d627636ae1a601e957162754af3495caab590039
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_msymbol_info (struct minimal_symbol *);
114
115 void _initialize_symtab (void);
116
117 /* */
118
119 /* Allow the user to configure the debugger behavior with respect
120 to multiple-choice menus when more than one symbol matches during
121 a symbol lookup. */
122
123 const char multiple_symbols_ask[] = "ask";
124 const char multiple_symbols_all[] = "all";
125 const char multiple_symbols_cancel[] = "cancel";
126 static const char *multiple_symbols_modes[] =
127 {
128 multiple_symbols_ask,
129 multiple_symbols_all,
130 multiple_symbols_cancel,
131 NULL
132 };
133 static const char *multiple_symbols_mode = multiple_symbols_all;
134
135 /* Read-only accessor to AUTO_SELECT_MODE. */
136
137 const char *
138 multiple_symbols_select_mode (void)
139 {
140 return multiple_symbols_mode;
141 }
142
143 /* Block in which the most recently searched-for symbol was found.
144 Might be better to make this a parameter to lookup_symbol and
145 value_of_this. */
146
147 const struct block *block_found;
148
149 /* Check for a symtab of a specific name; first in symtabs, then in
150 psymtabs. *If* there is no '/' in the name, a match after a '/'
151 in the symtab filename will also work. */
152
153 struct symtab *
154 lookup_symtab (const char *name)
155 {
156 int found;
157 struct symtab *s = NULL;
158 struct objfile *objfile;
159 char *real_path = NULL;
160 char *full_path = NULL;
161 struct cleanup *cleanup;
162
163 cleanup = make_cleanup (null_cleanup, NULL);
164
165 /* Here we are interested in canonicalizing an absolute path, not
166 absolutizing a relative path. */
167 if (IS_ABSOLUTE_PATH (name))
168 {
169 full_path = xfullpath (name);
170 make_cleanup (xfree, full_path);
171 real_path = gdb_realpath (name);
172 make_cleanup (xfree, real_path);
173 }
174
175 got_symtab:
176
177 /* First, search for an exact match. */
178
179 ALL_SYMTABS (objfile, s)
180 {
181 if (FILENAME_CMP (name, s->filename) == 0)
182 {
183 do_cleanups (cleanup);
184 return s;
185 }
186
187 /* If the user gave us an absolute path, try to find the file in
188 this symtab and use its absolute path. */
189
190 if (full_path != NULL)
191 {
192 const char *fp = symtab_to_fullname (s);
193
194 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
195 {
196 do_cleanups (cleanup);
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
208
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 do_cleanups (cleanup);
213 return s;
214 }
215 }
216 }
217 }
218
219 /* Now, search for a matching tail (only if name doesn't have any dirs). */
220
221 if (lbasename (name) == name)
222 ALL_SYMTABS (objfile, s)
223 {
224 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
225 {
226 do_cleanups (cleanup);
227 return s;
228 }
229 }
230
231 /* Same search rules as above apply here, but now we look thru the
232 psymtabs. */
233
234 found = 0;
235 ALL_OBJFILES (objfile)
236 {
237 if (objfile->sf
238 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
239 &s))
240 {
241 found = 1;
242 break;
243 }
244 }
245
246 if (s != NULL)
247 {
248 do_cleanups (cleanup);
249 return s;
250 }
251 if (!found)
252 {
253 do_cleanups (cleanup);
254 return NULL;
255 }
256
257 /* At this point, we have located the psymtab for this file, but
258 the conversion to a symtab has failed. This usually happens
259 when we are looking up an include file. In this case,
260 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
261 been created. So, we need to run through the symtabs again in
262 order to find the file.
263 XXX - This is a crock, and should be fixed inside of the
264 symbol parsing routines. */
265 goto got_symtab;
266 }
267 \f
268 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
269 full method name, which consist of the class name (from T), the unadorned
270 method name from METHOD_ID, and the signature for the specific overload,
271 specified by SIGNATURE_ID. Note that this function is g++ specific. */
272
273 char *
274 gdb_mangle_name (struct type *type, int method_id, int signature_id)
275 {
276 int mangled_name_len;
277 char *mangled_name;
278 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
279 struct fn_field *method = &f[signature_id];
280 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
281 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
282 char *newname = type_name_no_tag (type);
283
284 /* Does the form of physname indicate that it is the full mangled name
285 of a constructor (not just the args)? */
286 int is_full_physname_constructor;
287
288 int is_constructor;
289 int is_destructor = is_destructor_name (physname);
290 /* Need a new type prefix. */
291 char *const_prefix = method->is_const ? "C" : "";
292 char *volatile_prefix = method->is_volatile ? "V" : "";
293 char buf[20];
294 int len = (newname == NULL ? 0 : strlen (newname));
295
296 /* Nothing to do if physname already contains a fully mangled v3 abi name
297 or an operator name. */
298 if ((physname[0] == '_' && physname[1] == 'Z')
299 || is_operator_name (field_name))
300 return xstrdup (physname);
301
302 is_full_physname_constructor = is_constructor_name (physname);
303
304 is_constructor = is_full_physname_constructor
305 || (newname && strcmp (field_name, newname) == 0);
306
307 if (!is_destructor)
308 is_destructor = (strncmp (physname, "__dt", 4) == 0);
309
310 if (is_destructor || is_full_physname_constructor)
311 {
312 mangled_name = (char *) xmalloc (strlen (physname) + 1);
313 strcpy (mangled_name, physname);
314 return mangled_name;
315 }
316
317 if (len == 0)
318 {
319 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
320 }
321 else if (physname[0] == 't' || physname[0] == 'Q')
322 {
323 /* The physname for template and qualified methods already includes
324 the class name. */
325 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
326 newname = NULL;
327 len = 0;
328 }
329 else
330 {
331 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
332 }
333 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
334 + strlen (buf) + len + strlen (physname) + 1);
335
336 mangled_name = (char *) xmalloc (mangled_name_len);
337 if (is_constructor)
338 mangled_name[0] = '\0';
339 else
340 strcpy (mangled_name, field_name);
341
342 strcat (mangled_name, buf);
343 /* If the class doesn't have a name, i.e. newname NULL, then we just
344 mangle it using 0 for the length of the class. Thus it gets mangled
345 as something starting with `::' rather than `classname::'. */
346 if (newname != NULL)
347 strcat (mangled_name, newname);
348
349 strcat (mangled_name, physname);
350 return (mangled_name);
351 }
352
353 /* Initialize the cplus_specific structure. 'cplus_specific' should
354 only be allocated for use with cplus symbols. */
355
356 static void
357 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
358 struct objfile *objfile)
359 {
360 /* A language_specific structure should not have been previously
361 initialized. */
362 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
363 gdb_assert (objfile != NULL);
364
365 gsymbol->language_specific.cplus_specific =
366 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
367 }
368
369 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
370 correctly allocated. For C++ symbols a cplus_specific struct is
371 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
372 OBJFILE can be NULL. */
373 void
374 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
375 char *name,
376 struct objfile *objfile)
377 {
378 if (gsymbol->language == language_cplus)
379 {
380 if (gsymbol->language_specific.cplus_specific == NULL)
381 symbol_init_cplus_specific (gsymbol, objfile);
382
383 gsymbol->language_specific.cplus_specific->demangled_name = name;
384 }
385 else
386 gsymbol->language_specific.mangled_lang.demangled_name = name;
387 }
388
389 /* Return the demangled name of GSYMBOL. */
390 char *
391 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
392 {
393 if (gsymbol->language == language_cplus)
394 {
395 if (gsymbol->language_specific.cplus_specific != NULL)
396 return gsymbol->language_specific.cplus_specific->demangled_name;
397 else
398 return NULL;
399 }
400 else
401 return gsymbol->language_specific.mangled_lang.demangled_name;
402 }
403
404 \f
405 /* Initialize the language dependent portion of a symbol
406 depending upon the language for the symbol. */
407 void
408 symbol_set_language (struct general_symbol_info *gsymbol,
409 enum language language)
410 {
411 gsymbol->language = language;
412 if (gsymbol->language == language_d
413 || gsymbol->language == language_java
414 || gsymbol->language == language_objc
415 || gsymbol->language == language_fortran)
416 {
417 symbol_set_demangled_name (gsymbol, NULL, NULL);
418 }
419 else if (gsymbol->language == language_cplus)
420 gsymbol->language_specific.cplus_specific = NULL;
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Objects of this type are stored in the demangled name hash table. */
431 struct demangled_name_entry
432 {
433 char *mangled;
434 char demangled[1];
435 };
436
437 /* Hash function for the demangled name hash. */
438 static hashval_t
439 hash_demangled_name_entry (const void *data)
440 {
441 const struct demangled_name_entry *e = data;
442
443 return htab_hash_string (e->mangled);
444 }
445
446 /* Equality function for the demangled name hash. */
447 static int
448 eq_demangled_name_entry (const void *a, const void *b)
449 {
450 const struct demangled_name_entry *da = a;
451 const struct demangled_name_entry *db = b;
452
453 return strcmp (da->mangled, db->mangled) == 0;
454 }
455
456 /* Create the hash table used for demangled names. Each hash entry is
457 a pair of strings; one for the mangled name and one for the demangled
458 name. The entry is hashed via just the mangled name. */
459
460 static void
461 create_demangled_names_hash (struct objfile *objfile)
462 {
463 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
464 The hash table code will round this up to the next prime number.
465 Choosing a much larger table size wastes memory, and saves only about
466 1% in symbol reading. */
467
468 objfile->demangled_names_hash = htab_create_alloc
469 (256, hash_demangled_name_entry, eq_demangled_name_entry,
470 NULL, xcalloc, xfree);
471 }
472
473 /* Try to determine the demangled name for a symbol, based on the
474 language of that symbol. If the language is set to language_auto,
475 it will attempt to find any demangling algorithm that works and
476 then set the language appropriately. The returned name is allocated
477 by the demangler and should be xfree'd. */
478
479 static char *
480 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
481 const char *mangled)
482 {
483 char *demangled = NULL;
484
485 if (gsymbol->language == language_unknown)
486 gsymbol->language = language_auto;
487
488 if (gsymbol->language == language_objc
489 || gsymbol->language == language_auto)
490 {
491 demangled =
492 objc_demangle (mangled, 0);
493 if (demangled != NULL)
494 {
495 gsymbol->language = language_objc;
496 return demangled;
497 }
498 }
499 if (gsymbol->language == language_cplus
500 || gsymbol->language == language_auto)
501 {
502 demangled =
503 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
504 if (demangled != NULL)
505 {
506 gsymbol->language = language_cplus;
507 return demangled;
508 }
509 }
510 if (gsymbol->language == language_java)
511 {
512 demangled =
513 cplus_demangle (mangled,
514 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
515 if (demangled != NULL)
516 {
517 gsymbol->language = language_java;
518 return demangled;
519 }
520 }
521 if (gsymbol->language == language_d
522 || gsymbol->language == language_auto)
523 {
524 demangled = d_demangle(mangled, 0);
525 if (demangled != NULL)
526 {
527 gsymbol->language = language_d;
528 return demangled;
529 }
530 }
531 /* We could support `gsymbol->language == language_fortran' here to provide
532 module namespaces also for inferiors with only minimal symbol table (ELF
533 symbols). Just the mangling standard is not standardized across compilers
534 and there is no DW_AT_producer available for inferiors with only the ELF
535 symbols to check the mangling kind. */
536 return NULL;
537 }
538
539 /* Set both the mangled and demangled (if any) names for GSYMBOL based
540 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
541 objfile's obstack; but if COPY_NAME is 0 and if NAME is
542 NUL-terminated, then this function assumes that NAME is already
543 correctly saved (either permanently or with a lifetime tied to the
544 objfile), and it will not be copied.
545
546 The hash table corresponding to OBJFILE is used, and the memory
547 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
548 so the pointer can be discarded after calling this function. */
549
550 /* We have to be careful when dealing with Java names: when we run
551 into a Java minimal symbol, we don't know it's a Java symbol, so it
552 gets demangled as a C++ name. This is unfortunate, but there's not
553 much we can do about it: but when demangling partial symbols and
554 regular symbols, we'd better not reuse the wrong demangled name.
555 (See PR gdb/1039.) We solve this by putting a distinctive prefix
556 on Java names when storing them in the hash table. */
557
558 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
559 don't mind the Java prefix so much: different languages have
560 different demangling requirements, so it's only natural that we
561 need to keep language data around in our demangling cache. But
562 it's not good that the minimal symbol has the wrong demangled name.
563 Unfortunately, I can't think of any easy solution to that
564 problem. */
565
566 #define JAVA_PREFIX "##JAVA$$"
567 #define JAVA_PREFIX_LEN 8
568
569 void
570 symbol_set_names (struct general_symbol_info *gsymbol,
571 const char *linkage_name, int len, int copy_name,
572 struct objfile *objfile)
573 {
574 struct demangled_name_entry **slot;
575 /* A 0-terminated copy of the linkage name. */
576 const char *linkage_name_copy;
577 /* A copy of the linkage name that might have a special Java prefix
578 added to it, for use when looking names up in the hash table. */
579 const char *lookup_name;
580 /* The length of lookup_name. */
581 int lookup_len;
582 struct demangled_name_entry entry;
583
584 if (gsymbol->language == language_ada)
585 {
586 /* In Ada, we do the symbol lookups using the mangled name, so
587 we can save some space by not storing the demangled name.
588
589 As a side note, we have also observed some overlap between
590 the C++ mangling and Ada mangling, similarly to what has
591 been observed with Java. Because we don't store the demangled
592 name with the symbol, we don't need to use the same trick
593 as Java. */
594 if (!copy_name)
595 gsymbol->name = (char *) linkage_name;
596 else
597 {
598 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
599 memcpy (gsymbol->name, linkage_name, len);
600 gsymbol->name[len] = '\0';
601 }
602 symbol_set_demangled_name (gsymbol, NULL, NULL);
603
604 return;
605 }
606
607 if (objfile->demangled_names_hash == NULL)
608 create_demangled_names_hash (objfile);
609
610 /* The stabs reader generally provides names that are not
611 NUL-terminated; most of the other readers don't do this, so we
612 can just use the given copy, unless we're in the Java case. */
613 if (gsymbol->language == language_java)
614 {
615 char *alloc_name;
616
617 lookup_len = len + JAVA_PREFIX_LEN;
618 alloc_name = alloca (lookup_len + 1);
619 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
620 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
621 alloc_name[lookup_len] = '\0';
622
623 lookup_name = alloc_name;
624 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
625 }
626 else if (linkage_name[len] != '\0')
627 {
628 char *alloc_name;
629
630 lookup_len = len;
631 alloc_name = alloca (lookup_len + 1);
632 memcpy (alloc_name, linkage_name, len);
633 alloc_name[lookup_len] = '\0';
634
635 lookup_name = alloc_name;
636 linkage_name_copy = alloc_name;
637 }
638 else
639 {
640 lookup_len = len;
641 lookup_name = linkage_name;
642 linkage_name_copy = linkage_name;
643 }
644
645 entry.mangled = (char *) lookup_name;
646 slot = ((struct demangled_name_entry **)
647 htab_find_slot (objfile->demangled_names_hash,
648 &entry, INSERT));
649
650 /* If this name is not in the hash table, add it. */
651 if (*slot == NULL)
652 {
653 char *demangled_name = symbol_find_demangled_name (gsymbol,
654 linkage_name_copy);
655 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
656
657 /* Suppose we have demangled_name==NULL, copy_name==0, and
658 lookup_name==linkage_name. In this case, we already have the
659 mangled name saved, and we don't have a demangled name. So,
660 you might think we could save a little space by not recording
661 this in the hash table at all.
662
663 It turns out that it is actually important to still save such
664 an entry in the hash table, because storing this name gives
665 us better bcache hit rates for partial symbols. */
666 if (!copy_name && lookup_name == linkage_name)
667 {
668 *slot = obstack_alloc (&objfile->objfile_obstack,
669 offsetof (struct demangled_name_entry,
670 demangled)
671 + demangled_len + 1);
672 (*slot)->mangled = (char *) lookup_name;
673 }
674 else
675 {
676 /* If we must copy the mangled name, put it directly after
677 the demangled name so we can have a single
678 allocation. */
679 *slot = obstack_alloc (&objfile->objfile_obstack,
680 offsetof (struct demangled_name_entry,
681 demangled)
682 + lookup_len + demangled_len + 2);
683 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
684 strcpy ((*slot)->mangled, lookup_name);
685 }
686
687 if (demangled_name != NULL)
688 {
689 strcpy ((*slot)->demangled, demangled_name);
690 xfree (demangled_name);
691 }
692 else
693 (*slot)->demangled[0] = '\0';
694 }
695
696 gsymbol->name = (*slot)->mangled + lookup_len - len;
697 if ((*slot)->demangled[0] != '\0')
698 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
699 else
700 symbol_set_demangled_name (gsymbol, NULL, objfile);
701 }
702
703 /* Return the source code name of a symbol. In languages where
704 demangling is necessary, this is the demangled name. */
705
706 char *
707 symbol_natural_name (const struct general_symbol_info *gsymbol)
708 {
709 switch (gsymbol->language)
710 {
711 case language_cplus:
712 case language_d:
713 case language_java:
714 case language_objc:
715 case language_fortran:
716 if (symbol_get_demangled_name (gsymbol) != NULL)
717 return symbol_get_demangled_name (gsymbol);
718 break;
719 case language_ada:
720 if (symbol_get_demangled_name (gsymbol) != NULL)
721 return symbol_get_demangled_name (gsymbol);
722 else
723 return ada_decode_symbol (gsymbol);
724 break;
725 default:
726 break;
727 }
728 return gsymbol->name;
729 }
730
731 /* Return the demangled name for a symbol based on the language for
732 that symbol. If no demangled name exists, return NULL. */
733 char *
734 symbol_demangled_name (const struct general_symbol_info *gsymbol)
735 {
736 switch (gsymbol->language)
737 {
738 case language_cplus:
739 case language_d:
740 case language_java:
741 case language_objc:
742 case language_fortran:
743 if (symbol_get_demangled_name (gsymbol) != NULL)
744 return symbol_get_demangled_name (gsymbol);
745 break;
746 case language_ada:
747 if (symbol_get_demangled_name (gsymbol) != NULL)
748 return symbol_get_demangled_name (gsymbol);
749 else
750 return ada_decode_symbol (gsymbol);
751 break;
752 default:
753 break;
754 }
755 return NULL;
756 }
757
758 /* Return the search name of a symbol---generally the demangled or
759 linkage name of the symbol, depending on how it will be searched for.
760 If there is no distinct demangled name, then returns the same value
761 (same pointer) as SYMBOL_LINKAGE_NAME. */
762 char *
763 symbol_search_name (const struct general_symbol_info *gsymbol)
764 {
765 if (gsymbol->language == language_ada)
766 return gsymbol->name;
767 else
768 return symbol_natural_name (gsymbol);
769 }
770
771 /* Initialize the structure fields to zero values. */
772 void
773 init_sal (struct symtab_and_line *sal)
774 {
775 sal->pspace = NULL;
776 sal->symtab = 0;
777 sal->section = 0;
778 sal->line = 0;
779 sal->pc = 0;
780 sal->end = 0;
781 sal->explicit_pc = 0;
782 sal->explicit_line = 0;
783 }
784 \f
785
786 /* Return 1 if the two sections are the same, or if they could
787 plausibly be copies of each other, one in an original object
788 file and another in a separated debug file. */
789
790 int
791 matching_obj_sections (struct obj_section *obj_first,
792 struct obj_section *obj_second)
793 {
794 asection *first = obj_first? obj_first->the_bfd_section : NULL;
795 asection *second = obj_second? obj_second->the_bfd_section : NULL;
796 struct objfile *obj;
797
798 /* If they're the same section, then they match. */
799 if (first == second)
800 return 1;
801
802 /* If either is NULL, give up. */
803 if (first == NULL || second == NULL)
804 return 0;
805
806 /* This doesn't apply to absolute symbols. */
807 if (first->owner == NULL || second->owner == NULL)
808 return 0;
809
810 /* If they're in the same object file, they must be different sections. */
811 if (first->owner == second->owner)
812 return 0;
813
814 /* Check whether the two sections are potentially corresponding. They must
815 have the same size, address, and name. We can't compare section indexes,
816 which would be more reliable, because some sections may have been
817 stripped. */
818 if (bfd_get_section_size (first) != bfd_get_section_size (second))
819 return 0;
820
821 /* In-memory addresses may start at a different offset, relativize them. */
822 if (bfd_get_section_vma (first->owner, first)
823 - bfd_get_start_address (first->owner)
824 != bfd_get_section_vma (second->owner, second)
825 - bfd_get_start_address (second->owner))
826 return 0;
827
828 if (bfd_get_section_name (first->owner, first) == NULL
829 || bfd_get_section_name (second->owner, second) == NULL
830 || strcmp (bfd_get_section_name (first->owner, first),
831 bfd_get_section_name (second->owner, second)) != 0)
832 return 0;
833
834 /* Otherwise check that they are in corresponding objfiles. */
835
836 ALL_OBJFILES (obj)
837 if (obj->obfd == first->owner)
838 break;
839 gdb_assert (obj != NULL);
840
841 if (obj->separate_debug_objfile != NULL
842 && obj->separate_debug_objfile->obfd == second->owner)
843 return 1;
844 if (obj->separate_debug_objfile_backlink != NULL
845 && obj->separate_debug_objfile_backlink->obfd == second->owner)
846 return 1;
847
848 return 0;
849 }
850
851 struct symtab *
852 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
853 {
854 struct objfile *objfile;
855 struct minimal_symbol *msymbol;
856
857 /* If we know that this is not a text address, return failure. This is
858 necessary because we loop based on texthigh and textlow, which do
859 not include the data ranges. */
860 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
861 if (msymbol
862 && (MSYMBOL_TYPE (msymbol) == mst_data
863 || MSYMBOL_TYPE (msymbol) == mst_bss
864 || MSYMBOL_TYPE (msymbol) == mst_abs
865 || MSYMBOL_TYPE (msymbol) == mst_file_data
866 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
867 return NULL;
868
869 ALL_OBJFILES (objfile)
870 {
871 struct symtab *result = NULL;
872
873 if (objfile->sf)
874 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
875 pc, section, 0);
876 if (result)
877 return result;
878 }
879
880 return NULL;
881 }
882 \f
883 /* Debug symbols usually don't have section information. We need to dig that
884 out of the minimal symbols and stash that in the debug symbol. */
885
886 void
887 fixup_section (struct general_symbol_info *ginfo,
888 CORE_ADDR addr, struct objfile *objfile)
889 {
890 struct minimal_symbol *msym;
891
892 /* First, check whether a minimal symbol with the same name exists
893 and points to the same address. The address check is required
894 e.g. on PowerPC64, where the minimal symbol for a function will
895 point to the function descriptor, while the debug symbol will
896 point to the actual function code. */
897 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
898 if (msym)
899 {
900 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
901 ginfo->section = SYMBOL_SECTION (msym);
902 }
903 else
904 {
905 /* Static, function-local variables do appear in the linker
906 (minimal) symbols, but are frequently given names that won't
907 be found via lookup_minimal_symbol(). E.g., it has been
908 observed in frv-uclinux (ELF) executables that a static,
909 function-local variable named "foo" might appear in the
910 linker symbols as "foo.6" or "foo.3". Thus, there is no
911 point in attempting to extend the lookup-by-name mechanism to
912 handle this case due to the fact that there can be multiple
913 names.
914
915 So, instead, search the section table when lookup by name has
916 failed. The ``addr'' and ``endaddr'' fields may have already
917 been relocated. If so, the relocation offset (i.e. the
918 ANOFFSET value) needs to be subtracted from these values when
919 performing the comparison. We unconditionally subtract it,
920 because, when no relocation has been performed, the ANOFFSET
921 value will simply be zero.
922
923 The address of the symbol whose section we're fixing up HAS
924 NOT BEEN adjusted (relocated) yet. It can't have been since
925 the section isn't yet known and knowing the section is
926 necessary in order to add the correct relocation value. In
927 other words, we wouldn't even be in this function (attempting
928 to compute the section) if it were already known.
929
930 Note that it is possible to search the minimal symbols
931 (subtracting the relocation value if necessary) to find the
932 matching minimal symbol, but this is overkill and much less
933 efficient. It is not necessary to find the matching minimal
934 symbol, only its section.
935
936 Note that this technique (of doing a section table search)
937 can fail when unrelocated section addresses overlap. For
938 this reason, we still attempt a lookup by name prior to doing
939 a search of the section table. */
940
941 struct obj_section *s;
942
943 ALL_OBJFILE_OSECTIONS (objfile, s)
944 {
945 int idx = s->the_bfd_section->index;
946 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
947
948 if (obj_section_addr (s) - offset <= addr
949 && addr < obj_section_endaddr (s) - offset)
950 {
951 ginfo->obj_section = s;
952 ginfo->section = idx;
953 return;
954 }
955 }
956 }
957 }
958
959 struct symbol *
960 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
961 {
962 CORE_ADDR addr;
963
964 if (!sym)
965 return NULL;
966
967 if (SYMBOL_OBJ_SECTION (sym))
968 return sym;
969
970 /* We either have an OBJFILE, or we can get at it from the sym's
971 symtab. Anything else is a bug. */
972 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
973
974 if (objfile == NULL)
975 objfile = SYMBOL_SYMTAB (sym)->objfile;
976
977 /* We should have an objfile by now. */
978 gdb_assert (objfile);
979
980 switch (SYMBOL_CLASS (sym))
981 {
982 case LOC_STATIC:
983 case LOC_LABEL:
984 addr = SYMBOL_VALUE_ADDRESS (sym);
985 break;
986 case LOC_BLOCK:
987 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
988 break;
989
990 default:
991 /* Nothing else will be listed in the minsyms -- no use looking
992 it up. */
993 return sym;
994 }
995
996 fixup_section (&sym->ginfo, addr, objfile);
997
998 return sym;
999 }
1000
1001 /* Find the definition for a specified symbol name NAME
1002 in domain DOMAIN, visible from lexical block BLOCK.
1003 Returns the struct symbol pointer, or zero if no symbol is found.
1004 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1005 NAME is a field of the current implied argument `this'. If so set
1006 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1007 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1008 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1009
1010 /* This function has a bunch of loops in it and it would seem to be
1011 attractive to put in some QUIT's (though I'm not really sure
1012 whether it can run long enough to be really important). But there
1013 are a few calls for which it would appear to be bad news to quit
1014 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1015 that there is C++ code below which can error(), but that probably
1016 doesn't affect these calls since they are looking for a known
1017 variable and thus can probably assume it will never hit the C++
1018 code). */
1019
1020 struct symbol *
1021 lookup_symbol_in_language (const char *name, const struct block *block,
1022 const domain_enum domain, enum language lang,
1023 int *is_a_field_of_this)
1024 {
1025 char *demangled_name = NULL;
1026 const char *modified_name = NULL;
1027 struct symbol *returnval;
1028 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1029
1030 modified_name = name;
1031
1032 /* If we are using C++, D, or Java, demangle the name before doing a
1033 lookup, so we can always binary search. */
1034 if (lang == language_cplus)
1035 {
1036 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1037 if (demangled_name)
1038 {
1039 modified_name = demangled_name;
1040 make_cleanup (xfree, demangled_name);
1041 }
1042 else
1043 {
1044 /* If we were given a non-mangled name, canonicalize it
1045 according to the language (so far only for C++). */
1046 demangled_name = cp_canonicalize_string (name);
1047 if (demangled_name)
1048 {
1049 modified_name = demangled_name;
1050 make_cleanup (xfree, demangled_name);
1051 }
1052 }
1053 }
1054 else if (lang == language_java)
1055 {
1056 demangled_name = cplus_demangle (name,
1057 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1058 if (demangled_name)
1059 {
1060 modified_name = demangled_name;
1061 make_cleanup (xfree, demangled_name);
1062 }
1063 }
1064 else if (lang == language_d)
1065 {
1066 demangled_name = d_demangle (name, 0);
1067 if (demangled_name)
1068 {
1069 modified_name = demangled_name;
1070 make_cleanup (xfree, demangled_name);
1071 }
1072 }
1073
1074 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1075 is_a_field_of_this);
1076 do_cleanups (cleanup);
1077
1078 return returnval;
1079 }
1080
1081 /* Behave like lookup_symbol_in_language, but performed with the
1082 current language. */
1083
1084 struct symbol *
1085 lookup_symbol (const char *name, const struct block *block,
1086 domain_enum domain, int *is_a_field_of_this)
1087 {
1088 return lookup_symbol_in_language (name, block, domain,
1089 current_language->la_language,
1090 is_a_field_of_this);
1091 }
1092
1093 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1094 found, or NULL if not found. */
1095
1096 struct symbol *
1097 lookup_language_this (const struct language_defn *lang,
1098 const struct block *block)
1099 {
1100 if (lang->la_name_of_this == NULL || block == NULL)
1101 return NULL;
1102
1103 while (1)
1104 {
1105 struct symbol *sym;
1106
1107 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1108 if (sym != NULL)
1109 return sym;
1110 if (BLOCK_FUNCTION (block))
1111 return NULL;
1112 block = BLOCK_SUPERBLOCK (block);
1113 }
1114 }
1115
1116 /* Behave like lookup_symbol except that NAME is the natural name
1117 of the symbol that we're looking for and, if LINKAGE_NAME is
1118 non-NULL, ensure that the symbol's linkage name matches as
1119 well. */
1120
1121 static struct symbol *
1122 lookup_symbol_aux (const char *name, const struct block *block,
1123 const domain_enum domain, enum language language,
1124 int *is_a_field_of_this)
1125 {
1126 struct symbol *sym;
1127 const struct language_defn *langdef;
1128
1129 /* Make sure we do something sensible with is_a_field_of_this, since
1130 the callers that set this parameter to some non-null value will
1131 certainly use it later and expect it to be either 0 or 1.
1132 If we don't set it, the contents of is_a_field_of_this are
1133 undefined. */
1134 if (is_a_field_of_this != NULL)
1135 *is_a_field_of_this = 0;
1136
1137 /* Search specified block and its superiors. Don't search
1138 STATIC_BLOCK or GLOBAL_BLOCK. */
1139
1140 sym = lookup_symbol_aux_local (name, block, domain, language);
1141 if (sym != NULL)
1142 return sym;
1143
1144 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1145 check to see if NAME is a field of `this'. */
1146
1147 langdef = language_def (language);
1148
1149 if (is_a_field_of_this != NULL)
1150 {
1151 struct symbol *sym = lookup_language_this (langdef, block);
1152
1153 if (sym)
1154 {
1155 struct type *t = sym->type;
1156
1157 /* I'm not really sure that type of this can ever
1158 be typedefed; just be safe. */
1159 CHECK_TYPEDEF (t);
1160 if (TYPE_CODE (t) == TYPE_CODE_PTR
1161 || TYPE_CODE (t) == TYPE_CODE_REF)
1162 t = TYPE_TARGET_TYPE (t);
1163
1164 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1165 && TYPE_CODE (t) != TYPE_CODE_UNION)
1166 error (_("Internal error: `%s' is not an aggregate"),
1167 langdef->la_name_of_this);
1168
1169 if (check_field (t, name))
1170 {
1171 *is_a_field_of_this = 1;
1172 return NULL;
1173 }
1174 }
1175 }
1176
1177 /* Now do whatever is appropriate for LANGUAGE to look
1178 up static and global variables. */
1179
1180 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1181 if (sym != NULL)
1182 return sym;
1183
1184 /* Now search all static file-level symbols. Not strictly correct,
1185 but more useful than an error. */
1186
1187 return lookup_static_symbol_aux (name, domain);
1188 }
1189
1190 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1191 first, then check the psymtabs. If a psymtab indicates the existence of the
1192 desired name as a file-level static, then do psymtab-to-symtab conversion on
1193 the fly and return the found symbol. */
1194
1195 struct symbol *
1196 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1197 {
1198 struct objfile *objfile;
1199 struct symbol *sym;
1200
1201 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1202 if (sym != NULL)
1203 return sym;
1204
1205 ALL_OBJFILES (objfile)
1206 {
1207 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1208 if (sym != NULL)
1209 return sym;
1210 }
1211
1212 return NULL;
1213 }
1214
1215 /* Check to see if the symbol is defined in BLOCK or its superiors.
1216 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1217
1218 static struct symbol *
1219 lookup_symbol_aux_local (const char *name, const struct block *block,
1220 const domain_enum domain,
1221 enum language language)
1222 {
1223 struct symbol *sym;
1224 const struct block *static_block = block_static_block (block);
1225 const char *scope = block_scope (block);
1226
1227 /* Check if either no block is specified or it's a global block. */
1228
1229 if (static_block == NULL)
1230 return NULL;
1231
1232 while (block != static_block)
1233 {
1234 sym = lookup_symbol_aux_block (name, block, domain);
1235 if (sym != NULL)
1236 return sym;
1237
1238 if (language == language_cplus || language == language_fortran)
1239 {
1240 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1241 domain);
1242 if (sym != NULL)
1243 return sym;
1244 }
1245
1246 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1247 break;
1248 block = BLOCK_SUPERBLOCK (block);
1249 }
1250
1251 /* We've reached the edge of the function without finding a result. */
1252
1253 return NULL;
1254 }
1255
1256 /* Look up OBJFILE to BLOCK. */
1257
1258 struct objfile *
1259 lookup_objfile_from_block (const struct block *block)
1260 {
1261 struct objfile *obj;
1262 struct symtab *s;
1263
1264 if (block == NULL)
1265 return NULL;
1266
1267 block = block_global_block (block);
1268 /* Go through SYMTABS. */
1269 ALL_SYMTABS (obj, s)
1270 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1271 {
1272 if (obj->separate_debug_objfile_backlink)
1273 obj = obj->separate_debug_objfile_backlink;
1274
1275 return obj;
1276 }
1277
1278 return NULL;
1279 }
1280
1281 /* Look up a symbol in a block; if found, fixup the symbol, and set
1282 block_found appropriately. */
1283
1284 struct symbol *
1285 lookup_symbol_aux_block (const char *name, const struct block *block,
1286 const domain_enum domain)
1287 {
1288 struct symbol *sym;
1289
1290 sym = lookup_block_symbol (block, name, domain);
1291 if (sym)
1292 {
1293 block_found = block;
1294 return fixup_symbol_section (sym, NULL);
1295 }
1296
1297 return NULL;
1298 }
1299
1300 /* Check all global symbols in OBJFILE in symtabs and
1301 psymtabs. */
1302
1303 struct symbol *
1304 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1305 const char *name,
1306 const domain_enum domain)
1307 {
1308 const struct objfile *objfile;
1309 struct symbol *sym;
1310 struct blockvector *bv;
1311 const struct block *block;
1312 struct symtab *s;
1313
1314 for (objfile = main_objfile;
1315 objfile;
1316 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1317 {
1318 /* Go through symtabs. */
1319 ALL_OBJFILE_SYMTABS (objfile, s)
1320 {
1321 bv = BLOCKVECTOR (s);
1322 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1323 sym = lookup_block_symbol (block, name, domain);
1324 if (sym)
1325 {
1326 block_found = block;
1327 return fixup_symbol_section (sym, (struct objfile *)objfile);
1328 }
1329 }
1330
1331 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1332 name, domain);
1333 if (sym)
1334 return sym;
1335 }
1336
1337 return NULL;
1338 }
1339
1340 /* Check to see if the symbol is defined in one of the symtabs.
1341 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1342 depending on whether or not we want to search global symbols or
1343 static symbols. */
1344
1345 static struct symbol *
1346 lookup_symbol_aux_symtabs (int block_index, const char *name,
1347 const domain_enum domain)
1348 {
1349 struct symbol *sym;
1350 struct objfile *objfile;
1351 struct blockvector *bv;
1352 const struct block *block;
1353 struct symtab *s;
1354
1355 ALL_OBJFILES (objfile)
1356 {
1357 if (objfile->sf)
1358 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1359 block_index,
1360 name, domain);
1361
1362 ALL_OBJFILE_SYMTABS (objfile, s)
1363 if (s->primary)
1364 {
1365 bv = BLOCKVECTOR (s);
1366 block = BLOCKVECTOR_BLOCK (bv, block_index);
1367 sym = lookup_block_symbol (block, name, domain);
1368 if (sym)
1369 {
1370 block_found = block;
1371 return fixup_symbol_section (sym, objfile);
1372 }
1373 }
1374 }
1375
1376 return NULL;
1377 }
1378
1379 /* A helper function for lookup_symbol_aux that interfaces with the
1380 "quick" symbol table functions. */
1381
1382 static struct symbol *
1383 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1384 const char *name, const domain_enum domain)
1385 {
1386 struct symtab *symtab;
1387 struct blockvector *bv;
1388 const struct block *block;
1389 struct symbol *sym;
1390
1391 if (!objfile->sf)
1392 return NULL;
1393 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1394 if (!symtab)
1395 return NULL;
1396
1397 bv = BLOCKVECTOR (symtab);
1398 block = BLOCKVECTOR_BLOCK (bv, kind);
1399 sym = lookup_block_symbol (block, name, domain);
1400 if (!sym)
1401 {
1402 /* This shouldn't be necessary, but as a last resort try
1403 looking in the statics even though the psymtab claimed
1404 the symbol was global, or vice-versa. It's possible
1405 that the psymtab gets it wrong in some cases. */
1406
1407 /* FIXME: carlton/2002-09-30: Should we really do that?
1408 If that happens, isn't it likely to be a GDB error, in
1409 which case we should fix the GDB error rather than
1410 silently dealing with it here? So I'd vote for
1411 removing the check for the symbol in the other
1412 block. */
1413 block = BLOCKVECTOR_BLOCK (bv,
1414 kind == GLOBAL_BLOCK ?
1415 STATIC_BLOCK : GLOBAL_BLOCK);
1416 sym = lookup_block_symbol (block, name, domain);
1417 if (!sym)
1418 error (_("\
1419 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1420 %s may be an inlined function, or may be a template function\n\
1421 (if a template, try specifying an instantiation: %s<type>)."),
1422 kind == GLOBAL_BLOCK ? "global" : "static",
1423 name, symtab->filename, name, name);
1424 }
1425 return fixup_symbol_section (sym, objfile);
1426 }
1427
1428 /* A default version of lookup_symbol_nonlocal for use by languages
1429 that can't think of anything better to do. This implements the C
1430 lookup rules. */
1431
1432 struct symbol *
1433 basic_lookup_symbol_nonlocal (const char *name,
1434 const struct block *block,
1435 const domain_enum domain)
1436 {
1437 struct symbol *sym;
1438
1439 /* NOTE: carlton/2003-05-19: The comments below were written when
1440 this (or what turned into this) was part of lookup_symbol_aux;
1441 I'm much less worried about these questions now, since these
1442 decisions have turned out well, but I leave these comments here
1443 for posterity. */
1444
1445 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1446 not it would be appropriate to search the current global block
1447 here as well. (That's what this code used to do before the
1448 is_a_field_of_this check was moved up.) On the one hand, it's
1449 redundant with the lookup_symbol_aux_symtabs search that happens
1450 next. On the other hand, if decode_line_1 is passed an argument
1451 like filename:var, then the user presumably wants 'var' to be
1452 searched for in filename. On the third hand, there shouldn't be
1453 multiple global variables all of which are named 'var', and it's
1454 not like decode_line_1 has ever restricted its search to only
1455 global variables in a single filename. All in all, only
1456 searching the static block here seems best: it's correct and it's
1457 cleanest. */
1458
1459 /* NOTE: carlton/2002-12-05: There's also a possible performance
1460 issue here: if you usually search for global symbols in the
1461 current file, then it would be slightly better to search the
1462 current global block before searching all the symtabs. But there
1463 are other factors that have a much greater effect on performance
1464 than that one, so I don't think we should worry about that for
1465 now. */
1466
1467 sym = lookup_symbol_static (name, block, domain);
1468 if (sym != NULL)
1469 return sym;
1470
1471 return lookup_symbol_global (name, block, domain);
1472 }
1473
1474 /* Lookup a symbol in the static block associated to BLOCK, if there
1475 is one; do nothing if BLOCK is NULL or a global block. */
1476
1477 struct symbol *
1478 lookup_symbol_static (const char *name,
1479 const struct block *block,
1480 const domain_enum domain)
1481 {
1482 const struct block *static_block = block_static_block (block);
1483
1484 if (static_block != NULL)
1485 return lookup_symbol_aux_block (name, static_block, domain);
1486 else
1487 return NULL;
1488 }
1489
1490 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1491 necessary). */
1492
1493 struct symbol *
1494 lookup_symbol_global (const char *name,
1495 const struct block *block,
1496 const domain_enum domain)
1497 {
1498 struct symbol *sym = NULL;
1499 struct objfile *objfile = NULL;
1500
1501 /* Call library-specific lookup procedure. */
1502 objfile = lookup_objfile_from_block (block);
1503 if (objfile != NULL)
1504 sym = solib_global_lookup (objfile, name, domain);
1505 if (sym != NULL)
1506 return sym;
1507
1508 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1509 if (sym != NULL)
1510 return sym;
1511
1512 ALL_OBJFILES (objfile)
1513 {
1514 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1515 if (sym)
1516 return sym;
1517 }
1518
1519 return NULL;
1520 }
1521
1522 int
1523 symbol_matches_domain (enum language symbol_language,
1524 domain_enum symbol_domain,
1525 domain_enum domain)
1526 {
1527 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1528 A Java class declaration also defines a typedef for the class.
1529 Similarly, any Ada type declaration implicitly defines a typedef. */
1530 if (symbol_language == language_cplus
1531 || symbol_language == language_d
1532 || symbol_language == language_java
1533 || symbol_language == language_ada)
1534 {
1535 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1536 && symbol_domain == STRUCT_DOMAIN)
1537 return 1;
1538 }
1539 /* For all other languages, strict match is required. */
1540 return (symbol_domain == domain);
1541 }
1542
1543 /* Look up a type named NAME in the struct_domain. The type returned
1544 must not be opaque -- i.e., must have at least one field
1545 defined. */
1546
1547 struct type *
1548 lookup_transparent_type (const char *name)
1549 {
1550 return current_language->la_lookup_transparent_type (name);
1551 }
1552
1553 /* A helper for basic_lookup_transparent_type that interfaces with the
1554 "quick" symbol table functions. */
1555
1556 static struct type *
1557 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1558 const char *name)
1559 {
1560 struct symtab *symtab;
1561 struct blockvector *bv;
1562 struct block *block;
1563 struct symbol *sym;
1564
1565 if (!objfile->sf)
1566 return NULL;
1567 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1568 if (!symtab)
1569 return NULL;
1570
1571 bv = BLOCKVECTOR (symtab);
1572 block = BLOCKVECTOR_BLOCK (bv, kind);
1573 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1574 if (!sym)
1575 {
1576 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1577
1578 /* This shouldn't be necessary, but as a last resort
1579 * try looking in the 'other kind' even though the psymtab
1580 * claimed the symbol was one thing. It's possible that
1581 * the psymtab gets it wrong in some cases.
1582 */
1583 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1584 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1585 if (!sym)
1586 /* FIXME; error is wrong in one case. */
1587 error (_("\
1588 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1589 %s may be an inlined function, or may be a template function\n\
1590 (if a template, try specifying an instantiation: %s<type>)."),
1591 name, symtab->filename, name, name);
1592 }
1593 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1594 return SYMBOL_TYPE (sym);
1595
1596 return NULL;
1597 }
1598
1599 /* The standard implementation of lookup_transparent_type. This code
1600 was modeled on lookup_symbol -- the parts not relevant to looking
1601 up types were just left out. In particular it's assumed here that
1602 types are available in struct_domain and only at file-static or
1603 global blocks. */
1604
1605 struct type *
1606 basic_lookup_transparent_type (const char *name)
1607 {
1608 struct symbol *sym;
1609 struct symtab *s = NULL;
1610 struct blockvector *bv;
1611 struct objfile *objfile;
1612 struct block *block;
1613 struct type *t;
1614
1615 /* Now search all the global symbols. Do the symtab's first, then
1616 check the psymtab's. If a psymtab indicates the existence
1617 of the desired name as a global, then do psymtab-to-symtab
1618 conversion on the fly and return the found symbol. */
1619
1620 ALL_OBJFILES (objfile)
1621 {
1622 if (objfile->sf)
1623 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1624 GLOBAL_BLOCK,
1625 name, STRUCT_DOMAIN);
1626
1627 ALL_OBJFILE_SYMTABS (objfile, s)
1628 if (s->primary)
1629 {
1630 bv = BLOCKVECTOR (s);
1631 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1632 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1633 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1634 {
1635 return SYMBOL_TYPE (sym);
1636 }
1637 }
1638 }
1639
1640 ALL_OBJFILES (objfile)
1641 {
1642 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1643 if (t)
1644 return t;
1645 }
1646
1647 /* Now search the static file-level symbols.
1648 Not strictly correct, but more useful than an error.
1649 Do the symtab's first, then
1650 check the psymtab's. If a psymtab indicates the existence
1651 of the desired name as a file-level static, then do psymtab-to-symtab
1652 conversion on the fly and return the found symbol. */
1653
1654 ALL_OBJFILES (objfile)
1655 {
1656 if (objfile->sf)
1657 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1658 name, STRUCT_DOMAIN);
1659
1660 ALL_OBJFILE_SYMTABS (objfile, s)
1661 {
1662 bv = BLOCKVECTOR (s);
1663 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1664 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1665 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1666 {
1667 return SYMBOL_TYPE (sym);
1668 }
1669 }
1670 }
1671
1672 ALL_OBJFILES (objfile)
1673 {
1674 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1675 if (t)
1676 return t;
1677 }
1678
1679 return (struct type *) 0;
1680 }
1681
1682
1683 /* Find the name of the file containing main(). */
1684 /* FIXME: What about languages without main() or specially linked
1685 executables that have no main() ? */
1686
1687 const char *
1688 find_main_filename (void)
1689 {
1690 struct objfile *objfile;
1691 char *name = main_name ();
1692
1693 ALL_OBJFILES (objfile)
1694 {
1695 const char *result;
1696
1697 if (!objfile->sf)
1698 continue;
1699 result = objfile->sf->qf->find_symbol_file (objfile, name);
1700 if (result)
1701 return result;
1702 }
1703 return (NULL);
1704 }
1705
1706 /* Search BLOCK for symbol NAME in DOMAIN.
1707
1708 Note that if NAME is the demangled form of a C++ symbol, we will fail
1709 to find a match during the binary search of the non-encoded names, but
1710 for now we don't worry about the slight inefficiency of looking for
1711 a match we'll never find, since it will go pretty quick. Once the
1712 binary search terminates, we drop through and do a straight linear
1713 search on the symbols. Each symbol which is marked as being a ObjC/C++
1714 symbol (language_cplus or language_objc set) has both the encoded and
1715 non-encoded names tested for a match. */
1716
1717 struct symbol *
1718 lookup_block_symbol (const struct block *block, const char *name,
1719 const domain_enum domain)
1720 {
1721 struct dict_iterator iter;
1722 struct symbol *sym;
1723
1724 if (!BLOCK_FUNCTION (block))
1725 {
1726 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1727 sym != NULL;
1728 sym = dict_iter_name_next (name, &iter))
1729 {
1730 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1731 SYMBOL_DOMAIN (sym), domain))
1732 return sym;
1733 }
1734 return NULL;
1735 }
1736 else
1737 {
1738 /* Note that parameter symbols do not always show up last in the
1739 list; this loop makes sure to take anything else other than
1740 parameter symbols first; it only uses parameter symbols as a
1741 last resort. Note that this only takes up extra computation
1742 time on a match. */
1743
1744 struct symbol *sym_found = NULL;
1745
1746 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1747 sym != NULL;
1748 sym = dict_iter_name_next (name, &iter))
1749 {
1750 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1751 SYMBOL_DOMAIN (sym), domain))
1752 {
1753 sym_found = sym;
1754 if (!SYMBOL_IS_ARGUMENT (sym))
1755 {
1756 break;
1757 }
1758 }
1759 }
1760 return (sym_found); /* Will be NULL if not found. */
1761 }
1762 }
1763
1764 /* Find the symtab associated with PC and SECTION. Look through the
1765 psymtabs and read in another symtab if necessary. */
1766
1767 struct symtab *
1768 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1769 {
1770 struct block *b;
1771 struct blockvector *bv;
1772 struct symtab *s = NULL;
1773 struct symtab *best_s = NULL;
1774 struct objfile *objfile;
1775 struct program_space *pspace;
1776 CORE_ADDR distance = 0;
1777 struct minimal_symbol *msymbol;
1778
1779 pspace = current_program_space;
1780
1781 /* If we know that this is not a text address, return failure. This is
1782 necessary because we loop based on the block's high and low code
1783 addresses, which do not include the data ranges, and because
1784 we call find_pc_sect_psymtab which has a similar restriction based
1785 on the partial_symtab's texthigh and textlow. */
1786 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1787 if (msymbol
1788 && (MSYMBOL_TYPE (msymbol) == mst_data
1789 || MSYMBOL_TYPE (msymbol) == mst_bss
1790 || MSYMBOL_TYPE (msymbol) == mst_abs
1791 || MSYMBOL_TYPE (msymbol) == mst_file_data
1792 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1793 return NULL;
1794
1795 /* Search all symtabs for the one whose file contains our address, and which
1796 is the smallest of all the ones containing the address. This is designed
1797 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1798 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1799 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1800
1801 This happens for native ecoff format, where code from included files
1802 gets its own symtab. The symtab for the included file should have
1803 been read in already via the dependency mechanism.
1804 It might be swifter to create several symtabs with the same name
1805 like xcoff does (I'm not sure).
1806
1807 It also happens for objfiles that have their functions reordered.
1808 For these, the symtab we are looking for is not necessarily read in. */
1809
1810 ALL_PRIMARY_SYMTABS (objfile, s)
1811 {
1812 bv = BLOCKVECTOR (s);
1813 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1814
1815 if (BLOCK_START (b) <= pc
1816 && BLOCK_END (b) > pc
1817 && (distance == 0
1818 || BLOCK_END (b) - BLOCK_START (b) < distance))
1819 {
1820 /* For an objfile that has its functions reordered,
1821 find_pc_psymtab will find the proper partial symbol table
1822 and we simply return its corresponding symtab. */
1823 /* In order to better support objfiles that contain both
1824 stabs and coff debugging info, we continue on if a psymtab
1825 can't be found. */
1826 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1827 {
1828 struct symtab *result;
1829
1830 result
1831 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1832 msymbol,
1833 pc, section,
1834 0);
1835 if (result)
1836 return result;
1837 }
1838 if (section != 0)
1839 {
1840 struct dict_iterator iter;
1841 struct symbol *sym = NULL;
1842
1843 ALL_BLOCK_SYMBOLS (b, iter, sym)
1844 {
1845 fixup_symbol_section (sym, objfile);
1846 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1847 break;
1848 }
1849 if (sym == NULL)
1850 continue; /* No symbol in this symtab matches
1851 section. */
1852 }
1853 distance = BLOCK_END (b) - BLOCK_START (b);
1854 best_s = s;
1855 }
1856 }
1857
1858 if (best_s != NULL)
1859 return (best_s);
1860
1861 ALL_OBJFILES (objfile)
1862 {
1863 struct symtab *result;
1864
1865 if (!objfile->sf)
1866 continue;
1867 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1868 msymbol,
1869 pc, section,
1870 1);
1871 if (result)
1872 return result;
1873 }
1874
1875 return NULL;
1876 }
1877
1878 /* Find the symtab associated with PC. Look through the psymtabs and read
1879 in another symtab if necessary. Backward compatibility, no section. */
1880
1881 struct symtab *
1882 find_pc_symtab (CORE_ADDR pc)
1883 {
1884 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1885 }
1886 \f
1887
1888 /* Find the source file and line number for a given PC value and SECTION.
1889 Return a structure containing a symtab pointer, a line number,
1890 and a pc range for the entire source line.
1891 The value's .pc field is NOT the specified pc.
1892 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1893 use the line that ends there. Otherwise, in that case, the line
1894 that begins there is used. */
1895
1896 /* The big complication here is that a line may start in one file, and end just
1897 before the start of another file. This usually occurs when you #include
1898 code in the middle of a subroutine. To properly find the end of a line's PC
1899 range, we must search all symtabs associated with this compilation unit, and
1900 find the one whose first PC is closer than that of the next line in this
1901 symtab. */
1902
1903 /* If it's worth the effort, we could be using a binary search. */
1904
1905 struct symtab_and_line
1906 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1907 {
1908 struct symtab *s;
1909 struct linetable *l;
1910 int len;
1911 int i;
1912 struct linetable_entry *item;
1913 struct symtab_and_line val;
1914 struct blockvector *bv;
1915 struct minimal_symbol *msymbol;
1916 struct minimal_symbol *mfunsym;
1917 struct objfile *objfile;
1918
1919 /* Info on best line seen so far, and where it starts, and its file. */
1920
1921 struct linetable_entry *best = NULL;
1922 CORE_ADDR best_end = 0;
1923 struct symtab *best_symtab = 0;
1924
1925 /* Store here the first line number
1926 of a file which contains the line at the smallest pc after PC.
1927 If we don't find a line whose range contains PC,
1928 we will use a line one less than this,
1929 with a range from the start of that file to the first line's pc. */
1930 struct linetable_entry *alt = NULL;
1931 struct symtab *alt_symtab = 0;
1932
1933 /* Info on best line seen in this file. */
1934
1935 struct linetable_entry *prev;
1936
1937 /* If this pc is not from the current frame,
1938 it is the address of the end of a call instruction.
1939 Quite likely that is the start of the following statement.
1940 But what we want is the statement containing the instruction.
1941 Fudge the pc to make sure we get that. */
1942
1943 init_sal (&val); /* initialize to zeroes */
1944
1945 val.pspace = current_program_space;
1946
1947 /* It's tempting to assume that, if we can't find debugging info for
1948 any function enclosing PC, that we shouldn't search for line
1949 number info, either. However, GAS can emit line number info for
1950 assembly files --- very helpful when debugging hand-written
1951 assembly code. In such a case, we'd have no debug info for the
1952 function, but we would have line info. */
1953
1954 if (notcurrent)
1955 pc -= 1;
1956
1957 /* elz: added this because this function returned the wrong
1958 information if the pc belongs to a stub (import/export)
1959 to call a shlib function. This stub would be anywhere between
1960 two functions in the target, and the line info was erroneously
1961 taken to be the one of the line before the pc. */
1962
1963 /* RT: Further explanation:
1964
1965 * We have stubs (trampolines) inserted between procedures.
1966 *
1967 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1968 * exists in the main image.
1969 *
1970 * In the minimal symbol table, we have a bunch of symbols
1971 * sorted by start address. The stubs are marked as "trampoline",
1972 * the others appear as text. E.g.:
1973 *
1974 * Minimal symbol table for main image
1975 * main: code for main (text symbol)
1976 * shr1: stub (trampoline symbol)
1977 * foo: code for foo (text symbol)
1978 * ...
1979 * Minimal symbol table for "shr1" image:
1980 * ...
1981 * shr1: code for shr1 (text symbol)
1982 * ...
1983 *
1984 * So the code below is trying to detect if we are in the stub
1985 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1986 * and if found, do the symbolization from the real-code address
1987 * rather than the stub address.
1988 *
1989 * Assumptions being made about the minimal symbol table:
1990 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1991 * if we're really in the trampoline.s If we're beyond it (say
1992 * we're in "foo" in the above example), it'll have a closer
1993 * symbol (the "foo" text symbol for example) and will not
1994 * return the trampoline.
1995 * 2. lookup_minimal_symbol_text() will find a real text symbol
1996 * corresponding to the trampoline, and whose address will
1997 * be different than the trampoline address. I put in a sanity
1998 * check for the address being the same, to avoid an
1999 * infinite recursion.
2000 */
2001 msymbol = lookup_minimal_symbol_by_pc (pc);
2002 if (msymbol != NULL)
2003 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2004 {
2005 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2006 NULL);
2007 if (mfunsym == NULL)
2008 /* I eliminated this warning since it is coming out
2009 * in the following situation:
2010 * gdb shmain // test program with shared libraries
2011 * (gdb) break shr1 // function in shared lib
2012 * Warning: In stub for ...
2013 * In the above situation, the shared lib is not loaded yet,
2014 * so of course we can't find the real func/line info,
2015 * but the "break" still works, and the warning is annoying.
2016 * So I commented out the warning. RT */
2017 /* warning ("In stub for %s; unable to find real function/line info",
2018 SYMBOL_LINKAGE_NAME (msymbol)); */
2019 ;
2020 /* fall through */
2021 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2022 == SYMBOL_VALUE_ADDRESS (msymbol))
2023 /* Avoid infinite recursion */
2024 /* See above comment about why warning is commented out. */
2025 /* warning ("In stub for %s; unable to find real function/line info",
2026 SYMBOL_LINKAGE_NAME (msymbol)); */
2027 ;
2028 /* fall through */
2029 else
2030 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2031 }
2032
2033
2034 s = find_pc_sect_symtab (pc, section);
2035 if (!s)
2036 {
2037 /* If no symbol information, return previous pc. */
2038 if (notcurrent)
2039 pc++;
2040 val.pc = pc;
2041 return val;
2042 }
2043
2044 bv = BLOCKVECTOR (s);
2045 objfile = s->objfile;
2046
2047 /* Look at all the symtabs that share this blockvector.
2048 They all have the same apriori range, that we found was right;
2049 but they have different line tables. */
2050
2051 ALL_OBJFILE_SYMTABS (objfile, s)
2052 {
2053 if (BLOCKVECTOR (s) != bv)
2054 continue;
2055
2056 /* Find the best line in this symtab. */
2057 l = LINETABLE (s);
2058 if (!l)
2059 continue;
2060 len = l->nitems;
2061 if (len <= 0)
2062 {
2063 /* I think len can be zero if the symtab lacks line numbers
2064 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2065 I'm not sure which, and maybe it depends on the symbol
2066 reader). */
2067 continue;
2068 }
2069
2070 prev = NULL;
2071 item = l->item; /* Get first line info. */
2072
2073 /* Is this file's first line closer than the first lines of other files?
2074 If so, record this file, and its first line, as best alternate. */
2075 if (item->pc > pc && (!alt || item->pc < alt->pc))
2076 {
2077 alt = item;
2078 alt_symtab = s;
2079 }
2080
2081 for (i = 0; i < len; i++, item++)
2082 {
2083 /* Leave prev pointing to the linetable entry for the last line
2084 that started at or before PC. */
2085 if (item->pc > pc)
2086 break;
2087
2088 prev = item;
2089 }
2090
2091 /* At this point, prev points at the line whose start addr is <= pc, and
2092 item points at the next line. If we ran off the end of the linetable
2093 (pc >= start of the last line), then prev == item. If pc < start of
2094 the first line, prev will not be set. */
2095
2096 /* Is this file's best line closer than the best in the other files?
2097 If so, record this file, and its best line, as best so far. Don't
2098 save prev if it represents the end of a function (i.e. line number
2099 0) instead of a real line. */
2100
2101 if (prev && prev->line && (!best || prev->pc > best->pc))
2102 {
2103 best = prev;
2104 best_symtab = s;
2105
2106 /* Discard BEST_END if it's before the PC of the current BEST. */
2107 if (best_end <= best->pc)
2108 best_end = 0;
2109 }
2110
2111 /* If another line (denoted by ITEM) is in the linetable and its
2112 PC is after BEST's PC, but before the current BEST_END, then
2113 use ITEM's PC as the new best_end. */
2114 if (best && i < len && item->pc > best->pc
2115 && (best_end == 0 || best_end > item->pc))
2116 best_end = item->pc;
2117 }
2118
2119 if (!best_symtab)
2120 {
2121 /* If we didn't find any line number info, just return zeros.
2122 We used to return alt->line - 1 here, but that could be
2123 anywhere; if we don't have line number info for this PC,
2124 don't make some up. */
2125 val.pc = pc;
2126 }
2127 else if (best->line == 0)
2128 {
2129 /* If our best fit is in a range of PC's for which no line
2130 number info is available (line number is zero) then we didn't
2131 find any valid line information. */
2132 val.pc = pc;
2133 }
2134 else
2135 {
2136 val.symtab = best_symtab;
2137 val.line = best->line;
2138 val.pc = best->pc;
2139 if (best_end && (!alt || best_end < alt->pc))
2140 val.end = best_end;
2141 else if (alt)
2142 val.end = alt->pc;
2143 else
2144 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2145 }
2146 val.section = section;
2147 return val;
2148 }
2149
2150 /* Backward compatibility (no section). */
2151
2152 struct symtab_and_line
2153 find_pc_line (CORE_ADDR pc, int notcurrent)
2154 {
2155 struct obj_section *section;
2156
2157 section = find_pc_overlay (pc);
2158 if (pc_in_unmapped_range (pc, section))
2159 pc = overlay_mapped_address (pc, section);
2160 return find_pc_sect_line (pc, section, notcurrent);
2161 }
2162 \f
2163 /* Find line number LINE in any symtab whose name is the same as
2164 SYMTAB.
2165
2166 If found, return the symtab that contains the linetable in which it was
2167 found, set *INDEX to the index in the linetable of the best entry
2168 found, and set *EXACT_MATCH nonzero if the value returned is an
2169 exact match.
2170
2171 If not found, return NULL. */
2172
2173 struct symtab *
2174 find_line_symtab (struct symtab *symtab, int line,
2175 int *index, int *exact_match)
2176 {
2177 int exact = 0; /* Initialized here to avoid a compiler warning. */
2178
2179 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2180 so far seen. */
2181
2182 int best_index;
2183 struct linetable *best_linetable;
2184 struct symtab *best_symtab;
2185
2186 /* First try looking it up in the given symtab. */
2187 best_linetable = LINETABLE (symtab);
2188 best_symtab = symtab;
2189 best_index = find_line_common (best_linetable, line, &exact);
2190 if (best_index < 0 || !exact)
2191 {
2192 /* Didn't find an exact match. So we better keep looking for
2193 another symtab with the same name. In the case of xcoff,
2194 multiple csects for one source file (produced by IBM's FORTRAN
2195 compiler) produce multiple symtabs (this is unavoidable
2196 assuming csects can be at arbitrary places in memory and that
2197 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2198
2199 /* BEST is the smallest linenumber > LINE so far seen,
2200 or 0 if none has been seen so far.
2201 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2202 int best;
2203
2204 struct objfile *objfile;
2205 struct symtab *s;
2206
2207 if (best_index >= 0)
2208 best = best_linetable->item[best_index].line;
2209 else
2210 best = 0;
2211
2212 ALL_OBJFILES (objfile)
2213 {
2214 if (objfile->sf)
2215 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2216 symtab->filename);
2217 }
2218
2219 /* Get symbol full file name if possible. */
2220 symtab_to_fullname (symtab);
2221
2222 ALL_SYMTABS (objfile, s)
2223 {
2224 struct linetable *l;
2225 int ind;
2226
2227 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2228 continue;
2229 if (symtab->fullname != NULL
2230 && symtab_to_fullname (s) != NULL
2231 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2232 continue;
2233 l = LINETABLE (s);
2234 ind = find_line_common (l, line, &exact);
2235 if (ind >= 0)
2236 {
2237 if (exact)
2238 {
2239 best_index = ind;
2240 best_linetable = l;
2241 best_symtab = s;
2242 goto done;
2243 }
2244 if (best == 0 || l->item[ind].line < best)
2245 {
2246 best = l->item[ind].line;
2247 best_index = ind;
2248 best_linetable = l;
2249 best_symtab = s;
2250 }
2251 }
2252 }
2253 }
2254 done:
2255 if (best_index < 0)
2256 return NULL;
2257
2258 if (index)
2259 *index = best_index;
2260 if (exact_match)
2261 *exact_match = exact;
2262
2263 return best_symtab;
2264 }
2265 \f
2266 /* Set the PC value for a given source file and line number and return true.
2267 Returns zero for invalid line number (and sets the PC to 0).
2268 The source file is specified with a struct symtab. */
2269
2270 int
2271 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2272 {
2273 struct linetable *l;
2274 int ind;
2275
2276 *pc = 0;
2277 if (symtab == 0)
2278 return 0;
2279
2280 symtab = find_line_symtab (symtab, line, &ind, NULL);
2281 if (symtab != NULL)
2282 {
2283 l = LINETABLE (symtab);
2284 *pc = l->item[ind].pc;
2285 return 1;
2286 }
2287 else
2288 return 0;
2289 }
2290
2291 /* Find the range of pc values in a line.
2292 Store the starting pc of the line into *STARTPTR
2293 and the ending pc (start of next line) into *ENDPTR.
2294 Returns 1 to indicate success.
2295 Returns 0 if could not find the specified line. */
2296
2297 int
2298 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2299 CORE_ADDR *endptr)
2300 {
2301 CORE_ADDR startaddr;
2302 struct symtab_and_line found_sal;
2303
2304 startaddr = sal.pc;
2305 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2306 return 0;
2307
2308 /* This whole function is based on address. For example, if line 10 has
2309 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2310 "info line *0x123" should say the line goes from 0x100 to 0x200
2311 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2312 This also insures that we never give a range like "starts at 0x134
2313 and ends at 0x12c". */
2314
2315 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2316 if (found_sal.line != sal.line)
2317 {
2318 /* The specified line (sal) has zero bytes. */
2319 *startptr = found_sal.pc;
2320 *endptr = found_sal.pc;
2321 }
2322 else
2323 {
2324 *startptr = found_sal.pc;
2325 *endptr = found_sal.end;
2326 }
2327 return 1;
2328 }
2329
2330 /* Given a line table and a line number, return the index into the line
2331 table for the pc of the nearest line whose number is >= the specified one.
2332 Return -1 if none is found. The value is >= 0 if it is an index.
2333
2334 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2335
2336 static int
2337 find_line_common (struct linetable *l, int lineno,
2338 int *exact_match)
2339 {
2340 int i;
2341 int len;
2342
2343 /* BEST is the smallest linenumber > LINENO so far seen,
2344 or 0 if none has been seen so far.
2345 BEST_INDEX identifies the item for it. */
2346
2347 int best_index = -1;
2348 int best = 0;
2349
2350 *exact_match = 0;
2351
2352 if (lineno <= 0)
2353 return -1;
2354 if (l == 0)
2355 return -1;
2356
2357 len = l->nitems;
2358 for (i = 0; i < len; i++)
2359 {
2360 struct linetable_entry *item = &(l->item[i]);
2361
2362 if (item->line == lineno)
2363 {
2364 /* Return the first (lowest address) entry which matches. */
2365 *exact_match = 1;
2366 return i;
2367 }
2368
2369 if (item->line > lineno && (best == 0 || item->line < best))
2370 {
2371 best = item->line;
2372 best_index = i;
2373 }
2374 }
2375
2376 /* If we got here, we didn't get an exact match. */
2377 return best_index;
2378 }
2379
2380 int
2381 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2382 {
2383 struct symtab_and_line sal;
2384
2385 sal = find_pc_line (pc, 0);
2386 *startptr = sal.pc;
2387 *endptr = sal.end;
2388 return sal.symtab != 0;
2389 }
2390
2391 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2392 address for that function that has an entry in SYMTAB's line info
2393 table. If such an entry cannot be found, return FUNC_ADDR
2394 unaltered. */
2395 CORE_ADDR
2396 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2397 {
2398 CORE_ADDR func_start, func_end;
2399 struct linetable *l;
2400 int i;
2401
2402 /* Give up if this symbol has no lineinfo table. */
2403 l = LINETABLE (symtab);
2404 if (l == NULL)
2405 return func_addr;
2406
2407 /* Get the range for the function's PC values, or give up if we
2408 cannot, for some reason. */
2409 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2410 return func_addr;
2411
2412 /* Linetable entries are ordered by PC values, see the commentary in
2413 symtab.h where `struct linetable' is defined. Thus, the first
2414 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2415 address we are looking for. */
2416 for (i = 0; i < l->nitems; i++)
2417 {
2418 struct linetable_entry *item = &(l->item[i]);
2419
2420 /* Don't use line numbers of zero, they mark special entries in
2421 the table. See the commentary on symtab.h before the
2422 definition of struct linetable. */
2423 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2424 return item->pc;
2425 }
2426
2427 return func_addr;
2428 }
2429
2430 /* Given a function symbol SYM, find the symtab and line for the start
2431 of the function.
2432 If the argument FUNFIRSTLINE is nonzero, we want the first line
2433 of real code inside the function. */
2434
2435 struct symtab_and_line
2436 find_function_start_sal (struct symbol *sym, int funfirstline)
2437 {
2438 struct symtab_and_line sal;
2439
2440 fixup_symbol_section (sym, NULL);
2441 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2442 SYMBOL_OBJ_SECTION (sym), 0);
2443
2444 /* We always should have a line for the function start address.
2445 If we don't, something is odd. Create a plain SAL refering
2446 just the PC and hope that skip_prologue_sal (if requested)
2447 can find a line number for after the prologue. */
2448 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2449 {
2450 init_sal (&sal);
2451 sal.pspace = current_program_space;
2452 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2453 sal.section = SYMBOL_OBJ_SECTION (sym);
2454 }
2455
2456 if (funfirstline)
2457 skip_prologue_sal (&sal);
2458
2459 return sal;
2460 }
2461
2462 /* Adjust SAL to the first instruction past the function prologue.
2463 If the PC was explicitly specified, the SAL is not changed.
2464 If the line number was explicitly specified, at most the SAL's PC
2465 is updated. If SAL is already past the prologue, then do nothing. */
2466 void
2467 skip_prologue_sal (struct symtab_and_line *sal)
2468 {
2469 struct symbol *sym;
2470 struct symtab_and_line start_sal;
2471 struct cleanup *old_chain;
2472 CORE_ADDR pc, saved_pc;
2473 struct obj_section *section;
2474 const char *name;
2475 struct objfile *objfile;
2476 struct gdbarch *gdbarch;
2477 struct block *b, *function_block;
2478 int force_skip, skip;
2479
2480 /* Do not change the SAL is PC was specified explicitly. */
2481 if (sal->explicit_pc)
2482 return;
2483
2484 old_chain = save_current_space_and_thread ();
2485 switch_to_program_space_and_thread (sal->pspace);
2486
2487 sym = find_pc_sect_function (sal->pc, sal->section);
2488 if (sym != NULL)
2489 {
2490 fixup_symbol_section (sym, NULL);
2491
2492 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2493 section = SYMBOL_OBJ_SECTION (sym);
2494 name = SYMBOL_LINKAGE_NAME (sym);
2495 objfile = SYMBOL_SYMTAB (sym)->objfile;
2496 }
2497 else
2498 {
2499 struct minimal_symbol *msymbol
2500 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2501
2502 if (msymbol == NULL)
2503 {
2504 do_cleanups (old_chain);
2505 return;
2506 }
2507
2508 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2509 section = SYMBOL_OBJ_SECTION (msymbol);
2510 name = SYMBOL_LINKAGE_NAME (msymbol);
2511 objfile = msymbol_objfile (msymbol);
2512 }
2513
2514 gdbarch = get_objfile_arch (objfile);
2515
2516 /* Process the prologue in two passes. In the first pass try to skip the
2517 prologue (SKIP is true) and verify there is a real need for it (indicated
2518 by FORCE_SKIP). If no such reason was found run a second pass where the
2519 prologue is not skipped (SKIP is false). */
2520
2521 skip = 1;
2522 force_skip = 1;
2523
2524 /* Be conservative - allow direct PC (without skipping prologue) only if we
2525 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2526 have to be set by the caller so we use SYM instead. */
2527 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2528 force_skip = 0;
2529
2530 saved_pc = pc;
2531 do
2532 {
2533 pc = saved_pc;
2534
2535 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2536 so that gdbarch_skip_prologue has something unique to work on. */
2537 if (section_is_overlay (section) && !section_is_mapped (section))
2538 pc = overlay_unmapped_address (pc, section);
2539
2540 /* Skip "first line" of function (which is actually its prologue). */
2541 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2542 if (skip)
2543 pc = gdbarch_skip_prologue (gdbarch, pc);
2544
2545 /* For overlays, map pc back into its mapped VMA range. */
2546 pc = overlay_mapped_address (pc, section);
2547
2548 /* Calculate line number. */
2549 start_sal = find_pc_sect_line (pc, section, 0);
2550
2551 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2552 line is still part of the same function. */
2553 if (skip && start_sal.pc != pc
2554 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2555 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2556 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2557 == lookup_minimal_symbol_by_pc_section (pc, section))))
2558 {
2559 /* First pc of next line */
2560 pc = start_sal.end;
2561 /* Recalculate the line number (might not be N+1). */
2562 start_sal = find_pc_sect_line (pc, section, 0);
2563 }
2564
2565 /* On targets with executable formats that don't have a concept of
2566 constructors (ELF with .init has, PE doesn't), gcc emits a call
2567 to `__main' in `main' between the prologue and before user
2568 code. */
2569 if (gdbarch_skip_main_prologue_p (gdbarch)
2570 && name && strcmp (name, "main") == 0)
2571 {
2572 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2573 /* Recalculate the line number (might not be N+1). */
2574 start_sal = find_pc_sect_line (pc, section, 0);
2575 force_skip = 1;
2576 }
2577 }
2578 while (!force_skip && skip--);
2579
2580 /* If we still don't have a valid source line, try to find the first
2581 PC in the lineinfo table that belongs to the same function. This
2582 happens with COFF debug info, which does not seem to have an
2583 entry in lineinfo table for the code after the prologue which has
2584 no direct relation to source. For example, this was found to be
2585 the case with the DJGPP target using "gcc -gcoff" when the
2586 compiler inserted code after the prologue to make sure the stack
2587 is aligned. */
2588 if (!force_skip && sym && start_sal.symtab == NULL)
2589 {
2590 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2591 /* Recalculate the line number. */
2592 start_sal = find_pc_sect_line (pc, section, 0);
2593 }
2594
2595 do_cleanups (old_chain);
2596
2597 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2598 forward SAL to the end of the prologue. */
2599 if (sal->pc >= pc)
2600 return;
2601
2602 sal->pc = pc;
2603 sal->section = section;
2604
2605 /* Unless the explicit_line flag was set, update the SAL line
2606 and symtab to correspond to the modified PC location. */
2607 if (sal->explicit_line)
2608 return;
2609
2610 sal->symtab = start_sal.symtab;
2611 sal->line = start_sal.line;
2612 sal->end = start_sal.end;
2613
2614 /* Check if we are now inside an inlined function. If we can,
2615 use the call site of the function instead. */
2616 b = block_for_pc_sect (sal->pc, sal->section);
2617 function_block = NULL;
2618 while (b != NULL)
2619 {
2620 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2621 function_block = b;
2622 else if (BLOCK_FUNCTION (b) != NULL)
2623 break;
2624 b = BLOCK_SUPERBLOCK (b);
2625 }
2626 if (function_block != NULL
2627 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2628 {
2629 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2630 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2631 }
2632 }
2633
2634 /* If P is of the form "operator[ \t]+..." where `...' is
2635 some legitimate operator text, return a pointer to the
2636 beginning of the substring of the operator text.
2637 Otherwise, return "". */
2638 char *
2639 operator_chars (char *p, char **end)
2640 {
2641 *end = "";
2642 if (strncmp (p, "operator", 8))
2643 return *end;
2644 p += 8;
2645
2646 /* Don't get faked out by `operator' being part of a longer
2647 identifier. */
2648 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2649 return *end;
2650
2651 /* Allow some whitespace between `operator' and the operator symbol. */
2652 while (*p == ' ' || *p == '\t')
2653 p++;
2654
2655 /* Recognize 'operator TYPENAME'. */
2656
2657 if (isalpha (*p) || *p == '_' || *p == '$')
2658 {
2659 char *q = p + 1;
2660
2661 while (isalnum (*q) || *q == '_' || *q == '$')
2662 q++;
2663 *end = q;
2664 return p;
2665 }
2666
2667 while (*p)
2668 switch (*p)
2669 {
2670 case '\\': /* regexp quoting */
2671 if (p[1] == '*')
2672 {
2673 if (p[2] == '=') /* 'operator\*=' */
2674 *end = p + 3;
2675 else /* 'operator\*' */
2676 *end = p + 2;
2677 return p;
2678 }
2679 else if (p[1] == '[')
2680 {
2681 if (p[2] == ']')
2682 error (_("mismatched quoting on brackets, "
2683 "try 'operator\\[\\]'"));
2684 else if (p[2] == '\\' && p[3] == ']')
2685 {
2686 *end = p + 4; /* 'operator\[\]' */
2687 return p;
2688 }
2689 else
2690 error (_("nothing is allowed between '[' and ']'"));
2691 }
2692 else
2693 {
2694 /* Gratuitous qoute: skip it and move on. */
2695 p++;
2696 continue;
2697 }
2698 break;
2699 case '!':
2700 case '=':
2701 case '*':
2702 case '/':
2703 case '%':
2704 case '^':
2705 if (p[1] == '=')
2706 *end = p + 2;
2707 else
2708 *end = p + 1;
2709 return p;
2710 case '<':
2711 case '>':
2712 case '+':
2713 case '-':
2714 case '&':
2715 case '|':
2716 if (p[0] == '-' && p[1] == '>')
2717 {
2718 /* Struct pointer member operator 'operator->'. */
2719 if (p[2] == '*')
2720 {
2721 *end = p + 3; /* 'operator->*' */
2722 return p;
2723 }
2724 else if (p[2] == '\\')
2725 {
2726 *end = p + 4; /* Hopefully 'operator->\*' */
2727 return p;
2728 }
2729 else
2730 {
2731 *end = p + 2; /* 'operator->' */
2732 return p;
2733 }
2734 }
2735 if (p[1] == '=' || p[1] == p[0])
2736 *end = p + 2;
2737 else
2738 *end = p + 1;
2739 return p;
2740 case '~':
2741 case ',':
2742 *end = p + 1;
2743 return p;
2744 case '(':
2745 if (p[1] != ')')
2746 error (_("`operator ()' must be specified "
2747 "without whitespace in `()'"));
2748 *end = p + 2;
2749 return p;
2750 case '?':
2751 if (p[1] != ':')
2752 error (_("`operator ?:' must be specified "
2753 "without whitespace in `?:'"));
2754 *end = p + 2;
2755 return p;
2756 case '[':
2757 if (p[1] != ']')
2758 error (_("`operator []' must be specified "
2759 "without whitespace in `[]'"));
2760 *end = p + 2;
2761 return p;
2762 default:
2763 error (_("`operator %s' not supported"), p);
2764 break;
2765 }
2766
2767 *end = "";
2768 return *end;
2769 }
2770 \f
2771
2772 /* If FILE is not already in the table of files, return zero;
2773 otherwise return non-zero. Optionally add FILE to the table if ADD
2774 is non-zero. If *FIRST is non-zero, forget the old table
2775 contents. */
2776 static int
2777 filename_seen (const char *file, int add, int *first)
2778 {
2779 /* Table of files seen so far. */
2780 static const char **tab = NULL;
2781 /* Allocated size of tab in elements.
2782 Start with one 256-byte block (when using GNU malloc.c).
2783 24 is the malloc overhead when range checking is in effect. */
2784 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2785 /* Current size of tab in elements. */
2786 static int tab_cur_size;
2787 const char **p;
2788
2789 if (*first)
2790 {
2791 if (tab == NULL)
2792 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2793 tab_cur_size = 0;
2794 }
2795
2796 /* Is FILE in tab? */
2797 for (p = tab; p < tab + tab_cur_size; p++)
2798 if (filename_cmp (*p, file) == 0)
2799 return 1;
2800
2801 /* No; maybe add it to tab. */
2802 if (add)
2803 {
2804 if (tab_cur_size == tab_alloc_size)
2805 {
2806 tab_alloc_size *= 2;
2807 tab = (const char **) xrealloc ((char *) tab,
2808 tab_alloc_size * sizeof (*tab));
2809 }
2810 tab[tab_cur_size++] = file;
2811 }
2812
2813 return 0;
2814 }
2815
2816 /* Slave routine for sources_info. Force line breaks at ,'s.
2817 NAME is the name to print and *FIRST is nonzero if this is the first
2818 name printed. Set *FIRST to zero. */
2819 static void
2820 output_source_filename (const char *name, int *first)
2821 {
2822 /* Since a single source file can result in several partial symbol
2823 tables, we need to avoid printing it more than once. Note: if
2824 some of the psymtabs are read in and some are not, it gets
2825 printed both under "Source files for which symbols have been
2826 read" and "Source files for which symbols will be read in on
2827 demand". I consider this a reasonable way to deal with the
2828 situation. I'm not sure whether this can also happen for
2829 symtabs; it doesn't hurt to check. */
2830
2831 /* Was NAME already seen? */
2832 if (filename_seen (name, 1, first))
2833 {
2834 /* Yes; don't print it again. */
2835 return;
2836 }
2837 /* No; print it and reset *FIRST. */
2838 if (*first)
2839 {
2840 *first = 0;
2841 }
2842 else
2843 {
2844 printf_filtered (", ");
2845 }
2846
2847 wrap_here ("");
2848 fputs_filtered (name, gdb_stdout);
2849 }
2850
2851 /* A callback for map_partial_symbol_filenames. */
2852 static void
2853 output_partial_symbol_filename (const char *filename, const char *fullname,
2854 void *data)
2855 {
2856 output_source_filename (fullname ? fullname : filename, data);
2857 }
2858
2859 static void
2860 sources_info (char *ignore, int from_tty)
2861 {
2862 struct symtab *s;
2863 struct objfile *objfile;
2864 int first;
2865
2866 if (!have_full_symbols () && !have_partial_symbols ())
2867 {
2868 error (_("No symbol table is loaded. Use the \"file\" command."));
2869 }
2870
2871 printf_filtered ("Source files for which symbols have been read in:\n\n");
2872
2873 first = 1;
2874 ALL_SYMTABS (objfile, s)
2875 {
2876 const char *fullname = symtab_to_fullname (s);
2877
2878 output_source_filename (fullname ? fullname : s->filename, &first);
2879 }
2880 printf_filtered ("\n\n");
2881
2882 printf_filtered ("Source files for which symbols "
2883 "will be read in on demand:\n\n");
2884
2885 first = 1;
2886 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2887 printf_filtered ("\n");
2888 }
2889
2890 static int
2891 file_matches (const char *file, char *files[], int nfiles)
2892 {
2893 int i;
2894
2895 if (file != NULL && nfiles != 0)
2896 {
2897 for (i = 0; i < nfiles; i++)
2898 {
2899 if (filename_cmp (files[i], lbasename (file)) == 0)
2900 return 1;
2901 }
2902 }
2903 else if (nfiles == 0)
2904 return 1;
2905 return 0;
2906 }
2907
2908 /* Free any memory associated with a search. */
2909 void
2910 free_search_symbols (struct symbol_search *symbols)
2911 {
2912 struct symbol_search *p;
2913 struct symbol_search *next;
2914
2915 for (p = symbols; p != NULL; p = next)
2916 {
2917 next = p->next;
2918 xfree (p);
2919 }
2920 }
2921
2922 static void
2923 do_free_search_symbols_cleanup (void *symbols)
2924 {
2925 free_search_symbols (symbols);
2926 }
2927
2928 struct cleanup *
2929 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2930 {
2931 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2932 }
2933
2934 /* Helper function for sort_search_symbols and qsort. Can only
2935 sort symbols, not minimal symbols. */
2936 static int
2937 compare_search_syms (const void *sa, const void *sb)
2938 {
2939 struct symbol_search **sym_a = (struct symbol_search **) sa;
2940 struct symbol_search **sym_b = (struct symbol_search **) sb;
2941
2942 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2943 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2944 }
2945
2946 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2947 prevtail where it is, but update its next pointer to point to
2948 the first of the sorted symbols. */
2949 static struct symbol_search *
2950 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2951 {
2952 struct symbol_search **symbols, *symp, *old_next;
2953 int i;
2954
2955 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2956 * nfound);
2957 symp = prevtail->next;
2958 for (i = 0; i < nfound; i++)
2959 {
2960 symbols[i] = symp;
2961 symp = symp->next;
2962 }
2963 /* Generally NULL. */
2964 old_next = symp;
2965
2966 qsort (symbols, nfound, sizeof (struct symbol_search *),
2967 compare_search_syms);
2968
2969 symp = prevtail;
2970 for (i = 0; i < nfound; i++)
2971 {
2972 symp->next = symbols[i];
2973 symp = symp->next;
2974 }
2975 symp->next = old_next;
2976
2977 xfree (symbols);
2978 return symp;
2979 }
2980
2981 /* An object of this type is passed as the user_data to the
2982 expand_symtabs_matching method. */
2983 struct search_symbols_data
2984 {
2985 int nfiles;
2986 char **files;
2987
2988 /* It is true if PREG contains valid data, false otherwise. */
2989 unsigned preg_p : 1;
2990 regex_t preg;
2991 };
2992
2993 /* A callback for expand_symtabs_matching. */
2994 static int
2995 search_symbols_file_matches (const char *filename, void *user_data)
2996 {
2997 struct search_symbols_data *data = user_data;
2998
2999 return file_matches (filename, data->files, data->nfiles);
3000 }
3001
3002 /* A callback for expand_symtabs_matching. */
3003 static int
3004 search_symbols_name_matches (const char *symname, void *user_data)
3005 {
3006 struct search_symbols_data *data = user_data;
3007
3008 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3009 }
3010
3011 /* Search the symbol table for matches to the regular expression REGEXP,
3012 returning the results in *MATCHES.
3013
3014 Only symbols of KIND are searched:
3015 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3016 and constants (enums)
3017 FUNCTIONS_DOMAIN - search all functions
3018 TYPES_DOMAIN - search all type names
3019 ALL_DOMAIN - an internal error for this function
3020
3021 free_search_symbols should be called when *MATCHES is no longer needed.
3022
3023 The results are sorted locally; each symtab's global and static blocks are
3024 separately alphabetized. */
3025
3026 void
3027 search_symbols (char *regexp, enum search_domain kind,
3028 int nfiles, char *files[],
3029 struct symbol_search **matches)
3030 {
3031 struct symtab *s;
3032 struct blockvector *bv;
3033 struct block *b;
3034 int i = 0;
3035 struct dict_iterator iter;
3036 struct symbol *sym;
3037 struct objfile *objfile;
3038 struct minimal_symbol *msymbol;
3039 char *val;
3040 int found_misc = 0;
3041 static const enum minimal_symbol_type types[]
3042 = {mst_data, mst_text, mst_abs};
3043 static const enum minimal_symbol_type types2[]
3044 = {mst_bss, mst_file_text, mst_abs};
3045 static const enum minimal_symbol_type types3[]
3046 = {mst_file_data, mst_solib_trampoline, mst_abs};
3047 static const enum minimal_symbol_type types4[]
3048 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3049 enum minimal_symbol_type ourtype;
3050 enum minimal_symbol_type ourtype2;
3051 enum minimal_symbol_type ourtype3;
3052 enum minimal_symbol_type ourtype4;
3053 struct symbol_search *sr;
3054 struct symbol_search *psr;
3055 struct symbol_search *tail;
3056 struct search_symbols_data datum;
3057
3058 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3059 CLEANUP_CHAIN is freed only in the case of an error. */
3060 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3061 struct cleanup *retval_chain;
3062
3063 gdb_assert (kind <= TYPES_DOMAIN);
3064
3065 ourtype = types[kind];
3066 ourtype2 = types2[kind];
3067 ourtype3 = types3[kind];
3068 ourtype4 = types4[kind];
3069
3070 sr = *matches = NULL;
3071 tail = NULL;
3072 datum.preg_p = 0;
3073
3074 if (regexp != NULL)
3075 {
3076 /* Make sure spacing is right for C++ operators.
3077 This is just a courtesy to make the matching less sensitive
3078 to how many spaces the user leaves between 'operator'
3079 and <TYPENAME> or <OPERATOR>. */
3080 char *opend;
3081 char *opname = operator_chars (regexp, &opend);
3082 int errcode;
3083
3084 if (*opname)
3085 {
3086 int fix = -1; /* -1 means ok; otherwise number of
3087 spaces needed. */
3088
3089 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3090 {
3091 /* There should 1 space between 'operator' and 'TYPENAME'. */
3092 if (opname[-1] != ' ' || opname[-2] == ' ')
3093 fix = 1;
3094 }
3095 else
3096 {
3097 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3098 if (opname[-1] == ' ')
3099 fix = 0;
3100 }
3101 /* If wrong number of spaces, fix it. */
3102 if (fix >= 0)
3103 {
3104 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3105
3106 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3107 regexp = tmp;
3108 }
3109 }
3110
3111 errcode = regcomp (&datum.preg, regexp,
3112 REG_NOSUB | (case_sensitivity == case_sensitive_off
3113 ? REG_ICASE : 0));
3114 if (errcode != 0)
3115 {
3116 char *err = get_regcomp_error (errcode, &datum.preg);
3117
3118 make_cleanup (xfree, err);
3119 error (_("Invalid regexp (%s): %s"), err, regexp);
3120 }
3121 datum.preg_p = 1;
3122 make_regfree_cleanup (&datum.preg);
3123 }
3124
3125 /* Search through the partial symtabs *first* for all symbols
3126 matching the regexp. That way we don't have to reproduce all of
3127 the machinery below. */
3128
3129 datum.nfiles = nfiles;
3130 datum.files = files;
3131 ALL_OBJFILES (objfile)
3132 {
3133 if (objfile->sf)
3134 objfile->sf->qf->expand_symtabs_matching (objfile,
3135 search_symbols_file_matches,
3136 search_symbols_name_matches,
3137 kind,
3138 &datum);
3139 }
3140
3141 retval_chain = old_chain;
3142
3143 /* Here, we search through the minimal symbol tables for functions
3144 and variables that match, and force their symbols to be read.
3145 This is in particular necessary for demangled variable names,
3146 which are no longer put into the partial symbol tables.
3147 The symbol will then be found during the scan of symtabs below.
3148
3149 For functions, find_pc_symtab should succeed if we have debug info
3150 for the function, for variables we have to call lookup_symbol
3151 to determine if the variable has debug info.
3152 If the lookup fails, set found_misc so that we will rescan to print
3153 any matching symbols without debug info. */
3154
3155 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3156 {
3157 ALL_MSYMBOLS (objfile, msymbol)
3158 {
3159 QUIT;
3160
3161 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3162 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3163 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3164 MSYMBOL_TYPE (msymbol) == ourtype4)
3165 {
3166 if (!datum.preg_p
3167 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3168 NULL, 0) == 0)
3169 {
3170 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3171 {
3172 /* FIXME: carlton/2003-02-04: Given that the
3173 semantics of lookup_symbol keeps on changing
3174 slightly, it would be a nice idea if we had a
3175 function lookup_symbol_minsym that found the
3176 symbol associated to a given minimal symbol (if
3177 any). */
3178 if (kind == FUNCTIONS_DOMAIN
3179 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3180 (struct block *) NULL,
3181 VAR_DOMAIN, 0)
3182 == NULL)
3183 found_misc = 1;
3184 }
3185 }
3186 }
3187 }
3188 }
3189
3190 ALL_PRIMARY_SYMTABS (objfile, s)
3191 {
3192 bv = BLOCKVECTOR (s);
3193 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3194 {
3195 struct symbol_search *prevtail = tail;
3196 int nfound = 0;
3197
3198 b = BLOCKVECTOR_BLOCK (bv, i);
3199 ALL_BLOCK_SYMBOLS (b, iter, sym)
3200 {
3201 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3202
3203 QUIT;
3204
3205 if (file_matches (real_symtab->filename, files, nfiles)
3206 && ((!datum.preg_p
3207 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3208 NULL, 0) == 0)
3209 && ((kind == VARIABLES_DOMAIN
3210 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3211 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3212 && SYMBOL_CLASS (sym) != LOC_BLOCK
3213 /* LOC_CONST can be used for more than just enums,
3214 e.g., c++ static const members.
3215 We only want to skip enums here. */
3216 && !(SYMBOL_CLASS (sym) == LOC_CONST
3217 && TYPE_CODE (SYMBOL_TYPE (sym))
3218 == TYPE_CODE_ENUM))
3219 || (kind == FUNCTIONS_DOMAIN
3220 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3221 || (kind == TYPES_DOMAIN
3222 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3223 {
3224 /* match */
3225 psr = (struct symbol_search *)
3226 xmalloc (sizeof (struct symbol_search));
3227 psr->block = i;
3228 psr->symtab = real_symtab;
3229 psr->symbol = sym;
3230 psr->msymbol = NULL;
3231 psr->next = NULL;
3232 if (tail == NULL)
3233 sr = psr;
3234 else
3235 tail->next = psr;
3236 tail = psr;
3237 nfound ++;
3238 }
3239 }
3240 if (nfound > 0)
3241 {
3242 if (prevtail == NULL)
3243 {
3244 struct symbol_search dummy;
3245
3246 dummy.next = sr;
3247 tail = sort_search_symbols (&dummy, nfound);
3248 sr = dummy.next;
3249
3250 make_cleanup_free_search_symbols (sr);
3251 }
3252 else
3253 tail = sort_search_symbols (prevtail, nfound);
3254 }
3255 }
3256 }
3257
3258 /* If there are no eyes, avoid all contact. I mean, if there are
3259 no debug symbols, then print directly from the msymbol_vector. */
3260
3261 if (found_misc || kind != FUNCTIONS_DOMAIN)
3262 {
3263 ALL_MSYMBOLS (objfile, msymbol)
3264 {
3265 QUIT;
3266
3267 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3268 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3269 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3270 MSYMBOL_TYPE (msymbol) == ourtype4)
3271 {
3272 if (!datum.preg_p
3273 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3274 NULL, 0) == 0)
3275 {
3276 /* Functions: Look up by address. */
3277 if (kind != FUNCTIONS_DOMAIN ||
3278 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3279 {
3280 /* Variables/Absolutes: Look up by name. */
3281 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3282 (struct block *) NULL, VAR_DOMAIN, 0)
3283 == NULL)
3284 {
3285 /* match */
3286 psr = (struct symbol_search *)
3287 xmalloc (sizeof (struct symbol_search));
3288 psr->block = i;
3289 psr->msymbol = msymbol;
3290 psr->symtab = NULL;
3291 psr->symbol = NULL;
3292 psr->next = NULL;
3293 if (tail == NULL)
3294 {
3295 sr = psr;
3296 make_cleanup_free_search_symbols (sr);
3297 }
3298 else
3299 tail->next = psr;
3300 tail = psr;
3301 }
3302 }
3303 }
3304 }
3305 }
3306 }
3307
3308 discard_cleanups (retval_chain);
3309 do_cleanups (old_chain);
3310 *matches = sr;
3311 }
3312
3313 /* Helper function for symtab_symbol_info, this function uses
3314 the data returned from search_symbols() to print information
3315 regarding the match to gdb_stdout. */
3316
3317 static void
3318 print_symbol_info (enum search_domain kind,
3319 struct symtab *s, struct symbol *sym,
3320 int block, char *last)
3321 {
3322 if (last == NULL || filename_cmp (last, s->filename) != 0)
3323 {
3324 fputs_filtered ("\nFile ", gdb_stdout);
3325 fputs_filtered (s->filename, gdb_stdout);
3326 fputs_filtered (":\n", gdb_stdout);
3327 }
3328
3329 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3330 printf_filtered ("static ");
3331
3332 /* Typedef that is not a C++ class. */
3333 if (kind == TYPES_DOMAIN
3334 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3335 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3336 /* variable, func, or typedef-that-is-c++-class. */
3337 else if (kind < TYPES_DOMAIN ||
3338 (kind == TYPES_DOMAIN &&
3339 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3340 {
3341 type_print (SYMBOL_TYPE (sym),
3342 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3343 ? "" : SYMBOL_PRINT_NAME (sym)),
3344 gdb_stdout, 0);
3345
3346 printf_filtered (";\n");
3347 }
3348 }
3349
3350 /* This help function for symtab_symbol_info() prints information
3351 for non-debugging symbols to gdb_stdout. */
3352
3353 static void
3354 print_msymbol_info (struct minimal_symbol *msymbol)
3355 {
3356 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3357 char *tmp;
3358
3359 if (gdbarch_addr_bit (gdbarch) <= 32)
3360 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3361 & (CORE_ADDR) 0xffffffff,
3362 8);
3363 else
3364 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3365 16);
3366 printf_filtered ("%s %s\n",
3367 tmp, SYMBOL_PRINT_NAME (msymbol));
3368 }
3369
3370 /* This is the guts of the commands "info functions", "info types", and
3371 "info variables". It calls search_symbols to find all matches and then
3372 print_[m]symbol_info to print out some useful information about the
3373 matches. */
3374
3375 static void
3376 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3377 {
3378 static const char * const classnames[] =
3379 {"variable", "function", "type"};
3380 struct symbol_search *symbols;
3381 struct symbol_search *p;
3382 struct cleanup *old_chain;
3383 char *last_filename = NULL;
3384 int first = 1;
3385
3386 gdb_assert (kind <= TYPES_DOMAIN);
3387
3388 /* Must make sure that if we're interrupted, symbols gets freed. */
3389 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3390 old_chain = make_cleanup_free_search_symbols (symbols);
3391
3392 printf_filtered (regexp
3393 ? "All %ss matching regular expression \"%s\":\n"
3394 : "All defined %ss:\n",
3395 classnames[kind], regexp);
3396
3397 for (p = symbols; p != NULL; p = p->next)
3398 {
3399 QUIT;
3400
3401 if (p->msymbol != NULL)
3402 {
3403 if (first)
3404 {
3405 printf_filtered ("\nNon-debugging symbols:\n");
3406 first = 0;
3407 }
3408 print_msymbol_info (p->msymbol);
3409 }
3410 else
3411 {
3412 print_symbol_info (kind,
3413 p->symtab,
3414 p->symbol,
3415 p->block,
3416 last_filename);
3417 last_filename = p->symtab->filename;
3418 }
3419 }
3420
3421 do_cleanups (old_chain);
3422 }
3423
3424 static void
3425 variables_info (char *regexp, int from_tty)
3426 {
3427 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3428 }
3429
3430 static void
3431 functions_info (char *regexp, int from_tty)
3432 {
3433 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3434 }
3435
3436
3437 static void
3438 types_info (char *regexp, int from_tty)
3439 {
3440 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3441 }
3442
3443 /* Breakpoint all functions matching regular expression. */
3444
3445 void
3446 rbreak_command_wrapper (char *regexp, int from_tty)
3447 {
3448 rbreak_command (regexp, from_tty);
3449 }
3450
3451 /* A cleanup function that calls end_rbreak_breakpoints. */
3452
3453 static void
3454 do_end_rbreak_breakpoints (void *ignore)
3455 {
3456 end_rbreak_breakpoints ();
3457 }
3458
3459 static void
3460 rbreak_command (char *regexp, int from_tty)
3461 {
3462 struct symbol_search *ss;
3463 struct symbol_search *p;
3464 struct cleanup *old_chain;
3465 char *string = NULL;
3466 int len = 0;
3467 char **files = NULL, *file_name;
3468 int nfiles = 0;
3469
3470 if (regexp)
3471 {
3472 char *colon = strchr (regexp, ':');
3473
3474 if (colon && *(colon + 1) != ':')
3475 {
3476 int colon_index;
3477
3478 colon_index = colon - regexp;
3479 file_name = alloca (colon_index + 1);
3480 memcpy (file_name, regexp, colon_index);
3481 file_name[colon_index--] = 0;
3482 while (isspace (file_name[colon_index]))
3483 file_name[colon_index--] = 0;
3484 files = &file_name;
3485 nfiles = 1;
3486 regexp = colon + 1;
3487 while (isspace (*regexp)) regexp++;
3488 }
3489 }
3490
3491 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3492 old_chain = make_cleanup_free_search_symbols (ss);
3493 make_cleanup (free_current_contents, &string);
3494
3495 start_rbreak_breakpoints ();
3496 make_cleanup (do_end_rbreak_breakpoints, NULL);
3497 for (p = ss; p != NULL; p = p->next)
3498 {
3499 if (p->msymbol == NULL)
3500 {
3501 int newlen = (strlen (p->symtab->filename)
3502 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3503 + 4);
3504
3505 if (newlen > len)
3506 {
3507 string = xrealloc (string, newlen);
3508 len = newlen;
3509 }
3510 strcpy (string, p->symtab->filename);
3511 strcat (string, ":'");
3512 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3513 strcat (string, "'");
3514 break_command (string, from_tty);
3515 print_symbol_info (FUNCTIONS_DOMAIN,
3516 p->symtab,
3517 p->symbol,
3518 p->block,
3519 p->symtab->filename);
3520 }
3521 else
3522 {
3523 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3524
3525 if (newlen > len)
3526 {
3527 string = xrealloc (string, newlen);
3528 len = newlen;
3529 }
3530 strcpy (string, "'");
3531 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3532 strcat (string, "'");
3533
3534 break_command (string, from_tty);
3535 printf_filtered ("<function, no debug info> %s;\n",
3536 SYMBOL_PRINT_NAME (p->msymbol));
3537 }
3538 }
3539
3540 do_cleanups (old_chain);
3541 }
3542 \f
3543
3544 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3545
3546 Either sym_text[sym_text_len] != '(' and then we search for any
3547 symbol starting with SYM_TEXT text.
3548
3549 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3550 be terminated at that point. Partial symbol tables do not have parameters
3551 information. */
3552
3553 static int
3554 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3555 {
3556 int (*ncmp) (const char *, const char *, size_t);
3557
3558 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3559
3560 if (ncmp (name, sym_text, sym_text_len) != 0)
3561 return 0;
3562
3563 if (sym_text[sym_text_len] == '(')
3564 {
3565 /* User searches for `name(someth...'. Require NAME to be terminated.
3566 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3567 present but accept even parameters presence. In this case this
3568 function is in fact strcmp_iw but whitespace skipping is not supported
3569 for tab completion. */
3570
3571 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3572 return 0;
3573 }
3574
3575 return 1;
3576 }
3577
3578 /* Helper routine for make_symbol_completion_list. */
3579
3580 static int return_val_size;
3581 static int return_val_index;
3582 static char **return_val;
3583
3584 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3585 completion_list_add_name \
3586 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3587
3588 /* Test to see if the symbol specified by SYMNAME (which is already
3589 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3590 characters. If so, add it to the current completion list. */
3591
3592 static void
3593 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3594 char *text, char *word)
3595 {
3596 int newsize;
3597
3598 /* Clip symbols that cannot match. */
3599 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3600 return;
3601
3602 /* We have a match for a completion, so add SYMNAME to the current list
3603 of matches. Note that the name is moved to freshly malloc'd space. */
3604
3605 {
3606 char *new;
3607
3608 if (word == sym_text)
3609 {
3610 new = xmalloc (strlen (symname) + 5);
3611 strcpy (new, symname);
3612 }
3613 else if (word > sym_text)
3614 {
3615 /* Return some portion of symname. */
3616 new = xmalloc (strlen (symname) + 5);
3617 strcpy (new, symname + (word - sym_text));
3618 }
3619 else
3620 {
3621 /* Return some of SYM_TEXT plus symname. */
3622 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3623 strncpy (new, word, sym_text - word);
3624 new[sym_text - word] = '\0';
3625 strcat (new, symname);
3626 }
3627
3628 if (return_val_index + 3 > return_val_size)
3629 {
3630 newsize = (return_val_size *= 2) * sizeof (char *);
3631 return_val = (char **) xrealloc ((char *) return_val, newsize);
3632 }
3633 return_val[return_val_index++] = new;
3634 return_val[return_val_index] = NULL;
3635 }
3636 }
3637
3638 /* ObjC: In case we are completing on a selector, look as the msymbol
3639 again and feed all the selectors into the mill. */
3640
3641 static void
3642 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3643 int sym_text_len, char *text, char *word)
3644 {
3645 static char *tmp = NULL;
3646 static unsigned int tmplen = 0;
3647
3648 char *method, *category, *selector;
3649 char *tmp2 = NULL;
3650
3651 method = SYMBOL_NATURAL_NAME (msymbol);
3652
3653 /* Is it a method? */
3654 if ((method[0] != '-') && (method[0] != '+'))
3655 return;
3656
3657 if (sym_text[0] == '[')
3658 /* Complete on shortened method method. */
3659 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3660
3661 while ((strlen (method) + 1) >= tmplen)
3662 {
3663 if (tmplen == 0)
3664 tmplen = 1024;
3665 else
3666 tmplen *= 2;
3667 tmp = xrealloc (tmp, tmplen);
3668 }
3669 selector = strchr (method, ' ');
3670 if (selector != NULL)
3671 selector++;
3672
3673 category = strchr (method, '(');
3674
3675 if ((category != NULL) && (selector != NULL))
3676 {
3677 memcpy (tmp, method, (category - method));
3678 tmp[category - method] = ' ';
3679 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3680 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3681 if (sym_text[0] == '[')
3682 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3683 }
3684
3685 if (selector != NULL)
3686 {
3687 /* Complete on selector only. */
3688 strcpy (tmp, selector);
3689 tmp2 = strchr (tmp, ']');
3690 if (tmp2 != NULL)
3691 *tmp2 = '\0';
3692
3693 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3694 }
3695 }
3696
3697 /* Break the non-quoted text based on the characters which are in
3698 symbols. FIXME: This should probably be language-specific. */
3699
3700 static char *
3701 language_search_unquoted_string (char *text, char *p)
3702 {
3703 for (; p > text; --p)
3704 {
3705 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3706 continue;
3707 else
3708 {
3709 if ((current_language->la_language == language_objc))
3710 {
3711 if (p[-1] == ':') /* Might be part of a method name. */
3712 continue;
3713 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3714 p -= 2; /* Beginning of a method name. */
3715 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3716 { /* Might be part of a method name. */
3717 char *t = p;
3718
3719 /* Seeing a ' ' or a '(' is not conclusive evidence
3720 that we are in the middle of a method name. However,
3721 finding "-[" or "+[" should be pretty un-ambiguous.
3722 Unfortunately we have to find it now to decide. */
3723
3724 while (t > text)
3725 if (isalnum (t[-1]) || t[-1] == '_' ||
3726 t[-1] == ' ' || t[-1] == ':' ||
3727 t[-1] == '(' || t[-1] == ')')
3728 --t;
3729 else
3730 break;
3731
3732 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3733 p = t - 2; /* Method name detected. */
3734 /* Else we leave with p unchanged. */
3735 }
3736 }
3737 break;
3738 }
3739 }
3740 return p;
3741 }
3742
3743 static void
3744 completion_list_add_fields (struct symbol *sym, char *sym_text,
3745 int sym_text_len, char *text, char *word)
3746 {
3747 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3748 {
3749 struct type *t = SYMBOL_TYPE (sym);
3750 enum type_code c = TYPE_CODE (t);
3751 int j;
3752
3753 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3754 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3755 if (TYPE_FIELD_NAME (t, j))
3756 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3757 sym_text, sym_text_len, text, word);
3758 }
3759 }
3760
3761 /* Type of the user_data argument passed to add_macro_name or
3762 expand_partial_symbol_name. The contents are simply whatever is
3763 needed by completion_list_add_name. */
3764 struct add_name_data
3765 {
3766 char *sym_text;
3767 int sym_text_len;
3768 char *text;
3769 char *word;
3770 };
3771
3772 /* A callback used with macro_for_each and macro_for_each_in_scope.
3773 This adds a macro's name to the current completion list. */
3774 static void
3775 add_macro_name (const char *name, const struct macro_definition *ignore,
3776 void *user_data)
3777 {
3778 struct add_name_data *datum = (struct add_name_data *) user_data;
3779
3780 completion_list_add_name ((char *) name,
3781 datum->sym_text, datum->sym_text_len,
3782 datum->text, datum->word);
3783 }
3784
3785 /* A callback for expand_partial_symbol_names. */
3786 static int
3787 expand_partial_symbol_name (const char *name, void *user_data)
3788 {
3789 struct add_name_data *datum = (struct add_name_data *) user_data;
3790
3791 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
3792 }
3793
3794 char **
3795 default_make_symbol_completion_list_break_on (char *text, char *word,
3796 const char *break_on)
3797 {
3798 /* Problem: All of the symbols have to be copied because readline
3799 frees them. I'm not going to worry about this; hopefully there
3800 won't be that many. */
3801
3802 struct symbol *sym;
3803 struct symtab *s;
3804 struct minimal_symbol *msymbol;
3805 struct objfile *objfile;
3806 struct block *b;
3807 const struct block *surrounding_static_block, *surrounding_global_block;
3808 struct dict_iterator iter;
3809 /* The symbol we are completing on. Points in same buffer as text. */
3810 char *sym_text;
3811 /* Length of sym_text. */
3812 int sym_text_len;
3813 struct add_name_data datum;
3814
3815 /* Now look for the symbol we are supposed to complete on. */
3816 {
3817 char *p;
3818 char quote_found;
3819 char *quote_pos = NULL;
3820
3821 /* First see if this is a quoted string. */
3822 quote_found = '\0';
3823 for (p = text; *p != '\0'; ++p)
3824 {
3825 if (quote_found != '\0')
3826 {
3827 if (*p == quote_found)
3828 /* Found close quote. */
3829 quote_found = '\0';
3830 else if (*p == '\\' && p[1] == quote_found)
3831 /* A backslash followed by the quote character
3832 doesn't end the string. */
3833 ++p;
3834 }
3835 else if (*p == '\'' || *p == '"')
3836 {
3837 quote_found = *p;
3838 quote_pos = p;
3839 }
3840 }
3841 if (quote_found == '\'')
3842 /* A string within single quotes can be a symbol, so complete on it. */
3843 sym_text = quote_pos + 1;
3844 else if (quote_found == '"')
3845 /* A double-quoted string is never a symbol, nor does it make sense
3846 to complete it any other way. */
3847 {
3848 return_val = (char **) xmalloc (sizeof (char *));
3849 return_val[0] = NULL;
3850 return return_val;
3851 }
3852 else
3853 {
3854 /* It is not a quoted string. Break it based on the characters
3855 which are in symbols. */
3856 while (p > text)
3857 {
3858 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3859 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3860 --p;
3861 else
3862 break;
3863 }
3864 sym_text = p;
3865 }
3866 }
3867
3868 sym_text_len = strlen (sym_text);
3869
3870 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
3871
3872 if (current_language->la_language == language_cplus
3873 || current_language->la_language == language_java
3874 || current_language->la_language == language_fortran)
3875 {
3876 /* These languages may have parameters entered by user but they are never
3877 present in the partial symbol tables. */
3878
3879 const char *cs = memchr (sym_text, '(', sym_text_len);
3880
3881 if (cs)
3882 sym_text_len = cs - sym_text;
3883 }
3884 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
3885
3886 return_val_size = 100;
3887 return_val_index = 0;
3888 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3889 return_val[0] = NULL;
3890
3891 datum.sym_text = sym_text;
3892 datum.sym_text_len = sym_text_len;
3893 datum.text = text;
3894 datum.word = word;
3895
3896 /* Look through the partial symtabs for all symbols which begin
3897 by matching SYM_TEXT. Expand all CUs that you find to the list.
3898 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
3899 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
3900
3901 /* At this point scan through the misc symbol vectors and add each
3902 symbol you find to the list. Eventually we want to ignore
3903 anything that isn't a text symbol (everything else will be
3904 handled by the psymtab code above). */
3905
3906 ALL_MSYMBOLS (objfile, msymbol)
3907 {
3908 QUIT;
3909 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3910
3911 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3912 }
3913
3914 /* Search upwards from currently selected frame (so that we can
3915 complete on local vars). Also catch fields of types defined in
3916 this places which match our text string. Only complete on types
3917 visible from current context. */
3918
3919 b = get_selected_block (0);
3920 surrounding_static_block = block_static_block (b);
3921 surrounding_global_block = block_global_block (b);
3922 if (surrounding_static_block != NULL)
3923 while (b != surrounding_static_block)
3924 {
3925 QUIT;
3926
3927 ALL_BLOCK_SYMBOLS (b, iter, sym)
3928 {
3929 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3930 word);
3931 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3932 word);
3933 }
3934
3935 /* Stop when we encounter an enclosing function. Do not stop for
3936 non-inlined functions - the locals of the enclosing function
3937 are in scope for a nested function. */
3938 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3939 break;
3940 b = BLOCK_SUPERBLOCK (b);
3941 }
3942
3943 /* Add fields from the file's types; symbols will be added below. */
3944
3945 if (surrounding_static_block != NULL)
3946 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3947 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3948
3949 if (surrounding_global_block != NULL)
3950 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3951 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3952
3953 /* Go through the symtabs and check the externs and statics for
3954 symbols which match. */
3955
3956 ALL_PRIMARY_SYMTABS (objfile, s)
3957 {
3958 QUIT;
3959 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3960 ALL_BLOCK_SYMBOLS (b, iter, sym)
3961 {
3962 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3963 }
3964 }
3965
3966 ALL_PRIMARY_SYMTABS (objfile, s)
3967 {
3968 QUIT;
3969 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3970 ALL_BLOCK_SYMBOLS (b, iter, sym)
3971 {
3972 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3973 }
3974 }
3975
3976 if (current_language->la_macro_expansion == macro_expansion_c)
3977 {
3978 struct macro_scope *scope;
3979
3980 /* Add any macros visible in the default scope. Note that this
3981 may yield the occasional wrong result, because an expression
3982 might be evaluated in a scope other than the default. For
3983 example, if the user types "break file:line if <TAB>", the
3984 resulting expression will be evaluated at "file:line" -- but
3985 at there does not seem to be a way to detect this at
3986 completion time. */
3987 scope = default_macro_scope ();
3988 if (scope)
3989 {
3990 macro_for_each_in_scope (scope->file, scope->line,
3991 add_macro_name, &datum);
3992 xfree (scope);
3993 }
3994
3995 /* User-defined macros are always visible. */
3996 macro_for_each (macro_user_macros, add_macro_name, &datum);
3997 }
3998
3999 return (return_val);
4000 }
4001
4002 char **
4003 default_make_symbol_completion_list (char *text, char *word)
4004 {
4005 return default_make_symbol_completion_list_break_on (text, word, "");
4006 }
4007
4008 /* Return a NULL terminated array of all symbols (regardless of class)
4009 which begin by matching TEXT. If the answer is no symbols, then
4010 the return value is an array which contains only a NULL pointer. */
4011
4012 char **
4013 make_symbol_completion_list (char *text, char *word)
4014 {
4015 return current_language->la_make_symbol_completion_list (text, word);
4016 }
4017
4018 /* Like make_symbol_completion_list, but suitable for use as a
4019 completion function. */
4020
4021 char **
4022 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4023 char *text, char *word)
4024 {
4025 return make_symbol_completion_list (text, word);
4026 }
4027
4028 /* Like make_symbol_completion_list, but returns a list of symbols
4029 defined in a source file FILE. */
4030
4031 char **
4032 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4033 {
4034 struct symbol *sym;
4035 struct symtab *s;
4036 struct block *b;
4037 struct dict_iterator iter;
4038 /* The symbol we are completing on. Points in same buffer as text. */
4039 char *sym_text;
4040 /* Length of sym_text. */
4041 int sym_text_len;
4042
4043 /* Now look for the symbol we are supposed to complete on.
4044 FIXME: This should be language-specific. */
4045 {
4046 char *p;
4047 char quote_found;
4048 char *quote_pos = NULL;
4049
4050 /* First see if this is a quoted string. */
4051 quote_found = '\0';
4052 for (p = text; *p != '\0'; ++p)
4053 {
4054 if (quote_found != '\0')
4055 {
4056 if (*p == quote_found)
4057 /* Found close quote. */
4058 quote_found = '\0';
4059 else if (*p == '\\' && p[1] == quote_found)
4060 /* A backslash followed by the quote character
4061 doesn't end the string. */
4062 ++p;
4063 }
4064 else if (*p == '\'' || *p == '"')
4065 {
4066 quote_found = *p;
4067 quote_pos = p;
4068 }
4069 }
4070 if (quote_found == '\'')
4071 /* A string within single quotes can be a symbol, so complete on it. */
4072 sym_text = quote_pos + 1;
4073 else if (quote_found == '"')
4074 /* A double-quoted string is never a symbol, nor does it make sense
4075 to complete it any other way. */
4076 {
4077 return_val = (char **) xmalloc (sizeof (char *));
4078 return_val[0] = NULL;
4079 return return_val;
4080 }
4081 else
4082 {
4083 /* Not a quoted string. */
4084 sym_text = language_search_unquoted_string (text, p);
4085 }
4086 }
4087
4088 sym_text_len = strlen (sym_text);
4089
4090 return_val_size = 10;
4091 return_val_index = 0;
4092 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4093 return_val[0] = NULL;
4094
4095 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4096 in). */
4097 s = lookup_symtab (srcfile);
4098 if (s == NULL)
4099 {
4100 /* Maybe they typed the file with leading directories, while the
4101 symbol tables record only its basename. */
4102 const char *tail = lbasename (srcfile);
4103
4104 if (tail > srcfile)
4105 s = lookup_symtab (tail);
4106 }
4107
4108 /* If we have no symtab for that file, return an empty list. */
4109 if (s == NULL)
4110 return (return_val);
4111
4112 /* Go through this symtab and check the externs and statics for
4113 symbols which match. */
4114
4115 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4116 ALL_BLOCK_SYMBOLS (b, iter, sym)
4117 {
4118 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4119 }
4120
4121 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4122 ALL_BLOCK_SYMBOLS (b, iter, sym)
4123 {
4124 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4125 }
4126
4127 return (return_val);
4128 }
4129
4130 /* A helper function for make_source_files_completion_list. It adds
4131 another file name to a list of possible completions, growing the
4132 list as necessary. */
4133
4134 static void
4135 add_filename_to_list (const char *fname, char *text, char *word,
4136 char ***list, int *list_used, int *list_alloced)
4137 {
4138 char *new;
4139 size_t fnlen = strlen (fname);
4140
4141 if (*list_used + 1 >= *list_alloced)
4142 {
4143 *list_alloced *= 2;
4144 *list = (char **) xrealloc ((char *) *list,
4145 *list_alloced * sizeof (char *));
4146 }
4147
4148 if (word == text)
4149 {
4150 /* Return exactly fname. */
4151 new = xmalloc (fnlen + 5);
4152 strcpy (new, fname);
4153 }
4154 else if (word > text)
4155 {
4156 /* Return some portion of fname. */
4157 new = xmalloc (fnlen + 5);
4158 strcpy (new, fname + (word - text));
4159 }
4160 else
4161 {
4162 /* Return some of TEXT plus fname. */
4163 new = xmalloc (fnlen + (text - word) + 5);
4164 strncpy (new, word, text - word);
4165 new[text - word] = '\0';
4166 strcat (new, fname);
4167 }
4168 (*list)[*list_used] = new;
4169 (*list)[++*list_used] = NULL;
4170 }
4171
4172 static int
4173 not_interesting_fname (const char *fname)
4174 {
4175 static const char *illegal_aliens[] = {
4176 "_globals_", /* inserted by coff_symtab_read */
4177 NULL
4178 };
4179 int i;
4180
4181 for (i = 0; illegal_aliens[i]; i++)
4182 {
4183 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4184 return 1;
4185 }
4186 return 0;
4187 }
4188
4189 /* An object of this type is passed as the user_data argument to
4190 map_partial_symbol_filenames. */
4191 struct add_partial_filename_data
4192 {
4193 int *first;
4194 char *text;
4195 char *word;
4196 int text_len;
4197 char ***list;
4198 int *list_used;
4199 int *list_alloced;
4200 };
4201
4202 /* A callback for map_partial_symbol_filenames. */
4203 static void
4204 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4205 void *user_data)
4206 {
4207 struct add_partial_filename_data *data = user_data;
4208
4209 if (not_interesting_fname (filename))
4210 return;
4211 if (!filename_seen (filename, 1, data->first)
4212 && filename_ncmp (filename, data->text, data->text_len) == 0)
4213 {
4214 /* This file matches for a completion; add it to the
4215 current list of matches. */
4216 add_filename_to_list (filename, data->text, data->word,
4217 data->list, data->list_used, data->list_alloced);
4218 }
4219 else
4220 {
4221 const char *base_name = lbasename (filename);
4222
4223 if (base_name != filename
4224 && !filename_seen (base_name, 1, data->first)
4225 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4226 add_filename_to_list (base_name, data->text, data->word,
4227 data->list, data->list_used, data->list_alloced);
4228 }
4229 }
4230
4231 /* Return a NULL terminated array of all source files whose names
4232 begin with matching TEXT. The file names are looked up in the
4233 symbol tables of this program. If the answer is no matchess, then
4234 the return value is an array which contains only a NULL pointer. */
4235
4236 char **
4237 make_source_files_completion_list (char *text, char *word)
4238 {
4239 struct symtab *s;
4240 struct objfile *objfile;
4241 int first = 1;
4242 int list_alloced = 1;
4243 int list_used = 0;
4244 size_t text_len = strlen (text);
4245 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4246 const char *base_name;
4247 struct add_partial_filename_data datum;
4248
4249 list[0] = NULL;
4250
4251 if (!have_full_symbols () && !have_partial_symbols ())
4252 return list;
4253
4254 ALL_SYMTABS (objfile, s)
4255 {
4256 if (not_interesting_fname (s->filename))
4257 continue;
4258 if (!filename_seen (s->filename, 1, &first)
4259 && filename_ncmp (s->filename, text, text_len) == 0)
4260 {
4261 /* This file matches for a completion; add it to the current
4262 list of matches. */
4263 add_filename_to_list (s->filename, text, word,
4264 &list, &list_used, &list_alloced);
4265 }
4266 else
4267 {
4268 /* NOTE: We allow the user to type a base name when the
4269 debug info records leading directories, but not the other
4270 way around. This is what subroutines of breakpoint
4271 command do when they parse file names. */
4272 base_name = lbasename (s->filename);
4273 if (base_name != s->filename
4274 && !filename_seen (base_name, 1, &first)
4275 && filename_ncmp (base_name, text, text_len) == 0)
4276 add_filename_to_list (base_name, text, word,
4277 &list, &list_used, &list_alloced);
4278 }
4279 }
4280
4281 datum.first = &first;
4282 datum.text = text;
4283 datum.word = word;
4284 datum.text_len = text_len;
4285 datum.list = &list;
4286 datum.list_used = &list_used;
4287 datum.list_alloced = &list_alloced;
4288 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4289
4290 return list;
4291 }
4292
4293 /* Determine if PC is in the prologue of a function. The prologue is the area
4294 between the first instruction of a function, and the first executable line.
4295 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4296
4297 If non-zero, func_start is where we think the prologue starts, possibly
4298 by previous examination of symbol table information. */
4299
4300 int
4301 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4302 {
4303 struct symtab_and_line sal;
4304 CORE_ADDR func_addr, func_end;
4305
4306 /* We have several sources of information we can consult to figure
4307 this out.
4308 - Compilers usually emit line number info that marks the prologue
4309 as its own "source line". So the ending address of that "line"
4310 is the end of the prologue. If available, this is the most
4311 reliable method.
4312 - The minimal symbols and partial symbols, which can usually tell
4313 us the starting and ending addresses of a function.
4314 - If we know the function's start address, we can call the
4315 architecture-defined gdbarch_skip_prologue function to analyze the
4316 instruction stream and guess where the prologue ends.
4317 - Our `func_start' argument; if non-zero, this is the caller's
4318 best guess as to the function's entry point. At the time of
4319 this writing, handle_inferior_event doesn't get this right, so
4320 it should be our last resort. */
4321
4322 /* Consult the partial symbol table, to find which function
4323 the PC is in. */
4324 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4325 {
4326 CORE_ADDR prologue_end;
4327
4328 /* We don't even have minsym information, so fall back to using
4329 func_start, if given. */
4330 if (! func_start)
4331 return 1; /* We *might* be in a prologue. */
4332
4333 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4334
4335 return func_start <= pc && pc < prologue_end;
4336 }
4337
4338 /* If we have line number information for the function, that's
4339 usually pretty reliable. */
4340 sal = find_pc_line (func_addr, 0);
4341
4342 /* Now sal describes the source line at the function's entry point,
4343 which (by convention) is the prologue. The end of that "line",
4344 sal.end, is the end of the prologue.
4345
4346 Note that, for functions whose source code is all on a single
4347 line, the line number information doesn't always end up this way.
4348 So we must verify that our purported end-of-prologue address is
4349 *within* the function, not at its start or end. */
4350 if (sal.line == 0
4351 || sal.end <= func_addr
4352 || func_end <= sal.end)
4353 {
4354 /* We don't have any good line number info, so use the minsym
4355 information, together with the architecture-specific prologue
4356 scanning code. */
4357 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4358
4359 return func_addr <= pc && pc < prologue_end;
4360 }
4361
4362 /* We have line number info, and it looks good. */
4363 return func_addr <= pc && pc < sal.end;
4364 }
4365
4366 /* Given PC at the function's start address, attempt to find the
4367 prologue end using SAL information. Return zero if the skip fails.
4368
4369 A non-optimized prologue traditionally has one SAL for the function
4370 and a second for the function body. A single line function has
4371 them both pointing at the same line.
4372
4373 An optimized prologue is similar but the prologue may contain
4374 instructions (SALs) from the instruction body. Need to skip those
4375 while not getting into the function body.
4376
4377 The functions end point and an increasing SAL line are used as
4378 indicators of the prologue's endpoint.
4379
4380 This code is based on the function refine_prologue_limit (versions
4381 found in both ia64 and ppc). */
4382
4383 CORE_ADDR
4384 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4385 {
4386 struct symtab_and_line prologue_sal;
4387 CORE_ADDR start_pc;
4388 CORE_ADDR end_pc;
4389 struct block *bl;
4390
4391 /* Get an initial range for the function. */
4392 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4393 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4394
4395 prologue_sal = find_pc_line (start_pc, 0);
4396 if (prologue_sal.line != 0)
4397 {
4398 /* For langauges other than assembly, treat two consecutive line
4399 entries at the same address as a zero-instruction prologue.
4400 The GNU assembler emits separate line notes for each instruction
4401 in a multi-instruction macro, but compilers generally will not
4402 do this. */
4403 if (prologue_sal.symtab->language != language_asm)
4404 {
4405 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4406 int idx = 0;
4407
4408 /* Skip any earlier lines, and any end-of-sequence marker
4409 from a previous function. */
4410 while (linetable->item[idx].pc != prologue_sal.pc
4411 || linetable->item[idx].line == 0)
4412 idx++;
4413
4414 if (idx+1 < linetable->nitems
4415 && linetable->item[idx+1].line != 0
4416 && linetable->item[idx+1].pc == start_pc)
4417 return start_pc;
4418 }
4419
4420 /* If there is only one sal that covers the entire function,
4421 then it is probably a single line function, like
4422 "foo(){}". */
4423 if (prologue_sal.end >= end_pc)
4424 return 0;
4425
4426 while (prologue_sal.end < end_pc)
4427 {
4428 struct symtab_and_line sal;
4429
4430 sal = find_pc_line (prologue_sal.end, 0);
4431 if (sal.line == 0)
4432 break;
4433 /* Assume that a consecutive SAL for the same (or larger)
4434 line mark the prologue -> body transition. */
4435 if (sal.line >= prologue_sal.line)
4436 break;
4437
4438 /* The line number is smaller. Check that it's from the
4439 same function, not something inlined. If it's inlined,
4440 then there is no point comparing the line numbers. */
4441 bl = block_for_pc (prologue_sal.end);
4442 while (bl)
4443 {
4444 if (block_inlined_p (bl))
4445 break;
4446 if (BLOCK_FUNCTION (bl))
4447 {
4448 bl = NULL;
4449 break;
4450 }
4451 bl = BLOCK_SUPERBLOCK (bl);
4452 }
4453 if (bl != NULL)
4454 break;
4455
4456 /* The case in which compiler's optimizer/scheduler has
4457 moved instructions into the prologue. We look ahead in
4458 the function looking for address ranges whose
4459 corresponding line number is less the first one that we
4460 found for the function. This is more conservative then
4461 refine_prologue_limit which scans a large number of SALs
4462 looking for any in the prologue. */
4463 prologue_sal = sal;
4464 }
4465 }
4466
4467 if (prologue_sal.end < end_pc)
4468 /* Return the end of this line, or zero if we could not find a
4469 line. */
4470 return prologue_sal.end;
4471 else
4472 /* Don't return END_PC, which is past the end of the function. */
4473 return prologue_sal.pc;
4474 }
4475 \f
4476 struct symtabs_and_lines
4477 decode_line_spec (char *string, int funfirstline)
4478 {
4479 struct symtabs_and_lines sals;
4480 struct symtab_and_line cursal;
4481
4482 if (string == 0)
4483 error (_("Empty line specification."));
4484
4485 /* We use whatever is set as the current source line. We do not try
4486 and get a default or it will recursively call us! */
4487 cursal = get_current_source_symtab_and_line ();
4488
4489 sals = decode_line_1 (&string, funfirstline,
4490 cursal.symtab, cursal.line,
4491 NULL);
4492
4493 if (*string)
4494 error (_("Junk at end of line specification: %s"), string);
4495 return sals;
4496 }
4497
4498 /* Track MAIN */
4499 static char *name_of_main;
4500 enum language language_of_main = language_unknown;
4501
4502 void
4503 set_main_name (const char *name)
4504 {
4505 if (name_of_main != NULL)
4506 {
4507 xfree (name_of_main);
4508 name_of_main = NULL;
4509 language_of_main = language_unknown;
4510 }
4511 if (name != NULL)
4512 {
4513 name_of_main = xstrdup (name);
4514 language_of_main = language_unknown;
4515 }
4516 }
4517
4518 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4519 accordingly. */
4520
4521 static void
4522 find_main_name (void)
4523 {
4524 const char *new_main_name;
4525
4526 /* Try to see if the main procedure is in Ada. */
4527 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4528 be to add a new method in the language vector, and call this
4529 method for each language until one of them returns a non-empty
4530 name. This would allow us to remove this hard-coded call to
4531 an Ada function. It is not clear that this is a better approach
4532 at this point, because all methods need to be written in a way
4533 such that false positives never be returned. For instance, it is
4534 important that a method does not return a wrong name for the main
4535 procedure if the main procedure is actually written in a different
4536 language. It is easy to guaranty this with Ada, since we use a
4537 special symbol generated only when the main in Ada to find the name
4538 of the main procedure. It is difficult however to see how this can
4539 be guarantied for languages such as C, for instance. This suggests
4540 that order of call for these methods becomes important, which means
4541 a more complicated approach. */
4542 new_main_name = ada_main_name ();
4543 if (new_main_name != NULL)
4544 {
4545 set_main_name (new_main_name);
4546 return;
4547 }
4548
4549 new_main_name = pascal_main_name ();
4550 if (new_main_name != NULL)
4551 {
4552 set_main_name (new_main_name);
4553 return;
4554 }
4555
4556 /* The languages above didn't identify the name of the main procedure.
4557 Fallback to "main". */
4558 set_main_name ("main");
4559 }
4560
4561 char *
4562 main_name (void)
4563 {
4564 if (name_of_main == NULL)
4565 find_main_name ();
4566
4567 return name_of_main;
4568 }
4569
4570 /* Handle ``executable_changed'' events for the symtab module. */
4571
4572 static void
4573 symtab_observer_executable_changed (void)
4574 {
4575 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4576 set_main_name (NULL);
4577 }
4578
4579 /* Helper to expand_line_sal below. Appends new sal to SAL,
4580 initializing it from SYMTAB, LINENO and PC. */
4581 static void
4582 append_expanded_sal (struct symtabs_and_lines *sal,
4583 struct program_space *pspace,
4584 struct symtab *symtab,
4585 int lineno, CORE_ADDR pc)
4586 {
4587 sal->sals = xrealloc (sal->sals,
4588 sizeof (sal->sals[0])
4589 * (sal->nelts + 1));
4590 init_sal (sal->sals + sal->nelts);
4591 sal->sals[sal->nelts].pspace = pspace;
4592 sal->sals[sal->nelts].symtab = symtab;
4593 sal->sals[sal->nelts].section = NULL;
4594 sal->sals[sal->nelts].end = 0;
4595 sal->sals[sal->nelts].line = lineno;
4596 sal->sals[sal->nelts].pc = pc;
4597 ++sal->nelts;
4598 }
4599
4600 /* Helper to expand_line_sal below. Search in the symtabs for any
4601 linetable entry that exactly matches FULLNAME and LINENO and append
4602 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4603 use FILENAME and LINENO instead. If there is at least one match,
4604 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4605 and BEST_SYMTAB. */
4606
4607 static int
4608 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4609 struct symtabs_and_lines *ret,
4610 struct linetable_entry **best_item,
4611 struct symtab **best_symtab)
4612 {
4613 struct program_space *pspace;
4614 struct objfile *objfile;
4615 struct symtab *symtab;
4616 int exact = 0;
4617 int j;
4618 *best_item = 0;
4619 *best_symtab = 0;
4620
4621 ALL_PSPACES (pspace)
4622 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4623 {
4624 if (FILENAME_CMP (filename, symtab->filename) == 0)
4625 {
4626 struct linetable *l;
4627 int len;
4628
4629 if (fullname != NULL
4630 && symtab_to_fullname (symtab) != NULL
4631 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4632 continue;
4633 l = LINETABLE (symtab);
4634 if (!l)
4635 continue;
4636 len = l->nitems;
4637
4638 for (j = 0; j < len; j++)
4639 {
4640 struct linetable_entry *item = &(l->item[j]);
4641
4642 if (item->line == lineno)
4643 {
4644 exact = 1;
4645 append_expanded_sal (ret, objfile->pspace,
4646 symtab, lineno, item->pc);
4647 }
4648 else if (!exact && item->line > lineno
4649 && (*best_item == NULL
4650 || item->line < (*best_item)->line))
4651 {
4652 *best_item = item;
4653 *best_symtab = symtab;
4654 }
4655 }
4656 }
4657 }
4658 return exact;
4659 }
4660
4661 /* Compute a set of all sals in all program spaces that correspond to
4662 same file and line as SAL and return those. If there are several
4663 sals that belong to the same block, only one sal for the block is
4664 included in results. */
4665
4666 struct symtabs_and_lines
4667 expand_line_sal (struct symtab_and_line sal)
4668 {
4669 struct symtabs_and_lines ret;
4670 int i, j;
4671 struct objfile *objfile;
4672 int lineno;
4673 int deleted = 0;
4674 struct block **blocks = NULL;
4675 int *filter;
4676 struct cleanup *old_chain;
4677
4678 ret.nelts = 0;
4679 ret.sals = NULL;
4680
4681 /* Only expand sals that represent file.c:line. */
4682 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4683 {
4684 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4685 ret.sals[0] = sal;
4686 ret.nelts = 1;
4687 return ret;
4688 }
4689 else
4690 {
4691 struct program_space *pspace;
4692 struct linetable_entry *best_item = 0;
4693 struct symtab *best_symtab = 0;
4694 int exact = 0;
4695 char *match_filename;
4696
4697 lineno = sal.line;
4698 match_filename = sal.symtab->filename;
4699
4700 /* We need to find all symtabs for a file which name
4701 is described by sal. We cannot just directly
4702 iterate over symtabs, since a symtab might not be
4703 yet created. We also cannot iterate over psymtabs,
4704 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4705 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4706 corresponding to an included file. Therefore, we do
4707 first pass over psymtabs, reading in those with
4708 the right name. Then, we iterate over symtabs, knowing
4709 that all symtabs we're interested in are loaded. */
4710
4711 old_chain = save_current_program_space ();
4712 ALL_PSPACES (pspace)
4713 {
4714 set_current_program_space (pspace);
4715 ALL_PSPACE_OBJFILES (pspace, objfile)
4716 {
4717 if (objfile->sf)
4718 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4719 sal.symtab->filename);
4720 }
4721 }
4722 do_cleanups (old_chain);
4723
4724 /* Now search the symtab for exact matches and append them. If
4725 none is found, append the best_item and all its exact
4726 matches. */
4727 symtab_to_fullname (sal.symtab);
4728 exact = append_exact_match_to_sals (sal.symtab->filename,
4729 sal.symtab->fullname, lineno,
4730 &ret, &best_item, &best_symtab);
4731 if (!exact && best_item)
4732 append_exact_match_to_sals (best_symtab->filename,
4733 best_symtab->fullname, best_item->line,
4734 &ret, &best_item, &best_symtab);
4735 }
4736
4737 /* For optimized code, compiler can scatter one source line accross
4738 disjoint ranges of PC values, even when no duplicate functions
4739 or inline functions are involved. For example, 'for (;;)' inside
4740 non-template non-inline non-ctor-or-dtor function can result
4741 in two PC ranges. In this case, we don't want to set breakpoint
4742 on first PC of each range. To filter such cases, we use containing
4743 blocks -- for each PC found above we see if there are other PCs
4744 that are in the same block. If yes, the other PCs are filtered out. */
4745
4746 old_chain = save_current_program_space ();
4747 filter = alloca (ret.nelts * sizeof (int));
4748 blocks = alloca (ret.nelts * sizeof (struct block *));
4749 for (i = 0; i < ret.nelts; ++i)
4750 {
4751 set_current_program_space (ret.sals[i].pspace);
4752
4753 filter[i] = 1;
4754 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4755
4756 }
4757 do_cleanups (old_chain);
4758
4759 for (i = 0; i < ret.nelts; ++i)
4760 if (blocks[i] != NULL)
4761 for (j = i+1; j < ret.nelts; ++j)
4762 if (blocks[j] == blocks[i])
4763 {
4764 filter[j] = 0;
4765 ++deleted;
4766 break;
4767 }
4768
4769 {
4770 struct symtab_and_line *final =
4771 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4772
4773 for (i = 0, j = 0; i < ret.nelts; ++i)
4774 if (filter[i])
4775 final[j++] = ret.sals[i];
4776
4777 ret.nelts -= deleted;
4778 xfree (ret.sals);
4779 ret.sals = final;
4780 }
4781
4782 return ret;
4783 }
4784
4785 /* Return 1 if the supplied producer string matches the ARM RealView
4786 compiler (armcc). */
4787
4788 int
4789 producer_is_realview (const char *producer)
4790 {
4791 static const char *const arm_idents[] = {
4792 "ARM C Compiler, ADS",
4793 "Thumb C Compiler, ADS",
4794 "ARM C++ Compiler, ADS",
4795 "Thumb C++ Compiler, ADS",
4796 "ARM/Thumb C/C++ Compiler, RVCT",
4797 "ARM C/C++ Compiler, RVCT"
4798 };
4799 int i;
4800
4801 if (producer == NULL)
4802 return 0;
4803
4804 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4805 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4806 return 1;
4807
4808 return 0;
4809 }
4810
4811 void
4812 _initialize_symtab (void)
4813 {
4814 add_info ("variables", variables_info, _("\
4815 All global and static variable names, or those matching REGEXP."));
4816 if (dbx_commands)
4817 add_com ("whereis", class_info, variables_info, _("\
4818 All global and static variable names, or those matching REGEXP."));
4819
4820 add_info ("functions", functions_info,
4821 _("All function names, or those matching REGEXP."));
4822
4823 /* FIXME: This command has at least the following problems:
4824 1. It prints builtin types (in a very strange and confusing fashion).
4825 2. It doesn't print right, e.g. with
4826 typedef struct foo *FOO
4827 type_print prints "FOO" when we want to make it (in this situation)
4828 print "struct foo *".
4829 I also think "ptype" or "whatis" is more likely to be useful (but if
4830 there is much disagreement "info types" can be fixed). */
4831 add_info ("types", types_info,
4832 _("All type names, or those matching REGEXP."));
4833
4834 add_info ("sources", sources_info,
4835 _("Source files in the program."));
4836
4837 add_com ("rbreak", class_breakpoint, rbreak_command,
4838 _("Set a breakpoint for all functions matching REGEXP."));
4839
4840 if (xdb_commands)
4841 {
4842 add_com ("lf", class_info, sources_info,
4843 _("Source files in the program"));
4844 add_com ("lg", class_info, variables_info, _("\
4845 All global and static variable names, or those matching REGEXP."));
4846 }
4847
4848 add_setshow_enum_cmd ("multiple-symbols", no_class,
4849 multiple_symbols_modes, &multiple_symbols_mode,
4850 _("\
4851 Set the debugger behavior when more than one symbol are possible matches\n\
4852 in an expression."), _("\
4853 Show how the debugger handles ambiguities in expressions."), _("\
4854 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4855 NULL, NULL, &setlist, &showlist);
4856
4857 observer_attach_executable_changed (symtab_observer_executable_changed);
4858 }
This page took 0.130252 seconds and 4 git commands to generate.