d56faa6b96acf646d2ad696590b99532c10f2c95
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 static void print_msymbol_info (struct minimal_symbol *);
105
106 void _initialize_symtab (void);
107
108 /* */
109
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). Returns true if they match, false
151 otherwise. */
152
153 int
154 compare_filenames_for_search (const char *filename, const char *search_name)
155 {
156 int len = strlen (filename);
157 size_t search_len = strlen (search_name);
158
159 if (len < search_len)
160 return 0;
161
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
165
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator.
169
170 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
171 cannot match FILENAME "/path//dir/file.c" - as user has requested
172 absolute path. The sama applies for "c:\file.c" possibly
173 incorrectly hypothetically matching "d:\dir\c:\file.c".
174
175 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
176 compatible with SEARCH_NAME "file.c". In such case a compiler had
177 to put the "c:file.c" name into debug info. Such compatibility
178 works only on GDB built for DOS host. */
179 return (len == search_len
180 || (!IS_ABSOLUTE_PATH (search_name)
181 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
182 || (HAS_DRIVE_SPEC (filename)
183 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
184 }
185
186 /* Check for a symtab of a specific name by searching some symtabs.
187 This is a helper function for callbacks of iterate_over_symtabs.
188
189 The return value, NAME, REAL_PATH, CALLBACK, and DATA
190 are identical to the `map_symtabs_matching_filename' method of
191 quick_symbol_functions.
192
193 FIRST and AFTER_LAST indicate the range of symtabs to search.
194 AFTER_LAST is one past the last symtab to search; NULL means to
195 search until the end of the list. */
196
197 int
198 iterate_over_some_symtabs (const char *name,
199 const char *real_path,
200 int (*callback) (struct symtab *symtab,
201 void *data),
202 void *data,
203 struct symtab *first,
204 struct symtab *after_last)
205 {
206 struct symtab *s = NULL;
207 const char* base_name = lbasename (name);
208
209 for (s = first; s != NULL && s != after_last; s = s->next)
210 {
211 if (compare_filenames_for_search (s->filename, name))
212 {
213 if (callback (s, data))
214 return 1;
215 continue;
216 }
217
218 /* Before we invoke realpath, which can get expensive when many
219 files are involved, do a quick comparison of the basenames. */
220 if (! basenames_may_differ
221 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
222 continue;
223
224 if (compare_filenames_for_search (symtab_to_fullname (s), name))
225 {
226 if (callback (s, data))
227 return 1;
228 continue;
229 }
230
231 /* If the user gave us an absolute path, try to find the file in
232 this symtab and use its absolute path. */
233
234 if (real_path != NULL)
235 {
236 const char *fullname = symtab_to_fullname (s);
237
238 gdb_assert (IS_ABSOLUTE_PATH (real_path));
239 gdb_assert (IS_ABSOLUTE_PATH (name));
240 if (FILENAME_CMP (real_path, fullname) == 0)
241 {
242 if (callback (s, data))
243 return 1;
244 continue;
245 }
246 }
247 }
248
249 return 0;
250 }
251
252 /* Check for a symtab of a specific name; first in symtabs, then in
253 psymtabs. *If* there is no '/' in the name, a match after a '/'
254 in the symtab filename will also work.
255
256 Calls CALLBACK with each symtab that is found and with the supplied
257 DATA. If CALLBACK returns true, the search stops. */
258
259 void
260 iterate_over_symtabs (const char *name,
261 int (*callback) (struct symtab *symtab,
262 void *data),
263 void *data)
264 {
265 struct objfile *objfile;
266 char *real_path = NULL;
267 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
268
269 /* Here we are interested in canonicalizing an absolute path, not
270 absolutizing a relative path. */
271 if (IS_ABSOLUTE_PATH (name))
272 {
273 real_path = gdb_realpath (name);
274 make_cleanup (xfree, real_path);
275 gdb_assert (IS_ABSOLUTE_PATH (real_path));
276 }
277
278 ALL_OBJFILES (objfile)
279 {
280 if (iterate_over_some_symtabs (name, real_path, callback, data,
281 objfile->symtabs, NULL))
282 {
283 do_cleanups (cleanups);
284 return;
285 }
286 }
287
288 /* Same search rules as above apply here, but now we look thru the
289 psymtabs. */
290
291 ALL_OBJFILES (objfile)
292 {
293 if (objfile->sf
294 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
295 name,
296 real_path,
297 callback,
298 data))
299 {
300 do_cleanups (cleanups);
301 return;
302 }
303 }
304
305 do_cleanups (cleanups);
306 }
307
308 /* The callback function used by lookup_symtab. */
309
310 static int
311 lookup_symtab_callback (struct symtab *symtab, void *data)
312 {
313 struct symtab **result_ptr = data;
314
315 *result_ptr = symtab;
316 return 1;
317 }
318
319 /* A wrapper for iterate_over_symtabs that returns the first matching
320 symtab, or NULL. */
321
322 struct symtab *
323 lookup_symtab (const char *name)
324 {
325 struct symtab *result = NULL;
326
327 iterate_over_symtabs (name, lookup_symtab_callback, &result);
328 return result;
329 }
330
331 \f
332 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
333 full method name, which consist of the class name (from T), the unadorned
334 method name from METHOD_ID, and the signature for the specific overload,
335 specified by SIGNATURE_ID. Note that this function is g++ specific. */
336
337 char *
338 gdb_mangle_name (struct type *type, int method_id, int signature_id)
339 {
340 int mangled_name_len;
341 char *mangled_name;
342 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
343 struct fn_field *method = &f[signature_id];
344 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
345 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
346 const char *newname = type_name_no_tag (type);
347
348 /* Does the form of physname indicate that it is the full mangled name
349 of a constructor (not just the args)? */
350 int is_full_physname_constructor;
351
352 int is_constructor;
353 int is_destructor = is_destructor_name (physname);
354 /* Need a new type prefix. */
355 char *const_prefix = method->is_const ? "C" : "";
356 char *volatile_prefix = method->is_volatile ? "V" : "";
357 char buf[20];
358 int len = (newname == NULL ? 0 : strlen (newname));
359
360 /* Nothing to do if physname already contains a fully mangled v3 abi name
361 or an operator name. */
362 if ((physname[0] == '_' && physname[1] == 'Z')
363 || is_operator_name (field_name))
364 return xstrdup (physname);
365
366 is_full_physname_constructor = is_constructor_name (physname);
367
368 is_constructor = is_full_physname_constructor
369 || (newname && strcmp (field_name, newname) == 0);
370
371 if (!is_destructor)
372 is_destructor = (strncmp (physname, "__dt", 4) == 0);
373
374 if (is_destructor || is_full_physname_constructor)
375 {
376 mangled_name = (char *) xmalloc (strlen (physname) + 1);
377 strcpy (mangled_name, physname);
378 return mangled_name;
379 }
380
381 if (len == 0)
382 {
383 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
384 }
385 else if (physname[0] == 't' || physname[0] == 'Q')
386 {
387 /* The physname for template and qualified methods already includes
388 the class name. */
389 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
390 newname = NULL;
391 len = 0;
392 }
393 else
394 {
395 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
396 volatile_prefix, len);
397 }
398 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
399 + strlen (buf) + len + strlen (physname) + 1);
400
401 mangled_name = (char *) xmalloc (mangled_name_len);
402 if (is_constructor)
403 mangled_name[0] = '\0';
404 else
405 strcpy (mangled_name, field_name);
406
407 strcat (mangled_name, buf);
408 /* If the class doesn't have a name, i.e. newname NULL, then we just
409 mangle it using 0 for the length of the class. Thus it gets mangled
410 as something starting with `::' rather than `classname::'. */
411 if (newname != NULL)
412 strcat (mangled_name, newname);
413
414 strcat (mangled_name, physname);
415 return (mangled_name);
416 }
417
418 /* Initialize the cplus_specific structure. 'cplus_specific' should
419 only be allocated for use with cplus symbols. */
420
421 static void
422 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
423 struct obstack *obstack)
424 {
425 /* A language_specific structure should not have been previously
426 initialized. */
427 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
428 gdb_assert (obstack != NULL);
429
430 gsymbol->language_specific.cplus_specific =
431 OBSTACK_ZALLOC (obstack, struct cplus_specific);
432 }
433
434 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
435 correctly allocated. For C++ symbols a cplus_specific struct is
436 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
437 OBJFILE can be NULL. */
438
439 void
440 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
441 const char *name,
442 struct obstack *obstack)
443 {
444 if (gsymbol->language == language_cplus)
445 {
446 if (gsymbol->language_specific.cplus_specific == NULL)
447 symbol_init_cplus_specific (gsymbol, obstack);
448
449 gsymbol->language_specific.cplus_specific->demangled_name = name;
450 }
451 else
452 gsymbol->language_specific.mangled_lang.demangled_name = name;
453 }
454
455 /* Return the demangled name of GSYMBOL. */
456
457 const char *
458 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
459 {
460 if (gsymbol->language == language_cplus)
461 {
462 if (gsymbol->language_specific.cplus_specific != NULL)
463 return gsymbol->language_specific.cplus_specific->demangled_name;
464 else
465 return NULL;
466 }
467 else
468 return gsymbol->language_specific.mangled_lang.demangled_name;
469 }
470
471 \f
472 /* Initialize the language dependent portion of a symbol
473 depending upon the language for the symbol. */
474
475 void
476 symbol_set_language (struct general_symbol_info *gsymbol,
477 enum language language)
478 {
479 gsymbol->language = language;
480 if (gsymbol->language == language_d
481 || gsymbol->language == language_go
482 || gsymbol->language == language_java
483 || gsymbol->language == language_objc
484 || gsymbol->language == language_fortran)
485 {
486 symbol_set_demangled_name (gsymbol, NULL, NULL);
487 }
488 else if (gsymbol->language == language_cplus)
489 gsymbol->language_specific.cplus_specific = NULL;
490 else
491 {
492 memset (&gsymbol->language_specific, 0,
493 sizeof (gsymbol->language_specific));
494 }
495 }
496
497 /* Functions to initialize a symbol's mangled name. */
498
499 /* Objects of this type are stored in the demangled name hash table. */
500 struct demangled_name_entry
501 {
502 const char *mangled;
503 char demangled[1];
504 };
505
506 /* Hash function for the demangled name hash. */
507
508 static hashval_t
509 hash_demangled_name_entry (const void *data)
510 {
511 const struct demangled_name_entry *e = data;
512
513 return htab_hash_string (e->mangled);
514 }
515
516 /* Equality function for the demangled name hash. */
517
518 static int
519 eq_demangled_name_entry (const void *a, const void *b)
520 {
521 const struct demangled_name_entry *da = a;
522 const struct demangled_name_entry *db = b;
523
524 return strcmp (da->mangled, db->mangled) == 0;
525 }
526
527 /* Create the hash table used for demangled names. Each hash entry is
528 a pair of strings; one for the mangled name and one for the demangled
529 name. The entry is hashed via just the mangled name. */
530
531 static void
532 create_demangled_names_hash (struct objfile *objfile)
533 {
534 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
535 The hash table code will round this up to the next prime number.
536 Choosing a much larger table size wastes memory, and saves only about
537 1% in symbol reading. */
538
539 objfile->demangled_names_hash = htab_create_alloc
540 (256, hash_demangled_name_entry, eq_demangled_name_entry,
541 NULL, xcalloc, xfree);
542 }
543
544 /* Try to determine the demangled name for a symbol, based on the
545 language of that symbol. If the language is set to language_auto,
546 it will attempt to find any demangling algorithm that works and
547 then set the language appropriately. The returned name is allocated
548 by the demangler and should be xfree'd. */
549
550 static char *
551 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
552 const char *mangled)
553 {
554 char *demangled = NULL;
555
556 if (gsymbol->language == language_unknown)
557 gsymbol->language = language_auto;
558
559 if (gsymbol->language == language_objc
560 || gsymbol->language == language_auto)
561 {
562 demangled =
563 objc_demangle (mangled, 0);
564 if (demangled != NULL)
565 {
566 gsymbol->language = language_objc;
567 return demangled;
568 }
569 }
570 if (gsymbol->language == language_cplus
571 || gsymbol->language == language_auto)
572 {
573 demangled =
574 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
575 if (demangled != NULL)
576 {
577 gsymbol->language = language_cplus;
578 return demangled;
579 }
580 }
581 if (gsymbol->language == language_java)
582 {
583 demangled =
584 cplus_demangle (mangled,
585 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
586 if (demangled != NULL)
587 {
588 gsymbol->language = language_java;
589 return demangled;
590 }
591 }
592 if (gsymbol->language == language_d
593 || gsymbol->language == language_auto)
594 {
595 demangled = d_demangle(mangled, 0);
596 if (demangled != NULL)
597 {
598 gsymbol->language = language_d;
599 return demangled;
600 }
601 }
602 /* FIXME(dje): Continually adding languages here is clumsy.
603 Better to just call la_demangle if !auto, and if auto then call
604 a utility routine that tries successive languages in turn and reports
605 which one it finds. I realize the la_demangle options may be different
606 for different languages but there's already a FIXME for that. */
607 if (gsymbol->language == language_go
608 || gsymbol->language == language_auto)
609 {
610 demangled = go_demangle (mangled, 0);
611 if (demangled != NULL)
612 {
613 gsymbol->language = language_go;
614 return demangled;
615 }
616 }
617
618 /* We could support `gsymbol->language == language_fortran' here to provide
619 module namespaces also for inferiors with only minimal symbol table (ELF
620 symbols). Just the mangling standard is not standardized across compilers
621 and there is no DW_AT_producer available for inferiors with only the ELF
622 symbols to check the mangling kind. */
623 return NULL;
624 }
625
626 /* Set both the mangled and demangled (if any) names for GSYMBOL based
627 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
628 objfile's obstack; but if COPY_NAME is 0 and if NAME is
629 NUL-terminated, then this function assumes that NAME is already
630 correctly saved (either permanently or with a lifetime tied to the
631 objfile), and it will not be copied.
632
633 The hash table corresponding to OBJFILE is used, and the memory
634 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
635 so the pointer can be discarded after calling this function. */
636
637 /* We have to be careful when dealing with Java names: when we run
638 into a Java minimal symbol, we don't know it's a Java symbol, so it
639 gets demangled as a C++ name. This is unfortunate, but there's not
640 much we can do about it: but when demangling partial symbols and
641 regular symbols, we'd better not reuse the wrong demangled name.
642 (See PR gdb/1039.) We solve this by putting a distinctive prefix
643 on Java names when storing them in the hash table. */
644
645 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
646 don't mind the Java prefix so much: different languages have
647 different demangling requirements, so it's only natural that we
648 need to keep language data around in our demangling cache. But
649 it's not good that the minimal symbol has the wrong demangled name.
650 Unfortunately, I can't think of any easy solution to that
651 problem. */
652
653 #define JAVA_PREFIX "##JAVA$$"
654 #define JAVA_PREFIX_LEN 8
655
656 void
657 symbol_set_names (struct general_symbol_info *gsymbol,
658 const char *linkage_name, int len, int copy_name,
659 struct objfile *objfile)
660 {
661 struct demangled_name_entry **slot;
662 /* A 0-terminated copy of the linkage name. */
663 const char *linkage_name_copy;
664 /* A copy of the linkage name that might have a special Java prefix
665 added to it, for use when looking names up in the hash table. */
666 const char *lookup_name;
667 /* The length of lookup_name. */
668 int lookup_len;
669 struct demangled_name_entry entry;
670
671 if (gsymbol->language == language_ada)
672 {
673 /* In Ada, we do the symbol lookups using the mangled name, so
674 we can save some space by not storing the demangled name.
675
676 As a side note, we have also observed some overlap between
677 the C++ mangling and Ada mangling, similarly to what has
678 been observed with Java. Because we don't store the demangled
679 name with the symbol, we don't need to use the same trick
680 as Java. */
681 if (!copy_name)
682 gsymbol->name = linkage_name;
683 else
684 {
685 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
686
687 memcpy (name, linkage_name, len);
688 name[len] = '\0';
689 gsymbol->name = name;
690 }
691 symbol_set_demangled_name (gsymbol, NULL, NULL);
692
693 return;
694 }
695
696 if (objfile->demangled_names_hash == NULL)
697 create_demangled_names_hash (objfile);
698
699 /* The stabs reader generally provides names that are not
700 NUL-terminated; most of the other readers don't do this, so we
701 can just use the given copy, unless we're in the Java case. */
702 if (gsymbol->language == language_java)
703 {
704 char *alloc_name;
705
706 lookup_len = len + JAVA_PREFIX_LEN;
707 alloc_name = alloca (lookup_len + 1);
708 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
709 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
710 alloc_name[lookup_len] = '\0';
711
712 lookup_name = alloc_name;
713 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
714 }
715 else if (linkage_name[len] != '\0')
716 {
717 char *alloc_name;
718
719 lookup_len = len;
720 alloc_name = alloca (lookup_len + 1);
721 memcpy (alloc_name, linkage_name, len);
722 alloc_name[lookup_len] = '\0';
723
724 lookup_name = alloc_name;
725 linkage_name_copy = alloc_name;
726 }
727 else
728 {
729 lookup_len = len;
730 lookup_name = linkage_name;
731 linkage_name_copy = linkage_name;
732 }
733
734 entry.mangled = lookup_name;
735 slot = ((struct demangled_name_entry **)
736 htab_find_slot (objfile->demangled_names_hash,
737 &entry, INSERT));
738
739 /* If this name is not in the hash table, add it. */
740 if (*slot == NULL
741 /* A C version of the symbol may have already snuck into the table.
742 This happens to, e.g., main.init (__go_init_main). Cope. */
743 || (gsymbol->language == language_go
744 && (*slot)->demangled[0] == '\0'))
745 {
746 char *demangled_name = symbol_find_demangled_name (gsymbol,
747 linkage_name_copy);
748 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
749
750 /* Suppose we have demangled_name==NULL, copy_name==0, and
751 lookup_name==linkage_name. In this case, we already have the
752 mangled name saved, and we don't have a demangled name. So,
753 you might think we could save a little space by not recording
754 this in the hash table at all.
755
756 It turns out that it is actually important to still save such
757 an entry in the hash table, because storing this name gives
758 us better bcache hit rates for partial symbols. */
759 if (!copy_name && lookup_name == linkage_name)
760 {
761 *slot = obstack_alloc (&objfile->objfile_obstack,
762 offsetof (struct demangled_name_entry,
763 demangled)
764 + demangled_len + 1);
765 (*slot)->mangled = lookup_name;
766 }
767 else
768 {
769 char *mangled_ptr;
770
771 /* If we must copy the mangled name, put it directly after
772 the demangled name so we can have a single
773 allocation. */
774 *slot = obstack_alloc (&objfile->objfile_obstack,
775 offsetof (struct demangled_name_entry,
776 demangled)
777 + lookup_len + demangled_len + 2);
778 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
779 strcpy (mangled_ptr, lookup_name);
780 (*slot)->mangled = mangled_ptr;
781 }
782
783 if (demangled_name != NULL)
784 {
785 strcpy ((*slot)->demangled, demangled_name);
786 xfree (demangled_name);
787 }
788 else
789 (*slot)->demangled[0] = '\0';
790 }
791
792 gsymbol->name = (*slot)->mangled + lookup_len - len;
793 if ((*slot)->demangled[0] != '\0')
794 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
795 &objfile->objfile_obstack);
796 else
797 symbol_set_demangled_name (gsymbol, NULL, &objfile->objfile_obstack);
798 }
799
800 /* Return the source code name of a symbol. In languages where
801 demangling is necessary, this is the demangled name. */
802
803 const char *
804 symbol_natural_name (const struct general_symbol_info *gsymbol)
805 {
806 switch (gsymbol->language)
807 {
808 case language_cplus:
809 case language_d:
810 case language_go:
811 case language_java:
812 case language_objc:
813 case language_fortran:
814 if (symbol_get_demangled_name (gsymbol) != NULL)
815 return symbol_get_demangled_name (gsymbol);
816 break;
817 case language_ada:
818 if (symbol_get_demangled_name (gsymbol) != NULL)
819 return symbol_get_demangled_name (gsymbol);
820 else
821 return ada_decode_symbol (gsymbol);
822 break;
823 default:
824 break;
825 }
826 return gsymbol->name;
827 }
828
829 /* Return the demangled name for a symbol based on the language for
830 that symbol. If no demangled name exists, return NULL. */
831
832 const char *
833 symbol_demangled_name (const struct general_symbol_info *gsymbol)
834 {
835 const char *dem_name = NULL;
836
837 switch (gsymbol->language)
838 {
839 case language_cplus:
840 case language_d:
841 case language_go:
842 case language_java:
843 case language_objc:
844 case language_fortran:
845 dem_name = symbol_get_demangled_name (gsymbol);
846 break;
847 case language_ada:
848 dem_name = symbol_get_demangled_name (gsymbol);
849 if (dem_name == NULL)
850 dem_name = ada_decode_symbol (gsymbol);
851 break;
852 default:
853 break;
854 }
855 return dem_name;
856 }
857
858 /* Return the search name of a symbol---generally the demangled or
859 linkage name of the symbol, depending on how it will be searched for.
860 If there is no distinct demangled name, then returns the same value
861 (same pointer) as SYMBOL_LINKAGE_NAME. */
862
863 const char *
864 symbol_search_name (const struct general_symbol_info *gsymbol)
865 {
866 if (gsymbol->language == language_ada)
867 return gsymbol->name;
868 else
869 return symbol_natural_name (gsymbol);
870 }
871
872 /* Initialize the structure fields to zero values. */
873
874 void
875 init_sal (struct symtab_and_line *sal)
876 {
877 sal->pspace = NULL;
878 sal->symtab = 0;
879 sal->section = 0;
880 sal->line = 0;
881 sal->pc = 0;
882 sal->end = 0;
883 sal->explicit_pc = 0;
884 sal->explicit_line = 0;
885 sal->probe = NULL;
886 }
887 \f
888
889 /* Return 1 if the two sections are the same, or if they could
890 plausibly be copies of each other, one in an original object
891 file and another in a separated debug file. */
892
893 int
894 matching_obj_sections (struct obj_section *obj_first,
895 struct obj_section *obj_second)
896 {
897 asection *first = obj_first? obj_first->the_bfd_section : NULL;
898 asection *second = obj_second? obj_second->the_bfd_section : NULL;
899 struct objfile *obj;
900
901 /* If they're the same section, then they match. */
902 if (first == second)
903 return 1;
904
905 /* If either is NULL, give up. */
906 if (first == NULL || second == NULL)
907 return 0;
908
909 /* This doesn't apply to absolute symbols. */
910 if (first->owner == NULL || second->owner == NULL)
911 return 0;
912
913 /* If they're in the same object file, they must be different sections. */
914 if (first->owner == second->owner)
915 return 0;
916
917 /* Check whether the two sections are potentially corresponding. They must
918 have the same size, address, and name. We can't compare section indexes,
919 which would be more reliable, because some sections may have been
920 stripped. */
921 if (bfd_get_section_size (first) != bfd_get_section_size (second))
922 return 0;
923
924 /* In-memory addresses may start at a different offset, relativize them. */
925 if (bfd_get_section_vma (first->owner, first)
926 - bfd_get_start_address (first->owner)
927 != bfd_get_section_vma (second->owner, second)
928 - bfd_get_start_address (second->owner))
929 return 0;
930
931 if (bfd_get_section_name (first->owner, first) == NULL
932 || bfd_get_section_name (second->owner, second) == NULL
933 || strcmp (bfd_get_section_name (first->owner, first),
934 bfd_get_section_name (second->owner, second)) != 0)
935 return 0;
936
937 /* Otherwise check that they are in corresponding objfiles. */
938
939 ALL_OBJFILES (obj)
940 if (obj->obfd == first->owner)
941 break;
942 gdb_assert (obj != NULL);
943
944 if (obj->separate_debug_objfile != NULL
945 && obj->separate_debug_objfile->obfd == second->owner)
946 return 1;
947 if (obj->separate_debug_objfile_backlink != NULL
948 && obj->separate_debug_objfile_backlink->obfd == second->owner)
949 return 1;
950
951 return 0;
952 }
953
954 struct symtab *
955 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
956 {
957 struct objfile *objfile;
958 struct minimal_symbol *msymbol;
959
960 /* If we know that this is not a text address, return failure. This is
961 necessary because we loop based on texthigh and textlow, which do
962 not include the data ranges. */
963 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
964 if (msymbol
965 && (MSYMBOL_TYPE (msymbol) == mst_data
966 || MSYMBOL_TYPE (msymbol) == mst_bss
967 || MSYMBOL_TYPE (msymbol) == mst_abs
968 || MSYMBOL_TYPE (msymbol) == mst_file_data
969 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
970 return NULL;
971
972 ALL_OBJFILES (objfile)
973 {
974 struct symtab *result = NULL;
975
976 if (objfile->sf)
977 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
978 pc, section, 0);
979 if (result)
980 return result;
981 }
982
983 return NULL;
984 }
985 \f
986 /* Debug symbols usually don't have section information. We need to dig that
987 out of the minimal symbols and stash that in the debug symbol. */
988
989 void
990 fixup_section (struct general_symbol_info *ginfo,
991 CORE_ADDR addr, struct objfile *objfile)
992 {
993 struct minimal_symbol *msym;
994
995 /* First, check whether a minimal symbol with the same name exists
996 and points to the same address. The address check is required
997 e.g. on PowerPC64, where the minimal symbol for a function will
998 point to the function descriptor, while the debug symbol will
999 point to the actual function code. */
1000 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1001 if (msym)
1002 {
1003 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1004 ginfo->section = SYMBOL_SECTION (msym);
1005 }
1006 else
1007 {
1008 /* Static, function-local variables do appear in the linker
1009 (minimal) symbols, but are frequently given names that won't
1010 be found via lookup_minimal_symbol(). E.g., it has been
1011 observed in frv-uclinux (ELF) executables that a static,
1012 function-local variable named "foo" might appear in the
1013 linker symbols as "foo.6" or "foo.3". Thus, there is no
1014 point in attempting to extend the lookup-by-name mechanism to
1015 handle this case due to the fact that there can be multiple
1016 names.
1017
1018 So, instead, search the section table when lookup by name has
1019 failed. The ``addr'' and ``endaddr'' fields may have already
1020 been relocated. If so, the relocation offset (i.e. the
1021 ANOFFSET value) needs to be subtracted from these values when
1022 performing the comparison. We unconditionally subtract it,
1023 because, when no relocation has been performed, the ANOFFSET
1024 value will simply be zero.
1025
1026 The address of the symbol whose section we're fixing up HAS
1027 NOT BEEN adjusted (relocated) yet. It can't have been since
1028 the section isn't yet known and knowing the section is
1029 necessary in order to add the correct relocation value. In
1030 other words, we wouldn't even be in this function (attempting
1031 to compute the section) if it were already known.
1032
1033 Note that it is possible to search the minimal symbols
1034 (subtracting the relocation value if necessary) to find the
1035 matching minimal symbol, but this is overkill and much less
1036 efficient. It is not necessary to find the matching minimal
1037 symbol, only its section.
1038
1039 Note that this technique (of doing a section table search)
1040 can fail when unrelocated section addresses overlap. For
1041 this reason, we still attempt a lookup by name prior to doing
1042 a search of the section table. */
1043
1044 struct obj_section *s;
1045
1046 ALL_OBJFILE_OSECTIONS (objfile, s)
1047 {
1048 int idx = s->the_bfd_section->index;
1049 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1050
1051 if (obj_section_addr (s) - offset <= addr
1052 && addr < obj_section_endaddr (s) - offset)
1053 {
1054 ginfo->obj_section = s;
1055 ginfo->section = idx;
1056 return;
1057 }
1058 }
1059 }
1060 }
1061
1062 struct symbol *
1063 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1064 {
1065 CORE_ADDR addr;
1066
1067 if (!sym)
1068 return NULL;
1069
1070 if (SYMBOL_OBJ_SECTION (sym))
1071 return sym;
1072
1073 /* We either have an OBJFILE, or we can get at it from the sym's
1074 symtab. Anything else is a bug. */
1075 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1076
1077 if (objfile == NULL)
1078 objfile = SYMBOL_SYMTAB (sym)->objfile;
1079
1080 /* We should have an objfile by now. */
1081 gdb_assert (objfile);
1082
1083 switch (SYMBOL_CLASS (sym))
1084 {
1085 case LOC_STATIC:
1086 case LOC_LABEL:
1087 addr = SYMBOL_VALUE_ADDRESS (sym);
1088 break;
1089 case LOC_BLOCK:
1090 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1091 break;
1092
1093 default:
1094 /* Nothing else will be listed in the minsyms -- no use looking
1095 it up. */
1096 return sym;
1097 }
1098
1099 fixup_section (&sym->ginfo, addr, objfile);
1100
1101 return sym;
1102 }
1103
1104 /* Compute the demangled form of NAME as used by the various symbol
1105 lookup functions. The result is stored in *RESULT_NAME. Returns a
1106 cleanup which can be used to clean up the result.
1107
1108 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1109 Normally, Ada symbol lookups are performed using the encoded name
1110 rather than the demangled name, and so it might seem to make sense
1111 for this function to return an encoded version of NAME.
1112 Unfortunately, we cannot do this, because this function is used in
1113 circumstances where it is not appropriate to try to encode NAME.
1114 For instance, when displaying the frame info, we demangle the name
1115 of each parameter, and then perform a symbol lookup inside our
1116 function using that demangled name. In Ada, certain functions
1117 have internally-generated parameters whose name contain uppercase
1118 characters. Encoding those name would result in those uppercase
1119 characters to become lowercase, and thus cause the symbol lookup
1120 to fail. */
1121
1122 struct cleanup *
1123 demangle_for_lookup (const char *name, enum language lang,
1124 const char **result_name)
1125 {
1126 char *demangled_name = NULL;
1127 const char *modified_name = NULL;
1128 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1129
1130 modified_name = name;
1131
1132 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1133 lookup, so we can always binary search. */
1134 if (lang == language_cplus)
1135 {
1136 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1137 if (demangled_name)
1138 {
1139 modified_name = demangled_name;
1140 make_cleanup (xfree, demangled_name);
1141 }
1142 else
1143 {
1144 /* If we were given a non-mangled name, canonicalize it
1145 according to the language (so far only for C++). */
1146 demangled_name = cp_canonicalize_string (name);
1147 if (demangled_name)
1148 {
1149 modified_name = demangled_name;
1150 make_cleanup (xfree, demangled_name);
1151 }
1152 }
1153 }
1154 else if (lang == language_java)
1155 {
1156 demangled_name = cplus_demangle (name,
1157 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1158 if (demangled_name)
1159 {
1160 modified_name = demangled_name;
1161 make_cleanup (xfree, demangled_name);
1162 }
1163 }
1164 else if (lang == language_d)
1165 {
1166 demangled_name = d_demangle (name, 0);
1167 if (demangled_name)
1168 {
1169 modified_name = demangled_name;
1170 make_cleanup (xfree, demangled_name);
1171 }
1172 }
1173 else if (lang == language_go)
1174 {
1175 demangled_name = go_demangle (name, 0);
1176 if (demangled_name)
1177 {
1178 modified_name = demangled_name;
1179 make_cleanup (xfree, demangled_name);
1180 }
1181 }
1182
1183 *result_name = modified_name;
1184 return cleanup;
1185 }
1186
1187 /* Find the definition for a specified symbol name NAME
1188 in domain DOMAIN, visible from lexical block BLOCK.
1189 Returns the struct symbol pointer, or zero if no symbol is found.
1190 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1191 NAME is a field of the current implied argument `this'. If so set
1192 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1193 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1194 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1195
1196 /* This function (or rather its subordinates) have a bunch of loops and
1197 it would seem to be attractive to put in some QUIT's (though I'm not really
1198 sure whether it can run long enough to be really important). But there
1199 are a few calls for which it would appear to be bad news to quit
1200 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1201 that there is C++ code below which can error(), but that probably
1202 doesn't affect these calls since they are looking for a known
1203 variable and thus can probably assume it will never hit the C++
1204 code). */
1205
1206 struct symbol *
1207 lookup_symbol_in_language (const char *name, const struct block *block,
1208 const domain_enum domain, enum language lang,
1209 struct field_of_this_result *is_a_field_of_this)
1210 {
1211 const char *modified_name;
1212 struct symbol *returnval;
1213 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1214
1215 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1216 is_a_field_of_this);
1217 do_cleanups (cleanup);
1218
1219 return returnval;
1220 }
1221
1222 /* Behave like lookup_symbol_in_language, but performed with the
1223 current language. */
1224
1225 struct symbol *
1226 lookup_symbol (const char *name, const struct block *block,
1227 domain_enum domain,
1228 struct field_of_this_result *is_a_field_of_this)
1229 {
1230 return lookup_symbol_in_language (name, block, domain,
1231 current_language->la_language,
1232 is_a_field_of_this);
1233 }
1234
1235 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1236 found, or NULL if not found. */
1237
1238 struct symbol *
1239 lookup_language_this (const struct language_defn *lang,
1240 const struct block *block)
1241 {
1242 if (lang->la_name_of_this == NULL || block == NULL)
1243 return NULL;
1244
1245 while (block)
1246 {
1247 struct symbol *sym;
1248
1249 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1250 if (sym != NULL)
1251 {
1252 block_found = block;
1253 return sym;
1254 }
1255 if (BLOCK_FUNCTION (block))
1256 break;
1257 block = BLOCK_SUPERBLOCK (block);
1258 }
1259
1260 return NULL;
1261 }
1262
1263 /* Given TYPE, a structure/union,
1264 return 1 if the component named NAME from the ultimate target
1265 structure/union is defined, otherwise, return 0. */
1266
1267 static int
1268 check_field (struct type *type, const char *name,
1269 struct field_of_this_result *is_a_field_of_this)
1270 {
1271 int i;
1272
1273 /* The type may be a stub. */
1274 CHECK_TYPEDEF (type);
1275
1276 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1277 {
1278 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1279
1280 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1281 {
1282 is_a_field_of_this->type = type;
1283 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1284 return 1;
1285 }
1286 }
1287
1288 /* C++: If it was not found as a data field, then try to return it
1289 as a pointer to a method. */
1290
1291 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1292 {
1293 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1294 {
1295 is_a_field_of_this->type = type;
1296 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1297 return 1;
1298 }
1299 }
1300
1301 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1302 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1303 return 1;
1304
1305 return 0;
1306 }
1307
1308 /* Behave like lookup_symbol except that NAME is the natural name
1309 (e.g., demangled name) of the symbol that we're looking for. */
1310
1311 static struct symbol *
1312 lookup_symbol_aux (const char *name, const struct block *block,
1313 const domain_enum domain, enum language language,
1314 struct field_of_this_result *is_a_field_of_this)
1315 {
1316 struct symbol *sym;
1317 const struct language_defn *langdef;
1318
1319 /* Make sure we do something sensible with is_a_field_of_this, since
1320 the callers that set this parameter to some non-null value will
1321 certainly use it later. If we don't set it, the contents of
1322 is_a_field_of_this are undefined. */
1323 if (is_a_field_of_this != NULL)
1324 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1325
1326 /* Search specified block and its superiors. Don't search
1327 STATIC_BLOCK or GLOBAL_BLOCK. */
1328
1329 sym = lookup_symbol_aux_local (name, block, domain, language);
1330 if (sym != NULL)
1331 return sym;
1332
1333 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1334 check to see if NAME is a field of `this'. */
1335
1336 langdef = language_def (language);
1337
1338 /* Don't do this check if we are searching for a struct. It will
1339 not be found by check_field, but will be found by other
1340 means. */
1341 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1342 {
1343 struct symbol *sym = lookup_language_this (langdef, block);
1344
1345 if (sym)
1346 {
1347 struct type *t = sym->type;
1348
1349 /* I'm not really sure that type of this can ever
1350 be typedefed; just be safe. */
1351 CHECK_TYPEDEF (t);
1352 if (TYPE_CODE (t) == TYPE_CODE_PTR
1353 || TYPE_CODE (t) == TYPE_CODE_REF)
1354 t = TYPE_TARGET_TYPE (t);
1355
1356 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1357 && TYPE_CODE (t) != TYPE_CODE_UNION)
1358 error (_("Internal error: `%s' is not an aggregate"),
1359 langdef->la_name_of_this);
1360
1361 if (check_field (t, name, is_a_field_of_this))
1362 return NULL;
1363 }
1364 }
1365
1366 /* Now do whatever is appropriate for LANGUAGE to look
1367 up static and global variables. */
1368
1369 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1370 if (sym != NULL)
1371 return sym;
1372
1373 /* Now search all static file-level symbols. Not strictly correct,
1374 but more useful than an error. */
1375
1376 return lookup_static_symbol_aux (name, domain);
1377 }
1378
1379 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1380 first, then check the psymtabs. If a psymtab indicates the existence of the
1381 desired name as a file-level static, then do psymtab-to-symtab conversion on
1382 the fly and return the found symbol. */
1383
1384 struct symbol *
1385 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1386 {
1387 struct objfile *objfile;
1388 struct symbol *sym;
1389
1390 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1391 if (sym != NULL)
1392 return sym;
1393
1394 ALL_OBJFILES (objfile)
1395 {
1396 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1397 if (sym != NULL)
1398 return sym;
1399 }
1400
1401 return NULL;
1402 }
1403
1404 /* Check to see if the symbol is defined in BLOCK or its superiors.
1405 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1406
1407 static struct symbol *
1408 lookup_symbol_aux_local (const char *name, const struct block *block,
1409 const domain_enum domain,
1410 enum language language)
1411 {
1412 struct symbol *sym;
1413 const struct block *static_block = block_static_block (block);
1414 const char *scope = block_scope (block);
1415
1416 /* Check if either no block is specified or it's a global block. */
1417
1418 if (static_block == NULL)
1419 return NULL;
1420
1421 while (block != static_block)
1422 {
1423 sym = lookup_symbol_aux_block (name, block, domain);
1424 if (sym != NULL)
1425 return sym;
1426
1427 if (language == language_cplus || language == language_fortran)
1428 {
1429 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1430 domain);
1431 if (sym != NULL)
1432 return sym;
1433 }
1434
1435 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1436 break;
1437 block = BLOCK_SUPERBLOCK (block);
1438 }
1439
1440 /* We've reached the edge of the function without finding a result. */
1441
1442 return NULL;
1443 }
1444
1445 /* Look up OBJFILE to BLOCK. */
1446
1447 struct objfile *
1448 lookup_objfile_from_block (const struct block *block)
1449 {
1450 struct objfile *obj;
1451 struct symtab *s;
1452
1453 if (block == NULL)
1454 return NULL;
1455
1456 block = block_global_block (block);
1457 /* Go through SYMTABS. */
1458 ALL_SYMTABS (obj, s)
1459 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1460 {
1461 if (obj->separate_debug_objfile_backlink)
1462 obj = obj->separate_debug_objfile_backlink;
1463
1464 return obj;
1465 }
1466
1467 return NULL;
1468 }
1469
1470 /* Look up a symbol in a block; if found, fixup the symbol, and set
1471 block_found appropriately. */
1472
1473 struct symbol *
1474 lookup_symbol_aux_block (const char *name, const struct block *block,
1475 const domain_enum domain)
1476 {
1477 struct symbol *sym;
1478
1479 sym = lookup_block_symbol (block, name, domain);
1480 if (sym)
1481 {
1482 block_found = block;
1483 return fixup_symbol_section (sym, NULL);
1484 }
1485
1486 return NULL;
1487 }
1488
1489 /* Check all global symbols in OBJFILE in symtabs and
1490 psymtabs. */
1491
1492 struct symbol *
1493 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1494 const char *name,
1495 const domain_enum domain)
1496 {
1497 const struct objfile *objfile;
1498 struct symbol *sym;
1499 struct blockvector *bv;
1500 const struct block *block;
1501 struct symtab *s;
1502
1503 for (objfile = main_objfile;
1504 objfile;
1505 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1506 {
1507 /* Go through symtabs. */
1508 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1509 {
1510 bv = BLOCKVECTOR (s);
1511 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1512 sym = lookup_block_symbol (block, name, domain);
1513 if (sym)
1514 {
1515 block_found = block;
1516 return fixup_symbol_section (sym, (struct objfile *)objfile);
1517 }
1518 }
1519
1520 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1521 name, domain);
1522 if (sym)
1523 return sym;
1524 }
1525
1526 return NULL;
1527 }
1528
1529 /* Check to see if the symbol is defined in one of the OBJFILE's
1530 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1531 depending on whether or not we want to search global symbols or
1532 static symbols. */
1533
1534 static struct symbol *
1535 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1536 const char *name, const domain_enum domain)
1537 {
1538 struct symbol *sym = NULL;
1539 struct blockvector *bv;
1540 const struct block *block;
1541 struct symtab *s;
1542
1543 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1544 {
1545 bv = BLOCKVECTOR (s);
1546 block = BLOCKVECTOR_BLOCK (bv, block_index);
1547 sym = lookup_block_symbol (block, name, domain);
1548 if (sym)
1549 {
1550 block_found = block;
1551 return fixup_symbol_section (sym, objfile);
1552 }
1553 }
1554
1555 return NULL;
1556 }
1557
1558 /* Same as lookup_symbol_aux_objfile, except that it searches all
1559 objfiles. Return the first match found. */
1560
1561 static struct symbol *
1562 lookup_symbol_aux_symtabs (int block_index, const char *name,
1563 const domain_enum domain)
1564 {
1565 struct symbol *sym;
1566 struct objfile *objfile;
1567
1568 ALL_OBJFILES (objfile)
1569 {
1570 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1571 if (sym)
1572 return sym;
1573 }
1574
1575 return NULL;
1576 }
1577
1578 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1579 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1580 and all related objfiles. */
1581
1582 static struct symbol *
1583 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1584 const char *linkage_name,
1585 domain_enum domain)
1586 {
1587 enum language lang = current_language->la_language;
1588 const char *modified_name;
1589 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1590 &modified_name);
1591 struct objfile *main_objfile, *cur_objfile;
1592
1593 if (objfile->separate_debug_objfile_backlink)
1594 main_objfile = objfile->separate_debug_objfile_backlink;
1595 else
1596 main_objfile = objfile;
1597
1598 for (cur_objfile = main_objfile;
1599 cur_objfile;
1600 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1601 {
1602 struct symbol *sym;
1603
1604 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1605 modified_name, domain);
1606 if (sym == NULL)
1607 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1608 modified_name, domain);
1609 if (sym != NULL)
1610 {
1611 do_cleanups (cleanup);
1612 return sym;
1613 }
1614 }
1615
1616 do_cleanups (cleanup);
1617 return NULL;
1618 }
1619
1620 /* A helper function that throws an exception when a symbol was found
1621 in a psymtab but not in a symtab. */
1622
1623 static void ATTRIBUTE_NORETURN
1624 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1625 {
1626 error (_("\
1627 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1628 %s may be an inlined function, or may be a template function\n \
1629 (if a template, try specifying an instantiation: %s<type>)."),
1630 kind == GLOBAL_BLOCK ? "global" : "static",
1631 name, symtab_to_filename_for_display (symtab), name, name);
1632 }
1633
1634 /* A helper function for lookup_symbol_aux that interfaces with the
1635 "quick" symbol table functions. */
1636
1637 static struct symbol *
1638 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1639 const char *name, const domain_enum domain)
1640 {
1641 struct symtab *symtab;
1642 struct blockvector *bv;
1643 const struct block *block;
1644 struct symbol *sym;
1645
1646 if (!objfile->sf)
1647 return NULL;
1648 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1649 if (!symtab)
1650 return NULL;
1651
1652 bv = BLOCKVECTOR (symtab);
1653 block = BLOCKVECTOR_BLOCK (bv, kind);
1654 sym = lookup_block_symbol (block, name, domain);
1655 if (!sym)
1656 error_in_psymtab_expansion (kind, name, symtab);
1657 return fixup_symbol_section (sym, objfile);
1658 }
1659
1660 /* A default version of lookup_symbol_nonlocal for use by languages
1661 that can't think of anything better to do. This implements the C
1662 lookup rules. */
1663
1664 struct symbol *
1665 basic_lookup_symbol_nonlocal (const char *name,
1666 const struct block *block,
1667 const domain_enum domain)
1668 {
1669 struct symbol *sym;
1670
1671 /* NOTE: carlton/2003-05-19: The comments below were written when
1672 this (or what turned into this) was part of lookup_symbol_aux;
1673 I'm much less worried about these questions now, since these
1674 decisions have turned out well, but I leave these comments here
1675 for posterity. */
1676
1677 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1678 not it would be appropriate to search the current global block
1679 here as well. (That's what this code used to do before the
1680 is_a_field_of_this check was moved up.) On the one hand, it's
1681 redundant with the lookup_symbol_aux_symtabs search that happens
1682 next. On the other hand, if decode_line_1 is passed an argument
1683 like filename:var, then the user presumably wants 'var' to be
1684 searched for in filename. On the third hand, there shouldn't be
1685 multiple global variables all of which are named 'var', and it's
1686 not like decode_line_1 has ever restricted its search to only
1687 global variables in a single filename. All in all, only
1688 searching the static block here seems best: it's correct and it's
1689 cleanest. */
1690
1691 /* NOTE: carlton/2002-12-05: There's also a possible performance
1692 issue here: if you usually search for global symbols in the
1693 current file, then it would be slightly better to search the
1694 current global block before searching all the symtabs. But there
1695 are other factors that have a much greater effect on performance
1696 than that one, so I don't think we should worry about that for
1697 now. */
1698
1699 sym = lookup_symbol_static (name, block, domain);
1700 if (sym != NULL)
1701 return sym;
1702
1703 return lookup_symbol_global (name, block, domain);
1704 }
1705
1706 /* Lookup a symbol in the static block associated to BLOCK, if there
1707 is one; do nothing if BLOCK is NULL or a global block. */
1708
1709 struct symbol *
1710 lookup_symbol_static (const char *name,
1711 const struct block *block,
1712 const domain_enum domain)
1713 {
1714 const struct block *static_block = block_static_block (block);
1715
1716 if (static_block != NULL)
1717 return lookup_symbol_aux_block (name, static_block, domain);
1718 else
1719 return NULL;
1720 }
1721
1722 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1723
1724 struct global_sym_lookup_data
1725 {
1726 /* The name of the symbol we are searching for. */
1727 const char *name;
1728
1729 /* The domain to use for our search. */
1730 domain_enum domain;
1731
1732 /* The field where the callback should store the symbol if found.
1733 It should be initialized to NULL before the search is started. */
1734 struct symbol *result;
1735 };
1736
1737 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1738 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1739 OBJFILE. The arguments for the search are passed via CB_DATA,
1740 which in reality is a pointer to struct global_sym_lookup_data. */
1741
1742 static int
1743 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1744 void *cb_data)
1745 {
1746 struct global_sym_lookup_data *data =
1747 (struct global_sym_lookup_data *) cb_data;
1748
1749 gdb_assert (data->result == NULL);
1750
1751 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1752 data->name, data->domain);
1753 if (data->result == NULL)
1754 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1755 data->name, data->domain);
1756
1757 /* If we found a match, tell the iterator to stop. Otherwise,
1758 keep going. */
1759 return (data->result != NULL);
1760 }
1761
1762 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1763 necessary). */
1764
1765 struct symbol *
1766 lookup_symbol_global (const char *name,
1767 const struct block *block,
1768 const domain_enum domain)
1769 {
1770 struct symbol *sym = NULL;
1771 struct objfile *objfile = NULL;
1772 struct global_sym_lookup_data lookup_data;
1773
1774 /* Call library-specific lookup procedure. */
1775 objfile = lookup_objfile_from_block (block);
1776 if (objfile != NULL)
1777 sym = solib_global_lookup (objfile, name, domain);
1778 if (sym != NULL)
1779 return sym;
1780
1781 memset (&lookup_data, 0, sizeof (lookup_data));
1782 lookup_data.name = name;
1783 lookup_data.domain = domain;
1784 gdbarch_iterate_over_objfiles_in_search_order
1785 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1786 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1787
1788 return lookup_data.result;
1789 }
1790
1791 int
1792 symbol_matches_domain (enum language symbol_language,
1793 domain_enum symbol_domain,
1794 domain_enum domain)
1795 {
1796 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1797 A Java class declaration also defines a typedef for the class.
1798 Similarly, any Ada type declaration implicitly defines a typedef. */
1799 if (symbol_language == language_cplus
1800 || symbol_language == language_d
1801 || symbol_language == language_java
1802 || symbol_language == language_ada)
1803 {
1804 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1805 && symbol_domain == STRUCT_DOMAIN)
1806 return 1;
1807 }
1808 /* For all other languages, strict match is required. */
1809 return (symbol_domain == domain);
1810 }
1811
1812 /* Look up a type named NAME in the struct_domain. The type returned
1813 must not be opaque -- i.e., must have at least one field
1814 defined. */
1815
1816 struct type *
1817 lookup_transparent_type (const char *name)
1818 {
1819 return current_language->la_lookup_transparent_type (name);
1820 }
1821
1822 /* A helper for basic_lookup_transparent_type that interfaces with the
1823 "quick" symbol table functions. */
1824
1825 static struct type *
1826 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1827 const char *name)
1828 {
1829 struct symtab *symtab;
1830 struct blockvector *bv;
1831 struct block *block;
1832 struct symbol *sym;
1833
1834 if (!objfile->sf)
1835 return NULL;
1836 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1837 if (!symtab)
1838 return NULL;
1839
1840 bv = BLOCKVECTOR (symtab);
1841 block = BLOCKVECTOR_BLOCK (bv, kind);
1842 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1843 if (!sym)
1844 error_in_psymtab_expansion (kind, name, symtab);
1845
1846 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1847 return SYMBOL_TYPE (sym);
1848
1849 return NULL;
1850 }
1851
1852 /* The standard implementation of lookup_transparent_type. This code
1853 was modeled on lookup_symbol -- the parts not relevant to looking
1854 up types were just left out. In particular it's assumed here that
1855 types are available in struct_domain and only at file-static or
1856 global blocks. */
1857
1858 struct type *
1859 basic_lookup_transparent_type (const char *name)
1860 {
1861 struct symbol *sym;
1862 struct symtab *s = NULL;
1863 struct blockvector *bv;
1864 struct objfile *objfile;
1865 struct block *block;
1866 struct type *t;
1867
1868 /* Now search all the global symbols. Do the symtab's first, then
1869 check the psymtab's. If a psymtab indicates the existence
1870 of the desired name as a global, then do psymtab-to-symtab
1871 conversion on the fly and return the found symbol. */
1872
1873 ALL_OBJFILES (objfile)
1874 {
1875 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1876 {
1877 bv = BLOCKVECTOR (s);
1878 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1879 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1880 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1881 {
1882 return SYMBOL_TYPE (sym);
1883 }
1884 }
1885 }
1886
1887 ALL_OBJFILES (objfile)
1888 {
1889 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1890 if (t)
1891 return t;
1892 }
1893
1894 /* Now search the static file-level symbols.
1895 Not strictly correct, but more useful than an error.
1896 Do the symtab's first, then
1897 check the psymtab's. If a psymtab indicates the existence
1898 of the desired name as a file-level static, then do psymtab-to-symtab
1899 conversion on the fly and return the found symbol. */
1900
1901 ALL_OBJFILES (objfile)
1902 {
1903 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1904 {
1905 bv = BLOCKVECTOR (s);
1906 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1907 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1908 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1909 {
1910 return SYMBOL_TYPE (sym);
1911 }
1912 }
1913 }
1914
1915 ALL_OBJFILES (objfile)
1916 {
1917 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1918 if (t)
1919 return t;
1920 }
1921
1922 return (struct type *) 0;
1923 }
1924
1925 /* Find the name of the file containing main(). */
1926 /* FIXME: What about languages without main() or specially linked
1927 executables that have no main() ? */
1928
1929 const char *
1930 find_main_filename (void)
1931 {
1932 struct objfile *objfile;
1933 char *name = main_name ();
1934
1935 ALL_OBJFILES (objfile)
1936 {
1937 const char *result;
1938
1939 if (!objfile->sf)
1940 continue;
1941 result = objfile->sf->qf->find_symbol_file (objfile, name);
1942 if (result)
1943 return result;
1944 }
1945 return (NULL);
1946 }
1947
1948 /* Search BLOCK for symbol NAME in DOMAIN.
1949
1950 Note that if NAME is the demangled form of a C++ symbol, we will fail
1951 to find a match during the binary search of the non-encoded names, but
1952 for now we don't worry about the slight inefficiency of looking for
1953 a match we'll never find, since it will go pretty quick. Once the
1954 binary search terminates, we drop through and do a straight linear
1955 search on the symbols. Each symbol which is marked as being a ObjC/C++
1956 symbol (language_cplus or language_objc set) has both the encoded and
1957 non-encoded names tested for a match. */
1958
1959 struct symbol *
1960 lookup_block_symbol (const struct block *block, const char *name,
1961 const domain_enum domain)
1962 {
1963 struct block_iterator iter;
1964 struct symbol *sym;
1965
1966 if (!BLOCK_FUNCTION (block))
1967 {
1968 for (sym = block_iter_name_first (block, name, &iter);
1969 sym != NULL;
1970 sym = block_iter_name_next (name, &iter))
1971 {
1972 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1973 SYMBOL_DOMAIN (sym), domain))
1974 return sym;
1975 }
1976 return NULL;
1977 }
1978 else
1979 {
1980 /* Note that parameter symbols do not always show up last in the
1981 list; this loop makes sure to take anything else other than
1982 parameter symbols first; it only uses parameter symbols as a
1983 last resort. Note that this only takes up extra computation
1984 time on a match. */
1985
1986 struct symbol *sym_found = NULL;
1987
1988 for (sym = block_iter_name_first (block, name, &iter);
1989 sym != NULL;
1990 sym = block_iter_name_next (name, &iter))
1991 {
1992 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1993 SYMBOL_DOMAIN (sym), domain))
1994 {
1995 sym_found = sym;
1996 if (!SYMBOL_IS_ARGUMENT (sym))
1997 {
1998 break;
1999 }
2000 }
2001 }
2002 return (sym_found); /* Will be NULL if not found. */
2003 }
2004 }
2005
2006 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2007
2008 For each symbol that matches, CALLBACK is called. The symbol and
2009 DATA are passed to the callback.
2010
2011 If CALLBACK returns zero, the iteration ends. Otherwise, the
2012 search continues. */
2013
2014 void
2015 iterate_over_symbols (const struct block *block, const char *name,
2016 const domain_enum domain,
2017 symbol_found_callback_ftype *callback,
2018 void *data)
2019 {
2020 struct block_iterator iter;
2021 struct symbol *sym;
2022
2023 for (sym = block_iter_name_first (block, name, &iter);
2024 sym != NULL;
2025 sym = block_iter_name_next (name, &iter))
2026 {
2027 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2028 SYMBOL_DOMAIN (sym), domain))
2029 {
2030 if (!callback (sym, data))
2031 return;
2032 }
2033 }
2034 }
2035
2036 /* Find the symtab associated with PC and SECTION. Look through the
2037 psymtabs and read in another symtab if necessary. */
2038
2039 struct symtab *
2040 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2041 {
2042 struct block *b;
2043 struct blockvector *bv;
2044 struct symtab *s = NULL;
2045 struct symtab *best_s = NULL;
2046 struct objfile *objfile;
2047 CORE_ADDR distance = 0;
2048 struct minimal_symbol *msymbol;
2049
2050 /* If we know that this is not a text address, return failure. This is
2051 necessary because we loop based on the block's high and low code
2052 addresses, which do not include the data ranges, and because
2053 we call find_pc_sect_psymtab which has a similar restriction based
2054 on the partial_symtab's texthigh and textlow. */
2055 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2056 if (msymbol
2057 && (MSYMBOL_TYPE (msymbol) == mst_data
2058 || MSYMBOL_TYPE (msymbol) == mst_bss
2059 || MSYMBOL_TYPE (msymbol) == mst_abs
2060 || MSYMBOL_TYPE (msymbol) == mst_file_data
2061 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2062 return NULL;
2063
2064 /* Search all symtabs for the one whose file contains our address, and which
2065 is the smallest of all the ones containing the address. This is designed
2066 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2067 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2068 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2069
2070 This happens for native ecoff format, where code from included files
2071 gets its own symtab. The symtab for the included file should have
2072 been read in already via the dependency mechanism.
2073 It might be swifter to create several symtabs with the same name
2074 like xcoff does (I'm not sure).
2075
2076 It also happens for objfiles that have their functions reordered.
2077 For these, the symtab we are looking for is not necessarily read in. */
2078
2079 ALL_PRIMARY_SYMTABS (objfile, s)
2080 {
2081 bv = BLOCKVECTOR (s);
2082 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2083
2084 if (BLOCK_START (b) <= pc
2085 && BLOCK_END (b) > pc
2086 && (distance == 0
2087 || BLOCK_END (b) - BLOCK_START (b) < distance))
2088 {
2089 /* For an objfile that has its functions reordered,
2090 find_pc_psymtab will find the proper partial symbol table
2091 and we simply return its corresponding symtab. */
2092 /* In order to better support objfiles that contain both
2093 stabs and coff debugging info, we continue on if a psymtab
2094 can't be found. */
2095 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2096 {
2097 struct symtab *result;
2098
2099 result
2100 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2101 msymbol,
2102 pc, section,
2103 0);
2104 if (result)
2105 return result;
2106 }
2107 if (section != 0)
2108 {
2109 struct block_iterator iter;
2110 struct symbol *sym = NULL;
2111
2112 ALL_BLOCK_SYMBOLS (b, iter, sym)
2113 {
2114 fixup_symbol_section (sym, objfile);
2115 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2116 break;
2117 }
2118 if (sym == NULL)
2119 continue; /* No symbol in this symtab matches
2120 section. */
2121 }
2122 distance = BLOCK_END (b) - BLOCK_START (b);
2123 best_s = s;
2124 }
2125 }
2126
2127 if (best_s != NULL)
2128 return (best_s);
2129
2130 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2131
2132 ALL_OBJFILES (objfile)
2133 {
2134 struct symtab *result;
2135
2136 if (!objfile->sf)
2137 continue;
2138 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2139 msymbol,
2140 pc, section,
2141 1);
2142 if (result)
2143 return result;
2144 }
2145
2146 return NULL;
2147 }
2148
2149 /* Find the symtab associated with PC. Look through the psymtabs and read
2150 in another symtab if necessary. Backward compatibility, no section. */
2151
2152 struct symtab *
2153 find_pc_symtab (CORE_ADDR pc)
2154 {
2155 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2156 }
2157 \f
2158
2159 /* Find the source file and line number for a given PC value and SECTION.
2160 Return a structure containing a symtab pointer, a line number,
2161 and a pc range for the entire source line.
2162 The value's .pc field is NOT the specified pc.
2163 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2164 use the line that ends there. Otherwise, in that case, the line
2165 that begins there is used. */
2166
2167 /* The big complication here is that a line may start in one file, and end just
2168 before the start of another file. This usually occurs when you #include
2169 code in the middle of a subroutine. To properly find the end of a line's PC
2170 range, we must search all symtabs associated with this compilation unit, and
2171 find the one whose first PC is closer than that of the next line in this
2172 symtab. */
2173
2174 /* If it's worth the effort, we could be using a binary search. */
2175
2176 struct symtab_and_line
2177 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2178 {
2179 struct symtab *s;
2180 struct linetable *l;
2181 int len;
2182 int i;
2183 struct linetable_entry *item;
2184 struct symtab_and_line val;
2185 struct blockvector *bv;
2186 struct minimal_symbol *msymbol;
2187 struct minimal_symbol *mfunsym;
2188 struct objfile *objfile;
2189
2190 /* Info on best line seen so far, and where it starts, and its file. */
2191
2192 struct linetable_entry *best = NULL;
2193 CORE_ADDR best_end = 0;
2194 struct symtab *best_symtab = 0;
2195
2196 /* Store here the first line number
2197 of a file which contains the line at the smallest pc after PC.
2198 If we don't find a line whose range contains PC,
2199 we will use a line one less than this,
2200 with a range from the start of that file to the first line's pc. */
2201 struct linetable_entry *alt = NULL;
2202
2203 /* Info on best line seen in this file. */
2204
2205 struct linetable_entry *prev;
2206
2207 /* If this pc is not from the current frame,
2208 it is the address of the end of a call instruction.
2209 Quite likely that is the start of the following statement.
2210 But what we want is the statement containing the instruction.
2211 Fudge the pc to make sure we get that. */
2212
2213 init_sal (&val); /* initialize to zeroes */
2214
2215 val.pspace = current_program_space;
2216
2217 /* It's tempting to assume that, if we can't find debugging info for
2218 any function enclosing PC, that we shouldn't search for line
2219 number info, either. However, GAS can emit line number info for
2220 assembly files --- very helpful when debugging hand-written
2221 assembly code. In such a case, we'd have no debug info for the
2222 function, but we would have line info. */
2223
2224 if (notcurrent)
2225 pc -= 1;
2226
2227 /* elz: added this because this function returned the wrong
2228 information if the pc belongs to a stub (import/export)
2229 to call a shlib function. This stub would be anywhere between
2230 two functions in the target, and the line info was erroneously
2231 taken to be the one of the line before the pc. */
2232
2233 /* RT: Further explanation:
2234
2235 * We have stubs (trampolines) inserted between procedures.
2236 *
2237 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2238 * exists in the main image.
2239 *
2240 * In the minimal symbol table, we have a bunch of symbols
2241 * sorted by start address. The stubs are marked as "trampoline",
2242 * the others appear as text. E.g.:
2243 *
2244 * Minimal symbol table for main image
2245 * main: code for main (text symbol)
2246 * shr1: stub (trampoline symbol)
2247 * foo: code for foo (text symbol)
2248 * ...
2249 * Minimal symbol table for "shr1" image:
2250 * ...
2251 * shr1: code for shr1 (text symbol)
2252 * ...
2253 *
2254 * So the code below is trying to detect if we are in the stub
2255 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2256 * and if found, do the symbolization from the real-code address
2257 * rather than the stub address.
2258 *
2259 * Assumptions being made about the minimal symbol table:
2260 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2261 * if we're really in the trampoline.s If we're beyond it (say
2262 * we're in "foo" in the above example), it'll have a closer
2263 * symbol (the "foo" text symbol for example) and will not
2264 * return the trampoline.
2265 * 2. lookup_minimal_symbol_text() will find a real text symbol
2266 * corresponding to the trampoline, and whose address will
2267 * be different than the trampoline address. I put in a sanity
2268 * check for the address being the same, to avoid an
2269 * infinite recursion.
2270 */
2271 msymbol = lookup_minimal_symbol_by_pc (pc);
2272 if (msymbol != NULL)
2273 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2274 {
2275 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2276 NULL);
2277 if (mfunsym == NULL)
2278 /* I eliminated this warning since it is coming out
2279 * in the following situation:
2280 * gdb shmain // test program with shared libraries
2281 * (gdb) break shr1 // function in shared lib
2282 * Warning: In stub for ...
2283 * In the above situation, the shared lib is not loaded yet,
2284 * so of course we can't find the real func/line info,
2285 * but the "break" still works, and the warning is annoying.
2286 * So I commented out the warning. RT */
2287 /* warning ("In stub for %s; unable to find real function/line info",
2288 SYMBOL_LINKAGE_NAME (msymbol)); */
2289 ;
2290 /* fall through */
2291 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2292 == SYMBOL_VALUE_ADDRESS (msymbol))
2293 /* Avoid infinite recursion */
2294 /* See above comment about why warning is commented out. */
2295 /* warning ("In stub for %s; unable to find real function/line info",
2296 SYMBOL_LINKAGE_NAME (msymbol)); */
2297 ;
2298 /* fall through */
2299 else
2300 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2301 }
2302
2303
2304 s = find_pc_sect_symtab (pc, section);
2305 if (!s)
2306 {
2307 /* If no symbol information, return previous pc. */
2308 if (notcurrent)
2309 pc++;
2310 val.pc = pc;
2311 return val;
2312 }
2313
2314 bv = BLOCKVECTOR (s);
2315 objfile = s->objfile;
2316
2317 /* Look at all the symtabs that share this blockvector.
2318 They all have the same apriori range, that we found was right;
2319 but they have different line tables. */
2320
2321 ALL_OBJFILE_SYMTABS (objfile, s)
2322 {
2323 if (BLOCKVECTOR (s) != bv)
2324 continue;
2325
2326 /* Find the best line in this symtab. */
2327 l = LINETABLE (s);
2328 if (!l)
2329 continue;
2330 len = l->nitems;
2331 if (len <= 0)
2332 {
2333 /* I think len can be zero if the symtab lacks line numbers
2334 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2335 I'm not sure which, and maybe it depends on the symbol
2336 reader). */
2337 continue;
2338 }
2339
2340 prev = NULL;
2341 item = l->item; /* Get first line info. */
2342
2343 /* Is this file's first line closer than the first lines of other files?
2344 If so, record this file, and its first line, as best alternate. */
2345 if (item->pc > pc && (!alt || item->pc < alt->pc))
2346 alt = item;
2347
2348 for (i = 0; i < len; i++, item++)
2349 {
2350 /* Leave prev pointing to the linetable entry for the last line
2351 that started at or before PC. */
2352 if (item->pc > pc)
2353 break;
2354
2355 prev = item;
2356 }
2357
2358 /* At this point, prev points at the line whose start addr is <= pc, and
2359 item points at the next line. If we ran off the end of the linetable
2360 (pc >= start of the last line), then prev == item. If pc < start of
2361 the first line, prev will not be set. */
2362
2363 /* Is this file's best line closer than the best in the other files?
2364 If so, record this file, and its best line, as best so far. Don't
2365 save prev if it represents the end of a function (i.e. line number
2366 0) instead of a real line. */
2367
2368 if (prev && prev->line && (!best || prev->pc > best->pc))
2369 {
2370 best = prev;
2371 best_symtab = s;
2372
2373 /* Discard BEST_END if it's before the PC of the current BEST. */
2374 if (best_end <= best->pc)
2375 best_end = 0;
2376 }
2377
2378 /* If another line (denoted by ITEM) is in the linetable and its
2379 PC is after BEST's PC, but before the current BEST_END, then
2380 use ITEM's PC as the new best_end. */
2381 if (best && i < len && item->pc > best->pc
2382 && (best_end == 0 || best_end > item->pc))
2383 best_end = item->pc;
2384 }
2385
2386 if (!best_symtab)
2387 {
2388 /* If we didn't find any line number info, just return zeros.
2389 We used to return alt->line - 1 here, but that could be
2390 anywhere; if we don't have line number info for this PC,
2391 don't make some up. */
2392 val.pc = pc;
2393 }
2394 else if (best->line == 0)
2395 {
2396 /* If our best fit is in a range of PC's for which no line
2397 number info is available (line number is zero) then we didn't
2398 find any valid line information. */
2399 val.pc = pc;
2400 }
2401 else
2402 {
2403 val.symtab = best_symtab;
2404 val.line = best->line;
2405 val.pc = best->pc;
2406 if (best_end && (!alt || best_end < alt->pc))
2407 val.end = best_end;
2408 else if (alt)
2409 val.end = alt->pc;
2410 else
2411 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2412 }
2413 val.section = section;
2414 return val;
2415 }
2416
2417 /* Backward compatibility (no section). */
2418
2419 struct symtab_and_line
2420 find_pc_line (CORE_ADDR pc, int notcurrent)
2421 {
2422 struct obj_section *section;
2423
2424 section = find_pc_overlay (pc);
2425 if (pc_in_unmapped_range (pc, section))
2426 pc = overlay_mapped_address (pc, section);
2427 return find_pc_sect_line (pc, section, notcurrent);
2428 }
2429 \f
2430 /* Find line number LINE in any symtab whose name is the same as
2431 SYMTAB.
2432
2433 If found, return the symtab that contains the linetable in which it was
2434 found, set *INDEX to the index in the linetable of the best entry
2435 found, and set *EXACT_MATCH nonzero if the value returned is an
2436 exact match.
2437
2438 If not found, return NULL. */
2439
2440 struct symtab *
2441 find_line_symtab (struct symtab *symtab, int line,
2442 int *index, int *exact_match)
2443 {
2444 int exact = 0; /* Initialized here to avoid a compiler warning. */
2445
2446 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2447 so far seen. */
2448
2449 int best_index;
2450 struct linetable *best_linetable;
2451 struct symtab *best_symtab;
2452
2453 /* First try looking it up in the given symtab. */
2454 best_linetable = LINETABLE (symtab);
2455 best_symtab = symtab;
2456 best_index = find_line_common (best_linetable, line, &exact, 0);
2457 if (best_index < 0 || !exact)
2458 {
2459 /* Didn't find an exact match. So we better keep looking for
2460 another symtab with the same name. In the case of xcoff,
2461 multiple csects for one source file (produced by IBM's FORTRAN
2462 compiler) produce multiple symtabs (this is unavoidable
2463 assuming csects can be at arbitrary places in memory and that
2464 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2465
2466 /* BEST is the smallest linenumber > LINE so far seen,
2467 or 0 if none has been seen so far.
2468 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2469 int best;
2470
2471 struct objfile *objfile;
2472 struct symtab *s;
2473
2474 if (best_index >= 0)
2475 best = best_linetable->item[best_index].line;
2476 else
2477 best = 0;
2478
2479 ALL_OBJFILES (objfile)
2480 {
2481 if (objfile->sf)
2482 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2483 symtab_to_fullname (symtab));
2484 }
2485
2486 ALL_SYMTABS (objfile, s)
2487 {
2488 struct linetable *l;
2489 int ind;
2490
2491 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2492 continue;
2493 if (FILENAME_CMP (symtab_to_fullname (symtab),
2494 symtab_to_fullname (s)) != 0)
2495 continue;
2496 l = LINETABLE (s);
2497 ind = find_line_common (l, line, &exact, 0);
2498 if (ind >= 0)
2499 {
2500 if (exact)
2501 {
2502 best_index = ind;
2503 best_linetable = l;
2504 best_symtab = s;
2505 goto done;
2506 }
2507 if (best == 0 || l->item[ind].line < best)
2508 {
2509 best = l->item[ind].line;
2510 best_index = ind;
2511 best_linetable = l;
2512 best_symtab = s;
2513 }
2514 }
2515 }
2516 }
2517 done:
2518 if (best_index < 0)
2519 return NULL;
2520
2521 if (index)
2522 *index = best_index;
2523 if (exact_match)
2524 *exact_match = exact;
2525
2526 return best_symtab;
2527 }
2528
2529 /* Given SYMTAB, returns all the PCs function in the symtab that
2530 exactly match LINE. Returns NULL if there are no exact matches,
2531 but updates BEST_ITEM in this case. */
2532
2533 VEC (CORE_ADDR) *
2534 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2535 struct linetable_entry **best_item)
2536 {
2537 int start = 0;
2538 VEC (CORE_ADDR) *result = NULL;
2539
2540 /* First, collect all the PCs that are at this line. */
2541 while (1)
2542 {
2543 int was_exact;
2544 int idx;
2545
2546 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2547 if (idx < 0)
2548 break;
2549
2550 if (!was_exact)
2551 {
2552 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2553
2554 if (*best_item == NULL || item->line < (*best_item)->line)
2555 *best_item = item;
2556
2557 break;
2558 }
2559
2560 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2561 start = idx + 1;
2562 }
2563
2564 return result;
2565 }
2566
2567 \f
2568 /* Set the PC value for a given source file and line number and return true.
2569 Returns zero for invalid line number (and sets the PC to 0).
2570 The source file is specified with a struct symtab. */
2571
2572 int
2573 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2574 {
2575 struct linetable *l;
2576 int ind;
2577
2578 *pc = 0;
2579 if (symtab == 0)
2580 return 0;
2581
2582 symtab = find_line_symtab (symtab, line, &ind, NULL);
2583 if (symtab != NULL)
2584 {
2585 l = LINETABLE (symtab);
2586 *pc = l->item[ind].pc;
2587 return 1;
2588 }
2589 else
2590 return 0;
2591 }
2592
2593 /* Find the range of pc values in a line.
2594 Store the starting pc of the line into *STARTPTR
2595 and the ending pc (start of next line) into *ENDPTR.
2596 Returns 1 to indicate success.
2597 Returns 0 if could not find the specified line. */
2598
2599 int
2600 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2601 CORE_ADDR *endptr)
2602 {
2603 CORE_ADDR startaddr;
2604 struct symtab_and_line found_sal;
2605
2606 startaddr = sal.pc;
2607 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2608 return 0;
2609
2610 /* This whole function is based on address. For example, if line 10 has
2611 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2612 "info line *0x123" should say the line goes from 0x100 to 0x200
2613 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2614 This also insures that we never give a range like "starts at 0x134
2615 and ends at 0x12c". */
2616
2617 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2618 if (found_sal.line != sal.line)
2619 {
2620 /* The specified line (sal) has zero bytes. */
2621 *startptr = found_sal.pc;
2622 *endptr = found_sal.pc;
2623 }
2624 else
2625 {
2626 *startptr = found_sal.pc;
2627 *endptr = found_sal.end;
2628 }
2629 return 1;
2630 }
2631
2632 /* Given a line table and a line number, return the index into the line
2633 table for the pc of the nearest line whose number is >= the specified one.
2634 Return -1 if none is found. The value is >= 0 if it is an index.
2635 START is the index at which to start searching the line table.
2636
2637 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2638
2639 static int
2640 find_line_common (struct linetable *l, int lineno,
2641 int *exact_match, int start)
2642 {
2643 int i;
2644 int len;
2645
2646 /* BEST is the smallest linenumber > LINENO so far seen,
2647 or 0 if none has been seen so far.
2648 BEST_INDEX identifies the item for it. */
2649
2650 int best_index = -1;
2651 int best = 0;
2652
2653 *exact_match = 0;
2654
2655 if (lineno <= 0)
2656 return -1;
2657 if (l == 0)
2658 return -1;
2659
2660 len = l->nitems;
2661 for (i = start; i < len; i++)
2662 {
2663 struct linetable_entry *item = &(l->item[i]);
2664
2665 if (item->line == lineno)
2666 {
2667 /* Return the first (lowest address) entry which matches. */
2668 *exact_match = 1;
2669 return i;
2670 }
2671
2672 if (item->line > lineno && (best == 0 || item->line < best))
2673 {
2674 best = item->line;
2675 best_index = i;
2676 }
2677 }
2678
2679 /* If we got here, we didn't get an exact match. */
2680 return best_index;
2681 }
2682
2683 int
2684 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2685 {
2686 struct symtab_and_line sal;
2687
2688 sal = find_pc_line (pc, 0);
2689 *startptr = sal.pc;
2690 *endptr = sal.end;
2691 return sal.symtab != 0;
2692 }
2693
2694 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2695 address for that function that has an entry in SYMTAB's line info
2696 table. If such an entry cannot be found, return FUNC_ADDR
2697 unaltered. */
2698
2699 static CORE_ADDR
2700 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2701 {
2702 CORE_ADDR func_start, func_end;
2703 struct linetable *l;
2704 int i;
2705
2706 /* Give up if this symbol has no lineinfo table. */
2707 l = LINETABLE (symtab);
2708 if (l == NULL)
2709 return func_addr;
2710
2711 /* Get the range for the function's PC values, or give up if we
2712 cannot, for some reason. */
2713 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2714 return func_addr;
2715
2716 /* Linetable entries are ordered by PC values, see the commentary in
2717 symtab.h where `struct linetable' is defined. Thus, the first
2718 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2719 address we are looking for. */
2720 for (i = 0; i < l->nitems; i++)
2721 {
2722 struct linetable_entry *item = &(l->item[i]);
2723
2724 /* Don't use line numbers of zero, they mark special entries in
2725 the table. See the commentary on symtab.h before the
2726 definition of struct linetable. */
2727 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2728 return item->pc;
2729 }
2730
2731 return func_addr;
2732 }
2733
2734 /* Given a function symbol SYM, find the symtab and line for the start
2735 of the function.
2736 If the argument FUNFIRSTLINE is nonzero, we want the first line
2737 of real code inside the function. */
2738
2739 struct symtab_and_line
2740 find_function_start_sal (struct symbol *sym, int funfirstline)
2741 {
2742 struct symtab_and_line sal;
2743
2744 fixup_symbol_section (sym, NULL);
2745 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2746 SYMBOL_OBJ_SECTION (sym), 0);
2747
2748 /* We always should have a line for the function start address.
2749 If we don't, something is odd. Create a plain SAL refering
2750 just the PC and hope that skip_prologue_sal (if requested)
2751 can find a line number for after the prologue. */
2752 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2753 {
2754 init_sal (&sal);
2755 sal.pspace = current_program_space;
2756 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2757 sal.section = SYMBOL_OBJ_SECTION (sym);
2758 }
2759
2760 if (funfirstline)
2761 skip_prologue_sal (&sal);
2762
2763 return sal;
2764 }
2765
2766 /* Adjust SAL to the first instruction past the function prologue.
2767 If the PC was explicitly specified, the SAL is not changed.
2768 If the line number was explicitly specified, at most the SAL's PC
2769 is updated. If SAL is already past the prologue, then do nothing. */
2770
2771 void
2772 skip_prologue_sal (struct symtab_and_line *sal)
2773 {
2774 struct symbol *sym;
2775 struct symtab_and_line start_sal;
2776 struct cleanup *old_chain;
2777 CORE_ADDR pc, saved_pc;
2778 struct obj_section *section;
2779 const char *name;
2780 struct objfile *objfile;
2781 struct gdbarch *gdbarch;
2782 struct block *b, *function_block;
2783 int force_skip, skip;
2784
2785 /* Do not change the SAL if PC was specified explicitly. */
2786 if (sal->explicit_pc)
2787 return;
2788
2789 old_chain = save_current_space_and_thread ();
2790 switch_to_program_space_and_thread (sal->pspace);
2791
2792 sym = find_pc_sect_function (sal->pc, sal->section);
2793 if (sym != NULL)
2794 {
2795 fixup_symbol_section (sym, NULL);
2796
2797 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2798 section = SYMBOL_OBJ_SECTION (sym);
2799 name = SYMBOL_LINKAGE_NAME (sym);
2800 objfile = SYMBOL_SYMTAB (sym)->objfile;
2801 }
2802 else
2803 {
2804 struct minimal_symbol *msymbol
2805 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2806
2807 if (msymbol == NULL)
2808 {
2809 do_cleanups (old_chain);
2810 return;
2811 }
2812
2813 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2814 section = SYMBOL_OBJ_SECTION (msymbol);
2815 name = SYMBOL_LINKAGE_NAME (msymbol);
2816 objfile = msymbol_objfile (msymbol);
2817 }
2818
2819 gdbarch = get_objfile_arch (objfile);
2820
2821 /* Process the prologue in two passes. In the first pass try to skip the
2822 prologue (SKIP is true) and verify there is a real need for it (indicated
2823 by FORCE_SKIP). If no such reason was found run a second pass where the
2824 prologue is not skipped (SKIP is false). */
2825
2826 skip = 1;
2827 force_skip = 1;
2828
2829 /* Be conservative - allow direct PC (without skipping prologue) only if we
2830 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2831 have to be set by the caller so we use SYM instead. */
2832 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2833 force_skip = 0;
2834
2835 saved_pc = pc;
2836 do
2837 {
2838 pc = saved_pc;
2839
2840 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2841 so that gdbarch_skip_prologue has something unique to work on. */
2842 if (section_is_overlay (section) && !section_is_mapped (section))
2843 pc = overlay_unmapped_address (pc, section);
2844
2845 /* Skip "first line" of function (which is actually its prologue). */
2846 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2847 if (skip)
2848 pc = gdbarch_skip_prologue (gdbarch, pc);
2849
2850 /* For overlays, map pc back into its mapped VMA range. */
2851 pc = overlay_mapped_address (pc, section);
2852
2853 /* Calculate line number. */
2854 start_sal = find_pc_sect_line (pc, section, 0);
2855
2856 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2857 line is still part of the same function. */
2858 if (skip && start_sal.pc != pc
2859 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2860 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2861 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2862 == lookup_minimal_symbol_by_pc_section (pc, section))))
2863 {
2864 /* First pc of next line */
2865 pc = start_sal.end;
2866 /* Recalculate the line number (might not be N+1). */
2867 start_sal = find_pc_sect_line (pc, section, 0);
2868 }
2869
2870 /* On targets with executable formats that don't have a concept of
2871 constructors (ELF with .init has, PE doesn't), gcc emits a call
2872 to `__main' in `main' between the prologue and before user
2873 code. */
2874 if (gdbarch_skip_main_prologue_p (gdbarch)
2875 && name && strcmp_iw (name, "main") == 0)
2876 {
2877 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2878 /* Recalculate the line number (might not be N+1). */
2879 start_sal = find_pc_sect_line (pc, section, 0);
2880 force_skip = 1;
2881 }
2882 }
2883 while (!force_skip && skip--);
2884
2885 /* If we still don't have a valid source line, try to find the first
2886 PC in the lineinfo table that belongs to the same function. This
2887 happens with COFF debug info, which does not seem to have an
2888 entry in lineinfo table for the code after the prologue which has
2889 no direct relation to source. For example, this was found to be
2890 the case with the DJGPP target using "gcc -gcoff" when the
2891 compiler inserted code after the prologue to make sure the stack
2892 is aligned. */
2893 if (!force_skip && sym && start_sal.symtab == NULL)
2894 {
2895 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2896 /* Recalculate the line number. */
2897 start_sal = find_pc_sect_line (pc, section, 0);
2898 }
2899
2900 do_cleanups (old_chain);
2901
2902 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2903 forward SAL to the end of the prologue. */
2904 if (sal->pc >= pc)
2905 return;
2906
2907 sal->pc = pc;
2908 sal->section = section;
2909
2910 /* Unless the explicit_line flag was set, update the SAL line
2911 and symtab to correspond to the modified PC location. */
2912 if (sal->explicit_line)
2913 return;
2914
2915 sal->symtab = start_sal.symtab;
2916 sal->line = start_sal.line;
2917 sal->end = start_sal.end;
2918
2919 /* Check if we are now inside an inlined function. If we can,
2920 use the call site of the function instead. */
2921 b = block_for_pc_sect (sal->pc, sal->section);
2922 function_block = NULL;
2923 while (b != NULL)
2924 {
2925 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2926 function_block = b;
2927 else if (BLOCK_FUNCTION (b) != NULL)
2928 break;
2929 b = BLOCK_SUPERBLOCK (b);
2930 }
2931 if (function_block != NULL
2932 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2933 {
2934 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2935 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2936 }
2937 }
2938
2939 /* If P is of the form "operator[ \t]+..." where `...' is
2940 some legitimate operator text, return a pointer to the
2941 beginning of the substring of the operator text.
2942 Otherwise, return "". */
2943
2944 static char *
2945 operator_chars (char *p, char **end)
2946 {
2947 *end = "";
2948 if (strncmp (p, "operator", 8))
2949 return *end;
2950 p += 8;
2951
2952 /* Don't get faked out by `operator' being part of a longer
2953 identifier. */
2954 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2955 return *end;
2956
2957 /* Allow some whitespace between `operator' and the operator symbol. */
2958 while (*p == ' ' || *p == '\t')
2959 p++;
2960
2961 /* Recognize 'operator TYPENAME'. */
2962
2963 if (isalpha (*p) || *p == '_' || *p == '$')
2964 {
2965 char *q = p + 1;
2966
2967 while (isalnum (*q) || *q == '_' || *q == '$')
2968 q++;
2969 *end = q;
2970 return p;
2971 }
2972
2973 while (*p)
2974 switch (*p)
2975 {
2976 case '\\': /* regexp quoting */
2977 if (p[1] == '*')
2978 {
2979 if (p[2] == '=') /* 'operator\*=' */
2980 *end = p + 3;
2981 else /* 'operator\*' */
2982 *end = p + 2;
2983 return p;
2984 }
2985 else if (p[1] == '[')
2986 {
2987 if (p[2] == ']')
2988 error (_("mismatched quoting on brackets, "
2989 "try 'operator\\[\\]'"));
2990 else if (p[2] == '\\' && p[3] == ']')
2991 {
2992 *end = p + 4; /* 'operator\[\]' */
2993 return p;
2994 }
2995 else
2996 error (_("nothing is allowed between '[' and ']'"));
2997 }
2998 else
2999 {
3000 /* Gratuitous qoute: skip it and move on. */
3001 p++;
3002 continue;
3003 }
3004 break;
3005 case '!':
3006 case '=':
3007 case '*':
3008 case '/':
3009 case '%':
3010 case '^':
3011 if (p[1] == '=')
3012 *end = p + 2;
3013 else
3014 *end = p + 1;
3015 return p;
3016 case '<':
3017 case '>':
3018 case '+':
3019 case '-':
3020 case '&':
3021 case '|':
3022 if (p[0] == '-' && p[1] == '>')
3023 {
3024 /* Struct pointer member operator 'operator->'. */
3025 if (p[2] == '*')
3026 {
3027 *end = p + 3; /* 'operator->*' */
3028 return p;
3029 }
3030 else if (p[2] == '\\')
3031 {
3032 *end = p + 4; /* Hopefully 'operator->\*' */
3033 return p;
3034 }
3035 else
3036 {
3037 *end = p + 2; /* 'operator->' */
3038 return p;
3039 }
3040 }
3041 if (p[1] == '=' || p[1] == p[0])
3042 *end = p + 2;
3043 else
3044 *end = p + 1;
3045 return p;
3046 case '~':
3047 case ',':
3048 *end = p + 1;
3049 return p;
3050 case '(':
3051 if (p[1] != ')')
3052 error (_("`operator ()' must be specified "
3053 "without whitespace in `()'"));
3054 *end = p + 2;
3055 return p;
3056 case '?':
3057 if (p[1] != ':')
3058 error (_("`operator ?:' must be specified "
3059 "without whitespace in `?:'"));
3060 *end = p + 2;
3061 return p;
3062 case '[':
3063 if (p[1] != ']')
3064 error (_("`operator []' must be specified "
3065 "without whitespace in `[]'"));
3066 *end = p + 2;
3067 return p;
3068 default:
3069 error (_("`operator %s' not supported"), p);
3070 break;
3071 }
3072
3073 *end = "";
3074 return *end;
3075 }
3076 \f
3077
3078 /* Cache to watch for file names already seen by filename_seen. */
3079
3080 struct filename_seen_cache
3081 {
3082 /* Table of files seen so far. */
3083 htab_t tab;
3084 /* Initial size of the table. It automagically grows from here. */
3085 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3086 };
3087
3088 /* filename_seen_cache constructor. */
3089
3090 static struct filename_seen_cache *
3091 create_filename_seen_cache (void)
3092 {
3093 struct filename_seen_cache *cache;
3094
3095 cache = XNEW (struct filename_seen_cache);
3096 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3097 filename_hash, filename_eq,
3098 NULL, xcalloc, xfree);
3099
3100 return cache;
3101 }
3102
3103 /* Empty the cache, but do not delete it. */
3104
3105 static void
3106 clear_filename_seen_cache (struct filename_seen_cache *cache)
3107 {
3108 htab_empty (cache->tab);
3109 }
3110
3111 /* filename_seen_cache destructor.
3112 This takes a void * argument as it is generally used as a cleanup. */
3113
3114 static void
3115 delete_filename_seen_cache (void *ptr)
3116 {
3117 struct filename_seen_cache *cache = ptr;
3118
3119 htab_delete (cache->tab);
3120 xfree (cache);
3121 }
3122
3123 /* If FILE is not already in the table of files in CACHE, return zero;
3124 otherwise return non-zero. Optionally add FILE to the table if ADD
3125 is non-zero.
3126
3127 NOTE: We don't manage space for FILE, we assume FILE lives as long
3128 as the caller needs. */
3129
3130 static int
3131 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3132 {
3133 void **slot;
3134
3135 /* Is FILE in tab? */
3136 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3137 if (*slot != NULL)
3138 return 1;
3139
3140 /* No; maybe add it to tab. */
3141 if (add)
3142 *slot = (char *) file;
3143
3144 return 0;
3145 }
3146
3147 /* Data structure to maintain printing state for output_source_filename. */
3148
3149 struct output_source_filename_data
3150 {
3151 /* Cache of what we've seen so far. */
3152 struct filename_seen_cache *filename_seen_cache;
3153
3154 /* Flag of whether we're printing the first one. */
3155 int first;
3156 };
3157
3158 /* Slave routine for sources_info. Force line breaks at ,'s.
3159 NAME is the name to print.
3160 DATA contains the state for printing and watching for duplicates. */
3161
3162 static void
3163 output_source_filename (const char *name,
3164 struct output_source_filename_data *data)
3165 {
3166 /* Since a single source file can result in several partial symbol
3167 tables, we need to avoid printing it more than once. Note: if
3168 some of the psymtabs are read in and some are not, it gets
3169 printed both under "Source files for which symbols have been
3170 read" and "Source files for which symbols will be read in on
3171 demand". I consider this a reasonable way to deal with the
3172 situation. I'm not sure whether this can also happen for
3173 symtabs; it doesn't hurt to check. */
3174
3175 /* Was NAME already seen? */
3176 if (filename_seen (data->filename_seen_cache, name, 1))
3177 {
3178 /* Yes; don't print it again. */
3179 return;
3180 }
3181
3182 /* No; print it and reset *FIRST. */
3183 if (! data->first)
3184 printf_filtered (", ");
3185 data->first = 0;
3186
3187 wrap_here ("");
3188 fputs_filtered (name, gdb_stdout);
3189 }
3190
3191 /* A callback for map_partial_symbol_filenames. */
3192
3193 static void
3194 output_partial_symbol_filename (const char *filename, const char *fullname,
3195 void *data)
3196 {
3197 output_source_filename (fullname ? fullname : filename, data);
3198 }
3199
3200 static void
3201 sources_info (char *ignore, int from_tty)
3202 {
3203 struct symtab *s;
3204 struct objfile *objfile;
3205 struct output_source_filename_data data;
3206 struct cleanup *cleanups;
3207
3208 if (!have_full_symbols () && !have_partial_symbols ())
3209 {
3210 error (_("No symbol table is loaded. Use the \"file\" command."));
3211 }
3212
3213 data.filename_seen_cache = create_filename_seen_cache ();
3214 cleanups = make_cleanup (delete_filename_seen_cache,
3215 data.filename_seen_cache);
3216
3217 printf_filtered ("Source files for which symbols have been read in:\n\n");
3218
3219 data.first = 1;
3220 ALL_SYMTABS (objfile, s)
3221 {
3222 const char *fullname = symtab_to_fullname (s);
3223
3224 output_source_filename (fullname, &data);
3225 }
3226 printf_filtered ("\n\n");
3227
3228 printf_filtered ("Source files for which symbols "
3229 "will be read in on demand:\n\n");
3230
3231 clear_filename_seen_cache (data.filename_seen_cache);
3232 data.first = 1;
3233 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3234 1 /*need_fullname*/);
3235 printf_filtered ("\n");
3236
3237 do_cleanups (cleanups);
3238 }
3239
3240 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3241 non-zero compare only lbasename of FILES. */
3242
3243 static int
3244 file_matches (const char *file, char *files[], int nfiles, int basenames)
3245 {
3246 int i;
3247
3248 if (file != NULL && nfiles != 0)
3249 {
3250 for (i = 0; i < nfiles; i++)
3251 {
3252 if (compare_filenames_for_search (file, (basenames
3253 ? lbasename (files[i])
3254 : files[i])))
3255 return 1;
3256 }
3257 }
3258 else if (nfiles == 0)
3259 return 1;
3260 return 0;
3261 }
3262
3263 /* Free any memory associated with a search. */
3264
3265 void
3266 free_search_symbols (struct symbol_search *symbols)
3267 {
3268 struct symbol_search *p;
3269 struct symbol_search *next;
3270
3271 for (p = symbols; p != NULL; p = next)
3272 {
3273 next = p->next;
3274 xfree (p);
3275 }
3276 }
3277
3278 static void
3279 do_free_search_symbols_cleanup (void *symbols)
3280 {
3281 free_search_symbols (symbols);
3282 }
3283
3284 struct cleanup *
3285 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3286 {
3287 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3288 }
3289
3290 /* Helper function for sort_search_symbols and qsort. Can only
3291 sort symbols, not minimal symbols. */
3292
3293 static int
3294 compare_search_syms (const void *sa, const void *sb)
3295 {
3296 struct symbol_search **sym_a = (struct symbol_search **) sa;
3297 struct symbol_search **sym_b = (struct symbol_search **) sb;
3298
3299 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3300 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3301 }
3302
3303 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3304 prevtail where it is, but update its next pointer to point to
3305 the first of the sorted symbols. */
3306
3307 static struct symbol_search *
3308 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3309 {
3310 struct symbol_search **symbols, *symp, *old_next;
3311 int i;
3312
3313 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3314 * nfound);
3315 symp = prevtail->next;
3316 for (i = 0; i < nfound; i++)
3317 {
3318 symbols[i] = symp;
3319 symp = symp->next;
3320 }
3321 /* Generally NULL. */
3322 old_next = symp;
3323
3324 qsort (symbols, nfound, sizeof (struct symbol_search *),
3325 compare_search_syms);
3326
3327 symp = prevtail;
3328 for (i = 0; i < nfound; i++)
3329 {
3330 symp->next = symbols[i];
3331 symp = symp->next;
3332 }
3333 symp->next = old_next;
3334
3335 xfree (symbols);
3336 return symp;
3337 }
3338
3339 /* An object of this type is passed as the user_data to the
3340 expand_symtabs_matching method. */
3341 struct search_symbols_data
3342 {
3343 int nfiles;
3344 char **files;
3345
3346 /* It is true if PREG contains valid data, false otherwise. */
3347 unsigned preg_p : 1;
3348 regex_t preg;
3349 };
3350
3351 /* A callback for expand_symtabs_matching. */
3352
3353 static int
3354 search_symbols_file_matches (const char *filename, void *user_data,
3355 int basenames)
3356 {
3357 struct search_symbols_data *data = user_data;
3358
3359 return file_matches (filename, data->files, data->nfiles, basenames);
3360 }
3361
3362 /* A callback for expand_symtabs_matching. */
3363
3364 static int
3365 search_symbols_name_matches (const char *symname, void *user_data)
3366 {
3367 struct search_symbols_data *data = user_data;
3368
3369 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3370 }
3371
3372 /* Search the symbol table for matches to the regular expression REGEXP,
3373 returning the results in *MATCHES.
3374
3375 Only symbols of KIND are searched:
3376 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3377 and constants (enums)
3378 FUNCTIONS_DOMAIN - search all functions
3379 TYPES_DOMAIN - search all type names
3380 ALL_DOMAIN - an internal error for this function
3381
3382 free_search_symbols should be called when *MATCHES is no longer needed.
3383
3384 The results are sorted locally; each symtab's global and static blocks are
3385 separately alphabetized. */
3386
3387 void
3388 search_symbols (char *regexp, enum search_domain kind,
3389 int nfiles, char *files[],
3390 struct symbol_search **matches)
3391 {
3392 struct symtab *s;
3393 struct blockvector *bv;
3394 struct block *b;
3395 int i = 0;
3396 struct block_iterator iter;
3397 struct symbol *sym;
3398 struct objfile *objfile;
3399 struct minimal_symbol *msymbol;
3400 int found_misc = 0;
3401 static const enum minimal_symbol_type types[]
3402 = {mst_data, mst_text, mst_abs};
3403 static const enum minimal_symbol_type types2[]
3404 = {mst_bss, mst_file_text, mst_abs};
3405 static const enum minimal_symbol_type types3[]
3406 = {mst_file_data, mst_solib_trampoline, mst_abs};
3407 static const enum minimal_symbol_type types4[]
3408 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3409 enum minimal_symbol_type ourtype;
3410 enum minimal_symbol_type ourtype2;
3411 enum minimal_symbol_type ourtype3;
3412 enum minimal_symbol_type ourtype4;
3413 struct symbol_search *sr;
3414 struct symbol_search *psr;
3415 struct symbol_search *tail;
3416 struct search_symbols_data datum;
3417
3418 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3419 CLEANUP_CHAIN is freed only in the case of an error. */
3420 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3421 struct cleanup *retval_chain;
3422
3423 gdb_assert (kind <= TYPES_DOMAIN);
3424
3425 ourtype = types[kind];
3426 ourtype2 = types2[kind];
3427 ourtype3 = types3[kind];
3428 ourtype4 = types4[kind];
3429
3430 sr = *matches = NULL;
3431 tail = NULL;
3432 datum.preg_p = 0;
3433
3434 if (regexp != NULL)
3435 {
3436 /* Make sure spacing is right for C++ operators.
3437 This is just a courtesy to make the matching less sensitive
3438 to how many spaces the user leaves between 'operator'
3439 and <TYPENAME> or <OPERATOR>. */
3440 char *opend;
3441 char *opname = operator_chars (regexp, &opend);
3442 int errcode;
3443
3444 if (*opname)
3445 {
3446 int fix = -1; /* -1 means ok; otherwise number of
3447 spaces needed. */
3448
3449 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3450 {
3451 /* There should 1 space between 'operator' and 'TYPENAME'. */
3452 if (opname[-1] != ' ' || opname[-2] == ' ')
3453 fix = 1;
3454 }
3455 else
3456 {
3457 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3458 if (opname[-1] == ' ')
3459 fix = 0;
3460 }
3461 /* If wrong number of spaces, fix it. */
3462 if (fix >= 0)
3463 {
3464 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3465
3466 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3467 regexp = tmp;
3468 }
3469 }
3470
3471 errcode = regcomp (&datum.preg, regexp,
3472 REG_NOSUB | (case_sensitivity == case_sensitive_off
3473 ? REG_ICASE : 0));
3474 if (errcode != 0)
3475 {
3476 char *err = get_regcomp_error (errcode, &datum.preg);
3477
3478 make_cleanup (xfree, err);
3479 error (_("Invalid regexp (%s): %s"), err, regexp);
3480 }
3481 datum.preg_p = 1;
3482 make_regfree_cleanup (&datum.preg);
3483 }
3484
3485 /* Search through the partial symtabs *first* for all symbols
3486 matching the regexp. That way we don't have to reproduce all of
3487 the machinery below. */
3488
3489 datum.nfiles = nfiles;
3490 datum.files = files;
3491 ALL_OBJFILES (objfile)
3492 {
3493 if (objfile->sf)
3494 objfile->sf->qf->expand_symtabs_matching (objfile,
3495 (nfiles == 0
3496 ? NULL
3497 : search_symbols_file_matches),
3498 search_symbols_name_matches,
3499 kind,
3500 &datum);
3501 }
3502
3503 retval_chain = old_chain;
3504
3505 /* Here, we search through the minimal symbol tables for functions
3506 and variables that match, and force their symbols to be read.
3507 This is in particular necessary for demangled variable names,
3508 which are no longer put into the partial symbol tables.
3509 The symbol will then be found during the scan of symtabs below.
3510
3511 For functions, find_pc_symtab should succeed if we have debug info
3512 for the function, for variables we have to call
3513 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3514 has debug info.
3515 If the lookup fails, set found_misc so that we will rescan to print
3516 any matching symbols without debug info.
3517 We only search the objfile the msymbol came from, we no longer search
3518 all objfiles. In large programs (1000s of shared libs) searching all
3519 objfiles is not worth the pain. */
3520
3521 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3522 {
3523 ALL_MSYMBOLS (objfile, msymbol)
3524 {
3525 QUIT;
3526
3527 if (msymbol->created_by_gdb)
3528 continue;
3529
3530 if (MSYMBOL_TYPE (msymbol) == ourtype
3531 || MSYMBOL_TYPE (msymbol) == ourtype2
3532 || MSYMBOL_TYPE (msymbol) == ourtype3
3533 || MSYMBOL_TYPE (msymbol) == ourtype4)
3534 {
3535 if (!datum.preg_p
3536 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3537 NULL, 0) == 0)
3538 {
3539 /* Note: An important side-effect of these lookup functions
3540 is to expand the symbol table if msymbol is found, for the
3541 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3542 if (kind == FUNCTIONS_DOMAIN
3543 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3544 : (lookup_symbol_in_objfile_from_linkage_name
3545 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3546 == NULL))
3547 found_misc = 1;
3548 }
3549 }
3550 }
3551 }
3552
3553 ALL_PRIMARY_SYMTABS (objfile, s)
3554 {
3555 bv = BLOCKVECTOR (s);
3556 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3557 {
3558 struct symbol_search *prevtail = tail;
3559 int nfound = 0;
3560
3561 b = BLOCKVECTOR_BLOCK (bv, i);
3562 ALL_BLOCK_SYMBOLS (b, iter, sym)
3563 {
3564 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3565
3566 QUIT;
3567
3568 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3569 a substring of symtab_to_fullname as it may contain "./" etc. */
3570 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3571 || ((basenames_may_differ
3572 || file_matches (lbasename (real_symtab->filename),
3573 files, nfiles, 1))
3574 && file_matches (symtab_to_fullname (real_symtab),
3575 files, nfiles, 0)))
3576 && ((!datum.preg_p
3577 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3578 NULL, 0) == 0)
3579 && ((kind == VARIABLES_DOMAIN
3580 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3581 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3582 && SYMBOL_CLASS (sym) != LOC_BLOCK
3583 /* LOC_CONST can be used for more than just enums,
3584 e.g., c++ static const members.
3585 We only want to skip enums here. */
3586 && !(SYMBOL_CLASS (sym) == LOC_CONST
3587 && TYPE_CODE (SYMBOL_TYPE (sym))
3588 == TYPE_CODE_ENUM))
3589 || (kind == FUNCTIONS_DOMAIN
3590 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3591 || (kind == TYPES_DOMAIN
3592 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3593 {
3594 /* match */
3595 psr = (struct symbol_search *)
3596 xmalloc (sizeof (struct symbol_search));
3597 psr->block = i;
3598 psr->symtab = real_symtab;
3599 psr->symbol = sym;
3600 psr->msymbol = NULL;
3601 psr->next = NULL;
3602 if (tail == NULL)
3603 sr = psr;
3604 else
3605 tail->next = psr;
3606 tail = psr;
3607 nfound ++;
3608 }
3609 }
3610 if (nfound > 0)
3611 {
3612 if (prevtail == NULL)
3613 {
3614 struct symbol_search dummy;
3615
3616 dummy.next = sr;
3617 tail = sort_search_symbols (&dummy, nfound);
3618 sr = dummy.next;
3619
3620 make_cleanup_free_search_symbols (sr);
3621 }
3622 else
3623 tail = sort_search_symbols (prevtail, nfound);
3624 }
3625 }
3626 }
3627
3628 /* If there are no eyes, avoid all contact. I mean, if there are
3629 no debug symbols, then print directly from the msymbol_vector. */
3630
3631 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3632 {
3633 ALL_MSYMBOLS (objfile, msymbol)
3634 {
3635 QUIT;
3636
3637 if (msymbol->created_by_gdb)
3638 continue;
3639
3640 if (MSYMBOL_TYPE (msymbol) == ourtype
3641 || MSYMBOL_TYPE (msymbol) == ourtype2
3642 || MSYMBOL_TYPE (msymbol) == ourtype3
3643 || MSYMBOL_TYPE (msymbol) == ourtype4)
3644 {
3645 if (!datum.preg_p
3646 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3647 NULL, 0) == 0)
3648 {
3649 /* For functions we can do a quick check of whether the
3650 symbol might be found via find_pc_symtab. */
3651 if (kind != FUNCTIONS_DOMAIN
3652 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3653 {
3654 if (lookup_symbol_in_objfile_from_linkage_name
3655 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3656 == NULL)
3657 {
3658 /* match */
3659 psr = (struct symbol_search *)
3660 xmalloc (sizeof (struct symbol_search));
3661 psr->block = i;
3662 psr->msymbol = msymbol;
3663 psr->symtab = NULL;
3664 psr->symbol = NULL;
3665 psr->next = NULL;
3666 if (tail == NULL)
3667 {
3668 sr = psr;
3669 make_cleanup_free_search_symbols (sr);
3670 }
3671 else
3672 tail->next = psr;
3673 tail = psr;
3674 }
3675 }
3676 }
3677 }
3678 }
3679 }
3680
3681 discard_cleanups (retval_chain);
3682 do_cleanups (old_chain);
3683 *matches = sr;
3684 }
3685
3686 /* Helper function for symtab_symbol_info, this function uses
3687 the data returned from search_symbols() to print information
3688 regarding the match to gdb_stdout. */
3689
3690 static void
3691 print_symbol_info (enum search_domain kind,
3692 struct symtab *s, struct symbol *sym,
3693 int block, const char *last)
3694 {
3695 const char *s_filename = symtab_to_filename_for_display (s);
3696
3697 if (last == NULL || filename_cmp (last, s_filename) != 0)
3698 {
3699 fputs_filtered ("\nFile ", gdb_stdout);
3700 fputs_filtered (s_filename, gdb_stdout);
3701 fputs_filtered (":\n", gdb_stdout);
3702 }
3703
3704 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3705 printf_filtered ("static ");
3706
3707 /* Typedef that is not a C++ class. */
3708 if (kind == TYPES_DOMAIN
3709 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3710 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3711 /* variable, func, or typedef-that-is-c++-class. */
3712 else if (kind < TYPES_DOMAIN
3713 || (kind == TYPES_DOMAIN
3714 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3715 {
3716 type_print (SYMBOL_TYPE (sym),
3717 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3718 ? "" : SYMBOL_PRINT_NAME (sym)),
3719 gdb_stdout, 0);
3720
3721 printf_filtered (";\n");
3722 }
3723 }
3724
3725 /* This help function for symtab_symbol_info() prints information
3726 for non-debugging symbols to gdb_stdout. */
3727
3728 static void
3729 print_msymbol_info (struct minimal_symbol *msymbol)
3730 {
3731 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3732 char *tmp;
3733
3734 if (gdbarch_addr_bit (gdbarch) <= 32)
3735 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3736 & (CORE_ADDR) 0xffffffff,
3737 8);
3738 else
3739 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3740 16);
3741 printf_filtered ("%s %s\n",
3742 tmp, SYMBOL_PRINT_NAME (msymbol));
3743 }
3744
3745 /* This is the guts of the commands "info functions", "info types", and
3746 "info variables". It calls search_symbols to find all matches and then
3747 print_[m]symbol_info to print out some useful information about the
3748 matches. */
3749
3750 static void
3751 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3752 {
3753 static const char * const classnames[] =
3754 {"variable", "function", "type"};
3755 struct symbol_search *symbols;
3756 struct symbol_search *p;
3757 struct cleanup *old_chain;
3758 const char *last_filename = NULL;
3759 int first = 1;
3760
3761 gdb_assert (kind <= TYPES_DOMAIN);
3762
3763 /* Must make sure that if we're interrupted, symbols gets freed. */
3764 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3765 old_chain = make_cleanup_free_search_symbols (symbols);
3766
3767 if (regexp != NULL)
3768 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3769 classnames[kind], regexp);
3770 else
3771 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3772
3773 for (p = symbols; p != NULL; p = p->next)
3774 {
3775 QUIT;
3776
3777 if (p->msymbol != NULL)
3778 {
3779 if (first)
3780 {
3781 printf_filtered (_("\nNon-debugging symbols:\n"));
3782 first = 0;
3783 }
3784 print_msymbol_info (p->msymbol);
3785 }
3786 else
3787 {
3788 print_symbol_info (kind,
3789 p->symtab,
3790 p->symbol,
3791 p->block,
3792 last_filename);
3793 last_filename = symtab_to_filename_for_display (p->symtab);
3794 }
3795 }
3796
3797 do_cleanups (old_chain);
3798 }
3799
3800 static void
3801 variables_info (char *regexp, int from_tty)
3802 {
3803 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3804 }
3805
3806 static void
3807 functions_info (char *regexp, int from_tty)
3808 {
3809 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3810 }
3811
3812
3813 static void
3814 types_info (char *regexp, int from_tty)
3815 {
3816 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3817 }
3818
3819 /* Breakpoint all functions matching regular expression. */
3820
3821 void
3822 rbreak_command_wrapper (char *regexp, int from_tty)
3823 {
3824 rbreak_command (regexp, from_tty);
3825 }
3826
3827 /* A cleanup function that calls end_rbreak_breakpoints. */
3828
3829 static void
3830 do_end_rbreak_breakpoints (void *ignore)
3831 {
3832 end_rbreak_breakpoints ();
3833 }
3834
3835 static void
3836 rbreak_command (char *regexp, int from_tty)
3837 {
3838 struct symbol_search *ss;
3839 struct symbol_search *p;
3840 struct cleanup *old_chain;
3841 char *string = NULL;
3842 int len = 0;
3843 char **files = NULL, *file_name;
3844 int nfiles = 0;
3845
3846 if (regexp)
3847 {
3848 char *colon = strchr (regexp, ':');
3849
3850 if (colon && *(colon + 1) != ':')
3851 {
3852 int colon_index;
3853
3854 colon_index = colon - regexp;
3855 file_name = alloca (colon_index + 1);
3856 memcpy (file_name, regexp, colon_index);
3857 file_name[colon_index--] = 0;
3858 while (isspace (file_name[colon_index]))
3859 file_name[colon_index--] = 0;
3860 files = &file_name;
3861 nfiles = 1;
3862 regexp = skip_spaces (colon + 1);
3863 }
3864 }
3865
3866 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3867 old_chain = make_cleanup_free_search_symbols (ss);
3868 make_cleanup (free_current_contents, &string);
3869
3870 start_rbreak_breakpoints ();
3871 make_cleanup (do_end_rbreak_breakpoints, NULL);
3872 for (p = ss; p != NULL; p = p->next)
3873 {
3874 if (p->msymbol == NULL)
3875 {
3876 const char *fullname = symtab_to_fullname (p->symtab);
3877
3878 int newlen = (strlen (fullname)
3879 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3880 + 4);
3881
3882 if (newlen > len)
3883 {
3884 string = xrealloc (string, newlen);
3885 len = newlen;
3886 }
3887 strcpy (string, fullname);
3888 strcat (string, ":'");
3889 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3890 strcat (string, "'");
3891 break_command (string, from_tty);
3892 print_symbol_info (FUNCTIONS_DOMAIN,
3893 p->symtab,
3894 p->symbol,
3895 p->block,
3896 symtab_to_filename_for_display (p->symtab));
3897 }
3898 else
3899 {
3900 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3901
3902 if (newlen > len)
3903 {
3904 string = xrealloc (string, newlen);
3905 len = newlen;
3906 }
3907 strcpy (string, "'");
3908 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3909 strcat (string, "'");
3910
3911 break_command (string, from_tty);
3912 printf_filtered ("<function, no debug info> %s;\n",
3913 SYMBOL_PRINT_NAME (p->msymbol));
3914 }
3915 }
3916
3917 do_cleanups (old_chain);
3918 }
3919 \f
3920
3921 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3922
3923 Either sym_text[sym_text_len] != '(' and then we search for any
3924 symbol starting with SYM_TEXT text.
3925
3926 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3927 be terminated at that point. Partial symbol tables do not have parameters
3928 information. */
3929
3930 static int
3931 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3932 {
3933 int (*ncmp) (const char *, const char *, size_t);
3934
3935 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3936
3937 if (ncmp (name, sym_text, sym_text_len) != 0)
3938 return 0;
3939
3940 if (sym_text[sym_text_len] == '(')
3941 {
3942 /* User searches for `name(someth...'. Require NAME to be terminated.
3943 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3944 present but accept even parameters presence. In this case this
3945 function is in fact strcmp_iw but whitespace skipping is not supported
3946 for tab completion. */
3947
3948 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3949 return 0;
3950 }
3951
3952 return 1;
3953 }
3954
3955 /* Free any memory associated with a completion list. */
3956
3957 static void
3958 free_completion_list (VEC (char_ptr) **list_ptr)
3959 {
3960 int i;
3961 char *p;
3962
3963 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3964 xfree (p);
3965 VEC_free (char_ptr, *list_ptr);
3966 }
3967
3968 /* Callback for make_cleanup. */
3969
3970 static void
3971 do_free_completion_list (void *list)
3972 {
3973 free_completion_list (list);
3974 }
3975
3976 /* Helper routine for make_symbol_completion_list. */
3977
3978 static VEC (char_ptr) *return_val;
3979
3980 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3981 completion_list_add_name \
3982 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3983
3984 /* Test to see if the symbol specified by SYMNAME (which is already
3985 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3986 characters. If so, add it to the current completion list. */
3987
3988 static void
3989 completion_list_add_name (const char *symname,
3990 const char *sym_text, int sym_text_len,
3991 const char *text, const char *word)
3992 {
3993 /* Clip symbols that cannot match. */
3994 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3995 return;
3996
3997 /* We have a match for a completion, so add SYMNAME to the current list
3998 of matches. Note that the name is moved to freshly malloc'd space. */
3999
4000 {
4001 char *new;
4002
4003 if (word == sym_text)
4004 {
4005 new = xmalloc (strlen (symname) + 5);
4006 strcpy (new, symname);
4007 }
4008 else if (word > sym_text)
4009 {
4010 /* Return some portion of symname. */
4011 new = xmalloc (strlen (symname) + 5);
4012 strcpy (new, symname + (word - sym_text));
4013 }
4014 else
4015 {
4016 /* Return some of SYM_TEXT plus symname. */
4017 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4018 strncpy (new, word, sym_text - word);
4019 new[sym_text - word] = '\0';
4020 strcat (new, symname);
4021 }
4022
4023 VEC_safe_push (char_ptr, return_val, new);
4024 }
4025 }
4026
4027 /* ObjC: In case we are completing on a selector, look as the msymbol
4028 again and feed all the selectors into the mill. */
4029
4030 static void
4031 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4032 const char *sym_text, int sym_text_len,
4033 const char *text, const char *word)
4034 {
4035 static char *tmp = NULL;
4036 static unsigned int tmplen = 0;
4037
4038 const char *method, *category, *selector;
4039 char *tmp2 = NULL;
4040
4041 method = SYMBOL_NATURAL_NAME (msymbol);
4042
4043 /* Is it a method? */
4044 if ((method[0] != '-') && (method[0] != '+'))
4045 return;
4046
4047 if (sym_text[0] == '[')
4048 /* Complete on shortened method method. */
4049 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4050
4051 while ((strlen (method) + 1) >= tmplen)
4052 {
4053 if (tmplen == 0)
4054 tmplen = 1024;
4055 else
4056 tmplen *= 2;
4057 tmp = xrealloc (tmp, tmplen);
4058 }
4059 selector = strchr (method, ' ');
4060 if (selector != NULL)
4061 selector++;
4062
4063 category = strchr (method, '(');
4064
4065 if ((category != NULL) && (selector != NULL))
4066 {
4067 memcpy (tmp, method, (category - method));
4068 tmp[category - method] = ' ';
4069 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4070 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4071 if (sym_text[0] == '[')
4072 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4073 }
4074
4075 if (selector != NULL)
4076 {
4077 /* Complete on selector only. */
4078 strcpy (tmp, selector);
4079 tmp2 = strchr (tmp, ']');
4080 if (tmp2 != NULL)
4081 *tmp2 = '\0';
4082
4083 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4084 }
4085 }
4086
4087 /* Break the non-quoted text based on the characters which are in
4088 symbols. FIXME: This should probably be language-specific. */
4089
4090 static const char *
4091 language_search_unquoted_string (const char *text, const char *p)
4092 {
4093 for (; p > text; --p)
4094 {
4095 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4096 continue;
4097 else
4098 {
4099 if ((current_language->la_language == language_objc))
4100 {
4101 if (p[-1] == ':') /* Might be part of a method name. */
4102 continue;
4103 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4104 p -= 2; /* Beginning of a method name. */
4105 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4106 { /* Might be part of a method name. */
4107 const char *t = p;
4108
4109 /* Seeing a ' ' or a '(' is not conclusive evidence
4110 that we are in the middle of a method name. However,
4111 finding "-[" or "+[" should be pretty un-ambiguous.
4112 Unfortunately we have to find it now to decide. */
4113
4114 while (t > text)
4115 if (isalnum (t[-1]) || t[-1] == '_' ||
4116 t[-1] == ' ' || t[-1] == ':' ||
4117 t[-1] == '(' || t[-1] == ')')
4118 --t;
4119 else
4120 break;
4121
4122 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4123 p = t - 2; /* Method name detected. */
4124 /* Else we leave with p unchanged. */
4125 }
4126 }
4127 break;
4128 }
4129 }
4130 return p;
4131 }
4132
4133 static void
4134 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4135 int sym_text_len, const char *text,
4136 const char *word)
4137 {
4138 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4139 {
4140 struct type *t = SYMBOL_TYPE (sym);
4141 enum type_code c = TYPE_CODE (t);
4142 int j;
4143
4144 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4145 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4146 if (TYPE_FIELD_NAME (t, j))
4147 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4148 sym_text, sym_text_len, text, word);
4149 }
4150 }
4151
4152 /* Type of the user_data argument passed to add_macro_name or
4153 expand_partial_symbol_name. The contents are simply whatever is
4154 needed by completion_list_add_name. */
4155 struct add_name_data
4156 {
4157 const char *sym_text;
4158 int sym_text_len;
4159 const char *text;
4160 const char *word;
4161 };
4162
4163 /* A callback used with macro_for_each and macro_for_each_in_scope.
4164 This adds a macro's name to the current completion list. */
4165
4166 static void
4167 add_macro_name (const char *name, const struct macro_definition *ignore,
4168 struct macro_source_file *ignore2, int ignore3,
4169 void *user_data)
4170 {
4171 struct add_name_data *datum = (struct add_name_data *) user_data;
4172
4173 completion_list_add_name ((char *) name,
4174 datum->sym_text, datum->sym_text_len,
4175 datum->text, datum->word);
4176 }
4177
4178 /* A callback for expand_partial_symbol_names. */
4179
4180 static int
4181 expand_partial_symbol_name (const char *name, void *user_data)
4182 {
4183 struct add_name_data *datum = (struct add_name_data *) user_data;
4184
4185 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4186 }
4187
4188 VEC (char_ptr) *
4189 default_make_symbol_completion_list_break_on (const char *text,
4190 const char *word,
4191 const char *break_on,
4192 enum type_code code)
4193 {
4194 /* Problem: All of the symbols have to be copied because readline
4195 frees them. I'm not going to worry about this; hopefully there
4196 won't be that many. */
4197
4198 struct symbol *sym;
4199 struct symtab *s;
4200 struct minimal_symbol *msymbol;
4201 struct objfile *objfile;
4202 struct block *b;
4203 const struct block *surrounding_static_block, *surrounding_global_block;
4204 struct block_iterator iter;
4205 /* The symbol we are completing on. Points in same buffer as text. */
4206 const char *sym_text;
4207 /* Length of sym_text. */
4208 int sym_text_len;
4209 struct add_name_data datum;
4210 struct cleanup *back_to;
4211
4212 /* Now look for the symbol we are supposed to complete on. */
4213 {
4214 const char *p;
4215 char quote_found;
4216 const char *quote_pos = NULL;
4217
4218 /* First see if this is a quoted string. */
4219 quote_found = '\0';
4220 for (p = text; *p != '\0'; ++p)
4221 {
4222 if (quote_found != '\0')
4223 {
4224 if (*p == quote_found)
4225 /* Found close quote. */
4226 quote_found = '\0';
4227 else if (*p == '\\' && p[1] == quote_found)
4228 /* A backslash followed by the quote character
4229 doesn't end the string. */
4230 ++p;
4231 }
4232 else if (*p == '\'' || *p == '"')
4233 {
4234 quote_found = *p;
4235 quote_pos = p;
4236 }
4237 }
4238 if (quote_found == '\'')
4239 /* A string within single quotes can be a symbol, so complete on it. */
4240 sym_text = quote_pos + 1;
4241 else if (quote_found == '"')
4242 /* A double-quoted string is never a symbol, nor does it make sense
4243 to complete it any other way. */
4244 {
4245 return NULL;
4246 }
4247 else
4248 {
4249 /* It is not a quoted string. Break it based on the characters
4250 which are in symbols. */
4251 while (p > text)
4252 {
4253 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4254 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4255 --p;
4256 else
4257 break;
4258 }
4259 sym_text = p;
4260 }
4261 }
4262
4263 sym_text_len = strlen (sym_text);
4264
4265 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4266
4267 if (current_language->la_language == language_cplus
4268 || current_language->la_language == language_java
4269 || current_language->la_language == language_fortran)
4270 {
4271 /* These languages may have parameters entered by user but they are never
4272 present in the partial symbol tables. */
4273
4274 const char *cs = memchr (sym_text, '(', sym_text_len);
4275
4276 if (cs)
4277 sym_text_len = cs - sym_text;
4278 }
4279 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4280
4281 return_val = NULL;
4282 back_to = make_cleanup (do_free_completion_list, &return_val);
4283
4284 datum.sym_text = sym_text;
4285 datum.sym_text_len = sym_text_len;
4286 datum.text = text;
4287 datum.word = word;
4288
4289 /* Look through the partial symtabs for all symbols which begin
4290 by matching SYM_TEXT. Expand all CUs that you find to the list.
4291 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4292 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4293
4294 /* At this point scan through the misc symbol vectors and add each
4295 symbol you find to the list. Eventually we want to ignore
4296 anything that isn't a text symbol (everything else will be
4297 handled by the psymtab code above). */
4298
4299 if (code == TYPE_CODE_UNDEF)
4300 {
4301 ALL_MSYMBOLS (objfile, msymbol)
4302 {
4303 QUIT;
4304 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4305 word);
4306
4307 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4308 word);
4309 }
4310 }
4311
4312 /* Search upwards from currently selected frame (so that we can
4313 complete on local vars). Also catch fields of types defined in
4314 this places which match our text string. Only complete on types
4315 visible from current context. */
4316
4317 b = get_selected_block (0);
4318 surrounding_static_block = block_static_block (b);
4319 surrounding_global_block = block_global_block (b);
4320 if (surrounding_static_block != NULL)
4321 while (b != surrounding_static_block)
4322 {
4323 QUIT;
4324
4325 ALL_BLOCK_SYMBOLS (b, iter, sym)
4326 {
4327 if (code == TYPE_CODE_UNDEF)
4328 {
4329 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4330 word);
4331 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4332 word);
4333 }
4334 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4335 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4336 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4337 word);
4338 }
4339
4340 /* Stop when we encounter an enclosing function. Do not stop for
4341 non-inlined functions - the locals of the enclosing function
4342 are in scope for a nested function. */
4343 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4344 break;
4345 b = BLOCK_SUPERBLOCK (b);
4346 }
4347
4348 /* Add fields from the file's types; symbols will be added below. */
4349
4350 if (code == TYPE_CODE_UNDEF)
4351 {
4352 if (surrounding_static_block != NULL)
4353 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4354 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4355
4356 if (surrounding_global_block != NULL)
4357 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4358 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4359 }
4360
4361 /* Go through the symtabs and check the externs and statics for
4362 symbols which match. */
4363
4364 ALL_PRIMARY_SYMTABS (objfile, s)
4365 {
4366 QUIT;
4367 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4368 ALL_BLOCK_SYMBOLS (b, iter, sym)
4369 {
4370 if (code == TYPE_CODE_UNDEF
4371 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4372 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4373 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4374 }
4375 }
4376
4377 ALL_PRIMARY_SYMTABS (objfile, s)
4378 {
4379 QUIT;
4380 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4381 ALL_BLOCK_SYMBOLS (b, iter, sym)
4382 {
4383 if (code == TYPE_CODE_UNDEF
4384 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4385 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4386 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4387 }
4388 }
4389
4390 /* Skip macros if we are completing a struct tag -- arguable but
4391 usually what is expected. */
4392 if (current_language->la_macro_expansion == macro_expansion_c
4393 && code == TYPE_CODE_UNDEF)
4394 {
4395 struct macro_scope *scope;
4396
4397 /* Add any macros visible in the default scope. Note that this
4398 may yield the occasional wrong result, because an expression
4399 might be evaluated in a scope other than the default. For
4400 example, if the user types "break file:line if <TAB>", the
4401 resulting expression will be evaluated at "file:line" -- but
4402 at there does not seem to be a way to detect this at
4403 completion time. */
4404 scope = default_macro_scope ();
4405 if (scope)
4406 {
4407 macro_for_each_in_scope (scope->file, scope->line,
4408 add_macro_name, &datum);
4409 xfree (scope);
4410 }
4411
4412 /* User-defined macros are always visible. */
4413 macro_for_each (macro_user_macros, add_macro_name, &datum);
4414 }
4415
4416 discard_cleanups (back_to);
4417 return (return_val);
4418 }
4419
4420 VEC (char_ptr) *
4421 default_make_symbol_completion_list (const char *text, const char *word,
4422 enum type_code code)
4423 {
4424 return default_make_symbol_completion_list_break_on (text, word, "", code);
4425 }
4426
4427 /* Return a vector of all symbols (regardless of class) which begin by
4428 matching TEXT. If the answer is no symbols, then the return value
4429 is NULL. */
4430
4431 VEC (char_ptr) *
4432 make_symbol_completion_list (const char *text, const char *word)
4433 {
4434 return current_language->la_make_symbol_completion_list (text, word,
4435 TYPE_CODE_UNDEF);
4436 }
4437
4438 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4439 symbols whose type code is CODE. */
4440
4441 VEC (char_ptr) *
4442 make_symbol_completion_type (const char *text, const char *word,
4443 enum type_code code)
4444 {
4445 gdb_assert (code == TYPE_CODE_UNION
4446 || code == TYPE_CODE_STRUCT
4447 || code == TYPE_CODE_CLASS
4448 || code == TYPE_CODE_ENUM);
4449 return current_language->la_make_symbol_completion_list (text, word, code);
4450 }
4451
4452 /* Like make_symbol_completion_list, but suitable for use as a
4453 completion function. */
4454
4455 VEC (char_ptr) *
4456 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4457 const char *text, const char *word)
4458 {
4459 return make_symbol_completion_list (text, word);
4460 }
4461
4462 /* Like make_symbol_completion_list, but returns a list of symbols
4463 defined in a source file FILE. */
4464
4465 VEC (char_ptr) *
4466 make_file_symbol_completion_list (const char *text, const char *word,
4467 const char *srcfile)
4468 {
4469 struct symbol *sym;
4470 struct symtab *s;
4471 struct block *b;
4472 struct block_iterator iter;
4473 /* The symbol we are completing on. Points in same buffer as text. */
4474 const char *sym_text;
4475 /* Length of sym_text. */
4476 int sym_text_len;
4477
4478 /* Now look for the symbol we are supposed to complete on.
4479 FIXME: This should be language-specific. */
4480 {
4481 const char *p;
4482 char quote_found;
4483 const char *quote_pos = NULL;
4484
4485 /* First see if this is a quoted string. */
4486 quote_found = '\0';
4487 for (p = text; *p != '\0'; ++p)
4488 {
4489 if (quote_found != '\0')
4490 {
4491 if (*p == quote_found)
4492 /* Found close quote. */
4493 quote_found = '\0';
4494 else if (*p == '\\' && p[1] == quote_found)
4495 /* A backslash followed by the quote character
4496 doesn't end the string. */
4497 ++p;
4498 }
4499 else if (*p == '\'' || *p == '"')
4500 {
4501 quote_found = *p;
4502 quote_pos = p;
4503 }
4504 }
4505 if (quote_found == '\'')
4506 /* A string within single quotes can be a symbol, so complete on it. */
4507 sym_text = quote_pos + 1;
4508 else if (quote_found == '"')
4509 /* A double-quoted string is never a symbol, nor does it make sense
4510 to complete it any other way. */
4511 {
4512 return NULL;
4513 }
4514 else
4515 {
4516 /* Not a quoted string. */
4517 sym_text = language_search_unquoted_string (text, p);
4518 }
4519 }
4520
4521 sym_text_len = strlen (sym_text);
4522
4523 return_val = NULL;
4524
4525 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4526 in). */
4527 s = lookup_symtab (srcfile);
4528 if (s == NULL)
4529 {
4530 /* Maybe they typed the file with leading directories, while the
4531 symbol tables record only its basename. */
4532 const char *tail = lbasename (srcfile);
4533
4534 if (tail > srcfile)
4535 s = lookup_symtab (tail);
4536 }
4537
4538 /* If we have no symtab for that file, return an empty list. */
4539 if (s == NULL)
4540 return (return_val);
4541
4542 /* Go through this symtab and check the externs and statics for
4543 symbols which match. */
4544
4545 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4546 ALL_BLOCK_SYMBOLS (b, iter, sym)
4547 {
4548 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4549 }
4550
4551 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4552 ALL_BLOCK_SYMBOLS (b, iter, sym)
4553 {
4554 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4555 }
4556
4557 return (return_val);
4558 }
4559
4560 /* A helper function for make_source_files_completion_list. It adds
4561 another file name to a list of possible completions, growing the
4562 list as necessary. */
4563
4564 static void
4565 add_filename_to_list (const char *fname, const char *text, const char *word,
4566 VEC (char_ptr) **list)
4567 {
4568 char *new;
4569 size_t fnlen = strlen (fname);
4570
4571 if (word == text)
4572 {
4573 /* Return exactly fname. */
4574 new = xmalloc (fnlen + 5);
4575 strcpy (new, fname);
4576 }
4577 else if (word > text)
4578 {
4579 /* Return some portion of fname. */
4580 new = xmalloc (fnlen + 5);
4581 strcpy (new, fname + (word - text));
4582 }
4583 else
4584 {
4585 /* Return some of TEXT plus fname. */
4586 new = xmalloc (fnlen + (text - word) + 5);
4587 strncpy (new, word, text - word);
4588 new[text - word] = '\0';
4589 strcat (new, fname);
4590 }
4591 VEC_safe_push (char_ptr, *list, new);
4592 }
4593
4594 static int
4595 not_interesting_fname (const char *fname)
4596 {
4597 static const char *illegal_aliens[] = {
4598 "_globals_", /* inserted by coff_symtab_read */
4599 NULL
4600 };
4601 int i;
4602
4603 for (i = 0; illegal_aliens[i]; i++)
4604 {
4605 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4606 return 1;
4607 }
4608 return 0;
4609 }
4610
4611 /* An object of this type is passed as the user_data argument to
4612 map_partial_symbol_filenames. */
4613 struct add_partial_filename_data
4614 {
4615 struct filename_seen_cache *filename_seen_cache;
4616 const char *text;
4617 const char *word;
4618 int text_len;
4619 VEC (char_ptr) **list;
4620 };
4621
4622 /* A callback for map_partial_symbol_filenames. */
4623
4624 static void
4625 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4626 void *user_data)
4627 {
4628 struct add_partial_filename_data *data = user_data;
4629
4630 if (not_interesting_fname (filename))
4631 return;
4632 if (!filename_seen (data->filename_seen_cache, filename, 1)
4633 && filename_ncmp (filename, data->text, data->text_len) == 0)
4634 {
4635 /* This file matches for a completion; add it to the
4636 current list of matches. */
4637 add_filename_to_list (filename, data->text, data->word, data->list);
4638 }
4639 else
4640 {
4641 const char *base_name = lbasename (filename);
4642
4643 if (base_name != filename
4644 && !filename_seen (data->filename_seen_cache, base_name, 1)
4645 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4646 add_filename_to_list (base_name, data->text, data->word, data->list);
4647 }
4648 }
4649
4650 /* Return a vector of all source files whose names begin with matching
4651 TEXT. The file names are looked up in the symbol tables of this
4652 program. If the answer is no matchess, then the return value is
4653 NULL. */
4654
4655 VEC (char_ptr) *
4656 make_source_files_completion_list (const char *text, const char *word)
4657 {
4658 struct symtab *s;
4659 struct objfile *objfile;
4660 size_t text_len = strlen (text);
4661 VEC (char_ptr) *list = NULL;
4662 const char *base_name;
4663 struct add_partial_filename_data datum;
4664 struct filename_seen_cache *filename_seen_cache;
4665 struct cleanup *back_to, *cache_cleanup;
4666
4667 if (!have_full_symbols () && !have_partial_symbols ())
4668 return list;
4669
4670 back_to = make_cleanup (do_free_completion_list, &list);
4671
4672 filename_seen_cache = create_filename_seen_cache ();
4673 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4674 filename_seen_cache);
4675
4676 ALL_SYMTABS (objfile, s)
4677 {
4678 if (not_interesting_fname (s->filename))
4679 continue;
4680 if (!filename_seen (filename_seen_cache, s->filename, 1)
4681 && filename_ncmp (s->filename, text, text_len) == 0)
4682 {
4683 /* This file matches for a completion; add it to the current
4684 list of matches. */
4685 add_filename_to_list (s->filename, text, word, &list);
4686 }
4687 else
4688 {
4689 /* NOTE: We allow the user to type a base name when the
4690 debug info records leading directories, but not the other
4691 way around. This is what subroutines of breakpoint
4692 command do when they parse file names. */
4693 base_name = lbasename (s->filename);
4694 if (base_name != s->filename
4695 && !filename_seen (filename_seen_cache, base_name, 1)
4696 && filename_ncmp (base_name, text, text_len) == 0)
4697 add_filename_to_list (base_name, text, word, &list);
4698 }
4699 }
4700
4701 datum.filename_seen_cache = filename_seen_cache;
4702 datum.text = text;
4703 datum.word = word;
4704 datum.text_len = text_len;
4705 datum.list = &list;
4706 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4707 0 /*need_fullname*/);
4708
4709 do_cleanups (cache_cleanup);
4710 discard_cleanups (back_to);
4711
4712 return list;
4713 }
4714
4715 /* Determine if PC is in the prologue of a function. The prologue is the area
4716 between the first instruction of a function, and the first executable line.
4717 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4718
4719 If non-zero, func_start is where we think the prologue starts, possibly
4720 by previous examination of symbol table information. */
4721
4722 int
4723 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4724 {
4725 struct symtab_and_line sal;
4726 CORE_ADDR func_addr, func_end;
4727
4728 /* We have several sources of information we can consult to figure
4729 this out.
4730 - Compilers usually emit line number info that marks the prologue
4731 as its own "source line". So the ending address of that "line"
4732 is the end of the prologue. If available, this is the most
4733 reliable method.
4734 - The minimal symbols and partial symbols, which can usually tell
4735 us the starting and ending addresses of a function.
4736 - If we know the function's start address, we can call the
4737 architecture-defined gdbarch_skip_prologue function to analyze the
4738 instruction stream and guess where the prologue ends.
4739 - Our `func_start' argument; if non-zero, this is the caller's
4740 best guess as to the function's entry point. At the time of
4741 this writing, handle_inferior_event doesn't get this right, so
4742 it should be our last resort. */
4743
4744 /* Consult the partial symbol table, to find which function
4745 the PC is in. */
4746 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4747 {
4748 CORE_ADDR prologue_end;
4749
4750 /* We don't even have minsym information, so fall back to using
4751 func_start, if given. */
4752 if (! func_start)
4753 return 1; /* We *might* be in a prologue. */
4754
4755 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4756
4757 return func_start <= pc && pc < prologue_end;
4758 }
4759
4760 /* If we have line number information for the function, that's
4761 usually pretty reliable. */
4762 sal = find_pc_line (func_addr, 0);
4763
4764 /* Now sal describes the source line at the function's entry point,
4765 which (by convention) is the prologue. The end of that "line",
4766 sal.end, is the end of the prologue.
4767
4768 Note that, for functions whose source code is all on a single
4769 line, the line number information doesn't always end up this way.
4770 So we must verify that our purported end-of-prologue address is
4771 *within* the function, not at its start or end. */
4772 if (sal.line == 0
4773 || sal.end <= func_addr
4774 || func_end <= sal.end)
4775 {
4776 /* We don't have any good line number info, so use the minsym
4777 information, together with the architecture-specific prologue
4778 scanning code. */
4779 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4780
4781 return func_addr <= pc && pc < prologue_end;
4782 }
4783
4784 /* We have line number info, and it looks good. */
4785 return func_addr <= pc && pc < sal.end;
4786 }
4787
4788 /* Given PC at the function's start address, attempt to find the
4789 prologue end using SAL information. Return zero if the skip fails.
4790
4791 A non-optimized prologue traditionally has one SAL for the function
4792 and a second for the function body. A single line function has
4793 them both pointing at the same line.
4794
4795 An optimized prologue is similar but the prologue may contain
4796 instructions (SALs) from the instruction body. Need to skip those
4797 while not getting into the function body.
4798
4799 The functions end point and an increasing SAL line are used as
4800 indicators of the prologue's endpoint.
4801
4802 This code is based on the function refine_prologue_limit
4803 (found in ia64). */
4804
4805 CORE_ADDR
4806 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4807 {
4808 struct symtab_and_line prologue_sal;
4809 CORE_ADDR start_pc;
4810 CORE_ADDR end_pc;
4811 struct block *bl;
4812
4813 /* Get an initial range for the function. */
4814 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4815 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4816
4817 prologue_sal = find_pc_line (start_pc, 0);
4818 if (prologue_sal.line != 0)
4819 {
4820 /* For languages other than assembly, treat two consecutive line
4821 entries at the same address as a zero-instruction prologue.
4822 The GNU assembler emits separate line notes for each instruction
4823 in a multi-instruction macro, but compilers generally will not
4824 do this. */
4825 if (prologue_sal.symtab->language != language_asm)
4826 {
4827 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4828 int idx = 0;
4829
4830 /* Skip any earlier lines, and any end-of-sequence marker
4831 from a previous function. */
4832 while (linetable->item[idx].pc != prologue_sal.pc
4833 || linetable->item[idx].line == 0)
4834 idx++;
4835
4836 if (idx+1 < linetable->nitems
4837 && linetable->item[idx+1].line != 0
4838 && linetable->item[idx+1].pc == start_pc)
4839 return start_pc;
4840 }
4841
4842 /* If there is only one sal that covers the entire function,
4843 then it is probably a single line function, like
4844 "foo(){}". */
4845 if (prologue_sal.end >= end_pc)
4846 return 0;
4847
4848 while (prologue_sal.end < end_pc)
4849 {
4850 struct symtab_and_line sal;
4851
4852 sal = find_pc_line (prologue_sal.end, 0);
4853 if (sal.line == 0)
4854 break;
4855 /* Assume that a consecutive SAL for the same (or larger)
4856 line mark the prologue -> body transition. */
4857 if (sal.line >= prologue_sal.line)
4858 break;
4859 /* Likewise if we are in a different symtab altogether
4860 (e.g. within a file included via #include).  */
4861 if (sal.symtab != prologue_sal.symtab)
4862 break;
4863
4864 /* The line number is smaller. Check that it's from the
4865 same function, not something inlined. If it's inlined,
4866 then there is no point comparing the line numbers. */
4867 bl = block_for_pc (prologue_sal.end);
4868 while (bl)
4869 {
4870 if (block_inlined_p (bl))
4871 break;
4872 if (BLOCK_FUNCTION (bl))
4873 {
4874 bl = NULL;
4875 break;
4876 }
4877 bl = BLOCK_SUPERBLOCK (bl);
4878 }
4879 if (bl != NULL)
4880 break;
4881
4882 /* The case in which compiler's optimizer/scheduler has
4883 moved instructions into the prologue. We look ahead in
4884 the function looking for address ranges whose
4885 corresponding line number is less the first one that we
4886 found for the function. This is more conservative then
4887 refine_prologue_limit which scans a large number of SALs
4888 looking for any in the prologue. */
4889 prologue_sal = sal;
4890 }
4891 }
4892
4893 if (prologue_sal.end < end_pc)
4894 /* Return the end of this line, or zero if we could not find a
4895 line. */
4896 return prologue_sal.end;
4897 else
4898 /* Don't return END_PC, which is past the end of the function. */
4899 return prologue_sal.pc;
4900 }
4901 \f
4902 /* Track MAIN */
4903 static char *name_of_main;
4904 enum language language_of_main = language_unknown;
4905
4906 void
4907 set_main_name (const char *name)
4908 {
4909 if (name_of_main != NULL)
4910 {
4911 xfree (name_of_main);
4912 name_of_main = NULL;
4913 language_of_main = language_unknown;
4914 }
4915 if (name != NULL)
4916 {
4917 name_of_main = xstrdup (name);
4918 language_of_main = language_unknown;
4919 }
4920 }
4921
4922 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4923 accordingly. */
4924
4925 static void
4926 find_main_name (void)
4927 {
4928 const char *new_main_name;
4929
4930 /* Try to see if the main procedure is in Ada. */
4931 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4932 be to add a new method in the language vector, and call this
4933 method for each language until one of them returns a non-empty
4934 name. This would allow us to remove this hard-coded call to
4935 an Ada function. It is not clear that this is a better approach
4936 at this point, because all methods need to be written in a way
4937 such that false positives never be returned. For instance, it is
4938 important that a method does not return a wrong name for the main
4939 procedure if the main procedure is actually written in a different
4940 language. It is easy to guaranty this with Ada, since we use a
4941 special symbol generated only when the main in Ada to find the name
4942 of the main procedure. It is difficult however to see how this can
4943 be guarantied for languages such as C, for instance. This suggests
4944 that order of call for these methods becomes important, which means
4945 a more complicated approach. */
4946 new_main_name = ada_main_name ();
4947 if (new_main_name != NULL)
4948 {
4949 set_main_name (new_main_name);
4950 return;
4951 }
4952
4953 new_main_name = go_main_name ();
4954 if (new_main_name != NULL)
4955 {
4956 set_main_name (new_main_name);
4957 return;
4958 }
4959
4960 new_main_name = pascal_main_name ();
4961 if (new_main_name != NULL)
4962 {
4963 set_main_name (new_main_name);
4964 return;
4965 }
4966
4967 /* The languages above didn't identify the name of the main procedure.
4968 Fallback to "main". */
4969 set_main_name ("main");
4970 }
4971
4972 char *
4973 main_name (void)
4974 {
4975 if (name_of_main == NULL)
4976 find_main_name ();
4977
4978 return name_of_main;
4979 }
4980
4981 /* Handle ``executable_changed'' events for the symtab module. */
4982
4983 static void
4984 symtab_observer_executable_changed (void)
4985 {
4986 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4987 set_main_name (NULL);
4988 }
4989
4990 /* Return 1 if the supplied producer string matches the ARM RealView
4991 compiler (armcc). */
4992
4993 int
4994 producer_is_realview (const char *producer)
4995 {
4996 static const char *const arm_idents[] = {
4997 "ARM C Compiler, ADS",
4998 "Thumb C Compiler, ADS",
4999 "ARM C++ Compiler, ADS",
5000 "Thumb C++ Compiler, ADS",
5001 "ARM/Thumb C/C++ Compiler, RVCT",
5002 "ARM C/C++ Compiler, RVCT"
5003 };
5004 int i;
5005
5006 if (producer == NULL)
5007 return 0;
5008
5009 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5010 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5011 return 1;
5012
5013 return 0;
5014 }
5015
5016 \f
5017
5018 /* The next index to hand out in response to a registration request. */
5019
5020 static int next_aclass_value = LOC_FINAL_VALUE;
5021
5022 /* The maximum number of "aclass" registrations we support. This is
5023 constant for convenience. */
5024 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5025
5026 /* The objects representing the various "aclass" values. The elements
5027 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5028 elements are those registered at gdb initialization time. */
5029
5030 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5031
5032 /* The globally visible pointer. This is separate from 'symbol_impl'
5033 so that it can be const. */
5034
5035 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5036
5037 /* Make sure we saved enough room in struct symbol. */
5038
5039 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5040
5041 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5042 is the ops vector associated with this index. This returns the new
5043 index, which should be used as the aclass_index field for symbols
5044 of this type. */
5045
5046 int
5047 register_symbol_computed_impl (enum address_class aclass,
5048 const struct symbol_computed_ops *ops)
5049 {
5050 int result = next_aclass_value++;
5051
5052 gdb_assert (aclass == LOC_COMPUTED);
5053 gdb_assert (result < MAX_SYMBOL_IMPLS);
5054 symbol_impl[result].aclass = aclass;
5055 symbol_impl[result].ops_computed = ops;
5056
5057 /* Sanity check OPS. */
5058 gdb_assert (ops != NULL);
5059 gdb_assert (ops->tracepoint_var_ref != NULL);
5060 gdb_assert (ops->describe_location != NULL);
5061 gdb_assert (ops->read_needs_frame != NULL);
5062 gdb_assert (ops->read_variable != NULL);
5063
5064 return result;
5065 }
5066
5067 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5068 OPS is the ops vector associated with this index. This returns the
5069 new index, which should be used as the aclass_index field for symbols
5070 of this type. */
5071
5072 int
5073 register_symbol_block_impl (enum address_class aclass,
5074 const struct symbol_block_ops *ops)
5075 {
5076 int result = next_aclass_value++;
5077
5078 gdb_assert (aclass == LOC_BLOCK);
5079 gdb_assert (result < MAX_SYMBOL_IMPLS);
5080 symbol_impl[result].aclass = aclass;
5081 symbol_impl[result].ops_block = ops;
5082
5083 /* Sanity check OPS. */
5084 gdb_assert (ops != NULL);
5085 gdb_assert (ops->find_frame_base_location != NULL);
5086
5087 return result;
5088 }
5089
5090 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5091 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5092 this index. This returns the new index, which should be used as
5093 the aclass_index field for symbols of this type. */
5094
5095 int
5096 register_symbol_register_impl (enum address_class aclass,
5097 const struct symbol_register_ops *ops)
5098 {
5099 int result = next_aclass_value++;
5100
5101 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5102 gdb_assert (result < MAX_SYMBOL_IMPLS);
5103 symbol_impl[result].aclass = aclass;
5104 symbol_impl[result].ops_register = ops;
5105
5106 return result;
5107 }
5108
5109 /* Initialize elements of 'symbol_impl' for the constants in enum
5110 address_class. */
5111
5112 static void
5113 initialize_ordinary_address_classes (void)
5114 {
5115 int i;
5116
5117 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5118 symbol_impl[i].aclass = i;
5119 }
5120
5121 \f
5122
5123 /* Initialize the symbol SYM. */
5124
5125 void
5126 initialize_symbol (struct symbol *sym)
5127 {
5128 memset (sym, 0, sizeof (*sym));
5129 }
5130
5131 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5132 obstack. */
5133
5134 struct symbol *
5135 allocate_symbol (struct objfile *objfile)
5136 {
5137 struct symbol *result;
5138
5139 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5140
5141 return result;
5142 }
5143
5144 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5145 obstack. */
5146
5147 struct template_symbol *
5148 allocate_template_symbol (struct objfile *objfile)
5149 {
5150 struct template_symbol *result;
5151
5152 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5153
5154 return result;
5155 }
5156
5157 \f
5158
5159 void
5160 _initialize_symtab (void)
5161 {
5162 initialize_ordinary_address_classes ();
5163
5164 add_info ("variables", variables_info, _("\
5165 All global and static variable names, or those matching REGEXP."));
5166 if (dbx_commands)
5167 add_com ("whereis", class_info, variables_info, _("\
5168 All global and static variable names, or those matching REGEXP."));
5169
5170 add_info ("functions", functions_info,
5171 _("All function names, or those matching REGEXP."));
5172
5173 /* FIXME: This command has at least the following problems:
5174 1. It prints builtin types (in a very strange and confusing fashion).
5175 2. It doesn't print right, e.g. with
5176 typedef struct foo *FOO
5177 type_print prints "FOO" when we want to make it (in this situation)
5178 print "struct foo *".
5179 I also think "ptype" or "whatis" is more likely to be useful (but if
5180 there is much disagreement "info types" can be fixed). */
5181 add_info ("types", types_info,
5182 _("All type names, or those matching REGEXP."));
5183
5184 add_info ("sources", sources_info,
5185 _("Source files in the program."));
5186
5187 add_com ("rbreak", class_breakpoint, rbreak_command,
5188 _("Set a breakpoint for all functions matching REGEXP."));
5189
5190 if (xdb_commands)
5191 {
5192 add_com ("lf", class_info, sources_info,
5193 _("Source files in the program"));
5194 add_com ("lg", class_info, variables_info, _("\
5195 All global and static variable names, or those matching REGEXP."));
5196 }
5197
5198 add_setshow_enum_cmd ("multiple-symbols", no_class,
5199 multiple_symbols_modes, &multiple_symbols_mode,
5200 _("\
5201 Set the debugger behavior when more than one symbol are possible matches\n\
5202 in an expression."), _("\
5203 Show how the debugger handles ambiguities in expressions."), _("\
5204 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5205 NULL, NULL, &setlist, &showlist);
5206
5207 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5208 &basenames_may_differ, _("\
5209 Set whether a source file may have multiple base names."), _("\
5210 Show whether a source file may have multiple base names."), _("\
5211 (A \"base name\" is the name of a file with the directory part removed.\n\
5212 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5213 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5214 before comparing them. Canonicalization is an expensive operation,\n\
5215 but it allows the same file be known by more than one base name.\n\
5216 If not set (the default), all source files are assumed to have just\n\
5217 one base name, and gdb will do file name comparisons more efficiently."),
5218 NULL, NULL,
5219 &setlist, &showlist);
5220
5221 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5222 _("Set debugging of symbol table creation."),
5223 _("Show debugging of symbol table creation."), _("\
5224 When enabled, debugging messages are printed when building symbol tables."),
5225 NULL,
5226 NULL,
5227 &setdebuglist, &showdebuglist);
5228
5229 observer_attach_executable_changed (symtab_observer_executable_changed);
5230 }
This page took 0.134857 seconds and 4 git commands to generate.