e64d0df88649ca5b179f52a3c65894a283535e49
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <string.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "parser-defs.h"
64
65 /* Prototypes for local functions */
66
67 static void rbreak_command (char *, int);
68
69 static void types_info (char *, int);
70
71 static void functions_info (char *, int);
72
73 static void variables_info (char *, int);
74
75 static void sources_info (char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct symbol *lookup_symbol_aux (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language,
83 struct field_of_this_result *is_a_field_of_this);
84
85 static
86 struct symbol *lookup_symbol_aux_local (const char *name,
87 const struct block *block,
88 const domain_enum domain,
89 enum language language);
90
91 static
92 struct symbol *lookup_symbol_aux_symtabs (int block_index,
93 const char *name,
94 const domain_enum domain);
95
96 static
97 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
98 int block_index,
99 const char *name,
100 const domain_enum domain);
101
102 void _initialize_symtab (void);
103
104 /* */
105
106 /* Program space key for finding name and language of "main". */
107
108 static const struct program_space_data *main_progspace_key;
109
110 /* Type of the data stored on the program space. */
111
112 struct main_info
113 {
114 /* Name of "main". */
115
116 char *name_of_main;
117
118 /* Language of "main". */
119
120 enum language language_of_main;
121 };
122
123 /* When non-zero, print debugging messages related to symtab creation. */
124 unsigned int symtab_create_debug = 0;
125
126 /* Non-zero if a file may be known by two different basenames.
127 This is the uncommon case, and significantly slows down gdb.
128 Default set to "off" to not slow down the common case. */
129 int basenames_may_differ = 0;
130
131 /* Allow the user to configure the debugger behavior with respect
132 to multiple-choice menus when more than one symbol matches during
133 a symbol lookup. */
134
135 const char multiple_symbols_ask[] = "ask";
136 const char multiple_symbols_all[] = "all";
137 const char multiple_symbols_cancel[] = "cancel";
138 static const char *const multiple_symbols_modes[] =
139 {
140 multiple_symbols_ask,
141 multiple_symbols_all,
142 multiple_symbols_cancel,
143 NULL
144 };
145 static const char *multiple_symbols_mode = multiple_symbols_all;
146
147 /* Read-only accessor to AUTO_SELECT_MODE. */
148
149 const char *
150 multiple_symbols_select_mode (void)
151 {
152 return multiple_symbols_mode;
153 }
154
155 /* Block in which the most recently searched-for symbol was found.
156 Might be better to make this a parameter to lookup_symbol and
157 value_of_this. */
158
159 const struct block *block_found;
160
161 /* Return the name of a domain_enum. */
162
163 const char *
164 domain_name (domain_enum e)
165 {
166 switch (e)
167 {
168 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
169 case VAR_DOMAIN: return "VAR_DOMAIN";
170 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
171 case LABEL_DOMAIN: return "LABEL_DOMAIN";
172 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
173 default: gdb_assert_not_reached ("bad domain_enum");
174 }
175 }
176
177 /* Return the name of a search_domain . */
178
179 const char *
180 search_domain_name (enum search_domain e)
181 {
182 switch (e)
183 {
184 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
185 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
186 case TYPES_DOMAIN: return "TYPES_DOMAIN";
187 case ALL_DOMAIN: return "ALL_DOMAIN";
188 default: gdb_assert_not_reached ("bad search_domain");
189 }
190 }
191
192 /* Set the primary field in SYMTAB. */
193
194 void
195 set_symtab_primary (struct symtab *symtab, int primary)
196 {
197 symtab->primary = primary;
198
199 if (symtab_create_debug && primary)
200 {
201 fprintf_unfiltered (gdb_stdlog,
202 "Created primary symtab %s for %s.\n",
203 host_address_to_string (symtab),
204 symtab_to_filename_for_display (symtab));
205 }
206 }
207
208 /* See whether FILENAME matches SEARCH_NAME using the rule that we
209 advertise to the user. (The manual's description of linespecs
210 describes what we advertise). Returns true if they match, false
211 otherwise. */
212
213 int
214 compare_filenames_for_search (const char *filename, const char *search_name)
215 {
216 int len = strlen (filename);
217 size_t search_len = strlen (search_name);
218
219 if (len < search_len)
220 return 0;
221
222 /* The tail of FILENAME must match. */
223 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
224 return 0;
225
226 /* Either the names must completely match, or the character
227 preceding the trailing SEARCH_NAME segment of FILENAME must be a
228 directory separator.
229
230 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
231 cannot match FILENAME "/path//dir/file.c" - as user has requested
232 absolute path. The sama applies for "c:\file.c" possibly
233 incorrectly hypothetically matching "d:\dir\c:\file.c".
234
235 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
236 compatible with SEARCH_NAME "file.c". In such case a compiler had
237 to put the "c:file.c" name into debug info. Such compatibility
238 works only on GDB built for DOS host. */
239 return (len == search_len
240 || (!IS_ABSOLUTE_PATH (search_name)
241 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
242 || (HAS_DRIVE_SPEC (filename)
243 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
244 }
245
246 /* Check for a symtab of a specific name by searching some symtabs.
247 This is a helper function for callbacks of iterate_over_symtabs.
248
249 If NAME is not absolute, then REAL_PATH is NULL
250 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
251
252 The return value, NAME, REAL_PATH, CALLBACK, and DATA
253 are identical to the `map_symtabs_matching_filename' method of
254 quick_symbol_functions.
255
256 FIRST and AFTER_LAST indicate the range of symtabs to search.
257 AFTER_LAST is one past the last symtab to search; NULL means to
258 search until the end of the list. */
259
260 int
261 iterate_over_some_symtabs (const char *name,
262 const char *real_path,
263 int (*callback) (struct symtab *symtab,
264 void *data),
265 void *data,
266 struct symtab *first,
267 struct symtab *after_last)
268 {
269 struct symtab *s = NULL;
270 const char* base_name = lbasename (name);
271
272 for (s = first; s != NULL && s != after_last; s = s->next)
273 {
274 if (compare_filenames_for_search (s->filename, name))
275 {
276 if (callback (s, data))
277 return 1;
278 continue;
279 }
280
281 /* Before we invoke realpath, which can get expensive when many
282 files are involved, do a quick comparison of the basenames. */
283 if (! basenames_may_differ
284 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
285 continue;
286
287 if (compare_filenames_for_search (symtab_to_fullname (s), name))
288 {
289 if (callback (s, data))
290 return 1;
291 continue;
292 }
293
294 /* If the user gave us an absolute path, try to find the file in
295 this symtab and use its absolute path. */
296 if (real_path != NULL)
297 {
298 const char *fullname = symtab_to_fullname (s);
299
300 gdb_assert (IS_ABSOLUTE_PATH (real_path));
301 gdb_assert (IS_ABSOLUTE_PATH (name));
302 if (FILENAME_CMP (real_path, fullname) == 0)
303 {
304 if (callback (s, data))
305 return 1;
306 continue;
307 }
308 }
309 }
310
311 return 0;
312 }
313
314 /* Check for a symtab of a specific name; first in symtabs, then in
315 psymtabs. *If* there is no '/' in the name, a match after a '/'
316 in the symtab filename will also work.
317
318 Calls CALLBACK with each symtab that is found and with the supplied
319 DATA. If CALLBACK returns true, the search stops. */
320
321 void
322 iterate_over_symtabs (const char *name,
323 int (*callback) (struct symtab *symtab,
324 void *data),
325 void *data)
326 {
327 struct objfile *objfile;
328 char *real_path = NULL;
329 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
330
331 /* Here we are interested in canonicalizing an absolute path, not
332 absolutizing a relative path. */
333 if (IS_ABSOLUTE_PATH (name))
334 {
335 real_path = gdb_realpath (name);
336 make_cleanup (xfree, real_path);
337 gdb_assert (IS_ABSOLUTE_PATH (real_path));
338 }
339
340 ALL_OBJFILES (objfile)
341 {
342 if (iterate_over_some_symtabs (name, real_path, callback, data,
343 objfile->symtabs, NULL))
344 {
345 do_cleanups (cleanups);
346 return;
347 }
348 }
349
350 /* Same search rules as above apply here, but now we look thru the
351 psymtabs. */
352
353 ALL_OBJFILES (objfile)
354 {
355 if (objfile->sf
356 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
357 name,
358 real_path,
359 callback,
360 data))
361 {
362 do_cleanups (cleanups);
363 return;
364 }
365 }
366
367 do_cleanups (cleanups);
368 }
369
370 /* The callback function used by lookup_symtab. */
371
372 static int
373 lookup_symtab_callback (struct symtab *symtab, void *data)
374 {
375 struct symtab **result_ptr = data;
376
377 *result_ptr = symtab;
378 return 1;
379 }
380
381 /* A wrapper for iterate_over_symtabs that returns the first matching
382 symtab, or NULL. */
383
384 struct symtab *
385 lookup_symtab (const char *name)
386 {
387 struct symtab *result = NULL;
388
389 iterate_over_symtabs (name, lookup_symtab_callback, &result);
390 return result;
391 }
392
393 \f
394 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
395 full method name, which consist of the class name (from T), the unadorned
396 method name from METHOD_ID, and the signature for the specific overload,
397 specified by SIGNATURE_ID. Note that this function is g++ specific. */
398
399 char *
400 gdb_mangle_name (struct type *type, int method_id, int signature_id)
401 {
402 int mangled_name_len;
403 char *mangled_name;
404 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
405 struct fn_field *method = &f[signature_id];
406 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
407 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
408 const char *newname = type_name_no_tag (type);
409
410 /* Does the form of physname indicate that it is the full mangled name
411 of a constructor (not just the args)? */
412 int is_full_physname_constructor;
413
414 int is_constructor;
415 int is_destructor = is_destructor_name (physname);
416 /* Need a new type prefix. */
417 char *const_prefix = method->is_const ? "C" : "";
418 char *volatile_prefix = method->is_volatile ? "V" : "";
419 char buf[20];
420 int len = (newname == NULL ? 0 : strlen (newname));
421
422 /* Nothing to do if physname already contains a fully mangled v3 abi name
423 or an operator name. */
424 if ((physname[0] == '_' && physname[1] == 'Z')
425 || is_operator_name (field_name))
426 return xstrdup (physname);
427
428 is_full_physname_constructor = is_constructor_name (physname);
429
430 is_constructor = is_full_physname_constructor
431 || (newname && strcmp (field_name, newname) == 0);
432
433 if (!is_destructor)
434 is_destructor = (strncmp (physname, "__dt", 4) == 0);
435
436 if (is_destructor || is_full_physname_constructor)
437 {
438 mangled_name = (char *) xmalloc (strlen (physname) + 1);
439 strcpy (mangled_name, physname);
440 return mangled_name;
441 }
442
443 if (len == 0)
444 {
445 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
446 }
447 else if (physname[0] == 't' || physname[0] == 'Q')
448 {
449 /* The physname for template and qualified methods already includes
450 the class name. */
451 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
452 newname = NULL;
453 len = 0;
454 }
455 else
456 {
457 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
458 volatile_prefix, len);
459 }
460 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
461 + strlen (buf) + len + strlen (physname) + 1);
462
463 mangled_name = (char *) xmalloc (mangled_name_len);
464 if (is_constructor)
465 mangled_name[0] = '\0';
466 else
467 strcpy (mangled_name, field_name);
468
469 strcat (mangled_name, buf);
470 /* If the class doesn't have a name, i.e. newname NULL, then we just
471 mangle it using 0 for the length of the class. Thus it gets mangled
472 as something starting with `::' rather than `classname::'. */
473 if (newname != NULL)
474 strcat (mangled_name, newname);
475
476 strcat (mangled_name, physname);
477 return (mangled_name);
478 }
479
480 /* Initialize the cplus_specific structure. 'cplus_specific' should
481 only be allocated for use with cplus symbols. */
482
483 static void
484 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
485 struct obstack *obstack)
486 {
487 /* A language_specific structure should not have been previously
488 initialized. */
489 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
490 gdb_assert (obstack != NULL);
491
492 gsymbol->language_specific.cplus_specific =
493 OBSTACK_ZALLOC (obstack, struct cplus_specific);
494 }
495
496 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
497 correctly allocated. For C++ symbols a cplus_specific struct is
498 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
499 OBJFILE can be NULL. */
500
501 void
502 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
503 const char *name,
504 struct obstack *obstack)
505 {
506 if (gsymbol->language == language_cplus)
507 {
508 if (gsymbol->language_specific.cplus_specific == NULL)
509 symbol_init_cplus_specific (gsymbol, obstack);
510
511 gsymbol->language_specific.cplus_specific->demangled_name = name;
512 }
513 else if (gsymbol->language == language_ada)
514 {
515 if (name == NULL)
516 {
517 gsymbol->ada_mangled = 0;
518 gsymbol->language_specific.obstack = obstack;
519 }
520 else
521 {
522 gsymbol->ada_mangled = 1;
523 gsymbol->language_specific.mangled_lang.demangled_name = name;
524 }
525 }
526 else
527 gsymbol->language_specific.mangled_lang.demangled_name = name;
528 }
529
530 /* Return the demangled name of GSYMBOL. */
531
532 const char *
533 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
534 {
535 if (gsymbol->language == language_cplus)
536 {
537 if (gsymbol->language_specific.cplus_specific != NULL)
538 return gsymbol->language_specific.cplus_specific->demangled_name;
539 else
540 return NULL;
541 }
542 else if (gsymbol->language == language_ada)
543 {
544 if (!gsymbol->ada_mangled)
545 return NULL;
546 /* Fall through. */
547 }
548
549 return gsymbol->language_specific.mangled_lang.demangled_name;
550 }
551
552 \f
553 /* Initialize the language dependent portion of a symbol
554 depending upon the language for the symbol. */
555
556 void
557 symbol_set_language (struct general_symbol_info *gsymbol,
558 enum language language,
559 struct obstack *obstack)
560 {
561 gsymbol->language = language;
562 if (gsymbol->language == language_d
563 || gsymbol->language == language_go
564 || gsymbol->language == language_java
565 || gsymbol->language == language_objc
566 || gsymbol->language == language_fortran)
567 {
568 symbol_set_demangled_name (gsymbol, NULL, obstack);
569 }
570 else if (gsymbol->language == language_ada)
571 {
572 gdb_assert (gsymbol->ada_mangled == 0);
573 gsymbol->language_specific.obstack = obstack;
574 }
575 else if (gsymbol->language == language_cplus)
576 gsymbol->language_specific.cplus_specific = NULL;
577 else
578 {
579 memset (&gsymbol->language_specific, 0,
580 sizeof (gsymbol->language_specific));
581 }
582 }
583
584 /* Functions to initialize a symbol's mangled name. */
585
586 /* Objects of this type are stored in the demangled name hash table. */
587 struct demangled_name_entry
588 {
589 const char *mangled;
590 char demangled[1];
591 };
592
593 /* Hash function for the demangled name hash. */
594
595 static hashval_t
596 hash_demangled_name_entry (const void *data)
597 {
598 const struct demangled_name_entry *e = data;
599
600 return htab_hash_string (e->mangled);
601 }
602
603 /* Equality function for the demangled name hash. */
604
605 static int
606 eq_demangled_name_entry (const void *a, const void *b)
607 {
608 const struct demangled_name_entry *da = a;
609 const struct demangled_name_entry *db = b;
610
611 return strcmp (da->mangled, db->mangled) == 0;
612 }
613
614 /* Create the hash table used for demangled names. Each hash entry is
615 a pair of strings; one for the mangled name and one for the demangled
616 name. The entry is hashed via just the mangled name. */
617
618 static void
619 create_demangled_names_hash (struct objfile *objfile)
620 {
621 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
622 The hash table code will round this up to the next prime number.
623 Choosing a much larger table size wastes memory, and saves only about
624 1% in symbol reading. */
625
626 objfile->per_bfd->demangled_names_hash = htab_create_alloc
627 (256, hash_demangled_name_entry, eq_demangled_name_entry,
628 NULL, xcalloc, xfree);
629 }
630
631 /* Try to determine the demangled name for a symbol, based on the
632 language of that symbol. If the language is set to language_auto,
633 it will attempt to find any demangling algorithm that works and
634 then set the language appropriately. The returned name is allocated
635 by the demangler and should be xfree'd. */
636
637 static char *
638 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
639 const char *mangled)
640 {
641 char *demangled = NULL;
642
643 if (gsymbol->language == language_unknown)
644 gsymbol->language = language_auto;
645
646 if (gsymbol->language == language_objc
647 || gsymbol->language == language_auto)
648 {
649 demangled =
650 objc_demangle (mangled, 0);
651 if (demangled != NULL)
652 {
653 gsymbol->language = language_objc;
654 return demangled;
655 }
656 }
657 if (gsymbol->language == language_cplus
658 || gsymbol->language == language_auto)
659 {
660 demangled =
661 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
662 if (demangled != NULL)
663 {
664 gsymbol->language = language_cplus;
665 return demangled;
666 }
667 }
668 if (gsymbol->language == language_java)
669 {
670 demangled =
671 gdb_demangle (mangled,
672 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
673 if (demangled != NULL)
674 {
675 gsymbol->language = language_java;
676 return demangled;
677 }
678 }
679 if (gsymbol->language == language_d
680 || gsymbol->language == language_auto)
681 {
682 demangled = d_demangle(mangled, 0);
683 if (demangled != NULL)
684 {
685 gsymbol->language = language_d;
686 return demangled;
687 }
688 }
689 /* FIXME(dje): Continually adding languages here is clumsy.
690 Better to just call la_demangle if !auto, and if auto then call
691 a utility routine that tries successive languages in turn and reports
692 which one it finds. I realize the la_demangle options may be different
693 for different languages but there's already a FIXME for that. */
694 if (gsymbol->language == language_go
695 || gsymbol->language == language_auto)
696 {
697 demangled = go_demangle (mangled, 0);
698 if (demangled != NULL)
699 {
700 gsymbol->language = language_go;
701 return demangled;
702 }
703 }
704
705 /* We could support `gsymbol->language == language_fortran' here to provide
706 module namespaces also for inferiors with only minimal symbol table (ELF
707 symbols). Just the mangling standard is not standardized across compilers
708 and there is no DW_AT_producer available for inferiors with only the ELF
709 symbols to check the mangling kind. */
710
711 /* Check for Ada symbols last. See comment below explaining why. */
712
713 if (gsymbol->language == language_auto)
714 {
715 const char *demangled = ada_decode (mangled);
716
717 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
718 {
719 /* Set the gsymbol language to Ada, but still return NULL.
720 Two reasons for that:
721
722 1. For Ada, we prefer computing the symbol's decoded name
723 on the fly rather than pre-compute it, in order to save
724 memory (Ada projects are typically very large).
725
726 2. There are some areas in the definition of the GNAT
727 encoding where, with a bit of bad luck, we might be able
728 to decode a non-Ada symbol, generating an incorrect
729 demangled name (Eg: names ending with "TB" for instance
730 are identified as task bodies and so stripped from
731 the decoded name returned).
732
733 Returning NULL, here, helps us get a little bit of
734 the best of both worlds. Because we're last, we should
735 not affect any of the other languages that were able to
736 demangle the symbol before us; we get to correctly tag
737 Ada symbols as such; and even if we incorrectly tagged
738 a non-Ada symbol, which should be rare, any routing
739 through the Ada language should be transparent (Ada
740 tries to behave much like C/C++ with non-Ada symbols). */
741 gsymbol->language = language_ada;
742 return NULL;
743 }
744 }
745
746 return NULL;
747 }
748
749 /* Set both the mangled and demangled (if any) names for GSYMBOL based
750 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
751 objfile's obstack; but if COPY_NAME is 0 and if NAME is
752 NUL-terminated, then this function assumes that NAME is already
753 correctly saved (either permanently or with a lifetime tied to the
754 objfile), and it will not be copied.
755
756 The hash table corresponding to OBJFILE is used, and the memory
757 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
758 so the pointer can be discarded after calling this function. */
759
760 /* We have to be careful when dealing with Java names: when we run
761 into a Java minimal symbol, we don't know it's a Java symbol, so it
762 gets demangled as a C++ name. This is unfortunate, but there's not
763 much we can do about it: but when demangling partial symbols and
764 regular symbols, we'd better not reuse the wrong demangled name.
765 (See PR gdb/1039.) We solve this by putting a distinctive prefix
766 on Java names when storing them in the hash table. */
767
768 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
769 don't mind the Java prefix so much: different languages have
770 different demangling requirements, so it's only natural that we
771 need to keep language data around in our demangling cache. But
772 it's not good that the minimal symbol has the wrong demangled name.
773 Unfortunately, I can't think of any easy solution to that
774 problem. */
775
776 #define JAVA_PREFIX "##JAVA$$"
777 #define JAVA_PREFIX_LEN 8
778
779 void
780 symbol_set_names (struct general_symbol_info *gsymbol,
781 const char *linkage_name, int len, int copy_name,
782 struct objfile *objfile)
783 {
784 struct demangled_name_entry **slot;
785 /* A 0-terminated copy of the linkage name. */
786 const char *linkage_name_copy;
787 /* A copy of the linkage name that might have a special Java prefix
788 added to it, for use when looking names up in the hash table. */
789 const char *lookup_name;
790 /* The length of lookup_name. */
791 int lookup_len;
792 struct demangled_name_entry entry;
793 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
794
795 if (gsymbol->language == language_ada)
796 {
797 /* In Ada, we do the symbol lookups using the mangled name, so
798 we can save some space by not storing the demangled name.
799
800 As a side note, we have also observed some overlap between
801 the C++ mangling and Ada mangling, similarly to what has
802 been observed with Java. Because we don't store the demangled
803 name with the symbol, we don't need to use the same trick
804 as Java. */
805 if (!copy_name)
806 gsymbol->name = linkage_name;
807 else
808 {
809 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
810
811 memcpy (name, linkage_name, len);
812 name[len] = '\0';
813 gsymbol->name = name;
814 }
815 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
816
817 return;
818 }
819
820 if (per_bfd->demangled_names_hash == NULL)
821 create_demangled_names_hash (objfile);
822
823 /* The stabs reader generally provides names that are not
824 NUL-terminated; most of the other readers don't do this, so we
825 can just use the given copy, unless we're in the Java case. */
826 if (gsymbol->language == language_java)
827 {
828 char *alloc_name;
829
830 lookup_len = len + JAVA_PREFIX_LEN;
831 alloc_name = alloca (lookup_len + 1);
832 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
833 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
834 alloc_name[lookup_len] = '\0';
835
836 lookup_name = alloc_name;
837 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
838 }
839 else if (linkage_name[len] != '\0')
840 {
841 char *alloc_name;
842
843 lookup_len = len;
844 alloc_name = alloca (lookup_len + 1);
845 memcpy (alloc_name, linkage_name, len);
846 alloc_name[lookup_len] = '\0';
847
848 lookup_name = alloc_name;
849 linkage_name_copy = alloc_name;
850 }
851 else
852 {
853 lookup_len = len;
854 lookup_name = linkage_name;
855 linkage_name_copy = linkage_name;
856 }
857
858 entry.mangled = lookup_name;
859 slot = ((struct demangled_name_entry **)
860 htab_find_slot (per_bfd->demangled_names_hash,
861 &entry, INSERT));
862
863 /* If this name is not in the hash table, add it. */
864 if (*slot == NULL
865 /* A C version of the symbol may have already snuck into the table.
866 This happens to, e.g., main.init (__go_init_main). Cope. */
867 || (gsymbol->language == language_go
868 && (*slot)->demangled[0] == '\0'))
869 {
870 char *demangled_name = symbol_find_demangled_name (gsymbol,
871 linkage_name_copy);
872 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
873
874 /* Suppose we have demangled_name==NULL, copy_name==0, and
875 lookup_name==linkage_name. In this case, we already have the
876 mangled name saved, and we don't have a demangled name. So,
877 you might think we could save a little space by not recording
878 this in the hash table at all.
879
880 It turns out that it is actually important to still save such
881 an entry in the hash table, because storing this name gives
882 us better bcache hit rates for partial symbols. */
883 if (!copy_name && lookup_name == linkage_name)
884 {
885 *slot = obstack_alloc (&per_bfd->storage_obstack,
886 offsetof (struct demangled_name_entry,
887 demangled)
888 + demangled_len + 1);
889 (*slot)->mangled = lookup_name;
890 }
891 else
892 {
893 char *mangled_ptr;
894
895 /* If we must copy the mangled name, put it directly after
896 the demangled name so we can have a single
897 allocation. */
898 *slot = obstack_alloc (&per_bfd->storage_obstack,
899 offsetof (struct demangled_name_entry,
900 demangled)
901 + lookup_len + demangled_len + 2);
902 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
903 strcpy (mangled_ptr, lookup_name);
904 (*slot)->mangled = mangled_ptr;
905 }
906
907 if (demangled_name != NULL)
908 {
909 strcpy ((*slot)->demangled, demangled_name);
910 xfree (demangled_name);
911 }
912 else
913 (*slot)->demangled[0] = '\0';
914 }
915
916 gsymbol->name = (*slot)->mangled + lookup_len - len;
917 if ((*slot)->demangled[0] != '\0')
918 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
919 &per_bfd->storage_obstack);
920 else
921 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
922 }
923
924 /* Return the source code name of a symbol. In languages where
925 demangling is necessary, this is the demangled name. */
926
927 const char *
928 symbol_natural_name (const struct general_symbol_info *gsymbol)
929 {
930 switch (gsymbol->language)
931 {
932 case language_cplus:
933 case language_d:
934 case language_go:
935 case language_java:
936 case language_objc:
937 case language_fortran:
938 if (symbol_get_demangled_name (gsymbol) != NULL)
939 return symbol_get_demangled_name (gsymbol);
940 break;
941 case language_ada:
942 return ada_decode_symbol (gsymbol);
943 default:
944 break;
945 }
946 return gsymbol->name;
947 }
948
949 /* Return the demangled name for a symbol based on the language for
950 that symbol. If no demangled name exists, return NULL. */
951
952 const char *
953 symbol_demangled_name (const struct general_symbol_info *gsymbol)
954 {
955 const char *dem_name = NULL;
956
957 switch (gsymbol->language)
958 {
959 case language_cplus:
960 case language_d:
961 case language_go:
962 case language_java:
963 case language_objc:
964 case language_fortran:
965 dem_name = symbol_get_demangled_name (gsymbol);
966 break;
967 case language_ada:
968 dem_name = ada_decode_symbol (gsymbol);
969 break;
970 default:
971 break;
972 }
973 return dem_name;
974 }
975
976 /* Return the search name of a symbol---generally the demangled or
977 linkage name of the symbol, depending on how it will be searched for.
978 If there is no distinct demangled name, then returns the same value
979 (same pointer) as SYMBOL_LINKAGE_NAME. */
980
981 const char *
982 symbol_search_name (const struct general_symbol_info *gsymbol)
983 {
984 if (gsymbol->language == language_ada)
985 return gsymbol->name;
986 else
987 return symbol_natural_name (gsymbol);
988 }
989
990 /* Initialize the structure fields to zero values. */
991
992 void
993 init_sal (struct symtab_and_line *sal)
994 {
995 memset (sal, 0, sizeof (*sal));
996 }
997 \f
998
999 /* Return 1 if the two sections are the same, or if they could
1000 plausibly be copies of each other, one in an original object
1001 file and another in a separated debug file. */
1002
1003 int
1004 matching_obj_sections (struct obj_section *obj_first,
1005 struct obj_section *obj_second)
1006 {
1007 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1008 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1009 struct objfile *obj;
1010
1011 /* If they're the same section, then they match. */
1012 if (first == second)
1013 return 1;
1014
1015 /* If either is NULL, give up. */
1016 if (first == NULL || second == NULL)
1017 return 0;
1018
1019 /* This doesn't apply to absolute symbols. */
1020 if (first->owner == NULL || second->owner == NULL)
1021 return 0;
1022
1023 /* If they're in the same object file, they must be different sections. */
1024 if (first->owner == second->owner)
1025 return 0;
1026
1027 /* Check whether the two sections are potentially corresponding. They must
1028 have the same size, address, and name. We can't compare section indexes,
1029 which would be more reliable, because some sections may have been
1030 stripped. */
1031 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1032 return 0;
1033
1034 /* In-memory addresses may start at a different offset, relativize them. */
1035 if (bfd_get_section_vma (first->owner, first)
1036 - bfd_get_start_address (first->owner)
1037 != bfd_get_section_vma (second->owner, second)
1038 - bfd_get_start_address (second->owner))
1039 return 0;
1040
1041 if (bfd_get_section_name (first->owner, first) == NULL
1042 || bfd_get_section_name (second->owner, second) == NULL
1043 || strcmp (bfd_get_section_name (first->owner, first),
1044 bfd_get_section_name (second->owner, second)) != 0)
1045 return 0;
1046
1047 /* Otherwise check that they are in corresponding objfiles. */
1048
1049 ALL_OBJFILES (obj)
1050 if (obj->obfd == first->owner)
1051 break;
1052 gdb_assert (obj != NULL);
1053
1054 if (obj->separate_debug_objfile != NULL
1055 && obj->separate_debug_objfile->obfd == second->owner)
1056 return 1;
1057 if (obj->separate_debug_objfile_backlink != NULL
1058 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1059 return 1;
1060
1061 return 0;
1062 }
1063
1064 struct symtab *
1065 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1066 {
1067 struct objfile *objfile;
1068 struct bound_minimal_symbol msymbol;
1069
1070 /* If we know that this is not a text address, return failure. This is
1071 necessary because we loop based on texthigh and textlow, which do
1072 not include the data ranges. */
1073 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1074 if (msymbol.minsym
1075 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1076 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1077 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1078 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1079 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1080 return NULL;
1081
1082 ALL_OBJFILES (objfile)
1083 {
1084 struct symtab *result = NULL;
1085
1086 if (objfile->sf)
1087 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1088 pc, section, 0);
1089 if (result)
1090 return result;
1091 }
1092
1093 return NULL;
1094 }
1095 \f
1096 /* Debug symbols usually don't have section information. We need to dig that
1097 out of the minimal symbols and stash that in the debug symbol. */
1098
1099 void
1100 fixup_section (struct general_symbol_info *ginfo,
1101 CORE_ADDR addr, struct objfile *objfile)
1102 {
1103 struct minimal_symbol *msym;
1104
1105 /* First, check whether a minimal symbol with the same name exists
1106 and points to the same address. The address check is required
1107 e.g. on PowerPC64, where the minimal symbol for a function will
1108 point to the function descriptor, while the debug symbol will
1109 point to the actual function code. */
1110 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1111 if (msym)
1112 ginfo->section = MSYMBOL_SECTION (msym);
1113 else
1114 {
1115 /* Static, function-local variables do appear in the linker
1116 (minimal) symbols, but are frequently given names that won't
1117 be found via lookup_minimal_symbol(). E.g., it has been
1118 observed in frv-uclinux (ELF) executables that a static,
1119 function-local variable named "foo" might appear in the
1120 linker symbols as "foo.6" or "foo.3". Thus, there is no
1121 point in attempting to extend the lookup-by-name mechanism to
1122 handle this case due to the fact that there can be multiple
1123 names.
1124
1125 So, instead, search the section table when lookup by name has
1126 failed. The ``addr'' and ``endaddr'' fields may have already
1127 been relocated. If so, the relocation offset (i.e. the
1128 ANOFFSET value) needs to be subtracted from these values when
1129 performing the comparison. We unconditionally subtract it,
1130 because, when no relocation has been performed, the ANOFFSET
1131 value will simply be zero.
1132
1133 The address of the symbol whose section we're fixing up HAS
1134 NOT BEEN adjusted (relocated) yet. It can't have been since
1135 the section isn't yet known and knowing the section is
1136 necessary in order to add the correct relocation value. In
1137 other words, we wouldn't even be in this function (attempting
1138 to compute the section) if it were already known.
1139
1140 Note that it is possible to search the minimal symbols
1141 (subtracting the relocation value if necessary) to find the
1142 matching minimal symbol, but this is overkill and much less
1143 efficient. It is not necessary to find the matching minimal
1144 symbol, only its section.
1145
1146 Note that this technique (of doing a section table search)
1147 can fail when unrelocated section addresses overlap. For
1148 this reason, we still attempt a lookup by name prior to doing
1149 a search of the section table. */
1150
1151 struct obj_section *s;
1152 int fallback = -1;
1153
1154 ALL_OBJFILE_OSECTIONS (objfile, s)
1155 {
1156 int idx = s - objfile->sections;
1157 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1158
1159 if (fallback == -1)
1160 fallback = idx;
1161
1162 if (obj_section_addr (s) - offset <= addr
1163 && addr < obj_section_endaddr (s) - offset)
1164 {
1165 ginfo->section = idx;
1166 return;
1167 }
1168 }
1169
1170 /* If we didn't find the section, assume it is in the first
1171 section. If there is no allocated section, then it hardly
1172 matters what we pick, so just pick zero. */
1173 if (fallback == -1)
1174 ginfo->section = 0;
1175 else
1176 ginfo->section = fallback;
1177 }
1178 }
1179
1180 struct symbol *
1181 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1182 {
1183 CORE_ADDR addr;
1184
1185 if (!sym)
1186 return NULL;
1187
1188 /* We either have an OBJFILE, or we can get at it from the sym's
1189 symtab. Anything else is a bug. */
1190 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1191
1192 if (objfile == NULL)
1193 objfile = SYMBOL_SYMTAB (sym)->objfile;
1194
1195 if (SYMBOL_OBJ_SECTION (objfile, sym))
1196 return sym;
1197
1198 /* We should have an objfile by now. */
1199 gdb_assert (objfile);
1200
1201 switch (SYMBOL_CLASS (sym))
1202 {
1203 case LOC_STATIC:
1204 case LOC_LABEL:
1205 addr = SYMBOL_VALUE_ADDRESS (sym);
1206 break;
1207 case LOC_BLOCK:
1208 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1209 break;
1210
1211 default:
1212 /* Nothing else will be listed in the minsyms -- no use looking
1213 it up. */
1214 return sym;
1215 }
1216
1217 fixup_section (&sym->ginfo, addr, objfile);
1218
1219 return sym;
1220 }
1221
1222 /* Compute the demangled form of NAME as used by the various symbol
1223 lookup functions. The result is stored in *RESULT_NAME. Returns a
1224 cleanup which can be used to clean up the result.
1225
1226 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1227 Normally, Ada symbol lookups are performed using the encoded name
1228 rather than the demangled name, and so it might seem to make sense
1229 for this function to return an encoded version of NAME.
1230 Unfortunately, we cannot do this, because this function is used in
1231 circumstances where it is not appropriate to try to encode NAME.
1232 For instance, when displaying the frame info, we demangle the name
1233 of each parameter, and then perform a symbol lookup inside our
1234 function using that demangled name. In Ada, certain functions
1235 have internally-generated parameters whose name contain uppercase
1236 characters. Encoding those name would result in those uppercase
1237 characters to become lowercase, and thus cause the symbol lookup
1238 to fail. */
1239
1240 struct cleanup *
1241 demangle_for_lookup (const char *name, enum language lang,
1242 const char **result_name)
1243 {
1244 char *demangled_name = NULL;
1245 const char *modified_name = NULL;
1246 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1247
1248 modified_name = name;
1249
1250 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1251 lookup, so we can always binary search. */
1252 if (lang == language_cplus)
1253 {
1254 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1255 if (demangled_name)
1256 {
1257 modified_name = demangled_name;
1258 make_cleanup (xfree, demangled_name);
1259 }
1260 else
1261 {
1262 /* If we were given a non-mangled name, canonicalize it
1263 according to the language (so far only for C++). */
1264 demangled_name = cp_canonicalize_string (name);
1265 if (demangled_name)
1266 {
1267 modified_name = demangled_name;
1268 make_cleanup (xfree, demangled_name);
1269 }
1270 }
1271 }
1272 else if (lang == language_java)
1273 {
1274 demangled_name = gdb_demangle (name,
1275 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1276 if (demangled_name)
1277 {
1278 modified_name = demangled_name;
1279 make_cleanup (xfree, demangled_name);
1280 }
1281 }
1282 else if (lang == language_d)
1283 {
1284 demangled_name = d_demangle (name, 0);
1285 if (demangled_name)
1286 {
1287 modified_name = demangled_name;
1288 make_cleanup (xfree, demangled_name);
1289 }
1290 }
1291 else if (lang == language_go)
1292 {
1293 demangled_name = go_demangle (name, 0);
1294 if (demangled_name)
1295 {
1296 modified_name = demangled_name;
1297 make_cleanup (xfree, demangled_name);
1298 }
1299 }
1300
1301 *result_name = modified_name;
1302 return cleanup;
1303 }
1304
1305 /* Find the definition for a specified symbol name NAME
1306 in domain DOMAIN, visible from lexical block BLOCK.
1307 Returns the struct symbol pointer, or zero if no symbol is found.
1308 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1309 NAME is a field of the current implied argument `this'. If so set
1310 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1311 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1312 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1313
1314 /* This function (or rather its subordinates) have a bunch of loops and
1315 it would seem to be attractive to put in some QUIT's (though I'm not really
1316 sure whether it can run long enough to be really important). But there
1317 are a few calls for which it would appear to be bad news to quit
1318 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1319 that there is C++ code below which can error(), but that probably
1320 doesn't affect these calls since they are looking for a known
1321 variable and thus can probably assume it will never hit the C++
1322 code). */
1323
1324 struct symbol *
1325 lookup_symbol_in_language (const char *name, const struct block *block,
1326 const domain_enum domain, enum language lang,
1327 struct field_of_this_result *is_a_field_of_this)
1328 {
1329 const char *modified_name;
1330 struct symbol *returnval;
1331 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1332
1333 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1334 is_a_field_of_this);
1335 do_cleanups (cleanup);
1336
1337 return returnval;
1338 }
1339
1340 /* Behave like lookup_symbol_in_language, but performed with the
1341 current language. */
1342
1343 struct symbol *
1344 lookup_symbol (const char *name, const struct block *block,
1345 domain_enum domain,
1346 struct field_of_this_result *is_a_field_of_this)
1347 {
1348 return lookup_symbol_in_language (name, block, domain,
1349 current_language->la_language,
1350 is_a_field_of_this);
1351 }
1352
1353 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1354 found, or NULL if not found. */
1355
1356 struct symbol *
1357 lookup_language_this (const struct language_defn *lang,
1358 const struct block *block)
1359 {
1360 if (lang->la_name_of_this == NULL || block == NULL)
1361 return NULL;
1362
1363 while (block)
1364 {
1365 struct symbol *sym;
1366
1367 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1368 if (sym != NULL)
1369 {
1370 block_found = block;
1371 return sym;
1372 }
1373 if (BLOCK_FUNCTION (block))
1374 break;
1375 block = BLOCK_SUPERBLOCK (block);
1376 }
1377
1378 return NULL;
1379 }
1380
1381 /* Given TYPE, a structure/union,
1382 return 1 if the component named NAME from the ultimate target
1383 structure/union is defined, otherwise, return 0. */
1384
1385 static int
1386 check_field (struct type *type, const char *name,
1387 struct field_of_this_result *is_a_field_of_this)
1388 {
1389 int i;
1390
1391 /* The type may be a stub. */
1392 CHECK_TYPEDEF (type);
1393
1394 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1395 {
1396 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1397
1398 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1399 {
1400 is_a_field_of_this->type = type;
1401 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1402 return 1;
1403 }
1404 }
1405
1406 /* C++: If it was not found as a data field, then try to return it
1407 as a pointer to a method. */
1408
1409 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1410 {
1411 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1412 {
1413 is_a_field_of_this->type = type;
1414 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1415 return 1;
1416 }
1417 }
1418
1419 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1420 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1421 return 1;
1422
1423 return 0;
1424 }
1425
1426 /* Behave like lookup_symbol except that NAME is the natural name
1427 (e.g., demangled name) of the symbol that we're looking for. */
1428
1429 static struct symbol *
1430 lookup_symbol_aux (const char *name, const struct block *block,
1431 const domain_enum domain, enum language language,
1432 struct field_of_this_result *is_a_field_of_this)
1433 {
1434 struct symbol *sym;
1435 const struct language_defn *langdef;
1436
1437 /* Make sure we do something sensible with is_a_field_of_this, since
1438 the callers that set this parameter to some non-null value will
1439 certainly use it later. If we don't set it, the contents of
1440 is_a_field_of_this are undefined. */
1441 if (is_a_field_of_this != NULL)
1442 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1443
1444 /* Search specified block and its superiors. Don't search
1445 STATIC_BLOCK or GLOBAL_BLOCK. */
1446
1447 sym = lookup_symbol_aux_local (name, block, domain, language);
1448 if (sym != NULL)
1449 return sym;
1450
1451 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1452 check to see if NAME is a field of `this'. */
1453
1454 langdef = language_def (language);
1455
1456 /* Don't do this check if we are searching for a struct. It will
1457 not be found by check_field, but will be found by other
1458 means. */
1459 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1460 {
1461 struct symbol *sym = lookup_language_this (langdef, block);
1462
1463 if (sym)
1464 {
1465 struct type *t = sym->type;
1466
1467 /* I'm not really sure that type of this can ever
1468 be typedefed; just be safe. */
1469 CHECK_TYPEDEF (t);
1470 if (TYPE_CODE (t) == TYPE_CODE_PTR
1471 || TYPE_CODE (t) == TYPE_CODE_REF)
1472 t = TYPE_TARGET_TYPE (t);
1473
1474 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1475 && TYPE_CODE (t) != TYPE_CODE_UNION)
1476 error (_("Internal error: `%s' is not an aggregate"),
1477 langdef->la_name_of_this);
1478
1479 if (check_field (t, name, is_a_field_of_this))
1480 return NULL;
1481 }
1482 }
1483
1484 /* Now do whatever is appropriate for LANGUAGE to look
1485 up static and global variables. */
1486
1487 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1488 if (sym != NULL)
1489 return sym;
1490
1491 /* Now search all static file-level symbols. Not strictly correct,
1492 but more useful than an error. */
1493
1494 return lookup_static_symbol_aux (name, domain);
1495 }
1496
1497 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1498 first, then check the psymtabs. If a psymtab indicates the existence of the
1499 desired name as a file-level static, then do psymtab-to-symtab conversion on
1500 the fly and return the found symbol. */
1501
1502 struct symbol *
1503 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1504 {
1505 struct objfile *objfile;
1506 struct symbol *sym;
1507
1508 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1509 if (sym != NULL)
1510 return sym;
1511
1512 ALL_OBJFILES (objfile)
1513 {
1514 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1515 if (sym != NULL)
1516 return sym;
1517 }
1518
1519 return NULL;
1520 }
1521
1522 /* Check to see if the symbol is defined in BLOCK or its superiors.
1523 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1524
1525 static struct symbol *
1526 lookup_symbol_aux_local (const char *name, const struct block *block,
1527 const domain_enum domain,
1528 enum language language)
1529 {
1530 struct symbol *sym;
1531 const struct block *static_block = block_static_block (block);
1532 const char *scope = block_scope (block);
1533
1534 /* Check if either no block is specified or it's a global block. */
1535
1536 if (static_block == NULL)
1537 return NULL;
1538
1539 while (block != static_block)
1540 {
1541 sym = lookup_symbol_aux_block (name, block, domain);
1542 if (sym != NULL)
1543 return sym;
1544
1545 if (language == language_cplus || language == language_fortran)
1546 {
1547 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1548 domain);
1549 if (sym != NULL)
1550 return sym;
1551 }
1552
1553 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1554 break;
1555 block = BLOCK_SUPERBLOCK (block);
1556 }
1557
1558 /* We've reached the edge of the function without finding a result. */
1559
1560 return NULL;
1561 }
1562
1563 /* Look up OBJFILE to BLOCK. */
1564
1565 struct objfile *
1566 lookup_objfile_from_block (const struct block *block)
1567 {
1568 struct objfile *obj;
1569 struct symtab *s;
1570
1571 if (block == NULL)
1572 return NULL;
1573
1574 block = block_global_block (block);
1575 /* Go through SYMTABS. */
1576 ALL_SYMTABS (obj, s)
1577 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1578 {
1579 if (obj->separate_debug_objfile_backlink)
1580 obj = obj->separate_debug_objfile_backlink;
1581
1582 return obj;
1583 }
1584
1585 return NULL;
1586 }
1587
1588 /* Look up a symbol in a block; if found, fixup the symbol, and set
1589 block_found appropriately. */
1590
1591 struct symbol *
1592 lookup_symbol_aux_block (const char *name, const struct block *block,
1593 const domain_enum domain)
1594 {
1595 struct symbol *sym;
1596
1597 sym = lookup_block_symbol (block, name, domain);
1598 if (sym)
1599 {
1600 block_found = block;
1601 return fixup_symbol_section (sym, NULL);
1602 }
1603
1604 return NULL;
1605 }
1606
1607 /* Check all global symbols in OBJFILE in symtabs and
1608 psymtabs. */
1609
1610 struct symbol *
1611 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1612 const char *name,
1613 const domain_enum domain)
1614 {
1615 const struct objfile *objfile;
1616 struct symbol *sym;
1617 const struct blockvector *bv;
1618 const struct block *block;
1619 struct symtab *s;
1620
1621 for (objfile = main_objfile;
1622 objfile;
1623 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1624 {
1625 /* Go through symtabs. */
1626 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1627 {
1628 bv = BLOCKVECTOR (s);
1629 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1630 sym = lookup_block_symbol (block, name, domain);
1631 if (sym)
1632 {
1633 block_found = block;
1634 return fixup_symbol_section (sym, (struct objfile *)objfile);
1635 }
1636 }
1637
1638 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1639 name, domain);
1640 if (sym)
1641 return sym;
1642 }
1643
1644 return NULL;
1645 }
1646
1647 /* Check to see if the symbol is defined in one of the OBJFILE's
1648 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1649 depending on whether or not we want to search global symbols or
1650 static symbols. */
1651
1652 static struct symbol *
1653 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1654 const char *name, const domain_enum domain)
1655 {
1656 struct symbol *sym = NULL;
1657 const struct blockvector *bv;
1658 const struct block *block;
1659 struct symtab *s;
1660
1661 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1662 {
1663 bv = BLOCKVECTOR (s);
1664 block = BLOCKVECTOR_BLOCK (bv, block_index);
1665 sym = lookup_block_symbol (block, name, domain);
1666 if (sym)
1667 {
1668 block_found = block;
1669 return fixup_symbol_section (sym, objfile);
1670 }
1671 }
1672
1673 return NULL;
1674 }
1675
1676 /* Same as lookup_symbol_aux_objfile, except that it searches all
1677 objfiles. Return the first match found. */
1678
1679 static struct symbol *
1680 lookup_symbol_aux_symtabs (int block_index, const char *name,
1681 const domain_enum domain)
1682 {
1683 struct symbol *sym;
1684 struct objfile *objfile;
1685
1686 ALL_OBJFILES (objfile)
1687 {
1688 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1689 if (sym)
1690 return sym;
1691 }
1692
1693 return NULL;
1694 }
1695
1696 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1697 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1698 and all related objfiles. */
1699
1700 static struct symbol *
1701 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1702 const char *linkage_name,
1703 domain_enum domain)
1704 {
1705 enum language lang = current_language->la_language;
1706 const char *modified_name;
1707 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1708 &modified_name);
1709 struct objfile *main_objfile, *cur_objfile;
1710
1711 if (objfile->separate_debug_objfile_backlink)
1712 main_objfile = objfile->separate_debug_objfile_backlink;
1713 else
1714 main_objfile = objfile;
1715
1716 for (cur_objfile = main_objfile;
1717 cur_objfile;
1718 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1719 {
1720 struct symbol *sym;
1721
1722 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1723 modified_name, domain);
1724 if (sym == NULL)
1725 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1726 modified_name, domain);
1727 if (sym != NULL)
1728 {
1729 do_cleanups (cleanup);
1730 return sym;
1731 }
1732 }
1733
1734 do_cleanups (cleanup);
1735 return NULL;
1736 }
1737
1738 /* A helper function that throws an exception when a symbol was found
1739 in a psymtab but not in a symtab. */
1740
1741 static void ATTRIBUTE_NORETURN
1742 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1743 {
1744 error (_("\
1745 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1746 %s may be an inlined function, or may be a template function\n \
1747 (if a template, try specifying an instantiation: %s<type>)."),
1748 kind == GLOBAL_BLOCK ? "global" : "static",
1749 name, symtab_to_filename_for_display (symtab), name, name);
1750 }
1751
1752 /* A helper function for lookup_symbol_aux that interfaces with the
1753 "quick" symbol table functions. */
1754
1755 static struct symbol *
1756 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1757 const char *name, const domain_enum domain)
1758 {
1759 struct symtab *symtab;
1760 const struct blockvector *bv;
1761 const struct block *block;
1762 struct symbol *sym;
1763
1764 if (!objfile->sf)
1765 return NULL;
1766 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1767 if (!symtab)
1768 return NULL;
1769
1770 bv = BLOCKVECTOR (symtab);
1771 block = BLOCKVECTOR_BLOCK (bv, kind);
1772 sym = lookup_block_symbol (block, name, domain);
1773 if (!sym)
1774 error_in_psymtab_expansion (kind, name, symtab);
1775 return fixup_symbol_section (sym, objfile);
1776 }
1777
1778 /* A default version of lookup_symbol_nonlocal for use by languages
1779 that can't think of anything better to do. This implements the C
1780 lookup rules. */
1781
1782 struct symbol *
1783 basic_lookup_symbol_nonlocal (const char *name,
1784 const struct block *block,
1785 const domain_enum domain)
1786 {
1787 struct symbol *sym;
1788
1789 /* NOTE: carlton/2003-05-19: The comments below were written when
1790 this (or what turned into this) was part of lookup_symbol_aux;
1791 I'm much less worried about these questions now, since these
1792 decisions have turned out well, but I leave these comments here
1793 for posterity. */
1794
1795 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1796 not it would be appropriate to search the current global block
1797 here as well. (That's what this code used to do before the
1798 is_a_field_of_this check was moved up.) On the one hand, it's
1799 redundant with the lookup_symbol_aux_symtabs search that happens
1800 next. On the other hand, if decode_line_1 is passed an argument
1801 like filename:var, then the user presumably wants 'var' to be
1802 searched for in filename. On the third hand, there shouldn't be
1803 multiple global variables all of which are named 'var', and it's
1804 not like decode_line_1 has ever restricted its search to only
1805 global variables in a single filename. All in all, only
1806 searching the static block here seems best: it's correct and it's
1807 cleanest. */
1808
1809 /* NOTE: carlton/2002-12-05: There's also a possible performance
1810 issue here: if you usually search for global symbols in the
1811 current file, then it would be slightly better to search the
1812 current global block before searching all the symtabs. But there
1813 are other factors that have a much greater effect on performance
1814 than that one, so I don't think we should worry about that for
1815 now. */
1816
1817 sym = lookup_symbol_static (name, block, domain);
1818 if (sym != NULL)
1819 return sym;
1820
1821 return lookup_symbol_global (name, block, domain);
1822 }
1823
1824 /* Lookup a symbol in the static block associated to BLOCK, if there
1825 is one; do nothing if BLOCK is NULL or a global block. */
1826
1827 struct symbol *
1828 lookup_symbol_static (const char *name,
1829 const struct block *block,
1830 const domain_enum domain)
1831 {
1832 const struct block *static_block = block_static_block (block);
1833
1834 if (static_block != NULL)
1835 return lookup_symbol_aux_block (name, static_block, domain);
1836 else
1837 return NULL;
1838 }
1839
1840 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1841
1842 struct global_sym_lookup_data
1843 {
1844 /* The name of the symbol we are searching for. */
1845 const char *name;
1846
1847 /* The domain to use for our search. */
1848 domain_enum domain;
1849
1850 /* The field where the callback should store the symbol if found.
1851 It should be initialized to NULL before the search is started. */
1852 struct symbol *result;
1853 };
1854
1855 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1856 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1857 OBJFILE. The arguments for the search are passed via CB_DATA,
1858 which in reality is a pointer to struct global_sym_lookup_data. */
1859
1860 static int
1861 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1862 void *cb_data)
1863 {
1864 struct global_sym_lookup_data *data =
1865 (struct global_sym_lookup_data *) cb_data;
1866
1867 gdb_assert (data->result == NULL);
1868
1869 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1870 data->name, data->domain);
1871 if (data->result == NULL)
1872 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1873 data->name, data->domain);
1874
1875 /* If we found a match, tell the iterator to stop. Otherwise,
1876 keep going. */
1877 return (data->result != NULL);
1878 }
1879
1880 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1881 necessary). */
1882
1883 struct symbol *
1884 lookup_symbol_global (const char *name,
1885 const struct block *block,
1886 const domain_enum domain)
1887 {
1888 struct symbol *sym = NULL;
1889 struct objfile *objfile = NULL;
1890 struct global_sym_lookup_data lookup_data;
1891
1892 /* Call library-specific lookup procedure. */
1893 objfile = lookup_objfile_from_block (block);
1894 if (objfile != NULL)
1895 sym = solib_global_lookup (objfile, name, domain);
1896 if (sym != NULL)
1897 return sym;
1898
1899 memset (&lookup_data, 0, sizeof (lookup_data));
1900 lookup_data.name = name;
1901 lookup_data.domain = domain;
1902 gdbarch_iterate_over_objfiles_in_search_order
1903 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1904 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1905
1906 return lookup_data.result;
1907 }
1908
1909 int
1910 symbol_matches_domain (enum language symbol_language,
1911 domain_enum symbol_domain,
1912 domain_enum domain)
1913 {
1914 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1915 A Java class declaration also defines a typedef for the class.
1916 Similarly, any Ada type declaration implicitly defines a typedef. */
1917 if (symbol_language == language_cplus
1918 || symbol_language == language_d
1919 || symbol_language == language_java
1920 || symbol_language == language_ada)
1921 {
1922 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1923 && symbol_domain == STRUCT_DOMAIN)
1924 return 1;
1925 }
1926 /* For all other languages, strict match is required. */
1927 return (symbol_domain == domain);
1928 }
1929
1930 /* Look up a type named NAME in the struct_domain. The type returned
1931 must not be opaque -- i.e., must have at least one field
1932 defined. */
1933
1934 struct type *
1935 lookup_transparent_type (const char *name)
1936 {
1937 return current_language->la_lookup_transparent_type (name);
1938 }
1939
1940 /* A helper for basic_lookup_transparent_type that interfaces with the
1941 "quick" symbol table functions. */
1942
1943 static struct type *
1944 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1945 const char *name)
1946 {
1947 struct symtab *symtab;
1948 const struct blockvector *bv;
1949 struct block *block;
1950 struct symbol *sym;
1951
1952 if (!objfile->sf)
1953 return NULL;
1954 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1955 if (!symtab)
1956 return NULL;
1957
1958 bv = BLOCKVECTOR (symtab);
1959 block = BLOCKVECTOR_BLOCK (bv, kind);
1960 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1961 if (!sym)
1962 error_in_psymtab_expansion (kind, name, symtab);
1963
1964 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1965 return SYMBOL_TYPE (sym);
1966
1967 return NULL;
1968 }
1969
1970 /* The standard implementation of lookup_transparent_type. This code
1971 was modeled on lookup_symbol -- the parts not relevant to looking
1972 up types were just left out. In particular it's assumed here that
1973 types are available in struct_domain and only at file-static or
1974 global blocks. */
1975
1976 struct type *
1977 basic_lookup_transparent_type (const char *name)
1978 {
1979 struct symbol *sym;
1980 struct symtab *s = NULL;
1981 const struct blockvector *bv;
1982 struct objfile *objfile;
1983 struct block *block;
1984 struct type *t;
1985
1986 /* Now search all the global symbols. Do the symtab's first, then
1987 check the psymtab's. If a psymtab indicates the existence
1988 of the desired name as a global, then do psymtab-to-symtab
1989 conversion on the fly and return the found symbol. */
1990
1991 ALL_OBJFILES (objfile)
1992 {
1993 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1994 {
1995 bv = BLOCKVECTOR (s);
1996 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1997 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1998 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1999 {
2000 return SYMBOL_TYPE (sym);
2001 }
2002 }
2003 }
2004
2005 ALL_OBJFILES (objfile)
2006 {
2007 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2008 if (t)
2009 return t;
2010 }
2011
2012 /* Now search the static file-level symbols.
2013 Not strictly correct, but more useful than an error.
2014 Do the symtab's first, then
2015 check the psymtab's. If a psymtab indicates the existence
2016 of the desired name as a file-level static, then do psymtab-to-symtab
2017 conversion on the fly and return the found symbol. */
2018
2019 ALL_OBJFILES (objfile)
2020 {
2021 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2022 {
2023 bv = BLOCKVECTOR (s);
2024 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2025 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2026 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2027 {
2028 return SYMBOL_TYPE (sym);
2029 }
2030 }
2031 }
2032
2033 ALL_OBJFILES (objfile)
2034 {
2035 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2036 if (t)
2037 return t;
2038 }
2039
2040 return (struct type *) 0;
2041 }
2042
2043 /* Search BLOCK for symbol NAME in DOMAIN.
2044
2045 Note that if NAME is the demangled form of a C++ symbol, we will fail
2046 to find a match during the binary search of the non-encoded names, but
2047 for now we don't worry about the slight inefficiency of looking for
2048 a match we'll never find, since it will go pretty quick. Once the
2049 binary search terminates, we drop through and do a straight linear
2050 search on the symbols. Each symbol which is marked as being a ObjC/C++
2051 symbol (language_cplus or language_objc set) has both the encoded and
2052 non-encoded names tested for a match. */
2053
2054 struct symbol *
2055 lookup_block_symbol (const struct block *block, const char *name,
2056 const domain_enum domain)
2057 {
2058 struct block_iterator iter;
2059 struct symbol *sym;
2060
2061 if (!BLOCK_FUNCTION (block))
2062 {
2063 for (sym = block_iter_name_first (block, name, &iter);
2064 sym != NULL;
2065 sym = block_iter_name_next (name, &iter))
2066 {
2067 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2068 SYMBOL_DOMAIN (sym), domain))
2069 return sym;
2070 }
2071 return NULL;
2072 }
2073 else
2074 {
2075 /* Note that parameter symbols do not always show up last in the
2076 list; this loop makes sure to take anything else other than
2077 parameter symbols first; it only uses parameter symbols as a
2078 last resort. Note that this only takes up extra computation
2079 time on a match. */
2080
2081 struct symbol *sym_found = NULL;
2082
2083 for (sym = block_iter_name_first (block, name, &iter);
2084 sym != NULL;
2085 sym = block_iter_name_next (name, &iter))
2086 {
2087 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2088 SYMBOL_DOMAIN (sym), domain))
2089 {
2090 sym_found = sym;
2091 if (!SYMBOL_IS_ARGUMENT (sym))
2092 {
2093 break;
2094 }
2095 }
2096 }
2097 return (sym_found); /* Will be NULL if not found. */
2098 }
2099 }
2100
2101 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2102
2103 For each symbol that matches, CALLBACK is called. The symbol and
2104 DATA are passed to the callback.
2105
2106 If CALLBACK returns zero, the iteration ends. Otherwise, the
2107 search continues. */
2108
2109 void
2110 iterate_over_symbols (const struct block *block, const char *name,
2111 const domain_enum domain,
2112 symbol_found_callback_ftype *callback,
2113 void *data)
2114 {
2115 struct block_iterator iter;
2116 struct symbol *sym;
2117
2118 for (sym = block_iter_name_first (block, name, &iter);
2119 sym != NULL;
2120 sym = block_iter_name_next (name, &iter))
2121 {
2122 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2123 SYMBOL_DOMAIN (sym), domain))
2124 {
2125 if (!callback (sym, data))
2126 return;
2127 }
2128 }
2129 }
2130
2131 /* Find the symtab associated with PC and SECTION. Look through the
2132 psymtabs and read in another symtab if necessary. */
2133
2134 struct symtab *
2135 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2136 {
2137 struct block *b;
2138 const struct blockvector *bv;
2139 struct symtab *s = NULL;
2140 struct symtab *best_s = NULL;
2141 struct objfile *objfile;
2142 CORE_ADDR distance = 0;
2143 struct bound_minimal_symbol msymbol;
2144
2145 /* If we know that this is not a text address, return failure. This is
2146 necessary because we loop based on the block's high and low code
2147 addresses, which do not include the data ranges, and because
2148 we call find_pc_sect_psymtab which has a similar restriction based
2149 on the partial_symtab's texthigh and textlow. */
2150 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2151 if (msymbol.minsym
2152 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2153 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2154 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2155 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2156 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2157 return NULL;
2158
2159 /* Search all symtabs for the one whose file contains our address, and which
2160 is the smallest of all the ones containing the address. This is designed
2161 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2162 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2163 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2164
2165 This happens for native ecoff format, where code from included files
2166 gets its own symtab. The symtab for the included file should have
2167 been read in already via the dependency mechanism.
2168 It might be swifter to create several symtabs with the same name
2169 like xcoff does (I'm not sure).
2170
2171 It also happens for objfiles that have their functions reordered.
2172 For these, the symtab we are looking for is not necessarily read in. */
2173
2174 ALL_PRIMARY_SYMTABS (objfile, s)
2175 {
2176 bv = BLOCKVECTOR (s);
2177 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2178
2179 if (BLOCK_START (b) <= pc
2180 && BLOCK_END (b) > pc
2181 && (distance == 0
2182 || BLOCK_END (b) - BLOCK_START (b) < distance))
2183 {
2184 /* For an objfile that has its functions reordered,
2185 find_pc_psymtab will find the proper partial symbol table
2186 and we simply return its corresponding symtab. */
2187 /* In order to better support objfiles that contain both
2188 stabs and coff debugging info, we continue on if a psymtab
2189 can't be found. */
2190 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2191 {
2192 struct symtab *result;
2193
2194 result
2195 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2196 msymbol,
2197 pc, section,
2198 0);
2199 if (result)
2200 return result;
2201 }
2202 if (section != 0)
2203 {
2204 struct block_iterator iter;
2205 struct symbol *sym = NULL;
2206
2207 ALL_BLOCK_SYMBOLS (b, iter, sym)
2208 {
2209 fixup_symbol_section (sym, objfile);
2210 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2211 section))
2212 break;
2213 }
2214 if (sym == NULL)
2215 continue; /* No symbol in this symtab matches
2216 section. */
2217 }
2218 distance = BLOCK_END (b) - BLOCK_START (b);
2219 best_s = s;
2220 }
2221 }
2222
2223 if (best_s != NULL)
2224 return (best_s);
2225
2226 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2227
2228 ALL_OBJFILES (objfile)
2229 {
2230 struct symtab *result;
2231
2232 if (!objfile->sf)
2233 continue;
2234 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2235 msymbol,
2236 pc, section,
2237 1);
2238 if (result)
2239 return result;
2240 }
2241
2242 return NULL;
2243 }
2244
2245 /* Find the symtab associated with PC. Look through the psymtabs and read
2246 in another symtab if necessary. Backward compatibility, no section. */
2247
2248 struct symtab *
2249 find_pc_symtab (CORE_ADDR pc)
2250 {
2251 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2252 }
2253 \f
2254
2255 /* Find the source file and line number for a given PC value and SECTION.
2256 Return a structure containing a symtab pointer, a line number,
2257 and a pc range for the entire source line.
2258 The value's .pc field is NOT the specified pc.
2259 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2260 use the line that ends there. Otherwise, in that case, the line
2261 that begins there is used. */
2262
2263 /* The big complication here is that a line may start in one file, and end just
2264 before the start of another file. This usually occurs when you #include
2265 code in the middle of a subroutine. To properly find the end of a line's PC
2266 range, we must search all symtabs associated with this compilation unit, and
2267 find the one whose first PC is closer than that of the next line in this
2268 symtab. */
2269
2270 /* If it's worth the effort, we could be using a binary search. */
2271
2272 struct symtab_and_line
2273 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2274 {
2275 struct symtab *s;
2276 struct linetable *l;
2277 int len;
2278 int i;
2279 struct linetable_entry *item;
2280 struct symtab_and_line val;
2281 const struct blockvector *bv;
2282 struct bound_minimal_symbol msymbol;
2283 struct objfile *objfile;
2284
2285 /* Info on best line seen so far, and where it starts, and its file. */
2286
2287 struct linetable_entry *best = NULL;
2288 CORE_ADDR best_end = 0;
2289 struct symtab *best_symtab = 0;
2290
2291 /* Store here the first line number
2292 of a file which contains the line at the smallest pc after PC.
2293 If we don't find a line whose range contains PC,
2294 we will use a line one less than this,
2295 with a range from the start of that file to the first line's pc. */
2296 struct linetable_entry *alt = NULL;
2297
2298 /* Info on best line seen in this file. */
2299
2300 struct linetable_entry *prev;
2301
2302 /* If this pc is not from the current frame,
2303 it is the address of the end of a call instruction.
2304 Quite likely that is the start of the following statement.
2305 But what we want is the statement containing the instruction.
2306 Fudge the pc to make sure we get that. */
2307
2308 init_sal (&val); /* initialize to zeroes */
2309
2310 val.pspace = current_program_space;
2311
2312 /* It's tempting to assume that, if we can't find debugging info for
2313 any function enclosing PC, that we shouldn't search for line
2314 number info, either. However, GAS can emit line number info for
2315 assembly files --- very helpful when debugging hand-written
2316 assembly code. In such a case, we'd have no debug info for the
2317 function, but we would have line info. */
2318
2319 if (notcurrent)
2320 pc -= 1;
2321
2322 /* elz: added this because this function returned the wrong
2323 information if the pc belongs to a stub (import/export)
2324 to call a shlib function. This stub would be anywhere between
2325 two functions in the target, and the line info was erroneously
2326 taken to be the one of the line before the pc. */
2327
2328 /* RT: Further explanation:
2329
2330 * We have stubs (trampolines) inserted between procedures.
2331 *
2332 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2333 * exists in the main image.
2334 *
2335 * In the minimal symbol table, we have a bunch of symbols
2336 * sorted by start address. The stubs are marked as "trampoline",
2337 * the others appear as text. E.g.:
2338 *
2339 * Minimal symbol table for main image
2340 * main: code for main (text symbol)
2341 * shr1: stub (trampoline symbol)
2342 * foo: code for foo (text symbol)
2343 * ...
2344 * Minimal symbol table for "shr1" image:
2345 * ...
2346 * shr1: code for shr1 (text symbol)
2347 * ...
2348 *
2349 * So the code below is trying to detect if we are in the stub
2350 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2351 * and if found, do the symbolization from the real-code address
2352 * rather than the stub address.
2353 *
2354 * Assumptions being made about the minimal symbol table:
2355 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2356 * if we're really in the trampoline.s If we're beyond it (say
2357 * we're in "foo" in the above example), it'll have a closer
2358 * symbol (the "foo" text symbol for example) and will not
2359 * return the trampoline.
2360 * 2. lookup_minimal_symbol_text() will find a real text symbol
2361 * corresponding to the trampoline, and whose address will
2362 * be different than the trampoline address. I put in a sanity
2363 * check for the address being the same, to avoid an
2364 * infinite recursion.
2365 */
2366 msymbol = lookup_minimal_symbol_by_pc (pc);
2367 if (msymbol.minsym != NULL)
2368 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2369 {
2370 struct bound_minimal_symbol mfunsym
2371 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2372 NULL);
2373
2374 if (mfunsym.minsym == NULL)
2375 /* I eliminated this warning since it is coming out
2376 * in the following situation:
2377 * gdb shmain // test program with shared libraries
2378 * (gdb) break shr1 // function in shared lib
2379 * Warning: In stub for ...
2380 * In the above situation, the shared lib is not loaded yet,
2381 * so of course we can't find the real func/line info,
2382 * but the "break" still works, and the warning is annoying.
2383 * So I commented out the warning. RT */
2384 /* warning ("In stub for %s; unable to find real function/line info",
2385 SYMBOL_LINKAGE_NAME (msymbol)); */
2386 ;
2387 /* fall through */
2388 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2389 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2390 /* Avoid infinite recursion */
2391 /* See above comment about why warning is commented out. */
2392 /* warning ("In stub for %s; unable to find real function/line info",
2393 SYMBOL_LINKAGE_NAME (msymbol)); */
2394 ;
2395 /* fall through */
2396 else
2397 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2398 }
2399
2400
2401 s = find_pc_sect_symtab (pc, section);
2402 if (!s)
2403 {
2404 /* If no symbol information, return previous pc. */
2405 if (notcurrent)
2406 pc++;
2407 val.pc = pc;
2408 return val;
2409 }
2410
2411 bv = BLOCKVECTOR (s);
2412 objfile = s->objfile;
2413
2414 /* Look at all the symtabs that share this blockvector.
2415 They all have the same apriori range, that we found was right;
2416 but they have different line tables. */
2417
2418 ALL_OBJFILE_SYMTABS (objfile, s)
2419 {
2420 if (BLOCKVECTOR (s) != bv)
2421 continue;
2422
2423 /* Find the best line in this symtab. */
2424 l = LINETABLE (s);
2425 if (!l)
2426 continue;
2427 len = l->nitems;
2428 if (len <= 0)
2429 {
2430 /* I think len can be zero if the symtab lacks line numbers
2431 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2432 I'm not sure which, and maybe it depends on the symbol
2433 reader). */
2434 continue;
2435 }
2436
2437 prev = NULL;
2438 item = l->item; /* Get first line info. */
2439
2440 /* Is this file's first line closer than the first lines of other files?
2441 If so, record this file, and its first line, as best alternate. */
2442 if (item->pc > pc && (!alt || item->pc < alt->pc))
2443 alt = item;
2444
2445 for (i = 0; i < len; i++, item++)
2446 {
2447 /* Leave prev pointing to the linetable entry for the last line
2448 that started at or before PC. */
2449 if (item->pc > pc)
2450 break;
2451
2452 prev = item;
2453 }
2454
2455 /* At this point, prev points at the line whose start addr is <= pc, and
2456 item points at the next line. If we ran off the end of the linetable
2457 (pc >= start of the last line), then prev == item. If pc < start of
2458 the first line, prev will not be set. */
2459
2460 /* Is this file's best line closer than the best in the other files?
2461 If so, record this file, and its best line, as best so far. Don't
2462 save prev if it represents the end of a function (i.e. line number
2463 0) instead of a real line. */
2464
2465 if (prev && prev->line && (!best || prev->pc > best->pc))
2466 {
2467 best = prev;
2468 best_symtab = s;
2469
2470 /* Discard BEST_END if it's before the PC of the current BEST. */
2471 if (best_end <= best->pc)
2472 best_end = 0;
2473 }
2474
2475 /* If another line (denoted by ITEM) is in the linetable and its
2476 PC is after BEST's PC, but before the current BEST_END, then
2477 use ITEM's PC as the new best_end. */
2478 if (best && i < len && item->pc > best->pc
2479 && (best_end == 0 || best_end > item->pc))
2480 best_end = item->pc;
2481 }
2482
2483 if (!best_symtab)
2484 {
2485 /* If we didn't find any line number info, just return zeros.
2486 We used to return alt->line - 1 here, but that could be
2487 anywhere; if we don't have line number info for this PC,
2488 don't make some up. */
2489 val.pc = pc;
2490 }
2491 else if (best->line == 0)
2492 {
2493 /* If our best fit is in a range of PC's for which no line
2494 number info is available (line number is zero) then we didn't
2495 find any valid line information. */
2496 val.pc = pc;
2497 }
2498 else
2499 {
2500 val.symtab = best_symtab;
2501 val.line = best->line;
2502 val.pc = best->pc;
2503 if (best_end && (!alt || best_end < alt->pc))
2504 val.end = best_end;
2505 else if (alt)
2506 val.end = alt->pc;
2507 else
2508 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2509 }
2510 val.section = section;
2511 return val;
2512 }
2513
2514 /* Backward compatibility (no section). */
2515
2516 struct symtab_and_line
2517 find_pc_line (CORE_ADDR pc, int notcurrent)
2518 {
2519 struct obj_section *section;
2520
2521 section = find_pc_overlay (pc);
2522 if (pc_in_unmapped_range (pc, section))
2523 pc = overlay_mapped_address (pc, section);
2524 return find_pc_sect_line (pc, section, notcurrent);
2525 }
2526 \f
2527 /* Find line number LINE in any symtab whose name is the same as
2528 SYMTAB.
2529
2530 If found, return the symtab that contains the linetable in which it was
2531 found, set *INDEX to the index in the linetable of the best entry
2532 found, and set *EXACT_MATCH nonzero if the value returned is an
2533 exact match.
2534
2535 If not found, return NULL. */
2536
2537 struct symtab *
2538 find_line_symtab (struct symtab *symtab, int line,
2539 int *index, int *exact_match)
2540 {
2541 int exact = 0; /* Initialized here to avoid a compiler warning. */
2542
2543 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2544 so far seen. */
2545
2546 int best_index;
2547 struct linetable *best_linetable;
2548 struct symtab *best_symtab;
2549
2550 /* First try looking it up in the given symtab. */
2551 best_linetable = LINETABLE (symtab);
2552 best_symtab = symtab;
2553 best_index = find_line_common (best_linetable, line, &exact, 0);
2554 if (best_index < 0 || !exact)
2555 {
2556 /* Didn't find an exact match. So we better keep looking for
2557 another symtab with the same name. In the case of xcoff,
2558 multiple csects for one source file (produced by IBM's FORTRAN
2559 compiler) produce multiple symtabs (this is unavoidable
2560 assuming csects can be at arbitrary places in memory and that
2561 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2562
2563 /* BEST is the smallest linenumber > LINE so far seen,
2564 or 0 if none has been seen so far.
2565 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2566 int best;
2567
2568 struct objfile *objfile;
2569 struct symtab *s;
2570
2571 if (best_index >= 0)
2572 best = best_linetable->item[best_index].line;
2573 else
2574 best = 0;
2575
2576 ALL_OBJFILES (objfile)
2577 {
2578 if (objfile->sf)
2579 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2580 symtab_to_fullname (symtab));
2581 }
2582
2583 ALL_SYMTABS (objfile, s)
2584 {
2585 struct linetable *l;
2586 int ind;
2587
2588 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2589 continue;
2590 if (FILENAME_CMP (symtab_to_fullname (symtab),
2591 symtab_to_fullname (s)) != 0)
2592 continue;
2593 l = LINETABLE (s);
2594 ind = find_line_common (l, line, &exact, 0);
2595 if (ind >= 0)
2596 {
2597 if (exact)
2598 {
2599 best_index = ind;
2600 best_linetable = l;
2601 best_symtab = s;
2602 goto done;
2603 }
2604 if (best == 0 || l->item[ind].line < best)
2605 {
2606 best = l->item[ind].line;
2607 best_index = ind;
2608 best_linetable = l;
2609 best_symtab = s;
2610 }
2611 }
2612 }
2613 }
2614 done:
2615 if (best_index < 0)
2616 return NULL;
2617
2618 if (index)
2619 *index = best_index;
2620 if (exact_match)
2621 *exact_match = exact;
2622
2623 return best_symtab;
2624 }
2625
2626 /* Given SYMTAB, returns all the PCs function in the symtab that
2627 exactly match LINE. Returns NULL if there are no exact matches,
2628 but updates BEST_ITEM in this case. */
2629
2630 VEC (CORE_ADDR) *
2631 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2632 struct linetable_entry **best_item)
2633 {
2634 int start = 0;
2635 VEC (CORE_ADDR) *result = NULL;
2636
2637 /* First, collect all the PCs that are at this line. */
2638 while (1)
2639 {
2640 int was_exact;
2641 int idx;
2642
2643 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2644 if (idx < 0)
2645 break;
2646
2647 if (!was_exact)
2648 {
2649 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2650
2651 if (*best_item == NULL || item->line < (*best_item)->line)
2652 *best_item = item;
2653
2654 break;
2655 }
2656
2657 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2658 start = idx + 1;
2659 }
2660
2661 return result;
2662 }
2663
2664 \f
2665 /* Set the PC value for a given source file and line number and return true.
2666 Returns zero for invalid line number (and sets the PC to 0).
2667 The source file is specified with a struct symtab. */
2668
2669 int
2670 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2671 {
2672 struct linetable *l;
2673 int ind;
2674
2675 *pc = 0;
2676 if (symtab == 0)
2677 return 0;
2678
2679 symtab = find_line_symtab (symtab, line, &ind, NULL);
2680 if (symtab != NULL)
2681 {
2682 l = LINETABLE (symtab);
2683 *pc = l->item[ind].pc;
2684 return 1;
2685 }
2686 else
2687 return 0;
2688 }
2689
2690 /* Find the range of pc values in a line.
2691 Store the starting pc of the line into *STARTPTR
2692 and the ending pc (start of next line) into *ENDPTR.
2693 Returns 1 to indicate success.
2694 Returns 0 if could not find the specified line. */
2695
2696 int
2697 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2698 CORE_ADDR *endptr)
2699 {
2700 CORE_ADDR startaddr;
2701 struct symtab_and_line found_sal;
2702
2703 startaddr = sal.pc;
2704 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2705 return 0;
2706
2707 /* This whole function is based on address. For example, if line 10 has
2708 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2709 "info line *0x123" should say the line goes from 0x100 to 0x200
2710 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2711 This also insures that we never give a range like "starts at 0x134
2712 and ends at 0x12c". */
2713
2714 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2715 if (found_sal.line != sal.line)
2716 {
2717 /* The specified line (sal) has zero bytes. */
2718 *startptr = found_sal.pc;
2719 *endptr = found_sal.pc;
2720 }
2721 else
2722 {
2723 *startptr = found_sal.pc;
2724 *endptr = found_sal.end;
2725 }
2726 return 1;
2727 }
2728
2729 /* Given a line table and a line number, return the index into the line
2730 table for the pc of the nearest line whose number is >= the specified one.
2731 Return -1 if none is found. The value is >= 0 if it is an index.
2732 START is the index at which to start searching the line table.
2733
2734 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2735
2736 static int
2737 find_line_common (struct linetable *l, int lineno,
2738 int *exact_match, int start)
2739 {
2740 int i;
2741 int len;
2742
2743 /* BEST is the smallest linenumber > LINENO so far seen,
2744 or 0 if none has been seen so far.
2745 BEST_INDEX identifies the item for it. */
2746
2747 int best_index = -1;
2748 int best = 0;
2749
2750 *exact_match = 0;
2751
2752 if (lineno <= 0)
2753 return -1;
2754 if (l == 0)
2755 return -1;
2756
2757 len = l->nitems;
2758 for (i = start; i < len; i++)
2759 {
2760 struct linetable_entry *item = &(l->item[i]);
2761
2762 if (item->line == lineno)
2763 {
2764 /* Return the first (lowest address) entry which matches. */
2765 *exact_match = 1;
2766 return i;
2767 }
2768
2769 if (item->line > lineno && (best == 0 || item->line < best))
2770 {
2771 best = item->line;
2772 best_index = i;
2773 }
2774 }
2775
2776 /* If we got here, we didn't get an exact match. */
2777 return best_index;
2778 }
2779
2780 int
2781 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2782 {
2783 struct symtab_and_line sal;
2784
2785 sal = find_pc_line (pc, 0);
2786 *startptr = sal.pc;
2787 *endptr = sal.end;
2788 return sal.symtab != 0;
2789 }
2790
2791 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2792 address for that function that has an entry in SYMTAB's line info
2793 table. If such an entry cannot be found, return FUNC_ADDR
2794 unaltered. */
2795
2796 static CORE_ADDR
2797 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2798 {
2799 CORE_ADDR func_start, func_end;
2800 struct linetable *l;
2801 int i;
2802
2803 /* Give up if this symbol has no lineinfo table. */
2804 l = LINETABLE (symtab);
2805 if (l == NULL)
2806 return func_addr;
2807
2808 /* Get the range for the function's PC values, or give up if we
2809 cannot, for some reason. */
2810 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2811 return func_addr;
2812
2813 /* Linetable entries are ordered by PC values, see the commentary in
2814 symtab.h where `struct linetable' is defined. Thus, the first
2815 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2816 address we are looking for. */
2817 for (i = 0; i < l->nitems; i++)
2818 {
2819 struct linetable_entry *item = &(l->item[i]);
2820
2821 /* Don't use line numbers of zero, they mark special entries in
2822 the table. See the commentary on symtab.h before the
2823 definition of struct linetable. */
2824 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2825 return item->pc;
2826 }
2827
2828 return func_addr;
2829 }
2830
2831 /* Given a function symbol SYM, find the symtab and line for the start
2832 of the function.
2833 If the argument FUNFIRSTLINE is nonzero, we want the first line
2834 of real code inside the function. */
2835
2836 struct symtab_and_line
2837 find_function_start_sal (struct symbol *sym, int funfirstline)
2838 {
2839 struct symtab_and_line sal;
2840
2841 fixup_symbol_section (sym, NULL);
2842 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2843 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2844
2845 /* We always should have a line for the function start address.
2846 If we don't, something is odd. Create a plain SAL refering
2847 just the PC and hope that skip_prologue_sal (if requested)
2848 can find a line number for after the prologue. */
2849 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2850 {
2851 init_sal (&sal);
2852 sal.pspace = current_program_space;
2853 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2854 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2855 }
2856
2857 if (funfirstline)
2858 skip_prologue_sal (&sal);
2859
2860 return sal;
2861 }
2862
2863 /* Adjust SAL to the first instruction past the function prologue.
2864 If the PC was explicitly specified, the SAL is not changed.
2865 If the line number was explicitly specified, at most the SAL's PC
2866 is updated. If SAL is already past the prologue, then do nothing. */
2867
2868 void
2869 skip_prologue_sal (struct symtab_and_line *sal)
2870 {
2871 struct symbol *sym;
2872 struct symtab_and_line start_sal;
2873 struct cleanup *old_chain;
2874 CORE_ADDR pc, saved_pc;
2875 struct obj_section *section;
2876 const char *name;
2877 struct objfile *objfile;
2878 struct gdbarch *gdbarch;
2879 const struct block *b, *function_block;
2880 int force_skip, skip;
2881
2882 /* Do not change the SAL if PC was specified explicitly. */
2883 if (sal->explicit_pc)
2884 return;
2885
2886 old_chain = save_current_space_and_thread ();
2887 switch_to_program_space_and_thread (sal->pspace);
2888
2889 sym = find_pc_sect_function (sal->pc, sal->section);
2890 if (sym != NULL)
2891 {
2892 fixup_symbol_section (sym, NULL);
2893
2894 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2895 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2896 name = SYMBOL_LINKAGE_NAME (sym);
2897 objfile = SYMBOL_SYMTAB (sym)->objfile;
2898 }
2899 else
2900 {
2901 struct bound_minimal_symbol msymbol
2902 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2903
2904 if (msymbol.minsym == NULL)
2905 {
2906 do_cleanups (old_chain);
2907 return;
2908 }
2909
2910 objfile = msymbol.objfile;
2911 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2912 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2913 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2914 }
2915
2916 gdbarch = get_objfile_arch (objfile);
2917
2918 /* Process the prologue in two passes. In the first pass try to skip the
2919 prologue (SKIP is true) and verify there is a real need for it (indicated
2920 by FORCE_SKIP). If no such reason was found run a second pass where the
2921 prologue is not skipped (SKIP is false). */
2922
2923 skip = 1;
2924 force_skip = 1;
2925
2926 /* Be conservative - allow direct PC (without skipping prologue) only if we
2927 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2928 have to be set by the caller so we use SYM instead. */
2929 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2930 force_skip = 0;
2931
2932 saved_pc = pc;
2933 do
2934 {
2935 pc = saved_pc;
2936
2937 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2938 so that gdbarch_skip_prologue has something unique to work on. */
2939 if (section_is_overlay (section) && !section_is_mapped (section))
2940 pc = overlay_unmapped_address (pc, section);
2941
2942 /* Skip "first line" of function (which is actually its prologue). */
2943 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2944 if (gdbarch_skip_entrypoint_p (gdbarch))
2945 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2946 if (skip)
2947 pc = gdbarch_skip_prologue (gdbarch, pc);
2948
2949 /* For overlays, map pc back into its mapped VMA range. */
2950 pc = overlay_mapped_address (pc, section);
2951
2952 /* Calculate line number. */
2953 start_sal = find_pc_sect_line (pc, section, 0);
2954
2955 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2956 line is still part of the same function. */
2957 if (skip && start_sal.pc != pc
2958 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2959 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2960 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2961 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2962 {
2963 /* First pc of next line */
2964 pc = start_sal.end;
2965 /* Recalculate the line number (might not be N+1). */
2966 start_sal = find_pc_sect_line (pc, section, 0);
2967 }
2968
2969 /* On targets with executable formats that don't have a concept of
2970 constructors (ELF with .init has, PE doesn't), gcc emits a call
2971 to `__main' in `main' between the prologue and before user
2972 code. */
2973 if (gdbarch_skip_main_prologue_p (gdbarch)
2974 && name && strcmp_iw (name, "main") == 0)
2975 {
2976 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2977 /* Recalculate the line number (might not be N+1). */
2978 start_sal = find_pc_sect_line (pc, section, 0);
2979 force_skip = 1;
2980 }
2981 }
2982 while (!force_skip && skip--);
2983
2984 /* If we still don't have a valid source line, try to find the first
2985 PC in the lineinfo table that belongs to the same function. This
2986 happens with COFF debug info, which does not seem to have an
2987 entry in lineinfo table for the code after the prologue which has
2988 no direct relation to source. For example, this was found to be
2989 the case with the DJGPP target using "gcc -gcoff" when the
2990 compiler inserted code after the prologue to make sure the stack
2991 is aligned. */
2992 if (!force_skip && sym && start_sal.symtab == NULL)
2993 {
2994 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2995 /* Recalculate the line number. */
2996 start_sal = find_pc_sect_line (pc, section, 0);
2997 }
2998
2999 do_cleanups (old_chain);
3000
3001 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3002 forward SAL to the end of the prologue. */
3003 if (sal->pc >= pc)
3004 return;
3005
3006 sal->pc = pc;
3007 sal->section = section;
3008
3009 /* Unless the explicit_line flag was set, update the SAL line
3010 and symtab to correspond to the modified PC location. */
3011 if (sal->explicit_line)
3012 return;
3013
3014 sal->symtab = start_sal.symtab;
3015 sal->line = start_sal.line;
3016 sal->end = start_sal.end;
3017
3018 /* Check if we are now inside an inlined function. If we can,
3019 use the call site of the function instead. */
3020 b = block_for_pc_sect (sal->pc, sal->section);
3021 function_block = NULL;
3022 while (b != NULL)
3023 {
3024 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3025 function_block = b;
3026 else if (BLOCK_FUNCTION (b) != NULL)
3027 break;
3028 b = BLOCK_SUPERBLOCK (b);
3029 }
3030 if (function_block != NULL
3031 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3032 {
3033 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3034 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3035 }
3036 }
3037
3038 /* If P is of the form "operator[ \t]+..." where `...' is
3039 some legitimate operator text, return a pointer to the
3040 beginning of the substring of the operator text.
3041 Otherwise, return "". */
3042
3043 static const char *
3044 operator_chars (const char *p, const char **end)
3045 {
3046 *end = "";
3047 if (strncmp (p, "operator", 8))
3048 return *end;
3049 p += 8;
3050
3051 /* Don't get faked out by `operator' being part of a longer
3052 identifier. */
3053 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3054 return *end;
3055
3056 /* Allow some whitespace between `operator' and the operator symbol. */
3057 while (*p == ' ' || *p == '\t')
3058 p++;
3059
3060 /* Recognize 'operator TYPENAME'. */
3061
3062 if (isalpha (*p) || *p == '_' || *p == '$')
3063 {
3064 const char *q = p + 1;
3065
3066 while (isalnum (*q) || *q == '_' || *q == '$')
3067 q++;
3068 *end = q;
3069 return p;
3070 }
3071
3072 while (*p)
3073 switch (*p)
3074 {
3075 case '\\': /* regexp quoting */
3076 if (p[1] == '*')
3077 {
3078 if (p[2] == '=') /* 'operator\*=' */
3079 *end = p + 3;
3080 else /* 'operator\*' */
3081 *end = p + 2;
3082 return p;
3083 }
3084 else if (p[1] == '[')
3085 {
3086 if (p[2] == ']')
3087 error (_("mismatched quoting on brackets, "
3088 "try 'operator\\[\\]'"));
3089 else if (p[2] == '\\' && p[3] == ']')
3090 {
3091 *end = p + 4; /* 'operator\[\]' */
3092 return p;
3093 }
3094 else
3095 error (_("nothing is allowed between '[' and ']'"));
3096 }
3097 else
3098 {
3099 /* Gratuitous qoute: skip it and move on. */
3100 p++;
3101 continue;
3102 }
3103 break;
3104 case '!':
3105 case '=':
3106 case '*':
3107 case '/':
3108 case '%':
3109 case '^':
3110 if (p[1] == '=')
3111 *end = p + 2;
3112 else
3113 *end = p + 1;
3114 return p;
3115 case '<':
3116 case '>':
3117 case '+':
3118 case '-':
3119 case '&':
3120 case '|':
3121 if (p[0] == '-' && p[1] == '>')
3122 {
3123 /* Struct pointer member operator 'operator->'. */
3124 if (p[2] == '*')
3125 {
3126 *end = p + 3; /* 'operator->*' */
3127 return p;
3128 }
3129 else if (p[2] == '\\')
3130 {
3131 *end = p + 4; /* Hopefully 'operator->\*' */
3132 return p;
3133 }
3134 else
3135 {
3136 *end = p + 2; /* 'operator->' */
3137 return p;
3138 }
3139 }
3140 if (p[1] == '=' || p[1] == p[0])
3141 *end = p + 2;
3142 else
3143 *end = p + 1;
3144 return p;
3145 case '~':
3146 case ',':
3147 *end = p + 1;
3148 return p;
3149 case '(':
3150 if (p[1] != ')')
3151 error (_("`operator ()' must be specified "
3152 "without whitespace in `()'"));
3153 *end = p + 2;
3154 return p;
3155 case '?':
3156 if (p[1] != ':')
3157 error (_("`operator ?:' must be specified "
3158 "without whitespace in `?:'"));
3159 *end = p + 2;
3160 return p;
3161 case '[':
3162 if (p[1] != ']')
3163 error (_("`operator []' must be specified "
3164 "without whitespace in `[]'"));
3165 *end = p + 2;
3166 return p;
3167 default:
3168 error (_("`operator %s' not supported"), p);
3169 break;
3170 }
3171
3172 *end = "";
3173 return *end;
3174 }
3175 \f
3176
3177 /* Cache to watch for file names already seen by filename_seen. */
3178
3179 struct filename_seen_cache
3180 {
3181 /* Table of files seen so far. */
3182 htab_t tab;
3183 /* Initial size of the table. It automagically grows from here. */
3184 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3185 };
3186
3187 /* filename_seen_cache constructor. */
3188
3189 static struct filename_seen_cache *
3190 create_filename_seen_cache (void)
3191 {
3192 struct filename_seen_cache *cache;
3193
3194 cache = XNEW (struct filename_seen_cache);
3195 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3196 filename_hash, filename_eq,
3197 NULL, xcalloc, xfree);
3198
3199 return cache;
3200 }
3201
3202 /* Empty the cache, but do not delete it. */
3203
3204 static void
3205 clear_filename_seen_cache (struct filename_seen_cache *cache)
3206 {
3207 htab_empty (cache->tab);
3208 }
3209
3210 /* filename_seen_cache destructor.
3211 This takes a void * argument as it is generally used as a cleanup. */
3212
3213 static void
3214 delete_filename_seen_cache (void *ptr)
3215 {
3216 struct filename_seen_cache *cache = ptr;
3217
3218 htab_delete (cache->tab);
3219 xfree (cache);
3220 }
3221
3222 /* If FILE is not already in the table of files in CACHE, return zero;
3223 otherwise return non-zero. Optionally add FILE to the table if ADD
3224 is non-zero.
3225
3226 NOTE: We don't manage space for FILE, we assume FILE lives as long
3227 as the caller needs. */
3228
3229 static int
3230 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3231 {
3232 void **slot;
3233
3234 /* Is FILE in tab? */
3235 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3236 if (*slot != NULL)
3237 return 1;
3238
3239 /* No; maybe add it to tab. */
3240 if (add)
3241 *slot = (char *) file;
3242
3243 return 0;
3244 }
3245
3246 /* Data structure to maintain printing state for output_source_filename. */
3247
3248 struct output_source_filename_data
3249 {
3250 /* Cache of what we've seen so far. */
3251 struct filename_seen_cache *filename_seen_cache;
3252
3253 /* Flag of whether we're printing the first one. */
3254 int first;
3255 };
3256
3257 /* Slave routine for sources_info. Force line breaks at ,'s.
3258 NAME is the name to print.
3259 DATA contains the state for printing and watching for duplicates. */
3260
3261 static void
3262 output_source_filename (const char *name,
3263 struct output_source_filename_data *data)
3264 {
3265 /* Since a single source file can result in several partial symbol
3266 tables, we need to avoid printing it more than once. Note: if
3267 some of the psymtabs are read in and some are not, it gets
3268 printed both under "Source files for which symbols have been
3269 read" and "Source files for which symbols will be read in on
3270 demand". I consider this a reasonable way to deal with the
3271 situation. I'm not sure whether this can also happen for
3272 symtabs; it doesn't hurt to check. */
3273
3274 /* Was NAME already seen? */
3275 if (filename_seen (data->filename_seen_cache, name, 1))
3276 {
3277 /* Yes; don't print it again. */
3278 return;
3279 }
3280
3281 /* No; print it and reset *FIRST. */
3282 if (! data->first)
3283 printf_filtered (", ");
3284 data->first = 0;
3285
3286 wrap_here ("");
3287 fputs_filtered (name, gdb_stdout);
3288 }
3289
3290 /* A callback for map_partial_symbol_filenames. */
3291
3292 static void
3293 output_partial_symbol_filename (const char *filename, const char *fullname,
3294 void *data)
3295 {
3296 output_source_filename (fullname ? fullname : filename, data);
3297 }
3298
3299 static void
3300 sources_info (char *ignore, int from_tty)
3301 {
3302 struct symtab *s;
3303 struct objfile *objfile;
3304 struct output_source_filename_data data;
3305 struct cleanup *cleanups;
3306
3307 if (!have_full_symbols () && !have_partial_symbols ())
3308 {
3309 error (_("No symbol table is loaded. Use the \"file\" command."));
3310 }
3311
3312 data.filename_seen_cache = create_filename_seen_cache ();
3313 cleanups = make_cleanup (delete_filename_seen_cache,
3314 data.filename_seen_cache);
3315
3316 printf_filtered ("Source files for which symbols have been read in:\n\n");
3317
3318 data.first = 1;
3319 ALL_SYMTABS (objfile, s)
3320 {
3321 const char *fullname = symtab_to_fullname (s);
3322
3323 output_source_filename (fullname, &data);
3324 }
3325 printf_filtered ("\n\n");
3326
3327 printf_filtered ("Source files for which symbols "
3328 "will be read in on demand:\n\n");
3329
3330 clear_filename_seen_cache (data.filename_seen_cache);
3331 data.first = 1;
3332 map_symbol_filenames (output_partial_symbol_filename, &data,
3333 1 /*need_fullname*/);
3334 printf_filtered ("\n");
3335
3336 do_cleanups (cleanups);
3337 }
3338
3339 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3340 non-zero compare only lbasename of FILES. */
3341
3342 static int
3343 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3344 {
3345 int i;
3346
3347 if (file != NULL && nfiles != 0)
3348 {
3349 for (i = 0; i < nfiles; i++)
3350 {
3351 if (compare_filenames_for_search (file, (basenames
3352 ? lbasename (files[i])
3353 : files[i])))
3354 return 1;
3355 }
3356 }
3357 else if (nfiles == 0)
3358 return 1;
3359 return 0;
3360 }
3361
3362 /* Free any memory associated with a search. */
3363
3364 void
3365 free_search_symbols (struct symbol_search *symbols)
3366 {
3367 struct symbol_search *p;
3368 struct symbol_search *next;
3369
3370 for (p = symbols; p != NULL; p = next)
3371 {
3372 next = p->next;
3373 xfree (p);
3374 }
3375 }
3376
3377 static void
3378 do_free_search_symbols_cleanup (void *symbolsp)
3379 {
3380 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3381
3382 free_search_symbols (symbols);
3383 }
3384
3385 struct cleanup *
3386 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3387 {
3388 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3389 }
3390
3391 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3392 sort symbols, not minimal symbols. */
3393
3394 static int
3395 compare_search_syms (const void *sa, const void *sb)
3396 {
3397 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3398 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3399 int c;
3400
3401 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3402 if (c != 0)
3403 return c;
3404
3405 if (sym_a->block != sym_b->block)
3406 return sym_a->block - sym_b->block;
3407
3408 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3409 SYMBOL_PRINT_NAME (sym_b->symbol));
3410 }
3411
3412 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3413 The duplicates are freed, and the new list is returned in
3414 *NEW_HEAD, *NEW_TAIL. */
3415
3416 static void
3417 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3418 struct symbol_search **new_head,
3419 struct symbol_search **new_tail)
3420 {
3421 struct symbol_search **symbols, *symp, *old_next;
3422 int i, j, nunique;
3423
3424 gdb_assert (found != NULL && nfound > 0);
3425
3426 /* Build an array out of the list so we can easily sort them. */
3427 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3428 * nfound);
3429 symp = found;
3430 for (i = 0; i < nfound; i++)
3431 {
3432 gdb_assert (symp != NULL);
3433 gdb_assert (symp->block >= 0 && symp->block <= 1);
3434 symbols[i] = symp;
3435 symp = symp->next;
3436 }
3437 gdb_assert (symp == NULL);
3438
3439 qsort (symbols, nfound, sizeof (struct symbol_search *),
3440 compare_search_syms);
3441
3442 /* Collapse out the dups. */
3443 for (i = 1, j = 1; i < nfound; ++i)
3444 {
3445 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3446 symbols[j++] = symbols[i];
3447 else
3448 xfree (symbols[i]);
3449 }
3450 nunique = j;
3451 symbols[j - 1]->next = NULL;
3452
3453 /* Rebuild the linked list. */
3454 for (i = 0; i < nunique - 1; i++)
3455 symbols[i]->next = symbols[i + 1];
3456 symbols[nunique - 1]->next = NULL;
3457
3458 *new_head = symbols[0];
3459 *new_tail = symbols[nunique - 1];
3460 xfree (symbols);
3461 }
3462
3463 /* An object of this type is passed as the user_data to the
3464 expand_symtabs_matching method. */
3465 struct search_symbols_data
3466 {
3467 int nfiles;
3468 const char **files;
3469
3470 /* It is true if PREG contains valid data, false otherwise. */
3471 unsigned preg_p : 1;
3472 regex_t preg;
3473 };
3474
3475 /* A callback for expand_symtabs_matching. */
3476
3477 static int
3478 search_symbols_file_matches (const char *filename, void *user_data,
3479 int basenames)
3480 {
3481 struct search_symbols_data *data = user_data;
3482
3483 return file_matches (filename, data->files, data->nfiles, basenames);
3484 }
3485
3486 /* A callback for expand_symtabs_matching. */
3487
3488 static int
3489 search_symbols_name_matches (const char *symname, void *user_data)
3490 {
3491 struct search_symbols_data *data = user_data;
3492
3493 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3494 }
3495
3496 /* Search the symbol table for matches to the regular expression REGEXP,
3497 returning the results in *MATCHES.
3498
3499 Only symbols of KIND are searched:
3500 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3501 and constants (enums)
3502 FUNCTIONS_DOMAIN - search all functions
3503 TYPES_DOMAIN - search all type names
3504 ALL_DOMAIN - an internal error for this function
3505
3506 free_search_symbols should be called when *MATCHES is no longer needed.
3507
3508 Within each file the results are sorted locally; each symtab's global and
3509 static blocks are separately alphabetized.
3510 Duplicate entries are removed. */
3511
3512 void
3513 search_symbols (const char *regexp, enum search_domain kind,
3514 int nfiles, const char *files[],
3515 struct symbol_search **matches)
3516 {
3517 struct symtab *s;
3518 const struct blockvector *bv;
3519 struct block *b;
3520 int i = 0;
3521 struct block_iterator iter;
3522 struct symbol *sym;
3523 struct objfile *objfile;
3524 struct minimal_symbol *msymbol;
3525 int found_misc = 0;
3526 static const enum minimal_symbol_type types[]
3527 = {mst_data, mst_text, mst_abs};
3528 static const enum minimal_symbol_type types2[]
3529 = {mst_bss, mst_file_text, mst_abs};
3530 static const enum minimal_symbol_type types3[]
3531 = {mst_file_data, mst_solib_trampoline, mst_abs};
3532 static const enum minimal_symbol_type types4[]
3533 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3534 enum minimal_symbol_type ourtype;
3535 enum minimal_symbol_type ourtype2;
3536 enum minimal_symbol_type ourtype3;
3537 enum minimal_symbol_type ourtype4;
3538 struct symbol_search *found;
3539 struct symbol_search *tail;
3540 struct search_symbols_data datum;
3541 int nfound;
3542
3543 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3544 CLEANUP_CHAIN is freed only in the case of an error. */
3545 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3546 struct cleanup *retval_chain;
3547
3548 gdb_assert (kind <= TYPES_DOMAIN);
3549
3550 ourtype = types[kind];
3551 ourtype2 = types2[kind];
3552 ourtype3 = types3[kind];
3553 ourtype4 = types4[kind];
3554
3555 *matches = NULL;
3556 datum.preg_p = 0;
3557
3558 if (regexp != NULL)
3559 {
3560 /* Make sure spacing is right for C++ operators.
3561 This is just a courtesy to make the matching less sensitive
3562 to how many spaces the user leaves between 'operator'
3563 and <TYPENAME> or <OPERATOR>. */
3564 const char *opend;
3565 const char *opname = operator_chars (regexp, &opend);
3566 int errcode;
3567
3568 if (*opname)
3569 {
3570 int fix = -1; /* -1 means ok; otherwise number of
3571 spaces needed. */
3572
3573 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3574 {
3575 /* There should 1 space between 'operator' and 'TYPENAME'. */
3576 if (opname[-1] != ' ' || opname[-2] == ' ')
3577 fix = 1;
3578 }
3579 else
3580 {
3581 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3582 if (opname[-1] == ' ')
3583 fix = 0;
3584 }
3585 /* If wrong number of spaces, fix it. */
3586 if (fix >= 0)
3587 {
3588 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3589
3590 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3591 regexp = tmp;
3592 }
3593 }
3594
3595 errcode = regcomp (&datum.preg, regexp,
3596 REG_NOSUB | (case_sensitivity == case_sensitive_off
3597 ? REG_ICASE : 0));
3598 if (errcode != 0)
3599 {
3600 char *err = get_regcomp_error (errcode, &datum.preg);
3601
3602 make_cleanup (xfree, err);
3603 error (_("Invalid regexp (%s): %s"), err, regexp);
3604 }
3605 datum.preg_p = 1;
3606 make_regfree_cleanup (&datum.preg);
3607 }
3608
3609 /* Search through the partial symtabs *first* for all symbols
3610 matching the regexp. That way we don't have to reproduce all of
3611 the machinery below. */
3612
3613 datum.nfiles = nfiles;
3614 datum.files = files;
3615 expand_symtabs_matching ((nfiles == 0
3616 ? NULL
3617 : search_symbols_file_matches),
3618 search_symbols_name_matches,
3619 kind, &datum);
3620
3621 /* Here, we search through the minimal symbol tables for functions
3622 and variables that match, and force their symbols to be read.
3623 This is in particular necessary for demangled variable names,
3624 which are no longer put into the partial symbol tables.
3625 The symbol will then be found during the scan of symtabs below.
3626
3627 For functions, find_pc_symtab should succeed if we have debug info
3628 for the function, for variables we have to call
3629 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3630 has debug info.
3631 If the lookup fails, set found_misc so that we will rescan to print
3632 any matching symbols without debug info.
3633 We only search the objfile the msymbol came from, we no longer search
3634 all objfiles. In large programs (1000s of shared libs) searching all
3635 objfiles is not worth the pain. */
3636
3637 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3638 {
3639 ALL_MSYMBOLS (objfile, msymbol)
3640 {
3641 QUIT;
3642
3643 if (msymbol->created_by_gdb)
3644 continue;
3645
3646 if (MSYMBOL_TYPE (msymbol) == ourtype
3647 || MSYMBOL_TYPE (msymbol) == ourtype2
3648 || MSYMBOL_TYPE (msymbol) == ourtype3
3649 || MSYMBOL_TYPE (msymbol) == ourtype4)
3650 {
3651 if (!datum.preg_p
3652 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3653 NULL, 0) == 0)
3654 {
3655 /* Note: An important side-effect of these lookup functions
3656 is to expand the symbol table if msymbol is found, for the
3657 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3658 if (kind == FUNCTIONS_DOMAIN
3659 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3660 msymbol)) == NULL
3661 : (lookup_symbol_in_objfile_from_linkage_name
3662 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3663 == NULL))
3664 found_misc = 1;
3665 }
3666 }
3667 }
3668 }
3669
3670 found = NULL;
3671 tail = NULL;
3672 nfound = 0;
3673 retval_chain = make_cleanup_free_search_symbols (&found);
3674
3675 ALL_PRIMARY_SYMTABS (objfile, s)
3676 {
3677 bv = BLOCKVECTOR (s);
3678 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3679 {
3680 b = BLOCKVECTOR_BLOCK (bv, i);
3681 ALL_BLOCK_SYMBOLS (b, iter, sym)
3682 {
3683 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3684
3685 QUIT;
3686
3687 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3688 a substring of symtab_to_fullname as it may contain "./" etc. */
3689 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3690 || ((basenames_may_differ
3691 || file_matches (lbasename (real_symtab->filename),
3692 files, nfiles, 1))
3693 && file_matches (symtab_to_fullname (real_symtab),
3694 files, nfiles, 0)))
3695 && ((!datum.preg_p
3696 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3697 NULL, 0) == 0)
3698 && ((kind == VARIABLES_DOMAIN
3699 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3700 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3701 && SYMBOL_CLASS (sym) != LOC_BLOCK
3702 /* LOC_CONST can be used for more than just enums,
3703 e.g., c++ static const members.
3704 We only want to skip enums here. */
3705 && !(SYMBOL_CLASS (sym) == LOC_CONST
3706 && TYPE_CODE (SYMBOL_TYPE (sym))
3707 == TYPE_CODE_ENUM))
3708 || (kind == FUNCTIONS_DOMAIN
3709 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3710 || (kind == TYPES_DOMAIN
3711 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3712 {
3713 /* match */
3714 struct symbol_search *psr = (struct symbol_search *)
3715 xmalloc (sizeof (struct symbol_search));
3716 psr->block = i;
3717 psr->symtab = real_symtab;
3718 psr->symbol = sym;
3719 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3720 psr->next = NULL;
3721 if (tail == NULL)
3722 found = psr;
3723 else
3724 tail->next = psr;
3725 tail = psr;
3726 nfound ++;
3727 }
3728 }
3729 }
3730 }
3731
3732 if (found != NULL)
3733 {
3734 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3735 /* Note: nfound is no longer useful beyond this point. */
3736 }
3737
3738 /* If there are no eyes, avoid all contact. I mean, if there are
3739 no debug symbols, then print directly from the msymbol_vector. */
3740
3741 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3742 {
3743 ALL_MSYMBOLS (objfile, msymbol)
3744 {
3745 QUIT;
3746
3747 if (msymbol->created_by_gdb)
3748 continue;
3749
3750 if (MSYMBOL_TYPE (msymbol) == ourtype
3751 || MSYMBOL_TYPE (msymbol) == ourtype2
3752 || MSYMBOL_TYPE (msymbol) == ourtype3
3753 || MSYMBOL_TYPE (msymbol) == ourtype4)
3754 {
3755 if (!datum.preg_p
3756 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3757 NULL, 0) == 0)
3758 {
3759 /* For functions we can do a quick check of whether the
3760 symbol might be found via find_pc_symtab. */
3761 if (kind != FUNCTIONS_DOMAIN
3762 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3763 msymbol)) == NULL)
3764 {
3765 if (lookup_symbol_in_objfile_from_linkage_name
3766 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3767 == NULL)
3768 {
3769 /* match */
3770 struct symbol_search *psr = (struct symbol_search *)
3771 xmalloc (sizeof (struct symbol_search));
3772 psr->block = i;
3773 psr->msymbol.minsym = msymbol;
3774 psr->msymbol.objfile = objfile;
3775 psr->symtab = NULL;
3776 psr->symbol = NULL;
3777 psr->next = NULL;
3778 if (tail == NULL)
3779 found = psr;
3780 else
3781 tail->next = psr;
3782 tail = psr;
3783 }
3784 }
3785 }
3786 }
3787 }
3788 }
3789
3790 discard_cleanups (retval_chain);
3791 do_cleanups (old_chain);
3792 *matches = found;
3793 }
3794
3795 /* Helper function for symtab_symbol_info, this function uses
3796 the data returned from search_symbols() to print information
3797 regarding the match to gdb_stdout. */
3798
3799 static void
3800 print_symbol_info (enum search_domain kind,
3801 struct symtab *s, struct symbol *sym,
3802 int block, const char *last)
3803 {
3804 const char *s_filename = symtab_to_filename_for_display (s);
3805
3806 if (last == NULL || filename_cmp (last, s_filename) != 0)
3807 {
3808 fputs_filtered ("\nFile ", gdb_stdout);
3809 fputs_filtered (s_filename, gdb_stdout);
3810 fputs_filtered (":\n", gdb_stdout);
3811 }
3812
3813 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3814 printf_filtered ("static ");
3815
3816 /* Typedef that is not a C++ class. */
3817 if (kind == TYPES_DOMAIN
3818 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3819 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3820 /* variable, func, or typedef-that-is-c++-class. */
3821 else if (kind < TYPES_DOMAIN
3822 || (kind == TYPES_DOMAIN
3823 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3824 {
3825 type_print (SYMBOL_TYPE (sym),
3826 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3827 ? "" : SYMBOL_PRINT_NAME (sym)),
3828 gdb_stdout, 0);
3829
3830 printf_filtered (";\n");
3831 }
3832 }
3833
3834 /* This help function for symtab_symbol_info() prints information
3835 for non-debugging symbols to gdb_stdout. */
3836
3837 static void
3838 print_msymbol_info (struct bound_minimal_symbol msymbol)
3839 {
3840 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3841 char *tmp;
3842
3843 if (gdbarch_addr_bit (gdbarch) <= 32)
3844 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3845 & (CORE_ADDR) 0xffffffff,
3846 8);
3847 else
3848 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3849 16);
3850 printf_filtered ("%s %s\n",
3851 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3852 }
3853
3854 /* This is the guts of the commands "info functions", "info types", and
3855 "info variables". It calls search_symbols to find all matches and then
3856 print_[m]symbol_info to print out some useful information about the
3857 matches. */
3858
3859 static void
3860 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3861 {
3862 static const char * const classnames[] =
3863 {"variable", "function", "type"};
3864 struct symbol_search *symbols;
3865 struct symbol_search *p;
3866 struct cleanup *old_chain;
3867 const char *last_filename = NULL;
3868 int first = 1;
3869
3870 gdb_assert (kind <= TYPES_DOMAIN);
3871
3872 /* Must make sure that if we're interrupted, symbols gets freed. */
3873 search_symbols (regexp, kind, 0, NULL, &symbols);
3874 old_chain = make_cleanup_free_search_symbols (&symbols);
3875
3876 if (regexp != NULL)
3877 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3878 classnames[kind], regexp);
3879 else
3880 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3881
3882 for (p = symbols; p != NULL; p = p->next)
3883 {
3884 QUIT;
3885
3886 if (p->msymbol.minsym != NULL)
3887 {
3888 if (first)
3889 {
3890 printf_filtered (_("\nNon-debugging symbols:\n"));
3891 first = 0;
3892 }
3893 print_msymbol_info (p->msymbol);
3894 }
3895 else
3896 {
3897 print_symbol_info (kind,
3898 p->symtab,
3899 p->symbol,
3900 p->block,
3901 last_filename);
3902 last_filename = symtab_to_filename_for_display (p->symtab);
3903 }
3904 }
3905
3906 do_cleanups (old_chain);
3907 }
3908
3909 static void
3910 variables_info (char *regexp, int from_tty)
3911 {
3912 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3913 }
3914
3915 static void
3916 functions_info (char *regexp, int from_tty)
3917 {
3918 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3919 }
3920
3921
3922 static void
3923 types_info (char *regexp, int from_tty)
3924 {
3925 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3926 }
3927
3928 /* Breakpoint all functions matching regular expression. */
3929
3930 void
3931 rbreak_command_wrapper (char *regexp, int from_tty)
3932 {
3933 rbreak_command (regexp, from_tty);
3934 }
3935
3936 /* A cleanup function that calls end_rbreak_breakpoints. */
3937
3938 static void
3939 do_end_rbreak_breakpoints (void *ignore)
3940 {
3941 end_rbreak_breakpoints ();
3942 }
3943
3944 static void
3945 rbreak_command (char *regexp, int from_tty)
3946 {
3947 struct symbol_search *ss;
3948 struct symbol_search *p;
3949 struct cleanup *old_chain;
3950 char *string = NULL;
3951 int len = 0;
3952 const char **files = NULL;
3953 const char *file_name;
3954 int nfiles = 0;
3955
3956 if (regexp)
3957 {
3958 char *colon = strchr (regexp, ':');
3959
3960 if (colon && *(colon + 1) != ':')
3961 {
3962 int colon_index;
3963 char *local_name;
3964
3965 colon_index = colon - regexp;
3966 local_name = alloca (colon_index + 1);
3967 memcpy (local_name, regexp, colon_index);
3968 local_name[colon_index--] = 0;
3969 while (isspace (local_name[colon_index]))
3970 local_name[colon_index--] = 0;
3971 file_name = local_name;
3972 files = &file_name;
3973 nfiles = 1;
3974 regexp = skip_spaces (colon + 1);
3975 }
3976 }
3977
3978 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3979 old_chain = make_cleanup_free_search_symbols (&ss);
3980 make_cleanup (free_current_contents, &string);
3981
3982 start_rbreak_breakpoints ();
3983 make_cleanup (do_end_rbreak_breakpoints, NULL);
3984 for (p = ss; p != NULL; p = p->next)
3985 {
3986 if (p->msymbol.minsym == NULL)
3987 {
3988 const char *fullname = symtab_to_fullname (p->symtab);
3989
3990 int newlen = (strlen (fullname)
3991 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3992 + 4);
3993
3994 if (newlen > len)
3995 {
3996 string = xrealloc (string, newlen);
3997 len = newlen;
3998 }
3999 strcpy (string, fullname);
4000 strcat (string, ":'");
4001 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4002 strcat (string, "'");
4003 break_command (string, from_tty);
4004 print_symbol_info (FUNCTIONS_DOMAIN,
4005 p->symtab,
4006 p->symbol,
4007 p->block,
4008 symtab_to_filename_for_display (p->symtab));
4009 }
4010 else
4011 {
4012 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4013
4014 if (newlen > len)
4015 {
4016 string = xrealloc (string, newlen);
4017 len = newlen;
4018 }
4019 strcpy (string, "'");
4020 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4021 strcat (string, "'");
4022
4023 break_command (string, from_tty);
4024 printf_filtered ("<function, no debug info> %s;\n",
4025 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4026 }
4027 }
4028
4029 do_cleanups (old_chain);
4030 }
4031 \f
4032
4033 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4034
4035 Either sym_text[sym_text_len] != '(' and then we search for any
4036 symbol starting with SYM_TEXT text.
4037
4038 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4039 be terminated at that point. Partial symbol tables do not have parameters
4040 information. */
4041
4042 static int
4043 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4044 {
4045 int (*ncmp) (const char *, const char *, size_t);
4046
4047 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4048
4049 if (ncmp (name, sym_text, sym_text_len) != 0)
4050 return 0;
4051
4052 if (sym_text[sym_text_len] == '(')
4053 {
4054 /* User searches for `name(someth...'. Require NAME to be terminated.
4055 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4056 present but accept even parameters presence. In this case this
4057 function is in fact strcmp_iw but whitespace skipping is not supported
4058 for tab completion. */
4059
4060 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4061 return 0;
4062 }
4063
4064 return 1;
4065 }
4066
4067 /* Free any memory associated with a completion list. */
4068
4069 static void
4070 free_completion_list (VEC (char_ptr) **list_ptr)
4071 {
4072 int i;
4073 char *p;
4074
4075 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4076 xfree (p);
4077 VEC_free (char_ptr, *list_ptr);
4078 }
4079
4080 /* Callback for make_cleanup. */
4081
4082 static void
4083 do_free_completion_list (void *list)
4084 {
4085 free_completion_list (list);
4086 }
4087
4088 /* Helper routine for make_symbol_completion_list. */
4089
4090 static VEC (char_ptr) *return_val;
4091
4092 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4093 completion_list_add_name \
4094 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4095
4096 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4097 completion_list_add_name \
4098 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4099
4100 /* Test to see if the symbol specified by SYMNAME (which is already
4101 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4102 characters. If so, add it to the current completion list. */
4103
4104 static void
4105 completion_list_add_name (const char *symname,
4106 const char *sym_text, int sym_text_len,
4107 const char *text, const char *word)
4108 {
4109 /* Clip symbols that cannot match. */
4110 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4111 return;
4112
4113 /* We have a match for a completion, so add SYMNAME to the current list
4114 of matches. Note that the name is moved to freshly malloc'd space. */
4115
4116 {
4117 char *new;
4118
4119 if (word == sym_text)
4120 {
4121 new = xmalloc (strlen (symname) + 5);
4122 strcpy (new, symname);
4123 }
4124 else if (word > sym_text)
4125 {
4126 /* Return some portion of symname. */
4127 new = xmalloc (strlen (symname) + 5);
4128 strcpy (new, symname + (word - sym_text));
4129 }
4130 else
4131 {
4132 /* Return some of SYM_TEXT plus symname. */
4133 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4134 strncpy (new, word, sym_text - word);
4135 new[sym_text - word] = '\0';
4136 strcat (new, symname);
4137 }
4138
4139 VEC_safe_push (char_ptr, return_val, new);
4140 }
4141 }
4142
4143 /* ObjC: In case we are completing on a selector, look as the msymbol
4144 again and feed all the selectors into the mill. */
4145
4146 static void
4147 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4148 const char *sym_text, int sym_text_len,
4149 const char *text, const char *word)
4150 {
4151 static char *tmp = NULL;
4152 static unsigned int tmplen = 0;
4153
4154 const char *method, *category, *selector;
4155 char *tmp2 = NULL;
4156
4157 method = MSYMBOL_NATURAL_NAME (msymbol);
4158
4159 /* Is it a method? */
4160 if ((method[0] != '-') && (method[0] != '+'))
4161 return;
4162
4163 if (sym_text[0] == '[')
4164 /* Complete on shortened method method. */
4165 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4166
4167 while ((strlen (method) + 1) >= tmplen)
4168 {
4169 if (tmplen == 0)
4170 tmplen = 1024;
4171 else
4172 tmplen *= 2;
4173 tmp = xrealloc (tmp, tmplen);
4174 }
4175 selector = strchr (method, ' ');
4176 if (selector != NULL)
4177 selector++;
4178
4179 category = strchr (method, '(');
4180
4181 if ((category != NULL) && (selector != NULL))
4182 {
4183 memcpy (tmp, method, (category - method));
4184 tmp[category - method] = ' ';
4185 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4186 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4187 if (sym_text[0] == '[')
4188 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4189 }
4190
4191 if (selector != NULL)
4192 {
4193 /* Complete on selector only. */
4194 strcpy (tmp, selector);
4195 tmp2 = strchr (tmp, ']');
4196 if (tmp2 != NULL)
4197 *tmp2 = '\0';
4198
4199 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4200 }
4201 }
4202
4203 /* Break the non-quoted text based on the characters which are in
4204 symbols. FIXME: This should probably be language-specific. */
4205
4206 static const char *
4207 language_search_unquoted_string (const char *text, const char *p)
4208 {
4209 for (; p > text; --p)
4210 {
4211 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4212 continue;
4213 else
4214 {
4215 if ((current_language->la_language == language_objc))
4216 {
4217 if (p[-1] == ':') /* Might be part of a method name. */
4218 continue;
4219 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4220 p -= 2; /* Beginning of a method name. */
4221 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4222 { /* Might be part of a method name. */
4223 const char *t = p;
4224
4225 /* Seeing a ' ' or a '(' is not conclusive evidence
4226 that we are in the middle of a method name. However,
4227 finding "-[" or "+[" should be pretty un-ambiguous.
4228 Unfortunately we have to find it now to decide. */
4229
4230 while (t > text)
4231 if (isalnum (t[-1]) || t[-1] == '_' ||
4232 t[-1] == ' ' || t[-1] == ':' ||
4233 t[-1] == '(' || t[-1] == ')')
4234 --t;
4235 else
4236 break;
4237
4238 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4239 p = t - 2; /* Method name detected. */
4240 /* Else we leave with p unchanged. */
4241 }
4242 }
4243 break;
4244 }
4245 }
4246 return p;
4247 }
4248
4249 static void
4250 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4251 int sym_text_len, const char *text,
4252 const char *word)
4253 {
4254 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4255 {
4256 struct type *t = SYMBOL_TYPE (sym);
4257 enum type_code c = TYPE_CODE (t);
4258 int j;
4259
4260 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4261 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4262 if (TYPE_FIELD_NAME (t, j))
4263 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4264 sym_text, sym_text_len, text, word);
4265 }
4266 }
4267
4268 /* Type of the user_data argument passed to add_macro_name or
4269 symbol_completion_matcher. The contents are simply whatever is
4270 needed by completion_list_add_name. */
4271 struct add_name_data
4272 {
4273 const char *sym_text;
4274 int sym_text_len;
4275 const char *text;
4276 const char *word;
4277 };
4278
4279 /* A callback used with macro_for_each and macro_for_each_in_scope.
4280 This adds a macro's name to the current completion list. */
4281
4282 static void
4283 add_macro_name (const char *name, const struct macro_definition *ignore,
4284 struct macro_source_file *ignore2, int ignore3,
4285 void *user_data)
4286 {
4287 struct add_name_data *datum = (struct add_name_data *) user_data;
4288
4289 completion_list_add_name (name,
4290 datum->sym_text, datum->sym_text_len,
4291 datum->text, datum->word);
4292 }
4293
4294 /* A callback for expand_symtabs_matching. */
4295
4296 static int
4297 symbol_completion_matcher (const char *name, void *user_data)
4298 {
4299 struct add_name_data *datum = (struct add_name_data *) user_data;
4300
4301 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4302 }
4303
4304 VEC (char_ptr) *
4305 default_make_symbol_completion_list_break_on (const char *text,
4306 const char *word,
4307 const char *break_on,
4308 enum type_code code)
4309 {
4310 /* Problem: All of the symbols have to be copied because readline
4311 frees them. I'm not going to worry about this; hopefully there
4312 won't be that many. */
4313
4314 struct symbol *sym;
4315 struct symtab *s;
4316 struct minimal_symbol *msymbol;
4317 struct objfile *objfile;
4318 const struct block *b;
4319 const struct block *surrounding_static_block, *surrounding_global_block;
4320 struct block_iterator iter;
4321 /* The symbol we are completing on. Points in same buffer as text. */
4322 const char *sym_text;
4323 /* Length of sym_text. */
4324 int sym_text_len;
4325 struct add_name_data datum;
4326 struct cleanup *back_to;
4327
4328 /* Now look for the symbol we are supposed to complete on. */
4329 {
4330 const char *p;
4331 char quote_found;
4332 const char *quote_pos = NULL;
4333
4334 /* First see if this is a quoted string. */
4335 quote_found = '\0';
4336 for (p = text; *p != '\0'; ++p)
4337 {
4338 if (quote_found != '\0')
4339 {
4340 if (*p == quote_found)
4341 /* Found close quote. */
4342 quote_found = '\0';
4343 else if (*p == '\\' && p[1] == quote_found)
4344 /* A backslash followed by the quote character
4345 doesn't end the string. */
4346 ++p;
4347 }
4348 else if (*p == '\'' || *p == '"')
4349 {
4350 quote_found = *p;
4351 quote_pos = p;
4352 }
4353 }
4354 if (quote_found == '\'')
4355 /* A string within single quotes can be a symbol, so complete on it. */
4356 sym_text = quote_pos + 1;
4357 else if (quote_found == '"')
4358 /* A double-quoted string is never a symbol, nor does it make sense
4359 to complete it any other way. */
4360 {
4361 return NULL;
4362 }
4363 else
4364 {
4365 /* It is not a quoted string. Break it based on the characters
4366 which are in symbols. */
4367 while (p > text)
4368 {
4369 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4370 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4371 --p;
4372 else
4373 break;
4374 }
4375 sym_text = p;
4376 }
4377 }
4378
4379 sym_text_len = strlen (sym_text);
4380
4381 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4382
4383 if (current_language->la_language == language_cplus
4384 || current_language->la_language == language_java
4385 || current_language->la_language == language_fortran)
4386 {
4387 /* These languages may have parameters entered by user but they are never
4388 present in the partial symbol tables. */
4389
4390 const char *cs = memchr (sym_text, '(', sym_text_len);
4391
4392 if (cs)
4393 sym_text_len = cs - sym_text;
4394 }
4395 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4396
4397 return_val = NULL;
4398 back_to = make_cleanup (do_free_completion_list, &return_val);
4399
4400 datum.sym_text = sym_text;
4401 datum.sym_text_len = sym_text_len;
4402 datum.text = text;
4403 datum.word = word;
4404
4405 /* Look through the partial symtabs for all symbols which begin
4406 by matching SYM_TEXT. Expand all CUs that you find to the list.
4407 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4408 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4409 &datum);
4410
4411 /* At this point scan through the misc symbol vectors and add each
4412 symbol you find to the list. Eventually we want to ignore
4413 anything that isn't a text symbol (everything else will be
4414 handled by the psymtab code above). */
4415
4416 if (code == TYPE_CODE_UNDEF)
4417 {
4418 ALL_MSYMBOLS (objfile, msymbol)
4419 {
4420 QUIT;
4421 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4422 word);
4423
4424 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4425 word);
4426 }
4427 }
4428
4429 /* Search upwards from currently selected frame (so that we can
4430 complete on local vars). Also catch fields of types defined in
4431 this places which match our text string. Only complete on types
4432 visible from current context. */
4433
4434 b = get_selected_block (0);
4435 surrounding_static_block = block_static_block (b);
4436 surrounding_global_block = block_global_block (b);
4437 if (surrounding_static_block != NULL)
4438 while (b != surrounding_static_block)
4439 {
4440 QUIT;
4441
4442 ALL_BLOCK_SYMBOLS (b, iter, sym)
4443 {
4444 if (code == TYPE_CODE_UNDEF)
4445 {
4446 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4447 word);
4448 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4449 word);
4450 }
4451 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4452 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4453 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4454 word);
4455 }
4456
4457 /* Stop when we encounter an enclosing function. Do not stop for
4458 non-inlined functions - the locals of the enclosing function
4459 are in scope for a nested function. */
4460 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4461 break;
4462 b = BLOCK_SUPERBLOCK (b);
4463 }
4464
4465 /* Add fields from the file's types; symbols will be added below. */
4466
4467 if (code == TYPE_CODE_UNDEF)
4468 {
4469 if (surrounding_static_block != NULL)
4470 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4471 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4472
4473 if (surrounding_global_block != NULL)
4474 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4475 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4476 }
4477
4478 /* Go through the symtabs and check the externs and statics for
4479 symbols which match. */
4480
4481 ALL_PRIMARY_SYMTABS (objfile, s)
4482 {
4483 QUIT;
4484 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4485 ALL_BLOCK_SYMBOLS (b, iter, sym)
4486 {
4487 if (code == TYPE_CODE_UNDEF
4488 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4489 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4490 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4491 }
4492 }
4493
4494 ALL_PRIMARY_SYMTABS (objfile, s)
4495 {
4496 QUIT;
4497 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4498 ALL_BLOCK_SYMBOLS (b, iter, sym)
4499 {
4500 if (code == TYPE_CODE_UNDEF
4501 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4502 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4503 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4504 }
4505 }
4506
4507 /* Skip macros if we are completing a struct tag -- arguable but
4508 usually what is expected. */
4509 if (current_language->la_macro_expansion == macro_expansion_c
4510 && code == TYPE_CODE_UNDEF)
4511 {
4512 struct macro_scope *scope;
4513
4514 /* Add any macros visible in the default scope. Note that this
4515 may yield the occasional wrong result, because an expression
4516 might be evaluated in a scope other than the default. For
4517 example, if the user types "break file:line if <TAB>", the
4518 resulting expression will be evaluated at "file:line" -- but
4519 at there does not seem to be a way to detect this at
4520 completion time. */
4521 scope = default_macro_scope ();
4522 if (scope)
4523 {
4524 macro_for_each_in_scope (scope->file, scope->line,
4525 add_macro_name, &datum);
4526 xfree (scope);
4527 }
4528
4529 /* User-defined macros are always visible. */
4530 macro_for_each (macro_user_macros, add_macro_name, &datum);
4531 }
4532
4533 discard_cleanups (back_to);
4534 return (return_val);
4535 }
4536
4537 VEC (char_ptr) *
4538 default_make_symbol_completion_list (const char *text, const char *word,
4539 enum type_code code)
4540 {
4541 return default_make_symbol_completion_list_break_on (text, word, "", code);
4542 }
4543
4544 /* Return a vector of all symbols (regardless of class) which begin by
4545 matching TEXT. If the answer is no symbols, then the return value
4546 is NULL. */
4547
4548 VEC (char_ptr) *
4549 make_symbol_completion_list (const char *text, const char *word)
4550 {
4551 return current_language->la_make_symbol_completion_list (text, word,
4552 TYPE_CODE_UNDEF);
4553 }
4554
4555 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4556 symbols whose type code is CODE. */
4557
4558 VEC (char_ptr) *
4559 make_symbol_completion_type (const char *text, const char *word,
4560 enum type_code code)
4561 {
4562 gdb_assert (code == TYPE_CODE_UNION
4563 || code == TYPE_CODE_STRUCT
4564 || code == TYPE_CODE_CLASS
4565 || code == TYPE_CODE_ENUM);
4566 return current_language->la_make_symbol_completion_list (text, word, code);
4567 }
4568
4569 /* Like make_symbol_completion_list, but suitable for use as a
4570 completion function. */
4571
4572 VEC (char_ptr) *
4573 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4574 const char *text, const char *word)
4575 {
4576 return make_symbol_completion_list (text, word);
4577 }
4578
4579 /* Like make_symbol_completion_list, but returns a list of symbols
4580 defined in a source file FILE. */
4581
4582 VEC (char_ptr) *
4583 make_file_symbol_completion_list (const char *text, const char *word,
4584 const char *srcfile)
4585 {
4586 struct symbol *sym;
4587 struct symtab *s;
4588 struct block *b;
4589 struct block_iterator iter;
4590 /* The symbol we are completing on. Points in same buffer as text. */
4591 const char *sym_text;
4592 /* Length of sym_text. */
4593 int sym_text_len;
4594
4595 /* Now look for the symbol we are supposed to complete on.
4596 FIXME: This should be language-specific. */
4597 {
4598 const char *p;
4599 char quote_found;
4600 const char *quote_pos = NULL;
4601
4602 /* First see if this is a quoted string. */
4603 quote_found = '\0';
4604 for (p = text; *p != '\0'; ++p)
4605 {
4606 if (quote_found != '\0')
4607 {
4608 if (*p == quote_found)
4609 /* Found close quote. */
4610 quote_found = '\0';
4611 else if (*p == '\\' && p[1] == quote_found)
4612 /* A backslash followed by the quote character
4613 doesn't end the string. */
4614 ++p;
4615 }
4616 else if (*p == '\'' || *p == '"')
4617 {
4618 quote_found = *p;
4619 quote_pos = p;
4620 }
4621 }
4622 if (quote_found == '\'')
4623 /* A string within single quotes can be a symbol, so complete on it. */
4624 sym_text = quote_pos + 1;
4625 else if (quote_found == '"')
4626 /* A double-quoted string is never a symbol, nor does it make sense
4627 to complete it any other way. */
4628 {
4629 return NULL;
4630 }
4631 else
4632 {
4633 /* Not a quoted string. */
4634 sym_text = language_search_unquoted_string (text, p);
4635 }
4636 }
4637
4638 sym_text_len = strlen (sym_text);
4639
4640 return_val = NULL;
4641
4642 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4643 in). */
4644 s = lookup_symtab (srcfile);
4645 if (s == NULL)
4646 {
4647 /* Maybe they typed the file with leading directories, while the
4648 symbol tables record only its basename. */
4649 const char *tail = lbasename (srcfile);
4650
4651 if (tail > srcfile)
4652 s = lookup_symtab (tail);
4653 }
4654
4655 /* If we have no symtab for that file, return an empty list. */
4656 if (s == NULL)
4657 return (return_val);
4658
4659 /* Go through this symtab and check the externs and statics for
4660 symbols which match. */
4661
4662 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4663 ALL_BLOCK_SYMBOLS (b, iter, sym)
4664 {
4665 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4666 }
4667
4668 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4669 ALL_BLOCK_SYMBOLS (b, iter, sym)
4670 {
4671 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4672 }
4673
4674 return (return_val);
4675 }
4676
4677 /* A helper function for make_source_files_completion_list. It adds
4678 another file name to a list of possible completions, growing the
4679 list as necessary. */
4680
4681 static void
4682 add_filename_to_list (const char *fname, const char *text, const char *word,
4683 VEC (char_ptr) **list)
4684 {
4685 char *new;
4686 size_t fnlen = strlen (fname);
4687
4688 if (word == text)
4689 {
4690 /* Return exactly fname. */
4691 new = xmalloc (fnlen + 5);
4692 strcpy (new, fname);
4693 }
4694 else if (word > text)
4695 {
4696 /* Return some portion of fname. */
4697 new = xmalloc (fnlen + 5);
4698 strcpy (new, fname + (word - text));
4699 }
4700 else
4701 {
4702 /* Return some of TEXT plus fname. */
4703 new = xmalloc (fnlen + (text - word) + 5);
4704 strncpy (new, word, text - word);
4705 new[text - word] = '\0';
4706 strcat (new, fname);
4707 }
4708 VEC_safe_push (char_ptr, *list, new);
4709 }
4710
4711 static int
4712 not_interesting_fname (const char *fname)
4713 {
4714 static const char *illegal_aliens[] = {
4715 "_globals_", /* inserted by coff_symtab_read */
4716 NULL
4717 };
4718 int i;
4719
4720 for (i = 0; illegal_aliens[i]; i++)
4721 {
4722 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4723 return 1;
4724 }
4725 return 0;
4726 }
4727
4728 /* An object of this type is passed as the user_data argument to
4729 map_partial_symbol_filenames. */
4730 struct add_partial_filename_data
4731 {
4732 struct filename_seen_cache *filename_seen_cache;
4733 const char *text;
4734 const char *word;
4735 int text_len;
4736 VEC (char_ptr) **list;
4737 };
4738
4739 /* A callback for map_partial_symbol_filenames. */
4740
4741 static void
4742 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4743 void *user_data)
4744 {
4745 struct add_partial_filename_data *data = user_data;
4746
4747 if (not_interesting_fname (filename))
4748 return;
4749 if (!filename_seen (data->filename_seen_cache, filename, 1)
4750 && filename_ncmp (filename, data->text, data->text_len) == 0)
4751 {
4752 /* This file matches for a completion; add it to the
4753 current list of matches. */
4754 add_filename_to_list (filename, data->text, data->word, data->list);
4755 }
4756 else
4757 {
4758 const char *base_name = lbasename (filename);
4759
4760 if (base_name != filename
4761 && !filename_seen (data->filename_seen_cache, base_name, 1)
4762 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4763 add_filename_to_list (base_name, data->text, data->word, data->list);
4764 }
4765 }
4766
4767 /* Return a vector of all source files whose names begin with matching
4768 TEXT. The file names are looked up in the symbol tables of this
4769 program. If the answer is no matchess, then the return value is
4770 NULL. */
4771
4772 VEC (char_ptr) *
4773 make_source_files_completion_list (const char *text, const char *word)
4774 {
4775 struct symtab *s;
4776 struct objfile *objfile;
4777 size_t text_len = strlen (text);
4778 VEC (char_ptr) *list = NULL;
4779 const char *base_name;
4780 struct add_partial_filename_data datum;
4781 struct filename_seen_cache *filename_seen_cache;
4782 struct cleanup *back_to, *cache_cleanup;
4783
4784 if (!have_full_symbols () && !have_partial_symbols ())
4785 return list;
4786
4787 back_to = make_cleanup (do_free_completion_list, &list);
4788
4789 filename_seen_cache = create_filename_seen_cache ();
4790 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4791 filename_seen_cache);
4792
4793 ALL_SYMTABS (objfile, s)
4794 {
4795 if (not_interesting_fname (s->filename))
4796 continue;
4797 if (!filename_seen (filename_seen_cache, s->filename, 1)
4798 && filename_ncmp (s->filename, text, text_len) == 0)
4799 {
4800 /* This file matches for a completion; add it to the current
4801 list of matches. */
4802 add_filename_to_list (s->filename, text, word, &list);
4803 }
4804 else
4805 {
4806 /* NOTE: We allow the user to type a base name when the
4807 debug info records leading directories, but not the other
4808 way around. This is what subroutines of breakpoint
4809 command do when they parse file names. */
4810 base_name = lbasename (s->filename);
4811 if (base_name != s->filename
4812 && !filename_seen (filename_seen_cache, base_name, 1)
4813 && filename_ncmp (base_name, text, text_len) == 0)
4814 add_filename_to_list (base_name, text, word, &list);
4815 }
4816 }
4817
4818 datum.filename_seen_cache = filename_seen_cache;
4819 datum.text = text;
4820 datum.word = word;
4821 datum.text_len = text_len;
4822 datum.list = &list;
4823 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4824 0 /*need_fullname*/);
4825
4826 do_cleanups (cache_cleanup);
4827 discard_cleanups (back_to);
4828
4829 return list;
4830 }
4831
4832 /* Determine if PC is in the prologue of a function. The prologue is the area
4833 between the first instruction of a function, and the first executable line.
4834 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4835
4836 If non-zero, func_start is where we think the prologue starts, possibly
4837 by previous examination of symbol table information. */
4838
4839 int
4840 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4841 {
4842 struct symtab_and_line sal;
4843 CORE_ADDR func_addr, func_end;
4844
4845 /* We have several sources of information we can consult to figure
4846 this out.
4847 - Compilers usually emit line number info that marks the prologue
4848 as its own "source line". So the ending address of that "line"
4849 is the end of the prologue. If available, this is the most
4850 reliable method.
4851 - The minimal symbols and partial symbols, which can usually tell
4852 us the starting and ending addresses of a function.
4853 - If we know the function's start address, we can call the
4854 architecture-defined gdbarch_skip_prologue function to analyze the
4855 instruction stream and guess where the prologue ends.
4856 - Our `func_start' argument; if non-zero, this is the caller's
4857 best guess as to the function's entry point. At the time of
4858 this writing, handle_inferior_event doesn't get this right, so
4859 it should be our last resort. */
4860
4861 /* Consult the partial symbol table, to find which function
4862 the PC is in. */
4863 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4864 {
4865 CORE_ADDR prologue_end;
4866
4867 /* We don't even have minsym information, so fall back to using
4868 func_start, if given. */
4869 if (! func_start)
4870 return 1; /* We *might* be in a prologue. */
4871
4872 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4873
4874 return func_start <= pc && pc < prologue_end;
4875 }
4876
4877 /* If we have line number information for the function, that's
4878 usually pretty reliable. */
4879 sal = find_pc_line (func_addr, 0);
4880
4881 /* Now sal describes the source line at the function's entry point,
4882 which (by convention) is the prologue. The end of that "line",
4883 sal.end, is the end of the prologue.
4884
4885 Note that, for functions whose source code is all on a single
4886 line, the line number information doesn't always end up this way.
4887 So we must verify that our purported end-of-prologue address is
4888 *within* the function, not at its start or end. */
4889 if (sal.line == 0
4890 || sal.end <= func_addr
4891 || func_end <= sal.end)
4892 {
4893 /* We don't have any good line number info, so use the minsym
4894 information, together with the architecture-specific prologue
4895 scanning code. */
4896 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4897
4898 return func_addr <= pc && pc < prologue_end;
4899 }
4900
4901 /* We have line number info, and it looks good. */
4902 return func_addr <= pc && pc < sal.end;
4903 }
4904
4905 /* Given PC at the function's start address, attempt to find the
4906 prologue end using SAL information. Return zero if the skip fails.
4907
4908 A non-optimized prologue traditionally has one SAL for the function
4909 and a second for the function body. A single line function has
4910 them both pointing at the same line.
4911
4912 An optimized prologue is similar but the prologue may contain
4913 instructions (SALs) from the instruction body. Need to skip those
4914 while not getting into the function body.
4915
4916 The functions end point and an increasing SAL line are used as
4917 indicators of the prologue's endpoint.
4918
4919 This code is based on the function refine_prologue_limit
4920 (found in ia64). */
4921
4922 CORE_ADDR
4923 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4924 {
4925 struct symtab_and_line prologue_sal;
4926 CORE_ADDR start_pc;
4927 CORE_ADDR end_pc;
4928 const struct block *bl;
4929
4930 /* Get an initial range for the function. */
4931 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4932 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4933
4934 prologue_sal = find_pc_line (start_pc, 0);
4935 if (prologue_sal.line != 0)
4936 {
4937 /* For languages other than assembly, treat two consecutive line
4938 entries at the same address as a zero-instruction prologue.
4939 The GNU assembler emits separate line notes for each instruction
4940 in a multi-instruction macro, but compilers generally will not
4941 do this. */
4942 if (prologue_sal.symtab->language != language_asm)
4943 {
4944 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4945 int idx = 0;
4946
4947 /* Skip any earlier lines, and any end-of-sequence marker
4948 from a previous function. */
4949 while (linetable->item[idx].pc != prologue_sal.pc
4950 || linetable->item[idx].line == 0)
4951 idx++;
4952
4953 if (idx+1 < linetable->nitems
4954 && linetable->item[idx+1].line != 0
4955 && linetable->item[idx+1].pc == start_pc)
4956 return start_pc;
4957 }
4958
4959 /* If there is only one sal that covers the entire function,
4960 then it is probably a single line function, like
4961 "foo(){}". */
4962 if (prologue_sal.end >= end_pc)
4963 return 0;
4964
4965 while (prologue_sal.end < end_pc)
4966 {
4967 struct symtab_and_line sal;
4968
4969 sal = find_pc_line (prologue_sal.end, 0);
4970 if (sal.line == 0)
4971 break;
4972 /* Assume that a consecutive SAL for the same (or larger)
4973 line mark the prologue -> body transition. */
4974 if (sal.line >= prologue_sal.line)
4975 break;
4976 /* Likewise if we are in a different symtab altogether
4977 (e.g. within a file included via #include).  */
4978 if (sal.symtab != prologue_sal.symtab)
4979 break;
4980
4981 /* The line number is smaller. Check that it's from the
4982 same function, not something inlined. If it's inlined,
4983 then there is no point comparing the line numbers. */
4984 bl = block_for_pc (prologue_sal.end);
4985 while (bl)
4986 {
4987 if (block_inlined_p (bl))
4988 break;
4989 if (BLOCK_FUNCTION (bl))
4990 {
4991 bl = NULL;
4992 break;
4993 }
4994 bl = BLOCK_SUPERBLOCK (bl);
4995 }
4996 if (bl != NULL)
4997 break;
4998
4999 /* The case in which compiler's optimizer/scheduler has
5000 moved instructions into the prologue. We look ahead in
5001 the function looking for address ranges whose
5002 corresponding line number is less the first one that we
5003 found for the function. This is more conservative then
5004 refine_prologue_limit which scans a large number of SALs
5005 looking for any in the prologue. */
5006 prologue_sal = sal;
5007 }
5008 }
5009
5010 if (prologue_sal.end < end_pc)
5011 /* Return the end of this line, or zero if we could not find a
5012 line. */
5013 return prologue_sal.end;
5014 else
5015 /* Don't return END_PC, which is past the end of the function. */
5016 return prologue_sal.pc;
5017 }
5018 \f
5019 /* Track MAIN */
5020
5021 /* Return the "main_info" object for the current program space. If
5022 the object has not yet been created, create it and fill in some
5023 default values. */
5024
5025 static struct main_info *
5026 get_main_info (void)
5027 {
5028 struct main_info *info = program_space_data (current_program_space,
5029 main_progspace_key);
5030
5031 if (info == NULL)
5032 {
5033 /* It may seem strange to store the main name in the progspace
5034 and also in whatever objfile happens to see a main name in
5035 its debug info. The reason for this is mainly historical:
5036 gdb returned "main" as the name even if no function named
5037 "main" was defined the program; and this approach lets us
5038 keep compatibility. */
5039 info = XCNEW (struct main_info);
5040 info->language_of_main = language_unknown;
5041 set_program_space_data (current_program_space, main_progspace_key,
5042 info);
5043 }
5044
5045 return info;
5046 }
5047
5048 /* A cleanup to destroy a struct main_info when a progspace is
5049 destroyed. */
5050
5051 static void
5052 main_info_cleanup (struct program_space *pspace, void *data)
5053 {
5054 struct main_info *info = data;
5055
5056 if (info != NULL)
5057 xfree (info->name_of_main);
5058 xfree (info);
5059 }
5060
5061 static void
5062 set_main_name (const char *name, enum language lang)
5063 {
5064 struct main_info *info = get_main_info ();
5065
5066 if (info->name_of_main != NULL)
5067 {
5068 xfree (info->name_of_main);
5069 info->name_of_main = NULL;
5070 info->language_of_main = language_unknown;
5071 }
5072 if (name != NULL)
5073 {
5074 info->name_of_main = xstrdup (name);
5075 info->language_of_main = lang;
5076 }
5077 }
5078
5079 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5080 accordingly. */
5081
5082 static void
5083 find_main_name (void)
5084 {
5085 const char *new_main_name;
5086 struct objfile *objfile;
5087
5088 /* First check the objfiles to see whether a debuginfo reader has
5089 picked up the appropriate main name. Historically the main name
5090 was found in a more or less random way; this approach instead
5091 relies on the order of objfile creation -- which still isn't
5092 guaranteed to get the correct answer, but is just probably more
5093 accurate. */
5094 ALL_OBJFILES (objfile)
5095 {
5096 if (objfile->per_bfd->name_of_main != NULL)
5097 {
5098 set_main_name (objfile->per_bfd->name_of_main,
5099 objfile->per_bfd->language_of_main);
5100 return;
5101 }
5102 }
5103
5104 /* Try to see if the main procedure is in Ada. */
5105 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5106 be to add a new method in the language vector, and call this
5107 method for each language until one of them returns a non-empty
5108 name. This would allow us to remove this hard-coded call to
5109 an Ada function. It is not clear that this is a better approach
5110 at this point, because all methods need to be written in a way
5111 such that false positives never be returned. For instance, it is
5112 important that a method does not return a wrong name for the main
5113 procedure if the main procedure is actually written in a different
5114 language. It is easy to guaranty this with Ada, since we use a
5115 special symbol generated only when the main in Ada to find the name
5116 of the main procedure. It is difficult however to see how this can
5117 be guarantied for languages such as C, for instance. This suggests
5118 that order of call for these methods becomes important, which means
5119 a more complicated approach. */
5120 new_main_name = ada_main_name ();
5121 if (new_main_name != NULL)
5122 {
5123 set_main_name (new_main_name, language_ada);
5124 return;
5125 }
5126
5127 new_main_name = d_main_name ();
5128 if (new_main_name != NULL)
5129 {
5130 set_main_name (new_main_name, language_d);
5131 return;
5132 }
5133
5134 new_main_name = go_main_name ();
5135 if (new_main_name != NULL)
5136 {
5137 set_main_name (new_main_name, language_go);
5138 return;
5139 }
5140
5141 new_main_name = pascal_main_name ();
5142 if (new_main_name != NULL)
5143 {
5144 set_main_name (new_main_name, language_pascal);
5145 return;
5146 }
5147
5148 /* The languages above didn't identify the name of the main procedure.
5149 Fallback to "main". */
5150 set_main_name ("main", language_unknown);
5151 }
5152
5153 char *
5154 main_name (void)
5155 {
5156 struct main_info *info = get_main_info ();
5157
5158 if (info->name_of_main == NULL)
5159 find_main_name ();
5160
5161 return info->name_of_main;
5162 }
5163
5164 /* Return the language of the main function. If it is not known,
5165 return language_unknown. */
5166
5167 enum language
5168 main_language (void)
5169 {
5170 struct main_info *info = get_main_info ();
5171
5172 if (info->name_of_main == NULL)
5173 find_main_name ();
5174
5175 return info->language_of_main;
5176 }
5177
5178 /* Handle ``executable_changed'' events for the symtab module. */
5179
5180 static void
5181 symtab_observer_executable_changed (void)
5182 {
5183 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5184 set_main_name (NULL, language_unknown);
5185 }
5186
5187 /* Return 1 if the supplied producer string matches the ARM RealView
5188 compiler (armcc). */
5189
5190 int
5191 producer_is_realview (const char *producer)
5192 {
5193 static const char *const arm_idents[] = {
5194 "ARM C Compiler, ADS",
5195 "Thumb C Compiler, ADS",
5196 "ARM C++ Compiler, ADS",
5197 "Thumb C++ Compiler, ADS",
5198 "ARM/Thumb C/C++ Compiler, RVCT",
5199 "ARM C/C++ Compiler, RVCT"
5200 };
5201 int i;
5202
5203 if (producer == NULL)
5204 return 0;
5205
5206 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5207 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5208 return 1;
5209
5210 return 0;
5211 }
5212
5213 \f
5214
5215 /* The next index to hand out in response to a registration request. */
5216
5217 static int next_aclass_value = LOC_FINAL_VALUE;
5218
5219 /* The maximum number of "aclass" registrations we support. This is
5220 constant for convenience. */
5221 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5222
5223 /* The objects representing the various "aclass" values. The elements
5224 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5225 elements are those registered at gdb initialization time. */
5226
5227 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5228
5229 /* The globally visible pointer. This is separate from 'symbol_impl'
5230 so that it can be const. */
5231
5232 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5233
5234 /* Make sure we saved enough room in struct symbol. */
5235
5236 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5237
5238 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5239 is the ops vector associated with this index. This returns the new
5240 index, which should be used as the aclass_index field for symbols
5241 of this type. */
5242
5243 int
5244 register_symbol_computed_impl (enum address_class aclass,
5245 const struct symbol_computed_ops *ops)
5246 {
5247 int result = next_aclass_value++;
5248
5249 gdb_assert (aclass == LOC_COMPUTED);
5250 gdb_assert (result < MAX_SYMBOL_IMPLS);
5251 symbol_impl[result].aclass = aclass;
5252 symbol_impl[result].ops_computed = ops;
5253
5254 /* Sanity check OPS. */
5255 gdb_assert (ops != NULL);
5256 gdb_assert (ops->tracepoint_var_ref != NULL);
5257 gdb_assert (ops->describe_location != NULL);
5258 gdb_assert (ops->read_needs_frame != NULL);
5259 gdb_assert (ops->read_variable != NULL);
5260
5261 return result;
5262 }
5263
5264 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5265 OPS is the ops vector associated with this index. This returns the
5266 new index, which should be used as the aclass_index field for symbols
5267 of this type. */
5268
5269 int
5270 register_symbol_block_impl (enum address_class aclass,
5271 const struct symbol_block_ops *ops)
5272 {
5273 int result = next_aclass_value++;
5274
5275 gdb_assert (aclass == LOC_BLOCK);
5276 gdb_assert (result < MAX_SYMBOL_IMPLS);
5277 symbol_impl[result].aclass = aclass;
5278 symbol_impl[result].ops_block = ops;
5279
5280 /* Sanity check OPS. */
5281 gdb_assert (ops != NULL);
5282 gdb_assert (ops->find_frame_base_location != NULL);
5283
5284 return result;
5285 }
5286
5287 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5288 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5289 this index. This returns the new index, which should be used as
5290 the aclass_index field for symbols of this type. */
5291
5292 int
5293 register_symbol_register_impl (enum address_class aclass,
5294 const struct symbol_register_ops *ops)
5295 {
5296 int result = next_aclass_value++;
5297
5298 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5299 gdb_assert (result < MAX_SYMBOL_IMPLS);
5300 symbol_impl[result].aclass = aclass;
5301 symbol_impl[result].ops_register = ops;
5302
5303 return result;
5304 }
5305
5306 /* Initialize elements of 'symbol_impl' for the constants in enum
5307 address_class. */
5308
5309 static void
5310 initialize_ordinary_address_classes (void)
5311 {
5312 int i;
5313
5314 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5315 symbol_impl[i].aclass = i;
5316 }
5317
5318 \f
5319
5320 /* Initialize the symbol SYM. */
5321
5322 void
5323 initialize_symbol (struct symbol *sym)
5324 {
5325 memset (sym, 0, sizeof (*sym));
5326 SYMBOL_SECTION (sym) = -1;
5327 }
5328
5329 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5330 obstack. */
5331
5332 struct symbol *
5333 allocate_symbol (struct objfile *objfile)
5334 {
5335 struct symbol *result;
5336
5337 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5338 SYMBOL_SECTION (result) = -1;
5339
5340 return result;
5341 }
5342
5343 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5344 obstack. */
5345
5346 struct template_symbol *
5347 allocate_template_symbol (struct objfile *objfile)
5348 {
5349 struct template_symbol *result;
5350
5351 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5352 SYMBOL_SECTION (&result->base) = -1;
5353
5354 return result;
5355 }
5356
5357 \f
5358
5359 void
5360 _initialize_symtab (void)
5361 {
5362 initialize_ordinary_address_classes ();
5363
5364 main_progspace_key
5365 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5366
5367 add_info ("variables", variables_info, _("\
5368 All global and static variable names, or those matching REGEXP."));
5369 if (dbx_commands)
5370 add_com ("whereis", class_info, variables_info, _("\
5371 All global and static variable names, or those matching REGEXP."));
5372
5373 add_info ("functions", functions_info,
5374 _("All function names, or those matching REGEXP."));
5375
5376 /* FIXME: This command has at least the following problems:
5377 1. It prints builtin types (in a very strange and confusing fashion).
5378 2. It doesn't print right, e.g. with
5379 typedef struct foo *FOO
5380 type_print prints "FOO" when we want to make it (in this situation)
5381 print "struct foo *".
5382 I also think "ptype" or "whatis" is more likely to be useful (but if
5383 there is much disagreement "info types" can be fixed). */
5384 add_info ("types", types_info,
5385 _("All type names, or those matching REGEXP."));
5386
5387 add_info ("sources", sources_info,
5388 _("Source files in the program."));
5389
5390 add_com ("rbreak", class_breakpoint, rbreak_command,
5391 _("Set a breakpoint for all functions matching REGEXP."));
5392
5393 if (xdb_commands)
5394 {
5395 add_com ("lf", class_info, sources_info,
5396 _("Source files in the program"));
5397 add_com ("lg", class_info, variables_info, _("\
5398 All global and static variable names, or those matching REGEXP."));
5399 }
5400
5401 add_setshow_enum_cmd ("multiple-symbols", no_class,
5402 multiple_symbols_modes, &multiple_symbols_mode,
5403 _("\
5404 Set the debugger behavior when more than one symbol are possible matches\n\
5405 in an expression."), _("\
5406 Show how the debugger handles ambiguities in expressions."), _("\
5407 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5408 NULL, NULL, &setlist, &showlist);
5409
5410 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5411 &basenames_may_differ, _("\
5412 Set whether a source file may have multiple base names."), _("\
5413 Show whether a source file may have multiple base names."), _("\
5414 (A \"base name\" is the name of a file with the directory part removed.\n\
5415 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5416 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5417 before comparing them. Canonicalization is an expensive operation,\n\
5418 but it allows the same file be known by more than one base name.\n\
5419 If not set (the default), all source files are assumed to have just\n\
5420 one base name, and gdb will do file name comparisons more efficiently."),
5421 NULL, NULL,
5422 &setlist, &showlist);
5423
5424 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5425 _("Set debugging of symbol table creation."),
5426 _("Show debugging of symbol table creation."), _("\
5427 When enabled (non-zero), debugging messages are printed when building\n\
5428 symbol tables. A value of 1 (one) normally provides enough information.\n\
5429 A value greater than 1 provides more verbose information."),
5430 NULL,
5431 NULL,
5432 &setdebuglist, &showdebuglist);
5433
5434 observer_attach_executable_changed (symtab_observer_executable_changed);
5435 }
This page took 0.147254 seconds and 4 git commands to generate.