gdb/
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 static void print_msymbol_info (struct minimal_symbol *);
105
106 void _initialize_symtab (void);
107
108 /* */
109
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). Returns true if they match, false
151 otherwise. */
152
153 int
154 compare_filenames_for_search (const char *filename, const char *search_name)
155 {
156 int len = strlen (filename);
157 size_t search_len = strlen (search_name);
158
159 if (len < search_len)
160 return 0;
161
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
165
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator.
169
170 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
171 cannot match FILENAME "/path//dir/file.c" - as user has requested
172 absolute path. The sama applies for "c:\file.c" possibly
173 incorrectly hypothetically matching "d:\dir\c:\file.c".
174
175 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
176 compatible with SEARCH_NAME "file.c". In such case a compiler had
177 to put the "c:file.c" name into debug info. Such compatibility
178 works only on GDB built for DOS host. */
179 return (len == search_len
180 || (!IS_ABSOLUTE_PATH (search_name)
181 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
182 || (HAS_DRIVE_SPEC (filename)
183 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
184 }
185
186 /* Check for a symtab of a specific name by searching some symtabs.
187 This is a helper function for callbacks of iterate_over_symtabs.
188
189 The return value, NAME, REAL_PATH, CALLBACK, and DATA
190 are identical to the `map_symtabs_matching_filename' method of
191 quick_symbol_functions.
192
193 FIRST and AFTER_LAST indicate the range of symtabs to search.
194 AFTER_LAST is one past the last symtab to search; NULL means to
195 search until the end of the list. */
196
197 int
198 iterate_over_some_symtabs (const char *name,
199 const char *real_path,
200 int (*callback) (struct symtab *symtab,
201 void *data),
202 void *data,
203 struct symtab *first,
204 struct symtab *after_last)
205 {
206 struct symtab *s = NULL;
207 const char* base_name = lbasename (name);
208
209 for (s = first; s != NULL && s != after_last; s = s->next)
210 {
211 if (compare_filenames_for_search (s->filename, name))
212 {
213 if (callback (s, data))
214 return 1;
215 continue;
216 }
217
218 /* Before we invoke realpath, which can get expensive when many
219 files are involved, do a quick comparison of the basenames. */
220 if (! basenames_may_differ
221 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
222 continue;
223
224 if (compare_filenames_for_search (symtab_to_fullname (s), name))
225 {
226 if (callback (s, data))
227 return 1;
228 continue;
229 }
230
231 /* If the user gave us an absolute path, try to find the file in
232 this symtab and use its absolute path. */
233
234 if (real_path != NULL)
235 {
236 const char *fullname = symtab_to_fullname (s);
237
238 gdb_assert (IS_ABSOLUTE_PATH (real_path));
239 gdb_assert (IS_ABSOLUTE_PATH (name));
240 if (FILENAME_CMP (real_path, fullname) == 0)
241 {
242 if (callback (s, data))
243 return 1;
244 continue;
245 }
246 }
247 }
248
249 return 0;
250 }
251
252 /* Check for a symtab of a specific name; first in symtabs, then in
253 psymtabs. *If* there is no '/' in the name, a match after a '/'
254 in the symtab filename will also work.
255
256 Calls CALLBACK with each symtab that is found and with the supplied
257 DATA. If CALLBACK returns true, the search stops. */
258
259 void
260 iterate_over_symtabs (const char *name,
261 int (*callback) (struct symtab *symtab,
262 void *data),
263 void *data)
264 {
265 struct objfile *objfile;
266 char *real_path = NULL;
267 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
268
269 /* Here we are interested in canonicalizing an absolute path, not
270 absolutizing a relative path. */
271 if (IS_ABSOLUTE_PATH (name))
272 {
273 real_path = gdb_realpath (name);
274 make_cleanup (xfree, real_path);
275 gdb_assert (IS_ABSOLUTE_PATH (real_path));
276 }
277
278 ALL_OBJFILES (objfile)
279 {
280 if (iterate_over_some_symtabs (name, real_path, callback, data,
281 objfile->symtabs, NULL))
282 {
283 do_cleanups (cleanups);
284 return;
285 }
286 }
287
288 /* Same search rules as above apply here, but now we look thru the
289 psymtabs. */
290
291 ALL_OBJFILES (objfile)
292 {
293 if (objfile->sf
294 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
295 name,
296 real_path,
297 callback,
298 data))
299 {
300 do_cleanups (cleanups);
301 return;
302 }
303 }
304
305 do_cleanups (cleanups);
306 }
307
308 /* The callback function used by lookup_symtab. */
309
310 static int
311 lookup_symtab_callback (struct symtab *symtab, void *data)
312 {
313 struct symtab **result_ptr = data;
314
315 *result_ptr = symtab;
316 return 1;
317 }
318
319 /* A wrapper for iterate_over_symtabs that returns the first matching
320 symtab, or NULL. */
321
322 struct symtab *
323 lookup_symtab (const char *name)
324 {
325 struct symtab *result = NULL;
326
327 iterate_over_symtabs (name, lookup_symtab_callback, &result);
328 return result;
329 }
330
331 \f
332 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
333 full method name, which consist of the class name (from T), the unadorned
334 method name from METHOD_ID, and the signature for the specific overload,
335 specified by SIGNATURE_ID. Note that this function is g++ specific. */
336
337 char *
338 gdb_mangle_name (struct type *type, int method_id, int signature_id)
339 {
340 int mangled_name_len;
341 char *mangled_name;
342 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
343 struct fn_field *method = &f[signature_id];
344 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
345 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
346 const char *newname = type_name_no_tag (type);
347
348 /* Does the form of physname indicate that it is the full mangled name
349 of a constructor (not just the args)? */
350 int is_full_physname_constructor;
351
352 int is_constructor;
353 int is_destructor = is_destructor_name (physname);
354 /* Need a new type prefix. */
355 char *const_prefix = method->is_const ? "C" : "";
356 char *volatile_prefix = method->is_volatile ? "V" : "";
357 char buf[20];
358 int len = (newname == NULL ? 0 : strlen (newname));
359
360 /* Nothing to do if physname already contains a fully mangled v3 abi name
361 or an operator name. */
362 if ((physname[0] == '_' && physname[1] == 'Z')
363 || is_operator_name (field_name))
364 return xstrdup (physname);
365
366 is_full_physname_constructor = is_constructor_name (physname);
367
368 is_constructor = is_full_physname_constructor
369 || (newname && strcmp (field_name, newname) == 0);
370
371 if (!is_destructor)
372 is_destructor = (strncmp (physname, "__dt", 4) == 0);
373
374 if (is_destructor || is_full_physname_constructor)
375 {
376 mangled_name = (char *) xmalloc (strlen (physname) + 1);
377 strcpy (mangled_name, physname);
378 return mangled_name;
379 }
380
381 if (len == 0)
382 {
383 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
384 }
385 else if (physname[0] == 't' || physname[0] == 'Q')
386 {
387 /* The physname for template and qualified methods already includes
388 the class name. */
389 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
390 newname = NULL;
391 len = 0;
392 }
393 else
394 {
395 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
396 volatile_prefix, len);
397 }
398 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
399 + strlen (buf) + len + strlen (physname) + 1);
400
401 mangled_name = (char *) xmalloc (mangled_name_len);
402 if (is_constructor)
403 mangled_name[0] = '\0';
404 else
405 strcpy (mangled_name, field_name);
406
407 strcat (mangled_name, buf);
408 /* If the class doesn't have a name, i.e. newname NULL, then we just
409 mangle it using 0 for the length of the class. Thus it gets mangled
410 as something starting with `::' rather than `classname::'. */
411 if (newname != NULL)
412 strcat (mangled_name, newname);
413
414 strcat (mangled_name, physname);
415 return (mangled_name);
416 }
417
418 /* Initialize the cplus_specific structure. 'cplus_specific' should
419 only be allocated for use with cplus symbols. */
420
421 static void
422 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
423 struct objfile *objfile)
424 {
425 /* A language_specific structure should not have been previously
426 initialized. */
427 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
428 gdb_assert (objfile != NULL);
429
430 gsymbol->language_specific.cplus_specific =
431 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
432 }
433
434 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
435 correctly allocated. For C++ symbols a cplus_specific struct is
436 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
437 OBJFILE can be NULL. */
438
439 void
440 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
441 const char *name,
442 struct objfile *objfile)
443 {
444 if (gsymbol->language == language_cplus)
445 {
446 if (gsymbol->language_specific.cplus_specific == NULL)
447 symbol_init_cplus_specific (gsymbol, objfile);
448
449 gsymbol->language_specific.cplus_specific->demangled_name = name;
450 }
451 else
452 gsymbol->language_specific.mangled_lang.demangled_name = name;
453 }
454
455 /* Return the demangled name of GSYMBOL. */
456
457 const char *
458 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
459 {
460 if (gsymbol->language == language_cplus)
461 {
462 if (gsymbol->language_specific.cplus_specific != NULL)
463 return gsymbol->language_specific.cplus_specific->demangled_name;
464 else
465 return NULL;
466 }
467 else
468 return gsymbol->language_specific.mangled_lang.demangled_name;
469 }
470
471 \f
472 /* Initialize the language dependent portion of a symbol
473 depending upon the language for the symbol. */
474
475 void
476 symbol_set_language (struct general_symbol_info *gsymbol,
477 enum language language)
478 {
479 gsymbol->language = language;
480 if (gsymbol->language == language_d
481 || gsymbol->language == language_go
482 || gsymbol->language == language_java
483 || gsymbol->language == language_objc
484 || gsymbol->language == language_fortran)
485 {
486 symbol_set_demangled_name (gsymbol, NULL, NULL);
487 }
488 else if (gsymbol->language == language_cplus)
489 gsymbol->language_specific.cplus_specific = NULL;
490 else
491 {
492 memset (&gsymbol->language_specific, 0,
493 sizeof (gsymbol->language_specific));
494 }
495 }
496
497 /* Functions to initialize a symbol's mangled name. */
498
499 /* Objects of this type are stored in the demangled name hash table. */
500 struct demangled_name_entry
501 {
502 const char *mangled;
503 char demangled[1];
504 };
505
506 /* Hash function for the demangled name hash. */
507
508 static hashval_t
509 hash_demangled_name_entry (const void *data)
510 {
511 const struct demangled_name_entry *e = data;
512
513 return htab_hash_string (e->mangled);
514 }
515
516 /* Equality function for the demangled name hash. */
517
518 static int
519 eq_demangled_name_entry (const void *a, const void *b)
520 {
521 const struct demangled_name_entry *da = a;
522 const struct demangled_name_entry *db = b;
523
524 return strcmp (da->mangled, db->mangled) == 0;
525 }
526
527 /* Create the hash table used for demangled names. Each hash entry is
528 a pair of strings; one for the mangled name and one for the demangled
529 name. The entry is hashed via just the mangled name. */
530
531 static void
532 create_demangled_names_hash (struct objfile *objfile)
533 {
534 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
535 The hash table code will round this up to the next prime number.
536 Choosing a much larger table size wastes memory, and saves only about
537 1% in symbol reading. */
538
539 objfile->demangled_names_hash = htab_create_alloc
540 (256, hash_demangled_name_entry, eq_demangled_name_entry,
541 NULL, xcalloc, xfree);
542 }
543
544 /* Try to determine the demangled name for a symbol, based on the
545 language of that symbol. If the language is set to language_auto,
546 it will attempt to find any demangling algorithm that works and
547 then set the language appropriately. The returned name is allocated
548 by the demangler and should be xfree'd. */
549
550 static char *
551 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
552 const char *mangled)
553 {
554 char *demangled = NULL;
555
556 if (gsymbol->language == language_unknown)
557 gsymbol->language = language_auto;
558
559 if (gsymbol->language == language_objc
560 || gsymbol->language == language_auto)
561 {
562 demangled =
563 objc_demangle (mangled, 0);
564 if (demangled != NULL)
565 {
566 gsymbol->language = language_objc;
567 return demangled;
568 }
569 }
570 if (gsymbol->language == language_cplus
571 || gsymbol->language == language_auto)
572 {
573 demangled =
574 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
575 if (demangled != NULL)
576 {
577 gsymbol->language = language_cplus;
578 return demangled;
579 }
580 }
581 if (gsymbol->language == language_java)
582 {
583 demangled =
584 cplus_demangle (mangled,
585 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
586 if (demangled != NULL)
587 {
588 gsymbol->language = language_java;
589 return demangled;
590 }
591 }
592 if (gsymbol->language == language_d
593 || gsymbol->language == language_auto)
594 {
595 demangled = d_demangle(mangled, 0);
596 if (demangled != NULL)
597 {
598 gsymbol->language = language_d;
599 return demangled;
600 }
601 }
602 /* FIXME(dje): Continually adding languages here is clumsy.
603 Better to just call la_demangle if !auto, and if auto then call
604 a utility routine that tries successive languages in turn and reports
605 which one it finds. I realize the la_demangle options may be different
606 for different languages but there's already a FIXME for that. */
607 if (gsymbol->language == language_go
608 || gsymbol->language == language_auto)
609 {
610 demangled = go_demangle (mangled, 0);
611 if (demangled != NULL)
612 {
613 gsymbol->language = language_go;
614 return demangled;
615 }
616 }
617
618 /* We could support `gsymbol->language == language_fortran' here to provide
619 module namespaces also for inferiors with only minimal symbol table (ELF
620 symbols). Just the mangling standard is not standardized across compilers
621 and there is no DW_AT_producer available for inferiors with only the ELF
622 symbols to check the mangling kind. */
623 return NULL;
624 }
625
626 /* Set both the mangled and demangled (if any) names for GSYMBOL based
627 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
628 objfile's obstack; but if COPY_NAME is 0 and if NAME is
629 NUL-terminated, then this function assumes that NAME is already
630 correctly saved (either permanently or with a lifetime tied to the
631 objfile), and it will not be copied.
632
633 The hash table corresponding to OBJFILE is used, and the memory
634 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
635 so the pointer can be discarded after calling this function. */
636
637 /* We have to be careful when dealing with Java names: when we run
638 into a Java minimal symbol, we don't know it's a Java symbol, so it
639 gets demangled as a C++ name. This is unfortunate, but there's not
640 much we can do about it: but when demangling partial symbols and
641 regular symbols, we'd better not reuse the wrong demangled name.
642 (See PR gdb/1039.) We solve this by putting a distinctive prefix
643 on Java names when storing them in the hash table. */
644
645 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
646 don't mind the Java prefix so much: different languages have
647 different demangling requirements, so it's only natural that we
648 need to keep language data around in our demangling cache. But
649 it's not good that the minimal symbol has the wrong demangled name.
650 Unfortunately, I can't think of any easy solution to that
651 problem. */
652
653 #define JAVA_PREFIX "##JAVA$$"
654 #define JAVA_PREFIX_LEN 8
655
656 void
657 symbol_set_names (struct general_symbol_info *gsymbol,
658 const char *linkage_name, int len, int copy_name,
659 struct objfile *objfile)
660 {
661 struct demangled_name_entry **slot;
662 /* A 0-terminated copy of the linkage name. */
663 const char *linkage_name_copy;
664 /* A copy of the linkage name that might have a special Java prefix
665 added to it, for use when looking names up in the hash table. */
666 const char *lookup_name;
667 /* The length of lookup_name. */
668 int lookup_len;
669 struct demangled_name_entry entry;
670
671 if (gsymbol->language == language_ada)
672 {
673 /* In Ada, we do the symbol lookups using the mangled name, so
674 we can save some space by not storing the demangled name.
675
676 As a side note, we have also observed some overlap between
677 the C++ mangling and Ada mangling, similarly to what has
678 been observed with Java. Because we don't store the demangled
679 name with the symbol, we don't need to use the same trick
680 as Java. */
681 if (!copy_name)
682 gsymbol->name = linkage_name;
683 else
684 {
685 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
686
687 memcpy (name, linkage_name, len);
688 name[len] = '\0';
689 gsymbol->name = name;
690 }
691 symbol_set_demangled_name (gsymbol, NULL, NULL);
692
693 return;
694 }
695
696 if (objfile->demangled_names_hash == NULL)
697 create_demangled_names_hash (objfile);
698
699 /* The stabs reader generally provides names that are not
700 NUL-terminated; most of the other readers don't do this, so we
701 can just use the given copy, unless we're in the Java case. */
702 if (gsymbol->language == language_java)
703 {
704 char *alloc_name;
705
706 lookup_len = len + JAVA_PREFIX_LEN;
707 alloc_name = alloca (lookup_len + 1);
708 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
709 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
710 alloc_name[lookup_len] = '\0';
711
712 lookup_name = alloc_name;
713 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
714 }
715 else if (linkage_name[len] != '\0')
716 {
717 char *alloc_name;
718
719 lookup_len = len;
720 alloc_name = alloca (lookup_len + 1);
721 memcpy (alloc_name, linkage_name, len);
722 alloc_name[lookup_len] = '\0';
723
724 lookup_name = alloc_name;
725 linkage_name_copy = alloc_name;
726 }
727 else
728 {
729 lookup_len = len;
730 lookup_name = linkage_name;
731 linkage_name_copy = linkage_name;
732 }
733
734 entry.mangled = lookup_name;
735 slot = ((struct demangled_name_entry **)
736 htab_find_slot (objfile->demangled_names_hash,
737 &entry, INSERT));
738
739 /* If this name is not in the hash table, add it. */
740 if (*slot == NULL
741 /* A C version of the symbol may have already snuck into the table.
742 This happens to, e.g., main.init (__go_init_main). Cope. */
743 || (gsymbol->language == language_go
744 && (*slot)->demangled[0] == '\0'))
745 {
746 char *demangled_name = symbol_find_demangled_name (gsymbol,
747 linkage_name_copy);
748 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
749
750 /* Suppose we have demangled_name==NULL, copy_name==0, and
751 lookup_name==linkage_name. In this case, we already have the
752 mangled name saved, and we don't have a demangled name. So,
753 you might think we could save a little space by not recording
754 this in the hash table at all.
755
756 It turns out that it is actually important to still save such
757 an entry in the hash table, because storing this name gives
758 us better bcache hit rates for partial symbols. */
759 if (!copy_name && lookup_name == linkage_name)
760 {
761 *slot = obstack_alloc (&objfile->objfile_obstack,
762 offsetof (struct demangled_name_entry,
763 demangled)
764 + demangled_len + 1);
765 (*slot)->mangled = lookup_name;
766 }
767 else
768 {
769 char *mangled_ptr;
770
771 /* If we must copy the mangled name, put it directly after
772 the demangled name so we can have a single
773 allocation. */
774 *slot = obstack_alloc (&objfile->objfile_obstack,
775 offsetof (struct demangled_name_entry,
776 demangled)
777 + lookup_len + demangled_len + 2);
778 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
779 strcpy (mangled_ptr, lookup_name);
780 (*slot)->mangled = mangled_ptr;
781 }
782
783 if (demangled_name != NULL)
784 {
785 strcpy ((*slot)->demangled, demangled_name);
786 xfree (demangled_name);
787 }
788 else
789 (*slot)->demangled[0] = '\0';
790 }
791
792 gsymbol->name = (*slot)->mangled + lookup_len - len;
793 if ((*slot)->demangled[0] != '\0')
794 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
795 else
796 symbol_set_demangled_name (gsymbol, NULL, objfile);
797 }
798
799 /* Return the source code name of a symbol. In languages where
800 demangling is necessary, this is the demangled name. */
801
802 const char *
803 symbol_natural_name (const struct general_symbol_info *gsymbol)
804 {
805 switch (gsymbol->language)
806 {
807 case language_cplus:
808 case language_d:
809 case language_go:
810 case language_java:
811 case language_objc:
812 case language_fortran:
813 if (symbol_get_demangled_name (gsymbol) != NULL)
814 return symbol_get_demangled_name (gsymbol);
815 break;
816 case language_ada:
817 if (symbol_get_demangled_name (gsymbol) != NULL)
818 return symbol_get_demangled_name (gsymbol);
819 else
820 return ada_decode_symbol (gsymbol);
821 break;
822 default:
823 break;
824 }
825 return gsymbol->name;
826 }
827
828 /* Return the demangled name for a symbol based on the language for
829 that symbol. If no demangled name exists, return NULL. */
830
831 const char *
832 symbol_demangled_name (const struct general_symbol_info *gsymbol)
833 {
834 const char *dem_name = NULL;
835
836 switch (gsymbol->language)
837 {
838 case language_cplus:
839 case language_d:
840 case language_go:
841 case language_java:
842 case language_objc:
843 case language_fortran:
844 dem_name = symbol_get_demangled_name (gsymbol);
845 break;
846 case language_ada:
847 dem_name = symbol_get_demangled_name (gsymbol);
848 if (dem_name == NULL)
849 dem_name = ada_decode_symbol (gsymbol);
850 break;
851 default:
852 break;
853 }
854 return dem_name;
855 }
856
857 /* Return the search name of a symbol---generally the demangled or
858 linkage name of the symbol, depending on how it will be searched for.
859 If there is no distinct demangled name, then returns the same value
860 (same pointer) as SYMBOL_LINKAGE_NAME. */
861
862 const char *
863 symbol_search_name (const struct general_symbol_info *gsymbol)
864 {
865 if (gsymbol->language == language_ada)
866 return gsymbol->name;
867 else
868 return symbol_natural_name (gsymbol);
869 }
870
871 /* Initialize the structure fields to zero values. */
872
873 void
874 init_sal (struct symtab_and_line *sal)
875 {
876 sal->pspace = NULL;
877 sal->symtab = 0;
878 sal->section = 0;
879 sal->line = 0;
880 sal->pc = 0;
881 sal->end = 0;
882 sal->explicit_pc = 0;
883 sal->explicit_line = 0;
884 sal->probe = NULL;
885 }
886 \f
887
888 /* Return 1 if the two sections are the same, or if they could
889 plausibly be copies of each other, one in an original object
890 file and another in a separated debug file. */
891
892 int
893 matching_obj_sections (struct obj_section *obj_first,
894 struct obj_section *obj_second)
895 {
896 asection *first = obj_first? obj_first->the_bfd_section : NULL;
897 asection *second = obj_second? obj_second->the_bfd_section : NULL;
898 struct objfile *obj;
899
900 /* If they're the same section, then they match. */
901 if (first == second)
902 return 1;
903
904 /* If either is NULL, give up. */
905 if (first == NULL || second == NULL)
906 return 0;
907
908 /* This doesn't apply to absolute symbols. */
909 if (first->owner == NULL || second->owner == NULL)
910 return 0;
911
912 /* If they're in the same object file, they must be different sections. */
913 if (first->owner == second->owner)
914 return 0;
915
916 /* Check whether the two sections are potentially corresponding. They must
917 have the same size, address, and name. We can't compare section indexes,
918 which would be more reliable, because some sections may have been
919 stripped. */
920 if (bfd_get_section_size (first) != bfd_get_section_size (second))
921 return 0;
922
923 /* In-memory addresses may start at a different offset, relativize them. */
924 if (bfd_get_section_vma (first->owner, first)
925 - bfd_get_start_address (first->owner)
926 != bfd_get_section_vma (second->owner, second)
927 - bfd_get_start_address (second->owner))
928 return 0;
929
930 if (bfd_get_section_name (first->owner, first) == NULL
931 || bfd_get_section_name (second->owner, second) == NULL
932 || strcmp (bfd_get_section_name (first->owner, first),
933 bfd_get_section_name (second->owner, second)) != 0)
934 return 0;
935
936 /* Otherwise check that they are in corresponding objfiles. */
937
938 ALL_OBJFILES (obj)
939 if (obj->obfd == first->owner)
940 break;
941 gdb_assert (obj != NULL);
942
943 if (obj->separate_debug_objfile != NULL
944 && obj->separate_debug_objfile->obfd == second->owner)
945 return 1;
946 if (obj->separate_debug_objfile_backlink != NULL
947 && obj->separate_debug_objfile_backlink->obfd == second->owner)
948 return 1;
949
950 return 0;
951 }
952
953 struct symtab *
954 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
955 {
956 struct objfile *objfile;
957 struct minimal_symbol *msymbol;
958
959 /* If we know that this is not a text address, return failure. This is
960 necessary because we loop based on texthigh and textlow, which do
961 not include the data ranges. */
962 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
963 if (msymbol
964 && (MSYMBOL_TYPE (msymbol) == mst_data
965 || MSYMBOL_TYPE (msymbol) == mst_bss
966 || MSYMBOL_TYPE (msymbol) == mst_abs
967 || MSYMBOL_TYPE (msymbol) == mst_file_data
968 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
969 return NULL;
970
971 ALL_OBJFILES (objfile)
972 {
973 struct symtab *result = NULL;
974
975 if (objfile->sf)
976 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
977 pc, section, 0);
978 if (result)
979 return result;
980 }
981
982 return NULL;
983 }
984 \f
985 /* Debug symbols usually don't have section information. We need to dig that
986 out of the minimal symbols and stash that in the debug symbol. */
987
988 void
989 fixup_section (struct general_symbol_info *ginfo,
990 CORE_ADDR addr, struct objfile *objfile)
991 {
992 struct minimal_symbol *msym;
993
994 /* First, check whether a minimal symbol with the same name exists
995 and points to the same address. The address check is required
996 e.g. on PowerPC64, where the minimal symbol for a function will
997 point to the function descriptor, while the debug symbol will
998 point to the actual function code. */
999 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1000 if (msym)
1001 {
1002 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1003 ginfo->section = SYMBOL_SECTION (msym);
1004 }
1005 else
1006 {
1007 /* Static, function-local variables do appear in the linker
1008 (minimal) symbols, but are frequently given names that won't
1009 be found via lookup_minimal_symbol(). E.g., it has been
1010 observed in frv-uclinux (ELF) executables that a static,
1011 function-local variable named "foo" might appear in the
1012 linker symbols as "foo.6" or "foo.3". Thus, there is no
1013 point in attempting to extend the lookup-by-name mechanism to
1014 handle this case due to the fact that there can be multiple
1015 names.
1016
1017 So, instead, search the section table when lookup by name has
1018 failed. The ``addr'' and ``endaddr'' fields may have already
1019 been relocated. If so, the relocation offset (i.e. the
1020 ANOFFSET value) needs to be subtracted from these values when
1021 performing the comparison. We unconditionally subtract it,
1022 because, when no relocation has been performed, the ANOFFSET
1023 value will simply be zero.
1024
1025 The address of the symbol whose section we're fixing up HAS
1026 NOT BEEN adjusted (relocated) yet. It can't have been since
1027 the section isn't yet known and knowing the section is
1028 necessary in order to add the correct relocation value. In
1029 other words, we wouldn't even be in this function (attempting
1030 to compute the section) if it were already known.
1031
1032 Note that it is possible to search the minimal symbols
1033 (subtracting the relocation value if necessary) to find the
1034 matching minimal symbol, but this is overkill and much less
1035 efficient. It is not necessary to find the matching minimal
1036 symbol, only its section.
1037
1038 Note that this technique (of doing a section table search)
1039 can fail when unrelocated section addresses overlap. For
1040 this reason, we still attempt a lookup by name prior to doing
1041 a search of the section table. */
1042
1043 struct obj_section *s;
1044
1045 ALL_OBJFILE_OSECTIONS (objfile, s)
1046 {
1047 int idx = s->the_bfd_section->index;
1048 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1049
1050 if (obj_section_addr (s) - offset <= addr
1051 && addr < obj_section_endaddr (s) - offset)
1052 {
1053 ginfo->obj_section = s;
1054 ginfo->section = idx;
1055 return;
1056 }
1057 }
1058 }
1059 }
1060
1061 struct symbol *
1062 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1063 {
1064 CORE_ADDR addr;
1065
1066 if (!sym)
1067 return NULL;
1068
1069 if (SYMBOL_OBJ_SECTION (sym))
1070 return sym;
1071
1072 /* We either have an OBJFILE, or we can get at it from the sym's
1073 symtab. Anything else is a bug. */
1074 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1075
1076 if (objfile == NULL)
1077 objfile = SYMBOL_SYMTAB (sym)->objfile;
1078
1079 /* We should have an objfile by now. */
1080 gdb_assert (objfile);
1081
1082 switch (SYMBOL_CLASS (sym))
1083 {
1084 case LOC_STATIC:
1085 case LOC_LABEL:
1086 addr = SYMBOL_VALUE_ADDRESS (sym);
1087 break;
1088 case LOC_BLOCK:
1089 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1090 break;
1091
1092 default:
1093 /* Nothing else will be listed in the minsyms -- no use looking
1094 it up. */
1095 return sym;
1096 }
1097
1098 fixup_section (&sym->ginfo, addr, objfile);
1099
1100 return sym;
1101 }
1102
1103 /* Compute the demangled form of NAME as used by the various symbol
1104 lookup functions. The result is stored in *RESULT_NAME. Returns a
1105 cleanup which can be used to clean up the result.
1106
1107 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1108 Normally, Ada symbol lookups are performed using the encoded name
1109 rather than the demangled name, and so it might seem to make sense
1110 for this function to return an encoded version of NAME.
1111 Unfortunately, we cannot do this, because this function is used in
1112 circumstances where it is not appropriate to try to encode NAME.
1113 For instance, when displaying the frame info, we demangle the name
1114 of each parameter, and then perform a symbol lookup inside our
1115 function using that demangled name. In Ada, certain functions
1116 have internally-generated parameters whose name contain uppercase
1117 characters. Encoding those name would result in those uppercase
1118 characters to become lowercase, and thus cause the symbol lookup
1119 to fail. */
1120
1121 struct cleanup *
1122 demangle_for_lookup (const char *name, enum language lang,
1123 const char **result_name)
1124 {
1125 char *demangled_name = NULL;
1126 const char *modified_name = NULL;
1127 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1128
1129 modified_name = name;
1130
1131 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1132 lookup, so we can always binary search. */
1133 if (lang == language_cplus)
1134 {
1135 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1136 if (demangled_name)
1137 {
1138 modified_name = demangled_name;
1139 make_cleanup (xfree, demangled_name);
1140 }
1141 else
1142 {
1143 /* If we were given a non-mangled name, canonicalize it
1144 according to the language (so far only for C++). */
1145 demangled_name = cp_canonicalize_string (name);
1146 if (demangled_name)
1147 {
1148 modified_name = demangled_name;
1149 make_cleanup (xfree, demangled_name);
1150 }
1151 }
1152 }
1153 else if (lang == language_java)
1154 {
1155 demangled_name = cplus_demangle (name,
1156 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1157 if (demangled_name)
1158 {
1159 modified_name = demangled_name;
1160 make_cleanup (xfree, demangled_name);
1161 }
1162 }
1163 else if (lang == language_d)
1164 {
1165 demangled_name = d_demangle (name, 0);
1166 if (demangled_name)
1167 {
1168 modified_name = demangled_name;
1169 make_cleanup (xfree, demangled_name);
1170 }
1171 }
1172 else if (lang == language_go)
1173 {
1174 demangled_name = go_demangle (name, 0);
1175 if (demangled_name)
1176 {
1177 modified_name = demangled_name;
1178 make_cleanup (xfree, demangled_name);
1179 }
1180 }
1181
1182 *result_name = modified_name;
1183 return cleanup;
1184 }
1185
1186 /* Find the definition for a specified symbol name NAME
1187 in domain DOMAIN, visible from lexical block BLOCK.
1188 Returns the struct symbol pointer, or zero if no symbol is found.
1189 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1190 NAME is a field of the current implied argument `this'. If so set
1191 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1192 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1193 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1194
1195 /* This function (or rather its subordinates) have a bunch of loops and
1196 it would seem to be attractive to put in some QUIT's (though I'm not really
1197 sure whether it can run long enough to be really important). But there
1198 are a few calls for which it would appear to be bad news to quit
1199 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1200 that there is C++ code below which can error(), but that probably
1201 doesn't affect these calls since they are looking for a known
1202 variable and thus can probably assume it will never hit the C++
1203 code). */
1204
1205 struct symbol *
1206 lookup_symbol_in_language (const char *name, const struct block *block,
1207 const domain_enum domain, enum language lang,
1208 struct field_of_this_result *is_a_field_of_this)
1209 {
1210 const char *modified_name;
1211 struct symbol *returnval;
1212 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1213
1214 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1215 is_a_field_of_this);
1216 do_cleanups (cleanup);
1217
1218 return returnval;
1219 }
1220
1221 /* Behave like lookup_symbol_in_language, but performed with the
1222 current language. */
1223
1224 struct symbol *
1225 lookup_symbol (const char *name, const struct block *block,
1226 domain_enum domain,
1227 struct field_of_this_result *is_a_field_of_this)
1228 {
1229 return lookup_symbol_in_language (name, block, domain,
1230 current_language->la_language,
1231 is_a_field_of_this);
1232 }
1233
1234 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1235 found, or NULL if not found. */
1236
1237 struct symbol *
1238 lookup_language_this (const struct language_defn *lang,
1239 const struct block *block)
1240 {
1241 if (lang->la_name_of_this == NULL || block == NULL)
1242 return NULL;
1243
1244 while (block)
1245 {
1246 struct symbol *sym;
1247
1248 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1249 if (sym != NULL)
1250 {
1251 block_found = block;
1252 return sym;
1253 }
1254 if (BLOCK_FUNCTION (block))
1255 break;
1256 block = BLOCK_SUPERBLOCK (block);
1257 }
1258
1259 return NULL;
1260 }
1261
1262 /* Given TYPE, a structure/union,
1263 return 1 if the component named NAME from the ultimate target
1264 structure/union is defined, otherwise, return 0. */
1265
1266 static int
1267 check_field (struct type *type, const char *name,
1268 struct field_of_this_result *is_a_field_of_this)
1269 {
1270 int i;
1271
1272 /* The type may be a stub. */
1273 CHECK_TYPEDEF (type);
1274
1275 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1276 {
1277 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1278
1279 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1280 {
1281 is_a_field_of_this->type = type;
1282 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1283 return 1;
1284 }
1285 }
1286
1287 /* C++: If it was not found as a data field, then try to return it
1288 as a pointer to a method. */
1289
1290 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1291 {
1292 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1293 {
1294 is_a_field_of_this->type = type;
1295 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1296 return 1;
1297 }
1298 }
1299
1300 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1301 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1302 return 1;
1303
1304 return 0;
1305 }
1306
1307 /* Behave like lookup_symbol except that NAME is the natural name
1308 (e.g., demangled name) of the symbol that we're looking for. */
1309
1310 static struct symbol *
1311 lookup_symbol_aux (const char *name, const struct block *block,
1312 const domain_enum domain, enum language language,
1313 struct field_of_this_result *is_a_field_of_this)
1314 {
1315 struct symbol *sym;
1316 const struct language_defn *langdef;
1317
1318 /* Make sure we do something sensible with is_a_field_of_this, since
1319 the callers that set this parameter to some non-null value will
1320 certainly use it later. If we don't set it, the contents of
1321 is_a_field_of_this are undefined. */
1322 if (is_a_field_of_this != NULL)
1323 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1324
1325 /* Search specified block and its superiors. Don't search
1326 STATIC_BLOCK or GLOBAL_BLOCK. */
1327
1328 sym = lookup_symbol_aux_local (name, block, domain, language);
1329 if (sym != NULL)
1330 return sym;
1331
1332 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1333 check to see if NAME is a field of `this'. */
1334
1335 langdef = language_def (language);
1336
1337 /* Don't do this check if we are searching for a struct. It will
1338 not be found by check_field, but will be found by other
1339 means. */
1340 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1341 {
1342 struct symbol *sym = lookup_language_this (langdef, block);
1343
1344 if (sym)
1345 {
1346 struct type *t = sym->type;
1347
1348 /* I'm not really sure that type of this can ever
1349 be typedefed; just be safe. */
1350 CHECK_TYPEDEF (t);
1351 if (TYPE_CODE (t) == TYPE_CODE_PTR
1352 || TYPE_CODE (t) == TYPE_CODE_REF)
1353 t = TYPE_TARGET_TYPE (t);
1354
1355 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1356 && TYPE_CODE (t) != TYPE_CODE_UNION)
1357 error (_("Internal error: `%s' is not an aggregate"),
1358 langdef->la_name_of_this);
1359
1360 if (check_field (t, name, is_a_field_of_this))
1361 return NULL;
1362 }
1363 }
1364
1365 /* Now do whatever is appropriate for LANGUAGE to look
1366 up static and global variables. */
1367
1368 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1369 if (sym != NULL)
1370 return sym;
1371
1372 /* Now search all static file-level symbols. Not strictly correct,
1373 but more useful than an error. */
1374
1375 return lookup_static_symbol_aux (name, domain);
1376 }
1377
1378 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1379 first, then check the psymtabs. If a psymtab indicates the existence of the
1380 desired name as a file-level static, then do psymtab-to-symtab conversion on
1381 the fly and return the found symbol. */
1382
1383 struct symbol *
1384 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1385 {
1386 struct objfile *objfile;
1387 struct symbol *sym;
1388
1389 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1390 if (sym != NULL)
1391 return sym;
1392
1393 ALL_OBJFILES (objfile)
1394 {
1395 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1396 if (sym != NULL)
1397 return sym;
1398 }
1399
1400 return NULL;
1401 }
1402
1403 /* Check to see if the symbol is defined in BLOCK or its superiors.
1404 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1405
1406 static struct symbol *
1407 lookup_symbol_aux_local (const char *name, const struct block *block,
1408 const domain_enum domain,
1409 enum language language)
1410 {
1411 struct symbol *sym;
1412 const struct block *static_block = block_static_block (block);
1413 const char *scope = block_scope (block);
1414
1415 /* Check if either no block is specified or it's a global block. */
1416
1417 if (static_block == NULL)
1418 return NULL;
1419
1420 while (block != static_block)
1421 {
1422 sym = lookup_symbol_aux_block (name, block, domain);
1423 if (sym != NULL)
1424 return sym;
1425
1426 if (language == language_cplus || language == language_fortran)
1427 {
1428 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1429 domain);
1430 if (sym != NULL)
1431 return sym;
1432 }
1433
1434 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1435 break;
1436 block = BLOCK_SUPERBLOCK (block);
1437 }
1438
1439 /* We've reached the edge of the function without finding a result. */
1440
1441 return NULL;
1442 }
1443
1444 /* Look up OBJFILE to BLOCK. */
1445
1446 struct objfile *
1447 lookup_objfile_from_block (const struct block *block)
1448 {
1449 struct objfile *obj;
1450 struct symtab *s;
1451
1452 if (block == NULL)
1453 return NULL;
1454
1455 block = block_global_block (block);
1456 /* Go through SYMTABS. */
1457 ALL_SYMTABS (obj, s)
1458 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1459 {
1460 if (obj->separate_debug_objfile_backlink)
1461 obj = obj->separate_debug_objfile_backlink;
1462
1463 return obj;
1464 }
1465
1466 return NULL;
1467 }
1468
1469 /* Look up a symbol in a block; if found, fixup the symbol, and set
1470 block_found appropriately. */
1471
1472 struct symbol *
1473 lookup_symbol_aux_block (const char *name, const struct block *block,
1474 const domain_enum domain)
1475 {
1476 struct symbol *sym;
1477
1478 sym = lookup_block_symbol (block, name, domain);
1479 if (sym)
1480 {
1481 block_found = block;
1482 return fixup_symbol_section (sym, NULL);
1483 }
1484
1485 return NULL;
1486 }
1487
1488 /* Check all global symbols in OBJFILE in symtabs and
1489 psymtabs. */
1490
1491 struct symbol *
1492 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1493 const char *name,
1494 const domain_enum domain)
1495 {
1496 const struct objfile *objfile;
1497 struct symbol *sym;
1498 struct blockvector *bv;
1499 const struct block *block;
1500 struct symtab *s;
1501
1502 for (objfile = main_objfile;
1503 objfile;
1504 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1505 {
1506 /* Go through symtabs. */
1507 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1508 {
1509 bv = BLOCKVECTOR (s);
1510 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1511 sym = lookup_block_symbol (block, name, domain);
1512 if (sym)
1513 {
1514 block_found = block;
1515 return fixup_symbol_section (sym, (struct objfile *)objfile);
1516 }
1517 }
1518
1519 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1520 name, domain);
1521 if (sym)
1522 return sym;
1523 }
1524
1525 return NULL;
1526 }
1527
1528 /* Check to see if the symbol is defined in one of the OBJFILE's
1529 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1530 depending on whether or not we want to search global symbols or
1531 static symbols. */
1532
1533 static struct symbol *
1534 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1535 const char *name, const domain_enum domain)
1536 {
1537 struct symbol *sym = NULL;
1538 struct blockvector *bv;
1539 const struct block *block;
1540 struct symtab *s;
1541
1542 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1543 {
1544 bv = BLOCKVECTOR (s);
1545 block = BLOCKVECTOR_BLOCK (bv, block_index);
1546 sym = lookup_block_symbol (block, name, domain);
1547 if (sym)
1548 {
1549 block_found = block;
1550 return fixup_symbol_section (sym, objfile);
1551 }
1552 }
1553
1554 return NULL;
1555 }
1556
1557 /* Same as lookup_symbol_aux_objfile, except that it searches all
1558 objfiles. Return the first match found. */
1559
1560 static struct symbol *
1561 lookup_symbol_aux_symtabs (int block_index, const char *name,
1562 const domain_enum domain)
1563 {
1564 struct symbol *sym;
1565 struct objfile *objfile;
1566
1567 ALL_OBJFILES (objfile)
1568 {
1569 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1570 if (sym)
1571 return sym;
1572 }
1573
1574 return NULL;
1575 }
1576
1577 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1578 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1579 and all related objfiles. */
1580
1581 static struct symbol *
1582 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1583 const char *linkage_name,
1584 domain_enum domain)
1585 {
1586 enum language lang = current_language->la_language;
1587 const char *modified_name;
1588 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1589 &modified_name);
1590 struct objfile *main_objfile, *cur_objfile;
1591
1592 if (objfile->separate_debug_objfile_backlink)
1593 main_objfile = objfile->separate_debug_objfile_backlink;
1594 else
1595 main_objfile = objfile;
1596
1597 for (cur_objfile = main_objfile;
1598 cur_objfile;
1599 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1600 {
1601 struct symbol *sym;
1602
1603 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1604 modified_name, domain);
1605 if (sym == NULL)
1606 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1607 modified_name, domain);
1608 if (sym != NULL)
1609 {
1610 do_cleanups (cleanup);
1611 return sym;
1612 }
1613 }
1614
1615 do_cleanups (cleanup);
1616 return NULL;
1617 }
1618
1619 /* A helper function for lookup_symbol_aux that interfaces with the
1620 "quick" symbol table functions. */
1621
1622 static struct symbol *
1623 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1624 const char *name, const domain_enum domain)
1625 {
1626 struct symtab *symtab;
1627 struct blockvector *bv;
1628 const struct block *block;
1629 struct symbol *sym;
1630
1631 if (!objfile->sf)
1632 return NULL;
1633 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1634 if (!symtab)
1635 return NULL;
1636
1637 bv = BLOCKVECTOR (symtab);
1638 block = BLOCKVECTOR_BLOCK (bv, kind);
1639 sym = lookup_block_symbol (block, name, domain);
1640 if (!sym)
1641 {
1642 /* This shouldn't be necessary, but as a last resort try
1643 looking in the statics even though the psymtab claimed
1644 the symbol was global, or vice-versa. It's possible
1645 that the psymtab gets it wrong in some cases. */
1646
1647 /* FIXME: carlton/2002-09-30: Should we really do that?
1648 If that happens, isn't it likely to be a GDB error, in
1649 which case we should fix the GDB error rather than
1650 silently dealing with it here? So I'd vote for
1651 removing the check for the symbol in the other
1652 block. */
1653 block = BLOCKVECTOR_BLOCK (bv,
1654 kind == GLOBAL_BLOCK ?
1655 STATIC_BLOCK : GLOBAL_BLOCK);
1656 sym = lookup_block_symbol (block, name, domain);
1657 if (!sym)
1658 error (_("\
1659 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1660 %s may be an inlined function, or may be a template function\n\
1661 (if a template, try specifying an instantiation: %s<type>)."),
1662 kind == GLOBAL_BLOCK ? "global" : "static",
1663 name, symtab_to_filename_for_display (symtab), name, name);
1664 }
1665 return fixup_symbol_section (sym, objfile);
1666 }
1667
1668 /* A default version of lookup_symbol_nonlocal for use by languages
1669 that can't think of anything better to do. This implements the C
1670 lookup rules. */
1671
1672 struct symbol *
1673 basic_lookup_symbol_nonlocal (const char *name,
1674 const struct block *block,
1675 const domain_enum domain)
1676 {
1677 struct symbol *sym;
1678
1679 /* NOTE: carlton/2003-05-19: The comments below were written when
1680 this (or what turned into this) was part of lookup_symbol_aux;
1681 I'm much less worried about these questions now, since these
1682 decisions have turned out well, but I leave these comments here
1683 for posterity. */
1684
1685 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1686 not it would be appropriate to search the current global block
1687 here as well. (That's what this code used to do before the
1688 is_a_field_of_this check was moved up.) On the one hand, it's
1689 redundant with the lookup_symbol_aux_symtabs search that happens
1690 next. On the other hand, if decode_line_1 is passed an argument
1691 like filename:var, then the user presumably wants 'var' to be
1692 searched for in filename. On the third hand, there shouldn't be
1693 multiple global variables all of which are named 'var', and it's
1694 not like decode_line_1 has ever restricted its search to only
1695 global variables in a single filename. All in all, only
1696 searching the static block here seems best: it's correct and it's
1697 cleanest. */
1698
1699 /* NOTE: carlton/2002-12-05: There's also a possible performance
1700 issue here: if you usually search for global symbols in the
1701 current file, then it would be slightly better to search the
1702 current global block before searching all the symtabs. But there
1703 are other factors that have a much greater effect on performance
1704 than that one, so I don't think we should worry about that for
1705 now. */
1706
1707 sym = lookup_symbol_static (name, block, domain);
1708 if (sym != NULL)
1709 return sym;
1710
1711 return lookup_symbol_global (name, block, domain);
1712 }
1713
1714 /* Lookup a symbol in the static block associated to BLOCK, if there
1715 is one; do nothing if BLOCK is NULL or a global block. */
1716
1717 struct symbol *
1718 lookup_symbol_static (const char *name,
1719 const struct block *block,
1720 const domain_enum domain)
1721 {
1722 const struct block *static_block = block_static_block (block);
1723
1724 if (static_block != NULL)
1725 return lookup_symbol_aux_block (name, static_block, domain);
1726 else
1727 return NULL;
1728 }
1729
1730 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1731
1732 struct global_sym_lookup_data
1733 {
1734 /* The name of the symbol we are searching for. */
1735 const char *name;
1736
1737 /* The domain to use for our search. */
1738 domain_enum domain;
1739
1740 /* The field where the callback should store the symbol if found.
1741 It should be initialized to NULL before the search is started. */
1742 struct symbol *result;
1743 };
1744
1745 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1746 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1747 OBJFILE. The arguments for the search are passed via CB_DATA,
1748 which in reality is a pointer to struct global_sym_lookup_data. */
1749
1750 static int
1751 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1752 void *cb_data)
1753 {
1754 struct global_sym_lookup_data *data =
1755 (struct global_sym_lookup_data *) cb_data;
1756
1757 gdb_assert (data->result == NULL);
1758
1759 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1760 data->name, data->domain);
1761 if (data->result == NULL)
1762 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1763 data->name, data->domain);
1764
1765 /* If we found a match, tell the iterator to stop. Otherwise,
1766 keep going. */
1767 return (data->result != NULL);
1768 }
1769
1770 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1771 necessary). */
1772
1773 struct symbol *
1774 lookup_symbol_global (const char *name,
1775 const struct block *block,
1776 const domain_enum domain)
1777 {
1778 struct symbol *sym = NULL;
1779 struct objfile *objfile = NULL;
1780 struct global_sym_lookup_data lookup_data;
1781
1782 /* Call library-specific lookup procedure. */
1783 objfile = lookup_objfile_from_block (block);
1784 if (objfile != NULL)
1785 sym = solib_global_lookup (objfile, name, domain);
1786 if (sym != NULL)
1787 return sym;
1788
1789 memset (&lookup_data, 0, sizeof (lookup_data));
1790 lookup_data.name = name;
1791 lookup_data.domain = domain;
1792 gdbarch_iterate_over_objfiles_in_search_order
1793 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1794 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1795
1796 return lookup_data.result;
1797 }
1798
1799 int
1800 symbol_matches_domain (enum language symbol_language,
1801 domain_enum symbol_domain,
1802 domain_enum domain)
1803 {
1804 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1805 A Java class declaration also defines a typedef for the class.
1806 Similarly, any Ada type declaration implicitly defines a typedef. */
1807 if (symbol_language == language_cplus
1808 || symbol_language == language_d
1809 || symbol_language == language_java
1810 || symbol_language == language_ada)
1811 {
1812 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1813 && symbol_domain == STRUCT_DOMAIN)
1814 return 1;
1815 }
1816 /* For all other languages, strict match is required. */
1817 return (symbol_domain == domain);
1818 }
1819
1820 /* Look up a type named NAME in the struct_domain. The type returned
1821 must not be opaque -- i.e., must have at least one field
1822 defined. */
1823
1824 struct type *
1825 lookup_transparent_type (const char *name)
1826 {
1827 return current_language->la_lookup_transparent_type (name);
1828 }
1829
1830 /* A helper for basic_lookup_transparent_type that interfaces with the
1831 "quick" symbol table functions. */
1832
1833 static struct type *
1834 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1835 const char *name)
1836 {
1837 struct symtab *symtab;
1838 struct blockvector *bv;
1839 struct block *block;
1840 struct symbol *sym;
1841
1842 if (!objfile->sf)
1843 return NULL;
1844 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1845 if (!symtab)
1846 return NULL;
1847
1848 bv = BLOCKVECTOR (symtab);
1849 block = BLOCKVECTOR_BLOCK (bv, kind);
1850 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1851 if (!sym)
1852 {
1853 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1854
1855 /* This shouldn't be necessary, but as a last resort
1856 * try looking in the 'other kind' even though the psymtab
1857 * claimed the symbol was one thing. It's possible that
1858 * the psymtab gets it wrong in some cases.
1859 */
1860 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1861 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1862 if (!sym)
1863 /* FIXME; error is wrong in one case. */
1864 error (_("\
1865 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1866 %s may be an inlined function, or may be a template function\n\
1867 (if a template, try specifying an instantiation: %s<type>)."),
1868 name, symtab_to_filename_for_display (symtab), name, name);
1869 }
1870 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1871 return SYMBOL_TYPE (sym);
1872
1873 return NULL;
1874 }
1875
1876 /* The standard implementation of lookup_transparent_type. This code
1877 was modeled on lookup_symbol -- the parts not relevant to looking
1878 up types were just left out. In particular it's assumed here that
1879 types are available in struct_domain and only at file-static or
1880 global blocks. */
1881
1882 struct type *
1883 basic_lookup_transparent_type (const char *name)
1884 {
1885 struct symbol *sym;
1886 struct symtab *s = NULL;
1887 struct blockvector *bv;
1888 struct objfile *objfile;
1889 struct block *block;
1890 struct type *t;
1891
1892 /* Now search all the global symbols. Do the symtab's first, then
1893 check the psymtab's. If a psymtab indicates the existence
1894 of the desired name as a global, then do psymtab-to-symtab
1895 conversion on the fly and return the found symbol. */
1896
1897 ALL_OBJFILES (objfile)
1898 {
1899 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1900 {
1901 bv = BLOCKVECTOR (s);
1902 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1903 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1904 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1905 {
1906 return SYMBOL_TYPE (sym);
1907 }
1908 }
1909 }
1910
1911 ALL_OBJFILES (objfile)
1912 {
1913 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1914 if (t)
1915 return t;
1916 }
1917
1918 /* Now search the static file-level symbols.
1919 Not strictly correct, but more useful than an error.
1920 Do the symtab's first, then
1921 check the psymtab's. If a psymtab indicates the existence
1922 of the desired name as a file-level static, then do psymtab-to-symtab
1923 conversion on the fly and return the found symbol. */
1924
1925 ALL_OBJFILES (objfile)
1926 {
1927 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1928 {
1929 bv = BLOCKVECTOR (s);
1930 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1931 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1932 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1933 {
1934 return SYMBOL_TYPE (sym);
1935 }
1936 }
1937 }
1938
1939 ALL_OBJFILES (objfile)
1940 {
1941 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1942 if (t)
1943 return t;
1944 }
1945
1946 return (struct type *) 0;
1947 }
1948
1949 /* Find the name of the file containing main(). */
1950 /* FIXME: What about languages without main() or specially linked
1951 executables that have no main() ? */
1952
1953 const char *
1954 find_main_filename (void)
1955 {
1956 struct objfile *objfile;
1957 char *name = main_name ();
1958
1959 ALL_OBJFILES (objfile)
1960 {
1961 const char *result;
1962
1963 if (!objfile->sf)
1964 continue;
1965 result = objfile->sf->qf->find_symbol_file (objfile, name);
1966 if (result)
1967 return result;
1968 }
1969 return (NULL);
1970 }
1971
1972 /* Search BLOCK for symbol NAME in DOMAIN.
1973
1974 Note that if NAME is the demangled form of a C++ symbol, we will fail
1975 to find a match during the binary search of the non-encoded names, but
1976 for now we don't worry about the slight inefficiency of looking for
1977 a match we'll never find, since it will go pretty quick. Once the
1978 binary search terminates, we drop through and do a straight linear
1979 search on the symbols. Each symbol which is marked as being a ObjC/C++
1980 symbol (language_cplus or language_objc set) has both the encoded and
1981 non-encoded names tested for a match. */
1982
1983 struct symbol *
1984 lookup_block_symbol (const struct block *block, const char *name,
1985 const domain_enum domain)
1986 {
1987 struct block_iterator iter;
1988 struct symbol *sym;
1989
1990 if (!BLOCK_FUNCTION (block))
1991 {
1992 for (sym = block_iter_name_first (block, name, &iter);
1993 sym != NULL;
1994 sym = block_iter_name_next (name, &iter))
1995 {
1996 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1997 SYMBOL_DOMAIN (sym), domain))
1998 return sym;
1999 }
2000 return NULL;
2001 }
2002 else
2003 {
2004 /* Note that parameter symbols do not always show up last in the
2005 list; this loop makes sure to take anything else other than
2006 parameter symbols first; it only uses parameter symbols as a
2007 last resort. Note that this only takes up extra computation
2008 time on a match. */
2009
2010 struct symbol *sym_found = NULL;
2011
2012 for (sym = block_iter_name_first (block, name, &iter);
2013 sym != NULL;
2014 sym = block_iter_name_next (name, &iter))
2015 {
2016 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2017 SYMBOL_DOMAIN (sym), domain))
2018 {
2019 sym_found = sym;
2020 if (!SYMBOL_IS_ARGUMENT (sym))
2021 {
2022 break;
2023 }
2024 }
2025 }
2026 return (sym_found); /* Will be NULL if not found. */
2027 }
2028 }
2029
2030 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2031
2032 For each symbol that matches, CALLBACK is called. The symbol and
2033 DATA are passed to the callback.
2034
2035 If CALLBACK returns zero, the iteration ends. Otherwise, the
2036 search continues. */
2037
2038 void
2039 iterate_over_symbols (const struct block *block, const char *name,
2040 const domain_enum domain,
2041 symbol_found_callback_ftype *callback,
2042 void *data)
2043 {
2044 struct block_iterator iter;
2045 struct symbol *sym;
2046
2047 for (sym = block_iter_name_first (block, name, &iter);
2048 sym != NULL;
2049 sym = block_iter_name_next (name, &iter))
2050 {
2051 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2052 SYMBOL_DOMAIN (sym), domain))
2053 {
2054 if (!callback (sym, data))
2055 return;
2056 }
2057 }
2058 }
2059
2060 /* Find the symtab associated with PC and SECTION. Look through the
2061 psymtabs and read in another symtab if necessary. */
2062
2063 struct symtab *
2064 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2065 {
2066 struct block *b;
2067 struct blockvector *bv;
2068 struct symtab *s = NULL;
2069 struct symtab *best_s = NULL;
2070 struct objfile *objfile;
2071 CORE_ADDR distance = 0;
2072 struct minimal_symbol *msymbol;
2073
2074 /* If we know that this is not a text address, return failure. This is
2075 necessary because we loop based on the block's high and low code
2076 addresses, which do not include the data ranges, and because
2077 we call find_pc_sect_psymtab which has a similar restriction based
2078 on the partial_symtab's texthigh and textlow. */
2079 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2080 if (msymbol
2081 && (MSYMBOL_TYPE (msymbol) == mst_data
2082 || MSYMBOL_TYPE (msymbol) == mst_bss
2083 || MSYMBOL_TYPE (msymbol) == mst_abs
2084 || MSYMBOL_TYPE (msymbol) == mst_file_data
2085 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2086 return NULL;
2087
2088 /* Search all symtabs for the one whose file contains our address, and which
2089 is the smallest of all the ones containing the address. This is designed
2090 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2091 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2092 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2093
2094 This happens for native ecoff format, where code from included files
2095 gets its own symtab. The symtab for the included file should have
2096 been read in already via the dependency mechanism.
2097 It might be swifter to create several symtabs with the same name
2098 like xcoff does (I'm not sure).
2099
2100 It also happens for objfiles that have their functions reordered.
2101 For these, the symtab we are looking for is not necessarily read in. */
2102
2103 ALL_PRIMARY_SYMTABS (objfile, s)
2104 {
2105 bv = BLOCKVECTOR (s);
2106 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2107
2108 if (BLOCK_START (b) <= pc
2109 && BLOCK_END (b) > pc
2110 && (distance == 0
2111 || BLOCK_END (b) - BLOCK_START (b) < distance))
2112 {
2113 /* For an objfile that has its functions reordered,
2114 find_pc_psymtab will find the proper partial symbol table
2115 and we simply return its corresponding symtab. */
2116 /* In order to better support objfiles that contain both
2117 stabs and coff debugging info, we continue on if a psymtab
2118 can't be found. */
2119 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2120 {
2121 struct symtab *result;
2122
2123 result
2124 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2125 msymbol,
2126 pc, section,
2127 0);
2128 if (result)
2129 return result;
2130 }
2131 if (section != 0)
2132 {
2133 struct block_iterator iter;
2134 struct symbol *sym = NULL;
2135
2136 ALL_BLOCK_SYMBOLS (b, iter, sym)
2137 {
2138 fixup_symbol_section (sym, objfile);
2139 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2140 break;
2141 }
2142 if (sym == NULL)
2143 continue; /* No symbol in this symtab matches
2144 section. */
2145 }
2146 distance = BLOCK_END (b) - BLOCK_START (b);
2147 best_s = s;
2148 }
2149 }
2150
2151 if (best_s != NULL)
2152 return (best_s);
2153
2154 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2155
2156 ALL_OBJFILES (objfile)
2157 {
2158 struct symtab *result;
2159
2160 if (!objfile->sf)
2161 continue;
2162 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2163 msymbol,
2164 pc, section,
2165 1);
2166 if (result)
2167 return result;
2168 }
2169
2170 return NULL;
2171 }
2172
2173 /* Find the symtab associated with PC. Look through the psymtabs and read
2174 in another symtab if necessary. Backward compatibility, no section. */
2175
2176 struct symtab *
2177 find_pc_symtab (CORE_ADDR pc)
2178 {
2179 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2180 }
2181 \f
2182
2183 /* Find the source file and line number for a given PC value and SECTION.
2184 Return a structure containing a symtab pointer, a line number,
2185 and a pc range for the entire source line.
2186 The value's .pc field is NOT the specified pc.
2187 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2188 use the line that ends there. Otherwise, in that case, the line
2189 that begins there is used. */
2190
2191 /* The big complication here is that a line may start in one file, and end just
2192 before the start of another file. This usually occurs when you #include
2193 code in the middle of a subroutine. To properly find the end of a line's PC
2194 range, we must search all symtabs associated with this compilation unit, and
2195 find the one whose first PC is closer than that of the next line in this
2196 symtab. */
2197
2198 /* If it's worth the effort, we could be using a binary search. */
2199
2200 struct symtab_and_line
2201 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2202 {
2203 struct symtab *s;
2204 struct linetable *l;
2205 int len;
2206 int i;
2207 struct linetable_entry *item;
2208 struct symtab_and_line val;
2209 struct blockvector *bv;
2210 struct minimal_symbol *msymbol;
2211 struct minimal_symbol *mfunsym;
2212 struct objfile *objfile;
2213
2214 /* Info on best line seen so far, and where it starts, and its file. */
2215
2216 struct linetable_entry *best = NULL;
2217 CORE_ADDR best_end = 0;
2218 struct symtab *best_symtab = 0;
2219
2220 /* Store here the first line number
2221 of a file which contains the line at the smallest pc after PC.
2222 If we don't find a line whose range contains PC,
2223 we will use a line one less than this,
2224 with a range from the start of that file to the first line's pc. */
2225 struct linetable_entry *alt = NULL;
2226
2227 /* Info on best line seen in this file. */
2228
2229 struct linetable_entry *prev;
2230
2231 /* If this pc is not from the current frame,
2232 it is the address of the end of a call instruction.
2233 Quite likely that is the start of the following statement.
2234 But what we want is the statement containing the instruction.
2235 Fudge the pc to make sure we get that. */
2236
2237 init_sal (&val); /* initialize to zeroes */
2238
2239 val.pspace = current_program_space;
2240
2241 /* It's tempting to assume that, if we can't find debugging info for
2242 any function enclosing PC, that we shouldn't search for line
2243 number info, either. However, GAS can emit line number info for
2244 assembly files --- very helpful when debugging hand-written
2245 assembly code. In such a case, we'd have no debug info for the
2246 function, but we would have line info. */
2247
2248 if (notcurrent)
2249 pc -= 1;
2250
2251 /* elz: added this because this function returned the wrong
2252 information if the pc belongs to a stub (import/export)
2253 to call a shlib function. This stub would be anywhere between
2254 two functions in the target, and the line info was erroneously
2255 taken to be the one of the line before the pc. */
2256
2257 /* RT: Further explanation:
2258
2259 * We have stubs (trampolines) inserted between procedures.
2260 *
2261 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2262 * exists in the main image.
2263 *
2264 * In the minimal symbol table, we have a bunch of symbols
2265 * sorted by start address. The stubs are marked as "trampoline",
2266 * the others appear as text. E.g.:
2267 *
2268 * Minimal symbol table for main image
2269 * main: code for main (text symbol)
2270 * shr1: stub (trampoline symbol)
2271 * foo: code for foo (text symbol)
2272 * ...
2273 * Minimal symbol table for "shr1" image:
2274 * ...
2275 * shr1: code for shr1 (text symbol)
2276 * ...
2277 *
2278 * So the code below is trying to detect if we are in the stub
2279 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2280 * and if found, do the symbolization from the real-code address
2281 * rather than the stub address.
2282 *
2283 * Assumptions being made about the minimal symbol table:
2284 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2285 * if we're really in the trampoline.s If we're beyond it (say
2286 * we're in "foo" in the above example), it'll have a closer
2287 * symbol (the "foo" text symbol for example) and will not
2288 * return the trampoline.
2289 * 2. lookup_minimal_symbol_text() will find a real text symbol
2290 * corresponding to the trampoline, and whose address will
2291 * be different than the trampoline address. I put in a sanity
2292 * check for the address being the same, to avoid an
2293 * infinite recursion.
2294 */
2295 msymbol = lookup_minimal_symbol_by_pc (pc);
2296 if (msymbol != NULL)
2297 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2298 {
2299 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2300 NULL);
2301 if (mfunsym == NULL)
2302 /* I eliminated this warning since it is coming out
2303 * in the following situation:
2304 * gdb shmain // test program with shared libraries
2305 * (gdb) break shr1 // function in shared lib
2306 * Warning: In stub for ...
2307 * In the above situation, the shared lib is not loaded yet,
2308 * so of course we can't find the real func/line info,
2309 * but the "break" still works, and the warning is annoying.
2310 * So I commented out the warning. RT */
2311 /* warning ("In stub for %s; unable to find real function/line info",
2312 SYMBOL_LINKAGE_NAME (msymbol)); */
2313 ;
2314 /* fall through */
2315 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2316 == SYMBOL_VALUE_ADDRESS (msymbol))
2317 /* Avoid infinite recursion */
2318 /* See above comment about why warning is commented out. */
2319 /* warning ("In stub for %s; unable to find real function/line info",
2320 SYMBOL_LINKAGE_NAME (msymbol)); */
2321 ;
2322 /* fall through */
2323 else
2324 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2325 }
2326
2327
2328 s = find_pc_sect_symtab (pc, section);
2329 if (!s)
2330 {
2331 /* If no symbol information, return previous pc. */
2332 if (notcurrent)
2333 pc++;
2334 val.pc = pc;
2335 return val;
2336 }
2337
2338 bv = BLOCKVECTOR (s);
2339 objfile = s->objfile;
2340
2341 /* Look at all the symtabs that share this blockvector.
2342 They all have the same apriori range, that we found was right;
2343 but they have different line tables. */
2344
2345 ALL_OBJFILE_SYMTABS (objfile, s)
2346 {
2347 if (BLOCKVECTOR (s) != bv)
2348 continue;
2349
2350 /* Find the best line in this symtab. */
2351 l = LINETABLE (s);
2352 if (!l)
2353 continue;
2354 len = l->nitems;
2355 if (len <= 0)
2356 {
2357 /* I think len can be zero if the symtab lacks line numbers
2358 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2359 I'm not sure which, and maybe it depends on the symbol
2360 reader). */
2361 continue;
2362 }
2363
2364 prev = NULL;
2365 item = l->item; /* Get first line info. */
2366
2367 /* Is this file's first line closer than the first lines of other files?
2368 If so, record this file, and its first line, as best alternate. */
2369 if (item->pc > pc && (!alt || item->pc < alt->pc))
2370 alt = item;
2371
2372 for (i = 0; i < len; i++, item++)
2373 {
2374 /* Leave prev pointing to the linetable entry for the last line
2375 that started at or before PC. */
2376 if (item->pc > pc)
2377 break;
2378
2379 prev = item;
2380 }
2381
2382 /* At this point, prev points at the line whose start addr is <= pc, and
2383 item points at the next line. If we ran off the end of the linetable
2384 (pc >= start of the last line), then prev == item. If pc < start of
2385 the first line, prev will not be set. */
2386
2387 /* Is this file's best line closer than the best in the other files?
2388 If so, record this file, and its best line, as best so far. Don't
2389 save prev if it represents the end of a function (i.e. line number
2390 0) instead of a real line. */
2391
2392 if (prev && prev->line && (!best || prev->pc > best->pc))
2393 {
2394 best = prev;
2395 best_symtab = s;
2396
2397 /* Discard BEST_END if it's before the PC of the current BEST. */
2398 if (best_end <= best->pc)
2399 best_end = 0;
2400 }
2401
2402 /* If another line (denoted by ITEM) is in the linetable and its
2403 PC is after BEST's PC, but before the current BEST_END, then
2404 use ITEM's PC as the new best_end. */
2405 if (best && i < len && item->pc > best->pc
2406 && (best_end == 0 || best_end > item->pc))
2407 best_end = item->pc;
2408 }
2409
2410 if (!best_symtab)
2411 {
2412 /* If we didn't find any line number info, just return zeros.
2413 We used to return alt->line - 1 here, but that could be
2414 anywhere; if we don't have line number info for this PC,
2415 don't make some up. */
2416 val.pc = pc;
2417 }
2418 else if (best->line == 0)
2419 {
2420 /* If our best fit is in a range of PC's for which no line
2421 number info is available (line number is zero) then we didn't
2422 find any valid line information. */
2423 val.pc = pc;
2424 }
2425 else
2426 {
2427 val.symtab = best_symtab;
2428 val.line = best->line;
2429 val.pc = best->pc;
2430 if (best_end && (!alt || best_end < alt->pc))
2431 val.end = best_end;
2432 else if (alt)
2433 val.end = alt->pc;
2434 else
2435 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2436 }
2437 val.section = section;
2438 return val;
2439 }
2440
2441 /* Backward compatibility (no section). */
2442
2443 struct symtab_and_line
2444 find_pc_line (CORE_ADDR pc, int notcurrent)
2445 {
2446 struct obj_section *section;
2447
2448 section = find_pc_overlay (pc);
2449 if (pc_in_unmapped_range (pc, section))
2450 pc = overlay_mapped_address (pc, section);
2451 return find_pc_sect_line (pc, section, notcurrent);
2452 }
2453 \f
2454 /* Find line number LINE in any symtab whose name is the same as
2455 SYMTAB.
2456
2457 If found, return the symtab that contains the linetable in which it was
2458 found, set *INDEX to the index in the linetable of the best entry
2459 found, and set *EXACT_MATCH nonzero if the value returned is an
2460 exact match.
2461
2462 If not found, return NULL. */
2463
2464 struct symtab *
2465 find_line_symtab (struct symtab *symtab, int line,
2466 int *index, int *exact_match)
2467 {
2468 int exact = 0; /* Initialized here to avoid a compiler warning. */
2469
2470 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2471 so far seen. */
2472
2473 int best_index;
2474 struct linetable *best_linetable;
2475 struct symtab *best_symtab;
2476
2477 /* First try looking it up in the given symtab. */
2478 best_linetable = LINETABLE (symtab);
2479 best_symtab = symtab;
2480 best_index = find_line_common (best_linetable, line, &exact, 0);
2481 if (best_index < 0 || !exact)
2482 {
2483 /* Didn't find an exact match. So we better keep looking for
2484 another symtab with the same name. In the case of xcoff,
2485 multiple csects for one source file (produced by IBM's FORTRAN
2486 compiler) produce multiple symtabs (this is unavoidable
2487 assuming csects can be at arbitrary places in memory and that
2488 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2489
2490 /* BEST is the smallest linenumber > LINE so far seen,
2491 or 0 if none has been seen so far.
2492 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2493 int best;
2494
2495 struct objfile *objfile;
2496 struct symtab *s;
2497
2498 if (best_index >= 0)
2499 best = best_linetable->item[best_index].line;
2500 else
2501 best = 0;
2502
2503 ALL_OBJFILES (objfile)
2504 {
2505 if (objfile->sf)
2506 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2507 symtab_to_fullname (symtab));
2508 }
2509
2510 ALL_SYMTABS (objfile, s)
2511 {
2512 struct linetable *l;
2513 int ind;
2514
2515 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2516 continue;
2517 if (FILENAME_CMP (symtab_to_fullname (symtab),
2518 symtab_to_fullname (s)) != 0)
2519 continue;
2520 l = LINETABLE (s);
2521 ind = find_line_common (l, line, &exact, 0);
2522 if (ind >= 0)
2523 {
2524 if (exact)
2525 {
2526 best_index = ind;
2527 best_linetable = l;
2528 best_symtab = s;
2529 goto done;
2530 }
2531 if (best == 0 || l->item[ind].line < best)
2532 {
2533 best = l->item[ind].line;
2534 best_index = ind;
2535 best_linetable = l;
2536 best_symtab = s;
2537 }
2538 }
2539 }
2540 }
2541 done:
2542 if (best_index < 0)
2543 return NULL;
2544
2545 if (index)
2546 *index = best_index;
2547 if (exact_match)
2548 *exact_match = exact;
2549
2550 return best_symtab;
2551 }
2552
2553 /* Given SYMTAB, returns all the PCs function in the symtab that
2554 exactly match LINE. Returns NULL if there are no exact matches,
2555 but updates BEST_ITEM in this case. */
2556
2557 VEC (CORE_ADDR) *
2558 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2559 struct linetable_entry **best_item)
2560 {
2561 int start = 0;
2562 VEC (CORE_ADDR) *result = NULL;
2563
2564 /* First, collect all the PCs that are at this line. */
2565 while (1)
2566 {
2567 int was_exact;
2568 int idx;
2569
2570 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2571 if (idx < 0)
2572 break;
2573
2574 if (!was_exact)
2575 {
2576 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2577
2578 if (*best_item == NULL || item->line < (*best_item)->line)
2579 *best_item = item;
2580
2581 break;
2582 }
2583
2584 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2585 start = idx + 1;
2586 }
2587
2588 return result;
2589 }
2590
2591 \f
2592 /* Set the PC value for a given source file and line number and return true.
2593 Returns zero for invalid line number (and sets the PC to 0).
2594 The source file is specified with a struct symtab. */
2595
2596 int
2597 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2598 {
2599 struct linetable *l;
2600 int ind;
2601
2602 *pc = 0;
2603 if (symtab == 0)
2604 return 0;
2605
2606 symtab = find_line_symtab (symtab, line, &ind, NULL);
2607 if (symtab != NULL)
2608 {
2609 l = LINETABLE (symtab);
2610 *pc = l->item[ind].pc;
2611 return 1;
2612 }
2613 else
2614 return 0;
2615 }
2616
2617 /* Find the range of pc values in a line.
2618 Store the starting pc of the line into *STARTPTR
2619 and the ending pc (start of next line) into *ENDPTR.
2620 Returns 1 to indicate success.
2621 Returns 0 if could not find the specified line. */
2622
2623 int
2624 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2625 CORE_ADDR *endptr)
2626 {
2627 CORE_ADDR startaddr;
2628 struct symtab_and_line found_sal;
2629
2630 startaddr = sal.pc;
2631 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2632 return 0;
2633
2634 /* This whole function is based on address. For example, if line 10 has
2635 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2636 "info line *0x123" should say the line goes from 0x100 to 0x200
2637 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2638 This also insures that we never give a range like "starts at 0x134
2639 and ends at 0x12c". */
2640
2641 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2642 if (found_sal.line != sal.line)
2643 {
2644 /* The specified line (sal) has zero bytes. */
2645 *startptr = found_sal.pc;
2646 *endptr = found_sal.pc;
2647 }
2648 else
2649 {
2650 *startptr = found_sal.pc;
2651 *endptr = found_sal.end;
2652 }
2653 return 1;
2654 }
2655
2656 /* Given a line table and a line number, return the index into the line
2657 table for the pc of the nearest line whose number is >= the specified one.
2658 Return -1 if none is found. The value is >= 0 if it is an index.
2659 START is the index at which to start searching the line table.
2660
2661 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2662
2663 static int
2664 find_line_common (struct linetable *l, int lineno,
2665 int *exact_match, int start)
2666 {
2667 int i;
2668 int len;
2669
2670 /* BEST is the smallest linenumber > LINENO so far seen,
2671 or 0 if none has been seen so far.
2672 BEST_INDEX identifies the item for it. */
2673
2674 int best_index = -1;
2675 int best = 0;
2676
2677 *exact_match = 0;
2678
2679 if (lineno <= 0)
2680 return -1;
2681 if (l == 0)
2682 return -1;
2683
2684 len = l->nitems;
2685 for (i = start; i < len; i++)
2686 {
2687 struct linetable_entry *item = &(l->item[i]);
2688
2689 if (item->line == lineno)
2690 {
2691 /* Return the first (lowest address) entry which matches. */
2692 *exact_match = 1;
2693 return i;
2694 }
2695
2696 if (item->line > lineno && (best == 0 || item->line < best))
2697 {
2698 best = item->line;
2699 best_index = i;
2700 }
2701 }
2702
2703 /* If we got here, we didn't get an exact match. */
2704 return best_index;
2705 }
2706
2707 int
2708 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2709 {
2710 struct symtab_and_line sal;
2711
2712 sal = find_pc_line (pc, 0);
2713 *startptr = sal.pc;
2714 *endptr = sal.end;
2715 return sal.symtab != 0;
2716 }
2717
2718 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2719 address for that function that has an entry in SYMTAB's line info
2720 table. If such an entry cannot be found, return FUNC_ADDR
2721 unaltered. */
2722
2723 static CORE_ADDR
2724 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2725 {
2726 CORE_ADDR func_start, func_end;
2727 struct linetable *l;
2728 int i;
2729
2730 /* Give up if this symbol has no lineinfo table. */
2731 l = LINETABLE (symtab);
2732 if (l == NULL)
2733 return func_addr;
2734
2735 /* Get the range for the function's PC values, or give up if we
2736 cannot, for some reason. */
2737 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2738 return func_addr;
2739
2740 /* Linetable entries are ordered by PC values, see the commentary in
2741 symtab.h where `struct linetable' is defined. Thus, the first
2742 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2743 address we are looking for. */
2744 for (i = 0; i < l->nitems; i++)
2745 {
2746 struct linetable_entry *item = &(l->item[i]);
2747
2748 /* Don't use line numbers of zero, they mark special entries in
2749 the table. See the commentary on symtab.h before the
2750 definition of struct linetable. */
2751 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2752 return item->pc;
2753 }
2754
2755 return func_addr;
2756 }
2757
2758 /* Given a function symbol SYM, find the symtab and line for the start
2759 of the function.
2760 If the argument FUNFIRSTLINE is nonzero, we want the first line
2761 of real code inside the function. */
2762
2763 struct symtab_and_line
2764 find_function_start_sal (struct symbol *sym, int funfirstline)
2765 {
2766 struct symtab_and_line sal;
2767
2768 fixup_symbol_section (sym, NULL);
2769 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2770 SYMBOL_OBJ_SECTION (sym), 0);
2771
2772 /* We always should have a line for the function start address.
2773 If we don't, something is odd. Create a plain SAL refering
2774 just the PC and hope that skip_prologue_sal (if requested)
2775 can find a line number for after the prologue. */
2776 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2777 {
2778 init_sal (&sal);
2779 sal.pspace = current_program_space;
2780 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2781 sal.section = SYMBOL_OBJ_SECTION (sym);
2782 }
2783
2784 if (funfirstline)
2785 skip_prologue_sal (&sal);
2786
2787 return sal;
2788 }
2789
2790 /* Adjust SAL to the first instruction past the function prologue.
2791 If the PC was explicitly specified, the SAL is not changed.
2792 If the line number was explicitly specified, at most the SAL's PC
2793 is updated. If SAL is already past the prologue, then do nothing. */
2794
2795 void
2796 skip_prologue_sal (struct symtab_and_line *sal)
2797 {
2798 struct symbol *sym;
2799 struct symtab_and_line start_sal;
2800 struct cleanup *old_chain;
2801 CORE_ADDR pc, saved_pc;
2802 struct obj_section *section;
2803 const char *name;
2804 struct objfile *objfile;
2805 struct gdbarch *gdbarch;
2806 struct block *b, *function_block;
2807 int force_skip, skip;
2808
2809 /* Do not change the SAL if PC was specified explicitly. */
2810 if (sal->explicit_pc)
2811 return;
2812
2813 old_chain = save_current_space_and_thread ();
2814 switch_to_program_space_and_thread (sal->pspace);
2815
2816 sym = find_pc_sect_function (sal->pc, sal->section);
2817 if (sym != NULL)
2818 {
2819 fixup_symbol_section (sym, NULL);
2820
2821 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2822 section = SYMBOL_OBJ_SECTION (sym);
2823 name = SYMBOL_LINKAGE_NAME (sym);
2824 objfile = SYMBOL_SYMTAB (sym)->objfile;
2825 }
2826 else
2827 {
2828 struct minimal_symbol *msymbol
2829 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2830
2831 if (msymbol == NULL)
2832 {
2833 do_cleanups (old_chain);
2834 return;
2835 }
2836
2837 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2838 section = SYMBOL_OBJ_SECTION (msymbol);
2839 name = SYMBOL_LINKAGE_NAME (msymbol);
2840 objfile = msymbol_objfile (msymbol);
2841 }
2842
2843 gdbarch = get_objfile_arch (objfile);
2844
2845 /* Process the prologue in two passes. In the first pass try to skip the
2846 prologue (SKIP is true) and verify there is a real need for it (indicated
2847 by FORCE_SKIP). If no such reason was found run a second pass where the
2848 prologue is not skipped (SKIP is false). */
2849
2850 skip = 1;
2851 force_skip = 1;
2852
2853 /* Be conservative - allow direct PC (without skipping prologue) only if we
2854 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2855 have to be set by the caller so we use SYM instead. */
2856 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2857 force_skip = 0;
2858
2859 saved_pc = pc;
2860 do
2861 {
2862 pc = saved_pc;
2863
2864 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2865 so that gdbarch_skip_prologue has something unique to work on. */
2866 if (section_is_overlay (section) && !section_is_mapped (section))
2867 pc = overlay_unmapped_address (pc, section);
2868
2869 /* Skip "first line" of function (which is actually its prologue). */
2870 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2871 if (skip)
2872 pc = gdbarch_skip_prologue (gdbarch, pc);
2873
2874 /* For overlays, map pc back into its mapped VMA range. */
2875 pc = overlay_mapped_address (pc, section);
2876
2877 /* Calculate line number. */
2878 start_sal = find_pc_sect_line (pc, section, 0);
2879
2880 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2881 line is still part of the same function. */
2882 if (skip && start_sal.pc != pc
2883 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2884 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2885 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2886 == lookup_minimal_symbol_by_pc_section (pc, section))))
2887 {
2888 /* First pc of next line */
2889 pc = start_sal.end;
2890 /* Recalculate the line number (might not be N+1). */
2891 start_sal = find_pc_sect_line (pc, section, 0);
2892 }
2893
2894 /* On targets with executable formats that don't have a concept of
2895 constructors (ELF with .init has, PE doesn't), gcc emits a call
2896 to `__main' in `main' between the prologue and before user
2897 code. */
2898 if (gdbarch_skip_main_prologue_p (gdbarch)
2899 && name && strcmp_iw (name, "main") == 0)
2900 {
2901 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2902 /* Recalculate the line number (might not be N+1). */
2903 start_sal = find_pc_sect_line (pc, section, 0);
2904 force_skip = 1;
2905 }
2906 }
2907 while (!force_skip && skip--);
2908
2909 /* If we still don't have a valid source line, try to find the first
2910 PC in the lineinfo table that belongs to the same function. This
2911 happens with COFF debug info, which does not seem to have an
2912 entry in lineinfo table for the code after the prologue which has
2913 no direct relation to source. For example, this was found to be
2914 the case with the DJGPP target using "gcc -gcoff" when the
2915 compiler inserted code after the prologue to make sure the stack
2916 is aligned. */
2917 if (!force_skip && sym && start_sal.symtab == NULL)
2918 {
2919 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2920 /* Recalculate the line number. */
2921 start_sal = find_pc_sect_line (pc, section, 0);
2922 }
2923
2924 do_cleanups (old_chain);
2925
2926 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2927 forward SAL to the end of the prologue. */
2928 if (sal->pc >= pc)
2929 return;
2930
2931 sal->pc = pc;
2932 sal->section = section;
2933
2934 /* Unless the explicit_line flag was set, update the SAL line
2935 and symtab to correspond to the modified PC location. */
2936 if (sal->explicit_line)
2937 return;
2938
2939 sal->symtab = start_sal.symtab;
2940 sal->line = start_sal.line;
2941 sal->end = start_sal.end;
2942
2943 /* Check if we are now inside an inlined function. If we can,
2944 use the call site of the function instead. */
2945 b = block_for_pc_sect (sal->pc, sal->section);
2946 function_block = NULL;
2947 while (b != NULL)
2948 {
2949 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2950 function_block = b;
2951 else if (BLOCK_FUNCTION (b) != NULL)
2952 break;
2953 b = BLOCK_SUPERBLOCK (b);
2954 }
2955 if (function_block != NULL
2956 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2957 {
2958 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2959 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2960 }
2961 }
2962
2963 /* If P is of the form "operator[ \t]+..." where `...' is
2964 some legitimate operator text, return a pointer to the
2965 beginning of the substring of the operator text.
2966 Otherwise, return "". */
2967
2968 static char *
2969 operator_chars (char *p, char **end)
2970 {
2971 *end = "";
2972 if (strncmp (p, "operator", 8))
2973 return *end;
2974 p += 8;
2975
2976 /* Don't get faked out by `operator' being part of a longer
2977 identifier. */
2978 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2979 return *end;
2980
2981 /* Allow some whitespace between `operator' and the operator symbol. */
2982 while (*p == ' ' || *p == '\t')
2983 p++;
2984
2985 /* Recognize 'operator TYPENAME'. */
2986
2987 if (isalpha (*p) || *p == '_' || *p == '$')
2988 {
2989 char *q = p + 1;
2990
2991 while (isalnum (*q) || *q == '_' || *q == '$')
2992 q++;
2993 *end = q;
2994 return p;
2995 }
2996
2997 while (*p)
2998 switch (*p)
2999 {
3000 case '\\': /* regexp quoting */
3001 if (p[1] == '*')
3002 {
3003 if (p[2] == '=') /* 'operator\*=' */
3004 *end = p + 3;
3005 else /* 'operator\*' */
3006 *end = p + 2;
3007 return p;
3008 }
3009 else if (p[1] == '[')
3010 {
3011 if (p[2] == ']')
3012 error (_("mismatched quoting on brackets, "
3013 "try 'operator\\[\\]'"));
3014 else if (p[2] == '\\' && p[3] == ']')
3015 {
3016 *end = p + 4; /* 'operator\[\]' */
3017 return p;
3018 }
3019 else
3020 error (_("nothing is allowed between '[' and ']'"));
3021 }
3022 else
3023 {
3024 /* Gratuitous qoute: skip it and move on. */
3025 p++;
3026 continue;
3027 }
3028 break;
3029 case '!':
3030 case '=':
3031 case '*':
3032 case '/':
3033 case '%':
3034 case '^':
3035 if (p[1] == '=')
3036 *end = p + 2;
3037 else
3038 *end = p + 1;
3039 return p;
3040 case '<':
3041 case '>':
3042 case '+':
3043 case '-':
3044 case '&':
3045 case '|':
3046 if (p[0] == '-' && p[1] == '>')
3047 {
3048 /* Struct pointer member operator 'operator->'. */
3049 if (p[2] == '*')
3050 {
3051 *end = p + 3; /* 'operator->*' */
3052 return p;
3053 }
3054 else if (p[2] == '\\')
3055 {
3056 *end = p + 4; /* Hopefully 'operator->\*' */
3057 return p;
3058 }
3059 else
3060 {
3061 *end = p + 2; /* 'operator->' */
3062 return p;
3063 }
3064 }
3065 if (p[1] == '=' || p[1] == p[0])
3066 *end = p + 2;
3067 else
3068 *end = p + 1;
3069 return p;
3070 case '~':
3071 case ',':
3072 *end = p + 1;
3073 return p;
3074 case '(':
3075 if (p[1] != ')')
3076 error (_("`operator ()' must be specified "
3077 "without whitespace in `()'"));
3078 *end = p + 2;
3079 return p;
3080 case '?':
3081 if (p[1] != ':')
3082 error (_("`operator ?:' must be specified "
3083 "without whitespace in `?:'"));
3084 *end = p + 2;
3085 return p;
3086 case '[':
3087 if (p[1] != ']')
3088 error (_("`operator []' must be specified "
3089 "without whitespace in `[]'"));
3090 *end = p + 2;
3091 return p;
3092 default:
3093 error (_("`operator %s' not supported"), p);
3094 break;
3095 }
3096
3097 *end = "";
3098 return *end;
3099 }
3100 \f
3101
3102 /* Cache to watch for file names already seen by filename_seen. */
3103
3104 struct filename_seen_cache
3105 {
3106 /* Table of files seen so far. */
3107 htab_t tab;
3108 /* Initial size of the table. It automagically grows from here. */
3109 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3110 };
3111
3112 /* filename_seen_cache constructor. */
3113
3114 static struct filename_seen_cache *
3115 create_filename_seen_cache (void)
3116 {
3117 struct filename_seen_cache *cache;
3118
3119 cache = XNEW (struct filename_seen_cache);
3120 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3121 filename_hash, filename_eq,
3122 NULL, xcalloc, xfree);
3123
3124 return cache;
3125 }
3126
3127 /* Empty the cache, but do not delete it. */
3128
3129 static void
3130 clear_filename_seen_cache (struct filename_seen_cache *cache)
3131 {
3132 htab_empty (cache->tab);
3133 }
3134
3135 /* filename_seen_cache destructor.
3136 This takes a void * argument as it is generally used as a cleanup. */
3137
3138 static void
3139 delete_filename_seen_cache (void *ptr)
3140 {
3141 struct filename_seen_cache *cache = ptr;
3142
3143 htab_delete (cache->tab);
3144 xfree (cache);
3145 }
3146
3147 /* If FILE is not already in the table of files in CACHE, return zero;
3148 otherwise return non-zero. Optionally add FILE to the table if ADD
3149 is non-zero.
3150
3151 NOTE: We don't manage space for FILE, we assume FILE lives as long
3152 as the caller needs. */
3153
3154 static int
3155 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3156 {
3157 void **slot;
3158
3159 /* Is FILE in tab? */
3160 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3161 if (*slot != NULL)
3162 return 1;
3163
3164 /* No; maybe add it to tab. */
3165 if (add)
3166 *slot = (char *) file;
3167
3168 return 0;
3169 }
3170
3171 /* Data structure to maintain printing state for output_source_filename. */
3172
3173 struct output_source_filename_data
3174 {
3175 /* Cache of what we've seen so far. */
3176 struct filename_seen_cache *filename_seen_cache;
3177
3178 /* Flag of whether we're printing the first one. */
3179 int first;
3180 };
3181
3182 /* Slave routine for sources_info. Force line breaks at ,'s.
3183 NAME is the name to print.
3184 DATA contains the state for printing and watching for duplicates. */
3185
3186 static void
3187 output_source_filename (const char *name,
3188 struct output_source_filename_data *data)
3189 {
3190 /* Since a single source file can result in several partial symbol
3191 tables, we need to avoid printing it more than once. Note: if
3192 some of the psymtabs are read in and some are not, it gets
3193 printed both under "Source files for which symbols have been
3194 read" and "Source files for which symbols will be read in on
3195 demand". I consider this a reasonable way to deal with the
3196 situation. I'm not sure whether this can also happen for
3197 symtabs; it doesn't hurt to check. */
3198
3199 /* Was NAME already seen? */
3200 if (filename_seen (data->filename_seen_cache, name, 1))
3201 {
3202 /* Yes; don't print it again. */
3203 return;
3204 }
3205
3206 /* No; print it and reset *FIRST. */
3207 if (! data->first)
3208 printf_filtered (", ");
3209 data->first = 0;
3210
3211 wrap_here ("");
3212 fputs_filtered (name, gdb_stdout);
3213 }
3214
3215 /* A callback for map_partial_symbol_filenames. */
3216
3217 static void
3218 output_partial_symbol_filename (const char *filename, const char *fullname,
3219 void *data)
3220 {
3221 output_source_filename (fullname ? fullname : filename, data);
3222 }
3223
3224 static void
3225 sources_info (char *ignore, int from_tty)
3226 {
3227 struct symtab *s;
3228 struct objfile *objfile;
3229 struct output_source_filename_data data;
3230 struct cleanup *cleanups;
3231
3232 if (!have_full_symbols () && !have_partial_symbols ())
3233 {
3234 error (_("No symbol table is loaded. Use the \"file\" command."));
3235 }
3236
3237 data.filename_seen_cache = create_filename_seen_cache ();
3238 cleanups = make_cleanup (delete_filename_seen_cache,
3239 data.filename_seen_cache);
3240
3241 printf_filtered ("Source files for which symbols have been read in:\n\n");
3242
3243 data.first = 1;
3244 ALL_SYMTABS (objfile, s)
3245 {
3246 const char *fullname = symtab_to_fullname (s);
3247
3248 output_source_filename (fullname, &data);
3249 }
3250 printf_filtered ("\n\n");
3251
3252 printf_filtered ("Source files for which symbols "
3253 "will be read in on demand:\n\n");
3254
3255 clear_filename_seen_cache (data.filename_seen_cache);
3256 data.first = 1;
3257 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3258 1 /*need_fullname*/);
3259 printf_filtered ("\n");
3260
3261 do_cleanups (cleanups);
3262 }
3263
3264 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3265 non-zero compare only lbasename of FILES. */
3266
3267 static int
3268 file_matches (const char *file, char *files[], int nfiles, int basenames)
3269 {
3270 int i;
3271
3272 if (file != NULL && nfiles != 0)
3273 {
3274 for (i = 0; i < nfiles; i++)
3275 {
3276 if (compare_filenames_for_search (file, (basenames
3277 ? lbasename (files[i])
3278 : files[i])))
3279 return 1;
3280 }
3281 }
3282 else if (nfiles == 0)
3283 return 1;
3284 return 0;
3285 }
3286
3287 /* Free any memory associated with a search. */
3288
3289 void
3290 free_search_symbols (struct symbol_search *symbols)
3291 {
3292 struct symbol_search *p;
3293 struct symbol_search *next;
3294
3295 for (p = symbols; p != NULL; p = next)
3296 {
3297 next = p->next;
3298 xfree (p);
3299 }
3300 }
3301
3302 static void
3303 do_free_search_symbols_cleanup (void *symbols)
3304 {
3305 free_search_symbols (symbols);
3306 }
3307
3308 struct cleanup *
3309 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3310 {
3311 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3312 }
3313
3314 /* Helper function for sort_search_symbols and qsort. Can only
3315 sort symbols, not minimal symbols. */
3316
3317 static int
3318 compare_search_syms (const void *sa, const void *sb)
3319 {
3320 struct symbol_search **sym_a = (struct symbol_search **) sa;
3321 struct symbol_search **sym_b = (struct symbol_search **) sb;
3322
3323 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3324 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3325 }
3326
3327 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3328 prevtail where it is, but update its next pointer to point to
3329 the first of the sorted symbols. */
3330
3331 static struct symbol_search *
3332 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3333 {
3334 struct symbol_search **symbols, *symp, *old_next;
3335 int i;
3336
3337 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3338 * nfound);
3339 symp = prevtail->next;
3340 for (i = 0; i < nfound; i++)
3341 {
3342 symbols[i] = symp;
3343 symp = symp->next;
3344 }
3345 /* Generally NULL. */
3346 old_next = symp;
3347
3348 qsort (symbols, nfound, sizeof (struct symbol_search *),
3349 compare_search_syms);
3350
3351 symp = prevtail;
3352 for (i = 0; i < nfound; i++)
3353 {
3354 symp->next = symbols[i];
3355 symp = symp->next;
3356 }
3357 symp->next = old_next;
3358
3359 xfree (symbols);
3360 return symp;
3361 }
3362
3363 /* An object of this type is passed as the user_data to the
3364 expand_symtabs_matching method. */
3365 struct search_symbols_data
3366 {
3367 int nfiles;
3368 char **files;
3369
3370 /* It is true if PREG contains valid data, false otherwise. */
3371 unsigned preg_p : 1;
3372 regex_t preg;
3373 };
3374
3375 /* A callback for expand_symtabs_matching. */
3376
3377 static int
3378 search_symbols_file_matches (const char *filename, void *user_data,
3379 int basenames)
3380 {
3381 struct search_symbols_data *data = user_data;
3382
3383 return file_matches (filename, data->files, data->nfiles, basenames);
3384 }
3385
3386 /* A callback for expand_symtabs_matching. */
3387
3388 static int
3389 search_symbols_name_matches (const char *symname, void *user_data)
3390 {
3391 struct search_symbols_data *data = user_data;
3392
3393 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3394 }
3395
3396 /* Search the symbol table for matches to the regular expression REGEXP,
3397 returning the results in *MATCHES.
3398
3399 Only symbols of KIND are searched:
3400 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3401 and constants (enums)
3402 FUNCTIONS_DOMAIN - search all functions
3403 TYPES_DOMAIN - search all type names
3404 ALL_DOMAIN - an internal error for this function
3405
3406 free_search_symbols should be called when *MATCHES is no longer needed.
3407
3408 The results are sorted locally; each symtab's global and static blocks are
3409 separately alphabetized. */
3410
3411 void
3412 search_symbols (char *regexp, enum search_domain kind,
3413 int nfiles, char *files[],
3414 struct symbol_search **matches)
3415 {
3416 struct symtab *s;
3417 struct blockvector *bv;
3418 struct block *b;
3419 int i = 0;
3420 struct block_iterator iter;
3421 struct symbol *sym;
3422 struct objfile *objfile;
3423 struct minimal_symbol *msymbol;
3424 int found_misc = 0;
3425 static const enum minimal_symbol_type types[]
3426 = {mst_data, mst_text, mst_abs};
3427 static const enum minimal_symbol_type types2[]
3428 = {mst_bss, mst_file_text, mst_abs};
3429 static const enum minimal_symbol_type types3[]
3430 = {mst_file_data, mst_solib_trampoline, mst_abs};
3431 static const enum minimal_symbol_type types4[]
3432 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3433 enum minimal_symbol_type ourtype;
3434 enum minimal_symbol_type ourtype2;
3435 enum minimal_symbol_type ourtype3;
3436 enum minimal_symbol_type ourtype4;
3437 struct symbol_search *sr;
3438 struct symbol_search *psr;
3439 struct symbol_search *tail;
3440 struct search_symbols_data datum;
3441
3442 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3443 CLEANUP_CHAIN is freed only in the case of an error. */
3444 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3445 struct cleanup *retval_chain;
3446
3447 gdb_assert (kind <= TYPES_DOMAIN);
3448
3449 ourtype = types[kind];
3450 ourtype2 = types2[kind];
3451 ourtype3 = types3[kind];
3452 ourtype4 = types4[kind];
3453
3454 sr = *matches = NULL;
3455 tail = NULL;
3456 datum.preg_p = 0;
3457
3458 if (regexp != NULL)
3459 {
3460 /* Make sure spacing is right for C++ operators.
3461 This is just a courtesy to make the matching less sensitive
3462 to how many spaces the user leaves between 'operator'
3463 and <TYPENAME> or <OPERATOR>. */
3464 char *opend;
3465 char *opname = operator_chars (regexp, &opend);
3466 int errcode;
3467
3468 if (*opname)
3469 {
3470 int fix = -1; /* -1 means ok; otherwise number of
3471 spaces needed. */
3472
3473 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3474 {
3475 /* There should 1 space between 'operator' and 'TYPENAME'. */
3476 if (opname[-1] != ' ' || opname[-2] == ' ')
3477 fix = 1;
3478 }
3479 else
3480 {
3481 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3482 if (opname[-1] == ' ')
3483 fix = 0;
3484 }
3485 /* If wrong number of spaces, fix it. */
3486 if (fix >= 0)
3487 {
3488 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3489
3490 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3491 regexp = tmp;
3492 }
3493 }
3494
3495 errcode = regcomp (&datum.preg, regexp,
3496 REG_NOSUB | (case_sensitivity == case_sensitive_off
3497 ? REG_ICASE : 0));
3498 if (errcode != 0)
3499 {
3500 char *err = get_regcomp_error (errcode, &datum.preg);
3501
3502 make_cleanup (xfree, err);
3503 error (_("Invalid regexp (%s): %s"), err, regexp);
3504 }
3505 datum.preg_p = 1;
3506 make_regfree_cleanup (&datum.preg);
3507 }
3508
3509 /* Search through the partial symtabs *first* for all symbols
3510 matching the regexp. That way we don't have to reproduce all of
3511 the machinery below. */
3512
3513 datum.nfiles = nfiles;
3514 datum.files = files;
3515 ALL_OBJFILES (objfile)
3516 {
3517 if (objfile->sf)
3518 objfile->sf->qf->expand_symtabs_matching (objfile,
3519 (nfiles == 0
3520 ? NULL
3521 : search_symbols_file_matches),
3522 search_symbols_name_matches,
3523 kind,
3524 &datum);
3525 }
3526
3527 retval_chain = old_chain;
3528
3529 /* Here, we search through the minimal symbol tables for functions
3530 and variables that match, and force their symbols to be read.
3531 This is in particular necessary for demangled variable names,
3532 which are no longer put into the partial symbol tables.
3533 The symbol will then be found during the scan of symtabs below.
3534
3535 For functions, find_pc_symtab should succeed if we have debug info
3536 for the function, for variables we have to call
3537 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3538 has debug info.
3539 If the lookup fails, set found_misc so that we will rescan to print
3540 any matching symbols without debug info.
3541 We only search the objfile the msymbol came from, we no longer search
3542 all objfiles. In large programs (1000s of shared libs) searching all
3543 objfiles is not worth the pain. */
3544
3545 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3546 {
3547 ALL_MSYMBOLS (objfile, msymbol)
3548 {
3549 QUIT;
3550
3551 if (msymbol->created_by_gdb)
3552 continue;
3553
3554 if (MSYMBOL_TYPE (msymbol) == ourtype
3555 || MSYMBOL_TYPE (msymbol) == ourtype2
3556 || MSYMBOL_TYPE (msymbol) == ourtype3
3557 || MSYMBOL_TYPE (msymbol) == ourtype4)
3558 {
3559 if (!datum.preg_p
3560 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3561 NULL, 0) == 0)
3562 {
3563 /* Note: An important side-effect of these lookup functions
3564 is to expand the symbol table if msymbol is found, for the
3565 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3566 if (kind == FUNCTIONS_DOMAIN
3567 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3568 : (lookup_symbol_in_objfile_from_linkage_name
3569 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3570 == NULL))
3571 found_misc = 1;
3572 }
3573 }
3574 }
3575 }
3576
3577 ALL_PRIMARY_SYMTABS (objfile, s)
3578 {
3579 bv = BLOCKVECTOR (s);
3580 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3581 {
3582 struct symbol_search *prevtail = tail;
3583 int nfound = 0;
3584
3585 b = BLOCKVECTOR_BLOCK (bv, i);
3586 ALL_BLOCK_SYMBOLS (b, iter, sym)
3587 {
3588 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3589
3590 QUIT;
3591
3592 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3593 a substring of symtab_to_fullname as it may contain "./" etc. */
3594 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3595 || ((basenames_may_differ
3596 || file_matches (lbasename (real_symtab->filename),
3597 files, nfiles, 1))
3598 && file_matches (symtab_to_fullname (real_symtab),
3599 files, nfiles, 0)))
3600 && ((!datum.preg_p
3601 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3602 NULL, 0) == 0)
3603 && ((kind == VARIABLES_DOMAIN
3604 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3605 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3606 && SYMBOL_CLASS (sym) != LOC_BLOCK
3607 /* LOC_CONST can be used for more than just enums,
3608 e.g., c++ static const members.
3609 We only want to skip enums here. */
3610 && !(SYMBOL_CLASS (sym) == LOC_CONST
3611 && TYPE_CODE (SYMBOL_TYPE (sym))
3612 == TYPE_CODE_ENUM))
3613 || (kind == FUNCTIONS_DOMAIN
3614 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3615 || (kind == TYPES_DOMAIN
3616 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3617 {
3618 /* match */
3619 psr = (struct symbol_search *)
3620 xmalloc (sizeof (struct symbol_search));
3621 psr->block = i;
3622 psr->symtab = real_symtab;
3623 psr->symbol = sym;
3624 psr->msymbol = NULL;
3625 psr->next = NULL;
3626 if (tail == NULL)
3627 sr = psr;
3628 else
3629 tail->next = psr;
3630 tail = psr;
3631 nfound ++;
3632 }
3633 }
3634 if (nfound > 0)
3635 {
3636 if (prevtail == NULL)
3637 {
3638 struct symbol_search dummy;
3639
3640 dummy.next = sr;
3641 tail = sort_search_symbols (&dummy, nfound);
3642 sr = dummy.next;
3643
3644 make_cleanup_free_search_symbols (sr);
3645 }
3646 else
3647 tail = sort_search_symbols (prevtail, nfound);
3648 }
3649 }
3650 }
3651
3652 /* If there are no eyes, avoid all contact. I mean, if there are
3653 no debug symbols, then print directly from the msymbol_vector. */
3654
3655 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3656 {
3657 ALL_MSYMBOLS (objfile, msymbol)
3658 {
3659 QUIT;
3660
3661 if (msymbol->created_by_gdb)
3662 continue;
3663
3664 if (MSYMBOL_TYPE (msymbol) == ourtype
3665 || MSYMBOL_TYPE (msymbol) == ourtype2
3666 || MSYMBOL_TYPE (msymbol) == ourtype3
3667 || MSYMBOL_TYPE (msymbol) == ourtype4)
3668 {
3669 if (!datum.preg_p
3670 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3671 NULL, 0) == 0)
3672 {
3673 /* For functions we can do a quick check of whether the
3674 symbol might be found via find_pc_symtab. */
3675 if (kind != FUNCTIONS_DOMAIN
3676 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3677 {
3678 if (lookup_symbol_in_objfile_from_linkage_name
3679 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3680 == NULL)
3681 {
3682 /* match */
3683 psr = (struct symbol_search *)
3684 xmalloc (sizeof (struct symbol_search));
3685 psr->block = i;
3686 psr->msymbol = msymbol;
3687 psr->symtab = NULL;
3688 psr->symbol = NULL;
3689 psr->next = NULL;
3690 if (tail == NULL)
3691 {
3692 sr = psr;
3693 make_cleanup_free_search_symbols (sr);
3694 }
3695 else
3696 tail->next = psr;
3697 tail = psr;
3698 }
3699 }
3700 }
3701 }
3702 }
3703 }
3704
3705 discard_cleanups (retval_chain);
3706 do_cleanups (old_chain);
3707 *matches = sr;
3708 }
3709
3710 /* Helper function for symtab_symbol_info, this function uses
3711 the data returned from search_symbols() to print information
3712 regarding the match to gdb_stdout. */
3713
3714 static void
3715 print_symbol_info (enum search_domain kind,
3716 struct symtab *s, struct symbol *sym,
3717 int block, const char *last)
3718 {
3719 const char *s_filename = symtab_to_filename_for_display (s);
3720
3721 if (last == NULL || filename_cmp (last, s_filename) != 0)
3722 {
3723 fputs_filtered ("\nFile ", gdb_stdout);
3724 fputs_filtered (s_filename, gdb_stdout);
3725 fputs_filtered (":\n", gdb_stdout);
3726 }
3727
3728 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3729 printf_filtered ("static ");
3730
3731 /* Typedef that is not a C++ class. */
3732 if (kind == TYPES_DOMAIN
3733 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3734 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3735 /* variable, func, or typedef-that-is-c++-class. */
3736 else if (kind < TYPES_DOMAIN
3737 || (kind == TYPES_DOMAIN
3738 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3739 {
3740 type_print (SYMBOL_TYPE (sym),
3741 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3742 ? "" : SYMBOL_PRINT_NAME (sym)),
3743 gdb_stdout, 0);
3744
3745 printf_filtered (";\n");
3746 }
3747 }
3748
3749 /* This help function for symtab_symbol_info() prints information
3750 for non-debugging symbols to gdb_stdout. */
3751
3752 static void
3753 print_msymbol_info (struct minimal_symbol *msymbol)
3754 {
3755 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3756 char *tmp;
3757
3758 if (gdbarch_addr_bit (gdbarch) <= 32)
3759 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3760 & (CORE_ADDR) 0xffffffff,
3761 8);
3762 else
3763 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3764 16);
3765 printf_filtered ("%s %s\n",
3766 tmp, SYMBOL_PRINT_NAME (msymbol));
3767 }
3768
3769 /* This is the guts of the commands "info functions", "info types", and
3770 "info variables". It calls search_symbols to find all matches and then
3771 print_[m]symbol_info to print out some useful information about the
3772 matches. */
3773
3774 static void
3775 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3776 {
3777 static const char * const classnames[] =
3778 {"variable", "function", "type"};
3779 struct symbol_search *symbols;
3780 struct symbol_search *p;
3781 struct cleanup *old_chain;
3782 const char *last_filename = NULL;
3783 int first = 1;
3784
3785 gdb_assert (kind <= TYPES_DOMAIN);
3786
3787 /* Must make sure that if we're interrupted, symbols gets freed. */
3788 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3789 old_chain = make_cleanup_free_search_symbols (symbols);
3790
3791 if (regexp != NULL)
3792 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3793 classnames[kind], regexp);
3794 else
3795 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3796
3797 for (p = symbols; p != NULL; p = p->next)
3798 {
3799 QUIT;
3800
3801 if (p->msymbol != NULL)
3802 {
3803 if (first)
3804 {
3805 printf_filtered (_("\nNon-debugging symbols:\n"));
3806 first = 0;
3807 }
3808 print_msymbol_info (p->msymbol);
3809 }
3810 else
3811 {
3812 print_symbol_info (kind,
3813 p->symtab,
3814 p->symbol,
3815 p->block,
3816 last_filename);
3817 last_filename = symtab_to_filename_for_display (p->symtab);
3818 }
3819 }
3820
3821 do_cleanups (old_chain);
3822 }
3823
3824 static void
3825 variables_info (char *regexp, int from_tty)
3826 {
3827 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3828 }
3829
3830 static void
3831 functions_info (char *regexp, int from_tty)
3832 {
3833 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3834 }
3835
3836
3837 static void
3838 types_info (char *regexp, int from_tty)
3839 {
3840 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3841 }
3842
3843 /* Breakpoint all functions matching regular expression. */
3844
3845 void
3846 rbreak_command_wrapper (char *regexp, int from_tty)
3847 {
3848 rbreak_command (regexp, from_tty);
3849 }
3850
3851 /* A cleanup function that calls end_rbreak_breakpoints. */
3852
3853 static void
3854 do_end_rbreak_breakpoints (void *ignore)
3855 {
3856 end_rbreak_breakpoints ();
3857 }
3858
3859 static void
3860 rbreak_command (char *regexp, int from_tty)
3861 {
3862 struct symbol_search *ss;
3863 struct symbol_search *p;
3864 struct cleanup *old_chain;
3865 char *string = NULL;
3866 int len = 0;
3867 char **files = NULL, *file_name;
3868 int nfiles = 0;
3869
3870 if (regexp)
3871 {
3872 char *colon = strchr (regexp, ':');
3873
3874 if (colon && *(colon + 1) != ':')
3875 {
3876 int colon_index;
3877
3878 colon_index = colon - regexp;
3879 file_name = alloca (colon_index + 1);
3880 memcpy (file_name, regexp, colon_index);
3881 file_name[colon_index--] = 0;
3882 while (isspace (file_name[colon_index]))
3883 file_name[colon_index--] = 0;
3884 files = &file_name;
3885 nfiles = 1;
3886 regexp = skip_spaces (colon + 1);
3887 }
3888 }
3889
3890 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3891 old_chain = make_cleanup_free_search_symbols (ss);
3892 make_cleanup (free_current_contents, &string);
3893
3894 start_rbreak_breakpoints ();
3895 make_cleanup (do_end_rbreak_breakpoints, NULL);
3896 for (p = ss; p != NULL; p = p->next)
3897 {
3898 if (p->msymbol == NULL)
3899 {
3900 const char *fullname = symtab_to_fullname (p->symtab);
3901
3902 int newlen = (strlen (fullname)
3903 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3904 + 4);
3905
3906 if (newlen > len)
3907 {
3908 string = xrealloc (string, newlen);
3909 len = newlen;
3910 }
3911 strcpy (string, fullname);
3912 strcat (string, ":'");
3913 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3914 strcat (string, "'");
3915 break_command (string, from_tty);
3916 print_symbol_info (FUNCTIONS_DOMAIN,
3917 p->symtab,
3918 p->symbol,
3919 p->block,
3920 symtab_to_filename_for_display (p->symtab));
3921 }
3922 else
3923 {
3924 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3925
3926 if (newlen > len)
3927 {
3928 string = xrealloc (string, newlen);
3929 len = newlen;
3930 }
3931 strcpy (string, "'");
3932 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3933 strcat (string, "'");
3934
3935 break_command (string, from_tty);
3936 printf_filtered ("<function, no debug info> %s;\n",
3937 SYMBOL_PRINT_NAME (p->msymbol));
3938 }
3939 }
3940
3941 do_cleanups (old_chain);
3942 }
3943 \f
3944
3945 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3946
3947 Either sym_text[sym_text_len] != '(' and then we search for any
3948 symbol starting with SYM_TEXT text.
3949
3950 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3951 be terminated at that point. Partial symbol tables do not have parameters
3952 information. */
3953
3954 static int
3955 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3956 {
3957 int (*ncmp) (const char *, const char *, size_t);
3958
3959 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3960
3961 if (ncmp (name, sym_text, sym_text_len) != 0)
3962 return 0;
3963
3964 if (sym_text[sym_text_len] == '(')
3965 {
3966 /* User searches for `name(someth...'. Require NAME to be terminated.
3967 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3968 present but accept even parameters presence. In this case this
3969 function is in fact strcmp_iw but whitespace skipping is not supported
3970 for tab completion. */
3971
3972 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3973 return 0;
3974 }
3975
3976 return 1;
3977 }
3978
3979 /* Free any memory associated with a completion list. */
3980
3981 static void
3982 free_completion_list (VEC (char_ptr) **list_ptr)
3983 {
3984 int i;
3985 char *p;
3986
3987 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3988 xfree (p);
3989 VEC_free (char_ptr, *list_ptr);
3990 }
3991
3992 /* Callback for make_cleanup. */
3993
3994 static void
3995 do_free_completion_list (void *list)
3996 {
3997 free_completion_list (list);
3998 }
3999
4000 /* Helper routine for make_symbol_completion_list. */
4001
4002 static VEC (char_ptr) *return_val;
4003
4004 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4005 completion_list_add_name \
4006 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4007
4008 /* Test to see if the symbol specified by SYMNAME (which is already
4009 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4010 characters. If so, add it to the current completion list. */
4011
4012 static void
4013 completion_list_add_name (const char *symname,
4014 const char *sym_text, int sym_text_len,
4015 const char *text, const char *word)
4016 {
4017 /* Clip symbols that cannot match. */
4018 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4019 return;
4020
4021 /* We have a match for a completion, so add SYMNAME to the current list
4022 of matches. Note that the name is moved to freshly malloc'd space. */
4023
4024 {
4025 char *new;
4026
4027 if (word == sym_text)
4028 {
4029 new = xmalloc (strlen (symname) + 5);
4030 strcpy (new, symname);
4031 }
4032 else if (word > sym_text)
4033 {
4034 /* Return some portion of symname. */
4035 new = xmalloc (strlen (symname) + 5);
4036 strcpy (new, symname + (word - sym_text));
4037 }
4038 else
4039 {
4040 /* Return some of SYM_TEXT plus symname. */
4041 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4042 strncpy (new, word, sym_text - word);
4043 new[sym_text - word] = '\0';
4044 strcat (new, symname);
4045 }
4046
4047 VEC_safe_push (char_ptr, return_val, new);
4048 }
4049 }
4050
4051 /* ObjC: In case we are completing on a selector, look as the msymbol
4052 again and feed all the selectors into the mill. */
4053
4054 static void
4055 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4056 const char *sym_text, int sym_text_len,
4057 const char *text, const char *word)
4058 {
4059 static char *tmp = NULL;
4060 static unsigned int tmplen = 0;
4061
4062 const char *method, *category, *selector;
4063 char *tmp2 = NULL;
4064
4065 method = SYMBOL_NATURAL_NAME (msymbol);
4066
4067 /* Is it a method? */
4068 if ((method[0] != '-') && (method[0] != '+'))
4069 return;
4070
4071 if (sym_text[0] == '[')
4072 /* Complete on shortened method method. */
4073 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4074
4075 while ((strlen (method) + 1) >= tmplen)
4076 {
4077 if (tmplen == 0)
4078 tmplen = 1024;
4079 else
4080 tmplen *= 2;
4081 tmp = xrealloc (tmp, tmplen);
4082 }
4083 selector = strchr (method, ' ');
4084 if (selector != NULL)
4085 selector++;
4086
4087 category = strchr (method, '(');
4088
4089 if ((category != NULL) && (selector != NULL))
4090 {
4091 memcpy (tmp, method, (category - method));
4092 tmp[category - method] = ' ';
4093 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4094 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4095 if (sym_text[0] == '[')
4096 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4097 }
4098
4099 if (selector != NULL)
4100 {
4101 /* Complete on selector only. */
4102 strcpy (tmp, selector);
4103 tmp2 = strchr (tmp, ']');
4104 if (tmp2 != NULL)
4105 *tmp2 = '\0';
4106
4107 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4108 }
4109 }
4110
4111 /* Break the non-quoted text based on the characters which are in
4112 symbols. FIXME: This should probably be language-specific. */
4113
4114 static const char *
4115 language_search_unquoted_string (const char *text, const char *p)
4116 {
4117 for (; p > text; --p)
4118 {
4119 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4120 continue;
4121 else
4122 {
4123 if ((current_language->la_language == language_objc))
4124 {
4125 if (p[-1] == ':') /* Might be part of a method name. */
4126 continue;
4127 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4128 p -= 2; /* Beginning of a method name. */
4129 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4130 { /* Might be part of a method name. */
4131 const char *t = p;
4132
4133 /* Seeing a ' ' or a '(' is not conclusive evidence
4134 that we are in the middle of a method name. However,
4135 finding "-[" or "+[" should be pretty un-ambiguous.
4136 Unfortunately we have to find it now to decide. */
4137
4138 while (t > text)
4139 if (isalnum (t[-1]) || t[-1] == '_' ||
4140 t[-1] == ' ' || t[-1] == ':' ||
4141 t[-1] == '(' || t[-1] == ')')
4142 --t;
4143 else
4144 break;
4145
4146 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4147 p = t - 2; /* Method name detected. */
4148 /* Else we leave with p unchanged. */
4149 }
4150 }
4151 break;
4152 }
4153 }
4154 return p;
4155 }
4156
4157 static void
4158 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4159 int sym_text_len, const char *text,
4160 const char *word)
4161 {
4162 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4163 {
4164 struct type *t = SYMBOL_TYPE (sym);
4165 enum type_code c = TYPE_CODE (t);
4166 int j;
4167
4168 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4169 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4170 if (TYPE_FIELD_NAME (t, j))
4171 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4172 sym_text, sym_text_len, text, word);
4173 }
4174 }
4175
4176 /* Type of the user_data argument passed to add_macro_name or
4177 expand_partial_symbol_name. The contents are simply whatever is
4178 needed by completion_list_add_name. */
4179 struct add_name_data
4180 {
4181 const char *sym_text;
4182 int sym_text_len;
4183 const char *text;
4184 const char *word;
4185 };
4186
4187 /* A callback used with macro_for_each and macro_for_each_in_scope.
4188 This adds a macro's name to the current completion list. */
4189
4190 static void
4191 add_macro_name (const char *name, const struct macro_definition *ignore,
4192 struct macro_source_file *ignore2, int ignore3,
4193 void *user_data)
4194 {
4195 struct add_name_data *datum = (struct add_name_data *) user_data;
4196
4197 completion_list_add_name ((char *) name,
4198 datum->sym_text, datum->sym_text_len,
4199 datum->text, datum->word);
4200 }
4201
4202 /* A callback for expand_partial_symbol_names. */
4203
4204 static int
4205 expand_partial_symbol_name (const char *name, void *user_data)
4206 {
4207 struct add_name_data *datum = (struct add_name_data *) user_data;
4208
4209 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4210 }
4211
4212 VEC (char_ptr) *
4213 default_make_symbol_completion_list_break_on (const char *text,
4214 const char *word,
4215 const char *break_on,
4216 enum type_code code)
4217 {
4218 /* Problem: All of the symbols have to be copied because readline
4219 frees them. I'm not going to worry about this; hopefully there
4220 won't be that many. */
4221
4222 struct symbol *sym;
4223 struct symtab *s;
4224 struct minimal_symbol *msymbol;
4225 struct objfile *objfile;
4226 struct block *b;
4227 const struct block *surrounding_static_block, *surrounding_global_block;
4228 struct block_iterator iter;
4229 /* The symbol we are completing on. Points in same buffer as text. */
4230 const char *sym_text;
4231 /* Length of sym_text. */
4232 int sym_text_len;
4233 struct add_name_data datum;
4234 struct cleanup *back_to;
4235
4236 /* Now look for the symbol we are supposed to complete on. */
4237 {
4238 const char *p;
4239 char quote_found;
4240 const char *quote_pos = NULL;
4241
4242 /* First see if this is a quoted string. */
4243 quote_found = '\0';
4244 for (p = text; *p != '\0'; ++p)
4245 {
4246 if (quote_found != '\0')
4247 {
4248 if (*p == quote_found)
4249 /* Found close quote. */
4250 quote_found = '\0';
4251 else if (*p == '\\' && p[1] == quote_found)
4252 /* A backslash followed by the quote character
4253 doesn't end the string. */
4254 ++p;
4255 }
4256 else if (*p == '\'' || *p == '"')
4257 {
4258 quote_found = *p;
4259 quote_pos = p;
4260 }
4261 }
4262 if (quote_found == '\'')
4263 /* A string within single quotes can be a symbol, so complete on it. */
4264 sym_text = quote_pos + 1;
4265 else if (quote_found == '"')
4266 /* A double-quoted string is never a symbol, nor does it make sense
4267 to complete it any other way. */
4268 {
4269 return NULL;
4270 }
4271 else
4272 {
4273 /* It is not a quoted string. Break it based on the characters
4274 which are in symbols. */
4275 while (p > text)
4276 {
4277 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4278 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4279 --p;
4280 else
4281 break;
4282 }
4283 sym_text = p;
4284 }
4285 }
4286
4287 sym_text_len = strlen (sym_text);
4288
4289 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4290
4291 if (current_language->la_language == language_cplus
4292 || current_language->la_language == language_java
4293 || current_language->la_language == language_fortran)
4294 {
4295 /* These languages may have parameters entered by user but they are never
4296 present in the partial symbol tables. */
4297
4298 const char *cs = memchr (sym_text, '(', sym_text_len);
4299
4300 if (cs)
4301 sym_text_len = cs - sym_text;
4302 }
4303 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4304
4305 return_val = NULL;
4306 back_to = make_cleanup (do_free_completion_list, &return_val);
4307
4308 datum.sym_text = sym_text;
4309 datum.sym_text_len = sym_text_len;
4310 datum.text = text;
4311 datum.word = word;
4312
4313 /* Look through the partial symtabs for all symbols which begin
4314 by matching SYM_TEXT. Expand all CUs that you find to the list.
4315 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4316 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4317
4318 /* At this point scan through the misc symbol vectors and add each
4319 symbol you find to the list. Eventually we want to ignore
4320 anything that isn't a text symbol (everything else will be
4321 handled by the psymtab code above). */
4322
4323 if (code == TYPE_CODE_UNDEF)
4324 {
4325 ALL_MSYMBOLS (objfile, msymbol)
4326 {
4327 QUIT;
4328 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4329 word);
4330
4331 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4332 word);
4333 }
4334 }
4335
4336 /* Search upwards from currently selected frame (so that we can
4337 complete on local vars). Also catch fields of types defined in
4338 this places which match our text string. Only complete on types
4339 visible from current context. */
4340
4341 b = get_selected_block (0);
4342 surrounding_static_block = block_static_block (b);
4343 surrounding_global_block = block_global_block (b);
4344 if (surrounding_static_block != NULL)
4345 while (b != surrounding_static_block)
4346 {
4347 QUIT;
4348
4349 ALL_BLOCK_SYMBOLS (b, iter, sym)
4350 {
4351 if (code == TYPE_CODE_UNDEF)
4352 {
4353 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4354 word);
4355 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4356 word);
4357 }
4358 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4359 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4360 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4361 word);
4362 }
4363
4364 /* Stop when we encounter an enclosing function. Do not stop for
4365 non-inlined functions - the locals of the enclosing function
4366 are in scope for a nested function. */
4367 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4368 break;
4369 b = BLOCK_SUPERBLOCK (b);
4370 }
4371
4372 /* Add fields from the file's types; symbols will be added below. */
4373
4374 if (code == TYPE_CODE_UNDEF)
4375 {
4376 if (surrounding_static_block != NULL)
4377 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4378 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4379
4380 if (surrounding_global_block != NULL)
4381 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4382 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4383 }
4384
4385 /* Go through the symtabs and check the externs and statics for
4386 symbols which match. */
4387
4388 ALL_PRIMARY_SYMTABS (objfile, s)
4389 {
4390 QUIT;
4391 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4392 ALL_BLOCK_SYMBOLS (b, iter, sym)
4393 {
4394 if (code == TYPE_CODE_UNDEF
4395 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4396 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4397 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4398 }
4399 }
4400
4401 ALL_PRIMARY_SYMTABS (objfile, s)
4402 {
4403 QUIT;
4404 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4405 ALL_BLOCK_SYMBOLS (b, iter, sym)
4406 {
4407 if (code == TYPE_CODE_UNDEF
4408 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4409 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4410 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4411 }
4412 }
4413
4414 /* Skip macros if we are completing a struct tag -- arguable but
4415 usually what is expected. */
4416 if (current_language->la_macro_expansion == macro_expansion_c
4417 && code == TYPE_CODE_UNDEF)
4418 {
4419 struct macro_scope *scope;
4420
4421 /* Add any macros visible in the default scope. Note that this
4422 may yield the occasional wrong result, because an expression
4423 might be evaluated in a scope other than the default. For
4424 example, if the user types "break file:line if <TAB>", the
4425 resulting expression will be evaluated at "file:line" -- but
4426 at there does not seem to be a way to detect this at
4427 completion time. */
4428 scope = default_macro_scope ();
4429 if (scope)
4430 {
4431 macro_for_each_in_scope (scope->file, scope->line,
4432 add_macro_name, &datum);
4433 xfree (scope);
4434 }
4435
4436 /* User-defined macros are always visible. */
4437 macro_for_each (macro_user_macros, add_macro_name, &datum);
4438 }
4439
4440 discard_cleanups (back_to);
4441 return (return_val);
4442 }
4443
4444 VEC (char_ptr) *
4445 default_make_symbol_completion_list (const char *text, const char *word,
4446 enum type_code code)
4447 {
4448 return default_make_symbol_completion_list_break_on (text, word, "", code);
4449 }
4450
4451 /* Return a vector of all symbols (regardless of class) which begin by
4452 matching TEXT. If the answer is no symbols, then the return value
4453 is NULL. */
4454
4455 VEC (char_ptr) *
4456 make_symbol_completion_list (const char *text, const char *word)
4457 {
4458 return current_language->la_make_symbol_completion_list (text, word,
4459 TYPE_CODE_UNDEF);
4460 }
4461
4462 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4463 symbols whose type code is CODE. */
4464
4465 VEC (char_ptr) *
4466 make_symbol_completion_type (const char *text, const char *word,
4467 enum type_code code)
4468 {
4469 gdb_assert (code == TYPE_CODE_UNION
4470 || code == TYPE_CODE_STRUCT
4471 || code == TYPE_CODE_CLASS
4472 || code == TYPE_CODE_ENUM);
4473 return current_language->la_make_symbol_completion_list (text, word, code);
4474 }
4475
4476 /* Like make_symbol_completion_list, but suitable for use as a
4477 completion function. */
4478
4479 VEC (char_ptr) *
4480 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4481 const char *text, const char *word)
4482 {
4483 return make_symbol_completion_list (text, word);
4484 }
4485
4486 /* Like make_symbol_completion_list, but returns a list of symbols
4487 defined in a source file FILE. */
4488
4489 VEC (char_ptr) *
4490 make_file_symbol_completion_list (const char *text, const char *word,
4491 const char *srcfile)
4492 {
4493 struct symbol *sym;
4494 struct symtab *s;
4495 struct block *b;
4496 struct block_iterator iter;
4497 /* The symbol we are completing on. Points in same buffer as text. */
4498 const char *sym_text;
4499 /* Length of sym_text. */
4500 int sym_text_len;
4501
4502 /* Now look for the symbol we are supposed to complete on.
4503 FIXME: This should be language-specific. */
4504 {
4505 const char *p;
4506 char quote_found;
4507 const char *quote_pos = NULL;
4508
4509 /* First see if this is a quoted string. */
4510 quote_found = '\0';
4511 for (p = text; *p != '\0'; ++p)
4512 {
4513 if (quote_found != '\0')
4514 {
4515 if (*p == quote_found)
4516 /* Found close quote. */
4517 quote_found = '\0';
4518 else if (*p == '\\' && p[1] == quote_found)
4519 /* A backslash followed by the quote character
4520 doesn't end the string. */
4521 ++p;
4522 }
4523 else if (*p == '\'' || *p == '"')
4524 {
4525 quote_found = *p;
4526 quote_pos = p;
4527 }
4528 }
4529 if (quote_found == '\'')
4530 /* A string within single quotes can be a symbol, so complete on it. */
4531 sym_text = quote_pos + 1;
4532 else if (quote_found == '"')
4533 /* A double-quoted string is never a symbol, nor does it make sense
4534 to complete it any other way. */
4535 {
4536 return NULL;
4537 }
4538 else
4539 {
4540 /* Not a quoted string. */
4541 sym_text = language_search_unquoted_string (text, p);
4542 }
4543 }
4544
4545 sym_text_len = strlen (sym_text);
4546
4547 return_val = NULL;
4548
4549 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4550 in). */
4551 s = lookup_symtab (srcfile);
4552 if (s == NULL)
4553 {
4554 /* Maybe they typed the file with leading directories, while the
4555 symbol tables record only its basename. */
4556 const char *tail = lbasename (srcfile);
4557
4558 if (tail > srcfile)
4559 s = lookup_symtab (tail);
4560 }
4561
4562 /* If we have no symtab for that file, return an empty list. */
4563 if (s == NULL)
4564 return (return_val);
4565
4566 /* Go through this symtab and check the externs and statics for
4567 symbols which match. */
4568
4569 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4570 ALL_BLOCK_SYMBOLS (b, iter, sym)
4571 {
4572 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4573 }
4574
4575 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4576 ALL_BLOCK_SYMBOLS (b, iter, sym)
4577 {
4578 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4579 }
4580
4581 return (return_val);
4582 }
4583
4584 /* A helper function for make_source_files_completion_list. It adds
4585 another file name to a list of possible completions, growing the
4586 list as necessary. */
4587
4588 static void
4589 add_filename_to_list (const char *fname, const char *text, const char *word,
4590 VEC (char_ptr) **list)
4591 {
4592 char *new;
4593 size_t fnlen = strlen (fname);
4594
4595 if (word == text)
4596 {
4597 /* Return exactly fname. */
4598 new = xmalloc (fnlen + 5);
4599 strcpy (new, fname);
4600 }
4601 else if (word > text)
4602 {
4603 /* Return some portion of fname. */
4604 new = xmalloc (fnlen + 5);
4605 strcpy (new, fname + (word - text));
4606 }
4607 else
4608 {
4609 /* Return some of TEXT plus fname. */
4610 new = xmalloc (fnlen + (text - word) + 5);
4611 strncpy (new, word, text - word);
4612 new[text - word] = '\0';
4613 strcat (new, fname);
4614 }
4615 VEC_safe_push (char_ptr, *list, new);
4616 }
4617
4618 static int
4619 not_interesting_fname (const char *fname)
4620 {
4621 static const char *illegal_aliens[] = {
4622 "_globals_", /* inserted by coff_symtab_read */
4623 NULL
4624 };
4625 int i;
4626
4627 for (i = 0; illegal_aliens[i]; i++)
4628 {
4629 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4630 return 1;
4631 }
4632 return 0;
4633 }
4634
4635 /* An object of this type is passed as the user_data argument to
4636 map_partial_symbol_filenames. */
4637 struct add_partial_filename_data
4638 {
4639 struct filename_seen_cache *filename_seen_cache;
4640 const char *text;
4641 const char *word;
4642 int text_len;
4643 VEC (char_ptr) **list;
4644 };
4645
4646 /* A callback for map_partial_symbol_filenames. */
4647
4648 static void
4649 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4650 void *user_data)
4651 {
4652 struct add_partial_filename_data *data = user_data;
4653
4654 if (not_interesting_fname (filename))
4655 return;
4656 if (!filename_seen (data->filename_seen_cache, filename, 1)
4657 && filename_ncmp (filename, data->text, data->text_len) == 0)
4658 {
4659 /* This file matches for a completion; add it to the
4660 current list of matches. */
4661 add_filename_to_list (filename, data->text, data->word, data->list);
4662 }
4663 else
4664 {
4665 const char *base_name = lbasename (filename);
4666
4667 if (base_name != filename
4668 && !filename_seen (data->filename_seen_cache, base_name, 1)
4669 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4670 add_filename_to_list (base_name, data->text, data->word, data->list);
4671 }
4672 }
4673
4674 /* Return a vector of all source files whose names begin with matching
4675 TEXT. The file names are looked up in the symbol tables of this
4676 program. If the answer is no matchess, then the return value is
4677 NULL. */
4678
4679 VEC (char_ptr) *
4680 make_source_files_completion_list (const char *text, const char *word)
4681 {
4682 struct symtab *s;
4683 struct objfile *objfile;
4684 size_t text_len = strlen (text);
4685 VEC (char_ptr) *list = NULL;
4686 const char *base_name;
4687 struct add_partial_filename_data datum;
4688 struct filename_seen_cache *filename_seen_cache;
4689 struct cleanup *back_to, *cache_cleanup;
4690
4691 if (!have_full_symbols () && !have_partial_symbols ())
4692 return list;
4693
4694 back_to = make_cleanup (do_free_completion_list, &list);
4695
4696 filename_seen_cache = create_filename_seen_cache ();
4697 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4698 filename_seen_cache);
4699
4700 ALL_SYMTABS (objfile, s)
4701 {
4702 if (not_interesting_fname (s->filename))
4703 continue;
4704 if (!filename_seen (filename_seen_cache, s->filename, 1)
4705 && filename_ncmp (s->filename, text, text_len) == 0)
4706 {
4707 /* This file matches for a completion; add it to the current
4708 list of matches. */
4709 add_filename_to_list (s->filename, text, word, &list);
4710 }
4711 else
4712 {
4713 /* NOTE: We allow the user to type a base name when the
4714 debug info records leading directories, but not the other
4715 way around. This is what subroutines of breakpoint
4716 command do when they parse file names. */
4717 base_name = lbasename (s->filename);
4718 if (base_name != s->filename
4719 && !filename_seen (filename_seen_cache, base_name, 1)
4720 && filename_ncmp (base_name, text, text_len) == 0)
4721 add_filename_to_list (base_name, text, word, &list);
4722 }
4723 }
4724
4725 datum.filename_seen_cache = filename_seen_cache;
4726 datum.text = text;
4727 datum.word = word;
4728 datum.text_len = text_len;
4729 datum.list = &list;
4730 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4731 0 /*need_fullname*/);
4732
4733 do_cleanups (cache_cleanup);
4734 discard_cleanups (back_to);
4735
4736 return list;
4737 }
4738
4739 /* Determine if PC is in the prologue of a function. The prologue is the area
4740 between the first instruction of a function, and the first executable line.
4741 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4742
4743 If non-zero, func_start is where we think the prologue starts, possibly
4744 by previous examination of symbol table information. */
4745
4746 int
4747 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4748 {
4749 struct symtab_and_line sal;
4750 CORE_ADDR func_addr, func_end;
4751
4752 /* We have several sources of information we can consult to figure
4753 this out.
4754 - Compilers usually emit line number info that marks the prologue
4755 as its own "source line". So the ending address of that "line"
4756 is the end of the prologue. If available, this is the most
4757 reliable method.
4758 - The minimal symbols and partial symbols, which can usually tell
4759 us the starting and ending addresses of a function.
4760 - If we know the function's start address, we can call the
4761 architecture-defined gdbarch_skip_prologue function to analyze the
4762 instruction stream and guess where the prologue ends.
4763 - Our `func_start' argument; if non-zero, this is the caller's
4764 best guess as to the function's entry point. At the time of
4765 this writing, handle_inferior_event doesn't get this right, so
4766 it should be our last resort. */
4767
4768 /* Consult the partial symbol table, to find which function
4769 the PC is in. */
4770 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4771 {
4772 CORE_ADDR prologue_end;
4773
4774 /* We don't even have minsym information, so fall back to using
4775 func_start, if given. */
4776 if (! func_start)
4777 return 1; /* We *might* be in a prologue. */
4778
4779 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4780
4781 return func_start <= pc && pc < prologue_end;
4782 }
4783
4784 /* If we have line number information for the function, that's
4785 usually pretty reliable. */
4786 sal = find_pc_line (func_addr, 0);
4787
4788 /* Now sal describes the source line at the function's entry point,
4789 which (by convention) is the prologue. The end of that "line",
4790 sal.end, is the end of the prologue.
4791
4792 Note that, for functions whose source code is all on a single
4793 line, the line number information doesn't always end up this way.
4794 So we must verify that our purported end-of-prologue address is
4795 *within* the function, not at its start or end. */
4796 if (sal.line == 0
4797 || sal.end <= func_addr
4798 || func_end <= sal.end)
4799 {
4800 /* We don't have any good line number info, so use the minsym
4801 information, together with the architecture-specific prologue
4802 scanning code. */
4803 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4804
4805 return func_addr <= pc && pc < prologue_end;
4806 }
4807
4808 /* We have line number info, and it looks good. */
4809 return func_addr <= pc && pc < sal.end;
4810 }
4811
4812 /* Given PC at the function's start address, attempt to find the
4813 prologue end using SAL information. Return zero if the skip fails.
4814
4815 A non-optimized prologue traditionally has one SAL for the function
4816 and a second for the function body. A single line function has
4817 them both pointing at the same line.
4818
4819 An optimized prologue is similar but the prologue may contain
4820 instructions (SALs) from the instruction body. Need to skip those
4821 while not getting into the function body.
4822
4823 The functions end point and an increasing SAL line are used as
4824 indicators of the prologue's endpoint.
4825
4826 This code is based on the function refine_prologue_limit
4827 (found in ia64). */
4828
4829 CORE_ADDR
4830 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4831 {
4832 struct symtab_and_line prologue_sal;
4833 CORE_ADDR start_pc;
4834 CORE_ADDR end_pc;
4835 struct block *bl;
4836
4837 /* Get an initial range for the function. */
4838 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4839 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4840
4841 prologue_sal = find_pc_line (start_pc, 0);
4842 if (prologue_sal.line != 0)
4843 {
4844 /* For languages other than assembly, treat two consecutive line
4845 entries at the same address as a zero-instruction prologue.
4846 The GNU assembler emits separate line notes for each instruction
4847 in a multi-instruction macro, but compilers generally will not
4848 do this. */
4849 if (prologue_sal.symtab->language != language_asm)
4850 {
4851 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4852 int idx = 0;
4853
4854 /* Skip any earlier lines, and any end-of-sequence marker
4855 from a previous function. */
4856 while (linetable->item[idx].pc != prologue_sal.pc
4857 || linetable->item[idx].line == 0)
4858 idx++;
4859
4860 if (idx+1 < linetable->nitems
4861 && linetable->item[idx+1].line != 0
4862 && linetable->item[idx+1].pc == start_pc)
4863 return start_pc;
4864 }
4865
4866 /* If there is only one sal that covers the entire function,
4867 then it is probably a single line function, like
4868 "foo(){}". */
4869 if (prologue_sal.end >= end_pc)
4870 return 0;
4871
4872 while (prologue_sal.end < end_pc)
4873 {
4874 struct symtab_and_line sal;
4875
4876 sal = find_pc_line (prologue_sal.end, 0);
4877 if (sal.line == 0)
4878 break;
4879 /* Assume that a consecutive SAL for the same (or larger)
4880 line mark the prologue -> body transition. */
4881 if (sal.line >= prologue_sal.line)
4882 break;
4883 /* Likewise if we are in a different symtab altogether
4884 (e.g. within a file included via #include).  */
4885 if (sal.symtab != prologue_sal.symtab)
4886 break;
4887
4888 /* The line number is smaller. Check that it's from the
4889 same function, not something inlined. If it's inlined,
4890 then there is no point comparing the line numbers. */
4891 bl = block_for_pc (prologue_sal.end);
4892 while (bl)
4893 {
4894 if (block_inlined_p (bl))
4895 break;
4896 if (BLOCK_FUNCTION (bl))
4897 {
4898 bl = NULL;
4899 break;
4900 }
4901 bl = BLOCK_SUPERBLOCK (bl);
4902 }
4903 if (bl != NULL)
4904 break;
4905
4906 /* The case in which compiler's optimizer/scheduler has
4907 moved instructions into the prologue. We look ahead in
4908 the function looking for address ranges whose
4909 corresponding line number is less the first one that we
4910 found for the function. This is more conservative then
4911 refine_prologue_limit which scans a large number of SALs
4912 looking for any in the prologue. */
4913 prologue_sal = sal;
4914 }
4915 }
4916
4917 if (prologue_sal.end < end_pc)
4918 /* Return the end of this line, or zero if we could not find a
4919 line. */
4920 return prologue_sal.end;
4921 else
4922 /* Don't return END_PC, which is past the end of the function. */
4923 return prologue_sal.pc;
4924 }
4925 \f
4926 /* Track MAIN */
4927 static char *name_of_main;
4928 enum language language_of_main = language_unknown;
4929
4930 void
4931 set_main_name (const char *name)
4932 {
4933 if (name_of_main != NULL)
4934 {
4935 xfree (name_of_main);
4936 name_of_main = NULL;
4937 language_of_main = language_unknown;
4938 }
4939 if (name != NULL)
4940 {
4941 name_of_main = xstrdup (name);
4942 language_of_main = language_unknown;
4943 }
4944 }
4945
4946 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4947 accordingly. */
4948
4949 static void
4950 find_main_name (void)
4951 {
4952 const char *new_main_name;
4953
4954 /* Try to see if the main procedure is in Ada. */
4955 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4956 be to add a new method in the language vector, and call this
4957 method for each language until one of them returns a non-empty
4958 name. This would allow us to remove this hard-coded call to
4959 an Ada function. It is not clear that this is a better approach
4960 at this point, because all methods need to be written in a way
4961 such that false positives never be returned. For instance, it is
4962 important that a method does not return a wrong name for the main
4963 procedure if the main procedure is actually written in a different
4964 language. It is easy to guaranty this with Ada, since we use a
4965 special symbol generated only when the main in Ada to find the name
4966 of the main procedure. It is difficult however to see how this can
4967 be guarantied for languages such as C, for instance. This suggests
4968 that order of call for these methods becomes important, which means
4969 a more complicated approach. */
4970 new_main_name = ada_main_name ();
4971 if (new_main_name != NULL)
4972 {
4973 set_main_name (new_main_name);
4974 return;
4975 }
4976
4977 new_main_name = go_main_name ();
4978 if (new_main_name != NULL)
4979 {
4980 set_main_name (new_main_name);
4981 return;
4982 }
4983
4984 new_main_name = pascal_main_name ();
4985 if (new_main_name != NULL)
4986 {
4987 set_main_name (new_main_name);
4988 return;
4989 }
4990
4991 /* The languages above didn't identify the name of the main procedure.
4992 Fallback to "main". */
4993 set_main_name ("main");
4994 }
4995
4996 char *
4997 main_name (void)
4998 {
4999 if (name_of_main == NULL)
5000 find_main_name ();
5001
5002 return name_of_main;
5003 }
5004
5005 /* Handle ``executable_changed'' events for the symtab module. */
5006
5007 static void
5008 symtab_observer_executable_changed (void)
5009 {
5010 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5011 set_main_name (NULL);
5012 }
5013
5014 /* Return 1 if the supplied producer string matches the ARM RealView
5015 compiler (armcc). */
5016
5017 int
5018 producer_is_realview (const char *producer)
5019 {
5020 static const char *const arm_idents[] = {
5021 "ARM C Compiler, ADS",
5022 "Thumb C Compiler, ADS",
5023 "ARM C++ Compiler, ADS",
5024 "Thumb C++ Compiler, ADS",
5025 "ARM/Thumb C/C++ Compiler, RVCT",
5026 "ARM C/C++ Compiler, RVCT"
5027 };
5028 int i;
5029
5030 if (producer == NULL)
5031 return 0;
5032
5033 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5034 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5035 return 1;
5036
5037 return 0;
5038 }
5039
5040 void
5041 _initialize_symtab (void)
5042 {
5043 add_info ("variables", variables_info, _("\
5044 All global and static variable names, or those matching REGEXP."));
5045 if (dbx_commands)
5046 add_com ("whereis", class_info, variables_info, _("\
5047 All global and static variable names, or those matching REGEXP."));
5048
5049 add_info ("functions", functions_info,
5050 _("All function names, or those matching REGEXP."));
5051
5052 /* FIXME: This command has at least the following problems:
5053 1. It prints builtin types (in a very strange and confusing fashion).
5054 2. It doesn't print right, e.g. with
5055 typedef struct foo *FOO
5056 type_print prints "FOO" when we want to make it (in this situation)
5057 print "struct foo *".
5058 I also think "ptype" or "whatis" is more likely to be useful (but if
5059 there is much disagreement "info types" can be fixed). */
5060 add_info ("types", types_info,
5061 _("All type names, or those matching REGEXP."));
5062
5063 add_info ("sources", sources_info,
5064 _("Source files in the program."));
5065
5066 add_com ("rbreak", class_breakpoint, rbreak_command,
5067 _("Set a breakpoint for all functions matching REGEXP."));
5068
5069 if (xdb_commands)
5070 {
5071 add_com ("lf", class_info, sources_info,
5072 _("Source files in the program"));
5073 add_com ("lg", class_info, variables_info, _("\
5074 All global and static variable names, or those matching REGEXP."));
5075 }
5076
5077 add_setshow_enum_cmd ("multiple-symbols", no_class,
5078 multiple_symbols_modes, &multiple_symbols_mode,
5079 _("\
5080 Set the debugger behavior when more than one symbol are possible matches\n\
5081 in an expression."), _("\
5082 Show how the debugger handles ambiguities in expressions."), _("\
5083 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5084 NULL, NULL, &setlist, &showlist);
5085
5086 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5087 &basenames_may_differ, _("\
5088 Set whether a source file may have multiple base names."), _("\
5089 Show whether a source file may have multiple base names."), _("\
5090 (A \"base name\" is the name of a file with the directory part removed.\n\
5091 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5092 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5093 before comparing them. Canonicalization is an expensive operation,\n\
5094 but it allows the same file be known by more than one base name.\n\
5095 If not set (the default), all source files are assumed to have just\n\
5096 one base name, and gdb will do file name comparisons more efficiently."),
5097 NULL, NULL,
5098 &setlist, &showlist);
5099
5100 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5101 _("Set debugging of symbol table creation."),
5102 _("Show debugging of symbol table creation."), _("\
5103 When enabled, debugging messages are printed when building symbol tables."),
5104 NULL,
5105 NULL,
5106 &setdebuglist, &showdebuglist);
5107
5108 observer_attach_executable_changed (symtab_observer_executable_changed);
5109 }
This page took 0.138435 seconds and 4 git commands to generate.