2007-10-10 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "observer.h"
58 #include "gdb_assert.h"
59 #include "solist.h"
60
61 /* Prototypes for local functions */
62
63 static void completion_list_add_name (char *, char *, int, char *, char *);
64
65 static void rbreak_command (char *, int);
66
67 static void types_info (char *, int);
68
69 static void functions_info (char *, int);
70
71 static void variables_info (char *, int);
72
73 static void sources_info (char *, int);
74
75 static void output_source_filename (const char *, int *);
76
77 static int find_line_common (struct linetable *, int, int *);
78
79 /* This one is used by linespec.c */
80
81 char *operator_chars (char *p, char **end);
82
83 static struct symbol *lookup_symbol_aux (const char *name,
84 const char *linkage_name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 int *is_a_field_of_this,
89 struct symtab **symtab);
90
91 static
92 struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain,
96 struct symtab **symtab);
97
98 static
99 struct symbol *lookup_symbol_aux_symtabs (int block_index,
100 const char *name,
101 const char *linkage_name,
102 const domain_enum domain,
103 struct symtab **symtab);
104
105 static
106 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
107 const char *name,
108 const char *linkage_name,
109 const domain_enum domain,
110 struct symtab **symtab);
111
112 static void fixup_section (struct general_symbol_info *, struct objfile *);
113
114 static int file_matches (char *, char **, int);
115
116 static void print_symbol_info (domain_enum,
117 struct symtab *, struct symbol *, int, char *);
118
119 static void print_msymbol_info (struct minimal_symbol *);
120
121 static void symtab_symbol_info (char *, domain_enum, int);
122
123 void _initialize_symtab (void);
124
125 /* */
126
127 /* The single non-language-specific builtin type */
128 struct type *builtin_type_error;
129
130 /* Block in which the most recently searched-for symbol was found.
131 Might be better to make this a parameter to lookup_symbol and
132 value_of_this. */
133
134 const struct block *block_found;
135
136 /* Check for a symtab of a specific name; first in symtabs, then in
137 psymtabs. *If* there is no '/' in the name, a match after a '/'
138 in the symtab filename will also work. */
139
140 struct symtab *
141 lookup_symtab (const char *name)
142 {
143 struct symtab *s;
144 struct partial_symtab *ps;
145 struct objfile *objfile;
146 char *real_path = NULL;
147 char *full_path = NULL;
148
149 /* Here we are interested in canonicalizing an absolute path, not
150 absolutizing a relative path. */
151 if (IS_ABSOLUTE_PATH (name))
152 {
153 full_path = xfullpath (name);
154 make_cleanup (xfree, full_path);
155 real_path = gdb_realpath (name);
156 make_cleanup (xfree, real_path);
157 }
158
159 got_symtab:
160
161 /* First, search for an exact match */
162
163 ALL_SYMTABS (objfile, s)
164 {
165 if (FILENAME_CMP (name, s->filename) == 0)
166 {
167 return s;
168 }
169
170 /* If the user gave us an absolute path, try to find the file in
171 this symtab and use its absolute path. */
172
173 if (full_path != NULL)
174 {
175 const char *fp = symtab_to_fullname (s);
176 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
177 {
178 return s;
179 }
180 }
181
182 if (real_path != NULL)
183 {
184 char *fullname = symtab_to_fullname (s);
185 if (fullname != NULL)
186 {
187 char *rp = gdb_realpath (fullname);
188 make_cleanup (xfree, rp);
189 if (FILENAME_CMP (real_path, rp) == 0)
190 {
191 return s;
192 }
193 }
194 }
195 }
196
197 /* Now, search for a matching tail (only if name doesn't have any dirs) */
198
199 if (lbasename (name) == name)
200 ALL_SYMTABS (objfile, s)
201 {
202 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
203 return s;
204 }
205
206 /* Same search rules as above apply here, but now we look thru the
207 psymtabs. */
208
209 ps = lookup_partial_symtab (name);
210 if (!ps)
211 return (NULL);
212
213 if (ps->readin)
214 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
215 ps->filename, name);
216
217 s = PSYMTAB_TO_SYMTAB (ps);
218
219 if (s)
220 return s;
221
222 /* At this point, we have located the psymtab for this file, but
223 the conversion to a symtab has failed. This usually happens
224 when we are looking up an include file. In this case,
225 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
226 been created. So, we need to run through the symtabs again in
227 order to find the file.
228 XXX - This is a crock, and should be fixed inside of the the
229 symbol parsing routines. */
230 goto got_symtab;
231 }
232
233 /* Lookup the partial symbol table of a source file named NAME.
234 *If* there is no '/' in the name, a match after a '/'
235 in the psymtab filename will also work. */
236
237 struct partial_symtab *
238 lookup_partial_symtab (const char *name)
239 {
240 struct partial_symtab *pst;
241 struct objfile *objfile;
242 char *full_path = NULL;
243 char *real_path = NULL;
244
245 /* Here we are interested in canonicalizing an absolute path, not
246 absolutizing a relative path. */
247 if (IS_ABSOLUTE_PATH (name))
248 {
249 full_path = xfullpath (name);
250 make_cleanup (xfree, full_path);
251 real_path = gdb_realpath (name);
252 make_cleanup (xfree, real_path);
253 }
254
255 ALL_PSYMTABS (objfile, pst)
256 {
257 if (FILENAME_CMP (name, pst->filename) == 0)
258 {
259 return (pst);
260 }
261
262 /* If the user gave us an absolute path, try to find the file in
263 this symtab and use its absolute path. */
264 if (full_path != NULL)
265 {
266 psymtab_to_fullname (pst);
267 if (pst->fullname != NULL
268 && FILENAME_CMP (full_path, pst->fullname) == 0)
269 {
270 return pst;
271 }
272 }
273
274 if (real_path != NULL)
275 {
276 char *rp = NULL;
277 psymtab_to_fullname (pst);
278 if (pst->fullname != NULL)
279 {
280 rp = gdb_realpath (pst->fullname);
281 make_cleanup (xfree, rp);
282 }
283 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
284 {
285 return pst;
286 }
287 }
288 }
289
290 /* Now, search for a matching tail (only if name doesn't have any dirs) */
291
292 if (lbasename (name) == name)
293 ALL_PSYMTABS (objfile, pst)
294 {
295 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
296 return (pst);
297 }
298
299 return (NULL);
300 }
301 \f
302 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
303 full method name, which consist of the class name (from T), the unadorned
304 method name from METHOD_ID, and the signature for the specific overload,
305 specified by SIGNATURE_ID. Note that this function is g++ specific. */
306
307 char *
308 gdb_mangle_name (struct type *type, int method_id, int signature_id)
309 {
310 int mangled_name_len;
311 char *mangled_name;
312 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
313 struct fn_field *method = &f[signature_id];
314 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
315 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
316 char *newname = type_name_no_tag (type);
317
318 /* Does the form of physname indicate that it is the full mangled name
319 of a constructor (not just the args)? */
320 int is_full_physname_constructor;
321
322 int is_constructor;
323 int is_destructor = is_destructor_name (physname);
324 /* Need a new type prefix. */
325 char *const_prefix = method->is_const ? "C" : "";
326 char *volatile_prefix = method->is_volatile ? "V" : "";
327 char buf[20];
328 int len = (newname == NULL ? 0 : strlen (newname));
329
330 /* Nothing to do if physname already contains a fully mangled v3 abi name
331 or an operator name. */
332 if ((physname[0] == '_' && physname[1] == 'Z')
333 || is_operator_name (field_name))
334 return xstrdup (physname);
335
336 is_full_physname_constructor = is_constructor_name (physname);
337
338 is_constructor =
339 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
340
341 if (!is_destructor)
342 is_destructor = (strncmp (physname, "__dt", 4) == 0);
343
344 if (is_destructor || is_full_physname_constructor)
345 {
346 mangled_name = (char *) xmalloc (strlen (physname) + 1);
347 strcpy (mangled_name, physname);
348 return mangled_name;
349 }
350
351 if (len == 0)
352 {
353 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
354 }
355 else if (physname[0] == 't' || physname[0] == 'Q')
356 {
357 /* The physname for template and qualified methods already includes
358 the class name. */
359 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
360 newname = NULL;
361 len = 0;
362 }
363 else
364 {
365 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
366 }
367 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
368 + strlen (buf) + len + strlen (physname) + 1);
369
370 {
371 mangled_name = (char *) xmalloc (mangled_name_len);
372 if (is_constructor)
373 mangled_name[0] = '\0';
374 else
375 strcpy (mangled_name, field_name);
376 }
377 strcat (mangled_name, buf);
378 /* If the class doesn't have a name, i.e. newname NULL, then we just
379 mangle it using 0 for the length of the class. Thus it gets mangled
380 as something starting with `::' rather than `classname::'. */
381 if (newname != NULL)
382 strcat (mangled_name, newname);
383
384 strcat (mangled_name, physname);
385 return (mangled_name);
386 }
387
388 \f
389 /* Initialize the language dependent portion of a symbol
390 depending upon the language for the symbol. */
391 void
392 symbol_init_language_specific (struct general_symbol_info *gsymbol,
393 enum language language)
394 {
395 gsymbol->language = language;
396 if (gsymbol->language == language_cplus
397 || gsymbol->language == language_java
398 || gsymbol->language == language_objc)
399 {
400 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
401 }
402 else
403 {
404 memset (&gsymbol->language_specific, 0,
405 sizeof (gsymbol->language_specific));
406 }
407 }
408
409 /* Functions to initialize a symbol's mangled name. */
410
411 /* Create the hash table used for demangled names. Each hash entry is
412 a pair of strings; one for the mangled name and one for the demangled
413 name. The entry is hashed via just the mangled name. */
414
415 static void
416 create_demangled_names_hash (struct objfile *objfile)
417 {
418 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
419 The hash table code will round this up to the next prime number.
420 Choosing a much larger table size wastes memory, and saves only about
421 1% in symbol reading. */
422
423 objfile->demangled_names_hash = htab_create_alloc
424 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
425 NULL, xcalloc, xfree);
426 }
427
428 /* Try to determine the demangled name for a symbol, based on the
429 language of that symbol. If the language is set to language_auto,
430 it will attempt to find any demangling algorithm that works and
431 then set the language appropriately. The returned name is allocated
432 by the demangler and should be xfree'd. */
433
434 static char *
435 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
436 const char *mangled)
437 {
438 char *demangled = NULL;
439
440 if (gsymbol->language == language_unknown)
441 gsymbol->language = language_auto;
442
443 if (gsymbol->language == language_objc
444 || gsymbol->language == language_auto)
445 {
446 demangled =
447 objc_demangle (mangled, 0);
448 if (demangled != NULL)
449 {
450 gsymbol->language = language_objc;
451 return demangled;
452 }
453 }
454 if (gsymbol->language == language_cplus
455 || gsymbol->language == language_auto)
456 {
457 demangled =
458 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
459 if (demangled != NULL)
460 {
461 gsymbol->language = language_cplus;
462 return demangled;
463 }
464 }
465 if (gsymbol->language == language_java)
466 {
467 demangled =
468 cplus_demangle (mangled,
469 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
470 if (demangled != NULL)
471 {
472 gsymbol->language = language_java;
473 return demangled;
474 }
475 }
476 return NULL;
477 }
478
479 /* Set both the mangled and demangled (if any) names for GSYMBOL based
480 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
481 is used, and the memory comes from that objfile's objfile_obstack.
482 LINKAGE_NAME is copied, so the pointer can be discarded after
483 calling this function. */
484
485 /* We have to be careful when dealing with Java names: when we run
486 into a Java minimal symbol, we don't know it's a Java symbol, so it
487 gets demangled as a C++ name. This is unfortunate, but there's not
488 much we can do about it: but when demangling partial symbols and
489 regular symbols, we'd better not reuse the wrong demangled name.
490 (See PR gdb/1039.) We solve this by putting a distinctive prefix
491 on Java names when storing them in the hash table. */
492
493 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
494 don't mind the Java prefix so much: different languages have
495 different demangling requirements, so it's only natural that we
496 need to keep language data around in our demangling cache. But
497 it's not good that the minimal symbol has the wrong demangled name.
498 Unfortunately, I can't think of any easy solution to that
499 problem. */
500
501 #define JAVA_PREFIX "##JAVA$$"
502 #define JAVA_PREFIX_LEN 8
503
504 void
505 symbol_set_names (struct general_symbol_info *gsymbol,
506 const char *linkage_name, int len, struct objfile *objfile)
507 {
508 char **slot;
509 /* A 0-terminated copy of the linkage name. */
510 const char *linkage_name_copy;
511 /* A copy of the linkage name that might have a special Java prefix
512 added to it, for use when looking names up in the hash table. */
513 const char *lookup_name;
514 /* The length of lookup_name. */
515 int lookup_len;
516
517 if (objfile->demangled_names_hash == NULL)
518 create_demangled_names_hash (objfile);
519
520 /* The stabs reader generally provides names that are not
521 NUL-terminated; most of the other readers don't do this, so we
522 can just use the given copy, unless we're in the Java case. */
523 if (gsymbol->language == language_java)
524 {
525 char *alloc_name;
526 lookup_len = len + JAVA_PREFIX_LEN;
527
528 alloc_name = alloca (lookup_len + 1);
529 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
530 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
531 alloc_name[lookup_len] = '\0';
532
533 lookup_name = alloc_name;
534 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
535 }
536 else if (linkage_name[len] != '\0')
537 {
538 char *alloc_name;
539 lookup_len = len;
540
541 alloc_name = alloca (lookup_len + 1);
542 memcpy (alloc_name, linkage_name, len);
543 alloc_name[lookup_len] = '\0';
544
545 lookup_name = alloc_name;
546 linkage_name_copy = alloc_name;
547 }
548 else
549 {
550 lookup_len = len;
551 lookup_name = linkage_name;
552 linkage_name_copy = linkage_name;
553 }
554
555 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
556 lookup_name, INSERT);
557
558 /* If this name is not in the hash table, add it. */
559 if (*slot == NULL)
560 {
561 char *demangled_name = symbol_find_demangled_name (gsymbol,
562 linkage_name_copy);
563 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
564
565 /* If there is a demangled name, place it right after the mangled name.
566 Otherwise, just place a second zero byte after the end of the mangled
567 name. */
568 *slot = obstack_alloc (&objfile->objfile_obstack,
569 lookup_len + demangled_len + 2);
570 memcpy (*slot, lookup_name, lookup_len + 1);
571 if (demangled_name != NULL)
572 {
573 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
574 xfree (demangled_name);
575 }
576 else
577 (*slot)[lookup_len + 1] = '\0';
578 }
579
580 gsymbol->name = *slot + lookup_len - len;
581 if ((*slot)[lookup_len + 1] != '\0')
582 gsymbol->language_specific.cplus_specific.demangled_name
583 = &(*slot)[lookup_len + 1];
584 else
585 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
586 }
587
588 /* Initialize the demangled name of GSYMBOL if possible. Any required space
589 to store the name is obtained from the specified obstack. The function
590 symbol_set_names, above, should be used instead where possible for more
591 efficient memory usage. */
592
593 void
594 symbol_init_demangled_name (struct general_symbol_info *gsymbol,
595 struct obstack *obstack)
596 {
597 char *mangled = gsymbol->name;
598 char *demangled = NULL;
599
600 demangled = symbol_find_demangled_name (gsymbol, mangled);
601 if (gsymbol->language == language_cplus
602 || gsymbol->language == language_java
603 || gsymbol->language == language_objc)
604 {
605 if (demangled)
606 {
607 gsymbol->language_specific.cplus_specific.demangled_name
608 = obsavestring (demangled, strlen (demangled), obstack);
609 xfree (demangled);
610 }
611 else
612 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
613 }
614 else
615 {
616 /* Unknown language; just clean up quietly. */
617 if (demangled)
618 xfree (demangled);
619 }
620 }
621
622 /* Return the source code name of a symbol. In languages where
623 demangling is necessary, this is the demangled name. */
624
625 char *
626 symbol_natural_name (const struct general_symbol_info *gsymbol)
627 {
628 switch (gsymbol->language)
629 {
630 case language_cplus:
631 case language_java:
632 case language_objc:
633 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
634 return gsymbol->language_specific.cplus_specific.demangled_name;
635 break;
636 case language_ada:
637 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
638 return gsymbol->language_specific.cplus_specific.demangled_name;
639 else
640 return ada_decode_symbol (gsymbol);
641 break;
642 default:
643 break;
644 }
645 return gsymbol->name;
646 }
647
648 /* Return the demangled name for a symbol based on the language for
649 that symbol. If no demangled name exists, return NULL. */
650 char *
651 symbol_demangled_name (struct general_symbol_info *gsymbol)
652 {
653 switch (gsymbol->language)
654 {
655 case language_cplus:
656 case language_java:
657 case language_objc:
658 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
659 return gsymbol->language_specific.cplus_specific.demangled_name;
660 break;
661 case language_ada:
662 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
663 return gsymbol->language_specific.cplus_specific.demangled_name;
664 else
665 return ada_decode_symbol (gsymbol);
666 break;
667 default:
668 break;
669 }
670 return NULL;
671 }
672
673 /* Return the search name of a symbol---generally the demangled or
674 linkage name of the symbol, depending on how it will be searched for.
675 If there is no distinct demangled name, then returns the same value
676 (same pointer) as SYMBOL_LINKAGE_NAME. */
677 char *
678 symbol_search_name (const struct general_symbol_info *gsymbol)
679 {
680 if (gsymbol->language == language_ada)
681 return gsymbol->name;
682 else
683 return symbol_natural_name (gsymbol);
684 }
685
686 /* Initialize the structure fields to zero values. */
687 void
688 init_sal (struct symtab_and_line *sal)
689 {
690 sal->symtab = 0;
691 sal->section = 0;
692 sal->line = 0;
693 sal->pc = 0;
694 sal->end = 0;
695 sal->explicit_pc = 0;
696 sal->explicit_line = 0;
697 }
698 \f
699
700 /* Return 1 if the two sections are the same, or if they could
701 plausibly be copies of each other, one in an original object
702 file and another in a separated debug file. */
703
704 int
705 matching_bfd_sections (asection *first, asection *second)
706 {
707 struct objfile *obj;
708
709 /* If they're the same section, then they match. */
710 if (first == second)
711 return 1;
712
713 /* If either is NULL, give up. */
714 if (first == NULL || second == NULL)
715 return 0;
716
717 /* This doesn't apply to absolute symbols. */
718 if (first->owner == NULL || second->owner == NULL)
719 return 0;
720
721 /* If they're in the same object file, they must be different sections. */
722 if (first->owner == second->owner)
723 return 0;
724
725 /* Check whether the two sections are potentially corresponding. They must
726 have the same size, address, and name. We can't compare section indexes,
727 which would be more reliable, because some sections may have been
728 stripped. */
729 if (bfd_get_section_size (first) != bfd_get_section_size (second))
730 return 0;
731
732 /* In-memory addresses may start at a different offset, relativize them. */
733 if (bfd_get_section_vma (first->owner, first)
734 - bfd_get_start_address (first->owner)
735 != bfd_get_section_vma (second->owner, second)
736 - bfd_get_start_address (second->owner))
737 return 0;
738
739 if (bfd_get_section_name (first->owner, first) == NULL
740 || bfd_get_section_name (second->owner, second) == NULL
741 || strcmp (bfd_get_section_name (first->owner, first),
742 bfd_get_section_name (second->owner, second)) != 0)
743 return 0;
744
745 /* Otherwise check that they are in corresponding objfiles. */
746
747 ALL_OBJFILES (obj)
748 if (obj->obfd == first->owner)
749 break;
750 gdb_assert (obj != NULL);
751
752 if (obj->separate_debug_objfile != NULL
753 && obj->separate_debug_objfile->obfd == second->owner)
754 return 1;
755 if (obj->separate_debug_objfile_backlink != NULL
756 && obj->separate_debug_objfile_backlink->obfd == second->owner)
757 return 1;
758
759 return 0;
760 }
761
762 /* Find which partial symtab contains PC and SECTION. Return 0 if
763 none. We return the psymtab that contains a symbol whose address
764 exactly matches PC, or, if we cannot find an exact match, the
765 psymtab that contains a symbol whose address is closest to PC. */
766 struct partial_symtab *
767 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
768 {
769 struct partial_symtab *pst;
770 struct objfile *objfile;
771 struct minimal_symbol *msymbol;
772
773 /* If we know that this is not a text address, return failure. This is
774 necessary because we loop based on texthigh and textlow, which do
775 not include the data ranges. */
776 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
777 if (msymbol
778 && (msymbol->type == mst_data
779 || msymbol->type == mst_bss
780 || msymbol->type == mst_abs
781 || msymbol->type == mst_file_data
782 || msymbol->type == mst_file_bss))
783 return NULL;
784
785 ALL_PSYMTABS (objfile, pst)
786 {
787 if (pc >= pst->textlow && pc < pst->texthigh)
788 {
789 struct partial_symtab *tpst;
790 struct partial_symtab *best_pst = pst;
791 CORE_ADDR best_addr = pst->textlow;
792
793 /* An objfile that has its functions reordered might have
794 many partial symbol tables containing the PC, but
795 we want the partial symbol table that contains the
796 function containing the PC. */
797 if (!(objfile->flags & OBJF_REORDERED) &&
798 section == 0) /* can't validate section this way */
799 return (pst);
800
801 if (msymbol == NULL)
802 return (pst);
803
804 /* The code range of partial symtabs sometimes overlap, so, in
805 the loop below, we need to check all partial symtabs and
806 find the one that fits better for the given PC address. We
807 select the partial symtab that contains a symbol whose
808 address is closest to the PC address. By closest we mean
809 that find_pc_sect_symbol returns the symbol with address
810 that is closest and still less than the given PC. */
811 for (tpst = pst; tpst != NULL; tpst = tpst->next)
812 {
813 if (pc >= tpst->textlow && pc < tpst->texthigh)
814 {
815 struct partial_symbol *p;
816 CORE_ADDR this_addr;
817
818 /* NOTE: This assumes that every psymbol has a
819 corresponding msymbol, which is not necessarily
820 true; the debug info might be much richer than the
821 object's symbol table. */
822 p = find_pc_sect_psymbol (tpst, pc, section);
823 if (p != NULL
824 && SYMBOL_VALUE_ADDRESS (p)
825 == SYMBOL_VALUE_ADDRESS (msymbol))
826 return (tpst);
827
828 /* Also accept the textlow value of a psymtab as a
829 "symbol", to provide some support for partial
830 symbol tables with line information but no debug
831 symbols (e.g. those produced by an assembler). */
832 if (p != NULL)
833 this_addr = SYMBOL_VALUE_ADDRESS (p);
834 else
835 this_addr = tpst->textlow;
836
837 /* Check whether it is closer than our current
838 BEST_ADDR. Since this symbol address is
839 necessarily lower or equal to PC, the symbol closer
840 to PC is the symbol which address is the highest.
841 This way we return the psymtab which contains such
842 best match symbol. This can help in cases where the
843 symbol information/debuginfo is not complete, like
844 for instance on IRIX6 with gcc, where no debug info
845 is emitted for statics. (See also the nodebug.exp
846 testcase.) */
847 if (this_addr > best_addr)
848 {
849 best_addr = this_addr;
850 best_pst = tpst;
851 }
852 }
853 }
854 return (best_pst);
855 }
856 }
857 return (NULL);
858 }
859
860 /* Find which partial symtab contains PC. Return 0 if none.
861 Backward compatibility, no section */
862
863 struct partial_symtab *
864 find_pc_psymtab (CORE_ADDR pc)
865 {
866 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
867 }
868
869 /* Find which partial symbol within a psymtab matches PC and SECTION.
870 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
871
872 struct partial_symbol *
873 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
874 asection *section)
875 {
876 struct partial_symbol *best = NULL, *p, **pp;
877 CORE_ADDR best_pc;
878
879 if (!psymtab)
880 psymtab = find_pc_sect_psymtab (pc, section);
881 if (!psymtab)
882 return 0;
883
884 /* Cope with programs that start at address 0 */
885 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
886
887 /* Search the global symbols as well as the static symbols, so that
888 find_pc_partial_function doesn't use a minimal symbol and thus
889 cache a bad endaddr. */
890 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
891 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
892 < psymtab->n_global_syms);
893 pp++)
894 {
895 p = *pp;
896 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
897 && SYMBOL_CLASS (p) == LOC_BLOCK
898 && pc >= SYMBOL_VALUE_ADDRESS (p)
899 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
900 || (psymtab->textlow == 0
901 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
902 {
903 if (section) /* match on a specific section */
904 {
905 fixup_psymbol_section (p, psymtab->objfile);
906 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
907 continue;
908 }
909 best_pc = SYMBOL_VALUE_ADDRESS (p);
910 best = p;
911 }
912 }
913
914 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
915 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
916 < psymtab->n_static_syms);
917 pp++)
918 {
919 p = *pp;
920 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
921 && SYMBOL_CLASS (p) == LOC_BLOCK
922 && pc >= SYMBOL_VALUE_ADDRESS (p)
923 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
924 || (psymtab->textlow == 0
925 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
926 {
927 if (section) /* match on a specific section */
928 {
929 fixup_psymbol_section (p, psymtab->objfile);
930 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
931 continue;
932 }
933 best_pc = SYMBOL_VALUE_ADDRESS (p);
934 best = p;
935 }
936 }
937
938 return best;
939 }
940
941 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
942 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
943
944 struct partial_symbol *
945 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
946 {
947 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
948 }
949 \f
950 /* Debug symbols usually don't have section information. We need to dig that
951 out of the minimal symbols and stash that in the debug symbol. */
952
953 static void
954 fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
955 {
956 struct minimal_symbol *msym;
957 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
958
959 if (msym)
960 {
961 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
962 ginfo->section = SYMBOL_SECTION (msym);
963 }
964 else if (objfile)
965 {
966 /* Static, function-local variables do appear in the linker
967 (minimal) symbols, but are frequently given names that won't
968 be found via lookup_minimal_symbol(). E.g., it has been
969 observed in frv-uclinux (ELF) executables that a static,
970 function-local variable named "foo" might appear in the
971 linker symbols as "foo.6" or "foo.3". Thus, there is no
972 point in attempting to extend the lookup-by-name mechanism to
973 handle this case due to the fact that there can be multiple
974 names.
975
976 So, instead, search the section table when lookup by name has
977 failed. The ``addr'' and ``endaddr'' fields may have already
978 been relocated. If so, the relocation offset (i.e. the
979 ANOFFSET value) needs to be subtracted from these values when
980 performing the comparison. We unconditionally subtract it,
981 because, when no relocation has been performed, the ANOFFSET
982 value will simply be zero.
983
984 The address of the symbol whose section we're fixing up HAS
985 NOT BEEN adjusted (relocated) yet. It can't have been since
986 the section isn't yet known and knowing the section is
987 necessary in order to add the correct relocation value. In
988 other words, we wouldn't even be in this function (attempting
989 to compute the section) if it were already known.
990
991 Note that it is possible to search the minimal symbols
992 (subtracting the relocation value if necessary) to find the
993 matching minimal symbol, but this is overkill and much less
994 efficient. It is not necessary to find the matching minimal
995 symbol, only its section.
996
997 Note that this technique (of doing a section table search)
998 can fail when unrelocated section addresses overlap. For
999 this reason, we still attempt a lookup by name prior to doing
1000 a search of the section table. */
1001
1002 CORE_ADDR addr;
1003 struct obj_section *s;
1004
1005 addr = ginfo->value.address;
1006
1007 ALL_OBJFILE_OSECTIONS (objfile, s)
1008 {
1009 int idx = s->the_bfd_section->index;
1010 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1011
1012 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1013 {
1014 ginfo->bfd_section = s->the_bfd_section;
1015 ginfo->section = idx;
1016 return;
1017 }
1018 }
1019 }
1020 }
1021
1022 struct symbol *
1023 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1024 {
1025 if (!sym)
1026 return NULL;
1027
1028 if (SYMBOL_BFD_SECTION (sym))
1029 return sym;
1030
1031 fixup_section (&sym->ginfo, objfile);
1032
1033 return sym;
1034 }
1035
1036 struct partial_symbol *
1037 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1038 {
1039 if (!psym)
1040 return NULL;
1041
1042 if (SYMBOL_BFD_SECTION (psym))
1043 return psym;
1044
1045 fixup_section (&psym->ginfo, objfile);
1046
1047 return psym;
1048 }
1049
1050 /* Find the definition for a specified symbol name NAME
1051 in domain DOMAIN, visible from lexical block BLOCK.
1052 Returns the struct symbol pointer, or zero if no symbol is found.
1053 If SYMTAB is non-NULL, store the symbol table in which the
1054 symbol was found there, or NULL if not found.
1055 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1056 NAME is a field of the current implied argument `this'. If so set
1057 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1058 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1059 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1060
1061 /* This function has a bunch of loops in it and it would seem to be
1062 attractive to put in some QUIT's (though I'm not really sure
1063 whether it can run long enough to be really important). But there
1064 are a few calls for which it would appear to be bad news to quit
1065 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1066 that there is C++ code below which can error(), but that probably
1067 doesn't affect these calls since they are looking for a known
1068 variable and thus can probably assume it will never hit the C++
1069 code). */
1070
1071 struct symbol *
1072 lookup_symbol_in_language (const char *name, const struct block *block,
1073 const domain_enum domain, enum language lang,
1074 int *is_a_field_of_this,
1075 struct symtab **symtab)
1076 {
1077 char *demangled_name = NULL;
1078 const char *modified_name = NULL;
1079 const char *mangled_name = NULL;
1080 int needtofreename = 0;
1081 struct symbol *returnval;
1082
1083 modified_name = name;
1084
1085 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1086 we can always binary search. */
1087 if (lang == language_cplus)
1088 {
1089 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1090 if (demangled_name)
1091 {
1092 mangled_name = name;
1093 modified_name = demangled_name;
1094 needtofreename = 1;
1095 }
1096 }
1097 else if (lang == language_java)
1098 {
1099 demangled_name = cplus_demangle (name,
1100 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1101 if (demangled_name)
1102 {
1103 mangled_name = name;
1104 modified_name = demangled_name;
1105 needtofreename = 1;
1106 }
1107 }
1108
1109 if (case_sensitivity == case_sensitive_off)
1110 {
1111 char *copy;
1112 int len, i;
1113
1114 len = strlen (name);
1115 copy = (char *) alloca (len + 1);
1116 for (i= 0; i < len; i++)
1117 copy[i] = tolower (name[i]);
1118 copy[len] = 0;
1119 modified_name = copy;
1120 }
1121
1122 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1123 domain, lang,
1124 is_a_field_of_this, symtab);
1125 if (needtofreename)
1126 xfree (demangled_name);
1127
1128 /* Override the returned symtab with the symbol's specific one. */
1129 if (returnval != NULL && symtab != NULL)
1130 *symtab = SYMBOL_SYMTAB (returnval);
1131
1132 return returnval;
1133 }
1134
1135 /* Behave like lookup_symbol_in_language, but performed with the
1136 current language. */
1137
1138 struct symbol *
1139 lookup_symbol (const char *name, const struct block *block,
1140 domain_enum domain, int *is_a_field_of_this,
1141 struct symtab **symtab)
1142 {
1143 return lookup_symbol_in_language (name, block, domain,
1144 current_language->la_language,
1145 is_a_field_of_this, symtab);
1146 }
1147
1148 /* Behave like lookup_symbol except that NAME is the natural name
1149 of the symbol that we're looking for and, if LINKAGE_NAME is
1150 non-NULL, ensure that the symbol's linkage name matches as
1151 well. */
1152
1153 static struct symbol *
1154 lookup_symbol_aux (const char *name, const char *linkage_name,
1155 const struct block *block, const domain_enum domain,
1156 enum language language,
1157 int *is_a_field_of_this, struct symtab **symtab)
1158 {
1159 struct symbol *sym;
1160 const struct language_defn *langdef;
1161
1162 /* Make sure we do something sensible with is_a_field_of_this, since
1163 the callers that set this parameter to some non-null value will
1164 certainly use it later and expect it to be either 0 or 1.
1165 If we don't set it, the contents of is_a_field_of_this are
1166 undefined. */
1167 if (is_a_field_of_this != NULL)
1168 *is_a_field_of_this = 0;
1169
1170 /* Search specified block and its superiors. Don't search
1171 STATIC_BLOCK or GLOBAL_BLOCK. */
1172
1173 sym = lookup_symbol_aux_local (name, linkage_name, block, domain,
1174 symtab);
1175 if (sym != NULL)
1176 return sym;
1177
1178 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1179 check to see if NAME is a field of `this'. */
1180
1181 langdef = language_def (language);
1182
1183 if (langdef->la_value_of_this != NULL
1184 && is_a_field_of_this != NULL)
1185 {
1186 struct value *v = langdef->la_value_of_this (0);
1187
1188 if (v && check_field (v, name))
1189 {
1190 *is_a_field_of_this = 1;
1191 if (symtab != NULL)
1192 *symtab = NULL;
1193 return NULL;
1194 }
1195 }
1196
1197 /* Now do whatever is appropriate for LANGUAGE to look
1198 up static and global variables. */
1199
1200 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name,
1201 block, domain, symtab);
1202 if (sym != NULL)
1203 return sym;
1204
1205 /* Now search all static file-level symbols. Not strictly correct,
1206 but more useful than an error. Do the symtabs first, then check
1207 the psymtabs. If a psymtab indicates the existence of the
1208 desired name as a file-level static, then do psymtab-to-symtab
1209 conversion on the fly and return the found symbol. */
1210
1211 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name,
1212 domain, symtab);
1213 if (sym != NULL)
1214 return sym;
1215
1216 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name,
1217 domain, symtab);
1218 if (sym != NULL)
1219 return sym;
1220
1221 if (symtab != NULL)
1222 *symtab = NULL;
1223 return NULL;
1224 }
1225
1226 /* Check to see if the symbol is defined in BLOCK or its superiors.
1227 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1228
1229 static struct symbol *
1230 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1231 const struct block *block,
1232 const domain_enum domain,
1233 struct symtab **symtab)
1234 {
1235 struct symbol *sym;
1236 const struct block *static_block = block_static_block (block);
1237
1238 /* Check if either no block is specified or it's a global block. */
1239
1240 if (static_block == NULL)
1241 return NULL;
1242
1243 while (block != static_block)
1244 {
1245 sym = lookup_symbol_aux_block (name, linkage_name, block, domain,
1246 symtab);
1247 if (sym != NULL)
1248 return sym;
1249 block = BLOCK_SUPERBLOCK (block);
1250 }
1251
1252 /* We've reached the static block without finding a result. */
1253
1254 return NULL;
1255 }
1256
1257 /* Look up OBJFILE to BLOCK. */
1258
1259 static struct objfile *
1260 lookup_objfile_from_block (const struct block *block)
1261 {
1262 struct objfile *obj;
1263 struct symtab *s;
1264
1265 if (block == NULL)
1266 return NULL;
1267
1268 block = block_global_block (block);
1269 /* Go through SYMTABS. */
1270 ALL_SYMTABS (obj, s)
1271 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1272 return obj;
1273
1274 return NULL;
1275 }
1276
1277 /* Look up a symbol in a block; if found, locate its symtab, fixup the
1278 symbol, and set block_found appropriately. */
1279
1280 struct symbol *
1281 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1282 const struct block *block,
1283 const domain_enum domain,
1284 struct symtab **symtab)
1285 {
1286 struct symbol *sym;
1287 struct objfile *objfile = NULL;
1288 struct blockvector *bv;
1289 struct block *b;
1290 struct symtab *s = NULL;
1291
1292 sym = lookup_block_symbol (block, name, linkage_name, domain);
1293 if (sym)
1294 {
1295 block_found = block;
1296 if (symtab != NULL)
1297 {
1298 /* Search the list of symtabs for one which contains the
1299 address of the start of this block. */
1300 ALL_PRIMARY_SYMTABS (objfile, s)
1301 {
1302 bv = BLOCKVECTOR (s);
1303 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1304 if (BLOCK_START (b) <= BLOCK_START (block)
1305 && BLOCK_END (b) > BLOCK_START (block))
1306 goto found;
1307 }
1308 found:
1309 *symtab = s;
1310 }
1311
1312 return fixup_symbol_section (sym, objfile);
1313 }
1314
1315 return NULL;
1316 }
1317
1318 /* Check all global symbols in OBJFILE in symtabs and
1319 psymtabs. */
1320
1321 struct symbol *
1322 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1323 const char *name,
1324 const char *linkage_name,
1325 const domain_enum domain,
1326 struct symtab **symtab)
1327 {
1328 struct symbol *sym;
1329 struct blockvector *bv;
1330 const struct block *block;
1331 struct symtab *s;
1332 struct partial_symtab *ps;
1333
1334 /* Go through symtabs. */
1335 ALL_OBJFILE_SYMTABS (objfile, s)
1336 {
1337 bv = BLOCKVECTOR (s);
1338 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1339 sym = lookup_block_symbol (block, name, linkage_name, domain);
1340 if (sym)
1341 {
1342 block_found = block;
1343 if (symtab != NULL)
1344 *symtab = s;
1345 return fixup_symbol_section (sym, (struct objfile *)objfile);
1346 }
1347 }
1348
1349 /* Now go through psymtabs. */
1350 ALL_OBJFILE_PSYMTABS (objfile, ps)
1351 {
1352 if (!ps->readin
1353 && lookup_partial_symbol (ps, name, linkage_name,
1354 1, domain))
1355 {
1356 s = PSYMTAB_TO_SYMTAB (ps);
1357 bv = BLOCKVECTOR (s);
1358 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1359 sym = lookup_block_symbol (block, name, linkage_name, domain);
1360 if (symtab != NULL)
1361 *symtab = s;
1362 return fixup_symbol_section (sym, (struct objfile *)objfile);
1363 }
1364 }
1365
1366 return NULL;
1367 }
1368
1369 /* Check to see if the symbol is defined in one of the symtabs.
1370 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1371 depending on whether or not we want to search global symbols or
1372 static symbols. */
1373
1374 static struct symbol *
1375 lookup_symbol_aux_symtabs (int block_index,
1376 const char *name, const char *linkage_name,
1377 const domain_enum domain,
1378 struct symtab **symtab)
1379 {
1380 struct symbol *sym;
1381 struct objfile *objfile;
1382 struct blockvector *bv;
1383 const struct block *block;
1384 struct symtab *s;
1385
1386 ALL_PRIMARY_SYMTABS (objfile, s)
1387 {
1388 bv = BLOCKVECTOR (s);
1389 block = BLOCKVECTOR_BLOCK (bv, block_index);
1390 sym = lookup_block_symbol (block, name, linkage_name, domain);
1391 if (sym)
1392 {
1393 block_found = block;
1394 if (symtab != NULL)
1395 *symtab = s;
1396 return fixup_symbol_section (sym, objfile);
1397 }
1398 }
1399
1400 return NULL;
1401 }
1402
1403 /* Check to see if the symbol is defined in one of the partial
1404 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1405 STATIC_BLOCK, depending on whether or not we want to search global
1406 symbols or static symbols. */
1407
1408 static struct symbol *
1409 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1410 const char *linkage_name,
1411 const domain_enum domain,
1412 struct symtab **symtab)
1413 {
1414 struct symbol *sym;
1415 struct objfile *objfile;
1416 struct blockvector *bv;
1417 const struct block *block;
1418 struct partial_symtab *ps;
1419 struct symtab *s;
1420 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1421
1422 ALL_PSYMTABS (objfile, ps)
1423 {
1424 if (!ps->readin
1425 && lookup_partial_symbol (ps, name, linkage_name,
1426 psymtab_index, domain))
1427 {
1428 s = PSYMTAB_TO_SYMTAB (ps);
1429 bv = BLOCKVECTOR (s);
1430 block = BLOCKVECTOR_BLOCK (bv, block_index);
1431 sym = lookup_block_symbol (block, name, linkage_name, domain);
1432 if (!sym)
1433 {
1434 /* This shouldn't be necessary, but as a last resort try
1435 looking in the statics even though the psymtab claimed
1436 the symbol was global, or vice-versa. It's possible
1437 that the psymtab gets it wrong in some cases. */
1438
1439 /* FIXME: carlton/2002-09-30: Should we really do that?
1440 If that happens, isn't it likely to be a GDB error, in
1441 which case we should fix the GDB error rather than
1442 silently dealing with it here? So I'd vote for
1443 removing the check for the symbol in the other
1444 block. */
1445 block = BLOCKVECTOR_BLOCK (bv,
1446 block_index == GLOBAL_BLOCK ?
1447 STATIC_BLOCK : GLOBAL_BLOCK);
1448 sym = lookup_block_symbol (block, name, linkage_name, domain);
1449 if (!sym)
1450 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1451 block_index == GLOBAL_BLOCK ? "global" : "static",
1452 name, ps->filename, name, name);
1453 }
1454 if (symtab != NULL)
1455 *symtab = s;
1456 return fixup_symbol_section (sym, objfile);
1457 }
1458 }
1459
1460 return NULL;
1461 }
1462
1463 /* A default version of lookup_symbol_nonlocal for use by languages
1464 that can't think of anything better to do. This implements the C
1465 lookup rules. */
1466
1467 struct symbol *
1468 basic_lookup_symbol_nonlocal (const char *name,
1469 const char *linkage_name,
1470 const struct block *block,
1471 const domain_enum domain,
1472 struct symtab **symtab)
1473 {
1474 struct symbol *sym;
1475
1476 /* NOTE: carlton/2003-05-19: The comments below were written when
1477 this (or what turned into this) was part of lookup_symbol_aux;
1478 I'm much less worried about these questions now, since these
1479 decisions have turned out well, but I leave these comments here
1480 for posterity. */
1481
1482 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1483 not it would be appropriate to search the current global block
1484 here as well. (That's what this code used to do before the
1485 is_a_field_of_this check was moved up.) On the one hand, it's
1486 redundant with the lookup_symbol_aux_symtabs search that happens
1487 next. On the other hand, if decode_line_1 is passed an argument
1488 like filename:var, then the user presumably wants 'var' to be
1489 searched for in filename. On the third hand, there shouldn't be
1490 multiple global variables all of which are named 'var', and it's
1491 not like decode_line_1 has ever restricted its search to only
1492 global variables in a single filename. All in all, only
1493 searching the static block here seems best: it's correct and it's
1494 cleanest. */
1495
1496 /* NOTE: carlton/2002-12-05: There's also a possible performance
1497 issue here: if you usually search for global symbols in the
1498 current file, then it would be slightly better to search the
1499 current global block before searching all the symtabs. But there
1500 are other factors that have a much greater effect on performance
1501 than that one, so I don't think we should worry about that for
1502 now. */
1503
1504 sym = lookup_symbol_static (name, linkage_name, block, domain, symtab);
1505 if (sym != NULL)
1506 return sym;
1507
1508 return lookup_symbol_global (name, linkage_name, block, domain, symtab);
1509 }
1510
1511 /* Lookup a symbol in the static block associated to BLOCK, if there
1512 is one; do nothing if BLOCK is NULL or a global block. */
1513
1514 struct symbol *
1515 lookup_symbol_static (const char *name,
1516 const char *linkage_name,
1517 const struct block *block,
1518 const domain_enum domain,
1519 struct symtab **symtab)
1520 {
1521 const struct block *static_block = block_static_block (block);
1522
1523 if (static_block != NULL)
1524 return lookup_symbol_aux_block (name, linkage_name, static_block,
1525 domain, symtab);
1526 else
1527 return NULL;
1528 }
1529
1530 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1531 necessary). */
1532
1533 struct symbol *
1534 lookup_symbol_global (const char *name,
1535 const char *linkage_name,
1536 const struct block *block,
1537 const domain_enum domain,
1538 struct symtab **symtab)
1539 {
1540 struct symbol *sym = NULL;
1541 struct objfile *objfile = NULL;
1542
1543 /* Call library-specific lookup procedure. */
1544 objfile = lookup_objfile_from_block (block);
1545 if (objfile != NULL)
1546 sym = solib_global_lookup (objfile, name, linkage_name, domain, symtab);
1547 if (sym != NULL)
1548 return sym;
1549
1550 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name,
1551 domain, symtab);
1552 if (sym != NULL)
1553 return sym;
1554
1555 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name,
1556 domain, symtab);
1557 }
1558
1559 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1560 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1561 linkage name matches it. Check the global symbols if GLOBAL, the
1562 static symbols if not */
1563
1564 struct partial_symbol *
1565 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1566 const char *linkage_name, int global,
1567 domain_enum domain)
1568 {
1569 struct partial_symbol *temp;
1570 struct partial_symbol **start, **psym;
1571 struct partial_symbol **top, **real_top, **bottom, **center;
1572 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1573 int do_linear_search = 1;
1574
1575 if (length == 0)
1576 {
1577 return (NULL);
1578 }
1579 start = (global ?
1580 pst->objfile->global_psymbols.list + pst->globals_offset :
1581 pst->objfile->static_psymbols.list + pst->statics_offset);
1582
1583 if (global) /* This means we can use a binary search. */
1584 {
1585 do_linear_search = 0;
1586
1587 /* Binary search. This search is guaranteed to end with center
1588 pointing at the earliest partial symbol whose name might be
1589 correct. At that point *all* partial symbols with an
1590 appropriate name will be checked against the correct
1591 domain. */
1592
1593 bottom = start;
1594 top = start + length - 1;
1595 real_top = top;
1596 while (top > bottom)
1597 {
1598 center = bottom + (top - bottom) / 2;
1599 if (!(center < top))
1600 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1601 if (!do_linear_search
1602 && (SYMBOL_LANGUAGE (*center) == language_java))
1603 {
1604 do_linear_search = 1;
1605 }
1606 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1607 {
1608 top = center;
1609 }
1610 else
1611 {
1612 bottom = center + 1;
1613 }
1614 }
1615 if (!(top == bottom))
1616 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1617
1618 while (top <= real_top
1619 && (linkage_name != NULL
1620 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1621 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1622 {
1623 if (SYMBOL_DOMAIN (*top) == domain)
1624 {
1625 return (*top);
1626 }
1627 top++;
1628 }
1629 }
1630
1631 /* Can't use a binary search or else we found during the binary search that
1632 we should also do a linear search. */
1633
1634 if (do_linear_search)
1635 {
1636 for (psym = start; psym < start + length; psym++)
1637 {
1638 if (domain == SYMBOL_DOMAIN (*psym))
1639 {
1640 if (linkage_name != NULL
1641 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1642 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1643 {
1644 return (*psym);
1645 }
1646 }
1647 }
1648 }
1649
1650 return (NULL);
1651 }
1652
1653 /* Look up a type named NAME in the struct_domain. The type returned
1654 must not be opaque -- i.e., must have at least one field
1655 defined. */
1656
1657 struct type *
1658 lookup_transparent_type (const char *name)
1659 {
1660 return current_language->la_lookup_transparent_type (name);
1661 }
1662
1663 /* The standard implementation of lookup_transparent_type. This code
1664 was modeled on lookup_symbol -- the parts not relevant to looking
1665 up types were just left out. In particular it's assumed here that
1666 types are available in struct_domain and only at file-static or
1667 global blocks. */
1668
1669 struct type *
1670 basic_lookup_transparent_type (const char *name)
1671 {
1672 struct symbol *sym;
1673 struct symtab *s = NULL;
1674 struct partial_symtab *ps;
1675 struct blockvector *bv;
1676 struct objfile *objfile;
1677 struct block *block;
1678
1679 /* Now search all the global symbols. Do the symtab's first, then
1680 check the psymtab's. If a psymtab indicates the existence
1681 of the desired name as a global, then do psymtab-to-symtab
1682 conversion on the fly and return the found symbol. */
1683
1684 ALL_PRIMARY_SYMTABS (objfile, s)
1685 {
1686 bv = BLOCKVECTOR (s);
1687 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1688 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1689 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1690 {
1691 return SYMBOL_TYPE (sym);
1692 }
1693 }
1694
1695 ALL_PSYMTABS (objfile, ps)
1696 {
1697 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1698 1, STRUCT_DOMAIN))
1699 {
1700 s = PSYMTAB_TO_SYMTAB (ps);
1701 bv = BLOCKVECTOR (s);
1702 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1703 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1704 if (!sym)
1705 {
1706 /* This shouldn't be necessary, but as a last resort
1707 * try looking in the statics even though the psymtab
1708 * claimed the symbol was global. It's possible that
1709 * the psymtab gets it wrong in some cases.
1710 */
1711 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1712 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1713 if (!sym)
1714 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1715 %s may be an inlined function, or may be a template function\n\
1716 (if a template, try specifying an instantiation: %s<type>)."),
1717 name, ps->filename, name, name);
1718 }
1719 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1720 return SYMBOL_TYPE (sym);
1721 }
1722 }
1723
1724 /* Now search the static file-level symbols.
1725 Not strictly correct, but more useful than an error.
1726 Do the symtab's first, then
1727 check the psymtab's. If a psymtab indicates the existence
1728 of the desired name as a file-level static, then do psymtab-to-symtab
1729 conversion on the fly and return the found symbol.
1730 */
1731
1732 ALL_PRIMARY_SYMTABS (objfile, s)
1733 {
1734 bv = BLOCKVECTOR (s);
1735 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1736 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1737 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1738 {
1739 return SYMBOL_TYPE (sym);
1740 }
1741 }
1742
1743 ALL_PSYMTABS (objfile, ps)
1744 {
1745 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1746 {
1747 s = PSYMTAB_TO_SYMTAB (ps);
1748 bv = BLOCKVECTOR (s);
1749 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1750 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1751 if (!sym)
1752 {
1753 /* This shouldn't be necessary, but as a last resort
1754 * try looking in the globals even though the psymtab
1755 * claimed the symbol was static. It's possible that
1756 * the psymtab gets it wrong in some cases.
1757 */
1758 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1759 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1760 if (!sym)
1761 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1762 %s may be an inlined function, or may be a template function\n\
1763 (if a template, try specifying an instantiation: %s<type>)."),
1764 name, ps->filename, name, name);
1765 }
1766 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1767 return SYMBOL_TYPE (sym);
1768 }
1769 }
1770 return (struct type *) 0;
1771 }
1772
1773
1774 /* Find the psymtab containing main(). */
1775 /* FIXME: What about languages without main() or specially linked
1776 executables that have no main() ? */
1777
1778 struct partial_symtab *
1779 find_main_psymtab (void)
1780 {
1781 struct partial_symtab *pst;
1782 struct objfile *objfile;
1783
1784 ALL_PSYMTABS (objfile, pst)
1785 {
1786 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1787 {
1788 return (pst);
1789 }
1790 }
1791 return (NULL);
1792 }
1793
1794 /* Search BLOCK for symbol NAME in DOMAIN.
1795
1796 Note that if NAME is the demangled form of a C++ symbol, we will fail
1797 to find a match during the binary search of the non-encoded names, but
1798 for now we don't worry about the slight inefficiency of looking for
1799 a match we'll never find, since it will go pretty quick. Once the
1800 binary search terminates, we drop through and do a straight linear
1801 search on the symbols. Each symbol which is marked as being a ObjC/C++
1802 symbol (language_cplus or language_objc set) has both the encoded and
1803 non-encoded names tested for a match.
1804
1805 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1806 particular mangled name.
1807 */
1808
1809 struct symbol *
1810 lookup_block_symbol (const struct block *block, const char *name,
1811 const char *linkage_name,
1812 const domain_enum domain)
1813 {
1814 struct dict_iterator iter;
1815 struct symbol *sym;
1816
1817 if (!BLOCK_FUNCTION (block))
1818 {
1819 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1820 sym != NULL;
1821 sym = dict_iter_name_next (name, &iter))
1822 {
1823 if (SYMBOL_DOMAIN (sym) == domain
1824 && (linkage_name != NULL
1825 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1826 return sym;
1827 }
1828 return NULL;
1829 }
1830 else
1831 {
1832 /* Note that parameter symbols do not always show up last in the
1833 list; this loop makes sure to take anything else other than
1834 parameter symbols first; it only uses parameter symbols as a
1835 last resort. Note that this only takes up extra computation
1836 time on a match. */
1837
1838 struct symbol *sym_found = NULL;
1839
1840 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1841 sym != NULL;
1842 sym = dict_iter_name_next (name, &iter))
1843 {
1844 if (SYMBOL_DOMAIN (sym) == domain
1845 && (linkage_name != NULL
1846 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1847 {
1848 sym_found = sym;
1849 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1850 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1851 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1852 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1853 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1854 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1855 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1856 {
1857 break;
1858 }
1859 }
1860 }
1861 return (sym_found); /* Will be NULL if not found. */
1862 }
1863 }
1864
1865 /* Find the symtab associated with PC and SECTION. Look through the
1866 psymtabs and read in another symtab if necessary. */
1867
1868 struct symtab *
1869 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1870 {
1871 struct block *b;
1872 struct blockvector *bv;
1873 struct symtab *s = NULL;
1874 struct symtab *best_s = NULL;
1875 struct partial_symtab *ps;
1876 struct objfile *objfile;
1877 CORE_ADDR distance = 0;
1878 struct minimal_symbol *msymbol;
1879
1880 /* If we know that this is not a text address, return failure. This is
1881 necessary because we loop based on the block's high and low code
1882 addresses, which do not include the data ranges, and because
1883 we call find_pc_sect_psymtab which has a similar restriction based
1884 on the partial_symtab's texthigh and textlow. */
1885 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1886 if (msymbol
1887 && (msymbol->type == mst_data
1888 || msymbol->type == mst_bss
1889 || msymbol->type == mst_abs
1890 || msymbol->type == mst_file_data
1891 || msymbol->type == mst_file_bss))
1892 return NULL;
1893
1894 /* Search all symtabs for the one whose file contains our address, and which
1895 is the smallest of all the ones containing the address. This is designed
1896 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1897 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1898 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1899
1900 This happens for native ecoff format, where code from included files
1901 gets its own symtab. The symtab for the included file should have
1902 been read in already via the dependency mechanism.
1903 It might be swifter to create several symtabs with the same name
1904 like xcoff does (I'm not sure).
1905
1906 It also happens for objfiles that have their functions reordered.
1907 For these, the symtab we are looking for is not necessarily read in. */
1908
1909 ALL_PRIMARY_SYMTABS (objfile, s)
1910 {
1911 bv = BLOCKVECTOR (s);
1912 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1913
1914 if (BLOCK_START (b) <= pc
1915 && BLOCK_END (b) > pc
1916 && (distance == 0
1917 || BLOCK_END (b) - BLOCK_START (b) < distance))
1918 {
1919 /* For an objfile that has its functions reordered,
1920 find_pc_psymtab will find the proper partial symbol table
1921 and we simply return its corresponding symtab. */
1922 /* In order to better support objfiles that contain both
1923 stabs and coff debugging info, we continue on if a psymtab
1924 can't be found. */
1925 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
1926 {
1927 ps = find_pc_sect_psymtab (pc, section);
1928 if (ps)
1929 return PSYMTAB_TO_SYMTAB (ps);
1930 }
1931 if (section != 0)
1932 {
1933 struct dict_iterator iter;
1934 struct symbol *sym = NULL;
1935
1936 ALL_BLOCK_SYMBOLS (b, iter, sym)
1937 {
1938 fixup_symbol_section (sym, objfile);
1939 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
1940 break;
1941 }
1942 if (sym == NULL)
1943 continue; /* no symbol in this symtab matches section */
1944 }
1945 distance = BLOCK_END (b) - BLOCK_START (b);
1946 best_s = s;
1947 }
1948 }
1949
1950 if (best_s != NULL)
1951 return (best_s);
1952
1953 s = NULL;
1954 ps = find_pc_sect_psymtab (pc, section);
1955 if (ps)
1956 {
1957 if (ps->readin)
1958 /* Might want to error() here (in case symtab is corrupt and
1959 will cause a core dump), but maybe we can successfully
1960 continue, so let's not. */
1961 warning (_("\
1962 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
1963 paddr_nz (pc));
1964 s = PSYMTAB_TO_SYMTAB (ps);
1965 }
1966 return (s);
1967 }
1968
1969 /* Find the symtab associated with PC. Look through the psymtabs and
1970 read in another symtab if necessary. Backward compatibility, no section */
1971
1972 struct symtab *
1973 find_pc_symtab (CORE_ADDR pc)
1974 {
1975 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1976 }
1977 \f
1978
1979 /* Find the source file and line number for a given PC value and SECTION.
1980 Return a structure containing a symtab pointer, a line number,
1981 and a pc range for the entire source line.
1982 The value's .pc field is NOT the specified pc.
1983 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1984 use the line that ends there. Otherwise, in that case, the line
1985 that begins there is used. */
1986
1987 /* The big complication here is that a line may start in one file, and end just
1988 before the start of another file. This usually occurs when you #include
1989 code in the middle of a subroutine. To properly find the end of a line's PC
1990 range, we must search all symtabs associated with this compilation unit, and
1991 find the one whose first PC is closer than that of the next line in this
1992 symtab. */
1993
1994 /* If it's worth the effort, we could be using a binary search. */
1995
1996 struct symtab_and_line
1997 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
1998 {
1999 struct symtab *s;
2000 struct linetable *l;
2001 int len;
2002 int i;
2003 struct linetable_entry *item;
2004 struct symtab_and_line val;
2005 struct blockvector *bv;
2006 struct minimal_symbol *msymbol;
2007 struct minimal_symbol *mfunsym;
2008
2009 /* Info on best line seen so far, and where it starts, and its file. */
2010
2011 struct linetable_entry *best = NULL;
2012 CORE_ADDR best_end = 0;
2013 struct symtab *best_symtab = 0;
2014
2015 /* Store here the first line number
2016 of a file which contains the line at the smallest pc after PC.
2017 If we don't find a line whose range contains PC,
2018 we will use a line one less than this,
2019 with a range from the start of that file to the first line's pc. */
2020 struct linetable_entry *alt = NULL;
2021 struct symtab *alt_symtab = 0;
2022
2023 /* Info on best line seen in this file. */
2024
2025 struct linetable_entry *prev;
2026
2027 /* If this pc is not from the current frame,
2028 it is the address of the end of a call instruction.
2029 Quite likely that is the start of the following statement.
2030 But what we want is the statement containing the instruction.
2031 Fudge the pc to make sure we get that. */
2032
2033 init_sal (&val); /* initialize to zeroes */
2034
2035 /* It's tempting to assume that, if we can't find debugging info for
2036 any function enclosing PC, that we shouldn't search for line
2037 number info, either. However, GAS can emit line number info for
2038 assembly files --- very helpful when debugging hand-written
2039 assembly code. In such a case, we'd have no debug info for the
2040 function, but we would have line info. */
2041
2042 if (notcurrent)
2043 pc -= 1;
2044
2045 /* elz: added this because this function returned the wrong
2046 information if the pc belongs to a stub (import/export)
2047 to call a shlib function. This stub would be anywhere between
2048 two functions in the target, and the line info was erroneously
2049 taken to be the one of the line before the pc.
2050 */
2051 /* RT: Further explanation:
2052
2053 * We have stubs (trampolines) inserted between procedures.
2054 *
2055 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2056 * exists in the main image.
2057 *
2058 * In the minimal symbol table, we have a bunch of symbols
2059 * sorted by start address. The stubs are marked as "trampoline",
2060 * the others appear as text. E.g.:
2061 *
2062 * Minimal symbol table for main image
2063 * main: code for main (text symbol)
2064 * shr1: stub (trampoline symbol)
2065 * foo: code for foo (text symbol)
2066 * ...
2067 * Minimal symbol table for "shr1" image:
2068 * ...
2069 * shr1: code for shr1 (text symbol)
2070 * ...
2071 *
2072 * So the code below is trying to detect if we are in the stub
2073 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2074 * and if found, do the symbolization from the real-code address
2075 * rather than the stub address.
2076 *
2077 * Assumptions being made about the minimal symbol table:
2078 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2079 * if we're really in the trampoline. If we're beyond it (say
2080 * we're in "foo" in the above example), it'll have a closer
2081 * symbol (the "foo" text symbol for example) and will not
2082 * return the trampoline.
2083 * 2. lookup_minimal_symbol_text() will find a real text symbol
2084 * corresponding to the trampoline, and whose address will
2085 * be different than the trampoline address. I put in a sanity
2086 * check for the address being the same, to avoid an
2087 * infinite recursion.
2088 */
2089 msymbol = lookup_minimal_symbol_by_pc (pc);
2090 if (msymbol != NULL)
2091 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2092 {
2093 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2094 NULL);
2095 if (mfunsym == NULL)
2096 /* I eliminated this warning since it is coming out
2097 * in the following situation:
2098 * gdb shmain // test program with shared libraries
2099 * (gdb) break shr1 // function in shared lib
2100 * Warning: In stub for ...
2101 * In the above situation, the shared lib is not loaded yet,
2102 * so of course we can't find the real func/line info,
2103 * but the "break" still works, and the warning is annoying.
2104 * So I commented out the warning. RT */
2105 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2106 /* fall through */
2107 else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol))
2108 /* Avoid infinite recursion */
2109 /* See above comment about why warning is commented out */
2110 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2111 /* fall through */
2112 else
2113 return find_pc_line (SYMBOL_VALUE (mfunsym), 0);
2114 }
2115
2116
2117 s = find_pc_sect_symtab (pc, section);
2118 if (!s)
2119 {
2120 /* if no symbol information, return previous pc */
2121 if (notcurrent)
2122 pc++;
2123 val.pc = pc;
2124 return val;
2125 }
2126
2127 bv = BLOCKVECTOR (s);
2128
2129 /* Look at all the symtabs that share this blockvector.
2130 They all have the same apriori range, that we found was right;
2131 but they have different line tables. */
2132
2133 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2134 {
2135 /* Find the best line in this symtab. */
2136 l = LINETABLE (s);
2137 if (!l)
2138 continue;
2139 len = l->nitems;
2140 if (len <= 0)
2141 {
2142 /* I think len can be zero if the symtab lacks line numbers
2143 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2144 I'm not sure which, and maybe it depends on the symbol
2145 reader). */
2146 continue;
2147 }
2148
2149 prev = NULL;
2150 item = l->item; /* Get first line info */
2151
2152 /* Is this file's first line closer than the first lines of other files?
2153 If so, record this file, and its first line, as best alternate. */
2154 if (item->pc > pc && (!alt || item->pc < alt->pc))
2155 {
2156 alt = item;
2157 alt_symtab = s;
2158 }
2159
2160 for (i = 0; i < len; i++, item++)
2161 {
2162 /* Leave prev pointing to the linetable entry for the last line
2163 that started at or before PC. */
2164 if (item->pc > pc)
2165 break;
2166
2167 prev = item;
2168 }
2169
2170 /* At this point, prev points at the line whose start addr is <= pc, and
2171 item points at the next line. If we ran off the end of the linetable
2172 (pc >= start of the last line), then prev == item. If pc < start of
2173 the first line, prev will not be set. */
2174
2175 /* Is this file's best line closer than the best in the other files?
2176 If so, record this file, and its best line, as best so far. Don't
2177 save prev if it represents the end of a function (i.e. line number
2178 0) instead of a real line. */
2179
2180 if (prev && prev->line && (!best || prev->pc > best->pc))
2181 {
2182 best = prev;
2183 best_symtab = s;
2184
2185 /* Discard BEST_END if it's before the PC of the current BEST. */
2186 if (best_end <= best->pc)
2187 best_end = 0;
2188 }
2189
2190 /* If another line (denoted by ITEM) is in the linetable and its
2191 PC is after BEST's PC, but before the current BEST_END, then
2192 use ITEM's PC as the new best_end. */
2193 if (best && i < len && item->pc > best->pc
2194 && (best_end == 0 || best_end > item->pc))
2195 best_end = item->pc;
2196 }
2197
2198 if (!best_symtab)
2199 {
2200 /* If we didn't find any line number info, just return zeros.
2201 We used to return alt->line - 1 here, but that could be
2202 anywhere; if we don't have line number info for this PC,
2203 don't make some up. */
2204 val.pc = pc;
2205 }
2206 else if (best->line == 0)
2207 {
2208 /* If our best fit is in a range of PC's for which no line
2209 number info is available (line number is zero) then we didn't
2210 find any valid line information. */
2211 val.pc = pc;
2212 }
2213 else
2214 {
2215 val.symtab = best_symtab;
2216 val.line = best->line;
2217 val.pc = best->pc;
2218 if (best_end && (!alt || best_end < alt->pc))
2219 val.end = best_end;
2220 else if (alt)
2221 val.end = alt->pc;
2222 else
2223 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2224 }
2225 val.section = section;
2226 return val;
2227 }
2228
2229 /* Backward compatibility (no section) */
2230
2231 struct symtab_and_line
2232 find_pc_line (CORE_ADDR pc, int notcurrent)
2233 {
2234 asection *section;
2235
2236 section = find_pc_overlay (pc);
2237 if (pc_in_unmapped_range (pc, section))
2238 pc = overlay_mapped_address (pc, section);
2239 return find_pc_sect_line (pc, section, notcurrent);
2240 }
2241 \f
2242 /* Find line number LINE in any symtab whose name is the same as
2243 SYMTAB.
2244
2245 If found, return the symtab that contains the linetable in which it was
2246 found, set *INDEX to the index in the linetable of the best entry
2247 found, and set *EXACT_MATCH nonzero if the value returned is an
2248 exact match.
2249
2250 If not found, return NULL. */
2251
2252 struct symtab *
2253 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2254 {
2255 int exact;
2256
2257 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2258 so far seen. */
2259
2260 int best_index;
2261 struct linetable *best_linetable;
2262 struct symtab *best_symtab;
2263
2264 /* First try looking it up in the given symtab. */
2265 best_linetable = LINETABLE (symtab);
2266 best_symtab = symtab;
2267 best_index = find_line_common (best_linetable, line, &exact);
2268 if (best_index < 0 || !exact)
2269 {
2270 /* Didn't find an exact match. So we better keep looking for
2271 another symtab with the same name. In the case of xcoff,
2272 multiple csects for one source file (produced by IBM's FORTRAN
2273 compiler) produce multiple symtabs (this is unavoidable
2274 assuming csects can be at arbitrary places in memory and that
2275 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2276
2277 /* BEST is the smallest linenumber > LINE so far seen,
2278 or 0 if none has been seen so far.
2279 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2280 int best;
2281
2282 struct objfile *objfile;
2283 struct symtab *s;
2284
2285 if (best_index >= 0)
2286 best = best_linetable->item[best_index].line;
2287 else
2288 best = 0;
2289
2290 ALL_SYMTABS (objfile, s)
2291 {
2292 struct linetable *l;
2293 int ind;
2294
2295 if (strcmp (symtab->filename, s->filename) != 0)
2296 continue;
2297 l = LINETABLE (s);
2298 ind = find_line_common (l, line, &exact);
2299 if (ind >= 0)
2300 {
2301 if (exact)
2302 {
2303 best_index = ind;
2304 best_linetable = l;
2305 best_symtab = s;
2306 goto done;
2307 }
2308 if (best == 0 || l->item[ind].line < best)
2309 {
2310 best = l->item[ind].line;
2311 best_index = ind;
2312 best_linetable = l;
2313 best_symtab = s;
2314 }
2315 }
2316 }
2317 }
2318 done:
2319 if (best_index < 0)
2320 return NULL;
2321
2322 if (index)
2323 *index = best_index;
2324 if (exact_match)
2325 *exact_match = exact;
2326
2327 return best_symtab;
2328 }
2329 \f
2330 /* Set the PC value for a given source file and line number and return true.
2331 Returns zero for invalid line number (and sets the PC to 0).
2332 The source file is specified with a struct symtab. */
2333
2334 int
2335 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2336 {
2337 struct linetable *l;
2338 int ind;
2339
2340 *pc = 0;
2341 if (symtab == 0)
2342 return 0;
2343
2344 symtab = find_line_symtab (symtab, line, &ind, NULL);
2345 if (symtab != NULL)
2346 {
2347 l = LINETABLE (symtab);
2348 *pc = l->item[ind].pc;
2349 return 1;
2350 }
2351 else
2352 return 0;
2353 }
2354
2355 /* Find the range of pc values in a line.
2356 Store the starting pc of the line into *STARTPTR
2357 and the ending pc (start of next line) into *ENDPTR.
2358 Returns 1 to indicate success.
2359 Returns 0 if could not find the specified line. */
2360
2361 int
2362 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2363 CORE_ADDR *endptr)
2364 {
2365 CORE_ADDR startaddr;
2366 struct symtab_and_line found_sal;
2367
2368 startaddr = sal.pc;
2369 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2370 return 0;
2371
2372 /* This whole function is based on address. For example, if line 10 has
2373 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2374 "info line *0x123" should say the line goes from 0x100 to 0x200
2375 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2376 This also insures that we never give a range like "starts at 0x134
2377 and ends at 0x12c". */
2378
2379 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2380 if (found_sal.line != sal.line)
2381 {
2382 /* The specified line (sal) has zero bytes. */
2383 *startptr = found_sal.pc;
2384 *endptr = found_sal.pc;
2385 }
2386 else
2387 {
2388 *startptr = found_sal.pc;
2389 *endptr = found_sal.end;
2390 }
2391 return 1;
2392 }
2393
2394 /* Given a line table and a line number, return the index into the line
2395 table for the pc of the nearest line whose number is >= the specified one.
2396 Return -1 if none is found. The value is >= 0 if it is an index.
2397
2398 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2399
2400 static int
2401 find_line_common (struct linetable *l, int lineno,
2402 int *exact_match)
2403 {
2404 int i;
2405 int len;
2406
2407 /* BEST is the smallest linenumber > LINENO so far seen,
2408 or 0 if none has been seen so far.
2409 BEST_INDEX identifies the item for it. */
2410
2411 int best_index = -1;
2412 int best = 0;
2413
2414 if (lineno <= 0)
2415 return -1;
2416 if (l == 0)
2417 return -1;
2418
2419 len = l->nitems;
2420 for (i = 0; i < len; i++)
2421 {
2422 struct linetable_entry *item = &(l->item[i]);
2423
2424 if (item->line == lineno)
2425 {
2426 /* Return the first (lowest address) entry which matches. */
2427 *exact_match = 1;
2428 return i;
2429 }
2430
2431 if (item->line > lineno && (best == 0 || item->line < best))
2432 {
2433 best = item->line;
2434 best_index = i;
2435 }
2436 }
2437
2438 /* If we got here, we didn't get an exact match. */
2439
2440 *exact_match = 0;
2441 return best_index;
2442 }
2443
2444 int
2445 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2446 {
2447 struct symtab_and_line sal;
2448 sal = find_pc_line (pc, 0);
2449 *startptr = sal.pc;
2450 *endptr = sal.end;
2451 return sal.symtab != 0;
2452 }
2453
2454 /* Given a function symbol SYM, find the symtab and line for the start
2455 of the function.
2456 If the argument FUNFIRSTLINE is nonzero, we want the first line
2457 of real code inside the function. */
2458
2459 struct symtab_and_line
2460 find_function_start_sal (struct symbol *sym, int funfirstline)
2461 {
2462 CORE_ADDR pc;
2463 struct symtab_and_line sal;
2464
2465 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2466 fixup_symbol_section (sym, NULL);
2467 if (funfirstline)
2468 { /* skip "first line" of function (which is actually its prologue) */
2469 asection *section = SYMBOL_BFD_SECTION (sym);
2470 /* If function is in an unmapped overlay, use its unmapped LMA
2471 address, so that gdbarch_skip_prologue has something unique to work
2472 on */
2473 if (section_is_overlay (section) &&
2474 !section_is_mapped (section))
2475 pc = overlay_unmapped_address (pc, section);
2476
2477 pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
2478 pc = gdbarch_skip_prologue (current_gdbarch, pc);
2479
2480 /* For overlays, map pc back into its mapped VMA range */
2481 pc = overlay_mapped_address (pc, section);
2482 }
2483 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2484
2485 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2486 line is still part of the same function. */
2487 if (sal.pc != pc
2488 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end
2489 && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2490 {
2491 /* First pc of next line */
2492 pc = sal.end;
2493 /* Recalculate the line number (might not be N+1). */
2494 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2495 }
2496 sal.pc = pc;
2497
2498 return sal;
2499 }
2500
2501 /* If P is of the form "operator[ \t]+..." where `...' is
2502 some legitimate operator text, return a pointer to the
2503 beginning of the substring of the operator text.
2504 Otherwise, return "". */
2505 char *
2506 operator_chars (char *p, char **end)
2507 {
2508 *end = "";
2509 if (strncmp (p, "operator", 8))
2510 return *end;
2511 p += 8;
2512
2513 /* Don't get faked out by `operator' being part of a longer
2514 identifier. */
2515 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2516 return *end;
2517
2518 /* Allow some whitespace between `operator' and the operator symbol. */
2519 while (*p == ' ' || *p == '\t')
2520 p++;
2521
2522 /* Recognize 'operator TYPENAME'. */
2523
2524 if (isalpha (*p) || *p == '_' || *p == '$')
2525 {
2526 char *q = p + 1;
2527 while (isalnum (*q) || *q == '_' || *q == '$')
2528 q++;
2529 *end = q;
2530 return p;
2531 }
2532
2533 while (*p)
2534 switch (*p)
2535 {
2536 case '\\': /* regexp quoting */
2537 if (p[1] == '*')
2538 {
2539 if (p[2] == '=') /* 'operator\*=' */
2540 *end = p + 3;
2541 else /* 'operator\*' */
2542 *end = p + 2;
2543 return p;
2544 }
2545 else if (p[1] == '[')
2546 {
2547 if (p[2] == ']')
2548 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2549 else if (p[2] == '\\' && p[3] == ']')
2550 {
2551 *end = p + 4; /* 'operator\[\]' */
2552 return p;
2553 }
2554 else
2555 error (_("nothing is allowed between '[' and ']'"));
2556 }
2557 else
2558 {
2559 /* Gratuitous qoute: skip it and move on. */
2560 p++;
2561 continue;
2562 }
2563 break;
2564 case '!':
2565 case '=':
2566 case '*':
2567 case '/':
2568 case '%':
2569 case '^':
2570 if (p[1] == '=')
2571 *end = p + 2;
2572 else
2573 *end = p + 1;
2574 return p;
2575 case '<':
2576 case '>':
2577 case '+':
2578 case '-':
2579 case '&':
2580 case '|':
2581 if (p[0] == '-' && p[1] == '>')
2582 {
2583 /* Struct pointer member operator 'operator->'. */
2584 if (p[2] == '*')
2585 {
2586 *end = p + 3; /* 'operator->*' */
2587 return p;
2588 }
2589 else if (p[2] == '\\')
2590 {
2591 *end = p + 4; /* Hopefully 'operator->\*' */
2592 return p;
2593 }
2594 else
2595 {
2596 *end = p + 2; /* 'operator->' */
2597 return p;
2598 }
2599 }
2600 if (p[1] == '=' || p[1] == p[0])
2601 *end = p + 2;
2602 else
2603 *end = p + 1;
2604 return p;
2605 case '~':
2606 case ',':
2607 *end = p + 1;
2608 return p;
2609 case '(':
2610 if (p[1] != ')')
2611 error (_("`operator ()' must be specified without whitespace in `()'"));
2612 *end = p + 2;
2613 return p;
2614 case '?':
2615 if (p[1] != ':')
2616 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2617 *end = p + 2;
2618 return p;
2619 case '[':
2620 if (p[1] != ']')
2621 error (_("`operator []' must be specified without whitespace in `[]'"));
2622 *end = p + 2;
2623 return p;
2624 default:
2625 error (_("`operator %s' not supported"), p);
2626 break;
2627 }
2628
2629 *end = "";
2630 return *end;
2631 }
2632 \f
2633
2634 /* If FILE is not already in the table of files, return zero;
2635 otherwise return non-zero. Optionally add FILE to the table if ADD
2636 is non-zero. If *FIRST is non-zero, forget the old table
2637 contents. */
2638 static int
2639 filename_seen (const char *file, int add, int *first)
2640 {
2641 /* Table of files seen so far. */
2642 static const char **tab = NULL;
2643 /* Allocated size of tab in elements.
2644 Start with one 256-byte block (when using GNU malloc.c).
2645 24 is the malloc overhead when range checking is in effect. */
2646 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2647 /* Current size of tab in elements. */
2648 static int tab_cur_size;
2649 const char **p;
2650
2651 if (*first)
2652 {
2653 if (tab == NULL)
2654 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2655 tab_cur_size = 0;
2656 }
2657
2658 /* Is FILE in tab? */
2659 for (p = tab; p < tab + tab_cur_size; p++)
2660 if (strcmp (*p, file) == 0)
2661 return 1;
2662
2663 /* No; maybe add it to tab. */
2664 if (add)
2665 {
2666 if (tab_cur_size == tab_alloc_size)
2667 {
2668 tab_alloc_size *= 2;
2669 tab = (const char **) xrealloc ((char *) tab,
2670 tab_alloc_size * sizeof (*tab));
2671 }
2672 tab[tab_cur_size++] = file;
2673 }
2674
2675 return 0;
2676 }
2677
2678 /* Slave routine for sources_info. Force line breaks at ,'s.
2679 NAME is the name to print and *FIRST is nonzero if this is the first
2680 name printed. Set *FIRST to zero. */
2681 static void
2682 output_source_filename (const char *name, int *first)
2683 {
2684 /* Since a single source file can result in several partial symbol
2685 tables, we need to avoid printing it more than once. Note: if
2686 some of the psymtabs are read in and some are not, it gets
2687 printed both under "Source files for which symbols have been
2688 read" and "Source files for which symbols will be read in on
2689 demand". I consider this a reasonable way to deal with the
2690 situation. I'm not sure whether this can also happen for
2691 symtabs; it doesn't hurt to check. */
2692
2693 /* Was NAME already seen? */
2694 if (filename_seen (name, 1, first))
2695 {
2696 /* Yes; don't print it again. */
2697 return;
2698 }
2699 /* No; print it and reset *FIRST. */
2700 if (*first)
2701 {
2702 *first = 0;
2703 }
2704 else
2705 {
2706 printf_filtered (", ");
2707 }
2708
2709 wrap_here ("");
2710 fputs_filtered (name, gdb_stdout);
2711 }
2712
2713 static void
2714 sources_info (char *ignore, int from_tty)
2715 {
2716 struct symtab *s;
2717 struct partial_symtab *ps;
2718 struct objfile *objfile;
2719 int first;
2720
2721 if (!have_full_symbols () && !have_partial_symbols ())
2722 {
2723 error (_("No symbol table is loaded. Use the \"file\" command."));
2724 }
2725
2726 printf_filtered ("Source files for which symbols have been read in:\n\n");
2727
2728 first = 1;
2729 ALL_SYMTABS (objfile, s)
2730 {
2731 const char *fullname = symtab_to_fullname (s);
2732 output_source_filename (fullname ? fullname : s->filename, &first);
2733 }
2734 printf_filtered ("\n\n");
2735
2736 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2737
2738 first = 1;
2739 ALL_PSYMTABS (objfile, ps)
2740 {
2741 if (!ps->readin)
2742 {
2743 const char *fullname = psymtab_to_fullname (ps);
2744 output_source_filename (fullname ? fullname : ps->filename, &first);
2745 }
2746 }
2747 printf_filtered ("\n");
2748 }
2749
2750 static int
2751 file_matches (char *file, char *files[], int nfiles)
2752 {
2753 int i;
2754
2755 if (file != NULL && nfiles != 0)
2756 {
2757 for (i = 0; i < nfiles; i++)
2758 {
2759 if (strcmp (files[i], lbasename (file)) == 0)
2760 return 1;
2761 }
2762 }
2763 else if (nfiles == 0)
2764 return 1;
2765 return 0;
2766 }
2767
2768 /* Free any memory associated with a search. */
2769 void
2770 free_search_symbols (struct symbol_search *symbols)
2771 {
2772 struct symbol_search *p;
2773 struct symbol_search *next;
2774
2775 for (p = symbols; p != NULL; p = next)
2776 {
2777 next = p->next;
2778 xfree (p);
2779 }
2780 }
2781
2782 static void
2783 do_free_search_symbols_cleanup (void *symbols)
2784 {
2785 free_search_symbols (symbols);
2786 }
2787
2788 struct cleanup *
2789 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2790 {
2791 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2792 }
2793
2794 /* Helper function for sort_search_symbols and qsort. Can only
2795 sort symbols, not minimal symbols. */
2796 static int
2797 compare_search_syms (const void *sa, const void *sb)
2798 {
2799 struct symbol_search **sym_a = (struct symbol_search **) sa;
2800 struct symbol_search **sym_b = (struct symbol_search **) sb;
2801
2802 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2803 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2804 }
2805
2806 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2807 prevtail where it is, but update its next pointer to point to
2808 the first of the sorted symbols. */
2809 static struct symbol_search *
2810 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2811 {
2812 struct symbol_search **symbols, *symp, *old_next;
2813 int i;
2814
2815 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2816 * nfound);
2817 symp = prevtail->next;
2818 for (i = 0; i < nfound; i++)
2819 {
2820 symbols[i] = symp;
2821 symp = symp->next;
2822 }
2823 /* Generally NULL. */
2824 old_next = symp;
2825
2826 qsort (symbols, nfound, sizeof (struct symbol_search *),
2827 compare_search_syms);
2828
2829 symp = prevtail;
2830 for (i = 0; i < nfound; i++)
2831 {
2832 symp->next = symbols[i];
2833 symp = symp->next;
2834 }
2835 symp->next = old_next;
2836
2837 xfree (symbols);
2838 return symp;
2839 }
2840
2841 /* Search the symbol table for matches to the regular expression REGEXP,
2842 returning the results in *MATCHES.
2843
2844 Only symbols of KIND are searched:
2845 FUNCTIONS_DOMAIN - search all functions
2846 TYPES_DOMAIN - search all type names
2847 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2848 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2849 and constants (enums)
2850
2851 free_search_symbols should be called when *MATCHES is no longer needed.
2852
2853 The results are sorted locally; each symtab's global and static blocks are
2854 separately alphabetized.
2855 */
2856 void
2857 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2858 struct symbol_search **matches)
2859 {
2860 struct symtab *s;
2861 struct partial_symtab *ps;
2862 struct blockvector *bv;
2863 struct block *b;
2864 int i = 0;
2865 struct dict_iterator iter;
2866 struct symbol *sym;
2867 struct partial_symbol **psym;
2868 struct objfile *objfile;
2869 struct minimal_symbol *msymbol;
2870 char *val;
2871 int found_misc = 0;
2872 static enum minimal_symbol_type types[]
2873 =
2874 {mst_data, mst_text, mst_abs, mst_unknown};
2875 static enum minimal_symbol_type types2[]
2876 =
2877 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2878 static enum minimal_symbol_type types3[]
2879 =
2880 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2881 static enum minimal_symbol_type types4[]
2882 =
2883 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2884 enum minimal_symbol_type ourtype;
2885 enum minimal_symbol_type ourtype2;
2886 enum minimal_symbol_type ourtype3;
2887 enum minimal_symbol_type ourtype4;
2888 struct symbol_search *sr;
2889 struct symbol_search *psr;
2890 struct symbol_search *tail;
2891 struct cleanup *old_chain = NULL;
2892
2893 if (kind < VARIABLES_DOMAIN)
2894 error (_("must search on specific domain"));
2895
2896 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2897 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2898 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2899 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2900
2901 sr = *matches = NULL;
2902 tail = NULL;
2903
2904 if (regexp != NULL)
2905 {
2906 /* Make sure spacing is right for C++ operators.
2907 This is just a courtesy to make the matching less sensitive
2908 to how many spaces the user leaves between 'operator'
2909 and <TYPENAME> or <OPERATOR>. */
2910 char *opend;
2911 char *opname = operator_chars (regexp, &opend);
2912 if (*opname)
2913 {
2914 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2915 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2916 {
2917 /* There should 1 space between 'operator' and 'TYPENAME'. */
2918 if (opname[-1] != ' ' || opname[-2] == ' ')
2919 fix = 1;
2920 }
2921 else
2922 {
2923 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2924 if (opname[-1] == ' ')
2925 fix = 0;
2926 }
2927 /* If wrong number of spaces, fix it. */
2928 if (fix >= 0)
2929 {
2930 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2931 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2932 regexp = tmp;
2933 }
2934 }
2935
2936 if (0 != (val = re_comp (regexp)))
2937 error (_("Invalid regexp (%s): %s"), val, regexp);
2938 }
2939
2940 /* Search through the partial symtabs *first* for all symbols
2941 matching the regexp. That way we don't have to reproduce all of
2942 the machinery below. */
2943
2944 ALL_PSYMTABS (objfile, ps)
2945 {
2946 struct partial_symbol **bound, **gbound, **sbound;
2947 int keep_going = 1;
2948
2949 if (ps->readin)
2950 continue;
2951
2952 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
2953 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
2954 bound = gbound;
2955
2956 /* Go through all of the symbols stored in a partial
2957 symtab in one loop. */
2958 psym = objfile->global_psymbols.list + ps->globals_offset;
2959 while (keep_going)
2960 {
2961 if (psym >= bound)
2962 {
2963 if (bound == gbound && ps->n_static_syms != 0)
2964 {
2965 psym = objfile->static_psymbols.list + ps->statics_offset;
2966 bound = sbound;
2967 }
2968 else
2969 keep_going = 0;
2970 continue;
2971 }
2972 else
2973 {
2974 QUIT;
2975
2976 /* If it would match (logic taken from loop below)
2977 load the file and go on to the next one. We check the
2978 filename here, but that's a bit bogus: we don't know
2979 what file it really comes from until we have full
2980 symtabs. The symbol might be in a header file included by
2981 this psymtab. This only affects Insight. */
2982 if (file_matches (ps->filename, files, nfiles)
2983 && ((regexp == NULL
2984 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
2985 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
2986 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
2987 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
2988 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
2989 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
2990 {
2991 PSYMTAB_TO_SYMTAB (ps);
2992 keep_going = 0;
2993 }
2994 }
2995 psym++;
2996 }
2997 }
2998
2999 /* Here, we search through the minimal symbol tables for functions
3000 and variables that match, and force their symbols to be read.
3001 This is in particular necessary for demangled variable names,
3002 which are no longer put into the partial symbol tables.
3003 The symbol will then be found during the scan of symtabs below.
3004
3005 For functions, find_pc_symtab should succeed if we have debug info
3006 for the function, for variables we have to call lookup_symbol
3007 to determine if the variable has debug info.
3008 If the lookup fails, set found_misc so that we will rescan to print
3009 any matching symbols without debug info.
3010 */
3011
3012 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3013 {
3014 ALL_MSYMBOLS (objfile, msymbol)
3015 {
3016 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3017 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3018 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3019 MSYMBOL_TYPE (msymbol) == ourtype4)
3020 {
3021 if (regexp == NULL
3022 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3023 {
3024 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3025 {
3026 /* FIXME: carlton/2003-02-04: Given that the
3027 semantics of lookup_symbol keeps on changing
3028 slightly, it would be a nice idea if we had a
3029 function lookup_symbol_minsym that found the
3030 symbol associated to a given minimal symbol (if
3031 any). */
3032 if (kind == FUNCTIONS_DOMAIN
3033 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3034 (struct block *) NULL,
3035 VAR_DOMAIN,
3036 0, (struct symtab **) NULL)
3037 == NULL)
3038 found_misc = 1;
3039 }
3040 }
3041 }
3042 }
3043 }
3044
3045 ALL_PRIMARY_SYMTABS (objfile, s)
3046 {
3047 bv = BLOCKVECTOR (s);
3048 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3049 {
3050 struct symbol_search *prevtail = tail;
3051 int nfound = 0;
3052 b = BLOCKVECTOR_BLOCK (bv, i);
3053 ALL_BLOCK_SYMBOLS (b, iter, sym)
3054 {
3055 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3056 QUIT;
3057
3058 if (file_matches (real_symtab->filename, files, nfiles)
3059 && ((regexp == NULL
3060 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3061 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3062 && SYMBOL_CLASS (sym) != LOC_BLOCK
3063 && SYMBOL_CLASS (sym) != LOC_CONST)
3064 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3065 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3066 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3067 {
3068 /* match */
3069 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3070 psr->block = i;
3071 psr->symtab = real_symtab;
3072 psr->symbol = sym;
3073 psr->msymbol = NULL;
3074 psr->next = NULL;
3075 if (tail == NULL)
3076 sr = psr;
3077 else
3078 tail->next = psr;
3079 tail = psr;
3080 nfound ++;
3081 }
3082 }
3083 if (nfound > 0)
3084 {
3085 if (prevtail == NULL)
3086 {
3087 struct symbol_search dummy;
3088
3089 dummy.next = sr;
3090 tail = sort_search_symbols (&dummy, nfound);
3091 sr = dummy.next;
3092
3093 old_chain = make_cleanup_free_search_symbols (sr);
3094 }
3095 else
3096 tail = sort_search_symbols (prevtail, nfound);
3097 }
3098 }
3099 }
3100
3101 /* If there are no eyes, avoid all contact. I mean, if there are
3102 no debug symbols, then print directly from the msymbol_vector. */
3103
3104 if (found_misc || kind != FUNCTIONS_DOMAIN)
3105 {
3106 ALL_MSYMBOLS (objfile, msymbol)
3107 {
3108 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3109 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3110 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3111 MSYMBOL_TYPE (msymbol) == ourtype4)
3112 {
3113 if (regexp == NULL
3114 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3115 {
3116 /* Functions: Look up by address. */
3117 if (kind != FUNCTIONS_DOMAIN ||
3118 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3119 {
3120 /* Variables/Absolutes: Look up by name */
3121 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3122 (struct block *) NULL, VAR_DOMAIN,
3123 0, (struct symtab **) NULL) == NULL)
3124 {
3125 /* match */
3126 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3127 psr->block = i;
3128 psr->msymbol = msymbol;
3129 psr->symtab = NULL;
3130 psr->symbol = NULL;
3131 psr->next = NULL;
3132 if (tail == NULL)
3133 {
3134 sr = psr;
3135 old_chain = make_cleanup_free_search_symbols (sr);
3136 }
3137 else
3138 tail->next = psr;
3139 tail = psr;
3140 }
3141 }
3142 }
3143 }
3144 }
3145 }
3146
3147 *matches = sr;
3148 if (sr != NULL)
3149 discard_cleanups (old_chain);
3150 }
3151
3152 /* Helper function for symtab_symbol_info, this function uses
3153 the data returned from search_symbols() to print information
3154 regarding the match to gdb_stdout.
3155 */
3156 static void
3157 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3158 int block, char *last)
3159 {
3160 if (last == NULL || strcmp (last, s->filename) != 0)
3161 {
3162 fputs_filtered ("\nFile ", gdb_stdout);
3163 fputs_filtered (s->filename, gdb_stdout);
3164 fputs_filtered (":\n", gdb_stdout);
3165 }
3166
3167 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3168 printf_filtered ("static ");
3169
3170 /* Typedef that is not a C++ class */
3171 if (kind == TYPES_DOMAIN
3172 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3173 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3174 /* variable, func, or typedef-that-is-c++-class */
3175 else if (kind < TYPES_DOMAIN ||
3176 (kind == TYPES_DOMAIN &&
3177 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3178 {
3179 type_print (SYMBOL_TYPE (sym),
3180 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3181 ? "" : SYMBOL_PRINT_NAME (sym)),
3182 gdb_stdout, 0);
3183
3184 printf_filtered (";\n");
3185 }
3186 }
3187
3188 /* This help function for symtab_symbol_info() prints information
3189 for non-debugging symbols to gdb_stdout.
3190 */
3191 static void
3192 print_msymbol_info (struct minimal_symbol *msymbol)
3193 {
3194 char *tmp;
3195
3196 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3197 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3198 & (CORE_ADDR) 0xffffffff,
3199 8);
3200 else
3201 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3202 16);
3203 printf_filtered ("%s %s\n",
3204 tmp, SYMBOL_PRINT_NAME (msymbol));
3205 }
3206
3207 /* This is the guts of the commands "info functions", "info types", and
3208 "info variables". It calls search_symbols to find all matches and then
3209 print_[m]symbol_info to print out some useful information about the
3210 matches.
3211 */
3212 static void
3213 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3214 {
3215 static char *classnames[]
3216 =
3217 {"variable", "function", "type", "method"};
3218 struct symbol_search *symbols;
3219 struct symbol_search *p;
3220 struct cleanup *old_chain;
3221 char *last_filename = NULL;
3222 int first = 1;
3223
3224 /* must make sure that if we're interrupted, symbols gets freed */
3225 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3226 old_chain = make_cleanup_free_search_symbols (symbols);
3227
3228 printf_filtered (regexp
3229 ? "All %ss matching regular expression \"%s\":\n"
3230 : "All defined %ss:\n",
3231 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3232
3233 for (p = symbols; p != NULL; p = p->next)
3234 {
3235 QUIT;
3236
3237 if (p->msymbol != NULL)
3238 {
3239 if (first)
3240 {
3241 printf_filtered ("\nNon-debugging symbols:\n");
3242 first = 0;
3243 }
3244 print_msymbol_info (p->msymbol);
3245 }
3246 else
3247 {
3248 print_symbol_info (kind,
3249 p->symtab,
3250 p->symbol,
3251 p->block,
3252 last_filename);
3253 last_filename = p->symtab->filename;
3254 }
3255 }
3256
3257 do_cleanups (old_chain);
3258 }
3259
3260 static void
3261 variables_info (char *regexp, int from_tty)
3262 {
3263 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3264 }
3265
3266 static void
3267 functions_info (char *regexp, int from_tty)
3268 {
3269 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3270 }
3271
3272
3273 static void
3274 types_info (char *regexp, int from_tty)
3275 {
3276 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3277 }
3278
3279 /* Breakpoint all functions matching regular expression. */
3280
3281 void
3282 rbreak_command_wrapper (char *regexp, int from_tty)
3283 {
3284 rbreak_command (regexp, from_tty);
3285 }
3286
3287 static void
3288 rbreak_command (char *regexp, int from_tty)
3289 {
3290 struct symbol_search *ss;
3291 struct symbol_search *p;
3292 struct cleanup *old_chain;
3293
3294 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3295 old_chain = make_cleanup_free_search_symbols (ss);
3296
3297 for (p = ss; p != NULL; p = p->next)
3298 {
3299 if (p->msymbol == NULL)
3300 {
3301 char *string = alloca (strlen (p->symtab->filename)
3302 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3303 + 4);
3304 strcpy (string, p->symtab->filename);
3305 strcat (string, ":'");
3306 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3307 strcat (string, "'");
3308 break_command (string, from_tty);
3309 print_symbol_info (FUNCTIONS_DOMAIN,
3310 p->symtab,
3311 p->symbol,
3312 p->block,
3313 p->symtab->filename);
3314 }
3315 else
3316 {
3317 break_command (SYMBOL_LINKAGE_NAME (p->msymbol), from_tty);
3318 printf_filtered ("<function, no debug info> %s;\n",
3319 SYMBOL_PRINT_NAME (p->msymbol));
3320 }
3321 }
3322
3323 do_cleanups (old_chain);
3324 }
3325 \f
3326
3327 /* Helper routine for make_symbol_completion_list. */
3328
3329 static int return_val_size;
3330 static int return_val_index;
3331 static char **return_val;
3332
3333 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3334 completion_list_add_name \
3335 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3336
3337 /* Test to see if the symbol specified by SYMNAME (which is already
3338 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3339 characters. If so, add it to the current completion list. */
3340
3341 static void
3342 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3343 char *text, char *word)
3344 {
3345 int newsize;
3346 int i;
3347
3348 /* clip symbols that cannot match */
3349
3350 if (strncmp (symname, sym_text, sym_text_len) != 0)
3351 {
3352 return;
3353 }
3354
3355 /* We have a match for a completion, so add SYMNAME to the current list
3356 of matches. Note that the name is moved to freshly malloc'd space. */
3357
3358 {
3359 char *new;
3360 if (word == sym_text)
3361 {
3362 new = xmalloc (strlen (symname) + 5);
3363 strcpy (new, symname);
3364 }
3365 else if (word > sym_text)
3366 {
3367 /* Return some portion of symname. */
3368 new = xmalloc (strlen (symname) + 5);
3369 strcpy (new, symname + (word - sym_text));
3370 }
3371 else
3372 {
3373 /* Return some of SYM_TEXT plus symname. */
3374 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3375 strncpy (new, word, sym_text - word);
3376 new[sym_text - word] = '\0';
3377 strcat (new, symname);
3378 }
3379
3380 if (return_val_index + 3 > return_val_size)
3381 {
3382 newsize = (return_val_size *= 2) * sizeof (char *);
3383 return_val = (char **) xrealloc ((char *) return_val, newsize);
3384 }
3385 return_val[return_val_index++] = new;
3386 return_val[return_val_index] = NULL;
3387 }
3388 }
3389
3390 /* ObjC: In case we are completing on a selector, look as the msymbol
3391 again and feed all the selectors into the mill. */
3392
3393 static void
3394 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3395 int sym_text_len, char *text, char *word)
3396 {
3397 static char *tmp = NULL;
3398 static unsigned int tmplen = 0;
3399
3400 char *method, *category, *selector;
3401 char *tmp2 = NULL;
3402
3403 method = SYMBOL_NATURAL_NAME (msymbol);
3404
3405 /* Is it a method? */
3406 if ((method[0] != '-') && (method[0] != '+'))
3407 return;
3408
3409 if (sym_text[0] == '[')
3410 /* Complete on shortened method method. */
3411 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3412
3413 while ((strlen (method) + 1) >= tmplen)
3414 {
3415 if (tmplen == 0)
3416 tmplen = 1024;
3417 else
3418 tmplen *= 2;
3419 tmp = xrealloc (tmp, tmplen);
3420 }
3421 selector = strchr (method, ' ');
3422 if (selector != NULL)
3423 selector++;
3424
3425 category = strchr (method, '(');
3426
3427 if ((category != NULL) && (selector != NULL))
3428 {
3429 memcpy (tmp, method, (category - method));
3430 tmp[category - method] = ' ';
3431 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3432 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3433 if (sym_text[0] == '[')
3434 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3435 }
3436
3437 if (selector != NULL)
3438 {
3439 /* Complete on selector only. */
3440 strcpy (tmp, selector);
3441 tmp2 = strchr (tmp, ']');
3442 if (tmp2 != NULL)
3443 *tmp2 = '\0';
3444
3445 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3446 }
3447 }
3448
3449 /* Break the non-quoted text based on the characters which are in
3450 symbols. FIXME: This should probably be language-specific. */
3451
3452 static char *
3453 language_search_unquoted_string (char *text, char *p)
3454 {
3455 for (; p > text; --p)
3456 {
3457 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3458 continue;
3459 else
3460 {
3461 if ((current_language->la_language == language_objc))
3462 {
3463 if (p[-1] == ':') /* might be part of a method name */
3464 continue;
3465 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3466 p -= 2; /* beginning of a method name */
3467 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3468 { /* might be part of a method name */
3469 char *t = p;
3470
3471 /* Seeing a ' ' or a '(' is not conclusive evidence
3472 that we are in the middle of a method name. However,
3473 finding "-[" or "+[" should be pretty un-ambiguous.
3474 Unfortunately we have to find it now to decide. */
3475
3476 while (t > text)
3477 if (isalnum (t[-1]) || t[-1] == '_' ||
3478 t[-1] == ' ' || t[-1] == ':' ||
3479 t[-1] == '(' || t[-1] == ')')
3480 --t;
3481 else
3482 break;
3483
3484 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3485 p = t - 2; /* method name detected */
3486 /* else we leave with p unchanged */
3487 }
3488 }
3489 break;
3490 }
3491 }
3492 return p;
3493 }
3494
3495
3496 /* Return a NULL terminated array of all symbols (regardless of class)
3497 which begin by matching TEXT. If the answer is no symbols, then
3498 the return value is an array which contains only a NULL pointer.
3499
3500 Problem: All of the symbols have to be copied because readline frees them.
3501 I'm not going to worry about this; hopefully there won't be that many. */
3502
3503 char **
3504 make_symbol_completion_list (char *text, char *word)
3505 {
3506 struct symbol *sym;
3507 struct symtab *s;
3508 struct partial_symtab *ps;
3509 struct minimal_symbol *msymbol;
3510 struct objfile *objfile;
3511 struct block *b, *surrounding_static_block = 0;
3512 struct dict_iterator iter;
3513 int j;
3514 struct partial_symbol **psym;
3515 /* The symbol we are completing on. Points in same buffer as text. */
3516 char *sym_text;
3517 /* Length of sym_text. */
3518 int sym_text_len;
3519
3520 /* Now look for the symbol we are supposed to complete on.
3521 FIXME: This should be language-specific. */
3522 {
3523 char *p;
3524 char quote_found;
3525 char *quote_pos = NULL;
3526
3527 /* First see if this is a quoted string. */
3528 quote_found = '\0';
3529 for (p = text; *p != '\0'; ++p)
3530 {
3531 if (quote_found != '\0')
3532 {
3533 if (*p == quote_found)
3534 /* Found close quote. */
3535 quote_found = '\0';
3536 else if (*p == '\\' && p[1] == quote_found)
3537 /* A backslash followed by the quote character
3538 doesn't end the string. */
3539 ++p;
3540 }
3541 else if (*p == '\'' || *p == '"')
3542 {
3543 quote_found = *p;
3544 quote_pos = p;
3545 }
3546 }
3547 if (quote_found == '\'')
3548 /* A string within single quotes can be a symbol, so complete on it. */
3549 sym_text = quote_pos + 1;
3550 else if (quote_found == '"')
3551 /* A double-quoted string is never a symbol, nor does it make sense
3552 to complete it any other way. */
3553 {
3554 return_val = (char **) xmalloc (sizeof (char *));
3555 return_val[0] = NULL;
3556 return return_val;
3557 }
3558 else
3559 {
3560 /* It is not a quoted string. Break it based on the characters
3561 which are in symbols. */
3562 while (p > text)
3563 {
3564 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3565 --p;
3566 else
3567 break;
3568 }
3569 sym_text = p;
3570 }
3571 }
3572
3573 sym_text_len = strlen (sym_text);
3574
3575 return_val_size = 100;
3576 return_val_index = 0;
3577 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3578 return_val[0] = NULL;
3579
3580 /* Look through the partial symtabs for all symbols which begin
3581 by matching SYM_TEXT. Add each one that you find to the list. */
3582
3583 ALL_PSYMTABS (objfile, ps)
3584 {
3585 /* If the psymtab's been read in we'll get it when we search
3586 through the blockvector. */
3587 if (ps->readin)
3588 continue;
3589
3590 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3591 psym < (objfile->global_psymbols.list + ps->globals_offset
3592 + ps->n_global_syms);
3593 psym++)
3594 {
3595 /* If interrupted, then quit. */
3596 QUIT;
3597 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3598 }
3599
3600 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3601 psym < (objfile->static_psymbols.list + ps->statics_offset
3602 + ps->n_static_syms);
3603 psym++)
3604 {
3605 QUIT;
3606 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3607 }
3608 }
3609
3610 /* At this point scan through the misc symbol vectors and add each
3611 symbol you find to the list. Eventually we want to ignore
3612 anything that isn't a text symbol (everything else will be
3613 handled by the psymtab code above). */
3614
3615 ALL_MSYMBOLS (objfile, msymbol)
3616 {
3617 QUIT;
3618 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3619
3620 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3621 }
3622
3623 /* Search upwards from currently selected frame (so that we can
3624 complete on local vars. */
3625
3626 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3627 {
3628 if (!BLOCK_SUPERBLOCK (b))
3629 {
3630 surrounding_static_block = b; /* For elmin of dups */
3631 }
3632
3633 /* Also catch fields of types defined in this places which match our
3634 text string. Only complete on types visible from current context. */
3635
3636 ALL_BLOCK_SYMBOLS (b, iter, sym)
3637 {
3638 QUIT;
3639 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3640 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3641 {
3642 struct type *t = SYMBOL_TYPE (sym);
3643 enum type_code c = TYPE_CODE (t);
3644
3645 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3646 {
3647 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3648 {
3649 if (TYPE_FIELD_NAME (t, j))
3650 {
3651 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3652 sym_text, sym_text_len, text, word);
3653 }
3654 }
3655 }
3656 }
3657 }
3658 }
3659
3660 /* Go through the symtabs and check the externs and statics for
3661 symbols which match. */
3662
3663 ALL_PRIMARY_SYMTABS (objfile, s)
3664 {
3665 QUIT;
3666 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3667 ALL_BLOCK_SYMBOLS (b, iter, sym)
3668 {
3669 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3670 }
3671 }
3672
3673 ALL_PRIMARY_SYMTABS (objfile, s)
3674 {
3675 QUIT;
3676 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3677 /* Don't do this block twice. */
3678 if (b == surrounding_static_block)
3679 continue;
3680 ALL_BLOCK_SYMBOLS (b, iter, sym)
3681 {
3682 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3683 }
3684 }
3685
3686 return (return_val);
3687 }
3688
3689 /* Like make_symbol_completion_list, but returns a list of symbols
3690 defined in a source file FILE. */
3691
3692 char **
3693 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3694 {
3695 struct symbol *sym;
3696 struct symtab *s;
3697 struct block *b;
3698 struct dict_iterator iter;
3699 /* The symbol we are completing on. Points in same buffer as text. */
3700 char *sym_text;
3701 /* Length of sym_text. */
3702 int sym_text_len;
3703
3704 /* Now look for the symbol we are supposed to complete on.
3705 FIXME: This should be language-specific. */
3706 {
3707 char *p;
3708 char quote_found;
3709 char *quote_pos = NULL;
3710
3711 /* First see if this is a quoted string. */
3712 quote_found = '\0';
3713 for (p = text; *p != '\0'; ++p)
3714 {
3715 if (quote_found != '\0')
3716 {
3717 if (*p == quote_found)
3718 /* Found close quote. */
3719 quote_found = '\0';
3720 else if (*p == '\\' && p[1] == quote_found)
3721 /* A backslash followed by the quote character
3722 doesn't end the string. */
3723 ++p;
3724 }
3725 else if (*p == '\'' || *p == '"')
3726 {
3727 quote_found = *p;
3728 quote_pos = p;
3729 }
3730 }
3731 if (quote_found == '\'')
3732 /* A string within single quotes can be a symbol, so complete on it. */
3733 sym_text = quote_pos + 1;
3734 else if (quote_found == '"')
3735 /* A double-quoted string is never a symbol, nor does it make sense
3736 to complete it any other way. */
3737 {
3738 return_val = (char **) xmalloc (sizeof (char *));
3739 return_val[0] = NULL;
3740 return return_val;
3741 }
3742 else
3743 {
3744 /* Not a quoted string. */
3745 sym_text = language_search_unquoted_string (text, p);
3746 }
3747 }
3748
3749 sym_text_len = strlen (sym_text);
3750
3751 return_val_size = 10;
3752 return_val_index = 0;
3753 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3754 return_val[0] = NULL;
3755
3756 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3757 in). */
3758 s = lookup_symtab (srcfile);
3759 if (s == NULL)
3760 {
3761 /* Maybe they typed the file with leading directories, while the
3762 symbol tables record only its basename. */
3763 const char *tail = lbasename (srcfile);
3764
3765 if (tail > srcfile)
3766 s = lookup_symtab (tail);
3767 }
3768
3769 /* If we have no symtab for that file, return an empty list. */
3770 if (s == NULL)
3771 return (return_val);
3772
3773 /* Go through this symtab and check the externs and statics for
3774 symbols which match. */
3775
3776 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3777 ALL_BLOCK_SYMBOLS (b, iter, sym)
3778 {
3779 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3780 }
3781
3782 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3783 ALL_BLOCK_SYMBOLS (b, iter, sym)
3784 {
3785 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3786 }
3787
3788 return (return_val);
3789 }
3790
3791 /* A helper function for make_source_files_completion_list. It adds
3792 another file name to a list of possible completions, growing the
3793 list as necessary. */
3794
3795 static void
3796 add_filename_to_list (const char *fname, char *text, char *word,
3797 char ***list, int *list_used, int *list_alloced)
3798 {
3799 char *new;
3800 size_t fnlen = strlen (fname);
3801
3802 if (*list_used + 1 >= *list_alloced)
3803 {
3804 *list_alloced *= 2;
3805 *list = (char **) xrealloc ((char *) *list,
3806 *list_alloced * sizeof (char *));
3807 }
3808
3809 if (word == text)
3810 {
3811 /* Return exactly fname. */
3812 new = xmalloc (fnlen + 5);
3813 strcpy (new, fname);
3814 }
3815 else if (word > text)
3816 {
3817 /* Return some portion of fname. */
3818 new = xmalloc (fnlen + 5);
3819 strcpy (new, fname + (word - text));
3820 }
3821 else
3822 {
3823 /* Return some of TEXT plus fname. */
3824 new = xmalloc (fnlen + (text - word) + 5);
3825 strncpy (new, word, text - word);
3826 new[text - word] = '\0';
3827 strcat (new, fname);
3828 }
3829 (*list)[*list_used] = new;
3830 (*list)[++*list_used] = NULL;
3831 }
3832
3833 static int
3834 not_interesting_fname (const char *fname)
3835 {
3836 static const char *illegal_aliens[] = {
3837 "_globals_", /* inserted by coff_symtab_read */
3838 NULL
3839 };
3840 int i;
3841
3842 for (i = 0; illegal_aliens[i]; i++)
3843 {
3844 if (strcmp (fname, illegal_aliens[i]) == 0)
3845 return 1;
3846 }
3847 return 0;
3848 }
3849
3850 /* Return a NULL terminated array of all source files whose names
3851 begin with matching TEXT. The file names are looked up in the
3852 symbol tables of this program. If the answer is no matchess, then
3853 the return value is an array which contains only a NULL pointer. */
3854
3855 char **
3856 make_source_files_completion_list (char *text, char *word)
3857 {
3858 struct symtab *s;
3859 struct partial_symtab *ps;
3860 struct objfile *objfile;
3861 int first = 1;
3862 int list_alloced = 1;
3863 int list_used = 0;
3864 size_t text_len = strlen (text);
3865 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3866 const char *base_name;
3867
3868 list[0] = NULL;
3869
3870 if (!have_full_symbols () && !have_partial_symbols ())
3871 return list;
3872
3873 ALL_SYMTABS (objfile, s)
3874 {
3875 if (not_interesting_fname (s->filename))
3876 continue;
3877 if (!filename_seen (s->filename, 1, &first)
3878 #if HAVE_DOS_BASED_FILE_SYSTEM
3879 && strncasecmp (s->filename, text, text_len) == 0
3880 #else
3881 && strncmp (s->filename, text, text_len) == 0
3882 #endif
3883 )
3884 {
3885 /* This file matches for a completion; add it to the current
3886 list of matches. */
3887 add_filename_to_list (s->filename, text, word,
3888 &list, &list_used, &list_alloced);
3889 }
3890 else
3891 {
3892 /* NOTE: We allow the user to type a base name when the
3893 debug info records leading directories, but not the other
3894 way around. This is what subroutines of breakpoint
3895 command do when they parse file names. */
3896 base_name = lbasename (s->filename);
3897 if (base_name != s->filename
3898 && !filename_seen (base_name, 1, &first)
3899 #if HAVE_DOS_BASED_FILE_SYSTEM
3900 && strncasecmp (base_name, text, text_len) == 0
3901 #else
3902 && strncmp (base_name, text, text_len) == 0
3903 #endif
3904 )
3905 add_filename_to_list (base_name, text, word,
3906 &list, &list_used, &list_alloced);
3907 }
3908 }
3909
3910 ALL_PSYMTABS (objfile, ps)
3911 {
3912 if (not_interesting_fname (ps->filename))
3913 continue;
3914 if (!ps->readin)
3915 {
3916 if (!filename_seen (ps->filename, 1, &first)
3917 #if HAVE_DOS_BASED_FILE_SYSTEM
3918 && strncasecmp (ps->filename, text, text_len) == 0
3919 #else
3920 && strncmp (ps->filename, text, text_len) == 0
3921 #endif
3922 )
3923 {
3924 /* This file matches for a completion; add it to the
3925 current list of matches. */
3926 add_filename_to_list (ps->filename, text, word,
3927 &list, &list_used, &list_alloced);
3928
3929 }
3930 else
3931 {
3932 base_name = lbasename (ps->filename);
3933 if (base_name != ps->filename
3934 && !filename_seen (base_name, 1, &first)
3935 #if HAVE_DOS_BASED_FILE_SYSTEM
3936 && strncasecmp (base_name, text, text_len) == 0
3937 #else
3938 && strncmp (base_name, text, text_len) == 0
3939 #endif
3940 )
3941 add_filename_to_list (base_name, text, word,
3942 &list, &list_used, &list_alloced);
3943 }
3944 }
3945 }
3946
3947 return list;
3948 }
3949
3950 /* Determine if PC is in the prologue of a function. The prologue is the area
3951 between the first instruction of a function, and the first executable line.
3952 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3953
3954 If non-zero, func_start is where we think the prologue starts, possibly
3955 by previous examination of symbol table information.
3956 */
3957
3958 int
3959 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
3960 {
3961 struct symtab_and_line sal;
3962 CORE_ADDR func_addr, func_end;
3963
3964 /* We have several sources of information we can consult to figure
3965 this out.
3966 - Compilers usually emit line number info that marks the prologue
3967 as its own "source line". So the ending address of that "line"
3968 is the end of the prologue. If available, this is the most
3969 reliable method.
3970 - The minimal symbols and partial symbols, which can usually tell
3971 us the starting and ending addresses of a function.
3972 - If we know the function's start address, we can call the
3973 architecture-defined gdbarch_skip_prologue function to analyze the
3974 instruction stream and guess where the prologue ends.
3975 - Our `func_start' argument; if non-zero, this is the caller's
3976 best guess as to the function's entry point. At the time of
3977 this writing, handle_inferior_event doesn't get this right, so
3978 it should be our last resort. */
3979
3980 /* Consult the partial symbol table, to find which function
3981 the PC is in. */
3982 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3983 {
3984 CORE_ADDR prologue_end;
3985
3986 /* We don't even have minsym information, so fall back to using
3987 func_start, if given. */
3988 if (! func_start)
3989 return 1; /* We *might* be in a prologue. */
3990
3991 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
3992
3993 return func_start <= pc && pc < prologue_end;
3994 }
3995
3996 /* If we have line number information for the function, that's
3997 usually pretty reliable. */
3998 sal = find_pc_line (func_addr, 0);
3999
4000 /* Now sal describes the source line at the function's entry point,
4001 which (by convention) is the prologue. The end of that "line",
4002 sal.end, is the end of the prologue.
4003
4004 Note that, for functions whose source code is all on a single
4005 line, the line number information doesn't always end up this way.
4006 So we must verify that our purported end-of-prologue address is
4007 *within* the function, not at its start or end. */
4008 if (sal.line == 0
4009 || sal.end <= func_addr
4010 || func_end <= sal.end)
4011 {
4012 /* We don't have any good line number info, so use the minsym
4013 information, together with the architecture-specific prologue
4014 scanning code. */
4015 CORE_ADDR prologue_end = gdbarch_skip_prologue
4016 (current_gdbarch, func_addr);
4017
4018 return func_addr <= pc && pc < prologue_end;
4019 }
4020
4021 /* We have line number info, and it looks good. */
4022 return func_addr <= pc && pc < sal.end;
4023 }
4024
4025 /* Given PC at the function's start address, attempt to find the
4026 prologue end using SAL information. Return zero if the skip fails.
4027
4028 A non-optimized prologue traditionally has one SAL for the function
4029 and a second for the function body. A single line function has
4030 them both pointing at the same line.
4031
4032 An optimized prologue is similar but the prologue may contain
4033 instructions (SALs) from the instruction body. Need to skip those
4034 while not getting into the function body.
4035
4036 The functions end point and an increasing SAL line are used as
4037 indicators of the prologue's endpoint.
4038
4039 This code is based on the function refine_prologue_limit (versions
4040 found in both ia64 and ppc). */
4041
4042 CORE_ADDR
4043 skip_prologue_using_sal (CORE_ADDR func_addr)
4044 {
4045 struct symtab_and_line prologue_sal;
4046 CORE_ADDR start_pc;
4047 CORE_ADDR end_pc;
4048
4049 /* Get an initial range for the function. */
4050 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4051 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4052
4053 prologue_sal = find_pc_line (start_pc, 0);
4054 if (prologue_sal.line != 0)
4055 {
4056 /* If there is only one sal that covers the entire function,
4057 then it is probably a single line function, like
4058 "foo(){}". */
4059 if (prologue_sal.end >= end_pc)
4060 return 0;
4061 while (prologue_sal.end < end_pc)
4062 {
4063 struct symtab_and_line sal;
4064
4065 sal = find_pc_line (prologue_sal.end, 0);
4066 if (sal.line == 0)
4067 break;
4068 /* Assume that a consecutive SAL for the same (or larger)
4069 line mark the prologue -> body transition. */
4070 if (sal.line >= prologue_sal.line)
4071 break;
4072 /* The case in which compiler's optimizer/scheduler has
4073 moved instructions into the prologue. We look ahead in
4074 the function looking for address ranges whose
4075 corresponding line number is less the first one that we
4076 found for the function. This is more conservative then
4077 refine_prologue_limit which scans a large number of SALs
4078 looking for any in the prologue */
4079 prologue_sal = sal;
4080 }
4081 }
4082 return prologue_sal.end;
4083 }
4084 \f
4085 struct symtabs_and_lines
4086 decode_line_spec (char *string, int funfirstline)
4087 {
4088 struct symtabs_and_lines sals;
4089 struct symtab_and_line cursal;
4090
4091 if (string == 0)
4092 error (_("Empty line specification."));
4093
4094 /* We use whatever is set as the current source line. We do not try
4095 and get a default or it will recursively call us! */
4096 cursal = get_current_source_symtab_and_line ();
4097
4098 sals = decode_line_1 (&string, funfirstline,
4099 cursal.symtab, cursal.line,
4100 (char ***) NULL, NULL);
4101
4102 if (*string)
4103 error (_("Junk at end of line specification: %s"), string);
4104 return sals;
4105 }
4106
4107 /* Track MAIN */
4108 static char *name_of_main;
4109
4110 void
4111 set_main_name (const char *name)
4112 {
4113 if (name_of_main != NULL)
4114 {
4115 xfree (name_of_main);
4116 name_of_main = NULL;
4117 }
4118 if (name != NULL)
4119 {
4120 name_of_main = xstrdup (name);
4121 }
4122 }
4123
4124 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4125 accordingly. */
4126
4127 static void
4128 find_main_name (void)
4129 {
4130 const char *new_main_name;
4131
4132 /* Try to see if the main procedure is in Ada. */
4133 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4134 be to add a new method in the language vector, and call this
4135 method for each language until one of them returns a non-empty
4136 name. This would allow us to remove this hard-coded call to
4137 an Ada function. It is not clear that this is a better approach
4138 at this point, because all methods need to be written in a way
4139 such that false positives never be returned. For instance, it is
4140 important that a method does not return a wrong name for the main
4141 procedure if the main procedure is actually written in a different
4142 language. It is easy to guaranty this with Ada, since we use a
4143 special symbol generated only when the main in Ada to find the name
4144 of the main procedure. It is difficult however to see how this can
4145 be guarantied for languages such as C, for instance. This suggests
4146 that order of call for these methods becomes important, which means
4147 a more complicated approach. */
4148 new_main_name = ada_main_name ();
4149 if (new_main_name != NULL)
4150 {
4151 set_main_name (new_main_name);
4152 return;
4153 }
4154
4155 new_main_name = pascal_main_name ();
4156 if (new_main_name != NULL)
4157 {
4158 set_main_name (new_main_name);
4159 return;
4160 }
4161
4162 /* The languages above didn't identify the name of the main procedure.
4163 Fallback to "main". */
4164 set_main_name ("main");
4165 }
4166
4167 char *
4168 main_name (void)
4169 {
4170 if (name_of_main == NULL)
4171 find_main_name ();
4172
4173 return name_of_main;
4174 }
4175
4176 /* Handle ``executable_changed'' events for the symtab module. */
4177
4178 static void
4179 symtab_observer_executable_changed (void *unused)
4180 {
4181 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4182 set_main_name (NULL);
4183 }
4184
4185 /* Helper to expand_line_sal below. Appends new sal to SAL,
4186 initializing it from SYMTAB, LINENO and PC. */
4187 static void
4188 append_expanded_sal (struct symtabs_and_lines *sal,
4189 struct symtab *symtab,
4190 int lineno, CORE_ADDR pc)
4191 {
4192 CORE_ADDR func_addr, func_end;
4193
4194 sal->sals = xrealloc (sal->sals,
4195 sizeof (sal->sals[0])
4196 * (sal->nelts + 1));
4197 init_sal (sal->sals + sal->nelts);
4198 sal->sals[sal->nelts].symtab = symtab;
4199 sal->sals[sal->nelts].section = NULL;
4200 sal->sals[sal->nelts].end = 0;
4201 sal->sals[sal->nelts].line = lineno;
4202 sal->sals[sal->nelts].pc = pc;
4203 ++sal->nelts;
4204 }
4205
4206 /* Compute a set of all sals in
4207 the entire program that correspond to same file
4208 and line as SAL and return those. If there
4209 are several sals that belong to the same block,
4210 only one sal for the block is included in results. */
4211
4212 struct symtabs_and_lines
4213 expand_line_sal (struct symtab_and_line sal)
4214 {
4215 struct symtabs_and_lines ret, this_line;
4216 int i, j;
4217 struct objfile *objfile;
4218 struct partial_symtab *psymtab;
4219 struct symtab *symtab;
4220 int lineno;
4221 int deleted = 0;
4222 struct block **blocks = NULL;
4223 int *filter;
4224
4225 ret.nelts = 0;
4226 ret.sals = NULL;
4227
4228 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4229 {
4230 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4231 ret.sals[0] = sal;
4232 ret.nelts = 1;
4233 return ret;
4234 }
4235 else
4236 {
4237 struct linetable_entry *best_item = 0;
4238 struct symtab *best_symtab = 0;
4239 int exact = 0;
4240
4241 lineno = sal.line;
4242
4243 /* We meed to find all symtabs for a file which name
4244 is described by sal. We cannot just directly
4245 iterate over symtabs, since a symtab might not be
4246 yet created. We also cannot iterate over psymtabs,
4247 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4248 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4249 corresponding to an included file. Therefore, we do
4250 first pass over psymtabs, reading in those with
4251 the right name. Then, we iterate over symtabs, knowing
4252 that all symtabs we're interested in are loaded. */
4253
4254 ALL_PSYMTABS (objfile, psymtab)
4255 {
4256 if (strcmp (sal.symtab->filename,
4257 psymtab->filename) == 0)
4258 PSYMTAB_TO_SYMTAB (psymtab);
4259 }
4260
4261
4262 /* For each symtab, we add all pcs to ret.sals. I'm actually
4263 not sure what to do if we have exact match in one symtab,
4264 and non-exact match on another symtab.
4265 */
4266 ALL_SYMTABS (objfile, symtab)
4267 {
4268 if (strcmp (sal.symtab->filename,
4269 symtab->filename) == 0)
4270 {
4271 struct linetable *l;
4272 int len;
4273 l = LINETABLE (symtab);
4274 if (!l)
4275 continue;
4276 len = l->nitems;
4277
4278 for (j = 0; j < len; j++)
4279 {
4280 struct linetable_entry *item = &(l->item[j]);
4281
4282 if (item->line == lineno)
4283 {
4284 exact = 1;
4285 append_expanded_sal (&ret, symtab, lineno, item->pc);
4286 }
4287 else if (!exact && item->line > lineno
4288 && (best_item == NULL || item->line < best_item->line))
4289
4290 {
4291 best_item = item;
4292 best_symtab = symtab;
4293 }
4294 }
4295 }
4296 }
4297 if (!exact && best_item)
4298 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4299 }
4300
4301 /* For optimized code, compiler can scatter one source line accross
4302 disjoint ranges of PC values, even when no duplicate functions
4303 or inline functions are involved. For example, 'for (;;)' inside
4304 non-template non-inline non-ctor-or-dtor function can result
4305 in two PC ranges. In this case, we don't want to set breakpoint
4306 on first PC of each range. To filter such cases, we use containing
4307 blocks -- for each PC found above we see if there are other PCs
4308 that are in the same block. If yes, the other PCs are filtered out. */
4309
4310 filter = xmalloc (ret.nelts * sizeof (int));
4311 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4312 for (i = 0; i < ret.nelts; ++i)
4313 {
4314 filter[i] = 1;
4315 blocks[i] = block_for_pc (ret.sals[i].pc);
4316 }
4317
4318 for (i = 0; i < ret.nelts; ++i)
4319 if (blocks[i] != NULL)
4320 for (j = i+1; j < ret.nelts; ++j)
4321 if (blocks[j] == blocks[i])
4322 {
4323 filter[j] = 0;
4324 ++deleted;
4325 break;
4326 }
4327
4328 {
4329 struct symtab_and_line *final =
4330 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4331
4332 for (i = 0, j = 0; i < ret.nelts; ++i)
4333 if (filter[i])
4334 final[j++] = ret.sals[i];
4335
4336 ret.nelts -= deleted;
4337 xfree (ret.sals);
4338 ret.sals = final;
4339 }
4340
4341 return ret;
4342 }
4343
4344
4345 void
4346 _initialize_symtab (void)
4347 {
4348 add_info ("variables", variables_info, _("\
4349 All global and static variable names, or those matching REGEXP."));
4350 if (dbx_commands)
4351 add_com ("whereis", class_info, variables_info, _("\
4352 All global and static variable names, or those matching REGEXP."));
4353
4354 add_info ("functions", functions_info,
4355 _("All function names, or those matching REGEXP."));
4356
4357
4358 /* FIXME: This command has at least the following problems:
4359 1. It prints builtin types (in a very strange and confusing fashion).
4360 2. It doesn't print right, e.g. with
4361 typedef struct foo *FOO
4362 type_print prints "FOO" when we want to make it (in this situation)
4363 print "struct foo *".
4364 I also think "ptype" or "whatis" is more likely to be useful (but if
4365 there is much disagreement "info types" can be fixed). */
4366 add_info ("types", types_info,
4367 _("All type names, or those matching REGEXP."));
4368
4369 add_info ("sources", sources_info,
4370 _("Source files in the program."));
4371
4372 add_com ("rbreak", class_breakpoint, rbreak_command,
4373 _("Set a breakpoint for all functions matching REGEXP."));
4374
4375 if (xdb_commands)
4376 {
4377 add_com ("lf", class_info, sources_info,
4378 _("Source files in the program"));
4379 add_com ("lg", class_info, variables_info, _("\
4380 All global and static variable names, or those matching REGEXP."));
4381 }
4382
4383 /* Initialize the one built-in type that isn't language dependent... */
4384 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4385 "<unknown type>", (struct objfile *) NULL);
4386
4387 observer_attach_executable_changed (symtab_observer_executable_changed);
4388 }
This page took 0.183216 seconds and 4 git commands to generate.