*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this,
95 int for_type);
96
97 static
98 struct symbol *lookup_symbol_aux_local (const char *name,
99 const struct block *block,
100 const domain_enum domain,
101 enum language language);
102
103 static
104 struct symbol *lookup_symbol_aux_symtabs (int block_index,
105 const char *name,
106 const domain_enum domain);
107
108 static
109 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
110 int block_index,
111 const char *name,
112 const domain_enum domain);
113
114 static void print_symbol_info (domain_enum,
115 struct symtab *, struct symbol *, int, char *);
116
117 static void print_msymbol_info (struct minimal_symbol *);
118
119 static void symtab_symbol_info (char *, domain_enum, int);
120
121 void _initialize_symtab (void);
122
123 /* */
124
125 /* Allow the user to configure the debugger behavior with respect
126 to multiple-choice menus when more than one symbol matches during
127 a symbol lookup. */
128
129 const char multiple_symbols_ask[] = "ask";
130 const char multiple_symbols_all[] = "all";
131 const char multiple_symbols_cancel[] = "cancel";
132 static const char *multiple_symbols_modes[] =
133 {
134 multiple_symbols_ask,
135 multiple_symbols_all,
136 multiple_symbols_cancel,
137 NULL
138 };
139 static const char *multiple_symbols_mode = multiple_symbols_all;
140
141 /* Read-only accessor to AUTO_SELECT_MODE. */
142
143 const char *
144 multiple_symbols_select_mode (void)
145 {
146 return multiple_symbols_mode;
147 }
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 int found;
163 struct symtab *s = NULL;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195
196 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
197 {
198 return s;
199 }
200 }
201
202 if (real_path != NULL)
203 {
204 char *fullname = symtab_to_fullname (s);
205
206 if (fullname != NULL)
207 {
208 char *rp = gdb_realpath (fullname);
209
210 make_cleanup (xfree, rp);
211 if (FILENAME_CMP (real_path, rp) == 0)
212 {
213 return s;
214 }
215 }
216 }
217 }
218
219 /* Now, search for a matching tail (only if name doesn't have any dirs) */
220
221 if (lbasename (name) == name)
222 ALL_SYMTABS (objfile, s)
223 {
224 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
225 return s;
226 }
227
228 /* Same search rules as above apply here, but now we look thru the
229 psymtabs. */
230
231 found = 0;
232 ALL_OBJFILES (objfile)
233 {
234 if (objfile->sf
235 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
236 &s))
237 {
238 found = 1;
239 break;
240 }
241 }
242
243 if (s != NULL)
244 return s;
245 if (!found)
246 return NULL;
247
248 /* At this point, we have located the psymtab for this file, but
249 the conversion to a symtab has failed. This usually happens
250 when we are looking up an include file. In this case,
251 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
252 been created. So, we need to run through the symtabs again in
253 order to find the file.
254 XXX - This is a crock, and should be fixed inside of the the
255 symbol parsing routines. */
256 goto got_symtab;
257 }
258 \f
259 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
260 full method name, which consist of the class name (from T), the unadorned
261 method name from METHOD_ID, and the signature for the specific overload,
262 specified by SIGNATURE_ID. Note that this function is g++ specific. */
263
264 char *
265 gdb_mangle_name (struct type *type, int method_id, int signature_id)
266 {
267 int mangled_name_len;
268 char *mangled_name;
269 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
270 struct fn_field *method = &f[signature_id];
271 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
272 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
273 char *newname = type_name_no_tag (type);
274
275 /* Does the form of physname indicate that it is the full mangled name
276 of a constructor (not just the args)? */
277 int is_full_physname_constructor;
278
279 int is_constructor;
280 int is_destructor = is_destructor_name (physname);
281 /* Need a new type prefix. */
282 char *const_prefix = method->is_const ? "C" : "";
283 char *volatile_prefix = method->is_volatile ? "V" : "";
284 char buf[20];
285 int len = (newname == NULL ? 0 : strlen (newname));
286
287 /* Nothing to do if physname already contains a fully mangled v3 abi name
288 or an operator name. */
289 if ((physname[0] == '_' && physname[1] == 'Z')
290 || is_operator_name (field_name))
291 return xstrdup (physname);
292
293 is_full_physname_constructor = is_constructor_name (physname);
294
295 is_constructor =
296 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
297
298 if (!is_destructor)
299 is_destructor = (strncmp (physname, "__dt", 4) == 0);
300
301 if (is_destructor || is_full_physname_constructor)
302 {
303 mangled_name = (char *) xmalloc (strlen (physname) + 1);
304 strcpy (mangled_name, physname);
305 return mangled_name;
306 }
307
308 if (len == 0)
309 {
310 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
311 }
312 else if (physname[0] == 't' || physname[0] == 'Q')
313 {
314 /* The physname for template and qualified methods already includes
315 the class name. */
316 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
317 newname = NULL;
318 len = 0;
319 }
320 else
321 {
322 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
323 }
324 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
325 + strlen (buf) + len + strlen (physname) + 1);
326
327 mangled_name = (char *) xmalloc (mangled_name_len);
328 if (is_constructor)
329 mangled_name[0] = '\0';
330 else
331 strcpy (mangled_name, field_name);
332
333 strcat (mangled_name, buf);
334 /* If the class doesn't have a name, i.e. newname NULL, then we just
335 mangle it using 0 for the length of the class. Thus it gets mangled
336 as something starting with `::' rather than `classname::'. */
337 if (newname != NULL)
338 strcat (mangled_name, newname);
339
340 strcat (mangled_name, physname);
341 return (mangled_name);
342 }
343
344 /* Initialize the cplus_specific structure. 'cplus_specific' should
345 only be allocated for use with cplus symbols. */
346
347 static void
348 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
349 struct objfile *objfile)
350 {
351 /* A language_specific structure should not have been previously
352 initialized. */
353 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
354 gdb_assert (objfile != NULL);
355
356 gsymbol->language_specific.cplus_specific =
357 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
358 }
359
360 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
361 correctly allocated. For C++ symbols a cplus_specific struct is
362 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
363 OBJFILE can be NULL. */
364 void
365 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
366 char *name,
367 struct objfile *objfile)
368 {
369 if (gsymbol->language == language_cplus)
370 {
371 if (gsymbol->language_specific.cplus_specific == NULL)
372 symbol_init_cplus_specific (gsymbol, objfile);
373
374 gsymbol->language_specific.cplus_specific->demangled_name = name;
375 }
376 else
377 gsymbol->language_specific.mangled_lang.demangled_name = name;
378 }
379
380 /* Return the demangled name of GSYMBOL. */
381 char *
382 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
383 {
384 if (gsymbol->language == language_cplus)
385 {
386 if (gsymbol->language_specific.cplus_specific != NULL)
387 return gsymbol->language_specific.cplus_specific->demangled_name;
388 else
389 return NULL;
390 }
391 else
392 return gsymbol->language_specific.mangled_lang.demangled_name;
393 }
394
395 \f
396 /* Initialize the language dependent portion of a symbol
397 depending upon the language for the symbol. */
398 void
399 symbol_set_language (struct general_symbol_info *gsymbol,
400 enum language language)
401 {
402 gsymbol->language = language;
403 if (gsymbol->language == language_d
404 || gsymbol->language == language_java
405 || gsymbol->language == language_objc
406 || gsymbol->language == language_fortran)
407 {
408 symbol_set_demangled_name (gsymbol, NULL, NULL);
409 }
410 else if (gsymbol->language == language_cplus)
411 gsymbol->language_specific.cplus_specific = NULL;
412 else
413 {
414 memset (&gsymbol->language_specific, 0,
415 sizeof (gsymbol->language_specific));
416 }
417 }
418
419 /* Functions to initialize a symbol's mangled name. */
420
421 /* Objects of this type are stored in the demangled name hash table. */
422 struct demangled_name_entry
423 {
424 char *mangled;
425 char demangled[1];
426 };
427
428 /* Hash function for the demangled name hash. */
429 static hashval_t
430 hash_demangled_name_entry (const void *data)
431 {
432 const struct demangled_name_entry *e = data;
433
434 return htab_hash_string (e->mangled);
435 }
436
437 /* Equality function for the demangled name hash. */
438 static int
439 eq_demangled_name_entry (const void *a, const void *b)
440 {
441 const struct demangled_name_entry *da = a;
442 const struct demangled_name_entry *db = b;
443
444 return strcmp (da->mangled, db->mangled) == 0;
445 }
446
447 /* Create the hash table used for demangled names. Each hash entry is
448 a pair of strings; one for the mangled name and one for the demangled
449 name. The entry is hashed via just the mangled name. */
450
451 static void
452 create_demangled_names_hash (struct objfile *objfile)
453 {
454 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
455 The hash table code will round this up to the next prime number.
456 Choosing a much larger table size wastes memory, and saves only about
457 1% in symbol reading. */
458
459 objfile->demangled_names_hash = htab_create_alloc
460 (256, hash_demangled_name_entry, eq_demangled_name_entry,
461 NULL, xcalloc, xfree);
462 }
463
464 /* Try to determine the demangled name for a symbol, based on the
465 language of that symbol. If the language is set to language_auto,
466 it will attempt to find any demangling algorithm that works and
467 then set the language appropriately. The returned name is allocated
468 by the demangler and should be xfree'd. */
469
470 static char *
471 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
472 const char *mangled)
473 {
474 char *demangled = NULL;
475
476 if (gsymbol->language == language_unknown)
477 gsymbol->language = language_auto;
478
479 if (gsymbol->language == language_objc
480 || gsymbol->language == language_auto)
481 {
482 demangled =
483 objc_demangle (mangled, 0);
484 if (demangled != NULL)
485 {
486 gsymbol->language = language_objc;
487 return demangled;
488 }
489 }
490 if (gsymbol->language == language_cplus
491 || gsymbol->language == language_auto)
492 {
493 demangled =
494 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
495 if (demangled != NULL)
496 {
497 gsymbol->language = language_cplus;
498 return demangled;
499 }
500 }
501 if (gsymbol->language == language_java)
502 {
503 demangled =
504 cplus_demangle (mangled,
505 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
506 if (demangled != NULL)
507 {
508 gsymbol->language = language_java;
509 return demangled;
510 }
511 }
512 if (gsymbol->language == language_d
513 || gsymbol->language == language_auto)
514 {
515 demangled = d_demangle(mangled, 0);
516 if (demangled != NULL)
517 {
518 gsymbol->language = language_d;
519 return demangled;
520 }
521 }
522 /* We could support `gsymbol->language == language_fortran' here to provide
523 module namespaces also for inferiors with only minimal symbol table (ELF
524 symbols). Just the mangling standard is not standardized across compilers
525 and there is no DW_AT_producer available for inferiors with only the ELF
526 symbols to check the mangling kind. */
527 return NULL;
528 }
529
530 /* Set both the mangled and demangled (if any) names for GSYMBOL based
531 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
532 objfile's obstack; but if COPY_NAME is 0 and if NAME is
533 NUL-terminated, then this function assumes that NAME is already
534 correctly saved (either permanently or with a lifetime tied to the
535 objfile), and it will not be copied.
536
537 The hash table corresponding to OBJFILE is used, and the memory
538 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
539 so the pointer can be discarded after calling this function. */
540
541 /* We have to be careful when dealing with Java names: when we run
542 into a Java minimal symbol, we don't know it's a Java symbol, so it
543 gets demangled as a C++ name. This is unfortunate, but there's not
544 much we can do about it: but when demangling partial symbols and
545 regular symbols, we'd better not reuse the wrong demangled name.
546 (See PR gdb/1039.) We solve this by putting a distinctive prefix
547 on Java names when storing them in the hash table. */
548
549 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
550 don't mind the Java prefix so much: different languages have
551 different demangling requirements, so it's only natural that we
552 need to keep language data around in our demangling cache. But
553 it's not good that the minimal symbol has the wrong demangled name.
554 Unfortunately, I can't think of any easy solution to that
555 problem. */
556
557 #define JAVA_PREFIX "##JAVA$$"
558 #define JAVA_PREFIX_LEN 8
559
560 void
561 symbol_set_names (struct general_symbol_info *gsymbol,
562 const char *linkage_name, int len, int copy_name,
563 struct objfile *objfile)
564 {
565 struct demangled_name_entry **slot;
566 /* A 0-terminated copy of the linkage name. */
567 const char *linkage_name_copy;
568 /* A copy of the linkage name that might have a special Java prefix
569 added to it, for use when looking names up in the hash table. */
570 const char *lookup_name;
571 /* The length of lookup_name. */
572 int lookup_len;
573 struct demangled_name_entry entry;
574
575 if (gsymbol->language == language_ada)
576 {
577 /* In Ada, we do the symbol lookups using the mangled name, so
578 we can save some space by not storing the demangled name.
579
580 As a side note, we have also observed some overlap between
581 the C++ mangling and Ada mangling, similarly to what has
582 been observed with Java. Because we don't store the demangled
583 name with the symbol, we don't need to use the same trick
584 as Java. */
585 if (!copy_name)
586 gsymbol->name = (char *) linkage_name;
587 else
588 {
589 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
590 memcpy (gsymbol->name, linkage_name, len);
591 gsymbol->name[len] = '\0';
592 }
593 symbol_set_demangled_name (gsymbol, NULL, NULL);
594
595 return;
596 }
597
598 if (objfile->demangled_names_hash == NULL)
599 create_demangled_names_hash (objfile);
600
601 /* The stabs reader generally provides names that are not
602 NUL-terminated; most of the other readers don't do this, so we
603 can just use the given copy, unless we're in the Java case. */
604 if (gsymbol->language == language_java)
605 {
606 char *alloc_name;
607
608 lookup_len = len + JAVA_PREFIX_LEN;
609 alloc_name = alloca (lookup_len + 1);
610 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
611 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
612 alloc_name[lookup_len] = '\0';
613
614 lookup_name = alloc_name;
615 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
616 }
617 else if (linkage_name[len] != '\0')
618 {
619 char *alloc_name;
620
621 lookup_len = len;
622 alloc_name = alloca (lookup_len + 1);
623 memcpy (alloc_name, linkage_name, len);
624 alloc_name[lookup_len] = '\0';
625
626 lookup_name = alloc_name;
627 linkage_name_copy = alloc_name;
628 }
629 else
630 {
631 lookup_len = len;
632 lookup_name = linkage_name;
633 linkage_name_copy = linkage_name;
634 }
635
636 entry.mangled = (char *) lookup_name;
637 slot = ((struct demangled_name_entry **)
638 htab_find_slot (objfile->demangled_names_hash,
639 &entry, INSERT));
640
641 /* If this name is not in the hash table, add it. */
642 if (*slot == NULL)
643 {
644 char *demangled_name = symbol_find_demangled_name (gsymbol,
645 linkage_name_copy);
646 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
647
648 /* Suppose we have demangled_name==NULL, copy_name==0, and
649 lookup_name==linkage_name. In this case, we already have the
650 mangled name saved, and we don't have a demangled name. So,
651 you might think we could save a little space by not recording
652 this in the hash table at all.
653
654 It turns out that it is actually important to still save such
655 an entry in the hash table, because storing this name gives
656 us better bcache hit rates for partial symbols. */
657 if (!copy_name && lookup_name == linkage_name)
658 {
659 *slot = obstack_alloc (&objfile->objfile_obstack,
660 offsetof (struct demangled_name_entry,
661 demangled)
662 + demangled_len + 1);
663 (*slot)->mangled = (char *) lookup_name;
664 }
665 else
666 {
667 /* If we must copy the mangled name, put it directly after
668 the demangled name so we can have a single
669 allocation. */
670 *slot = obstack_alloc (&objfile->objfile_obstack,
671 offsetof (struct demangled_name_entry,
672 demangled)
673 + lookup_len + demangled_len + 2);
674 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
675 strcpy ((*slot)->mangled, lookup_name);
676 }
677
678 if (demangled_name != NULL)
679 {
680 strcpy ((*slot)->demangled, demangled_name);
681 xfree (demangled_name);
682 }
683 else
684 (*slot)->demangled[0] = '\0';
685 }
686
687 gsymbol->name = (*slot)->mangled + lookup_len - len;
688 if ((*slot)->demangled[0] != '\0')
689 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
690 else
691 symbol_set_demangled_name (gsymbol, NULL, objfile);
692 }
693
694 /* Return the source code name of a symbol. In languages where
695 demangling is necessary, this is the demangled name. */
696
697 char *
698 symbol_natural_name (const struct general_symbol_info *gsymbol)
699 {
700 switch (gsymbol->language)
701 {
702 case language_cplus:
703 case language_d:
704 case language_java:
705 case language_objc:
706 case language_fortran:
707 if (symbol_get_demangled_name (gsymbol) != NULL)
708 return symbol_get_demangled_name (gsymbol);
709 break;
710 case language_ada:
711 if (symbol_get_demangled_name (gsymbol) != NULL)
712 return symbol_get_demangled_name (gsymbol);
713 else
714 return ada_decode_symbol (gsymbol);
715 break;
716 default:
717 break;
718 }
719 return gsymbol->name;
720 }
721
722 /* Return the demangled name for a symbol based on the language for
723 that symbol. If no demangled name exists, return NULL. */
724 char *
725 symbol_demangled_name (const struct general_symbol_info *gsymbol)
726 {
727 switch (gsymbol->language)
728 {
729 case language_cplus:
730 case language_d:
731 case language_java:
732 case language_objc:
733 case language_fortran:
734 if (symbol_get_demangled_name (gsymbol) != NULL)
735 return symbol_get_demangled_name (gsymbol);
736 break;
737 case language_ada:
738 if (symbol_get_demangled_name (gsymbol) != NULL)
739 return symbol_get_demangled_name (gsymbol);
740 else
741 return ada_decode_symbol (gsymbol);
742 break;
743 default:
744 break;
745 }
746 return NULL;
747 }
748
749 /* Return the search name of a symbol---generally the demangled or
750 linkage name of the symbol, depending on how it will be searched for.
751 If there is no distinct demangled name, then returns the same value
752 (same pointer) as SYMBOL_LINKAGE_NAME. */
753 char *
754 symbol_search_name (const struct general_symbol_info *gsymbol)
755 {
756 if (gsymbol->language == language_ada)
757 return gsymbol->name;
758 else
759 return symbol_natural_name (gsymbol);
760 }
761
762 /* Initialize the structure fields to zero values. */
763 void
764 init_sal (struct symtab_and_line *sal)
765 {
766 sal->pspace = NULL;
767 sal->symtab = 0;
768 sal->section = 0;
769 sal->line = 0;
770 sal->pc = 0;
771 sal->end = 0;
772 sal->explicit_pc = 0;
773 sal->explicit_line = 0;
774 }
775 \f
776
777 /* Return 1 if the two sections are the same, or if they could
778 plausibly be copies of each other, one in an original object
779 file and another in a separated debug file. */
780
781 int
782 matching_obj_sections (struct obj_section *obj_first,
783 struct obj_section *obj_second)
784 {
785 asection *first = obj_first? obj_first->the_bfd_section : NULL;
786 asection *second = obj_second? obj_second->the_bfd_section : NULL;
787 struct objfile *obj;
788
789 /* If they're the same section, then they match. */
790 if (first == second)
791 return 1;
792
793 /* If either is NULL, give up. */
794 if (first == NULL || second == NULL)
795 return 0;
796
797 /* This doesn't apply to absolute symbols. */
798 if (first->owner == NULL || second->owner == NULL)
799 return 0;
800
801 /* If they're in the same object file, they must be different sections. */
802 if (first->owner == second->owner)
803 return 0;
804
805 /* Check whether the two sections are potentially corresponding. They must
806 have the same size, address, and name. We can't compare section indexes,
807 which would be more reliable, because some sections may have been
808 stripped. */
809 if (bfd_get_section_size (first) != bfd_get_section_size (second))
810 return 0;
811
812 /* In-memory addresses may start at a different offset, relativize them. */
813 if (bfd_get_section_vma (first->owner, first)
814 - bfd_get_start_address (first->owner)
815 != bfd_get_section_vma (second->owner, second)
816 - bfd_get_start_address (second->owner))
817 return 0;
818
819 if (bfd_get_section_name (first->owner, first) == NULL
820 || bfd_get_section_name (second->owner, second) == NULL
821 || strcmp (bfd_get_section_name (first->owner, first),
822 bfd_get_section_name (second->owner, second)) != 0)
823 return 0;
824
825 /* Otherwise check that they are in corresponding objfiles. */
826
827 ALL_OBJFILES (obj)
828 if (obj->obfd == first->owner)
829 break;
830 gdb_assert (obj != NULL);
831
832 if (obj->separate_debug_objfile != NULL
833 && obj->separate_debug_objfile->obfd == second->owner)
834 return 1;
835 if (obj->separate_debug_objfile_backlink != NULL
836 && obj->separate_debug_objfile_backlink->obfd == second->owner)
837 return 1;
838
839 return 0;
840 }
841
842 struct symtab *
843 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
844 {
845 struct objfile *objfile;
846 struct minimal_symbol *msymbol;
847
848 /* If we know that this is not a text address, return failure. This is
849 necessary because we loop based on texthigh and textlow, which do
850 not include the data ranges. */
851 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
852 if (msymbol
853 && (MSYMBOL_TYPE (msymbol) == mst_data
854 || MSYMBOL_TYPE (msymbol) == mst_bss
855 || MSYMBOL_TYPE (msymbol) == mst_abs
856 || MSYMBOL_TYPE (msymbol) == mst_file_data
857 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
858 return NULL;
859
860 ALL_OBJFILES (objfile)
861 {
862 struct symtab *result = NULL;
863
864 if (objfile->sf)
865 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
866 pc, section, 0);
867 if (result)
868 return result;
869 }
870
871 return NULL;
872 }
873 \f
874 /* Debug symbols usually don't have section information. We need to dig that
875 out of the minimal symbols and stash that in the debug symbol. */
876
877 void
878 fixup_section (struct general_symbol_info *ginfo,
879 CORE_ADDR addr, struct objfile *objfile)
880 {
881 struct minimal_symbol *msym;
882
883 /* First, check whether a minimal symbol with the same name exists
884 and points to the same address. The address check is required
885 e.g. on PowerPC64, where the minimal symbol for a function will
886 point to the function descriptor, while the debug symbol will
887 point to the actual function code. */
888 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
889 if (msym)
890 {
891 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
892 ginfo->section = SYMBOL_SECTION (msym);
893 }
894 else
895 {
896 /* Static, function-local variables do appear in the linker
897 (minimal) symbols, but are frequently given names that won't
898 be found via lookup_minimal_symbol(). E.g., it has been
899 observed in frv-uclinux (ELF) executables that a static,
900 function-local variable named "foo" might appear in the
901 linker symbols as "foo.6" or "foo.3". Thus, there is no
902 point in attempting to extend the lookup-by-name mechanism to
903 handle this case due to the fact that there can be multiple
904 names.
905
906 So, instead, search the section table when lookup by name has
907 failed. The ``addr'' and ``endaddr'' fields may have already
908 been relocated. If so, the relocation offset (i.e. the
909 ANOFFSET value) needs to be subtracted from these values when
910 performing the comparison. We unconditionally subtract it,
911 because, when no relocation has been performed, the ANOFFSET
912 value will simply be zero.
913
914 The address of the symbol whose section we're fixing up HAS
915 NOT BEEN adjusted (relocated) yet. It can't have been since
916 the section isn't yet known and knowing the section is
917 necessary in order to add the correct relocation value. In
918 other words, we wouldn't even be in this function (attempting
919 to compute the section) if it were already known.
920
921 Note that it is possible to search the minimal symbols
922 (subtracting the relocation value if necessary) to find the
923 matching minimal symbol, but this is overkill and much less
924 efficient. It is not necessary to find the matching minimal
925 symbol, only its section.
926
927 Note that this technique (of doing a section table search)
928 can fail when unrelocated section addresses overlap. For
929 this reason, we still attempt a lookup by name prior to doing
930 a search of the section table. */
931
932 struct obj_section *s;
933
934 ALL_OBJFILE_OSECTIONS (objfile, s)
935 {
936 int idx = s->the_bfd_section->index;
937 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
938
939 if (obj_section_addr (s) - offset <= addr
940 && addr < obj_section_endaddr (s) - offset)
941 {
942 ginfo->obj_section = s;
943 ginfo->section = idx;
944 return;
945 }
946 }
947 }
948 }
949
950 struct symbol *
951 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
952 {
953 CORE_ADDR addr;
954
955 if (!sym)
956 return NULL;
957
958 if (SYMBOL_OBJ_SECTION (sym))
959 return sym;
960
961 /* We either have an OBJFILE, or we can get at it from the sym's
962 symtab. Anything else is a bug. */
963 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
964
965 if (objfile == NULL)
966 objfile = SYMBOL_SYMTAB (sym)->objfile;
967
968 /* We should have an objfile by now. */
969 gdb_assert (objfile);
970
971 switch (SYMBOL_CLASS (sym))
972 {
973 case LOC_STATIC:
974 case LOC_LABEL:
975 addr = SYMBOL_VALUE_ADDRESS (sym);
976 break;
977 case LOC_BLOCK:
978 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
979 break;
980
981 default:
982 /* Nothing else will be listed in the minsyms -- no use looking
983 it up. */
984 return sym;
985 }
986
987 fixup_section (&sym->ginfo, addr, objfile);
988
989 return sym;
990 }
991
992 /* Find the definition for a specified symbol name NAME
993 in domain DOMAIN, visible from lexical block BLOCK.
994 Returns the struct symbol pointer, or zero if no symbol is found.
995 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
996 NAME is a field of the current implied argument `this'. If so set
997 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
998 FOR_TYPE is non-zero if searching specifically for a type; zero
999 otherwise.
1000 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1001 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1002
1003 /* This function has a bunch of loops in it and it would seem to be
1004 attractive to put in some QUIT's (though I'm not really sure
1005 whether it can run long enough to be really important). But there
1006 are a few calls for which it would appear to be bad news to quit
1007 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1008 that there is C++ code below which can error(), but that probably
1009 doesn't affect these calls since they are looking for a known
1010 variable and thus can probably assume it will never hit the C++
1011 code). */
1012
1013 static struct symbol *
1014 lookup_symbol_in_language_full (const char *name, const struct block *block,
1015 const domain_enum domain, enum language lang,
1016 int *is_a_field_of_this, int for_type)
1017 {
1018 char *demangled_name = NULL;
1019 const char *modified_name = NULL;
1020 struct symbol *returnval;
1021 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1022
1023 modified_name = name;
1024
1025 /* If we are using C++, D, or Java, demangle the name before doing a
1026 lookup, so we can always binary search. */
1027 if (lang == language_cplus)
1028 {
1029 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1030 if (demangled_name)
1031 {
1032 modified_name = demangled_name;
1033 make_cleanup (xfree, demangled_name);
1034 }
1035 else
1036 {
1037 /* If we were given a non-mangled name, canonicalize it
1038 according to the language (so far only for C++). */
1039 demangled_name = cp_canonicalize_string (name);
1040 if (demangled_name)
1041 {
1042 modified_name = demangled_name;
1043 make_cleanup (xfree, demangled_name);
1044 }
1045 }
1046 }
1047 else if (lang == language_java)
1048 {
1049 demangled_name = cplus_demangle (name,
1050 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1051 if (demangled_name)
1052 {
1053 modified_name = demangled_name;
1054 make_cleanup (xfree, demangled_name);
1055 }
1056 }
1057 else if (lang == language_d)
1058 {
1059 demangled_name = d_demangle (name, 0);
1060 if (demangled_name)
1061 {
1062 modified_name = demangled_name;
1063 make_cleanup (xfree, demangled_name);
1064 }
1065 }
1066
1067 if (case_sensitivity == case_sensitive_off)
1068 {
1069 char *copy;
1070 int len, i;
1071
1072 len = strlen (name);
1073 copy = (char *) alloca (len + 1);
1074 for (i= 0; i < len; i++)
1075 copy[i] = tolower (name[i]);
1076 copy[len] = 0;
1077 modified_name = copy;
1078 }
1079
1080 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1081 is_a_field_of_this, for_type);
1082 do_cleanups (cleanup);
1083
1084 return returnval;
1085 }
1086
1087 /* Find the definition for a specified symbol name NAME
1088 in domain DOMAIN, visible from lexical block BLOCK.
1089 Returns the struct symbol pointer, or zero if no symbol is found.
1090 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1091 NAME is a field of the current implied argument `this'. If so set
1092 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1093 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1094 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1095
1096 struct symbol *
1097 lookup_symbol_in_language (const char *name, const struct block *block,
1098 const domain_enum domain, enum language lang,
1099 int *is_a_field_of_this)
1100 {
1101 return lookup_symbol_in_language_full (name, block, domain, lang,
1102 is_a_field_of_this, 0);
1103 }
1104
1105 /* Like lookup_symbol_in_language, but search specifically for a
1106 type. */
1107
1108 struct symbol *
1109 lookup_type_symbol (const char *name, const struct block *block,
1110 const domain_enum domain, enum language lang)
1111 {
1112 return lookup_symbol_in_language_full (name, block, domain, lang,
1113 NULL, 1);
1114 }
1115
1116 /* Behave like lookup_symbol_in_language, but performed with the
1117 current language. */
1118
1119 struct symbol *
1120 lookup_symbol (const char *name, const struct block *block,
1121 domain_enum domain, int *is_a_field_of_this)
1122 {
1123 return lookup_symbol_in_language (name, block, domain,
1124 current_language->la_language,
1125 is_a_field_of_this);
1126 }
1127
1128 /* Behave like lookup_symbol except that NAME is the natural name
1129 of the symbol that we're looking for and, if LINKAGE_NAME is
1130 non-NULL, ensure that the symbol's linkage name matches as
1131 well. */
1132
1133 static struct symbol *
1134 lookup_symbol_aux (const char *name, const struct block *block,
1135 const domain_enum domain, enum language language,
1136 int *is_a_field_of_this,
1137 int for_type)
1138 {
1139 struct symbol *sym;
1140 const struct language_defn *langdef;
1141
1142 /* Make sure we do something sensible with is_a_field_of_this, since
1143 the callers that set this parameter to some non-null value will
1144 certainly use it later and expect it to be either 0 or 1.
1145 If we don't set it, the contents of is_a_field_of_this are
1146 undefined. */
1147 if (is_a_field_of_this != NULL)
1148 *is_a_field_of_this = 0;
1149
1150 /* Search specified block and its superiors. Don't search
1151 STATIC_BLOCK or GLOBAL_BLOCK. */
1152
1153 sym = lookup_symbol_aux_local (name, block, domain, language);
1154 if (sym != NULL)
1155 return sym;
1156
1157 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1158 check to see if NAME is a field of `this'. */
1159
1160 langdef = language_def (language);
1161
1162 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1163 && block != NULL)
1164 {
1165 struct symbol *sym = NULL;
1166 const struct block *function_block = block;
1167
1168 /* 'this' is only defined in the function's block, so find the
1169 enclosing function block. */
1170 for (; function_block && !BLOCK_FUNCTION (function_block);
1171 function_block = BLOCK_SUPERBLOCK (function_block));
1172
1173 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1174 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1175 VAR_DOMAIN);
1176 if (sym)
1177 {
1178 struct type *t = sym->type;
1179
1180 /* I'm not really sure that type of this can ever
1181 be typedefed; just be safe. */
1182 CHECK_TYPEDEF (t);
1183 if (TYPE_CODE (t) == TYPE_CODE_PTR
1184 || TYPE_CODE (t) == TYPE_CODE_REF)
1185 t = TYPE_TARGET_TYPE (t);
1186
1187 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1188 && TYPE_CODE (t) != TYPE_CODE_UNION)
1189 error (_("Internal error: `%s' is not an aggregate"),
1190 langdef->la_name_of_this);
1191
1192 if (check_field (t, name))
1193 {
1194 *is_a_field_of_this = 1;
1195 return NULL;
1196 }
1197 }
1198 }
1199
1200 /* Now do whatever is appropriate for LANGUAGE to look
1201 up static and global variables. If we are searching for a type,
1202 we bypass this lookup, because types aren't global. */
1203
1204 if (!for_type)
1205 {
1206 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1207 if (sym != NULL)
1208 return sym;
1209 }
1210
1211 /* Now search all static file-level symbols. When searching for a
1212 type, this is what we generally want, because types are put into
1213 the file scope. For other objects, not strictly correct, but
1214 more useful than an error. */
1215
1216 return lookup_static_symbol_aux (name, domain);
1217 }
1218
1219 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1220 first, then check the psymtabs. If a psymtab indicates the existence of the
1221 desired name as a file-level static, then do psymtab-to-symtab conversion on
1222 the fly and return the found symbol. */
1223
1224 struct symbol *
1225 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1226 {
1227 struct objfile *objfile;
1228 struct symbol *sym;
1229
1230 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1231 if (sym != NULL)
1232 return sym;
1233
1234 ALL_OBJFILES (objfile)
1235 {
1236 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1237 if (sym != NULL)
1238 return sym;
1239 }
1240
1241 return NULL;
1242 }
1243
1244 /* Check to see if the symbol is defined in BLOCK or its superiors.
1245 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1246
1247 static struct symbol *
1248 lookup_symbol_aux_local (const char *name, const struct block *block,
1249 const domain_enum domain,
1250 enum language language)
1251 {
1252 struct symbol *sym;
1253 const struct block *static_block = block_static_block (block);
1254 const char *scope = block_scope (block);
1255
1256 /* Check if either no block is specified or it's a global block. */
1257
1258 if (static_block == NULL)
1259 return NULL;
1260
1261 while (block != static_block)
1262 {
1263 sym = lookup_symbol_aux_block (name, block, domain);
1264 if (sym != NULL)
1265 return sym;
1266
1267 if (language == language_cplus || language == language_fortran)
1268 {
1269 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1270 domain);
1271 if (sym != NULL)
1272 return sym;
1273 }
1274
1275 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1276 break;
1277 block = BLOCK_SUPERBLOCK (block);
1278 }
1279
1280 /* We've reached the edge of the function without finding a result. */
1281
1282 return NULL;
1283 }
1284
1285 /* Look up OBJFILE to BLOCK. */
1286
1287 struct objfile *
1288 lookup_objfile_from_block (const struct block *block)
1289 {
1290 struct objfile *obj;
1291 struct symtab *s;
1292
1293 if (block == NULL)
1294 return NULL;
1295
1296 block = block_global_block (block);
1297 /* Go through SYMTABS. */
1298 ALL_SYMTABS (obj, s)
1299 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1300 {
1301 if (obj->separate_debug_objfile_backlink)
1302 obj = obj->separate_debug_objfile_backlink;
1303
1304 return obj;
1305 }
1306
1307 return NULL;
1308 }
1309
1310 /* Look up a symbol in a block; if found, fixup the symbol, and set
1311 block_found appropriately. */
1312
1313 struct symbol *
1314 lookup_symbol_aux_block (const char *name, const struct block *block,
1315 const domain_enum domain)
1316 {
1317 struct symbol *sym;
1318
1319 sym = lookup_block_symbol (block, name, domain);
1320 if (sym)
1321 {
1322 block_found = block;
1323 return fixup_symbol_section (sym, NULL);
1324 }
1325
1326 return NULL;
1327 }
1328
1329 /* Check all global symbols in OBJFILE in symtabs and
1330 psymtabs. */
1331
1332 struct symbol *
1333 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1334 const char *name,
1335 const domain_enum domain)
1336 {
1337 const struct objfile *objfile;
1338 struct symbol *sym;
1339 struct blockvector *bv;
1340 const struct block *block;
1341 struct symtab *s;
1342
1343 for (objfile = main_objfile;
1344 objfile;
1345 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1346 {
1347 /* Go through symtabs. */
1348 ALL_OBJFILE_SYMTABS (objfile, s)
1349 {
1350 bv = BLOCKVECTOR (s);
1351 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1352 sym = lookup_block_symbol (block, name, domain);
1353 if (sym)
1354 {
1355 block_found = block;
1356 return fixup_symbol_section (sym, (struct objfile *)objfile);
1357 }
1358 }
1359
1360 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1361 name, domain);
1362 if (sym)
1363 return sym;
1364 }
1365
1366 return NULL;
1367 }
1368
1369 /* A helper for lookup_symbol_aux_symtabs that is passed as a callback
1370 to the expand_one_symtab_matching quick function. */
1371
1372 static struct symbol *
1373 match_symbol_aux (struct symtab *symtab,
1374 int kind, const char *name, domain_enum domain,
1375 void *arg)
1376 {
1377 struct objfile *objfile = arg;
1378
1379 if (symtab->primary)
1380 {
1381 struct symbol *sym;
1382 struct blockvector *bv;
1383 const struct block *block;
1384
1385 bv = BLOCKVECTOR (symtab);
1386 block = BLOCKVECTOR_BLOCK (bv, kind);
1387 sym = lookup_block_symbol (block, name, domain);
1388 if (sym)
1389 {
1390 block_found = block;
1391 return fixup_symbol_section (sym, objfile);
1392 }
1393 }
1394
1395 return NULL;
1396 }
1397
1398 /* Check to see if the symbol is defined in one of the symtabs.
1399 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1400 depending on whether or not we want to search global symbols or
1401 static symbols. */
1402
1403 static struct symbol *
1404 lookup_symbol_aux_symtabs (int block_index, const char *name,
1405 const domain_enum domain)
1406 {
1407 struct symbol *sym;
1408 struct objfile *objfile;
1409 struct blockvector *bv;
1410 const struct block *block;
1411 struct symtab *s;
1412
1413 ALL_OBJFILES (objfile)
1414 {
1415 ALL_OBJFILE_SYMTABS (objfile, s)
1416 if (s->primary)
1417 {
1418 bv = BLOCKVECTOR (s);
1419 block = BLOCKVECTOR_BLOCK (bv, block_index);
1420 sym = lookup_block_symbol (block, name, domain);
1421 if (sym)
1422 {
1423 block_found = block;
1424 return fixup_symbol_section (sym, objfile);
1425 }
1426 }
1427
1428 if (objfile->sf)
1429 {
1430 sym = objfile->sf->qf->expand_one_symtab_matching (objfile,
1431 block_index,
1432 name, domain,
1433 match_symbol_aux,
1434 objfile);
1435 if (sym)
1436 return sym;
1437 }
1438 }
1439
1440 return NULL;
1441 }
1442
1443 /* A helper function for lookup_symbol_aux that interfaces with the
1444 "quick" symbol table functions. */
1445
1446 static struct symbol *
1447 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1448 const char *name, const domain_enum domain)
1449 {
1450 struct symtab *symtab;
1451 struct blockvector *bv;
1452 const struct block *block;
1453 struct symbol *sym;
1454
1455 if (!objfile->sf)
1456 return NULL;
1457 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1458 if (!symtab)
1459 return NULL;
1460
1461 bv = BLOCKVECTOR (symtab);
1462 block = BLOCKVECTOR_BLOCK (bv, kind);
1463 sym = lookup_block_symbol (block, name, domain);
1464 if (!sym)
1465 {
1466 /* This shouldn't be necessary, but as a last resort try
1467 looking in the statics even though the psymtab claimed
1468 the symbol was global, or vice-versa. It's possible
1469 that the psymtab gets it wrong in some cases. */
1470
1471 /* FIXME: carlton/2002-09-30: Should we really do that?
1472 If that happens, isn't it likely to be a GDB error, in
1473 which case we should fix the GDB error rather than
1474 silently dealing with it here? So I'd vote for
1475 removing the check for the symbol in the other
1476 block. */
1477 block = BLOCKVECTOR_BLOCK (bv,
1478 kind == GLOBAL_BLOCK ?
1479 STATIC_BLOCK : GLOBAL_BLOCK);
1480 sym = lookup_block_symbol (block, name, domain);
1481 if (!sym)
1482 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1483 kind == GLOBAL_BLOCK ? "global" : "static",
1484 name, symtab->filename, name, name);
1485 }
1486 return fixup_symbol_section (sym, objfile);
1487 }
1488
1489 /* A default version of lookup_symbol_nonlocal for use by languages
1490 that can't think of anything better to do. This implements the C
1491 lookup rules. */
1492
1493 struct symbol *
1494 basic_lookup_symbol_nonlocal (const char *name,
1495 const struct block *block,
1496 const domain_enum domain)
1497 {
1498 struct symbol *sym;
1499
1500 /* NOTE: carlton/2003-05-19: The comments below were written when
1501 this (or what turned into this) was part of lookup_symbol_aux;
1502 I'm much less worried about these questions now, since these
1503 decisions have turned out well, but I leave these comments here
1504 for posterity. */
1505
1506 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1507 not it would be appropriate to search the current global block
1508 here as well. (That's what this code used to do before the
1509 is_a_field_of_this check was moved up.) On the one hand, it's
1510 redundant with the lookup_symbol_aux_symtabs search that happens
1511 next. On the other hand, if decode_line_1 is passed an argument
1512 like filename:var, then the user presumably wants 'var' to be
1513 searched for in filename. On the third hand, there shouldn't be
1514 multiple global variables all of which are named 'var', and it's
1515 not like decode_line_1 has ever restricted its search to only
1516 global variables in a single filename. All in all, only
1517 searching the static block here seems best: it's correct and it's
1518 cleanest. */
1519
1520 /* NOTE: carlton/2002-12-05: There's also a possible performance
1521 issue here: if you usually search for global symbols in the
1522 current file, then it would be slightly better to search the
1523 current global block before searching all the symtabs. But there
1524 are other factors that have a much greater effect on performance
1525 than that one, so I don't think we should worry about that for
1526 now. */
1527
1528 sym = lookup_symbol_static (name, block, domain);
1529 if (sym != NULL)
1530 return sym;
1531
1532 return lookup_symbol_global (name, block, domain);
1533 }
1534
1535 /* Lookup a symbol in the static block associated to BLOCK, if there
1536 is one; do nothing if BLOCK is NULL or a global block. */
1537
1538 struct symbol *
1539 lookup_symbol_static (const char *name,
1540 const struct block *block,
1541 const domain_enum domain)
1542 {
1543 const struct block *static_block = block_static_block (block);
1544
1545 if (static_block != NULL)
1546 return lookup_symbol_aux_block (name, static_block, domain);
1547 else
1548 return NULL;
1549 }
1550
1551 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1552 necessary). */
1553
1554 struct symbol *
1555 lookup_symbol_global (const char *name,
1556 const struct block *block,
1557 const domain_enum domain)
1558 {
1559 struct symbol *sym = NULL;
1560 struct objfile *objfile = NULL;
1561
1562 /* Call library-specific lookup procedure. */
1563 objfile = lookup_objfile_from_block (block);
1564 if (objfile != NULL)
1565 sym = solib_global_lookup (objfile, name, domain);
1566 if (sym != NULL)
1567 return sym;
1568
1569 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1570 if (sym != NULL)
1571 return sym;
1572
1573 ALL_OBJFILES (objfile)
1574 {
1575 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1576 if (sym)
1577 return sym;
1578 }
1579
1580 return NULL;
1581 }
1582
1583 int
1584 symbol_matches_domain (enum language symbol_language,
1585 domain_enum symbol_domain,
1586 domain_enum domain)
1587 {
1588 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1589 A Java class declaration also defines a typedef for the class.
1590 Similarly, any Ada type declaration implicitly defines a typedef. */
1591 if (symbol_language == language_cplus
1592 || symbol_language == language_d
1593 || symbol_language == language_java
1594 || symbol_language == language_ada)
1595 {
1596 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1597 && symbol_domain == STRUCT_DOMAIN)
1598 return 1;
1599 }
1600 /* For all other languages, strict match is required. */
1601 return (symbol_domain == domain);
1602 }
1603
1604 /* Look up a type named NAME in the struct_domain. The type returned
1605 must not be opaque -- i.e., must have at least one field
1606 defined. */
1607
1608 struct type *
1609 lookup_transparent_type (const char *name)
1610 {
1611 return current_language->la_lookup_transparent_type (name);
1612 }
1613
1614 /* A helper for basic_lookup_transparent_type that interfaces with the
1615 "quick" symbol table functions. */
1616
1617 static struct type *
1618 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1619 const char *name)
1620 {
1621 struct symtab *symtab;
1622 struct blockvector *bv;
1623 struct block *block;
1624 struct symbol *sym;
1625
1626 if (!objfile->sf)
1627 return NULL;
1628 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1629 if (!symtab)
1630 return NULL;
1631
1632 bv = BLOCKVECTOR (symtab);
1633 block = BLOCKVECTOR_BLOCK (bv, kind);
1634 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1635 if (!sym)
1636 {
1637 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1638
1639 /* This shouldn't be necessary, but as a last resort
1640 * try looking in the 'other kind' even though the psymtab
1641 * claimed the symbol was one thing. It's possible that
1642 * the psymtab gets it wrong in some cases.
1643 */
1644 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1645 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1646 if (!sym)
1647 /* FIXME; error is wrong in one case */
1648 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1649 %s may be an inlined function, or may be a template function\n\
1650 (if a template, try specifying an instantiation: %s<type>)."),
1651 name, symtab->filename, name, name);
1652 }
1653 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1654 return SYMBOL_TYPE (sym);
1655
1656 return NULL;
1657 }
1658
1659 /* A helper function for basic_lookup_transparent_type that is passed
1660 to the expand_one_symtab_matching quick function. */
1661
1662 static struct symbol *
1663 match_transparent_type (struct symtab *symtab,
1664 int kind, const char *name, domain_enum domain,
1665 void *data)
1666 {
1667 if (symtab->primary)
1668 {
1669 struct blockvector *bv;
1670 struct block *block;
1671 struct symbol *sym;
1672
1673 bv = BLOCKVECTOR (symtab);
1674 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1675 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1676 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1677 return sym;
1678 }
1679
1680 return NULL;
1681 }
1682
1683 /* The standard implementation of lookup_transparent_type. This code
1684 was modeled on lookup_symbol -- the parts not relevant to looking
1685 up types were just left out. In particular it's assumed here that
1686 types are available in struct_domain and only at file-static or
1687 global blocks. */
1688
1689 struct type *
1690 basic_lookup_transparent_type (const char *name)
1691 {
1692 struct symbol *sym;
1693 struct symtab *s = NULL;
1694 struct blockvector *bv;
1695 struct objfile *objfile;
1696 struct block *block;
1697 struct type *t;
1698
1699 /* Now search all the global symbols. Do the symtab's first, then
1700 check the psymtab's. If a psymtab indicates the existence
1701 of the desired name as a global, then do psymtab-to-symtab
1702 conversion on the fly and return the found symbol. */
1703
1704 ALL_OBJFILES (objfile)
1705 {
1706 ALL_OBJFILE_SYMTABS (objfile, s)
1707 if (s->primary)
1708 {
1709 bv = BLOCKVECTOR (s);
1710 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1711 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1712 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1713 {
1714 return SYMBOL_TYPE (sym);
1715 }
1716 }
1717
1718 if (objfile->sf)
1719 {
1720 sym
1721 = objfile->sf->qf->expand_one_symtab_matching (objfile,
1722 GLOBAL_BLOCK, name,
1723 STRUCT_DOMAIN,
1724 match_transparent_type,
1725 NULL);
1726 if (sym)
1727 return SYMBOL_TYPE (sym);
1728 }
1729 }
1730
1731 ALL_OBJFILES (objfile)
1732 {
1733 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1734 if (t)
1735 return t;
1736 }
1737
1738 /* Now search the static file-level symbols.
1739 Not strictly correct, but more useful than an error.
1740 Do the symtab's first, then
1741 check the psymtab's. If a psymtab indicates the existence
1742 of the desired name as a file-level static, then do psymtab-to-symtab
1743 conversion on the fly and return the found symbol.
1744 */
1745
1746 ALL_OBJFILES (objfile)
1747 {
1748 ALL_OBJFILE_SYMTABS (objfile, s)
1749 {
1750 bv = BLOCKVECTOR (s);
1751 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1752 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1753 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1754 {
1755 return SYMBOL_TYPE (sym);
1756 }
1757 }
1758
1759 if (objfile->sf)
1760 {
1761 sym
1762 = objfile->sf->qf->expand_one_symtab_matching (objfile,
1763 STATIC_BLOCK, name,
1764 STRUCT_DOMAIN,
1765 match_transparent_type,
1766 NULL);
1767 if (sym)
1768 return SYMBOL_TYPE (sym);
1769 }
1770 }
1771
1772 ALL_OBJFILES (objfile)
1773 {
1774 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1775 if (t)
1776 return t;
1777 }
1778
1779 return (struct type *) 0;
1780 }
1781
1782
1783 /* Find the name of the file containing main(). */
1784 /* FIXME: What about languages without main() or specially linked
1785 executables that have no main() ? */
1786
1787 const char *
1788 find_main_filename (void)
1789 {
1790 struct objfile *objfile;
1791 char *name = main_name ();
1792
1793 ALL_OBJFILES (objfile)
1794 {
1795 const char *result;
1796
1797 if (!objfile->sf)
1798 continue;
1799 result = objfile->sf->qf->find_symbol_file (objfile, name);
1800 if (result)
1801 return result;
1802 }
1803 return (NULL);
1804 }
1805
1806 /* Search BLOCK for symbol NAME in DOMAIN.
1807
1808 Note that if NAME is the demangled form of a C++ symbol, we will fail
1809 to find a match during the binary search of the non-encoded names, but
1810 for now we don't worry about the slight inefficiency of looking for
1811 a match we'll never find, since it will go pretty quick. Once the
1812 binary search terminates, we drop through and do a straight linear
1813 search on the symbols. Each symbol which is marked as being a ObjC/C++
1814 symbol (language_cplus or language_objc set) has both the encoded and
1815 non-encoded names tested for a match.
1816 */
1817
1818 struct symbol *
1819 lookup_block_symbol (const struct block *block, const char *name,
1820 const domain_enum domain)
1821 {
1822 struct dict_iterator iter;
1823 struct symbol *sym;
1824
1825 if (!BLOCK_FUNCTION (block))
1826 {
1827 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1828 sym != NULL;
1829 sym = dict_iter_name_next (name, &iter))
1830 {
1831 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1832 SYMBOL_DOMAIN (sym), domain))
1833 return sym;
1834 }
1835 return NULL;
1836 }
1837 else
1838 {
1839 /* Note that parameter symbols do not always show up last in the
1840 list; this loop makes sure to take anything else other than
1841 parameter symbols first; it only uses parameter symbols as a
1842 last resort. Note that this only takes up extra computation
1843 time on a match. */
1844
1845 struct symbol *sym_found = NULL;
1846
1847 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1848 sym != NULL;
1849 sym = dict_iter_name_next (name, &iter))
1850 {
1851 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1852 SYMBOL_DOMAIN (sym), domain))
1853 {
1854 sym_found = sym;
1855 if (!SYMBOL_IS_ARGUMENT (sym))
1856 {
1857 break;
1858 }
1859 }
1860 }
1861 return (sym_found); /* Will be NULL if not found. */
1862 }
1863 }
1864
1865 /* Find the symtab associated with PC and SECTION. Look through the
1866 psymtabs and read in another symtab if necessary. */
1867
1868 struct symtab *
1869 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1870 {
1871 struct block *b;
1872 struct blockvector *bv;
1873 struct symtab *s = NULL;
1874 struct symtab *best_s = NULL;
1875 struct objfile *objfile;
1876 struct program_space *pspace;
1877 CORE_ADDR distance = 0;
1878 struct minimal_symbol *msymbol;
1879
1880 pspace = current_program_space;
1881
1882 /* If we know that this is not a text address, return failure. This is
1883 necessary because we loop based on the block's high and low code
1884 addresses, which do not include the data ranges, and because
1885 we call find_pc_sect_psymtab which has a similar restriction based
1886 on the partial_symtab's texthigh and textlow. */
1887 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1888 if (msymbol
1889 && (MSYMBOL_TYPE (msymbol) == mst_data
1890 || MSYMBOL_TYPE (msymbol) == mst_bss
1891 || MSYMBOL_TYPE (msymbol) == mst_abs
1892 || MSYMBOL_TYPE (msymbol) == mst_file_data
1893 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1894 return NULL;
1895
1896 /* Search all symtabs for the one whose file contains our address, and which
1897 is the smallest of all the ones containing the address. This is designed
1898 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1899 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1900 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1901
1902 This happens for native ecoff format, where code from included files
1903 gets its own symtab. The symtab for the included file should have
1904 been read in already via the dependency mechanism.
1905 It might be swifter to create several symtabs with the same name
1906 like xcoff does (I'm not sure).
1907
1908 It also happens for objfiles that have their functions reordered.
1909 For these, the symtab we are looking for is not necessarily read in. */
1910
1911 ALL_PRIMARY_SYMTABS (objfile, s)
1912 {
1913 bv = BLOCKVECTOR (s);
1914 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1915
1916 if (BLOCK_START (b) <= pc
1917 && BLOCK_END (b) > pc
1918 && (distance == 0
1919 || BLOCK_END (b) - BLOCK_START (b) < distance))
1920 {
1921 /* For an objfile that has its functions reordered,
1922 find_pc_psymtab will find the proper partial symbol table
1923 and we simply return its corresponding symtab. */
1924 /* In order to better support objfiles that contain both
1925 stabs and coff debugging info, we continue on if a psymtab
1926 can't be found. */
1927 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1928 {
1929 struct symtab *result;
1930
1931 result
1932 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1933 msymbol,
1934 pc, section,
1935 0);
1936 if (result)
1937 return result;
1938 }
1939 if (section != 0)
1940 {
1941 struct dict_iterator iter;
1942 struct symbol *sym = NULL;
1943
1944 ALL_BLOCK_SYMBOLS (b, iter, sym)
1945 {
1946 fixup_symbol_section (sym, objfile);
1947 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1948 break;
1949 }
1950 if (sym == NULL)
1951 continue; /* no symbol in this symtab matches section */
1952 }
1953 distance = BLOCK_END (b) - BLOCK_START (b);
1954 best_s = s;
1955 }
1956 }
1957
1958 if (best_s != NULL)
1959 return (best_s);
1960
1961 ALL_OBJFILES (objfile)
1962 {
1963 struct symtab *result;
1964
1965 if (!objfile->sf)
1966 continue;
1967 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1968 msymbol,
1969 pc, section,
1970 1);
1971 if (result)
1972 return result;
1973 }
1974
1975 return NULL;
1976 }
1977
1978 /* Find the symtab associated with PC. Look through the psymtabs and
1979 read in another symtab if necessary. Backward compatibility, no section */
1980
1981 struct symtab *
1982 find_pc_symtab (CORE_ADDR pc)
1983 {
1984 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1985 }
1986 \f
1987
1988 /* Find the source file and line number for a given PC value and SECTION.
1989 Return a structure containing a symtab pointer, a line number,
1990 and a pc range for the entire source line.
1991 The value's .pc field is NOT the specified pc.
1992 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1993 use the line that ends there. Otherwise, in that case, the line
1994 that begins there is used. */
1995
1996 /* The big complication here is that a line may start in one file, and end just
1997 before the start of another file. This usually occurs when you #include
1998 code in the middle of a subroutine. To properly find the end of a line's PC
1999 range, we must search all symtabs associated with this compilation unit, and
2000 find the one whose first PC is closer than that of the next line in this
2001 symtab. */
2002
2003 /* If it's worth the effort, we could be using a binary search. */
2004
2005 struct symtab_and_line
2006 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2007 {
2008 struct symtab *s;
2009 struct linetable *l;
2010 int len;
2011 int i;
2012 struct linetable_entry *item;
2013 struct symtab_and_line val;
2014 struct blockvector *bv;
2015 struct minimal_symbol *msymbol;
2016 struct minimal_symbol *mfunsym;
2017
2018 /* Info on best line seen so far, and where it starts, and its file. */
2019
2020 struct linetable_entry *best = NULL;
2021 CORE_ADDR best_end = 0;
2022 struct symtab *best_symtab = 0;
2023
2024 /* Store here the first line number
2025 of a file which contains the line at the smallest pc after PC.
2026 If we don't find a line whose range contains PC,
2027 we will use a line one less than this,
2028 with a range from the start of that file to the first line's pc. */
2029 struct linetable_entry *alt = NULL;
2030 struct symtab *alt_symtab = 0;
2031
2032 /* Info on best line seen in this file. */
2033
2034 struct linetable_entry *prev;
2035
2036 /* If this pc is not from the current frame,
2037 it is the address of the end of a call instruction.
2038 Quite likely that is the start of the following statement.
2039 But what we want is the statement containing the instruction.
2040 Fudge the pc to make sure we get that. */
2041
2042 init_sal (&val); /* initialize to zeroes */
2043
2044 val.pspace = current_program_space;
2045
2046 /* It's tempting to assume that, if we can't find debugging info for
2047 any function enclosing PC, that we shouldn't search for line
2048 number info, either. However, GAS can emit line number info for
2049 assembly files --- very helpful when debugging hand-written
2050 assembly code. In such a case, we'd have no debug info for the
2051 function, but we would have line info. */
2052
2053 if (notcurrent)
2054 pc -= 1;
2055
2056 /* elz: added this because this function returned the wrong
2057 information if the pc belongs to a stub (import/export)
2058 to call a shlib function. This stub would be anywhere between
2059 two functions in the target, and the line info was erroneously
2060 taken to be the one of the line before the pc.
2061 */
2062 /* RT: Further explanation:
2063
2064 * We have stubs (trampolines) inserted between procedures.
2065 *
2066 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2067 * exists in the main image.
2068 *
2069 * In the minimal symbol table, we have a bunch of symbols
2070 * sorted by start address. The stubs are marked as "trampoline",
2071 * the others appear as text. E.g.:
2072 *
2073 * Minimal symbol table for main image
2074 * main: code for main (text symbol)
2075 * shr1: stub (trampoline symbol)
2076 * foo: code for foo (text symbol)
2077 * ...
2078 * Minimal symbol table for "shr1" image:
2079 * ...
2080 * shr1: code for shr1 (text symbol)
2081 * ...
2082 *
2083 * So the code below is trying to detect if we are in the stub
2084 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2085 * and if found, do the symbolization from the real-code address
2086 * rather than the stub address.
2087 *
2088 * Assumptions being made about the minimal symbol table:
2089 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2090 * if we're really in the trampoline. If we're beyond it (say
2091 * we're in "foo" in the above example), it'll have a closer
2092 * symbol (the "foo" text symbol for example) and will not
2093 * return the trampoline.
2094 * 2. lookup_minimal_symbol_text() will find a real text symbol
2095 * corresponding to the trampoline, and whose address will
2096 * be different than the trampoline address. I put in a sanity
2097 * check for the address being the same, to avoid an
2098 * infinite recursion.
2099 */
2100 msymbol = lookup_minimal_symbol_by_pc (pc);
2101 if (msymbol != NULL)
2102 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2103 {
2104 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2105 NULL);
2106 if (mfunsym == NULL)
2107 /* I eliminated this warning since it is coming out
2108 * in the following situation:
2109 * gdb shmain // test program with shared libraries
2110 * (gdb) break shr1 // function in shared lib
2111 * Warning: In stub for ...
2112 * In the above situation, the shared lib is not loaded yet,
2113 * so of course we can't find the real func/line info,
2114 * but the "break" still works, and the warning is annoying.
2115 * So I commented out the warning. RT */
2116 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2117 /* fall through */
2118 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2119 /* Avoid infinite recursion */
2120 /* See above comment about why warning is commented out */
2121 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2122 /* fall through */
2123 else
2124 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2125 }
2126
2127
2128 s = find_pc_sect_symtab (pc, section);
2129 if (!s)
2130 {
2131 /* if no symbol information, return previous pc */
2132 if (notcurrent)
2133 pc++;
2134 val.pc = pc;
2135 return val;
2136 }
2137
2138 bv = BLOCKVECTOR (s);
2139
2140 /* Look at all the symtabs that share this blockvector.
2141 They all have the same apriori range, that we found was right;
2142 but they have different line tables. */
2143
2144 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2145 {
2146 /* Find the best line in this symtab. */
2147 l = LINETABLE (s);
2148 if (!l)
2149 continue;
2150 len = l->nitems;
2151 if (len <= 0)
2152 {
2153 /* I think len can be zero if the symtab lacks line numbers
2154 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2155 I'm not sure which, and maybe it depends on the symbol
2156 reader). */
2157 continue;
2158 }
2159
2160 prev = NULL;
2161 item = l->item; /* Get first line info */
2162
2163 /* Is this file's first line closer than the first lines of other files?
2164 If so, record this file, and its first line, as best alternate. */
2165 if (item->pc > pc && (!alt || item->pc < alt->pc))
2166 {
2167 alt = item;
2168 alt_symtab = s;
2169 }
2170
2171 for (i = 0; i < len; i++, item++)
2172 {
2173 /* Leave prev pointing to the linetable entry for the last line
2174 that started at or before PC. */
2175 if (item->pc > pc)
2176 break;
2177
2178 prev = item;
2179 }
2180
2181 /* At this point, prev points at the line whose start addr is <= pc, and
2182 item points at the next line. If we ran off the end of the linetable
2183 (pc >= start of the last line), then prev == item. If pc < start of
2184 the first line, prev will not be set. */
2185
2186 /* Is this file's best line closer than the best in the other files?
2187 If so, record this file, and its best line, as best so far. Don't
2188 save prev if it represents the end of a function (i.e. line number
2189 0) instead of a real line. */
2190
2191 if (prev && prev->line && (!best || prev->pc > best->pc))
2192 {
2193 best = prev;
2194 best_symtab = s;
2195
2196 /* Discard BEST_END if it's before the PC of the current BEST. */
2197 if (best_end <= best->pc)
2198 best_end = 0;
2199 }
2200
2201 /* If another line (denoted by ITEM) is in the linetable and its
2202 PC is after BEST's PC, but before the current BEST_END, then
2203 use ITEM's PC as the new best_end. */
2204 if (best && i < len && item->pc > best->pc
2205 && (best_end == 0 || best_end > item->pc))
2206 best_end = item->pc;
2207 }
2208
2209 if (!best_symtab)
2210 {
2211 /* If we didn't find any line number info, just return zeros.
2212 We used to return alt->line - 1 here, but that could be
2213 anywhere; if we don't have line number info for this PC,
2214 don't make some up. */
2215 val.pc = pc;
2216 }
2217 else if (best->line == 0)
2218 {
2219 /* If our best fit is in a range of PC's for which no line
2220 number info is available (line number is zero) then we didn't
2221 find any valid line information. */
2222 val.pc = pc;
2223 }
2224 else
2225 {
2226 val.symtab = best_symtab;
2227 val.line = best->line;
2228 val.pc = best->pc;
2229 if (best_end && (!alt || best_end < alt->pc))
2230 val.end = best_end;
2231 else if (alt)
2232 val.end = alt->pc;
2233 else
2234 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2235 }
2236 val.section = section;
2237 return val;
2238 }
2239
2240 /* Backward compatibility (no section) */
2241
2242 struct symtab_and_line
2243 find_pc_line (CORE_ADDR pc, int notcurrent)
2244 {
2245 struct obj_section *section;
2246
2247 section = find_pc_overlay (pc);
2248 if (pc_in_unmapped_range (pc, section))
2249 pc = overlay_mapped_address (pc, section);
2250 return find_pc_sect_line (pc, section, notcurrent);
2251 }
2252 \f
2253 /* Find line number LINE in any symtab whose name is the same as
2254 SYMTAB.
2255
2256 If found, return the symtab that contains the linetable in which it was
2257 found, set *INDEX to the index in the linetable of the best entry
2258 found, and set *EXACT_MATCH nonzero if the value returned is an
2259 exact match.
2260
2261 If not found, return NULL. */
2262
2263 struct symtab *
2264 find_line_symtab (struct symtab *symtab, int line,
2265 int *index, int *exact_match)
2266 {
2267 int exact = 0; /* Initialized here to avoid a compiler warning. */
2268
2269 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2270 so far seen. */
2271
2272 int best_index;
2273 struct linetable *best_linetable;
2274 struct symtab *best_symtab;
2275
2276 /* First try looking it up in the given symtab. */
2277 best_linetable = LINETABLE (symtab);
2278 best_symtab = symtab;
2279 best_index = find_line_common (best_linetable, line, &exact);
2280 if (best_index < 0 || !exact)
2281 {
2282 /* Didn't find an exact match. So we better keep looking for
2283 another symtab with the same name. In the case of xcoff,
2284 multiple csects for one source file (produced by IBM's FORTRAN
2285 compiler) produce multiple symtabs (this is unavoidable
2286 assuming csects can be at arbitrary places in memory and that
2287 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2288
2289 /* BEST is the smallest linenumber > LINE so far seen,
2290 or 0 if none has been seen so far.
2291 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2292 int best;
2293
2294 struct objfile *objfile;
2295 struct symtab *s;
2296
2297 if (best_index >= 0)
2298 best = best_linetable->item[best_index].line;
2299 else
2300 best = 0;
2301
2302 ALL_OBJFILES (objfile)
2303 {
2304 if (objfile->sf)
2305 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2306 symtab->filename);
2307 }
2308
2309 /* Get symbol full file name if possible. */
2310 symtab_to_fullname (symtab);
2311
2312 ALL_SYMTABS (objfile, s)
2313 {
2314 struct linetable *l;
2315 int ind;
2316
2317 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2318 continue;
2319 if (symtab->fullname != NULL
2320 && symtab_to_fullname (s) != NULL
2321 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2322 continue;
2323 l = LINETABLE (s);
2324 ind = find_line_common (l, line, &exact);
2325 if (ind >= 0)
2326 {
2327 if (exact)
2328 {
2329 best_index = ind;
2330 best_linetable = l;
2331 best_symtab = s;
2332 goto done;
2333 }
2334 if (best == 0 || l->item[ind].line < best)
2335 {
2336 best = l->item[ind].line;
2337 best_index = ind;
2338 best_linetable = l;
2339 best_symtab = s;
2340 }
2341 }
2342 }
2343 }
2344 done:
2345 if (best_index < 0)
2346 return NULL;
2347
2348 if (index)
2349 *index = best_index;
2350 if (exact_match)
2351 *exact_match = exact;
2352
2353 return best_symtab;
2354 }
2355 \f
2356 /* Set the PC value for a given source file and line number and return true.
2357 Returns zero for invalid line number (and sets the PC to 0).
2358 The source file is specified with a struct symtab. */
2359
2360 int
2361 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2362 {
2363 struct linetable *l;
2364 int ind;
2365
2366 *pc = 0;
2367 if (symtab == 0)
2368 return 0;
2369
2370 symtab = find_line_symtab (symtab, line, &ind, NULL);
2371 if (symtab != NULL)
2372 {
2373 l = LINETABLE (symtab);
2374 *pc = l->item[ind].pc;
2375 return 1;
2376 }
2377 else
2378 return 0;
2379 }
2380
2381 /* Find the range of pc values in a line.
2382 Store the starting pc of the line into *STARTPTR
2383 and the ending pc (start of next line) into *ENDPTR.
2384 Returns 1 to indicate success.
2385 Returns 0 if could not find the specified line. */
2386
2387 int
2388 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2389 CORE_ADDR *endptr)
2390 {
2391 CORE_ADDR startaddr;
2392 struct symtab_and_line found_sal;
2393
2394 startaddr = sal.pc;
2395 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2396 return 0;
2397
2398 /* This whole function is based on address. For example, if line 10 has
2399 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2400 "info line *0x123" should say the line goes from 0x100 to 0x200
2401 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2402 This also insures that we never give a range like "starts at 0x134
2403 and ends at 0x12c". */
2404
2405 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2406 if (found_sal.line != sal.line)
2407 {
2408 /* The specified line (sal) has zero bytes. */
2409 *startptr = found_sal.pc;
2410 *endptr = found_sal.pc;
2411 }
2412 else
2413 {
2414 *startptr = found_sal.pc;
2415 *endptr = found_sal.end;
2416 }
2417 return 1;
2418 }
2419
2420 /* Given a line table and a line number, return the index into the line
2421 table for the pc of the nearest line whose number is >= the specified one.
2422 Return -1 if none is found. The value is >= 0 if it is an index.
2423
2424 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2425
2426 static int
2427 find_line_common (struct linetable *l, int lineno,
2428 int *exact_match)
2429 {
2430 int i;
2431 int len;
2432
2433 /* BEST is the smallest linenumber > LINENO so far seen,
2434 or 0 if none has been seen so far.
2435 BEST_INDEX identifies the item for it. */
2436
2437 int best_index = -1;
2438 int best = 0;
2439
2440 *exact_match = 0;
2441
2442 if (lineno <= 0)
2443 return -1;
2444 if (l == 0)
2445 return -1;
2446
2447 len = l->nitems;
2448 for (i = 0; i < len; i++)
2449 {
2450 struct linetable_entry *item = &(l->item[i]);
2451
2452 if (item->line == lineno)
2453 {
2454 /* Return the first (lowest address) entry which matches. */
2455 *exact_match = 1;
2456 return i;
2457 }
2458
2459 if (item->line > lineno && (best == 0 || item->line < best))
2460 {
2461 best = item->line;
2462 best_index = i;
2463 }
2464 }
2465
2466 /* If we got here, we didn't get an exact match. */
2467 return best_index;
2468 }
2469
2470 int
2471 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2472 {
2473 struct symtab_and_line sal;
2474
2475 sal = find_pc_line (pc, 0);
2476 *startptr = sal.pc;
2477 *endptr = sal.end;
2478 return sal.symtab != 0;
2479 }
2480
2481 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2482 address for that function that has an entry in SYMTAB's line info
2483 table. If such an entry cannot be found, return FUNC_ADDR
2484 unaltered. */
2485 CORE_ADDR
2486 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2487 {
2488 CORE_ADDR func_start, func_end;
2489 struct linetable *l;
2490 int i;
2491
2492 /* Give up if this symbol has no lineinfo table. */
2493 l = LINETABLE (symtab);
2494 if (l == NULL)
2495 return func_addr;
2496
2497 /* Get the range for the function's PC values, or give up if we
2498 cannot, for some reason. */
2499 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2500 return func_addr;
2501
2502 /* Linetable entries are ordered by PC values, see the commentary in
2503 symtab.h where `struct linetable' is defined. Thus, the first
2504 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2505 address we are looking for. */
2506 for (i = 0; i < l->nitems; i++)
2507 {
2508 struct linetable_entry *item = &(l->item[i]);
2509
2510 /* Don't use line numbers of zero, they mark special entries in
2511 the table. See the commentary on symtab.h before the
2512 definition of struct linetable. */
2513 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2514 return item->pc;
2515 }
2516
2517 return func_addr;
2518 }
2519
2520 /* Given a function symbol SYM, find the symtab and line for the start
2521 of the function.
2522 If the argument FUNFIRSTLINE is nonzero, we want the first line
2523 of real code inside the function. */
2524
2525 struct symtab_and_line
2526 find_function_start_sal (struct symbol *sym, int funfirstline)
2527 {
2528 struct symtab_and_line sal;
2529
2530 fixup_symbol_section (sym, NULL);
2531 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2532 SYMBOL_OBJ_SECTION (sym), 0);
2533
2534 /* We always should have a line for the function start address.
2535 If we don't, something is odd. Create a plain SAL refering
2536 just the PC and hope that skip_prologue_sal (if requested)
2537 can find a line number for after the prologue. */
2538 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2539 {
2540 init_sal (&sal);
2541 sal.pspace = current_program_space;
2542 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2543 sal.section = SYMBOL_OBJ_SECTION (sym);
2544 }
2545
2546 if (funfirstline)
2547 skip_prologue_sal (&sal);
2548
2549 return sal;
2550 }
2551
2552 /* Adjust SAL to the first instruction past the function prologue.
2553 If the PC was explicitly specified, the SAL is not changed.
2554 If the line number was explicitly specified, at most the SAL's PC
2555 is updated. If SAL is already past the prologue, then do nothing. */
2556 void
2557 skip_prologue_sal (struct symtab_and_line *sal)
2558 {
2559 struct symbol *sym;
2560 struct symtab_and_line start_sal;
2561 struct cleanup *old_chain;
2562 CORE_ADDR pc;
2563 struct obj_section *section;
2564 const char *name;
2565 struct objfile *objfile;
2566 struct gdbarch *gdbarch;
2567 struct block *b, *function_block;
2568
2569 /* Do not change the SAL is PC was specified explicitly. */
2570 if (sal->explicit_pc)
2571 return;
2572
2573 old_chain = save_current_space_and_thread ();
2574 switch_to_program_space_and_thread (sal->pspace);
2575
2576 sym = find_pc_sect_function (sal->pc, sal->section);
2577 if (sym != NULL)
2578 {
2579 fixup_symbol_section (sym, NULL);
2580
2581 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2582 section = SYMBOL_OBJ_SECTION (sym);
2583 name = SYMBOL_LINKAGE_NAME (sym);
2584 objfile = SYMBOL_SYMTAB (sym)->objfile;
2585 }
2586 else
2587 {
2588 struct minimal_symbol *msymbol
2589 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2590
2591 if (msymbol == NULL)
2592 {
2593 do_cleanups (old_chain);
2594 return;
2595 }
2596
2597 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2598 section = SYMBOL_OBJ_SECTION (msymbol);
2599 name = SYMBOL_LINKAGE_NAME (msymbol);
2600 objfile = msymbol_objfile (msymbol);
2601 }
2602
2603 gdbarch = get_objfile_arch (objfile);
2604
2605 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2606 so that gdbarch_skip_prologue has something unique to work on. */
2607 if (section_is_overlay (section) && !section_is_mapped (section))
2608 pc = overlay_unmapped_address (pc, section);
2609
2610 /* Skip "first line" of function (which is actually its prologue). */
2611 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2612 pc = gdbarch_skip_prologue (gdbarch, pc);
2613
2614 /* For overlays, map pc back into its mapped VMA range. */
2615 pc = overlay_mapped_address (pc, section);
2616
2617 /* Calculate line number. */
2618 start_sal = find_pc_sect_line (pc, section, 0);
2619
2620 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2621 line is still part of the same function. */
2622 if (start_sal.pc != pc
2623 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2624 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2625 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2626 == lookup_minimal_symbol_by_pc_section (pc, section))))
2627 {
2628 /* First pc of next line */
2629 pc = start_sal.end;
2630 /* Recalculate the line number (might not be N+1). */
2631 start_sal = find_pc_sect_line (pc, section, 0);
2632 }
2633
2634 /* On targets with executable formats that don't have a concept of
2635 constructors (ELF with .init has, PE doesn't), gcc emits a call
2636 to `__main' in `main' between the prologue and before user
2637 code. */
2638 if (gdbarch_skip_main_prologue_p (gdbarch)
2639 && name && strcmp (name, "main") == 0)
2640 {
2641 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2642 /* Recalculate the line number (might not be N+1). */
2643 start_sal = find_pc_sect_line (pc, section, 0);
2644 }
2645
2646 /* If we still don't have a valid source line, try to find the first
2647 PC in the lineinfo table that belongs to the same function. This
2648 happens with COFF debug info, which does not seem to have an
2649 entry in lineinfo table for the code after the prologue which has
2650 no direct relation to source. For example, this was found to be
2651 the case with the DJGPP target using "gcc -gcoff" when the
2652 compiler inserted code after the prologue to make sure the stack
2653 is aligned. */
2654 if (sym && start_sal.symtab == NULL)
2655 {
2656 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2657 /* Recalculate the line number. */
2658 start_sal = find_pc_sect_line (pc, section, 0);
2659 }
2660
2661 do_cleanups (old_chain);
2662
2663 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2664 forward SAL to the end of the prologue. */
2665 if (sal->pc >= pc)
2666 return;
2667
2668 sal->pc = pc;
2669 sal->section = section;
2670
2671 /* Unless the explicit_line flag was set, update the SAL line
2672 and symtab to correspond to the modified PC location. */
2673 if (sal->explicit_line)
2674 return;
2675
2676 sal->symtab = start_sal.symtab;
2677 sal->line = start_sal.line;
2678 sal->end = start_sal.end;
2679
2680 /* Check if we are now inside an inlined function. If we can,
2681 use the call site of the function instead. */
2682 b = block_for_pc_sect (sal->pc, sal->section);
2683 function_block = NULL;
2684 while (b != NULL)
2685 {
2686 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2687 function_block = b;
2688 else if (BLOCK_FUNCTION (b) != NULL)
2689 break;
2690 b = BLOCK_SUPERBLOCK (b);
2691 }
2692 if (function_block != NULL
2693 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2694 {
2695 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2696 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2697 }
2698 }
2699
2700 /* If P is of the form "operator[ \t]+..." where `...' is
2701 some legitimate operator text, return a pointer to the
2702 beginning of the substring of the operator text.
2703 Otherwise, return "". */
2704 char *
2705 operator_chars (char *p, char **end)
2706 {
2707 *end = "";
2708 if (strncmp (p, "operator", 8))
2709 return *end;
2710 p += 8;
2711
2712 /* Don't get faked out by `operator' being part of a longer
2713 identifier. */
2714 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2715 return *end;
2716
2717 /* Allow some whitespace between `operator' and the operator symbol. */
2718 while (*p == ' ' || *p == '\t')
2719 p++;
2720
2721 /* Recognize 'operator TYPENAME'. */
2722
2723 if (isalpha (*p) || *p == '_' || *p == '$')
2724 {
2725 char *q = p + 1;
2726
2727 while (isalnum (*q) || *q == '_' || *q == '$')
2728 q++;
2729 *end = q;
2730 return p;
2731 }
2732
2733 while (*p)
2734 switch (*p)
2735 {
2736 case '\\': /* regexp quoting */
2737 if (p[1] == '*')
2738 {
2739 if (p[2] == '=') /* 'operator\*=' */
2740 *end = p + 3;
2741 else /* 'operator\*' */
2742 *end = p + 2;
2743 return p;
2744 }
2745 else if (p[1] == '[')
2746 {
2747 if (p[2] == ']')
2748 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2749 else if (p[2] == '\\' && p[3] == ']')
2750 {
2751 *end = p + 4; /* 'operator\[\]' */
2752 return p;
2753 }
2754 else
2755 error (_("nothing is allowed between '[' and ']'"));
2756 }
2757 else
2758 {
2759 /* Gratuitous qoute: skip it and move on. */
2760 p++;
2761 continue;
2762 }
2763 break;
2764 case '!':
2765 case '=':
2766 case '*':
2767 case '/':
2768 case '%':
2769 case '^':
2770 if (p[1] == '=')
2771 *end = p + 2;
2772 else
2773 *end = p + 1;
2774 return p;
2775 case '<':
2776 case '>':
2777 case '+':
2778 case '-':
2779 case '&':
2780 case '|':
2781 if (p[0] == '-' && p[1] == '>')
2782 {
2783 /* Struct pointer member operator 'operator->'. */
2784 if (p[2] == '*')
2785 {
2786 *end = p + 3; /* 'operator->*' */
2787 return p;
2788 }
2789 else if (p[2] == '\\')
2790 {
2791 *end = p + 4; /* Hopefully 'operator->\*' */
2792 return p;
2793 }
2794 else
2795 {
2796 *end = p + 2; /* 'operator->' */
2797 return p;
2798 }
2799 }
2800 if (p[1] == '=' || p[1] == p[0])
2801 *end = p + 2;
2802 else
2803 *end = p + 1;
2804 return p;
2805 case '~':
2806 case ',':
2807 *end = p + 1;
2808 return p;
2809 case '(':
2810 if (p[1] != ')')
2811 error (_("`operator ()' must be specified without whitespace in `()'"));
2812 *end = p + 2;
2813 return p;
2814 case '?':
2815 if (p[1] != ':')
2816 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2817 *end = p + 2;
2818 return p;
2819 case '[':
2820 if (p[1] != ']')
2821 error (_("`operator []' must be specified without whitespace in `[]'"));
2822 *end = p + 2;
2823 return p;
2824 default:
2825 error (_("`operator %s' not supported"), p);
2826 break;
2827 }
2828
2829 *end = "";
2830 return *end;
2831 }
2832 \f
2833
2834 /* If FILE is not already in the table of files, return zero;
2835 otherwise return non-zero. Optionally add FILE to the table if ADD
2836 is non-zero. If *FIRST is non-zero, forget the old table
2837 contents. */
2838 static int
2839 filename_seen (const char *file, int add, int *first)
2840 {
2841 /* Table of files seen so far. */
2842 static const char **tab = NULL;
2843 /* Allocated size of tab in elements.
2844 Start with one 256-byte block (when using GNU malloc.c).
2845 24 is the malloc overhead when range checking is in effect. */
2846 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2847 /* Current size of tab in elements. */
2848 static int tab_cur_size;
2849 const char **p;
2850
2851 if (*first)
2852 {
2853 if (tab == NULL)
2854 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2855 tab_cur_size = 0;
2856 }
2857
2858 /* Is FILE in tab? */
2859 for (p = tab; p < tab + tab_cur_size; p++)
2860 if (strcmp (*p, file) == 0)
2861 return 1;
2862
2863 /* No; maybe add it to tab. */
2864 if (add)
2865 {
2866 if (tab_cur_size == tab_alloc_size)
2867 {
2868 tab_alloc_size *= 2;
2869 tab = (const char **) xrealloc ((char *) tab,
2870 tab_alloc_size * sizeof (*tab));
2871 }
2872 tab[tab_cur_size++] = file;
2873 }
2874
2875 return 0;
2876 }
2877
2878 /* Slave routine for sources_info. Force line breaks at ,'s.
2879 NAME is the name to print and *FIRST is nonzero if this is the first
2880 name printed. Set *FIRST to zero. */
2881 static void
2882 output_source_filename (const char *name, int *first)
2883 {
2884 /* Since a single source file can result in several partial symbol
2885 tables, we need to avoid printing it more than once. Note: if
2886 some of the psymtabs are read in and some are not, it gets
2887 printed both under "Source files for which symbols have been
2888 read" and "Source files for which symbols will be read in on
2889 demand". I consider this a reasonable way to deal with the
2890 situation. I'm not sure whether this can also happen for
2891 symtabs; it doesn't hurt to check. */
2892
2893 /* Was NAME already seen? */
2894 if (filename_seen (name, 1, first))
2895 {
2896 /* Yes; don't print it again. */
2897 return;
2898 }
2899 /* No; print it and reset *FIRST. */
2900 if (*first)
2901 {
2902 *first = 0;
2903 }
2904 else
2905 {
2906 printf_filtered (", ");
2907 }
2908
2909 wrap_here ("");
2910 fputs_filtered (name, gdb_stdout);
2911 }
2912
2913 /* A callback for map_partial_symbol_filenames. */
2914 static void
2915 output_partial_symbol_filename (const char *fullname, const char *filename,
2916 void *data)
2917 {
2918 output_source_filename (fullname ? fullname : filename, data);
2919 }
2920
2921 static void
2922 sources_info (char *ignore, int from_tty)
2923 {
2924 struct symtab *s;
2925 struct objfile *objfile;
2926 int first;
2927
2928 if (!have_full_symbols () && !have_partial_symbols ())
2929 {
2930 error (_("No symbol table is loaded. Use the \"file\" command."));
2931 }
2932
2933 printf_filtered ("Source files for which symbols have been read in:\n\n");
2934
2935 first = 1;
2936 ALL_SYMTABS (objfile, s)
2937 {
2938 const char *fullname = symtab_to_fullname (s);
2939
2940 output_source_filename (fullname ? fullname : s->filename, &first);
2941 }
2942 printf_filtered ("\n\n");
2943
2944 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2945
2946 first = 1;
2947 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2948 printf_filtered ("\n");
2949 }
2950
2951 static int
2952 file_matches (const char *file, char *files[], int nfiles)
2953 {
2954 int i;
2955
2956 if (file != NULL && nfiles != 0)
2957 {
2958 for (i = 0; i < nfiles; i++)
2959 {
2960 if (strcmp (files[i], lbasename (file)) == 0)
2961 return 1;
2962 }
2963 }
2964 else if (nfiles == 0)
2965 return 1;
2966 return 0;
2967 }
2968
2969 /* Free any memory associated with a search. */
2970 void
2971 free_search_symbols (struct symbol_search *symbols)
2972 {
2973 struct symbol_search *p;
2974 struct symbol_search *next;
2975
2976 for (p = symbols; p != NULL; p = next)
2977 {
2978 next = p->next;
2979 xfree (p);
2980 }
2981 }
2982
2983 static void
2984 do_free_search_symbols_cleanup (void *symbols)
2985 {
2986 free_search_symbols (symbols);
2987 }
2988
2989 struct cleanup *
2990 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2991 {
2992 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2993 }
2994
2995 /* Helper function for sort_search_symbols and qsort. Can only
2996 sort symbols, not minimal symbols. */
2997 static int
2998 compare_search_syms (const void *sa, const void *sb)
2999 {
3000 struct symbol_search **sym_a = (struct symbol_search **) sa;
3001 struct symbol_search **sym_b = (struct symbol_search **) sb;
3002
3003 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3004 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3005 }
3006
3007 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3008 prevtail where it is, but update its next pointer to point to
3009 the first of the sorted symbols. */
3010 static struct symbol_search *
3011 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3012 {
3013 struct symbol_search **symbols, *symp, *old_next;
3014 int i;
3015
3016 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3017 * nfound);
3018 symp = prevtail->next;
3019 for (i = 0; i < nfound; i++)
3020 {
3021 symbols[i] = symp;
3022 symp = symp->next;
3023 }
3024 /* Generally NULL. */
3025 old_next = symp;
3026
3027 qsort (symbols, nfound, sizeof (struct symbol_search *),
3028 compare_search_syms);
3029
3030 symp = prevtail;
3031 for (i = 0; i < nfound; i++)
3032 {
3033 symp->next = symbols[i];
3034 symp = symp->next;
3035 }
3036 symp->next = old_next;
3037
3038 xfree (symbols);
3039 return symp;
3040 }
3041
3042 /* An object of this type is passed as the user_data to the
3043 expand_symtabs_matching method. */
3044 struct search_symbols_data
3045 {
3046 int nfiles;
3047 char **files;
3048 char *regexp;
3049 };
3050
3051 /* A callback for expand_symtabs_matching. */
3052 static int
3053 search_symbols_file_matches (const char *filename, void *user_data)
3054 {
3055 struct search_symbols_data *data = user_data;
3056
3057 return file_matches (filename, data->files, data->nfiles);
3058 }
3059
3060 /* A callback for expand_symtabs_matching. */
3061 static int
3062 search_symbols_name_matches (const char *symname, void *user_data)
3063 {
3064 struct search_symbols_data *data = user_data;
3065
3066 return data->regexp == NULL || re_exec (symname);
3067 }
3068
3069 /* Search the symbol table for matches to the regular expression REGEXP,
3070 returning the results in *MATCHES.
3071
3072 Only symbols of KIND are searched:
3073 FUNCTIONS_DOMAIN - search all functions
3074 TYPES_DOMAIN - search all type names
3075 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3076 and constants (enums)
3077
3078 free_search_symbols should be called when *MATCHES is no longer needed.
3079
3080 The results are sorted locally; each symtab's global and static blocks are
3081 separately alphabetized.
3082 */
3083 void
3084 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3085 struct symbol_search **matches)
3086 {
3087 struct symtab *s;
3088 struct blockvector *bv;
3089 struct block *b;
3090 int i = 0;
3091 struct dict_iterator iter;
3092 struct symbol *sym;
3093 struct objfile *objfile;
3094 struct minimal_symbol *msymbol;
3095 char *val;
3096 int found_misc = 0;
3097 static const enum minimal_symbol_type types[]
3098 = {mst_data, mst_text, mst_abs, mst_unknown};
3099 static const enum minimal_symbol_type types2[]
3100 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
3101 static const enum minimal_symbol_type types3[]
3102 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3103 static const enum minimal_symbol_type types4[]
3104 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
3105 enum minimal_symbol_type ourtype;
3106 enum minimal_symbol_type ourtype2;
3107 enum minimal_symbol_type ourtype3;
3108 enum minimal_symbol_type ourtype4;
3109 struct symbol_search *sr;
3110 struct symbol_search *psr;
3111 struct symbol_search *tail;
3112 struct cleanup *old_chain = NULL;
3113 struct search_symbols_data datum;
3114
3115 if (kind < VARIABLES_DOMAIN)
3116 error (_("must search on specific domain"));
3117
3118 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3119 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3120 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3121 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3122
3123 sr = *matches = NULL;
3124 tail = NULL;
3125
3126 if (regexp != NULL)
3127 {
3128 /* Make sure spacing is right for C++ operators.
3129 This is just a courtesy to make the matching less sensitive
3130 to how many spaces the user leaves between 'operator'
3131 and <TYPENAME> or <OPERATOR>. */
3132 char *opend;
3133 char *opname = operator_chars (regexp, &opend);
3134
3135 if (*opname)
3136 {
3137 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3138
3139 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3140 {
3141 /* There should 1 space between 'operator' and 'TYPENAME'. */
3142 if (opname[-1] != ' ' || opname[-2] == ' ')
3143 fix = 1;
3144 }
3145 else
3146 {
3147 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3148 if (opname[-1] == ' ')
3149 fix = 0;
3150 }
3151 /* If wrong number of spaces, fix it. */
3152 if (fix >= 0)
3153 {
3154 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3155
3156 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3157 regexp = tmp;
3158 }
3159 }
3160
3161 if (0 != (val = re_comp (regexp)))
3162 error (_("Invalid regexp (%s): %s"), val, regexp);
3163 }
3164
3165 /* Search through the partial symtabs *first* for all symbols
3166 matching the regexp. That way we don't have to reproduce all of
3167 the machinery below. */
3168
3169 datum.nfiles = nfiles;
3170 datum.files = files;
3171 datum.regexp = regexp;
3172 ALL_OBJFILES (objfile)
3173 {
3174 if (objfile->sf)
3175 objfile->sf->qf->expand_symtabs_matching (objfile,
3176 search_symbols_file_matches,
3177 search_symbols_name_matches,
3178 kind,
3179 &datum);
3180 }
3181
3182 /* Here, we search through the minimal symbol tables for functions
3183 and variables that match, and force their symbols to be read.
3184 This is in particular necessary for demangled variable names,
3185 which are no longer put into the partial symbol tables.
3186 The symbol will then be found during the scan of symtabs below.
3187
3188 For functions, find_pc_symtab should succeed if we have debug info
3189 for the function, for variables we have to call lookup_symbol
3190 to determine if the variable has debug info.
3191 If the lookup fails, set found_misc so that we will rescan to print
3192 any matching symbols without debug info.
3193 */
3194
3195 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3196 {
3197 ALL_MSYMBOLS (objfile, msymbol)
3198 {
3199 QUIT;
3200
3201 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3202 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3203 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3204 MSYMBOL_TYPE (msymbol) == ourtype4)
3205 {
3206 if (regexp == NULL
3207 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3208 {
3209 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3210 {
3211 /* FIXME: carlton/2003-02-04: Given that the
3212 semantics of lookup_symbol keeps on changing
3213 slightly, it would be a nice idea if we had a
3214 function lookup_symbol_minsym that found the
3215 symbol associated to a given minimal symbol (if
3216 any). */
3217 if (kind == FUNCTIONS_DOMAIN
3218 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3219 (struct block *) NULL,
3220 VAR_DOMAIN, 0)
3221 == NULL)
3222 found_misc = 1;
3223 }
3224 }
3225 }
3226 }
3227 }
3228
3229 ALL_PRIMARY_SYMTABS (objfile, s)
3230 {
3231 bv = BLOCKVECTOR (s);
3232 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3233 {
3234 struct symbol_search *prevtail = tail;
3235 int nfound = 0;
3236
3237 b = BLOCKVECTOR_BLOCK (bv, i);
3238 ALL_BLOCK_SYMBOLS (b, iter, sym)
3239 {
3240 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3241
3242 QUIT;
3243
3244 if (file_matches (real_symtab->filename, files, nfiles)
3245 && ((regexp == NULL
3246 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3247 && ((kind == VARIABLES_DOMAIN
3248 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3249 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3250 && SYMBOL_CLASS (sym) != LOC_BLOCK
3251 /* LOC_CONST can be used for more than just enums,
3252 e.g., c++ static const members.
3253 We only want to skip enums here. */
3254 && !(SYMBOL_CLASS (sym) == LOC_CONST
3255 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM))
3256 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3257 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3258 {
3259 /* match */
3260 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3261 psr->block = i;
3262 psr->symtab = real_symtab;
3263 psr->symbol = sym;
3264 psr->msymbol = NULL;
3265 psr->next = NULL;
3266 if (tail == NULL)
3267 sr = psr;
3268 else
3269 tail->next = psr;
3270 tail = psr;
3271 nfound ++;
3272 }
3273 }
3274 if (nfound > 0)
3275 {
3276 if (prevtail == NULL)
3277 {
3278 struct symbol_search dummy;
3279
3280 dummy.next = sr;
3281 tail = sort_search_symbols (&dummy, nfound);
3282 sr = dummy.next;
3283
3284 old_chain = make_cleanup_free_search_symbols (sr);
3285 }
3286 else
3287 tail = sort_search_symbols (prevtail, nfound);
3288 }
3289 }
3290 }
3291
3292 /* If there are no eyes, avoid all contact. I mean, if there are
3293 no debug symbols, then print directly from the msymbol_vector. */
3294
3295 if (found_misc || kind != FUNCTIONS_DOMAIN)
3296 {
3297 ALL_MSYMBOLS (objfile, msymbol)
3298 {
3299 QUIT;
3300
3301 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3302 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3303 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3304 MSYMBOL_TYPE (msymbol) == ourtype4)
3305 {
3306 if (regexp == NULL
3307 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3308 {
3309 /* Functions: Look up by address. */
3310 if (kind != FUNCTIONS_DOMAIN ||
3311 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3312 {
3313 /* Variables/Absolutes: Look up by name */
3314 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3315 (struct block *) NULL, VAR_DOMAIN, 0)
3316 == NULL)
3317 {
3318 /* match */
3319 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3320 psr->block = i;
3321 psr->msymbol = msymbol;
3322 psr->symtab = NULL;
3323 psr->symbol = NULL;
3324 psr->next = NULL;
3325 if (tail == NULL)
3326 {
3327 sr = psr;
3328 old_chain = make_cleanup_free_search_symbols (sr);
3329 }
3330 else
3331 tail->next = psr;
3332 tail = psr;
3333 }
3334 }
3335 }
3336 }
3337 }
3338 }
3339
3340 *matches = sr;
3341 if (sr != NULL)
3342 discard_cleanups (old_chain);
3343 }
3344
3345 /* Helper function for symtab_symbol_info, this function uses
3346 the data returned from search_symbols() to print information
3347 regarding the match to gdb_stdout.
3348 */
3349 static void
3350 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3351 int block, char *last)
3352 {
3353 if (last == NULL || strcmp (last, s->filename) != 0)
3354 {
3355 fputs_filtered ("\nFile ", gdb_stdout);
3356 fputs_filtered (s->filename, gdb_stdout);
3357 fputs_filtered (":\n", gdb_stdout);
3358 }
3359
3360 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3361 printf_filtered ("static ");
3362
3363 /* Typedef that is not a C++ class */
3364 if (kind == TYPES_DOMAIN
3365 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3366 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3367 /* variable, func, or typedef-that-is-c++-class */
3368 else if (kind < TYPES_DOMAIN ||
3369 (kind == TYPES_DOMAIN &&
3370 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3371 {
3372 type_print (SYMBOL_TYPE (sym),
3373 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3374 ? "" : SYMBOL_PRINT_NAME (sym)),
3375 gdb_stdout, 0);
3376
3377 printf_filtered (";\n");
3378 }
3379 }
3380
3381 /* This help function for symtab_symbol_info() prints information
3382 for non-debugging symbols to gdb_stdout.
3383 */
3384 static void
3385 print_msymbol_info (struct minimal_symbol *msymbol)
3386 {
3387 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3388 char *tmp;
3389
3390 if (gdbarch_addr_bit (gdbarch) <= 32)
3391 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3392 & (CORE_ADDR) 0xffffffff,
3393 8);
3394 else
3395 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3396 16);
3397 printf_filtered ("%s %s\n",
3398 tmp, SYMBOL_PRINT_NAME (msymbol));
3399 }
3400
3401 /* This is the guts of the commands "info functions", "info types", and
3402 "info variables". It calls search_symbols to find all matches and then
3403 print_[m]symbol_info to print out some useful information about the
3404 matches.
3405 */
3406 static void
3407 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3408 {
3409 static const char * const classnames[] =
3410 {"variable", "function", "type", "method"};
3411 struct symbol_search *symbols;
3412 struct symbol_search *p;
3413 struct cleanup *old_chain;
3414 char *last_filename = NULL;
3415 int first = 1;
3416
3417 /* must make sure that if we're interrupted, symbols gets freed */
3418 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3419 old_chain = make_cleanup_free_search_symbols (symbols);
3420
3421 printf_filtered (regexp
3422 ? "All %ss matching regular expression \"%s\":\n"
3423 : "All defined %ss:\n",
3424 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3425
3426 for (p = symbols; p != NULL; p = p->next)
3427 {
3428 QUIT;
3429
3430 if (p->msymbol != NULL)
3431 {
3432 if (first)
3433 {
3434 printf_filtered ("\nNon-debugging symbols:\n");
3435 first = 0;
3436 }
3437 print_msymbol_info (p->msymbol);
3438 }
3439 else
3440 {
3441 print_symbol_info (kind,
3442 p->symtab,
3443 p->symbol,
3444 p->block,
3445 last_filename);
3446 last_filename = p->symtab->filename;
3447 }
3448 }
3449
3450 do_cleanups (old_chain);
3451 }
3452
3453 static void
3454 variables_info (char *regexp, int from_tty)
3455 {
3456 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3457 }
3458
3459 static void
3460 functions_info (char *regexp, int from_tty)
3461 {
3462 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3463 }
3464
3465
3466 static void
3467 types_info (char *regexp, int from_tty)
3468 {
3469 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3470 }
3471
3472 /* Breakpoint all functions matching regular expression. */
3473
3474 void
3475 rbreak_command_wrapper (char *regexp, int from_tty)
3476 {
3477 rbreak_command (regexp, from_tty);
3478 }
3479
3480 /* A cleanup function that calls end_rbreak_breakpoints. */
3481
3482 static void
3483 do_end_rbreak_breakpoints (void *ignore)
3484 {
3485 end_rbreak_breakpoints ();
3486 }
3487
3488 static void
3489 rbreak_command (char *regexp, int from_tty)
3490 {
3491 struct symbol_search *ss;
3492 struct symbol_search *p;
3493 struct cleanup *old_chain;
3494 char *string = NULL;
3495 int len = 0;
3496 char **files = NULL;
3497 int nfiles = 0;
3498
3499 if (regexp)
3500 {
3501 char *colon = strchr (regexp, ':');
3502
3503 if (colon && *(colon + 1) != ':')
3504 {
3505 int colon_index;
3506 char * file_name;
3507
3508 colon_index = colon - regexp;
3509 file_name = alloca (colon_index + 1);
3510 memcpy (file_name, regexp, colon_index);
3511 file_name[colon_index--] = 0;
3512 while (isspace (file_name[colon_index]))
3513 file_name[colon_index--] = 0;
3514 files = &file_name;
3515 nfiles = 1;
3516 regexp = colon + 1;
3517 while (isspace (*regexp)) regexp++;
3518 }
3519 }
3520
3521 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3522 old_chain = make_cleanup_free_search_symbols (ss);
3523 make_cleanup (free_current_contents, &string);
3524
3525 start_rbreak_breakpoints ();
3526 make_cleanup (do_end_rbreak_breakpoints, NULL);
3527 for (p = ss; p != NULL; p = p->next)
3528 {
3529 if (p->msymbol == NULL)
3530 {
3531 int newlen = (strlen (p->symtab->filename)
3532 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3533 + 4);
3534
3535 if (newlen > len)
3536 {
3537 string = xrealloc (string, newlen);
3538 len = newlen;
3539 }
3540 strcpy (string, p->symtab->filename);
3541 strcat (string, ":'");
3542 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3543 strcat (string, "'");
3544 break_command (string, from_tty);
3545 print_symbol_info (FUNCTIONS_DOMAIN,
3546 p->symtab,
3547 p->symbol,
3548 p->block,
3549 p->symtab->filename);
3550 }
3551 else
3552 {
3553 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3554
3555 if (newlen > len)
3556 {
3557 string = xrealloc (string, newlen);
3558 len = newlen;
3559 }
3560 strcpy (string, "'");
3561 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3562 strcat (string, "'");
3563
3564 break_command (string, from_tty);
3565 printf_filtered ("<function, no debug info> %s;\n",
3566 SYMBOL_PRINT_NAME (p->msymbol));
3567 }
3568 }
3569
3570 do_cleanups (old_chain);
3571 }
3572 \f
3573
3574 /* Helper routine for make_symbol_completion_list. */
3575
3576 static int return_val_size;
3577 static int return_val_index;
3578 static char **return_val;
3579
3580 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3581 completion_list_add_name \
3582 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3583
3584 /* Test to see if the symbol specified by SYMNAME (which is already
3585 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3586 characters. If so, add it to the current completion list. */
3587
3588 static void
3589 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3590 char *text, char *word)
3591 {
3592 int newsize;
3593
3594 /* clip symbols that cannot match */
3595
3596 if (strncmp (symname, sym_text, sym_text_len) != 0)
3597 {
3598 return;
3599 }
3600
3601 /* We have a match for a completion, so add SYMNAME to the current list
3602 of matches. Note that the name is moved to freshly malloc'd space. */
3603
3604 {
3605 char *new;
3606
3607 if (word == sym_text)
3608 {
3609 new = xmalloc (strlen (symname) + 5);
3610 strcpy (new, symname);
3611 }
3612 else if (word > sym_text)
3613 {
3614 /* Return some portion of symname. */
3615 new = xmalloc (strlen (symname) + 5);
3616 strcpy (new, symname + (word - sym_text));
3617 }
3618 else
3619 {
3620 /* Return some of SYM_TEXT plus symname. */
3621 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3622 strncpy (new, word, sym_text - word);
3623 new[sym_text - word] = '\0';
3624 strcat (new, symname);
3625 }
3626
3627 if (return_val_index + 3 > return_val_size)
3628 {
3629 newsize = (return_val_size *= 2) * sizeof (char *);
3630 return_val = (char **) xrealloc ((char *) return_val, newsize);
3631 }
3632 return_val[return_val_index++] = new;
3633 return_val[return_val_index] = NULL;
3634 }
3635 }
3636
3637 /* ObjC: In case we are completing on a selector, look as the msymbol
3638 again and feed all the selectors into the mill. */
3639
3640 static void
3641 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3642 int sym_text_len, char *text, char *word)
3643 {
3644 static char *tmp = NULL;
3645 static unsigned int tmplen = 0;
3646
3647 char *method, *category, *selector;
3648 char *tmp2 = NULL;
3649
3650 method = SYMBOL_NATURAL_NAME (msymbol);
3651
3652 /* Is it a method? */
3653 if ((method[0] != '-') && (method[0] != '+'))
3654 return;
3655
3656 if (sym_text[0] == '[')
3657 /* Complete on shortened method method. */
3658 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3659
3660 while ((strlen (method) + 1) >= tmplen)
3661 {
3662 if (tmplen == 0)
3663 tmplen = 1024;
3664 else
3665 tmplen *= 2;
3666 tmp = xrealloc (tmp, tmplen);
3667 }
3668 selector = strchr (method, ' ');
3669 if (selector != NULL)
3670 selector++;
3671
3672 category = strchr (method, '(');
3673
3674 if ((category != NULL) && (selector != NULL))
3675 {
3676 memcpy (tmp, method, (category - method));
3677 tmp[category - method] = ' ';
3678 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3679 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3680 if (sym_text[0] == '[')
3681 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3682 }
3683
3684 if (selector != NULL)
3685 {
3686 /* Complete on selector only. */
3687 strcpy (tmp, selector);
3688 tmp2 = strchr (tmp, ']');
3689 if (tmp2 != NULL)
3690 *tmp2 = '\0';
3691
3692 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3693 }
3694 }
3695
3696 /* Break the non-quoted text based on the characters which are in
3697 symbols. FIXME: This should probably be language-specific. */
3698
3699 static char *
3700 language_search_unquoted_string (char *text, char *p)
3701 {
3702 for (; p > text; --p)
3703 {
3704 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3705 continue;
3706 else
3707 {
3708 if ((current_language->la_language == language_objc))
3709 {
3710 if (p[-1] == ':') /* might be part of a method name */
3711 continue;
3712 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3713 p -= 2; /* beginning of a method name */
3714 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3715 { /* might be part of a method name */
3716 char *t = p;
3717
3718 /* Seeing a ' ' or a '(' is not conclusive evidence
3719 that we are in the middle of a method name. However,
3720 finding "-[" or "+[" should be pretty un-ambiguous.
3721 Unfortunately we have to find it now to decide. */
3722
3723 while (t > text)
3724 if (isalnum (t[-1]) || t[-1] == '_' ||
3725 t[-1] == ' ' || t[-1] == ':' ||
3726 t[-1] == '(' || t[-1] == ')')
3727 --t;
3728 else
3729 break;
3730
3731 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3732 p = t - 2; /* method name detected */
3733 /* else we leave with p unchanged */
3734 }
3735 }
3736 break;
3737 }
3738 }
3739 return p;
3740 }
3741
3742 static void
3743 completion_list_add_fields (struct symbol *sym, char *sym_text,
3744 int sym_text_len, char *text, char *word)
3745 {
3746 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3747 {
3748 struct type *t = SYMBOL_TYPE (sym);
3749 enum type_code c = TYPE_CODE (t);
3750 int j;
3751
3752 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3753 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3754 if (TYPE_FIELD_NAME (t, j))
3755 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3756 sym_text, sym_text_len, text, word);
3757 }
3758 }
3759
3760 /* Type of the user_data argument passed to add_macro_name or
3761 add_partial_symbol_name. The contents are simply whatever is
3762 needed by completion_list_add_name. */
3763 struct add_name_data
3764 {
3765 char *sym_text;
3766 int sym_text_len;
3767 char *text;
3768 char *word;
3769 };
3770
3771 /* A callback used with macro_for_each and macro_for_each_in_scope.
3772 This adds a macro's name to the current completion list. */
3773 static void
3774 add_macro_name (const char *name, const struct macro_definition *ignore,
3775 void *user_data)
3776 {
3777 struct add_name_data *datum = (struct add_name_data *) user_data;
3778
3779 completion_list_add_name ((char *) name,
3780 datum->sym_text, datum->sym_text_len,
3781 datum->text, datum->word);
3782 }
3783
3784 /* A callback for map_partial_symbol_names. */
3785 static void
3786 add_partial_symbol_name (const char *name, void *user_data)
3787 {
3788 struct add_name_data *datum = (struct add_name_data *) user_data;
3789
3790 completion_list_add_name ((char *) name,
3791 datum->sym_text, datum->sym_text_len,
3792 datum->text, datum->word);
3793 }
3794
3795 char **
3796 default_make_symbol_completion_list_break_on (char *text, char *word,
3797 const char *break_on)
3798 {
3799 /* Problem: All of the symbols have to be copied because readline
3800 frees them. I'm not going to worry about this; hopefully there
3801 won't be that many. */
3802
3803 struct symbol *sym;
3804 struct symtab *s;
3805 struct minimal_symbol *msymbol;
3806 struct objfile *objfile;
3807 struct block *b;
3808 const struct block *surrounding_static_block, *surrounding_global_block;
3809 struct dict_iterator iter;
3810 /* The symbol we are completing on. Points in same buffer as text. */
3811 char *sym_text;
3812 /* Length of sym_text. */
3813 int sym_text_len;
3814 struct add_name_data datum;
3815
3816 /* Now look for the symbol we are supposed to complete on. */
3817 {
3818 char *p;
3819 char quote_found;
3820 char *quote_pos = NULL;
3821
3822 /* First see if this is a quoted string. */
3823 quote_found = '\0';
3824 for (p = text; *p != '\0'; ++p)
3825 {
3826 if (quote_found != '\0')
3827 {
3828 if (*p == quote_found)
3829 /* Found close quote. */
3830 quote_found = '\0';
3831 else if (*p == '\\' && p[1] == quote_found)
3832 /* A backslash followed by the quote character
3833 doesn't end the string. */
3834 ++p;
3835 }
3836 else if (*p == '\'' || *p == '"')
3837 {
3838 quote_found = *p;
3839 quote_pos = p;
3840 }
3841 }
3842 if (quote_found == '\'')
3843 /* A string within single quotes can be a symbol, so complete on it. */
3844 sym_text = quote_pos + 1;
3845 else if (quote_found == '"')
3846 /* A double-quoted string is never a symbol, nor does it make sense
3847 to complete it any other way. */
3848 {
3849 return_val = (char **) xmalloc (sizeof (char *));
3850 return_val[0] = NULL;
3851 return return_val;
3852 }
3853 else
3854 {
3855 /* It is not a quoted string. Break it based on the characters
3856 which are in symbols. */
3857 while (p > text)
3858 {
3859 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3860 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3861 --p;
3862 else
3863 break;
3864 }
3865 sym_text = p;
3866 }
3867 }
3868
3869 sym_text_len = strlen (sym_text);
3870
3871 return_val_size = 100;
3872 return_val_index = 0;
3873 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3874 return_val[0] = NULL;
3875
3876 datum.sym_text = sym_text;
3877 datum.sym_text_len = sym_text_len;
3878 datum.text = text;
3879 datum.word = word;
3880
3881 /* Look through the partial symtabs for all symbols which begin
3882 by matching SYM_TEXT. Add each one that you find to the list. */
3883 map_partial_symbol_names (add_partial_symbol_name, &datum);
3884
3885 /* At this point scan through the misc symbol vectors and add each
3886 symbol you find to the list. Eventually we want to ignore
3887 anything that isn't a text symbol (everything else will be
3888 handled by the psymtab code above). */
3889
3890 ALL_MSYMBOLS (objfile, msymbol)
3891 {
3892 QUIT;
3893 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3894
3895 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3896 }
3897
3898 /* Search upwards from currently selected frame (so that we can
3899 complete on local vars). Also catch fields of types defined in
3900 this places which match our text string. Only complete on types
3901 visible from current context. */
3902
3903 b = get_selected_block (0);
3904 surrounding_static_block = block_static_block (b);
3905 surrounding_global_block = block_global_block (b);
3906 if (surrounding_static_block != NULL)
3907 while (b != surrounding_static_block)
3908 {
3909 QUIT;
3910
3911 ALL_BLOCK_SYMBOLS (b, iter, sym)
3912 {
3913 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3914 word);
3915 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3916 word);
3917 }
3918
3919 /* Stop when we encounter an enclosing function. Do not stop for
3920 non-inlined functions - the locals of the enclosing function
3921 are in scope for a nested function. */
3922 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3923 break;
3924 b = BLOCK_SUPERBLOCK (b);
3925 }
3926
3927 /* Add fields from the file's types; symbols will be added below. */
3928
3929 if (surrounding_static_block != NULL)
3930 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3931 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3932
3933 if (surrounding_global_block != NULL)
3934 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3935 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3936
3937 /* Go through the symtabs and check the externs and statics for
3938 symbols which match. */
3939
3940 ALL_PRIMARY_SYMTABS (objfile, s)
3941 {
3942 QUIT;
3943 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3944 ALL_BLOCK_SYMBOLS (b, iter, sym)
3945 {
3946 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3947 }
3948 }
3949
3950 ALL_PRIMARY_SYMTABS (objfile, s)
3951 {
3952 QUIT;
3953 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3954 ALL_BLOCK_SYMBOLS (b, iter, sym)
3955 {
3956 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3957 }
3958 }
3959
3960 if (current_language->la_macro_expansion == macro_expansion_c)
3961 {
3962 struct macro_scope *scope;
3963
3964 /* Add any macros visible in the default scope. Note that this
3965 may yield the occasional wrong result, because an expression
3966 might be evaluated in a scope other than the default. For
3967 example, if the user types "break file:line if <TAB>", the
3968 resulting expression will be evaluated at "file:line" -- but
3969 at there does not seem to be a way to detect this at
3970 completion time. */
3971 scope = default_macro_scope ();
3972 if (scope)
3973 {
3974 macro_for_each_in_scope (scope->file, scope->line,
3975 add_macro_name, &datum);
3976 xfree (scope);
3977 }
3978
3979 /* User-defined macros are always visible. */
3980 macro_for_each (macro_user_macros, add_macro_name, &datum);
3981 }
3982
3983 return (return_val);
3984 }
3985
3986 char **
3987 default_make_symbol_completion_list (char *text, char *word)
3988 {
3989 return default_make_symbol_completion_list_break_on (text, word, "");
3990 }
3991
3992 /* Return a NULL terminated array of all symbols (regardless of class)
3993 which begin by matching TEXT. If the answer is no symbols, then
3994 the return value is an array which contains only a NULL pointer. */
3995
3996 char **
3997 make_symbol_completion_list (char *text, char *word)
3998 {
3999 return current_language->la_make_symbol_completion_list (text, word);
4000 }
4001
4002 /* Like make_symbol_completion_list, but suitable for use as a
4003 completion function. */
4004
4005 char **
4006 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4007 char *text, char *word)
4008 {
4009 return make_symbol_completion_list (text, word);
4010 }
4011
4012 /* Like make_symbol_completion_list, but returns a list of symbols
4013 defined in a source file FILE. */
4014
4015 char **
4016 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4017 {
4018 struct symbol *sym;
4019 struct symtab *s;
4020 struct block *b;
4021 struct dict_iterator iter;
4022 /* The symbol we are completing on. Points in same buffer as text. */
4023 char *sym_text;
4024 /* Length of sym_text. */
4025 int sym_text_len;
4026
4027 /* Now look for the symbol we are supposed to complete on.
4028 FIXME: This should be language-specific. */
4029 {
4030 char *p;
4031 char quote_found;
4032 char *quote_pos = NULL;
4033
4034 /* First see if this is a quoted string. */
4035 quote_found = '\0';
4036 for (p = text; *p != '\0'; ++p)
4037 {
4038 if (quote_found != '\0')
4039 {
4040 if (*p == quote_found)
4041 /* Found close quote. */
4042 quote_found = '\0';
4043 else if (*p == '\\' && p[1] == quote_found)
4044 /* A backslash followed by the quote character
4045 doesn't end the string. */
4046 ++p;
4047 }
4048 else if (*p == '\'' || *p == '"')
4049 {
4050 quote_found = *p;
4051 quote_pos = p;
4052 }
4053 }
4054 if (quote_found == '\'')
4055 /* A string within single quotes can be a symbol, so complete on it. */
4056 sym_text = quote_pos + 1;
4057 else if (quote_found == '"')
4058 /* A double-quoted string is never a symbol, nor does it make sense
4059 to complete it any other way. */
4060 {
4061 return_val = (char **) xmalloc (sizeof (char *));
4062 return_val[0] = NULL;
4063 return return_val;
4064 }
4065 else
4066 {
4067 /* Not a quoted string. */
4068 sym_text = language_search_unquoted_string (text, p);
4069 }
4070 }
4071
4072 sym_text_len = strlen (sym_text);
4073
4074 return_val_size = 10;
4075 return_val_index = 0;
4076 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4077 return_val[0] = NULL;
4078
4079 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4080 in). */
4081 s = lookup_symtab (srcfile);
4082 if (s == NULL)
4083 {
4084 /* Maybe they typed the file with leading directories, while the
4085 symbol tables record only its basename. */
4086 const char *tail = lbasename (srcfile);
4087
4088 if (tail > srcfile)
4089 s = lookup_symtab (tail);
4090 }
4091
4092 /* If we have no symtab for that file, return an empty list. */
4093 if (s == NULL)
4094 return (return_val);
4095
4096 /* Go through this symtab and check the externs and statics for
4097 symbols which match. */
4098
4099 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4100 ALL_BLOCK_SYMBOLS (b, iter, sym)
4101 {
4102 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4103 }
4104
4105 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4106 ALL_BLOCK_SYMBOLS (b, iter, sym)
4107 {
4108 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4109 }
4110
4111 return (return_val);
4112 }
4113
4114 /* A helper function for make_source_files_completion_list. It adds
4115 another file name to a list of possible completions, growing the
4116 list as necessary. */
4117
4118 static void
4119 add_filename_to_list (const char *fname, char *text, char *word,
4120 char ***list, int *list_used, int *list_alloced)
4121 {
4122 char *new;
4123 size_t fnlen = strlen (fname);
4124
4125 if (*list_used + 1 >= *list_alloced)
4126 {
4127 *list_alloced *= 2;
4128 *list = (char **) xrealloc ((char *) *list,
4129 *list_alloced * sizeof (char *));
4130 }
4131
4132 if (word == text)
4133 {
4134 /* Return exactly fname. */
4135 new = xmalloc (fnlen + 5);
4136 strcpy (new, fname);
4137 }
4138 else if (word > text)
4139 {
4140 /* Return some portion of fname. */
4141 new = xmalloc (fnlen + 5);
4142 strcpy (new, fname + (word - text));
4143 }
4144 else
4145 {
4146 /* Return some of TEXT plus fname. */
4147 new = xmalloc (fnlen + (text - word) + 5);
4148 strncpy (new, word, text - word);
4149 new[text - word] = '\0';
4150 strcat (new, fname);
4151 }
4152 (*list)[*list_used] = new;
4153 (*list)[++*list_used] = NULL;
4154 }
4155
4156 static int
4157 not_interesting_fname (const char *fname)
4158 {
4159 static const char *illegal_aliens[] = {
4160 "_globals_", /* inserted by coff_symtab_read */
4161 NULL
4162 };
4163 int i;
4164
4165 for (i = 0; illegal_aliens[i]; i++)
4166 {
4167 if (strcmp (fname, illegal_aliens[i]) == 0)
4168 return 1;
4169 }
4170 return 0;
4171 }
4172
4173 /* An object of this type is passed as the user_data argument to
4174 map_partial_symbol_filenames. */
4175 struct add_partial_filename_data
4176 {
4177 int *first;
4178 char *text;
4179 char *word;
4180 int text_len;
4181 char ***list;
4182 int *list_used;
4183 int *list_alloced;
4184 };
4185
4186 /* A callback for map_partial_symbol_filenames. */
4187 static void
4188 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4189 void *user_data)
4190 {
4191 struct add_partial_filename_data *data = user_data;
4192
4193 if (not_interesting_fname (filename))
4194 return;
4195 if (!filename_seen (filename, 1, data->first)
4196 #if HAVE_DOS_BASED_FILE_SYSTEM
4197 && strncasecmp (filename, data->text, data->text_len) == 0
4198 #else
4199 && strncmp (filename, data->text, data->text_len) == 0
4200 #endif
4201 )
4202 {
4203 /* This file matches for a completion; add it to the
4204 current list of matches. */
4205 add_filename_to_list (filename, data->text, data->word,
4206 data->list, data->list_used, data->list_alloced);
4207 }
4208 else
4209 {
4210 const char *base_name = lbasename (filename);
4211
4212 if (base_name != filename
4213 && !filename_seen (base_name, 1, data->first)
4214 #if HAVE_DOS_BASED_FILE_SYSTEM
4215 && strncasecmp (base_name, data->text, data->text_len) == 0
4216 #else
4217 && strncmp (base_name, data->text, data->text_len) == 0
4218 #endif
4219 )
4220 add_filename_to_list (base_name, data->text, data->word,
4221 data->list, data->list_used, data->list_alloced);
4222 }
4223 }
4224
4225 /* Return a NULL terminated array of all source files whose names
4226 begin with matching TEXT. The file names are looked up in the
4227 symbol tables of this program. If the answer is no matchess, then
4228 the return value is an array which contains only a NULL pointer. */
4229
4230 char **
4231 make_source_files_completion_list (char *text, char *word)
4232 {
4233 struct symtab *s;
4234 struct objfile *objfile;
4235 int first = 1;
4236 int list_alloced = 1;
4237 int list_used = 0;
4238 size_t text_len = strlen (text);
4239 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4240 const char *base_name;
4241 struct add_partial_filename_data datum;
4242
4243 list[0] = NULL;
4244
4245 if (!have_full_symbols () && !have_partial_symbols ())
4246 return list;
4247
4248 ALL_SYMTABS (objfile, s)
4249 {
4250 if (not_interesting_fname (s->filename))
4251 continue;
4252 if (!filename_seen (s->filename, 1, &first)
4253 #if HAVE_DOS_BASED_FILE_SYSTEM
4254 && strncasecmp (s->filename, text, text_len) == 0
4255 #else
4256 && strncmp (s->filename, text, text_len) == 0
4257 #endif
4258 )
4259 {
4260 /* This file matches for a completion; add it to the current
4261 list of matches. */
4262 add_filename_to_list (s->filename, text, word,
4263 &list, &list_used, &list_alloced);
4264 }
4265 else
4266 {
4267 /* NOTE: We allow the user to type a base name when the
4268 debug info records leading directories, but not the other
4269 way around. This is what subroutines of breakpoint
4270 command do when they parse file names. */
4271 base_name = lbasename (s->filename);
4272 if (base_name != s->filename
4273 && !filename_seen (base_name, 1, &first)
4274 #if HAVE_DOS_BASED_FILE_SYSTEM
4275 && strncasecmp (base_name, text, text_len) == 0
4276 #else
4277 && strncmp (base_name, text, text_len) == 0
4278 #endif
4279 )
4280 add_filename_to_list (base_name, text, word,
4281 &list, &list_used, &list_alloced);
4282 }
4283 }
4284
4285 datum.first = &first;
4286 datum.text = text;
4287 datum.word = word;
4288 datum.text_len = text_len;
4289 datum.list = &list;
4290 datum.list_used = &list_used;
4291 datum.list_alloced = &list_alloced;
4292 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4293
4294 return list;
4295 }
4296
4297 /* Determine if PC is in the prologue of a function. The prologue is the area
4298 between the first instruction of a function, and the first executable line.
4299 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4300
4301 If non-zero, func_start is where we think the prologue starts, possibly
4302 by previous examination of symbol table information.
4303 */
4304
4305 int
4306 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4307 {
4308 struct symtab_and_line sal;
4309 CORE_ADDR func_addr, func_end;
4310
4311 /* We have several sources of information we can consult to figure
4312 this out.
4313 - Compilers usually emit line number info that marks the prologue
4314 as its own "source line". So the ending address of that "line"
4315 is the end of the prologue. If available, this is the most
4316 reliable method.
4317 - The minimal symbols and partial symbols, which can usually tell
4318 us the starting and ending addresses of a function.
4319 - If we know the function's start address, we can call the
4320 architecture-defined gdbarch_skip_prologue function to analyze the
4321 instruction stream and guess where the prologue ends.
4322 - Our `func_start' argument; if non-zero, this is the caller's
4323 best guess as to the function's entry point. At the time of
4324 this writing, handle_inferior_event doesn't get this right, so
4325 it should be our last resort. */
4326
4327 /* Consult the partial symbol table, to find which function
4328 the PC is in. */
4329 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4330 {
4331 CORE_ADDR prologue_end;
4332
4333 /* We don't even have minsym information, so fall back to using
4334 func_start, if given. */
4335 if (! func_start)
4336 return 1; /* We *might* be in a prologue. */
4337
4338 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4339
4340 return func_start <= pc && pc < prologue_end;
4341 }
4342
4343 /* If we have line number information for the function, that's
4344 usually pretty reliable. */
4345 sal = find_pc_line (func_addr, 0);
4346
4347 /* Now sal describes the source line at the function's entry point,
4348 which (by convention) is the prologue. The end of that "line",
4349 sal.end, is the end of the prologue.
4350
4351 Note that, for functions whose source code is all on a single
4352 line, the line number information doesn't always end up this way.
4353 So we must verify that our purported end-of-prologue address is
4354 *within* the function, not at its start or end. */
4355 if (sal.line == 0
4356 || sal.end <= func_addr
4357 || func_end <= sal.end)
4358 {
4359 /* We don't have any good line number info, so use the minsym
4360 information, together with the architecture-specific prologue
4361 scanning code. */
4362 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4363
4364 return func_addr <= pc && pc < prologue_end;
4365 }
4366
4367 /* We have line number info, and it looks good. */
4368 return func_addr <= pc && pc < sal.end;
4369 }
4370
4371 /* Given PC at the function's start address, attempt to find the
4372 prologue end using SAL information. Return zero if the skip fails.
4373
4374 A non-optimized prologue traditionally has one SAL for the function
4375 and a second for the function body. A single line function has
4376 them both pointing at the same line.
4377
4378 An optimized prologue is similar but the prologue may contain
4379 instructions (SALs) from the instruction body. Need to skip those
4380 while not getting into the function body.
4381
4382 The functions end point and an increasing SAL line are used as
4383 indicators of the prologue's endpoint.
4384
4385 This code is based on the function refine_prologue_limit (versions
4386 found in both ia64 and ppc). */
4387
4388 CORE_ADDR
4389 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4390 {
4391 struct symtab_and_line prologue_sal;
4392 CORE_ADDR start_pc;
4393 CORE_ADDR end_pc;
4394 struct block *bl;
4395
4396 /* Get an initial range for the function. */
4397 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4398 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4399
4400 prologue_sal = find_pc_line (start_pc, 0);
4401 if (prologue_sal.line != 0)
4402 {
4403 /* For langauges other than assembly, treat two consecutive line
4404 entries at the same address as a zero-instruction prologue.
4405 The GNU assembler emits separate line notes for each instruction
4406 in a multi-instruction macro, but compilers generally will not
4407 do this. */
4408 if (prologue_sal.symtab->language != language_asm)
4409 {
4410 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4411 int idx = 0;
4412
4413 /* Skip any earlier lines, and any end-of-sequence marker
4414 from a previous function. */
4415 while (linetable->item[idx].pc != prologue_sal.pc
4416 || linetable->item[idx].line == 0)
4417 idx++;
4418
4419 if (idx+1 < linetable->nitems
4420 && linetable->item[idx+1].line != 0
4421 && linetable->item[idx+1].pc == start_pc)
4422 return start_pc;
4423 }
4424
4425 /* If there is only one sal that covers the entire function,
4426 then it is probably a single line function, like
4427 "foo(){}". */
4428 if (prologue_sal.end >= end_pc)
4429 return 0;
4430
4431 while (prologue_sal.end < end_pc)
4432 {
4433 struct symtab_and_line sal;
4434
4435 sal = find_pc_line (prologue_sal.end, 0);
4436 if (sal.line == 0)
4437 break;
4438 /* Assume that a consecutive SAL for the same (or larger)
4439 line mark the prologue -> body transition. */
4440 if (sal.line >= prologue_sal.line)
4441 break;
4442
4443 /* The line number is smaller. Check that it's from the
4444 same function, not something inlined. If it's inlined,
4445 then there is no point comparing the line numbers. */
4446 bl = block_for_pc (prologue_sal.end);
4447 while (bl)
4448 {
4449 if (block_inlined_p (bl))
4450 break;
4451 if (BLOCK_FUNCTION (bl))
4452 {
4453 bl = NULL;
4454 break;
4455 }
4456 bl = BLOCK_SUPERBLOCK (bl);
4457 }
4458 if (bl != NULL)
4459 break;
4460
4461 /* The case in which compiler's optimizer/scheduler has
4462 moved instructions into the prologue. We look ahead in
4463 the function looking for address ranges whose
4464 corresponding line number is less the first one that we
4465 found for the function. This is more conservative then
4466 refine_prologue_limit which scans a large number of SALs
4467 looking for any in the prologue */
4468 prologue_sal = sal;
4469 }
4470 }
4471
4472 if (prologue_sal.end < end_pc)
4473 /* Return the end of this line, or zero if we could not find a
4474 line. */
4475 return prologue_sal.end;
4476 else
4477 /* Don't return END_PC, which is past the end of the function. */
4478 return prologue_sal.pc;
4479 }
4480 \f
4481 struct symtabs_and_lines
4482 decode_line_spec (char *string, int funfirstline)
4483 {
4484 struct symtabs_and_lines sals;
4485 struct symtab_and_line cursal;
4486
4487 if (string == 0)
4488 error (_("Empty line specification."));
4489
4490 /* We use whatever is set as the current source line. We do not try
4491 and get a default or it will recursively call us! */
4492 cursal = get_current_source_symtab_and_line ();
4493
4494 sals = decode_line_1 (&string, funfirstline,
4495 cursal.symtab, cursal.line,
4496 (char ***) NULL, NULL);
4497
4498 if (*string)
4499 error (_("Junk at end of line specification: %s"), string);
4500 return sals;
4501 }
4502
4503 /* Track MAIN */
4504 static char *name_of_main;
4505
4506 void
4507 set_main_name (const char *name)
4508 {
4509 if (name_of_main != NULL)
4510 {
4511 xfree (name_of_main);
4512 name_of_main = NULL;
4513 }
4514 if (name != NULL)
4515 {
4516 name_of_main = xstrdup (name);
4517 }
4518 }
4519
4520 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4521 accordingly. */
4522
4523 static void
4524 find_main_name (void)
4525 {
4526 const char *new_main_name;
4527
4528 /* Try to see if the main procedure is in Ada. */
4529 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4530 be to add a new method in the language vector, and call this
4531 method for each language until one of them returns a non-empty
4532 name. This would allow us to remove this hard-coded call to
4533 an Ada function. It is not clear that this is a better approach
4534 at this point, because all methods need to be written in a way
4535 such that false positives never be returned. For instance, it is
4536 important that a method does not return a wrong name for the main
4537 procedure if the main procedure is actually written in a different
4538 language. It is easy to guaranty this with Ada, since we use a
4539 special symbol generated only when the main in Ada to find the name
4540 of the main procedure. It is difficult however to see how this can
4541 be guarantied for languages such as C, for instance. This suggests
4542 that order of call for these methods becomes important, which means
4543 a more complicated approach. */
4544 new_main_name = ada_main_name ();
4545 if (new_main_name != NULL)
4546 {
4547 set_main_name (new_main_name);
4548 return;
4549 }
4550
4551 new_main_name = pascal_main_name ();
4552 if (new_main_name != NULL)
4553 {
4554 set_main_name (new_main_name);
4555 return;
4556 }
4557
4558 /* The languages above didn't identify the name of the main procedure.
4559 Fallback to "main". */
4560 set_main_name ("main");
4561 }
4562
4563 char *
4564 main_name (void)
4565 {
4566 if (name_of_main == NULL)
4567 find_main_name ();
4568
4569 return name_of_main;
4570 }
4571
4572 /* Handle ``executable_changed'' events for the symtab module. */
4573
4574 static void
4575 symtab_observer_executable_changed (void)
4576 {
4577 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4578 set_main_name (NULL);
4579 }
4580
4581 /* Helper to expand_line_sal below. Appends new sal to SAL,
4582 initializing it from SYMTAB, LINENO and PC. */
4583 static void
4584 append_expanded_sal (struct symtabs_and_lines *sal,
4585 struct program_space *pspace,
4586 struct symtab *symtab,
4587 int lineno, CORE_ADDR pc)
4588 {
4589 sal->sals = xrealloc (sal->sals,
4590 sizeof (sal->sals[0])
4591 * (sal->nelts + 1));
4592 init_sal (sal->sals + sal->nelts);
4593 sal->sals[sal->nelts].pspace = pspace;
4594 sal->sals[sal->nelts].symtab = symtab;
4595 sal->sals[sal->nelts].section = NULL;
4596 sal->sals[sal->nelts].end = 0;
4597 sal->sals[sal->nelts].line = lineno;
4598 sal->sals[sal->nelts].pc = pc;
4599 ++sal->nelts;
4600 }
4601
4602 /* Helper to expand_line_sal below. Search in the symtabs for any
4603 linetable entry that exactly matches FULLNAME and LINENO and append
4604 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4605 use FILENAME and LINENO instead. If there is at least one match,
4606 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4607 and BEST_SYMTAB. */
4608
4609 static int
4610 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4611 struct symtabs_and_lines *ret,
4612 struct linetable_entry **best_item,
4613 struct symtab **best_symtab)
4614 {
4615 struct program_space *pspace;
4616 struct objfile *objfile;
4617 struct symtab *symtab;
4618 int exact = 0;
4619 int j;
4620 *best_item = 0;
4621 *best_symtab = 0;
4622
4623 ALL_PSPACES (pspace)
4624 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4625 {
4626 if (FILENAME_CMP (filename, symtab->filename) == 0)
4627 {
4628 struct linetable *l;
4629 int len;
4630
4631 if (fullname != NULL
4632 && symtab_to_fullname (symtab) != NULL
4633 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4634 continue;
4635 l = LINETABLE (symtab);
4636 if (!l)
4637 continue;
4638 len = l->nitems;
4639
4640 for (j = 0; j < len; j++)
4641 {
4642 struct linetable_entry *item = &(l->item[j]);
4643
4644 if (item->line == lineno)
4645 {
4646 exact = 1;
4647 append_expanded_sal (ret, objfile->pspace,
4648 symtab, lineno, item->pc);
4649 }
4650 else if (!exact && item->line > lineno
4651 && (*best_item == NULL
4652 || item->line < (*best_item)->line))
4653 {
4654 *best_item = item;
4655 *best_symtab = symtab;
4656 }
4657 }
4658 }
4659 }
4660 return exact;
4661 }
4662
4663 /* Compute a set of all sals in all program spaces that correspond to
4664 same file and line as SAL and return those. If there are several
4665 sals that belong to the same block, only one sal for the block is
4666 included in results. */
4667
4668 struct symtabs_and_lines
4669 expand_line_sal (struct symtab_and_line sal)
4670 {
4671 struct symtabs_and_lines ret;
4672 int i, j;
4673 struct objfile *objfile;
4674 int lineno;
4675 int deleted = 0;
4676 struct block **blocks = NULL;
4677 int *filter;
4678 struct cleanup *old_chain;
4679
4680 ret.nelts = 0;
4681 ret.sals = NULL;
4682
4683 /* Only expand sals that represent file.c:line. */
4684 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4685 {
4686 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4687 ret.sals[0] = sal;
4688 ret.nelts = 1;
4689 return ret;
4690 }
4691 else
4692 {
4693 struct program_space *pspace;
4694 struct linetable_entry *best_item = 0;
4695 struct symtab *best_symtab = 0;
4696 int exact = 0;
4697 char *match_filename;
4698
4699 lineno = sal.line;
4700 match_filename = sal.symtab->filename;
4701
4702 /* We need to find all symtabs for a file which name
4703 is described by sal. We cannot just directly
4704 iterate over symtabs, since a symtab might not be
4705 yet created. We also cannot iterate over psymtabs,
4706 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4707 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4708 corresponding to an included file. Therefore, we do
4709 first pass over psymtabs, reading in those with
4710 the right name. Then, we iterate over symtabs, knowing
4711 that all symtabs we're interested in are loaded. */
4712
4713 old_chain = save_current_program_space ();
4714 ALL_PSPACES (pspace)
4715 {
4716 set_current_program_space (pspace);
4717 ALL_PSPACE_OBJFILES (pspace, objfile)
4718 {
4719 if (objfile->sf)
4720 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4721 sal.symtab->filename);
4722 }
4723 }
4724 do_cleanups (old_chain);
4725
4726 /* Now search the symtab for exact matches and append them. If
4727 none is found, append the best_item and all its exact
4728 matches. */
4729 symtab_to_fullname (sal.symtab);
4730 exact = append_exact_match_to_sals (sal.symtab->filename,
4731 sal.symtab->fullname, lineno,
4732 &ret, &best_item, &best_symtab);
4733 if (!exact && best_item)
4734 append_exact_match_to_sals (best_symtab->filename,
4735 best_symtab->fullname, best_item->line,
4736 &ret, &best_item, &best_symtab);
4737 }
4738
4739 /* For optimized code, compiler can scatter one source line accross
4740 disjoint ranges of PC values, even when no duplicate functions
4741 or inline functions are involved. For example, 'for (;;)' inside
4742 non-template non-inline non-ctor-or-dtor function can result
4743 in two PC ranges. In this case, we don't want to set breakpoint
4744 on first PC of each range. To filter such cases, we use containing
4745 blocks -- for each PC found above we see if there are other PCs
4746 that are in the same block. If yes, the other PCs are filtered out. */
4747
4748 old_chain = save_current_program_space ();
4749 filter = alloca (ret.nelts * sizeof (int));
4750 blocks = alloca (ret.nelts * sizeof (struct block *));
4751 for (i = 0; i < ret.nelts; ++i)
4752 {
4753 set_current_program_space (ret.sals[i].pspace);
4754
4755 filter[i] = 1;
4756 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4757
4758 }
4759 do_cleanups (old_chain);
4760
4761 for (i = 0; i < ret.nelts; ++i)
4762 if (blocks[i] != NULL)
4763 for (j = i+1; j < ret.nelts; ++j)
4764 if (blocks[j] == blocks[i])
4765 {
4766 filter[j] = 0;
4767 ++deleted;
4768 break;
4769 }
4770
4771 {
4772 struct symtab_and_line *final =
4773 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4774
4775 for (i = 0, j = 0; i < ret.nelts; ++i)
4776 if (filter[i])
4777 final[j++] = ret.sals[i];
4778
4779 ret.nelts -= deleted;
4780 xfree (ret.sals);
4781 ret.sals = final;
4782 }
4783
4784 return ret;
4785 }
4786
4787 /* Return 1 if the supplied producer string matches the ARM RealView
4788 compiler (armcc). */
4789
4790 int
4791 producer_is_realview (const char *producer)
4792 {
4793 static const char *const arm_idents[] = {
4794 "ARM C Compiler, ADS",
4795 "Thumb C Compiler, ADS",
4796 "ARM C++ Compiler, ADS",
4797 "Thumb C++ Compiler, ADS",
4798 "ARM/Thumb C/C++ Compiler, RVCT",
4799 "ARM C/C++ Compiler, RVCT"
4800 };
4801 int i;
4802
4803 if (producer == NULL)
4804 return 0;
4805
4806 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4807 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4808 return 1;
4809
4810 return 0;
4811 }
4812
4813 void
4814 _initialize_symtab (void)
4815 {
4816 add_info ("variables", variables_info, _("\
4817 All global and static variable names, or those matching REGEXP."));
4818 if (dbx_commands)
4819 add_com ("whereis", class_info, variables_info, _("\
4820 All global and static variable names, or those matching REGEXP."));
4821
4822 add_info ("functions", functions_info,
4823 _("All function names, or those matching REGEXP."));
4824
4825 /* FIXME: This command has at least the following problems:
4826 1. It prints builtin types (in a very strange and confusing fashion).
4827 2. It doesn't print right, e.g. with
4828 typedef struct foo *FOO
4829 type_print prints "FOO" when we want to make it (in this situation)
4830 print "struct foo *".
4831 I also think "ptype" or "whatis" is more likely to be useful (but if
4832 there is much disagreement "info types" can be fixed). */
4833 add_info ("types", types_info,
4834 _("All type names, or those matching REGEXP."));
4835
4836 add_info ("sources", sources_info,
4837 _("Source files in the program."));
4838
4839 add_com ("rbreak", class_breakpoint, rbreak_command,
4840 _("Set a breakpoint for all functions matching REGEXP."));
4841
4842 if (xdb_commands)
4843 {
4844 add_com ("lf", class_info, sources_info,
4845 _("Source files in the program"));
4846 add_com ("lg", class_info, variables_info, _("\
4847 All global and static variable names, or those matching REGEXP."));
4848 }
4849
4850 add_setshow_enum_cmd ("multiple-symbols", no_class,
4851 multiple_symbols_modes, &multiple_symbols_mode,
4852 _("\
4853 Set the debugger behavior when more than one symbol are possible matches\n\
4854 in an expression."), _("\
4855 Show how the debugger handles ambiguities in expressions."), _("\
4856 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4857 NULL, NULL, &setlist, &showlist);
4858
4859 observer_attach_executable_changed (symtab_observer_executable_changed);
4860 }
This page took 0.128969 seconds and 4 git commands to generate.