 lineno = sal.line;
4382
4383 /* We meed to find all symtabs for a file which name
4384 is described by sal. We cannot just directly
4385 iterate over symtabs, since a symtab might not be
4386 yet created. We also cannot iterate over psymtabs,
4387 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4388 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4389 corresponding to an included file. Therefore, we do
4390 first pass over psymtabs, reading in those with
4391 the right name. Then, we iterate over symtabs, knowing
4392 that all symtabs we're interested in are loaded. */
4393
4394 ALL_PSYMTABS (objfile, psymtab)
4395 {
4396 if (strcmp (sal.symtab->filename,
4397 psymtab->filename) == 0)
4398 PSYMTAB_TO_SYMTAB (psymtab);
4399 }
4400
4401
4402 /* For each symtab, we add all pcs to ret.sals. I'm actually
4403 not sure what to do if we have exact match in one symtab,
4404 and non-exact match on another symtab.
4405 */
4406 ALL_SYMTABS (objfile, symtab)
4407 {
4408 if (strcmp (sal.symtab->filename,
4409 symtab->filename) == 0)
4410 {
4411 struct linetable *l;
4412 int len;
4413 l = LINETABLE (symtab);
4414 if (!l)
4415 continue;
4416 len = l->nitems;
4417
4418 for (j = 0; j < len; j++)
4419 {
4420 struct linetable_entry *item = &(l->item[j]);
4421
4422 if (item->line == lineno)
4423 {
4424 exact = 1;
4425 append_expanded_sal (&ret, symtab, lineno, item->pc);
4426 }
4427 else if (!exact && item->line > lineno
4428 && (best_item == NULL || item->line < best_item->line))
4429
4430 {
4431 best_item = item;
4432 best_symtab = symtab;
4433 }
4434 }
4435 }
4436 }
4437 if (!exact && best_item)
4438 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4439 }
4440
4441 /* For optimized code, compiler can scatter one source line accross
4442 disjoint ranges of PC values, even when no duplicate functions
4443 or inline functions are involved. For example, 'for (;;)' inside
4444 non-template non-inline non-ctor-or-dtor function can result
4445 in two PC ranges. In this case, we don't want to set breakpoint
4446 on first PC of each range. To filter such cases, we use containing
4447 blocks -- for each PC found above we see if there are other PCs
4448 that are in the same block. If yes, the other PCs are filtered out. */
4449
4450 filter = xmalloc (ret.nelts * sizeof (int));
4451 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4452 for (i = 0; i < ret.nelts; ++i)
4453 {
4454 filter[i] = 1;
4455 blocks[i] = block_for_pc (ret.sals[i].pc);
4456 }
4457
4458 for (i = 0; i < ret.nelts; ++i)
4459 if (blocks[i] != NULL)
4460 for (j = i+1; j < ret.nelts; ++j)
4461 if (blocks[j] == blocks[i])
4462 {
4463 filter[j] = 0;
4464 ++deleted;
4465 break;
4466 }
4467
4468 {
4469 struct symtab_and_line *final =
4470 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4471
4472 for (i = 0, j = 0; i < ret.nelts; ++i)
4473 if (filter[i])
4474 final[j++] = ret.sals[i];
4475
4476 ret.nelts -= deleted;
4477 xfree (ret.sals);
4478 ret.sals = final;
4479 }
4480
4481 return ret;
4482 }
4483
4484
4485 void
4486 _initialize_symtab (void)
4487 {
4488 add_info ("variables", variables_info, _("\
4489 All global and static variable names, or those matching REGEXP."));
4490 if (dbx_commands)
4491 add_com ("whereis", class_info, variables_info, _("\
4492 All global and static variable names, or those matching REGEXP."));
4493
4494 add_info ("functions", functions_info,
4495 _("All function names, or those matching REGEXP."));
4496
4497
4498 /* FIXME: This command has at least the following problems:
4499 1. It prints builtin types (in a very strange and confusing fashion).
4500 2. It doesn't print right, e.g. with
4501 typedef struct foo *FOO
4502 type_print prints "FOO" when we want to make it (in this situation)
4503 print "struct foo *".
4504 I also think "ptype" or "whatis" is more likely to be useful (but if
4505 there is much disagreement "info types" can be fixed). */
4506 add_info ("types", types_info,
4507 _("All type names, or those matching REGEXP."));
4508
4509 add_info ("sources", sources_info,
4510 _("Source files in the program."));
4511
4512 add_com ("rbreak", class_breakpoint, rbreak_command,
4513 _("Set a breakpoint for all functions matching REGEXP."));
4514
4515 if (xdb_commands)
4516 {
4517 add_com ("lf", class_info, sources_info,
4518 _("Source files in the program"));
4519 add_com ("lg", class_info, variables_info, _("\
4520 All global and static variable names, or those matching REGEXP."));
4521 }
4522
4523 add_setshow_enum_cmd ("multiple-symbols", no_class,
4524 multiple_symbols_modes, &multiple_symbols_mode,
4525 _("\
4526 Set the debugger behavior when more than one symbol are possible matches\n\
4527 in an expression."), _("\
4528 Show how the debugger handles ambiguities in expressions."), _("\
4529 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4530 NULL, NULL, &setlist, &showlist);
4531
4532 /* Initialize the one built-in type that isn't language dependent... */
4533 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4534 "<unknown type>", (struct objfile *) NULL);
4535
4536 observer_attach_executable_changed (symtab_observer_executable_changed);
4537 }
This page took 0.155313 seconds and 4 git commands to generate.