Use allocated cplus_specific for cplus symbols.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
208
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
215 }
216 }
217
218 /* Now, search for a matching tail (only if name doesn't have any dirs) */
219
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
222 {
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 return s;
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
241
242 if (s != NULL)
243 return s;
244 if (!found)
245 return NULL;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257 \f
258 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
262
263 char *
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
265 {
266 int mangled_name_len;
267 char *mangled_name;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
273
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
277
278 int is_constructor;
279 int is_destructor = is_destructor_name (physname);
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
283 char buf[20];
284 int len = (newname == NULL ? 0 : strlen (newname));
285
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
290 return xstrdup (physname);
291
292 is_full_physname_constructor = is_constructor_name (physname);
293
294 is_constructor =
295 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
296
297 if (!is_destructor)
298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
299
300 if (is_destructor || is_full_physname_constructor)
301 {
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
304 return mangled_name;
305 }
306
307 if (len == 0)
308 {
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310 }
311 else if (physname[0] == 't' || physname[0] == 'Q')
312 {
313 /* The physname for template and qualified methods already includes
314 the class name. */
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 newname = NULL;
317 len = 0;
318 }
319 else
320 {
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322 }
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 + strlen (buf) + len + strlen (physname) + 1);
325
326 mangled_name = (char *) xmalloc (mangled_name_len);
327 if (is_constructor)
328 mangled_name[0] = '\0';
329 else
330 strcpy (mangled_name, field_name);
331
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
335 as something starting with `::' rather than `classname::'. */
336 if (newname != NULL)
337 strcat (mangled_name, newname);
338
339 strcat (mangled_name, physname);
340 return (mangled_name);
341 }
342
343 /* Initialize the cplus_specific structure. 'cplus_specific' should
344 only be allocated for use with cplus symbols. */
345
346 static void
347 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
348 struct objfile *objfile)
349 {
350 /* A language_specific structure should not have been previously
351 initialized. */
352 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
353 gdb_assert (objfile != NULL);
354
355 gsymbol->language_specific.cplus_specific =
356 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
357 }
358
359 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
360 correctly allocated. For C++ symbols a cplus_specific struct is
361 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
362 OBJFILE can be NULL. */
363 void
364 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
365 char *name,
366 struct objfile *objfile)
367 {
368 if (gsymbol->language == language_cplus)
369 {
370 if (gsymbol->language_specific.cplus_specific == NULL)
371 symbol_init_cplus_specific (gsymbol, objfile);
372
373 gsymbol->language_specific.cplus_specific->demangled_name = name;
374 }
375 else
376 gsymbol->language_specific.mangled_lang.demangled_name = name;
377 }
378
379 /* Return the demangled name of GSYMBOL. */
380 char *
381 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
382 {
383 if (gsymbol->language == language_cplus)
384 {
385 gdb_assert (gsymbol->language_specific.cplus_specific != NULL);
386 return gsymbol->language_specific.cplus_specific->demangled_name;
387 }
388 else
389 return gsymbol->language_specific.mangled_lang.demangled_name;
390 }
391
392 \f
393 /* Initialize the language dependent portion of a symbol
394 depending upon the language for the symbol. */
395 void
396 symbol_init_language_specific (struct general_symbol_info *gsymbol,
397 enum language language)
398 {
399
400 gsymbol->language = language;
401 if (gsymbol->language == language_cplus
402 || gsymbol->language == language_d
403 || gsymbol->language == language_java
404 || gsymbol->language == language_objc
405 || gsymbol->language == language_fortran)
406 {
407 symbol_set_demangled_name (gsymbol, NULL, NULL);
408 }
409 else if (gsymbol->language == language_cplus)
410 gsymbol->language_specific.cplus_specific = NULL;
411 else
412 {
413 memset (&gsymbol->language_specific, 0,
414 sizeof (gsymbol->language_specific));
415 }
416 }
417
418 /* Functions to initialize a symbol's mangled name. */
419
420 /* Objects of this type are stored in the demangled name hash table. */
421 struct demangled_name_entry
422 {
423 char *mangled;
424 char demangled[1];
425 };
426
427 /* Hash function for the demangled name hash. */
428 static hashval_t
429 hash_demangled_name_entry (const void *data)
430 {
431 const struct demangled_name_entry *e = data;
432
433 return htab_hash_string (e->mangled);
434 }
435
436 /* Equality function for the demangled name hash. */
437 static int
438 eq_demangled_name_entry (const void *a, const void *b)
439 {
440 const struct demangled_name_entry *da = a;
441 const struct demangled_name_entry *db = b;
442
443 return strcmp (da->mangled, db->mangled) == 0;
444 }
445
446 /* Create the hash table used for demangled names. Each hash entry is
447 a pair of strings; one for the mangled name and one for the demangled
448 name. The entry is hashed via just the mangled name. */
449
450 static void
451 create_demangled_names_hash (struct objfile *objfile)
452 {
453 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
454 The hash table code will round this up to the next prime number.
455 Choosing a much larger table size wastes memory, and saves only about
456 1% in symbol reading. */
457
458 objfile->demangled_names_hash = htab_create_alloc
459 (256, hash_demangled_name_entry, eq_demangled_name_entry,
460 NULL, xcalloc, xfree);
461 }
462
463 /* Try to determine the demangled name for a symbol, based on the
464 language of that symbol. If the language is set to language_auto,
465 it will attempt to find any demangling algorithm that works and
466 then set the language appropriately. The returned name is allocated
467 by the demangler and should be xfree'd. */
468
469 static char *
470 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
471 const char *mangled)
472 {
473 char *demangled = NULL;
474
475 if (gsymbol->language == language_unknown)
476 gsymbol->language = language_auto;
477
478 if (gsymbol->language == language_objc
479 || gsymbol->language == language_auto)
480 {
481 demangled =
482 objc_demangle (mangled, 0);
483 if (demangled != NULL)
484 {
485 gsymbol->language = language_objc;
486 return demangled;
487 }
488 }
489 if (gsymbol->language == language_cplus
490 || gsymbol->language == language_auto)
491 {
492 demangled =
493 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
494 if (demangled != NULL)
495 {
496 gsymbol->language = language_cplus;
497 return demangled;
498 }
499 }
500 if (gsymbol->language == language_java)
501 {
502 demangled =
503 cplus_demangle (mangled,
504 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
505 if (demangled != NULL)
506 {
507 gsymbol->language = language_java;
508 return demangled;
509 }
510 }
511 if (gsymbol->language == language_d
512 || gsymbol->language == language_auto)
513 {
514 demangled = d_demangle(mangled, 0);
515 if (demangled != NULL)
516 {
517 gsymbol->language = language_d;
518 return demangled;
519 }
520 }
521 /* We could support `gsymbol->language == language_fortran' here to provide
522 module namespaces also for inferiors with only minimal symbol table (ELF
523 symbols). Just the mangling standard is not standardized across compilers
524 and there is no DW_AT_producer available for inferiors with only the ELF
525 symbols to check the mangling kind. */
526 return NULL;
527 }
528
529 /* Set both the mangled and demangled (if any) names for GSYMBOL based
530 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
531 objfile's obstack; but if COPY_NAME is 0 and if NAME is
532 NUL-terminated, then this function assumes that NAME is already
533 correctly saved (either permanently or with a lifetime tied to the
534 objfile), and it will not be copied.
535
536 The hash table corresponding to OBJFILE is used, and the memory
537 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
538 so the pointer can be discarded after calling this function. */
539
540 /* We have to be careful when dealing with Java names: when we run
541 into a Java minimal symbol, we don't know it's a Java symbol, so it
542 gets demangled as a C++ name. This is unfortunate, but there's not
543 much we can do about it: but when demangling partial symbols and
544 regular symbols, we'd better not reuse the wrong demangled name.
545 (See PR gdb/1039.) We solve this by putting a distinctive prefix
546 on Java names when storing them in the hash table. */
547
548 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
549 don't mind the Java prefix so much: different languages have
550 different demangling requirements, so it's only natural that we
551 need to keep language data around in our demangling cache. But
552 it's not good that the minimal symbol has the wrong demangled name.
553 Unfortunately, I can't think of any easy solution to that
554 problem. */
555
556 #define JAVA_PREFIX "##JAVA$$"
557 #define JAVA_PREFIX_LEN 8
558
559 void
560 symbol_set_names (struct general_symbol_info *gsymbol,
561 const char *linkage_name, int len, int copy_name,
562 struct objfile *objfile)
563 {
564 struct demangled_name_entry **slot;
565 /* A 0-terminated copy of the linkage name. */
566 const char *linkage_name_copy;
567 /* A copy of the linkage name that might have a special Java prefix
568 added to it, for use when looking names up in the hash table. */
569 const char *lookup_name;
570 /* The length of lookup_name. */
571 int lookup_len;
572 struct demangled_name_entry entry;
573
574 if (gsymbol->language == language_ada)
575 {
576 /* In Ada, we do the symbol lookups using the mangled name, so
577 we can save some space by not storing the demangled name.
578
579 As a side note, we have also observed some overlap between
580 the C++ mangling and Ada mangling, similarly to what has
581 been observed with Java. Because we don't store the demangled
582 name with the symbol, we don't need to use the same trick
583 as Java. */
584 if (!copy_name)
585 gsymbol->name = (char *) linkage_name;
586 else
587 {
588 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
589 memcpy (gsymbol->name, linkage_name, len);
590 gsymbol->name[len] = '\0';
591 }
592 symbol_set_demangled_name (gsymbol, NULL, NULL);
593
594 return;
595 }
596
597 if (objfile->demangled_names_hash == NULL)
598 create_demangled_names_hash (objfile);
599
600 /* The stabs reader generally provides names that are not
601 NUL-terminated; most of the other readers don't do this, so we
602 can just use the given copy, unless we're in the Java case. */
603 if (gsymbol->language == language_java)
604 {
605 char *alloc_name;
606
607 lookup_len = len + JAVA_PREFIX_LEN;
608 alloc_name = alloca (lookup_len + 1);
609 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
610 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
611 alloc_name[lookup_len] = '\0';
612
613 lookup_name = alloc_name;
614 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
615 }
616 else if (linkage_name[len] != '\0')
617 {
618 char *alloc_name;
619
620 lookup_len = len;
621 alloc_name = alloca (lookup_len + 1);
622 memcpy (alloc_name, linkage_name, len);
623 alloc_name[lookup_len] = '\0';
624
625 lookup_name = alloc_name;
626 linkage_name_copy = alloc_name;
627 }
628 else
629 {
630 lookup_len = len;
631 lookup_name = linkage_name;
632 linkage_name_copy = linkage_name;
633 }
634
635 entry.mangled = (char *) lookup_name;
636 slot = ((struct demangled_name_entry **)
637 htab_find_slot (objfile->demangled_names_hash,
638 &entry, INSERT));
639
640 /* If this name is not in the hash table, add it. */
641 if (*slot == NULL)
642 {
643 char *demangled_name = symbol_find_demangled_name (gsymbol,
644 linkage_name_copy);
645 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
646
647 /* Suppose we have demangled_name==NULL, copy_name==0, and
648 lookup_name==linkage_name. In this case, we already have the
649 mangled name saved, and we don't have a demangled name. So,
650 you might think we could save a little space by not recording
651 this in the hash table at all.
652
653 It turns out that it is actually important to still save such
654 an entry in the hash table, because storing this name gives
655 us better bcache hit rates for partial symbols. */
656 if (!copy_name && lookup_name == linkage_name)
657 {
658 *slot = obstack_alloc (&objfile->objfile_obstack,
659 offsetof (struct demangled_name_entry,
660 demangled)
661 + demangled_len + 1);
662 (*slot)->mangled = (char *) lookup_name;
663 }
664 else
665 {
666 /* If we must copy the mangled name, put it directly after
667 the demangled name so we can have a single
668 allocation. */
669 *slot = obstack_alloc (&objfile->objfile_obstack,
670 offsetof (struct demangled_name_entry,
671 demangled)
672 + lookup_len + demangled_len + 2);
673 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
674 strcpy ((*slot)->mangled, lookup_name);
675 }
676
677 if (demangled_name != NULL)
678 {
679 strcpy ((*slot)->demangled, demangled_name);
680 xfree (demangled_name);
681 }
682 else
683 (*slot)->demangled[0] = '\0';
684 }
685
686 gsymbol->name = (*slot)->mangled + lookup_len - len;
687 if ((*slot)->demangled[0] != '\0')
688 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
689 else
690 symbol_set_demangled_name (gsymbol, NULL, objfile);
691 }
692
693 /* Return the source code name of a symbol. In languages where
694 demangling is necessary, this is the demangled name. */
695
696 char *
697 symbol_natural_name (const struct general_symbol_info *gsymbol)
698 {
699 switch (gsymbol->language)
700 {
701 case language_cplus:
702 case language_d:
703 case language_java:
704 case language_objc:
705 case language_fortran:
706 if (symbol_get_demangled_name (gsymbol) != NULL)
707 return symbol_get_demangled_name (gsymbol);
708 break;
709 case language_ada:
710 if (symbol_get_demangled_name (gsymbol) != NULL)
711 return symbol_get_demangled_name (gsymbol);
712 else
713 return ada_decode_symbol (gsymbol);
714 break;
715 default:
716 break;
717 }
718 return gsymbol->name;
719 }
720
721 /* Return the demangled name for a symbol based on the language for
722 that symbol. If no demangled name exists, return NULL. */
723 char *
724 symbol_demangled_name (const struct general_symbol_info *gsymbol)
725 {
726 switch (gsymbol->language)
727 {
728 case language_cplus:
729 case language_d:
730 case language_java:
731 case language_objc:
732 case language_fortran:
733 if (symbol_get_demangled_name (gsymbol) != NULL)
734 return symbol_get_demangled_name (gsymbol);
735 break;
736 case language_ada:
737 if (symbol_get_demangled_name (gsymbol) != NULL)
738 return symbol_get_demangled_name (gsymbol);
739 else
740 return ada_decode_symbol (gsymbol);
741 break;
742 default:
743 break;
744 }
745 return NULL;
746 }
747
748 /* Return the search name of a symbol---generally the demangled or
749 linkage name of the symbol, depending on how it will be searched for.
750 If there is no distinct demangled name, then returns the same value
751 (same pointer) as SYMBOL_LINKAGE_NAME. */
752 char *
753 symbol_search_name (const struct general_symbol_info *gsymbol)
754 {
755 if (gsymbol->language == language_ada)
756 return gsymbol->name;
757 else
758 return symbol_natural_name (gsymbol);
759 }
760
761 /* Initialize the structure fields to zero values. */
762 void
763 init_sal (struct symtab_and_line *sal)
764 {
765 sal->pspace = NULL;
766 sal->symtab = 0;
767 sal->section = 0;
768 sal->line = 0;
769 sal->pc = 0;
770 sal->end = 0;
771 sal->explicit_pc = 0;
772 sal->explicit_line = 0;
773 }
774 \f
775
776 /* Return 1 if the two sections are the same, or if they could
777 plausibly be copies of each other, one in an original object
778 file and another in a separated debug file. */
779
780 int
781 matching_obj_sections (struct obj_section *obj_first,
782 struct obj_section *obj_second)
783 {
784 asection *first = obj_first? obj_first->the_bfd_section : NULL;
785 asection *second = obj_second? obj_second->the_bfd_section : NULL;
786 struct objfile *obj;
787
788 /* If they're the same section, then they match. */
789 if (first == second)
790 return 1;
791
792 /* If either is NULL, give up. */
793 if (first == NULL || second == NULL)
794 return 0;
795
796 /* This doesn't apply to absolute symbols. */
797 if (first->owner == NULL || second->owner == NULL)
798 return 0;
799
800 /* If they're in the same object file, they must be different sections. */
801 if (first->owner == second->owner)
802 return 0;
803
804 /* Check whether the two sections are potentially corresponding. They must
805 have the same size, address, and name. We can't compare section indexes,
806 which would be more reliable, because some sections may have been
807 stripped. */
808 if (bfd_get_section_size (first) != bfd_get_section_size (second))
809 return 0;
810
811 /* In-memory addresses may start at a different offset, relativize them. */
812 if (bfd_get_section_vma (first->owner, first)
813 - bfd_get_start_address (first->owner)
814 != bfd_get_section_vma (second->owner, second)
815 - bfd_get_start_address (second->owner))
816 return 0;
817
818 if (bfd_get_section_name (first->owner, first) == NULL
819 || bfd_get_section_name (second->owner, second) == NULL
820 || strcmp (bfd_get_section_name (first->owner, first),
821 bfd_get_section_name (second->owner, second)) != 0)
822 return 0;
823
824 /* Otherwise check that they are in corresponding objfiles. */
825
826 ALL_OBJFILES (obj)
827 if (obj->obfd == first->owner)
828 break;
829 gdb_assert (obj != NULL);
830
831 if (obj->separate_debug_objfile != NULL
832 && obj->separate_debug_objfile->obfd == second->owner)
833 return 1;
834 if (obj->separate_debug_objfile_backlink != NULL
835 && obj->separate_debug_objfile_backlink->obfd == second->owner)
836 return 1;
837
838 return 0;
839 }
840
841 struct symtab *
842 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
843 {
844 struct objfile *objfile;
845 struct minimal_symbol *msymbol;
846
847 /* If we know that this is not a text address, return failure. This is
848 necessary because we loop based on texthigh and textlow, which do
849 not include the data ranges. */
850 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
851 if (msymbol
852 && (MSYMBOL_TYPE (msymbol) == mst_data
853 || MSYMBOL_TYPE (msymbol) == mst_bss
854 || MSYMBOL_TYPE (msymbol) == mst_abs
855 || MSYMBOL_TYPE (msymbol) == mst_file_data
856 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
857 return NULL;
858
859 ALL_OBJFILES (objfile)
860 {
861 struct symtab *result = NULL;
862
863 if (objfile->sf)
864 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
865 pc, section, 0);
866 if (result)
867 return result;
868 }
869
870 return NULL;
871 }
872 \f
873 /* Debug symbols usually don't have section information. We need to dig that
874 out of the minimal symbols and stash that in the debug symbol. */
875
876 void
877 fixup_section (struct general_symbol_info *ginfo,
878 CORE_ADDR addr, struct objfile *objfile)
879 {
880 struct minimal_symbol *msym;
881
882 /* First, check whether a minimal symbol with the same name exists
883 and points to the same address. The address check is required
884 e.g. on PowerPC64, where the minimal symbol for a function will
885 point to the function descriptor, while the debug symbol will
886 point to the actual function code. */
887 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
888 if (msym)
889 {
890 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
891 ginfo->section = SYMBOL_SECTION (msym);
892 }
893 else
894 {
895 /* Static, function-local variables do appear in the linker
896 (minimal) symbols, but are frequently given names that won't
897 be found via lookup_minimal_symbol(). E.g., it has been
898 observed in frv-uclinux (ELF) executables that a static,
899 function-local variable named "foo" might appear in the
900 linker symbols as "foo.6" or "foo.3". Thus, there is no
901 point in attempting to extend the lookup-by-name mechanism to
902 handle this case due to the fact that there can be multiple
903 names.
904
905 So, instead, search the section table when lookup by name has
906 failed. The ``addr'' and ``endaddr'' fields may have already
907 been relocated. If so, the relocation offset (i.e. the
908 ANOFFSET value) needs to be subtracted from these values when
909 performing the comparison. We unconditionally subtract it,
910 because, when no relocation has been performed, the ANOFFSET
911 value will simply be zero.
912
913 The address of the symbol whose section we're fixing up HAS
914 NOT BEEN adjusted (relocated) yet. It can't have been since
915 the section isn't yet known and knowing the section is
916 necessary in order to add the correct relocation value. In
917 other words, we wouldn't even be in this function (attempting
918 to compute the section) if it were already known.
919
920 Note that it is possible to search the minimal symbols
921 (subtracting the relocation value if necessary) to find the
922 matching minimal symbol, but this is overkill and much less
923 efficient. It is not necessary to find the matching minimal
924 symbol, only its section.
925
926 Note that this technique (of doing a section table search)
927 can fail when unrelocated section addresses overlap. For
928 this reason, we still attempt a lookup by name prior to doing
929 a search of the section table. */
930
931 struct obj_section *s;
932
933 ALL_OBJFILE_OSECTIONS (objfile, s)
934 {
935 int idx = s->the_bfd_section->index;
936 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
937
938 if (obj_section_addr (s) - offset <= addr
939 && addr < obj_section_endaddr (s) - offset)
940 {
941 ginfo->obj_section = s;
942 ginfo->section = idx;
943 return;
944 }
945 }
946 }
947 }
948
949 struct symbol *
950 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
951 {
952 CORE_ADDR addr;
953
954 if (!sym)
955 return NULL;
956
957 if (SYMBOL_OBJ_SECTION (sym))
958 return sym;
959
960 /* We either have an OBJFILE, or we can get at it from the sym's
961 symtab. Anything else is a bug. */
962 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
963
964 if (objfile == NULL)
965 objfile = SYMBOL_SYMTAB (sym)->objfile;
966
967 /* We should have an objfile by now. */
968 gdb_assert (objfile);
969
970 switch (SYMBOL_CLASS (sym))
971 {
972 case LOC_STATIC:
973 case LOC_LABEL:
974 addr = SYMBOL_VALUE_ADDRESS (sym);
975 break;
976 case LOC_BLOCK:
977 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
978 break;
979
980 default:
981 /* Nothing else will be listed in the minsyms -- no use looking
982 it up. */
983 return sym;
984 }
985
986 fixup_section (&sym->ginfo, addr, objfile);
987
988 return sym;
989 }
990
991 /* Find the definition for a specified symbol name NAME
992 in domain DOMAIN, visible from lexical block BLOCK.
993 Returns the struct symbol pointer, or zero if no symbol is found.
994 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
995 NAME is a field of the current implied argument `this'. If so set
996 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
997 BLOCK_FOUND is set to the block in which NAME is found (in the case of
998 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
999
1000 /* This function has a bunch of loops in it and it would seem to be
1001 attractive to put in some QUIT's (though I'm not really sure
1002 whether it can run long enough to be really important). But there
1003 are a few calls for which it would appear to be bad news to quit
1004 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1005 that there is C++ code below which can error(), but that probably
1006 doesn't affect these calls since they are looking for a known
1007 variable and thus can probably assume it will never hit the C++
1008 code). */
1009
1010 struct symbol *
1011 lookup_symbol_in_language (const char *name, const struct block *block,
1012 const domain_enum domain, enum language lang,
1013 int *is_a_field_of_this)
1014 {
1015 char *demangled_name = NULL;
1016 const char *modified_name = NULL;
1017 struct symbol *returnval;
1018 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1019
1020 modified_name = name;
1021
1022 /* If we are using C++, D, or Java, demangle the name before doing a
1023 lookup, so we can always binary search. */
1024 if (lang == language_cplus)
1025 {
1026 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1027 if (demangled_name)
1028 {
1029 modified_name = demangled_name;
1030 make_cleanup (xfree, demangled_name);
1031 }
1032 else
1033 {
1034 /* If we were given a non-mangled name, canonicalize it
1035 according to the language (so far only for C++). */
1036 demangled_name = cp_canonicalize_string (name);
1037 if (demangled_name)
1038 {
1039 modified_name = demangled_name;
1040 make_cleanup (xfree, demangled_name);
1041 }
1042 }
1043 }
1044 else if (lang == language_java)
1045 {
1046 demangled_name = cplus_demangle (name,
1047 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1048 if (demangled_name)
1049 {
1050 modified_name = demangled_name;
1051 make_cleanup (xfree, demangled_name);
1052 }
1053 }
1054 else if (lang == language_d)
1055 {
1056 demangled_name = d_demangle (name, 0);
1057 if (demangled_name)
1058 {
1059 modified_name = demangled_name;
1060 make_cleanup (xfree, demangled_name);
1061 }
1062 }
1063
1064 if (case_sensitivity == case_sensitive_off)
1065 {
1066 char *copy;
1067 int len, i;
1068
1069 len = strlen (name);
1070 copy = (char *) alloca (len + 1);
1071 for (i= 0; i < len; i++)
1072 copy[i] = tolower (name[i]);
1073 copy[len] = 0;
1074 modified_name = copy;
1075 }
1076
1077 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1078 is_a_field_of_this);
1079 do_cleanups (cleanup);
1080
1081 return returnval;
1082 }
1083
1084 /* Behave like lookup_symbol_in_language, but performed with the
1085 current language. */
1086
1087 struct symbol *
1088 lookup_symbol (const char *name, const struct block *block,
1089 domain_enum domain, int *is_a_field_of_this)
1090 {
1091 return lookup_symbol_in_language (name, block, domain,
1092 current_language->la_language,
1093 is_a_field_of_this);
1094 }
1095
1096 /* Behave like lookup_symbol except that NAME is the natural name
1097 of the symbol that we're looking for and, if LINKAGE_NAME is
1098 non-NULL, ensure that the symbol's linkage name matches as
1099 well. */
1100
1101 static struct symbol *
1102 lookup_symbol_aux (const char *name, const struct block *block,
1103 const domain_enum domain, enum language language,
1104 int *is_a_field_of_this)
1105 {
1106 struct symbol *sym;
1107 const struct language_defn *langdef;
1108
1109 /* Make sure we do something sensible with is_a_field_of_this, since
1110 the callers that set this parameter to some non-null value will
1111 certainly use it later and expect it to be either 0 or 1.
1112 If we don't set it, the contents of is_a_field_of_this are
1113 undefined. */
1114 if (is_a_field_of_this != NULL)
1115 *is_a_field_of_this = 0;
1116
1117 /* Search specified block and its superiors. Don't search
1118 STATIC_BLOCK or GLOBAL_BLOCK. */
1119
1120 sym = lookup_symbol_aux_local (name, block, domain, language);
1121 if (sym != NULL)
1122 return sym;
1123
1124 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1125 check to see if NAME is a field of `this'. */
1126
1127 langdef = language_def (language);
1128
1129 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1130 && block != NULL)
1131 {
1132 struct symbol *sym = NULL;
1133 const struct block *function_block = block;
1134
1135 /* 'this' is only defined in the function's block, so find the
1136 enclosing function block. */
1137 for (; function_block && !BLOCK_FUNCTION (function_block);
1138 function_block = BLOCK_SUPERBLOCK (function_block));
1139
1140 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1141 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1142 VAR_DOMAIN);
1143 if (sym)
1144 {
1145 struct type *t = sym->type;
1146
1147 /* I'm not really sure that type of this can ever
1148 be typedefed; just be safe. */
1149 CHECK_TYPEDEF (t);
1150 if (TYPE_CODE (t) == TYPE_CODE_PTR
1151 || TYPE_CODE (t) == TYPE_CODE_REF)
1152 t = TYPE_TARGET_TYPE (t);
1153
1154 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1155 && TYPE_CODE (t) != TYPE_CODE_UNION)
1156 error (_("Internal error: `%s' is not an aggregate"),
1157 langdef->la_name_of_this);
1158
1159 if (check_field (t, name))
1160 {
1161 *is_a_field_of_this = 1;
1162 return NULL;
1163 }
1164 }
1165 }
1166
1167 /* Now do whatever is appropriate for LANGUAGE to look
1168 up static and global variables. */
1169
1170 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1171 if (sym != NULL)
1172 return sym;
1173
1174 /* Now search all static file-level symbols. Not strictly correct,
1175 but more useful than an error. */
1176
1177 return lookup_static_symbol_aux (name, domain);
1178 }
1179
1180 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1181 first, then check the psymtabs. If a psymtab indicates the existence of the
1182 desired name as a file-level static, then do psymtab-to-symtab conversion on
1183 the fly and return the found symbol. */
1184
1185 struct symbol *
1186 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1187 {
1188 struct objfile *objfile;
1189 struct symbol *sym;
1190
1191 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1192 if (sym != NULL)
1193 return sym;
1194
1195 ALL_OBJFILES (objfile)
1196 {
1197 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1198 if (sym != NULL)
1199 return sym;
1200 }
1201
1202 return NULL;
1203 }
1204
1205 /* Check to see if the symbol is defined in BLOCK or its superiors.
1206 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1207
1208 static struct symbol *
1209 lookup_symbol_aux_local (const char *name, const struct block *block,
1210 const domain_enum domain,
1211 enum language language)
1212 {
1213 struct symbol *sym;
1214 const struct block *static_block = block_static_block (block);
1215 const char *scope = block_scope (block);
1216
1217 /* Check if either no block is specified or it's a global block. */
1218
1219 if (static_block == NULL)
1220 return NULL;
1221
1222 while (block != static_block)
1223 {
1224 sym = lookup_symbol_aux_block (name, block, domain);
1225 if (sym != NULL)
1226 return sym;
1227
1228 if (language == language_cplus || language == language_fortran)
1229 {
1230 sym = cp_lookup_symbol_imports (scope,
1231 name,
1232 block,
1233 domain,
1234 1,
1235 1);
1236 if (sym != NULL)
1237 return sym;
1238 }
1239
1240 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1241 break;
1242 block = BLOCK_SUPERBLOCK (block);
1243 }
1244
1245 /* We've reached the edge of the function without finding a result. */
1246
1247 return NULL;
1248 }
1249
1250 /* Look up OBJFILE to BLOCK. */
1251
1252 struct objfile *
1253 lookup_objfile_from_block (const struct block *block)
1254 {
1255 struct objfile *obj;
1256 struct symtab *s;
1257
1258 if (block == NULL)
1259 return NULL;
1260
1261 block = block_global_block (block);
1262 /* Go through SYMTABS. */
1263 ALL_SYMTABS (obj, s)
1264 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1265 {
1266 if (obj->separate_debug_objfile_backlink)
1267 obj = obj->separate_debug_objfile_backlink;
1268
1269 return obj;
1270 }
1271
1272 return NULL;
1273 }
1274
1275 /* Look up a symbol in a block; if found, fixup the symbol, and set
1276 block_found appropriately. */
1277
1278 struct symbol *
1279 lookup_symbol_aux_block (const char *name, const struct block *block,
1280 const domain_enum domain)
1281 {
1282 struct symbol *sym;
1283
1284 sym = lookup_block_symbol (block, name, domain);
1285 if (sym)
1286 {
1287 block_found = block;
1288 return fixup_symbol_section (sym, NULL);
1289 }
1290
1291 return NULL;
1292 }
1293
1294 /* Check all global symbols in OBJFILE in symtabs and
1295 psymtabs. */
1296
1297 struct symbol *
1298 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1299 const char *name,
1300 const domain_enum domain)
1301 {
1302 const struct objfile *objfile;
1303 struct symbol *sym;
1304 struct blockvector *bv;
1305 const struct block *block;
1306 struct symtab *s;
1307
1308 for (objfile = main_objfile;
1309 objfile;
1310 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1311 {
1312 /* Go through symtabs. */
1313 ALL_OBJFILE_SYMTABS (objfile, s)
1314 {
1315 bv = BLOCKVECTOR (s);
1316 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1317 sym = lookup_block_symbol (block, name, domain);
1318 if (sym)
1319 {
1320 block_found = block;
1321 return fixup_symbol_section (sym, (struct objfile *)objfile);
1322 }
1323 }
1324
1325 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1326 name, domain);
1327 if (sym)
1328 return sym;
1329 }
1330
1331 return NULL;
1332 }
1333
1334 /* Check to see if the symbol is defined in one of the symtabs.
1335 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1336 depending on whether or not we want to search global symbols or
1337 static symbols. */
1338
1339 static struct symbol *
1340 lookup_symbol_aux_symtabs (int block_index, const char *name,
1341 const domain_enum domain)
1342 {
1343 struct symbol *sym;
1344 struct objfile *objfile;
1345 struct blockvector *bv;
1346 const struct block *block;
1347 struct symtab *s;
1348
1349 ALL_OBJFILES (objfile)
1350 {
1351 if (objfile->sf)
1352 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1353 block_index,
1354 name, domain);
1355
1356 ALL_OBJFILE_SYMTABS (objfile, s)
1357 if (s->primary)
1358 {
1359 bv = BLOCKVECTOR (s);
1360 block = BLOCKVECTOR_BLOCK (bv, block_index);
1361 sym = lookup_block_symbol (block, name, domain);
1362 if (sym)
1363 {
1364 block_found = block;
1365 return fixup_symbol_section (sym, objfile);
1366 }
1367 }
1368 }
1369
1370 return NULL;
1371 }
1372
1373 /* A helper function for lookup_symbol_aux that interfaces with the
1374 "quick" symbol table functions. */
1375
1376 static struct symbol *
1377 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1378 const char *name, const domain_enum domain)
1379 {
1380 struct symtab *symtab;
1381 struct blockvector *bv;
1382 const struct block *block;
1383 struct symbol *sym;
1384
1385 if (!objfile->sf)
1386 return NULL;
1387 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1388 if (!symtab)
1389 return NULL;
1390
1391 bv = BLOCKVECTOR (symtab);
1392 block = BLOCKVECTOR_BLOCK (bv, kind);
1393 sym = lookup_block_symbol (block, name, domain);
1394 if (!sym)
1395 {
1396 /* This shouldn't be necessary, but as a last resort try
1397 looking in the statics even though the psymtab claimed
1398 the symbol was global, or vice-versa. It's possible
1399 that the psymtab gets it wrong in some cases. */
1400
1401 /* FIXME: carlton/2002-09-30: Should we really do that?
1402 If that happens, isn't it likely to be a GDB error, in
1403 which case we should fix the GDB error rather than
1404 silently dealing with it here? So I'd vote for
1405 removing the check for the symbol in the other
1406 block. */
1407 block = BLOCKVECTOR_BLOCK (bv,
1408 kind == GLOBAL_BLOCK ?
1409 STATIC_BLOCK : GLOBAL_BLOCK);
1410 sym = lookup_block_symbol (block, name, domain);
1411 if (!sym)
1412 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1413 kind == GLOBAL_BLOCK ? "global" : "static",
1414 name, symtab->filename, name, name);
1415 }
1416 return fixup_symbol_section (sym, objfile);
1417 }
1418
1419 /* A default version of lookup_symbol_nonlocal for use by languages
1420 that can't think of anything better to do. This implements the C
1421 lookup rules. */
1422
1423 struct symbol *
1424 basic_lookup_symbol_nonlocal (const char *name,
1425 const struct block *block,
1426 const domain_enum domain)
1427 {
1428 struct symbol *sym;
1429
1430 /* NOTE: carlton/2003-05-19: The comments below were written when
1431 this (or what turned into this) was part of lookup_symbol_aux;
1432 I'm much less worried about these questions now, since these
1433 decisions have turned out well, but I leave these comments here
1434 for posterity. */
1435
1436 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1437 not it would be appropriate to search the current global block
1438 here as well. (That's what this code used to do before the
1439 is_a_field_of_this check was moved up.) On the one hand, it's
1440 redundant with the lookup_symbol_aux_symtabs search that happens
1441 next. On the other hand, if decode_line_1 is passed an argument
1442 like filename:var, then the user presumably wants 'var' to be
1443 searched for in filename. On the third hand, there shouldn't be
1444 multiple global variables all of which are named 'var', and it's
1445 not like decode_line_1 has ever restricted its search to only
1446 global variables in a single filename. All in all, only
1447 searching the static block here seems best: it's correct and it's
1448 cleanest. */
1449
1450 /* NOTE: carlton/2002-12-05: There's also a possible performance
1451 issue here: if you usually search for global symbols in the
1452 current file, then it would be slightly better to search the
1453 current global block before searching all the symtabs. But there
1454 are other factors that have a much greater effect on performance
1455 than that one, so I don't think we should worry about that for
1456 now. */
1457
1458 sym = lookup_symbol_static (name, block, domain);
1459 if (sym != NULL)
1460 return sym;
1461
1462 return lookup_symbol_global (name, block, domain);
1463 }
1464
1465 /* Lookup a symbol in the static block associated to BLOCK, if there
1466 is one; do nothing if BLOCK is NULL or a global block. */
1467
1468 struct symbol *
1469 lookup_symbol_static (const char *name,
1470 const struct block *block,
1471 const domain_enum domain)
1472 {
1473 const struct block *static_block = block_static_block (block);
1474
1475 if (static_block != NULL)
1476 return lookup_symbol_aux_block (name, static_block, domain);
1477 else
1478 return NULL;
1479 }
1480
1481 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1482 necessary). */
1483
1484 struct symbol *
1485 lookup_symbol_global (const char *name,
1486 const struct block *block,
1487 const domain_enum domain)
1488 {
1489 struct symbol *sym = NULL;
1490 struct objfile *objfile = NULL;
1491
1492 /* Call library-specific lookup procedure. */
1493 objfile = lookup_objfile_from_block (block);
1494 if (objfile != NULL)
1495 sym = solib_global_lookup (objfile, name, domain);
1496 if (sym != NULL)
1497 return sym;
1498
1499 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1500 if (sym != NULL)
1501 return sym;
1502
1503 ALL_OBJFILES (objfile)
1504 {
1505 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1506 if (sym)
1507 return sym;
1508 }
1509
1510 return NULL;
1511 }
1512
1513 int
1514 symbol_matches_domain (enum language symbol_language,
1515 domain_enum symbol_domain,
1516 domain_enum domain)
1517 {
1518 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1519 A Java class declaration also defines a typedef for the class.
1520 Similarly, any Ada type declaration implicitly defines a typedef. */
1521 if (symbol_language == language_cplus
1522 || symbol_language == language_d
1523 || symbol_language == language_java
1524 || symbol_language == language_ada)
1525 {
1526 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1527 && symbol_domain == STRUCT_DOMAIN)
1528 return 1;
1529 }
1530 /* For all other languages, strict match is required. */
1531 return (symbol_domain == domain);
1532 }
1533
1534 /* Look up a type named NAME in the struct_domain. The type returned
1535 must not be opaque -- i.e., must have at least one field
1536 defined. */
1537
1538 struct type *
1539 lookup_transparent_type (const char *name)
1540 {
1541 return current_language->la_lookup_transparent_type (name);
1542 }
1543
1544 /* A helper for basic_lookup_transparent_type that interfaces with the
1545 "quick" symbol table functions. */
1546
1547 static struct type *
1548 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1549 const char *name)
1550 {
1551 struct symtab *symtab;
1552 struct blockvector *bv;
1553 struct block *block;
1554 struct symbol *sym;
1555
1556 if (!objfile->sf)
1557 return NULL;
1558 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1559 if (!symtab)
1560 return NULL;
1561
1562 bv = BLOCKVECTOR (symtab);
1563 block = BLOCKVECTOR_BLOCK (bv, kind);
1564 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1565 if (!sym)
1566 {
1567 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1568
1569 /* This shouldn't be necessary, but as a last resort
1570 * try looking in the 'other kind' even though the psymtab
1571 * claimed the symbol was one thing. It's possible that
1572 * the psymtab gets it wrong in some cases.
1573 */
1574 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1575 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1576 if (!sym)
1577 /* FIXME; error is wrong in one case */
1578 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1579 %s may be an inlined function, or may be a template function\n\
1580 (if a template, try specifying an instantiation: %s<type>)."),
1581 name, symtab->filename, name, name);
1582 }
1583 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1584 return SYMBOL_TYPE (sym);
1585
1586 return NULL;
1587 }
1588
1589 /* The standard implementation of lookup_transparent_type. This code
1590 was modeled on lookup_symbol -- the parts not relevant to looking
1591 up types were just left out. In particular it's assumed here that
1592 types are available in struct_domain and only at file-static or
1593 global blocks. */
1594
1595 struct type *
1596 basic_lookup_transparent_type (const char *name)
1597 {
1598 struct symbol *sym;
1599 struct symtab *s = NULL;
1600 struct blockvector *bv;
1601 struct objfile *objfile;
1602 struct block *block;
1603 struct type *t;
1604
1605 /* Now search all the global symbols. Do the symtab's first, then
1606 check the psymtab's. If a psymtab indicates the existence
1607 of the desired name as a global, then do psymtab-to-symtab
1608 conversion on the fly and return the found symbol. */
1609
1610 ALL_OBJFILES (objfile)
1611 {
1612 if (objfile->sf)
1613 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1614 GLOBAL_BLOCK,
1615 name, STRUCT_DOMAIN);
1616
1617 ALL_OBJFILE_SYMTABS (objfile, s)
1618 if (s->primary)
1619 {
1620 bv = BLOCKVECTOR (s);
1621 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1622 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1623 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1624 {
1625 return SYMBOL_TYPE (sym);
1626 }
1627 }
1628 }
1629
1630 ALL_OBJFILES (objfile)
1631 {
1632 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1633 if (t)
1634 return t;
1635 }
1636
1637 /* Now search the static file-level symbols.
1638 Not strictly correct, but more useful than an error.
1639 Do the symtab's first, then
1640 check the psymtab's. If a psymtab indicates the existence
1641 of the desired name as a file-level static, then do psymtab-to-symtab
1642 conversion on the fly and return the found symbol.
1643 */
1644
1645 ALL_PRIMARY_SYMTABS (objfile, s)
1646 {
1647 bv = BLOCKVECTOR (s);
1648 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1649 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1650 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1651 {
1652 return SYMBOL_TYPE (sym);
1653 }
1654 }
1655
1656 ALL_OBJFILES (objfile)
1657 {
1658 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1659 if (t)
1660 return t;
1661 }
1662
1663 return (struct type *) 0;
1664 }
1665
1666
1667 /* Find the name of the file containing main(). */
1668 /* FIXME: What about languages without main() or specially linked
1669 executables that have no main() ? */
1670
1671 const char *
1672 find_main_filename (void)
1673 {
1674 struct objfile *objfile;
1675 char *name = main_name ();
1676
1677 ALL_OBJFILES (objfile)
1678 {
1679 const char *result;
1680
1681 if (!objfile->sf)
1682 continue;
1683 result = objfile->sf->qf->find_symbol_file (objfile, name);
1684 if (result)
1685 return result;
1686 }
1687 return (NULL);
1688 }
1689
1690 /* Search BLOCK for symbol NAME in DOMAIN.
1691
1692 Note that if NAME is the demangled form of a C++ symbol, we will fail
1693 to find a match during the binary search of the non-encoded names, but
1694 for now we don't worry about the slight inefficiency of looking for
1695 a match we'll never find, since it will go pretty quick. Once the
1696 binary search terminates, we drop through and do a straight linear
1697 search on the symbols. Each symbol which is marked as being a ObjC/C++
1698 symbol (language_cplus or language_objc set) has both the encoded and
1699 non-encoded names tested for a match.
1700 */
1701
1702 struct symbol *
1703 lookup_block_symbol (const struct block *block, const char *name,
1704 const domain_enum domain)
1705 {
1706 struct dict_iterator iter;
1707 struct symbol *sym;
1708
1709 if (!BLOCK_FUNCTION (block))
1710 {
1711 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1712 sym != NULL;
1713 sym = dict_iter_name_next (name, &iter))
1714 {
1715 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1716 SYMBOL_DOMAIN (sym), domain))
1717 return sym;
1718 }
1719 return NULL;
1720 }
1721 else
1722 {
1723 /* Note that parameter symbols do not always show up last in the
1724 list; this loop makes sure to take anything else other than
1725 parameter symbols first; it only uses parameter symbols as a
1726 last resort. Note that this only takes up extra computation
1727 time on a match. */
1728
1729 struct symbol *sym_found = NULL;
1730
1731 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1732 sym != NULL;
1733 sym = dict_iter_name_next (name, &iter))
1734 {
1735 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1736 SYMBOL_DOMAIN (sym), domain))
1737 {
1738 sym_found = sym;
1739 if (!SYMBOL_IS_ARGUMENT (sym))
1740 {
1741 break;
1742 }
1743 }
1744 }
1745 return (sym_found); /* Will be NULL if not found. */
1746 }
1747 }
1748
1749 /* Find the symtab associated with PC and SECTION. Look through the
1750 psymtabs and read in another symtab if necessary. */
1751
1752 struct symtab *
1753 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1754 {
1755 struct block *b;
1756 struct blockvector *bv;
1757 struct symtab *s = NULL;
1758 struct symtab *best_s = NULL;
1759 struct objfile *objfile;
1760 struct program_space *pspace;
1761 CORE_ADDR distance = 0;
1762 struct minimal_symbol *msymbol;
1763
1764 pspace = current_program_space;
1765
1766 /* If we know that this is not a text address, return failure. This is
1767 necessary because we loop based on the block's high and low code
1768 addresses, which do not include the data ranges, and because
1769 we call find_pc_sect_psymtab which has a similar restriction based
1770 on the partial_symtab's texthigh and textlow. */
1771 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1772 if (msymbol
1773 && (MSYMBOL_TYPE (msymbol) == mst_data
1774 || MSYMBOL_TYPE (msymbol) == mst_bss
1775 || MSYMBOL_TYPE (msymbol) == mst_abs
1776 || MSYMBOL_TYPE (msymbol) == mst_file_data
1777 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1778 return NULL;
1779
1780 /* Search all symtabs for the one whose file contains our address, and which
1781 is the smallest of all the ones containing the address. This is designed
1782 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1783 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1784 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1785
1786 This happens for native ecoff format, where code from included files
1787 gets its own symtab. The symtab for the included file should have
1788 been read in already via the dependency mechanism.
1789 It might be swifter to create several symtabs with the same name
1790 like xcoff does (I'm not sure).
1791
1792 It also happens for objfiles that have their functions reordered.
1793 For these, the symtab we are looking for is not necessarily read in. */
1794
1795 ALL_PRIMARY_SYMTABS (objfile, s)
1796 {
1797 bv = BLOCKVECTOR (s);
1798 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1799
1800 if (BLOCK_START (b) <= pc
1801 && BLOCK_END (b) > pc
1802 && (distance == 0
1803 || BLOCK_END (b) - BLOCK_START (b) < distance))
1804 {
1805 /* For an objfile that has its functions reordered,
1806 find_pc_psymtab will find the proper partial symbol table
1807 and we simply return its corresponding symtab. */
1808 /* In order to better support objfiles that contain both
1809 stabs and coff debugging info, we continue on if a psymtab
1810 can't be found. */
1811 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1812 {
1813 struct symtab *result;
1814
1815 result
1816 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1817 msymbol,
1818 pc, section,
1819 0);
1820 if (result)
1821 return result;
1822 }
1823 if (section != 0)
1824 {
1825 struct dict_iterator iter;
1826 struct symbol *sym = NULL;
1827
1828 ALL_BLOCK_SYMBOLS (b, iter, sym)
1829 {
1830 fixup_symbol_section (sym, objfile);
1831 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1832 break;
1833 }
1834 if (sym == NULL)
1835 continue; /* no symbol in this symtab matches section */
1836 }
1837 distance = BLOCK_END (b) - BLOCK_START (b);
1838 best_s = s;
1839 }
1840 }
1841
1842 if (best_s != NULL)
1843 return (best_s);
1844
1845 ALL_OBJFILES (objfile)
1846 {
1847 struct symtab *result;
1848
1849 if (!objfile->sf)
1850 continue;
1851 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1852 msymbol,
1853 pc, section,
1854 1);
1855 if (result)
1856 return result;
1857 }
1858
1859 return NULL;
1860 }
1861
1862 /* Find the symtab associated with PC. Look through the psymtabs and
1863 read in another symtab if necessary. Backward compatibility, no section */
1864
1865 struct symtab *
1866 find_pc_symtab (CORE_ADDR pc)
1867 {
1868 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1869 }
1870 \f
1871
1872 /* Find the source file and line number for a given PC value and SECTION.
1873 Return a structure containing a symtab pointer, a line number,
1874 and a pc range for the entire source line.
1875 The value's .pc field is NOT the specified pc.
1876 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1877 use the line that ends there. Otherwise, in that case, the line
1878 that begins there is used. */
1879
1880 /* The big complication here is that a line may start in one file, and end just
1881 before the start of another file. This usually occurs when you #include
1882 code in the middle of a subroutine. To properly find the end of a line's PC
1883 range, we must search all symtabs associated with this compilation unit, and
1884 find the one whose first PC is closer than that of the next line in this
1885 symtab. */
1886
1887 /* If it's worth the effort, we could be using a binary search. */
1888
1889 struct symtab_and_line
1890 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1891 {
1892 struct symtab *s;
1893 struct linetable *l;
1894 int len;
1895 int i;
1896 struct linetable_entry *item;
1897 struct symtab_and_line val;
1898 struct blockvector *bv;
1899 struct minimal_symbol *msymbol;
1900 struct minimal_symbol *mfunsym;
1901
1902 /* Info on best line seen so far, and where it starts, and its file. */
1903
1904 struct linetable_entry *best = NULL;
1905 CORE_ADDR best_end = 0;
1906 struct symtab *best_symtab = 0;
1907
1908 /* Store here the first line number
1909 of a file which contains the line at the smallest pc after PC.
1910 If we don't find a line whose range contains PC,
1911 we will use a line one less than this,
1912 with a range from the start of that file to the first line's pc. */
1913 struct linetable_entry *alt = NULL;
1914 struct symtab *alt_symtab = 0;
1915
1916 /* Info on best line seen in this file. */
1917
1918 struct linetable_entry *prev;
1919
1920 /* If this pc is not from the current frame,
1921 it is the address of the end of a call instruction.
1922 Quite likely that is the start of the following statement.
1923 But what we want is the statement containing the instruction.
1924 Fudge the pc to make sure we get that. */
1925
1926 init_sal (&val); /* initialize to zeroes */
1927
1928 val.pspace = current_program_space;
1929
1930 /* It's tempting to assume that, if we can't find debugging info for
1931 any function enclosing PC, that we shouldn't search for line
1932 number info, either. However, GAS can emit line number info for
1933 assembly files --- very helpful when debugging hand-written
1934 assembly code. In such a case, we'd have no debug info for the
1935 function, but we would have line info. */
1936
1937 if (notcurrent)
1938 pc -= 1;
1939
1940 /* elz: added this because this function returned the wrong
1941 information if the pc belongs to a stub (import/export)
1942 to call a shlib function. This stub would be anywhere between
1943 two functions in the target, and the line info was erroneously
1944 taken to be the one of the line before the pc.
1945 */
1946 /* RT: Further explanation:
1947
1948 * We have stubs (trampolines) inserted between procedures.
1949 *
1950 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1951 * exists in the main image.
1952 *
1953 * In the minimal symbol table, we have a bunch of symbols
1954 * sorted by start address. The stubs are marked as "trampoline",
1955 * the others appear as text. E.g.:
1956 *
1957 * Minimal symbol table for main image
1958 * main: code for main (text symbol)
1959 * shr1: stub (trampoline symbol)
1960 * foo: code for foo (text symbol)
1961 * ...
1962 * Minimal symbol table for "shr1" image:
1963 * ...
1964 * shr1: code for shr1 (text symbol)
1965 * ...
1966 *
1967 * So the code below is trying to detect if we are in the stub
1968 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1969 * and if found, do the symbolization from the real-code address
1970 * rather than the stub address.
1971 *
1972 * Assumptions being made about the minimal symbol table:
1973 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1974 * if we're really in the trampoline. If we're beyond it (say
1975 * we're in "foo" in the above example), it'll have a closer
1976 * symbol (the "foo" text symbol for example) and will not
1977 * return the trampoline.
1978 * 2. lookup_minimal_symbol_text() will find a real text symbol
1979 * corresponding to the trampoline, and whose address will
1980 * be different than the trampoline address. I put in a sanity
1981 * check for the address being the same, to avoid an
1982 * infinite recursion.
1983 */
1984 msymbol = lookup_minimal_symbol_by_pc (pc);
1985 if (msymbol != NULL)
1986 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1987 {
1988 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1989 NULL);
1990 if (mfunsym == NULL)
1991 /* I eliminated this warning since it is coming out
1992 * in the following situation:
1993 * gdb shmain // test program with shared libraries
1994 * (gdb) break shr1 // function in shared lib
1995 * Warning: In stub for ...
1996 * In the above situation, the shared lib is not loaded yet,
1997 * so of course we can't find the real func/line info,
1998 * but the "break" still works, and the warning is annoying.
1999 * So I commented out the warning. RT */
2000 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2001 /* fall through */
2002 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2003 /* Avoid infinite recursion */
2004 /* See above comment about why warning is commented out */
2005 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2006 /* fall through */
2007 else
2008 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2009 }
2010
2011
2012 s = find_pc_sect_symtab (pc, section);
2013 if (!s)
2014 {
2015 /* if no symbol information, return previous pc */
2016 if (notcurrent)
2017 pc++;
2018 val.pc = pc;
2019 return val;
2020 }
2021
2022 bv = BLOCKVECTOR (s);
2023
2024 /* Look at all the symtabs that share this blockvector.
2025 They all have the same apriori range, that we found was right;
2026 but they have different line tables. */
2027
2028 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2029 {
2030 /* Find the best line in this symtab. */
2031 l = LINETABLE (s);
2032 if (!l)
2033 continue;
2034 len = l->nitems;
2035 if (len <= 0)
2036 {
2037 /* I think len can be zero if the symtab lacks line numbers
2038 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2039 I'm not sure which, and maybe it depends on the symbol
2040 reader). */
2041 continue;
2042 }
2043
2044 prev = NULL;
2045 item = l->item; /* Get first line info */
2046
2047 /* Is this file's first line closer than the first lines of other files?
2048 If so, record this file, and its first line, as best alternate. */
2049 if (item->pc > pc && (!alt || item->pc < alt->pc))
2050 {
2051 alt = item;
2052 alt_symtab = s;
2053 }
2054
2055 for (i = 0; i < len; i++, item++)
2056 {
2057 /* Leave prev pointing to the linetable entry for the last line
2058 that started at or before PC. */
2059 if (item->pc > pc)
2060 break;
2061
2062 prev = item;
2063 }
2064
2065 /* At this point, prev points at the line whose start addr is <= pc, and
2066 item points at the next line. If we ran off the end of the linetable
2067 (pc >= start of the last line), then prev == item. If pc < start of
2068 the first line, prev will not be set. */
2069
2070 /* Is this file's best line closer than the best in the other files?
2071 If so, record this file, and its best line, as best so far. Don't
2072 save prev if it represents the end of a function (i.e. line number
2073 0) instead of a real line. */
2074
2075 if (prev && prev->line && (!best || prev->pc > best->pc))
2076 {
2077 best = prev;
2078 best_symtab = s;
2079
2080 /* Discard BEST_END if it's before the PC of the current BEST. */
2081 if (best_end <= best->pc)
2082 best_end = 0;
2083 }
2084
2085 /* If another line (denoted by ITEM) is in the linetable and its
2086 PC is after BEST's PC, but before the current BEST_END, then
2087 use ITEM's PC as the new best_end. */
2088 if (best && i < len && item->pc > best->pc
2089 && (best_end == 0 || best_end > item->pc))
2090 best_end = item->pc;
2091 }
2092
2093 if (!best_symtab)
2094 {
2095 /* If we didn't find any line number info, just return zeros.
2096 We used to return alt->line - 1 here, but that could be
2097 anywhere; if we don't have line number info for this PC,
2098 don't make some up. */
2099 val.pc = pc;
2100 }
2101 else if (best->line == 0)
2102 {
2103 /* If our best fit is in a range of PC's for which no line
2104 number info is available (line number is zero) then we didn't
2105 find any valid line information. */
2106 val.pc = pc;
2107 }
2108 else
2109 {
2110 val.symtab = best_symtab;
2111 val.line = best->line;
2112 val.pc = best->pc;
2113 if (best_end && (!alt || best_end < alt->pc))
2114 val.end = best_end;
2115 else if (alt)
2116 val.end = alt->pc;
2117 else
2118 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2119 }
2120 val.section = section;
2121 return val;
2122 }
2123
2124 /* Backward compatibility (no section) */
2125
2126 struct symtab_and_line
2127 find_pc_line (CORE_ADDR pc, int notcurrent)
2128 {
2129 struct obj_section *section;
2130
2131 section = find_pc_overlay (pc);
2132 if (pc_in_unmapped_range (pc, section))
2133 pc = overlay_mapped_address (pc, section);
2134 return find_pc_sect_line (pc, section, notcurrent);
2135 }
2136 \f
2137 /* Find line number LINE in any symtab whose name is the same as
2138 SYMTAB.
2139
2140 If found, return the symtab that contains the linetable in which it was
2141 found, set *INDEX to the index in the linetable of the best entry
2142 found, and set *EXACT_MATCH nonzero if the value returned is an
2143 exact match.
2144
2145 If not found, return NULL. */
2146
2147 struct symtab *
2148 find_line_symtab (struct symtab *symtab, int line,
2149 int *index, int *exact_match)
2150 {
2151 int exact = 0; /* Initialized here to avoid a compiler warning. */
2152
2153 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2154 so far seen. */
2155
2156 int best_index;
2157 struct linetable *best_linetable;
2158 struct symtab *best_symtab;
2159
2160 /* First try looking it up in the given symtab. */
2161 best_linetable = LINETABLE (symtab);
2162 best_symtab = symtab;
2163 best_index = find_line_common (best_linetable, line, &exact);
2164 if (best_index < 0 || !exact)
2165 {
2166 /* Didn't find an exact match. So we better keep looking for
2167 another symtab with the same name. In the case of xcoff,
2168 multiple csects for one source file (produced by IBM's FORTRAN
2169 compiler) produce multiple symtabs (this is unavoidable
2170 assuming csects can be at arbitrary places in memory and that
2171 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2172
2173 /* BEST is the smallest linenumber > LINE so far seen,
2174 or 0 if none has been seen so far.
2175 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2176 int best;
2177
2178 struct objfile *objfile;
2179 struct symtab *s;
2180
2181 if (best_index >= 0)
2182 best = best_linetable->item[best_index].line;
2183 else
2184 best = 0;
2185
2186 ALL_OBJFILES (objfile)
2187 {
2188 if (objfile->sf)
2189 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2190 symtab->filename);
2191 }
2192
2193 /* Get symbol full file name if possible. */
2194 symtab_to_fullname (symtab);
2195
2196 ALL_SYMTABS (objfile, s)
2197 {
2198 struct linetable *l;
2199 int ind;
2200
2201 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2202 continue;
2203 if (symtab->fullname != NULL
2204 && symtab_to_fullname (s) != NULL
2205 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2206 continue;
2207 l = LINETABLE (s);
2208 ind = find_line_common (l, line, &exact);
2209 if (ind >= 0)
2210 {
2211 if (exact)
2212 {
2213 best_index = ind;
2214 best_linetable = l;
2215 best_symtab = s;
2216 goto done;
2217 }
2218 if (best == 0 || l->item[ind].line < best)
2219 {
2220 best = l->item[ind].line;
2221 best_index = ind;
2222 best_linetable = l;
2223 best_symtab = s;
2224 }
2225 }
2226 }
2227 }
2228 done:
2229 if (best_index < 0)
2230 return NULL;
2231
2232 if (index)
2233 *index = best_index;
2234 if (exact_match)
2235 *exact_match = exact;
2236
2237 return best_symtab;
2238 }
2239 \f
2240 /* Set the PC value for a given source file and line number and return true.
2241 Returns zero for invalid line number (and sets the PC to 0).
2242 The source file is specified with a struct symtab. */
2243
2244 int
2245 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2246 {
2247 struct linetable *l;
2248 int ind;
2249
2250 *pc = 0;
2251 if (symtab == 0)
2252 return 0;
2253
2254 symtab = find_line_symtab (symtab, line, &ind, NULL);
2255 if (symtab != NULL)
2256 {
2257 l = LINETABLE (symtab);
2258 *pc = l->item[ind].pc;
2259 return 1;
2260 }
2261 else
2262 return 0;
2263 }
2264
2265 /* Find the range of pc values in a line.
2266 Store the starting pc of the line into *STARTPTR
2267 and the ending pc (start of next line) into *ENDPTR.
2268 Returns 1 to indicate success.
2269 Returns 0 if could not find the specified line. */
2270
2271 int
2272 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2273 CORE_ADDR *endptr)
2274 {
2275 CORE_ADDR startaddr;
2276 struct symtab_and_line found_sal;
2277
2278 startaddr = sal.pc;
2279 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2280 return 0;
2281
2282 /* This whole function is based on address. For example, if line 10 has
2283 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2284 "info line *0x123" should say the line goes from 0x100 to 0x200
2285 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2286 This also insures that we never give a range like "starts at 0x134
2287 and ends at 0x12c". */
2288
2289 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2290 if (found_sal.line != sal.line)
2291 {
2292 /* The specified line (sal) has zero bytes. */
2293 *startptr = found_sal.pc;
2294 *endptr = found_sal.pc;
2295 }
2296 else
2297 {
2298 *startptr = found_sal.pc;
2299 *endptr = found_sal.end;
2300 }
2301 return 1;
2302 }
2303
2304 /* Given a line table and a line number, return the index into the line
2305 table for the pc of the nearest line whose number is >= the specified one.
2306 Return -1 if none is found. The value is >= 0 if it is an index.
2307
2308 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2309
2310 static int
2311 find_line_common (struct linetable *l, int lineno,
2312 int *exact_match)
2313 {
2314 int i;
2315 int len;
2316
2317 /* BEST is the smallest linenumber > LINENO so far seen,
2318 or 0 if none has been seen so far.
2319 BEST_INDEX identifies the item for it. */
2320
2321 int best_index = -1;
2322 int best = 0;
2323
2324 *exact_match = 0;
2325
2326 if (lineno <= 0)
2327 return -1;
2328 if (l == 0)
2329 return -1;
2330
2331 len = l->nitems;
2332 for (i = 0; i < len; i++)
2333 {
2334 struct linetable_entry *item = &(l->item[i]);
2335
2336 if (item->line == lineno)
2337 {
2338 /* Return the first (lowest address) entry which matches. */
2339 *exact_match = 1;
2340 return i;
2341 }
2342
2343 if (item->line > lineno && (best == 0 || item->line < best))
2344 {
2345 best = item->line;
2346 best_index = i;
2347 }
2348 }
2349
2350 /* If we got here, we didn't get an exact match. */
2351 return best_index;
2352 }
2353
2354 int
2355 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2356 {
2357 struct symtab_and_line sal;
2358
2359 sal = find_pc_line (pc, 0);
2360 *startptr = sal.pc;
2361 *endptr = sal.end;
2362 return sal.symtab != 0;
2363 }
2364
2365 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2366 address for that function that has an entry in SYMTAB's line info
2367 table. If such an entry cannot be found, return FUNC_ADDR
2368 unaltered. */
2369 CORE_ADDR
2370 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2371 {
2372 CORE_ADDR func_start, func_end;
2373 struct linetable *l;
2374 int i;
2375
2376 /* Give up if this symbol has no lineinfo table. */
2377 l = LINETABLE (symtab);
2378 if (l == NULL)
2379 return func_addr;
2380
2381 /* Get the range for the function's PC values, or give up if we
2382 cannot, for some reason. */
2383 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2384 return func_addr;
2385
2386 /* Linetable entries are ordered by PC values, see the commentary in
2387 symtab.h where `struct linetable' is defined. Thus, the first
2388 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2389 address we are looking for. */
2390 for (i = 0; i < l->nitems; i++)
2391 {
2392 struct linetable_entry *item = &(l->item[i]);
2393
2394 /* Don't use line numbers of zero, they mark special entries in
2395 the table. See the commentary on symtab.h before the
2396 definition of struct linetable. */
2397 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2398 return item->pc;
2399 }
2400
2401 return func_addr;
2402 }
2403
2404 /* Given a function symbol SYM, find the symtab and line for the start
2405 of the function.
2406 If the argument FUNFIRSTLINE is nonzero, we want the first line
2407 of real code inside the function. */
2408
2409 struct symtab_and_line
2410 find_function_start_sal (struct symbol *sym, int funfirstline)
2411 {
2412 struct symtab_and_line sal;
2413
2414 fixup_symbol_section (sym, NULL);
2415 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2416 SYMBOL_OBJ_SECTION (sym), 0);
2417
2418 /* We always should have a line for the function start address.
2419 If we don't, something is odd. Create a plain SAL refering
2420 just the PC and hope that skip_prologue_sal (if requested)
2421 can find a line number for after the prologue. */
2422 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2423 {
2424 init_sal (&sal);
2425 sal.pspace = current_program_space;
2426 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2427 sal.section = SYMBOL_OBJ_SECTION (sym);
2428 }
2429
2430 if (funfirstline)
2431 skip_prologue_sal (&sal);
2432
2433 return sal;
2434 }
2435
2436 /* Adjust SAL to the first instruction past the function prologue.
2437 If the PC was explicitly specified, the SAL is not changed.
2438 If the line number was explicitly specified, at most the SAL's PC
2439 is updated. If SAL is already past the prologue, then do nothing. */
2440 void
2441 skip_prologue_sal (struct symtab_and_line *sal)
2442 {
2443 struct symbol *sym;
2444 struct symtab_and_line start_sal;
2445 struct cleanup *old_chain;
2446 CORE_ADDR pc;
2447 struct obj_section *section;
2448 const char *name;
2449 struct objfile *objfile;
2450 struct gdbarch *gdbarch;
2451 struct block *b, *function_block;
2452
2453 /* Do not change the SAL is PC was specified explicitly. */
2454 if (sal->explicit_pc)
2455 return;
2456
2457 old_chain = save_current_space_and_thread ();
2458 switch_to_program_space_and_thread (sal->pspace);
2459
2460 sym = find_pc_sect_function (sal->pc, sal->section);
2461 if (sym != NULL)
2462 {
2463 fixup_symbol_section (sym, NULL);
2464
2465 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2466 section = SYMBOL_OBJ_SECTION (sym);
2467 name = SYMBOL_LINKAGE_NAME (sym);
2468 objfile = SYMBOL_SYMTAB (sym)->objfile;
2469 }
2470 else
2471 {
2472 struct minimal_symbol *msymbol
2473 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2474
2475 if (msymbol == NULL)
2476 {
2477 do_cleanups (old_chain);
2478 return;
2479 }
2480
2481 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2482 section = SYMBOL_OBJ_SECTION (msymbol);
2483 name = SYMBOL_LINKAGE_NAME (msymbol);
2484 objfile = msymbol_objfile (msymbol);
2485 }
2486
2487 gdbarch = get_objfile_arch (objfile);
2488
2489 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2490 so that gdbarch_skip_prologue has something unique to work on. */
2491 if (section_is_overlay (section) && !section_is_mapped (section))
2492 pc = overlay_unmapped_address (pc, section);
2493
2494 /* Skip "first line" of function (which is actually its prologue). */
2495 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2496 pc = gdbarch_skip_prologue (gdbarch, pc);
2497
2498 /* For overlays, map pc back into its mapped VMA range. */
2499 pc = overlay_mapped_address (pc, section);
2500
2501 /* Calculate line number. */
2502 start_sal = find_pc_sect_line (pc, section, 0);
2503
2504 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2505 line is still part of the same function. */
2506 if (start_sal.pc != pc
2507 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2508 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2509 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2510 == lookup_minimal_symbol_by_pc_section (pc, section))))
2511 {
2512 /* First pc of next line */
2513 pc = start_sal.end;
2514 /* Recalculate the line number (might not be N+1). */
2515 start_sal = find_pc_sect_line (pc, section, 0);
2516 }
2517
2518 /* On targets with executable formats that don't have a concept of
2519 constructors (ELF with .init has, PE doesn't), gcc emits a call
2520 to `__main' in `main' between the prologue and before user
2521 code. */
2522 if (gdbarch_skip_main_prologue_p (gdbarch)
2523 && name && strcmp (name, "main") == 0)
2524 {
2525 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2526 /* Recalculate the line number (might not be N+1). */
2527 start_sal = find_pc_sect_line (pc, section, 0);
2528 }
2529
2530 /* If we still don't have a valid source line, try to find the first
2531 PC in the lineinfo table that belongs to the same function. This
2532 happens with COFF debug info, which does not seem to have an
2533 entry in lineinfo table for the code after the prologue which has
2534 no direct relation to source. For example, this was found to be
2535 the case with the DJGPP target using "gcc -gcoff" when the
2536 compiler inserted code after the prologue to make sure the stack
2537 is aligned. */
2538 if (sym && start_sal.symtab == NULL)
2539 {
2540 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2541 /* Recalculate the line number. */
2542 start_sal = find_pc_sect_line (pc, section, 0);
2543 }
2544
2545 do_cleanups (old_chain);
2546
2547 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2548 forward SAL to the end of the prologue. */
2549 if (sal->pc >= pc)
2550 return;
2551
2552 sal->pc = pc;
2553 sal->section = section;
2554
2555 /* Unless the explicit_line flag was set, update the SAL line
2556 and symtab to correspond to the modified PC location. */
2557 if (sal->explicit_line)
2558 return;
2559
2560 sal->symtab = start_sal.symtab;
2561 sal->line = start_sal.line;
2562 sal->end = start_sal.end;
2563
2564 /* Check if we are now inside an inlined function. If we can,
2565 use the call site of the function instead. */
2566 b = block_for_pc_sect (sal->pc, sal->section);
2567 function_block = NULL;
2568 while (b != NULL)
2569 {
2570 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2571 function_block = b;
2572 else if (BLOCK_FUNCTION (b) != NULL)
2573 break;
2574 b = BLOCK_SUPERBLOCK (b);
2575 }
2576 if (function_block != NULL
2577 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2578 {
2579 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2580 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2581 }
2582 }
2583
2584 /* If P is of the form "operator[ \t]+..." where `...' is
2585 some legitimate operator text, return a pointer to the
2586 beginning of the substring of the operator text.
2587 Otherwise, return "". */
2588 char *
2589 operator_chars (char *p, char **end)
2590 {
2591 *end = "";
2592 if (strncmp (p, "operator", 8))
2593 return *end;
2594 p += 8;
2595
2596 /* Don't get faked out by `operator' being part of a longer
2597 identifier. */
2598 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2599 return *end;
2600
2601 /* Allow some whitespace between `operator' and the operator symbol. */
2602 while (*p == ' ' || *p == '\t')
2603 p++;
2604
2605 /* Recognize 'operator TYPENAME'. */
2606
2607 if (isalpha (*p) || *p == '_' || *p == '$')
2608 {
2609 char *q = p + 1;
2610
2611 while (isalnum (*q) || *q == '_' || *q == '$')
2612 q++;
2613 *end = q;
2614 return p;
2615 }
2616
2617 while (*p)
2618 switch (*p)
2619 {
2620 case '\\': /* regexp quoting */
2621 if (p[1] == '*')
2622 {
2623 if (p[2] == '=') /* 'operator\*=' */
2624 *end = p + 3;
2625 else /* 'operator\*' */
2626 *end = p + 2;
2627 return p;
2628 }
2629 else if (p[1] == '[')
2630 {
2631 if (p[2] == ']')
2632 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2633 else if (p[2] == '\\' && p[3] == ']')
2634 {
2635 *end = p + 4; /* 'operator\[\]' */
2636 return p;
2637 }
2638 else
2639 error (_("nothing is allowed between '[' and ']'"));
2640 }
2641 else
2642 {
2643 /* Gratuitous qoute: skip it and move on. */
2644 p++;
2645 continue;
2646 }
2647 break;
2648 case '!':
2649 case '=':
2650 case '*':
2651 case '/':
2652 case '%':
2653 case '^':
2654 if (p[1] == '=')
2655 *end = p + 2;
2656 else
2657 *end = p + 1;
2658 return p;
2659 case '<':
2660 case '>':
2661 case '+':
2662 case '-':
2663 case '&':
2664 case '|':
2665 if (p[0] == '-' && p[1] == '>')
2666 {
2667 /* Struct pointer member operator 'operator->'. */
2668 if (p[2] == '*')
2669 {
2670 *end = p + 3; /* 'operator->*' */
2671 return p;
2672 }
2673 else if (p[2] == '\\')
2674 {
2675 *end = p + 4; /* Hopefully 'operator->\*' */
2676 return p;
2677 }
2678 else
2679 {
2680 *end = p + 2; /* 'operator->' */
2681 return p;
2682 }
2683 }
2684 if (p[1] == '=' || p[1] == p[0])
2685 *end = p + 2;
2686 else
2687 *end = p + 1;
2688 return p;
2689 case '~':
2690 case ',':
2691 *end = p + 1;
2692 return p;
2693 case '(':
2694 if (p[1] != ')')
2695 error (_("`operator ()' must be specified without whitespace in `()'"));
2696 *end = p + 2;
2697 return p;
2698 case '?':
2699 if (p[1] != ':')
2700 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2701 *end = p + 2;
2702 return p;
2703 case '[':
2704 if (p[1] != ']')
2705 error (_("`operator []' must be specified without whitespace in `[]'"));
2706 *end = p + 2;
2707 return p;
2708 default:
2709 error (_("`operator %s' not supported"), p);
2710 break;
2711 }
2712
2713 *end = "";
2714 return *end;
2715 }
2716 \f
2717
2718 /* If FILE is not already in the table of files, return zero;
2719 otherwise return non-zero. Optionally add FILE to the table if ADD
2720 is non-zero. If *FIRST is non-zero, forget the old table
2721 contents. */
2722 static int
2723 filename_seen (const char *file, int add, int *first)
2724 {
2725 /* Table of files seen so far. */
2726 static const char **tab = NULL;
2727 /* Allocated size of tab in elements.
2728 Start with one 256-byte block (when using GNU malloc.c).
2729 24 is the malloc overhead when range checking is in effect. */
2730 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2731 /* Current size of tab in elements. */
2732 static int tab_cur_size;
2733 const char **p;
2734
2735 if (*first)
2736 {
2737 if (tab == NULL)
2738 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2739 tab_cur_size = 0;
2740 }
2741
2742 /* Is FILE in tab? */
2743 for (p = tab; p < tab + tab_cur_size; p++)
2744 if (strcmp (*p, file) == 0)
2745 return 1;
2746
2747 /* No; maybe add it to tab. */
2748 if (add)
2749 {
2750 if (tab_cur_size == tab_alloc_size)
2751 {
2752 tab_alloc_size *= 2;
2753 tab = (const char **) xrealloc ((char *) tab,
2754 tab_alloc_size * sizeof (*tab));
2755 }
2756 tab[tab_cur_size++] = file;
2757 }
2758
2759 return 0;
2760 }
2761
2762 /* Slave routine for sources_info. Force line breaks at ,'s.
2763 NAME is the name to print and *FIRST is nonzero if this is the first
2764 name printed. Set *FIRST to zero. */
2765 static void
2766 output_source_filename (const char *name, int *first)
2767 {
2768 /* Since a single source file can result in several partial symbol
2769 tables, we need to avoid printing it more than once. Note: if
2770 some of the psymtabs are read in and some are not, it gets
2771 printed both under "Source files for which symbols have been
2772 read" and "Source files for which symbols will be read in on
2773 demand". I consider this a reasonable way to deal with the
2774 situation. I'm not sure whether this can also happen for
2775 symtabs; it doesn't hurt to check. */
2776
2777 /* Was NAME already seen? */
2778 if (filename_seen (name, 1, first))
2779 {
2780 /* Yes; don't print it again. */
2781 return;
2782 }
2783 /* No; print it and reset *FIRST. */
2784 if (*first)
2785 {
2786 *first = 0;
2787 }
2788 else
2789 {
2790 printf_filtered (", ");
2791 }
2792
2793 wrap_here ("");
2794 fputs_filtered (name, gdb_stdout);
2795 }
2796
2797 /* A callback for map_partial_symbol_filenames. */
2798 static void
2799 output_partial_symbol_filename (const char *fullname, const char *filename,
2800 void *data)
2801 {
2802 output_source_filename (fullname ? fullname : filename, data);
2803 }
2804
2805 static void
2806 sources_info (char *ignore, int from_tty)
2807 {
2808 struct symtab *s;
2809 struct objfile *objfile;
2810 int first;
2811
2812 if (!have_full_symbols () && !have_partial_symbols ())
2813 {
2814 error (_("No symbol table is loaded. Use the \"file\" command."));
2815 }
2816
2817 printf_filtered ("Source files for which symbols have been read in:\n\n");
2818
2819 first = 1;
2820 ALL_SYMTABS (objfile, s)
2821 {
2822 const char *fullname = symtab_to_fullname (s);
2823
2824 output_source_filename (fullname ? fullname : s->filename, &first);
2825 }
2826 printf_filtered ("\n\n");
2827
2828 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2829
2830 first = 1;
2831 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2832 printf_filtered ("\n");
2833 }
2834
2835 static int
2836 file_matches (const char *file, char *files[], int nfiles)
2837 {
2838 int i;
2839
2840 if (file != NULL && nfiles != 0)
2841 {
2842 for (i = 0; i < nfiles; i++)
2843 {
2844 if (strcmp (files[i], lbasename (file)) == 0)
2845 return 1;
2846 }
2847 }
2848 else if (nfiles == 0)
2849 return 1;
2850 return 0;
2851 }
2852
2853 /* Free any memory associated with a search. */
2854 void
2855 free_search_symbols (struct symbol_search *symbols)
2856 {
2857 struct symbol_search *p;
2858 struct symbol_search *next;
2859
2860 for (p = symbols; p != NULL; p = next)
2861 {
2862 next = p->next;
2863 xfree (p);
2864 }
2865 }
2866
2867 static void
2868 do_free_search_symbols_cleanup (void *symbols)
2869 {
2870 free_search_symbols (symbols);
2871 }
2872
2873 struct cleanup *
2874 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2875 {
2876 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2877 }
2878
2879 /* Helper function for sort_search_symbols and qsort. Can only
2880 sort symbols, not minimal symbols. */
2881 static int
2882 compare_search_syms (const void *sa, const void *sb)
2883 {
2884 struct symbol_search **sym_a = (struct symbol_search **) sa;
2885 struct symbol_search **sym_b = (struct symbol_search **) sb;
2886
2887 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2888 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2889 }
2890
2891 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2892 prevtail where it is, but update its next pointer to point to
2893 the first of the sorted symbols. */
2894 static struct symbol_search *
2895 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2896 {
2897 struct symbol_search **symbols, *symp, *old_next;
2898 int i;
2899
2900 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2901 * nfound);
2902 symp = prevtail->next;
2903 for (i = 0; i < nfound; i++)
2904 {
2905 symbols[i] = symp;
2906 symp = symp->next;
2907 }
2908 /* Generally NULL. */
2909 old_next = symp;
2910
2911 qsort (symbols, nfound, sizeof (struct symbol_search *),
2912 compare_search_syms);
2913
2914 symp = prevtail;
2915 for (i = 0; i < nfound; i++)
2916 {
2917 symp->next = symbols[i];
2918 symp = symp->next;
2919 }
2920 symp->next = old_next;
2921
2922 xfree (symbols);
2923 return symp;
2924 }
2925
2926 /* An object of this type is passed as the user_data to the
2927 expand_symtabs_matching method. */
2928 struct search_symbols_data
2929 {
2930 int nfiles;
2931 char **files;
2932 char *regexp;
2933 };
2934
2935 /* A callback for expand_symtabs_matching. */
2936 static int
2937 search_symbols_file_matches (const char *filename, void *user_data)
2938 {
2939 struct search_symbols_data *data = user_data;
2940
2941 return file_matches (filename, data->files, data->nfiles);
2942 }
2943
2944 /* A callback for expand_symtabs_matching. */
2945 static int
2946 search_symbols_name_matches (const char *symname, void *user_data)
2947 {
2948 struct search_symbols_data *data = user_data;
2949
2950 return data->regexp == NULL || re_exec (symname);
2951 }
2952
2953 /* Search the symbol table for matches to the regular expression REGEXP,
2954 returning the results in *MATCHES.
2955
2956 Only symbols of KIND are searched:
2957 FUNCTIONS_DOMAIN - search all functions
2958 TYPES_DOMAIN - search all type names
2959 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2960 and constants (enums)
2961
2962 free_search_symbols should be called when *MATCHES is no longer needed.
2963
2964 The results are sorted locally; each symtab's global and static blocks are
2965 separately alphabetized.
2966 */
2967 void
2968 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2969 struct symbol_search **matches)
2970 {
2971 struct symtab *s;
2972 struct blockvector *bv;
2973 struct block *b;
2974 int i = 0;
2975 struct dict_iterator iter;
2976 struct symbol *sym;
2977 struct objfile *objfile;
2978 struct minimal_symbol *msymbol;
2979 char *val;
2980 int found_misc = 0;
2981 static enum minimal_symbol_type types[]
2982 = {mst_data, mst_text, mst_abs, mst_unknown};
2983 static enum minimal_symbol_type types2[]
2984 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
2985 static enum minimal_symbol_type types3[]
2986 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2987 static enum minimal_symbol_type types4[]
2988 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
2989 enum minimal_symbol_type ourtype;
2990 enum minimal_symbol_type ourtype2;
2991 enum minimal_symbol_type ourtype3;
2992 enum minimal_symbol_type ourtype4;
2993 struct symbol_search *sr;
2994 struct symbol_search *psr;
2995 struct symbol_search *tail;
2996 struct cleanup *old_chain = NULL;
2997 struct search_symbols_data datum;
2998
2999 if (kind < VARIABLES_DOMAIN)
3000 error (_("must search on specific domain"));
3001
3002 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3003 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3004 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3005 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3006
3007 sr = *matches = NULL;
3008 tail = NULL;
3009
3010 if (regexp != NULL)
3011 {
3012 /* Make sure spacing is right for C++ operators.
3013 This is just a courtesy to make the matching less sensitive
3014 to how many spaces the user leaves between 'operator'
3015 and <TYPENAME> or <OPERATOR>. */
3016 char *opend;
3017 char *opname = operator_chars (regexp, &opend);
3018
3019 if (*opname)
3020 {
3021 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3022
3023 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3024 {
3025 /* There should 1 space between 'operator' and 'TYPENAME'. */
3026 if (opname[-1] != ' ' || opname[-2] == ' ')
3027 fix = 1;
3028 }
3029 else
3030 {
3031 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3032 if (opname[-1] == ' ')
3033 fix = 0;
3034 }
3035 /* If wrong number of spaces, fix it. */
3036 if (fix >= 0)
3037 {
3038 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3039
3040 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3041 regexp = tmp;
3042 }
3043 }
3044
3045 if (0 != (val = re_comp (regexp)))
3046 error (_("Invalid regexp (%s): %s"), val, regexp);
3047 }
3048
3049 /* Search through the partial symtabs *first* for all symbols
3050 matching the regexp. That way we don't have to reproduce all of
3051 the machinery below. */
3052
3053 datum.nfiles = nfiles;
3054 datum.files = files;
3055 datum.regexp = regexp;
3056 ALL_OBJFILES (objfile)
3057 {
3058 if (objfile->sf)
3059 objfile->sf->qf->expand_symtabs_matching (objfile,
3060 search_symbols_file_matches,
3061 search_symbols_name_matches,
3062 kind,
3063 &datum);
3064 }
3065
3066 /* Here, we search through the minimal symbol tables for functions
3067 and variables that match, and force their symbols to be read.
3068 This is in particular necessary for demangled variable names,
3069 which are no longer put into the partial symbol tables.
3070 The symbol will then be found during the scan of symtabs below.
3071
3072 For functions, find_pc_symtab should succeed if we have debug info
3073 for the function, for variables we have to call lookup_symbol
3074 to determine if the variable has debug info.
3075 If the lookup fails, set found_misc so that we will rescan to print
3076 any matching symbols without debug info.
3077 */
3078
3079 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3080 {
3081 ALL_MSYMBOLS (objfile, msymbol)
3082 {
3083 QUIT;
3084
3085 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3086 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3087 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3088 MSYMBOL_TYPE (msymbol) == ourtype4)
3089 {
3090 if (regexp == NULL
3091 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3092 {
3093 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3094 {
3095 /* FIXME: carlton/2003-02-04: Given that the
3096 semantics of lookup_symbol keeps on changing
3097 slightly, it would be a nice idea if we had a
3098 function lookup_symbol_minsym that found the
3099 symbol associated to a given minimal symbol (if
3100 any). */
3101 if (kind == FUNCTIONS_DOMAIN
3102 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3103 (struct block *) NULL,
3104 VAR_DOMAIN, 0)
3105 == NULL)
3106 found_misc = 1;
3107 }
3108 }
3109 }
3110 }
3111 }
3112
3113 ALL_PRIMARY_SYMTABS (objfile, s)
3114 {
3115 bv = BLOCKVECTOR (s);
3116 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3117 {
3118 struct symbol_search *prevtail = tail;
3119 int nfound = 0;
3120
3121 b = BLOCKVECTOR_BLOCK (bv, i);
3122 ALL_BLOCK_SYMBOLS (b, iter, sym)
3123 {
3124 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3125
3126 QUIT;
3127
3128 if (file_matches (real_symtab->filename, files, nfiles)
3129 && ((regexp == NULL
3130 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3131 && ((kind == VARIABLES_DOMAIN
3132 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3133 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3134 && SYMBOL_CLASS (sym) != LOC_BLOCK
3135 /* LOC_CONST can be used for more than just enums,
3136 e.g., c++ static const members.
3137 We only want to skip enums here. */
3138 && !(SYMBOL_CLASS (sym) == LOC_CONST
3139 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM))
3140 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3141 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3142 {
3143 /* match */
3144 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3145 psr->block = i;
3146 psr->symtab = real_symtab;
3147 psr->symbol = sym;
3148 psr->msymbol = NULL;
3149 psr->next = NULL;
3150 if (tail == NULL)
3151 sr = psr;
3152 else
3153 tail->next = psr;
3154 tail = psr;
3155 nfound ++;
3156 }
3157 }
3158 if (nfound > 0)
3159 {
3160 if (prevtail == NULL)
3161 {
3162 struct symbol_search dummy;
3163
3164 dummy.next = sr;
3165 tail = sort_search_symbols (&dummy, nfound);
3166 sr = dummy.next;
3167
3168 old_chain = make_cleanup_free_search_symbols (sr);
3169 }
3170 else
3171 tail = sort_search_symbols (prevtail, nfound);
3172 }
3173 }
3174 }
3175
3176 /* If there are no eyes, avoid all contact. I mean, if there are
3177 no debug symbols, then print directly from the msymbol_vector. */
3178
3179 if (found_misc || kind != FUNCTIONS_DOMAIN)
3180 {
3181 ALL_MSYMBOLS (objfile, msymbol)
3182 {
3183 QUIT;
3184
3185 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3186 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3187 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3188 MSYMBOL_TYPE (msymbol) == ourtype4)
3189 {
3190 if (regexp == NULL
3191 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3192 {
3193 /* Functions: Look up by address. */
3194 if (kind != FUNCTIONS_DOMAIN ||
3195 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3196 {
3197 /* Variables/Absolutes: Look up by name */
3198 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3199 (struct block *) NULL, VAR_DOMAIN, 0)
3200 == NULL)
3201 {
3202 /* match */
3203 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3204 psr->block = i;
3205 psr->msymbol = msymbol;
3206 psr->symtab = NULL;
3207 psr->symbol = NULL;
3208 psr->next = NULL;
3209 if (tail == NULL)
3210 {
3211 sr = psr;
3212 old_chain = make_cleanup_free_search_symbols (sr);
3213 }
3214 else
3215 tail->next = psr;
3216 tail = psr;
3217 }
3218 }
3219 }
3220 }
3221 }
3222 }
3223
3224 *matches = sr;
3225 if (sr != NULL)
3226 discard_cleanups (old_chain);
3227 }
3228
3229 /* Helper function for symtab_symbol_info, this function uses
3230 the data returned from search_symbols() to print information
3231 regarding the match to gdb_stdout.
3232 */
3233 static void
3234 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3235 int block, char *last)
3236 {
3237 if (last == NULL || strcmp (last, s->filename) != 0)
3238 {
3239 fputs_filtered ("\nFile ", gdb_stdout);
3240 fputs_filtered (s->filename, gdb_stdout);
3241 fputs_filtered (":\n", gdb_stdout);
3242 }
3243
3244 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3245 printf_filtered ("static ");
3246
3247 /* Typedef that is not a C++ class */
3248 if (kind == TYPES_DOMAIN
3249 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3250 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3251 /* variable, func, or typedef-that-is-c++-class */
3252 else if (kind < TYPES_DOMAIN ||
3253 (kind == TYPES_DOMAIN &&
3254 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3255 {
3256 type_print (SYMBOL_TYPE (sym),
3257 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3258 ? "" : SYMBOL_PRINT_NAME (sym)),
3259 gdb_stdout, 0);
3260
3261 printf_filtered (";\n");
3262 }
3263 }
3264
3265 /* This help function for symtab_symbol_info() prints information
3266 for non-debugging symbols to gdb_stdout.
3267 */
3268 static void
3269 print_msymbol_info (struct minimal_symbol *msymbol)
3270 {
3271 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3272 char *tmp;
3273
3274 if (gdbarch_addr_bit (gdbarch) <= 32)
3275 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3276 & (CORE_ADDR) 0xffffffff,
3277 8);
3278 else
3279 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3280 16);
3281 printf_filtered ("%s %s\n",
3282 tmp, SYMBOL_PRINT_NAME (msymbol));
3283 }
3284
3285 /* This is the guts of the commands "info functions", "info types", and
3286 "info variables". It calls search_symbols to find all matches and then
3287 print_[m]symbol_info to print out some useful information about the
3288 matches.
3289 */
3290 static void
3291 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3292 {
3293 static char *classnames[] = {"variable", "function", "type", "method"};
3294 struct symbol_search *symbols;
3295 struct symbol_search *p;
3296 struct cleanup *old_chain;
3297 char *last_filename = NULL;
3298 int first = 1;
3299
3300 /* must make sure that if we're interrupted, symbols gets freed */
3301 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3302 old_chain = make_cleanup_free_search_symbols (symbols);
3303
3304 printf_filtered (regexp
3305 ? "All %ss matching regular expression \"%s\":\n"
3306 : "All defined %ss:\n",
3307 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3308
3309 for (p = symbols; p != NULL; p = p->next)
3310 {
3311 QUIT;
3312
3313 if (p->msymbol != NULL)
3314 {
3315 if (first)
3316 {
3317 printf_filtered ("\nNon-debugging symbols:\n");
3318 first = 0;
3319 }
3320 print_msymbol_info (p->msymbol);
3321 }
3322 else
3323 {
3324 print_symbol_info (kind,
3325 p->symtab,
3326 p->symbol,
3327 p->block,
3328 last_filename);
3329 last_filename = p->symtab->filename;
3330 }
3331 }
3332
3333 do_cleanups (old_chain);
3334 }
3335
3336 static void
3337 variables_info (char *regexp, int from_tty)
3338 {
3339 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3340 }
3341
3342 static void
3343 functions_info (char *regexp, int from_tty)
3344 {
3345 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3346 }
3347
3348
3349 static void
3350 types_info (char *regexp, int from_tty)
3351 {
3352 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3353 }
3354
3355 /* Breakpoint all functions matching regular expression. */
3356
3357 void
3358 rbreak_command_wrapper (char *regexp, int from_tty)
3359 {
3360 rbreak_command (regexp, from_tty);
3361 }
3362
3363 /* A cleanup function that calls end_rbreak_breakpoints. */
3364
3365 static void
3366 do_end_rbreak_breakpoints (void *ignore)
3367 {
3368 end_rbreak_breakpoints ();
3369 }
3370
3371 static void
3372 rbreak_command (char *regexp, int from_tty)
3373 {
3374 struct symbol_search *ss;
3375 struct symbol_search *p;
3376 struct cleanup *old_chain;
3377 char *string = NULL;
3378 int len = 0;
3379 char **files = NULL;
3380 int nfiles = 0;
3381
3382 if (regexp)
3383 {
3384 char *colon = strchr (regexp, ':');
3385
3386 if (colon && *(colon + 1) != ':')
3387 {
3388 int colon_index;
3389 char * file_name;
3390
3391 colon_index = colon - regexp;
3392 file_name = alloca (colon_index + 1);
3393 memcpy (file_name, regexp, colon_index);
3394 file_name[colon_index--] = 0;
3395 while (isspace (file_name[colon_index]))
3396 file_name[colon_index--] = 0;
3397 files = &file_name;
3398 nfiles = 1;
3399 regexp = colon + 1;
3400 while (isspace (*regexp)) regexp++;
3401 }
3402 }
3403
3404 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3405 old_chain = make_cleanup_free_search_symbols (ss);
3406 make_cleanup (free_current_contents, &string);
3407
3408 start_rbreak_breakpoints ();
3409 make_cleanup (do_end_rbreak_breakpoints, NULL);
3410 for (p = ss; p != NULL; p = p->next)
3411 {
3412 if (p->msymbol == NULL)
3413 {
3414 int newlen = (strlen (p->symtab->filename)
3415 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3416 + 4);
3417
3418 if (newlen > len)
3419 {
3420 string = xrealloc (string, newlen);
3421 len = newlen;
3422 }
3423 strcpy (string, p->symtab->filename);
3424 strcat (string, ":'");
3425 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3426 strcat (string, "'");
3427 break_command (string, from_tty);
3428 print_symbol_info (FUNCTIONS_DOMAIN,
3429 p->symtab,
3430 p->symbol,
3431 p->block,
3432 p->symtab->filename);
3433 }
3434 else
3435 {
3436 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3437
3438 if (newlen > len)
3439 {
3440 string = xrealloc (string, newlen);
3441 len = newlen;
3442 }
3443 strcpy (string, "'");
3444 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3445 strcat (string, "'");
3446
3447 break_command (string, from_tty);
3448 printf_filtered ("<function, no debug info> %s;\n",
3449 SYMBOL_PRINT_NAME (p->msymbol));
3450 }
3451 }
3452
3453 do_cleanups (old_chain);
3454 }
3455 \f
3456
3457 /* Helper routine for make_symbol_completion_list. */
3458
3459 static int return_val_size;
3460 static int return_val_index;
3461 static char **return_val;
3462
3463 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3464 completion_list_add_name \
3465 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3466
3467 /* Test to see if the symbol specified by SYMNAME (which is already
3468 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3469 characters. If so, add it to the current completion list. */
3470
3471 static void
3472 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3473 char *text, char *word)
3474 {
3475 int newsize;
3476
3477 /* clip symbols that cannot match */
3478
3479 if (strncmp (symname, sym_text, sym_text_len) != 0)
3480 {
3481 return;
3482 }
3483
3484 /* We have a match for a completion, so add SYMNAME to the current list
3485 of matches. Note that the name is moved to freshly malloc'd space. */
3486
3487 {
3488 char *new;
3489
3490 if (word == sym_text)
3491 {
3492 new = xmalloc (strlen (symname) + 5);
3493 strcpy (new, symname);
3494 }
3495 else if (word > sym_text)
3496 {
3497 /* Return some portion of symname. */
3498 new = xmalloc (strlen (symname) + 5);
3499 strcpy (new, symname + (word - sym_text));
3500 }
3501 else
3502 {
3503 /* Return some of SYM_TEXT plus symname. */
3504 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3505 strncpy (new, word, sym_text - word);
3506 new[sym_text - word] = '\0';
3507 strcat (new, symname);
3508 }
3509
3510 if (return_val_index + 3 > return_val_size)
3511 {
3512 newsize = (return_val_size *= 2) * sizeof (char *);
3513 return_val = (char **) xrealloc ((char *) return_val, newsize);
3514 }
3515 return_val[return_val_index++] = new;
3516 return_val[return_val_index] = NULL;
3517 }
3518 }
3519
3520 /* ObjC: In case we are completing on a selector, look as the msymbol
3521 again and feed all the selectors into the mill. */
3522
3523 static void
3524 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3525 int sym_text_len, char *text, char *word)
3526 {
3527 static char *tmp = NULL;
3528 static unsigned int tmplen = 0;
3529
3530 char *method, *category, *selector;
3531 char *tmp2 = NULL;
3532
3533 method = SYMBOL_NATURAL_NAME (msymbol);
3534
3535 /* Is it a method? */
3536 if ((method[0] != '-') && (method[0] != '+'))
3537 return;
3538
3539 if (sym_text[0] == '[')
3540 /* Complete on shortened method method. */
3541 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3542
3543 while ((strlen (method) + 1) >= tmplen)
3544 {
3545 if (tmplen == 0)
3546 tmplen = 1024;
3547 else
3548 tmplen *= 2;
3549 tmp = xrealloc (tmp, tmplen);
3550 }
3551 selector = strchr (method, ' ');
3552 if (selector != NULL)
3553 selector++;
3554
3555 category = strchr (method, '(');
3556
3557 if ((category != NULL) && (selector != NULL))
3558 {
3559 memcpy (tmp, method, (category - method));
3560 tmp[category - method] = ' ';
3561 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3562 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3563 if (sym_text[0] == '[')
3564 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3565 }
3566
3567 if (selector != NULL)
3568 {
3569 /* Complete on selector only. */
3570 strcpy (tmp, selector);
3571 tmp2 = strchr (tmp, ']');
3572 if (tmp2 != NULL)
3573 *tmp2 = '\0';
3574
3575 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3576 }
3577 }
3578
3579 /* Break the non-quoted text based on the characters which are in
3580 symbols. FIXME: This should probably be language-specific. */
3581
3582 static char *
3583 language_search_unquoted_string (char *text, char *p)
3584 {
3585 for (; p > text; --p)
3586 {
3587 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3588 continue;
3589 else
3590 {
3591 if ((current_language->la_language == language_objc))
3592 {
3593 if (p[-1] == ':') /* might be part of a method name */
3594 continue;
3595 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3596 p -= 2; /* beginning of a method name */
3597 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3598 { /* might be part of a method name */
3599 char *t = p;
3600
3601 /* Seeing a ' ' or a '(' is not conclusive evidence
3602 that we are in the middle of a method name. However,
3603 finding "-[" or "+[" should be pretty un-ambiguous.
3604 Unfortunately we have to find it now to decide. */
3605
3606 while (t > text)
3607 if (isalnum (t[-1]) || t[-1] == '_' ||
3608 t[-1] == ' ' || t[-1] == ':' ||
3609 t[-1] == '(' || t[-1] == ')')
3610 --t;
3611 else
3612 break;
3613
3614 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3615 p = t - 2; /* method name detected */
3616 /* else we leave with p unchanged */
3617 }
3618 }
3619 break;
3620 }
3621 }
3622 return p;
3623 }
3624
3625 static void
3626 completion_list_add_fields (struct symbol *sym, char *sym_text,
3627 int sym_text_len, char *text, char *word)
3628 {
3629 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3630 {
3631 struct type *t = SYMBOL_TYPE (sym);
3632 enum type_code c = TYPE_CODE (t);
3633 int j;
3634
3635 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3636 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3637 if (TYPE_FIELD_NAME (t, j))
3638 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3639 sym_text, sym_text_len, text, word);
3640 }
3641 }
3642
3643 /* Type of the user_data argument passed to add_macro_name or
3644 add_partial_symbol_name. The contents are simply whatever is
3645 needed by completion_list_add_name. */
3646 struct add_name_data
3647 {
3648 char *sym_text;
3649 int sym_text_len;
3650 char *text;
3651 char *word;
3652 };
3653
3654 /* A callback used with macro_for_each and macro_for_each_in_scope.
3655 This adds a macro's name to the current completion list. */
3656 static void
3657 add_macro_name (const char *name, const struct macro_definition *ignore,
3658 void *user_data)
3659 {
3660 struct add_name_data *datum = (struct add_name_data *) user_data;
3661
3662 completion_list_add_name ((char *) name,
3663 datum->sym_text, datum->sym_text_len,
3664 datum->text, datum->word);
3665 }
3666
3667 /* A callback for map_partial_symbol_names. */
3668 static void
3669 add_partial_symbol_name (const char *name, void *user_data)
3670 {
3671 struct add_name_data *datum = (struct add_name_data *) user_data;
3672
3673 completion_list_add_name ((char *) name,
3674 datum->sym_text, datum->sym_text_len,
3675 datum->text, datum->word);
3676 }
3677
3678 char **
3679 default_make_symbol_completion_list_break_on (char *text, char *word,
3680 const char *break_on)
3681 {
3682 /* Problem: All of the symbols have to be copied because readline
3683 frees them. I'm not going to worry about this; hopefully there
3684 won't be that many. */
3685
3686 struct symbol *sym;
3687 struct symtab *s;
3688 struct minimal_symbol *msymbol;
3689 struct objfile *objfile;
3690 struct block *b;
3691 const struct block *surrounding_static_block, *surrounding_global_block;
3692 struct dict_iterator iter;
3693 /* The symbol we are completing on. Points in same buffer as text. */
3694 char *sym_text;
3695 /* Length of sym_text. */
3696 int sym_text_len;
3697 struct add_name_data datum;
3698
3699 /* Now look for the symbol we are supposed to complete on. */
3700 {
3701 char *p;
3702 char quote_found;
3703 char *quote_pos = NULL;
3704
3705 /* First see if this is a quoted string. */
3706 quote_found = '\0';
3707 for (p = text; *p != '\0'; ++p)
3708 {
3709 if (quote_found != '\0')
3710 {
3711 if (*p == quote_found)
3712 /* Found close quote. */
3713 quote_found = '\0';
3714 else if (*p == '\\' && p[1] == quote_found)
3715 /* A backslash followed by the quote character
3716 doesn't end the string. */
3717 ++p;
3718 }
3719 else if (*p == '\'' || *p == '"')
3720 {
3721 quote_found = *p;
3722 quote_pos = p;
3723 }
3724 }
3725 if (quote_found == '\'')
3726 /* A string within single quotes can be a symbol, so complete on it. */
3727 sym_text = quote_pos + 1;
3728 else if (quote_found == '"')
3729 /* A double-quoted string is never a symbol, nor does it make sense
3730 to complete it any other way. */
3731 {
3732 return_val = (char **) xmalloc (sizeof (char *));
3733 return_val[0] = NULL;
3734 return return_val;
3735 }
3736 else
3737 {
3738 /* It is not a quoted string. Break it based on the characters
3739 which are in symbols. */
3740 while (p > text)
3741 {
3742 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3743 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3744 --p;
3745 else
3746 break;
3747 }
3748 sym_text = p;
3749 }
3750 }
3751
3752 sym_text_len = strlen (sym_text);
3753
3754 return_val_size = 100;
3755 return_val_index = 0;
3756 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3757 return_val[0] = NULL;
3758
3759 datum.sym_text = sym_text;
3760 datum.sym_text_len = sym_text_len;
3761 datum.text = text;
3762 datum.word = word;
3763
3764 /* Look through the partial symtabs for all symbols which begin
3765 by matching SYM_TEXT. Add each one that you find to the list. */
3766 map_partial_symbol_names (add_partial_symbol_name, &datum);
3767
3768 /* At this point scan through the misc symbol vectors and add each
3769 symbol you find to the list. Eventually we want to ignore
3770 anything that isn't a text symbol (everything else will be
3771 handled by the psymtab code above). */
3772
3773 ALL_MSYMBOLS (objfile, msymbol)
3774 {
3775 QUIT;
3776 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3777
3778 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3779 }
3780
3781 /* Search upwards from currently selected frame (so that we can
3782 complete on local vars). Also catch fields of types defined in
3783 this places which match our text string. Only complete on types
3784 visible from current context. */
3785
3786 b = get_selected_block (0);
3787 surrounding_static_block = block_static_block (b);
3788 surrounding_global_block = block_global_block (b);
3789 if (surrounding_static_block != NULL)
3790 while (b != surrounding_static_block)
3791 {
3792 QUIT;
3793
3794 ALL_BLOCK_SYMBOLS (b, iter, sym)
3795 {
3796 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3797 word);
3798 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3799 word);
3800 }
3801
3802 /* Stop when we encounter an enclosing function. Do not stop for
3803 non-inlined functions - the locals of the enclosing function
3804 are in scope for a nested function. */
3805 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3806 break;
3807 b = BLOCK_SUPERBLOCK (b);
3808 }
3809
3810 /* Add fields from the file's types; symbols will be added below. */
3811
3812 if (surrounding_static_block != NULL)
3813 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3814 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3815
3816 if (surrounding_global_block != NULL)
3817 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3818 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3819
3820 /* Go through the symtabs and check the externs and statics for
3821 symbols which match. */
3822
3823 ALL_PRIMARY_SYMTABS (objfile, s)
3824 {
3825 QUIT;
3826 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3827 ALL_BLOCK_SYMBOLS (b, iter, sym)
3828 {
3829 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3830 }
3831 }
3832
3833 ALL_PRIMARY_SYMTABS (objfile, s)
3834 {
3835 QUIT;
3836 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3837 ALL_BLOCK_SYMBOLS (b, iter, sym)
3838 {
3839 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3840 }
3841 }
3842
3843 if (current_language->la_macro_expansion == macro_expansion_c)
3844 {
3845 struct macro_scope *scope;
3846
3847 /* Add any macros visible in the default scope. Note that this
3848 may yield the occasional wrong result, because an expression
3849 might be evaluated in a scope other than the default. For
3850 example, if the user types "break file:line if <TAB>", the
3851 resulting expression will be evaluated at "file:line" -- but
3852 at there does not seem to be a way to detect this at
3853 completion time. */
3854 scope = default_macro_scope ();
3855 if (scope)
3856 {
3857 macro_for_each_in_scope (scope->file, scope->line,
3858 add_macro_name, &datum);
3859 xfree (scope);
3860 }
3861
3862 /* User-defined macros are always visible. */
3863 macro_for_each (macro_user_macros, add_macro_name, &datum);
3864 }
3865
3866 return (return_val);
3867 }
3868
3869 char **
3870 default_make_symbol_completion_list (char *text, char *word)
3871 {
3872 return default_make_symbol_completion_list_break_on (text, word, "");
3873 }
3874
3875 /* Return a NULL terminated array of all symbols (regardless of class)
3876 which begin by matching TEXT. If the answer is no symbols, then
3877 the return value is an array which contains only a NULL pointer. */
3878
3879 char **
3880 make_symbol_completion_list (char *text, char *word)
3881 {
3882 return current_language->la_make_symbol_completion_list (text, word);
3883 }
3884
3885 /* Like make_symbol_completion_list, but suitable for use as a
3886 completion function. */
3887
3888 char **
3889 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3890 char *text, char *word)
3891 {
3892 return make_symbol_completion_list (text, word);
3893 }
3894
3895 /* Like make_symbol_completion_list, but returns a list of symbols
3896 defined in a source file FILE. */
3897
3898 char **
3899 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3900 {
3901 struct symbol *sym;
3902 struct symtab *s;
3903 struct block *b;
3904 struct dict_iterator iter;
3905 /* The symbol we are completing on. Points in same buffer as text. */
3906 char *sym_text;
3907 /* Length of sym_text. */
3908 int sym_text_len;
3909
3910 /* Now look for the symbol we are supposed to complete on.
3911 FIXME: This should be language-specific. */
3912 {
3913 char *p;
3914 char quote_found;
3915 char *quote_pos = NULL;
3916
3917 /* First see if this is a quoted string. */
3918 quote_found = '\0';
3919 for (p = text; *p != '\0'; ++p)
3920 {
3921 if (quote_found != '\0')
3922 {
3923 if (*p == quote_found)
3924 /* Found close quote. */
3925 quote_found = '\0';
3926 else if (*p == '\\' && p[1] == quote_found)
3927 /* A backslash followed by the quote character
3928 doesn't end the string. */
3929 ++p;
3930 }
3931 else if (*p == '\'' || *p == '"')
3932 {
3933 quote_found = *p;
3934 quote_pos = p;
3935 }
3936 }
3937 if (quote_found == '\'')
3938 /* A string within single quotes can be a symbol, so complete on it. */
3939 sym_text = quote_pos + 1;
3940 else if (quote_found == '"')
3941 /* A double-quoted string is never a symbol, nor does it make sense
3942 to complete it any other way. */
3943 {
3944 return_val = (char **) xmalloc (sizeof (char *));
3945 return_val[0] = NULL;
3946 return return_val;
3947 }
3948 else
3949 {
3950 /* Not a quoted string. */
3951 sym_text = language_search_unquoted_string (text, p);
3952 }
3953 }
3954
3955 sym_text_len = strlen (sym_text);
3956
3957 return_val_size = 10;
3958 return_val_index = 0;
3959 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3960 return_val[0] = NULL;
3961
3962 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3963 in). */
3964 s = lookup_symtab (srcfile);
3965 if (s == NULL)
3966 {
3967 /* Maybe they typed the file with leading directories, while the
3968 symbol tables record only its basename. */
3969 const char *tail = lbasename (srcfile);
3970
3971 if (tail > srcfile)
3972 s = lookup_symtab (tail);
3973 }
3974
3975 /* If we have no symtab for that file, return an empty list. */
3976 if (s == NULL)
3977 return (return_val);
3978
3979 /* Go through this symtab and check the externs and statics for
3980 symbols which match. */
3981
3982 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3983 ALL_BLOCK_SYMBOLS (b, iter, sym)
3984 {
3985 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3986 }
3987
3988 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3989 ALL_BLOCK_SYMBOLS (b, iter, sym)
3990 {
3991 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3992 }
3993
3994 return (return_val);
3995 }
3996
3997 /* A helper function for make_source_files_completion_list. It adds
3998 another file name to a list of possible completions, growing the
3999 list as necessary. */
4000
4001 static void
4002 add_filename_to_list (const char *fname, char *text, char *word,
4003 char ***list, int *list_used, int *list_alloced)
4004 {
4005 char *new;
4006 size_t fnlen = strlen (fname);
4007
4008 if (*list_used + 1 >= *list_alloced)
4009 {
4010 *list_alloced *= 2;
4011 *list = (char **) xrealloc ((char *) *list,
4012 *list_alloced * sizeof (char *));
4013 }
4014
4015 if (word == text)
4016 {
4017 /* Return exactly fname. */
4018 new = xmalloc (fnlen + 5);
4019 strcpy (new, fname);
4020 }
4021 else if (word > text)
4022 {
4023 /* Return some portion of fname. */
4024 new = xmalloc (fnlen + 5);
4025 strcpy (new, fname + (word - text));
4026 }
4027 else
4028 {
4029 /* Return some of TEXT plus fname. */
4030 new = xmalloc (fnlen + (text - word) + 5);
4031 strncpy (new, word, text - word);
4032 new[text - word] = '\0';
4033 strcat (new, fname);
4034 }
4035 (*list)[*list_used] = new;
4036 (*list)[++*list_used] = NULL;
4037 }
4038
4039 static int
4040 not_interesting_fname (const char *fname)
4041 {
4042 static const char *illegal_aliens[] = {
4043 "_globals_", /* inserted by coff_symtab_read */
4044 NULL
4045 };
4046 int i;
4047
4048 for (i = 0; illegal_aliens[i]; i++)
4049 {
4050 if (strcmp (fname, illegal_aliens[i]) == 0)
4051 return 1;
4052 }
4053 return 0;
4054 }
4055
4056 /* An object of this type is passed as the user_data argument to
4057 map_partial_symbol_filenames. */
4058 struct add_partial_filename_data
4059 {
4060 int *first;
4061 char *text;
4062 char *word;
4063 int text_len;
4064 char ***list;
4065 int *list_used;
4066 int *list_alloced;
4067 };
4068
4069 /* A callback for map_partial_symbol_filenames. */
4070 static void
4071 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
4072 void *user_data)
4073 {
4074 struct add_partial_filename_data *data = user_data;
4075
4076 if (not_interesting_fname (filename))
4077 return;
4078 if (!filename_seen (filename, 1, data->first)
4079 #if HAVE_DOS_BASED_FILE_SYSTEM
4080 && strncasecmp (filename, data->text, data->text_len) == 0
4081 #else
4082 && strncmp (filename, data->text, data->text_len) == 0
4083 #endif
4084 )
4085 {
4086 /* This file matches for a completion; add it to the
4087 current list of matches. */
4088 add_filename_to_list (filename, data->text, data->word,
4089 data->list, data->list_used, data->list_alloced);
4090 }
4091 else
4092 {
4093 const char *base_name = lbasename (filename);
4094
4095 if (base_name != filename
4096 && !filename_seen (base_name, 1, data->first)
4097 #if HAVE_DOS_BASED_FILE_SYSTEM
4098 && strncasecmp (base_name, data->text, data->text_len) == 0
4099 #else
4100 && strncmp (base_name, data->text, data->text_len) == 0
4101 #endif
4102 )
4103 add_filename_to_list (base_name, data->text, data->word,
4104 data->list, data->list_used, data->list_alloced);
4105 }
4106 }
4107
4108 /* Return a NULL terminated array of all source files whose names
4109 begin with matching TEXT. The file names are looked up in the
4110 symbol tables of this program. If the answer is no matchess, then
4111 the return value is an array which contains only a NULL pointer. */
4112
4113 char **
4114 make_source_files_completion_list (char *text, char *word)
4115 {
4116 struct symtab *s;
4117 struct objfile *objfile;
4118 int first = 1;
4119 int list_alloced = 1;
4120 int list_used = 0;
4121 size_t text_len = strlen (text);
4122 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4123 const char *base_name;
4124 struct add_partial_filename_data datum;
4125
4126 list[0] = NULL;
4127
4128 if (!have_full_symbols () && !have_partial_symbols ())
4129 return list;
4130
4131 ALL_SYMTABS (objfile, s)
4132 {
4133 if (not_interesting_fname (s->filename))
4134 continue;
4135 if (!filename_seen (s->filename, 1, &first)
4136 #if HAVE_DOS_BASED_FILE_SYSTEM
4137 && strncasecmp (s->filename, text, text_len) == 0
4138 #else
4139 && strncmp (s->filename, text, text_len) == 0
4140 #endif
4141 )
4142 {
4143 /* This file matches for a completion; add it to the current
4144 list of matches. */
4145 add_filename_to_list (s->filename, text, word,
4146 &list, &list_used, &list_alloced);
4147 }
4148 else
4149 {
4150 /* NOTE: We allow the user to type a base name when the
4151 debug info records leading directories, but not the other
4152 way around. This is what subroutines of breakpoint
4153 command do when they parse file names. */
4154 base_name = lbasename (s->filename);
4155 if (base_name != s->filename
4156 && !filename_seen (base_name, 1, &first)
4157 #if HAVE_DOS_BASED_FILE_SYSTEM
4158 && strncasecmp (base_name, text, text_len) == 0
4159 #else
4160 && strncmp (base_name, text, text_len) == 0
4161 #endif
4162 )
4163 add_filename_to_list (base_name, text, word,
4164 &list, &list_used, &list_alloced);
4165 }
4166 }
4167
4168 datum.first = &first;
4169 datum.text = text;
4170 datum.word = word;
4171 datum.text_len = text_len;
4172 datum.list = &list;
4173 datum.list_used = &list_used;
4174 datum.list_alloced = &list_alloced;
4175 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4176
4177 return list;
4178 }
4179
4180 /* Determine if PC is in the prologue of a function. The prologue is the area
4181 between the first instruction of a function, and the first executable line.
4182 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4183
4184 If non-zero, func_start is where we think the prologue starts, possibly
4185 by previous examination of symbol table information.
4186 */
4187
4188 int
4189 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4190 {
4191 struct symtab_and_line sal;
4192 CORE_ADDR func_addr, func_end;
4193
4194 /* We have several sources of information we can consult to figure
4195 this out.
4196 - Compilers usually emit line number info that marks the prologue
4197 as its own "source line". So the ending address of that "line"
4198 is the end of the prologue. If available, this is the most
4199 reliable method.
4200 - The minimal symbols and partial symbols, which can usually tell
4201 us the starting and ending addresses of a function.
4202 - If we know the function's start address, we can call the
4203 architecture-defined gdbarch_skip_prologue function to analyze the
4204 instruction stream and guess where the prologue ends.
4205 - Our `func_start' argument; if non-zero, this is the caller's
4206 best guess as to the function's entry point. At the time of
4207 this writing, handle_inferior_event doesn't get this right, so
4208 it should be our last resort. */
4209
4210 /* Consult the partial symbol table, to find which function
4211 the PC is in. */
4212 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4213 {
4214 CORE_ADDR prologue_end;
4215
4216 /* We don't even have minsym information, so fall back to using
4217 func_start, if given. */
4218 if (! func_start)
4219 return 1; /* We *might* be in a prologue. */
4220
4221 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4222
4223 return func_start <= pc && pc < prologue_end;
4224 }
4225
4226 /* If we have line number information for the function, that's
4227 usually pretty reliable. */
4228 sal = find_pc_line (func_addr, 0);
4229
4230 /* Now sal describes the source line at the function's entry point,
4231 which (by convention) is the prologue. The end of that "line",
4232 sal.end, is the end of the prologue.
4233
4234 Note that, for functions whose source code is all on a single
4235 line, the line number information doesn't always end up this way.
4236 So we must verify that our purported end-of-prologue address is
4237 *within* the function, not at its start or end. */
4238 if (sal.line == 0
4239 || sal.end <= func_addr
4240 || func_end <= sal.end)
4241 {
4242 /* We don't have any good line number info, so use the minsym
4243 information, together with the architecture-specific prologue
4244 scanning code. */
4245 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4246
4247 return func_addr <= pc && pc < prologue_end;
4248 }
4249
4250 /* We have line number info, and it looks good. */
4251 return func_addr <= pc && pc < sal.end;
4252 }
4253
4254 /* Given PC at the function's start address, attempt to find the
4255 prologue end using SAL information. Return zero if the skip fails.
4256
4257 A non-optimized prologue traditionally has one SAL for the function
4258 and a second for the function body. A single line function has
4259 them both pointing at the same line.
4260
4261 An optimized prologue is similar but the prologue may contain
4262 instructions (SALs) from the instruction body. Need to skip those
4263 while not getting into the function body.
4264
4265 The functions end point and an increasing SAL line are used as
4266 indicators of the prologue's endpoint.
4267
4268 This code is based on the function refine_prologue_limit (versions
4269 found in both ia64 and ppc). */
4270
4271 CORE_ADDR
4272 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4273 {
4274 struct symtab_and_line prologue_sal;
4275 CORE_ADDR start_pc;
4276 CORE_ADDR end_pc;
4277 struct block *bl;
4278
4279 /* Get an initial range for the function. */
4280 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4281 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4282
4283 prologue_sal = find_pc_line (start_pc, 0);
4284 if (prologue_sal.line != 0)
4285 {
4286 /* For langauges other than assembly, treat two consecutive line
4287 entries at the same address as a zero-instruction prologue.
4288 The GNU assembler emits separate line notes for each instruction
4289 in a multi-instruction macro, but compilers generally will not
4290 do this. */
4291 if (prologue_sal.symtab->language != language_asm)
4292 {
4293 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4294 int idx = 0;
4295
4296 /* Skip any earlier lines, and any end-of-sequence marker
4297 from a previous function. */
4298 while (linetable->item[idx].pc != prologue_sal.pc
4299 || linetable->item[idx].line == 0)
4300 idx++;
4301
4302 if (idx+1 < linetable->nitems
4303 && linetable->item[idx+1].line != 0
4304 && linetable->item[idx+1].pc == start_pc)
4305 return start_pc;
4306 }
4307
4308 /* If there is only one sal that covers the entire function,
4309 then it is probably a single line function, like
4310 "foo(){}". */
4311 if (prologue_sal.end >= end_pc)
4312 return 0;
4313
4314 while (prologue_sal.end < end_pc)
4315 {
4316 struct symtab_and_line sal;
4317
4318 sal = find_pc_line (prologue_sal.end, 0);
4319 if (sal.line == 0)
4320 break;
4321 /* Assume that a consecutive SAL for the same (or larger)
4322 line mark the prologue -> body transition. */
4323 if (sal.line >= prologue_sal.line)
4324 break;
4325
4326 /* The line number is smaller. Check that it's from the
4327 same function, not something inlined. If it's inlined,
4328 then there is no point comparing the line numbers. */
4329 bl = block_for_pc (prologue_sal.end);
4330 while (bl)
4331 {
4332 if (block_inlined_p (bl))
4333 break;
4334 if (BLOCK_FUNCTION (bl))
4335 {
4336 bl = NULL;
4337 break;
4338 }
4339 bl = BLOCK_SUPERBLOCK (bl);
4340 }
4341 if (bl != NULL)
4342 break;
4343
4344 /* The case in which compiler's optimizer/scheduler has
4345 moved instructions into the prologue. We look ahead in
4346 the function looking for address ranges whose
4347 corresponding line number is less the first one that we
4348 found for the function. This is more conservative then
4349 refine_prologue_limit which scans a large number of SALs
4350 looking for any in the prologue */
4351 prologue_sal = sal;
4352 }
4353 }
4354
4355 if (prologue_sal.end < end_pc)
4356 /* Return the end of this line, or zero if we could not find a
4357 line. */
4358 return prologue_sal.end;
4359 else
4360 /* Don't return END_PC, which is past the end of the function. */
4361 return prologue_sal.pc;
4362 }
4363 \f
4364 struct symtabs_and_lines
4365 decode_line_spec (char *string, int funfirstline)
4366 {
4367 struct symtabs_and_lines sals;
4368 struct symtab_and_line cursal;
4369
4370 if (string == 0)
4371 error (_("Empty line specification."));
4372
4373 /* We use whatever is set as the current source line. We do not try
4374 and get a default or it will recursively call us! */
4375 cursal = get_current_source_symtab_and_line ();
4376
4377 sals = decode_line_1 (&string, funfirstline,
4378 cursal.symtab, cursal.line,
4379 (char ***) NULL, NULL);
4380
4381 if (*string)
4382 error (_("Junk at end of line specification: %s"), string);
4383 return sals;
4384 }
4385
4386 /* Track MAIN */
4387 static char *name_of_main;
4388
4389 void
4390 set_main_name (const char *name)
4391 {
4392 if (name_of_main != NULL)
4393 {
4394 xfree (name_of_main);
4395 name_of_main = NULL;
4396 }
4397 if (name != NULL)
4398 {
4399 name_of_main = xstrdup (name);
4400 }
4401 }
4402
4403 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4404 accordingly. */
4405
4406 static void
4407 find_main_name (void)
4408 {
4409 const char *new_main_name;
4410
4411 /* Try to see if the main procedure is in Ada. */
4412 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4413 be to add a new method in the language vector, and call this
4414 method for each language until one of them returns a non-empty
4415 name. This would allow us to remove this hard-coded call to
4416 an Ada function. It is not clear that this is a better approach
4417 at this point, because all methods need to be written in a way
4418 such that false positives never be returned. For instance, it is
4419 important that a method does not return a wrong name for the main
4420 procedure if the main procedure is actually written in a different
4421 language. It is easy to guaranty this with Ada, since we use a
4422 special symbol generated only when the main in Ada to find the name
4423 of the main procedure. It is difficult however to see how this can
4424 be guarantied for languages such as C, for instance. This suggests
4425 that order of call for these methods becomes important, which means
4426 a more complicated approach. */
4427 new_main_name = ada_main_name ();
4428 if (new_main_name != NULL)
4429 {
4430 set_main_name (new_main_name);
4431 return;
4432 }
4433
4434 new_main_name = pascal_main_name ();
4435 if (new_main_name != NULL)
4436 {
4437 set_main_name (new_main_name);
4438 return;
4439 }
4440
4441 /* The languages above didn't identify the name of the main procedure.
4442 Fallback to "main". */
4443 set_main_name ("main");
4444 }
4445
4446 char *
4447 main_name (void)
4448 {
4449 if (name_of_main == NULL)
4450 find_main_name ();
4451
4452 return name_of_main;
4453 }
4454
4455 /* Handle ``executable_changed'' events for the symtab module. */
4456
4457 static void
4458 symtab_observer_executable_changed (void)
4459 {
4460 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4461 set_main_name (NULL);
4462 }
4463
4464 /* Helper to expand_line_sal below. Appends new sal to SAL,
4465 initializing it from SYMTAB, LINENO and PC. */
4466 static void
4467 append_expanded_sal (struct symtabs_and_lines *sal,
4468 struct program_space *pspace,
4469 struct symtab *symtab,
4470 int lineno, CORE_ADDR pc)
4471 {
4472 sal->sals = xrealloc (sal->sals,
4473 sizeof (sal->sals[0])
4474 * (sal->nelts + 1));
4475 init_sal (sal->sals + sal->nelts);
4476 sal->sals[sal->nelts].pspace = pspace;
4477 sal->sals[sal->nelts].symtab = symtab;
4478 sal->sals[sal->nelts].section = NULL;
4479 sal->sals[sal->nelts].end = 0;
4480 sal->sals[sal->nelts].line = lineno;
4481 sal->sals[sal->nelts].pc = pc;
4482 ++sal->nelts;
4483 }
4484
4485 /* Helper to expand_line_sal below. Search in the symtabs for any
4486 linetable entry that exactly matches FULLNAME and LINENO and append
4487 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4488 use FILENAME and LINENO instead. If there is at least one match,
4489 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4490 and BEST_SYMTAB. */
4491
4492 static int
4493 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4494 struct symtabs_and_lines *ret,
4495 struct linetable_entry **best_item,
4496 struct symtab **best_symtab)
4497 {
4498 struct program_space *pspace;
4499 struct objfile *objfile;
4500 struct symtab *symtab;
4501 int exact = 0;
4502 int j;
4503 *best_item = 0;
4504 *best_symtab = 0;
4505
4506 ALL_PSPACES (pspace)
4507 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4508 {
4509 if (FILENAME_CMP (filename, symtab->filename) == 0)
4510 {
4511 struct linetable *l;
4512 int len;
4513
4514 if (fullname != NULL
4515 && symtab_to_fullname (symtab) != NULL
4516 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4517 continue;
4518 l = LINETABLE (symtab);
4519 if (!l)
4520 continue;
4521 len = l->nitems;
4522
4523 for (j = 0; j < len; j++)
4524 {
4525 struct linetable_entry *item = &(l->item[j]);
4526
4527 if (item->line == lineno)
4528 {
4529 exact = 1;
4530 append_expanded_sal (ret, objfile->pspace,
4531 symtab, lineno, item->pc);
4532 }
4533 else if (!exact && item->line > lineno
4534 && (*best_item == NULL
4535 || item->line < (*best_item)->line))
4536 {
4537 *best_item = item;
4538 *best_symtab = symtab;
4539 }
4540 }
4541 }
4542 }
4543 return exact;
4544 }
4545
4546 /* Compute a set of all sals in all program spaces that correspond to
4547 same file and line as SAL and return those. If there are several
4548 sals that belong to the same block, only one sal for the block is
4549 included in results. */
4550
4551 struct symtabs_and_lines
4552 expand_line_sal (struct symtab_and_line sal)
4553 {
4554 struct symtabs_and_lines ret;
4555 int i, j;
4556 struct objfile *objfile;
4557 int lineno;
4558 int deleted = 0;
4559 struct block **blocks = NULL;
4560 int *filter;
4561 struct cleanup *old_chain;
4562
4563 ret.nelts = 0;
4564 ret.sals = NULL;
4565
4566 /* Only expand sals that represent file.c:line. */
4567 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4568 {
4569 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4570 ret.sals[0] = sal;
4571 ret.nelts = 1;
4572 return ret;
4573 }
4574 else
4575 {
4576 struct program_space *pspace;
4577 struct linetable_entry *best_item = 0;
4578 struct symtab *best_symtab = 0;
4579 int exact = 0;
4580 char *match_filename;
4581
4582 lineno = sal.line;
4583 match_filename = sal.symtab->filename;
4584
4585 /* We need to find all symtabs for a file which name
4586 is described by sal. We cannot just directly
4587 iterate over symtabs, since a symtab might not be
4588 yet created. We also cannot iterate over psymtabs,
4589 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4590 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4591 corresponding to an included file. Therefore, we do
4592 first pass over psymtabs, reading in those with
4593 the right name. Then, we iterate over symtabs, knowing
4594 that all symtabs we're interested in are loaded. */
4595
4596 old_chain = save_current_program_space ();
4597 ALL_PSPACES (pspace)
4598 {
4599 set_current_program_space (pspace);
4600 ALL_PSPACE_OBJFILES (pspace, objfile)
4601 {
4602 if (objfile->sf)
4603 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4604 sal.symtab->filename);
4605 }
4606 }
4607 do_cleanups (old_chain);
4608
4609 /* Now search the symtab for exact matches and append them. If
4610 none is found, append the best_item and all its exact
4611 matches. */
4612 symtab_to_fullname (sal.symtab);
4613 exact = append_exact_match_to_sals (sal.symtab->filename,
4614 sal.symtab->fullname, lineno,
4615 &ret, &best_item, &best_symtab);
4616 if (!exact && best_item)
4617 append_exact_match_to_sals (best_symtab->filename,
4618 best_symtab->fullname, best_item->line,
4619 &ret, &best_item, &best_symtab);
4620 }
4621
4622 /* For optimized code, compiler can scatter one source line accross
4623 disjoint ranges of PC values, even when no duplicate functions
4624 or inline functions are involved. For example, 'for (;;)' inside
4625 non-template non-inline non-ctor-or-dtor function can result
4626 in two PC ranges. In this case, we don't want to set breakpoint
4627 on first PC of each range. To filter such cases, we use containing
4628 blocks -- for each PC found above we see if there are other PCs
4629 that are in the same block. If yes, the other PCs are filtered out. */
4630
4631 old_chain = save_current_program_space ();
4632 filter = alloca (ret.nelts * sizeof (int));
4633 blocks = alloca (ret.nelts * sizeof (struct block *));
4634 for (i = 0; i < ret.nelts; ++i)
4635 {
4636 set_current_program_space (ret.sals[i].pspace);
4637
4638 filter[i] = 1;
4639 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4640
4641 }
4642 do_cleanups (old_chain);
4643
4644 for (i = 0; i < ret.nelts; ++i)
4645 if (blocks[i] != NULL)
4646 for (j = i+1; j < ret.nelts; ++j)
4647 if (blocks[j] == blocks[i])
4648 {
4649 filter[j] = 0;
4650 ++deleted;
4651 break;
4652 }
4653
4654 {
4655 struct symtab_and_line *final =
4656 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4657
4658 for (i = 0, j = 0; i < ret.nelts; ++i)
4659 if (filter[i])
4660 final[j++] = ret.sals[i];
4661
4662 ret.nelts -= deleted;
4663 xfree (ret.sals);
4664 ret.sals = final;
4665 }
4666
4667 return ret;
4668 }
4669
4670 /* Return 1 if the supplied producer string matches the ARM RealView
4671 compiler (armcc). */
4672
4673 int
4674 producer_is_realview (const char *producer)
4675 {
4676 static const char *const arm_idents[] = {
4677 "ARM C Compiler, ADS",
4678 "Thumb C Compiler, ADS",
4679 "ARM C++ Compiler, ADS",
4680 "Thumb C++ Compiler, ADS",
4681 "ARM/Thumb C/C++ Compiler, RVCT",
4682 "ARM C/C++ Compiler, RVCT"
4683 };
4684 int i;
4685
4686 if (producer == NULL)
4687 return 0;
4688
4689 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4690 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4691 return 1;
4692
4693 return 0;
4694 }
4695
4696 void
4697 _initialize_symtab (void)
4698 {
4699 add_info ("variables", variables_info, _("\
4700 All global and static variable names, or those matching REGEXP."));
4701 if (dbx_commands)
4702 add_com ("whereis", class_info, variables_info, _("\
4703 All global and static variable names, or those matching REGEXP."));
4704
4705 add_info ("functions", functions_info,
4706 _("All function names, or those matching REGEXP."));
4707
4708 /* FIXME: This command has at least the following problems:
4709 1. It prints builtin types (in a very strange and confusing fashion).
4710 2. It doesn't print right, e.g. with
4711 typedef struct foo *FOO
4712 type_print prints "FOO" when we want to make it (in this situation)
4713 print "struct foo *".
4714 I also think "ptype" or "whatis" is more likely to be useful (but if
4715 there is much disagreement "info types" can be fixed). */
4716 add_info ("types", types_info,
4717 _("All type names, or those matching REGEXP."));
4718
4719 add_info ("sources", sources_info,
4720 _("Source files in the program."));
4721
4722 add_com ("rbreak", class_breakpoint, rbreak_command,
4723 _("Set a breakpoint for all functions matching REGEXP."));
4724
4725 if (xdb_commands)
4726 {
4727 add_com ("lf", class_info, sources_info,
4728 _("Source files in the program"));
4729 add_com ("lg", class_info, variables_info, _("\
4730 All global and static variable names, or those matching REGEXP."));
4731 }
4732
4733 add_setshow_enum_cmd ("multiple-symbols", no_class,
4734 multiple_symbols_modes, &multiple_symbols_mode,
4735 _("\
4736 Set the debugger behavior when more than one symbol are possible matches\n\
4737 in an expression."), _("\
4738 Show how the debugger handles ambiguities in expressions."), _("\
4739 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4740 NULL, NULL, &setlist, &showlist);
4741
4742 observer_attach_executable_changed (symtab_observer_executable_changed);
4743 }
This page took 0.125176 seconds and 5 git commands to generate.