PR mi/9583:
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 /* Prototypes for local functions */
66
67 static void completion_list_add_name (char *, char *, int, char *, char *);
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static void output_source_filename (const char *, int *);
80
81 static int find_line_common (struct linetable *, int, int *);
82
83 /* This one is used by linespec.c */
84
85 char *operator_chars (char *p, char **end);
86
87 static struct symbol *lookup_symbol_aux (const char *name,
88 const char *linkage_name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language,
92 int *is_a_field_of_this);
93
94 static
95 struct symbol *lookup_symbol_aux_local (const char *name,
96 const char *linkage_name,
97 const struct block *block,
98 const domain_enum domain);
99
100 static
101 struct symbol *lookup_symbol_aux_symtabs (int block_index,
102 const char *name,
103 const char *linkage_name,
104 const domain_enum domain);
105
106 static
107 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain);
111
112 static int file_matches (char *, char **, int);
113
114 static void print_symbol_info (domain_enum,
115 struct symtab *, struct symbol *, int, char *);
116
117 static void print_msymbol_info (struct minimal_symbol *);
118
119 static void symtab_symbol_info (char *, domain_enum, int);
120
121 void _initialize_symtab (void);
122
123 /* */
124
125 /* Allow the user to configure the debugger behavior with respect
126 to multiple-choice menus when more than one symbol matches during
127 a symbol lookup. */
128
129 const char multiple_symbols_ask[] = "ask";
130 const char multiple_symbols_all[] = "all";
131 const char multiple_symbols_cancel[] = "cancel";
132 static const char *multiple_symbols_modes[] =
133 {
134 multiple_symbols_ask,
135 multiple_symbols_all,
136 multiple_symbols_cancel,
137 NULL
138 };
139 static const char *multiple_symbols_mode = multiple_symbols_all;
140
141 /* Read-only accessor to AUTO_SELECT_MODE. */
142
143 const char *
144 multiple_symbols_select_mode (void)
145 {
146 return multiple_symbols_mode;
147 }
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Create the hash table used for demangled names. Each hash entry is
431 a pair of strings; one for the mangled name and one for the demangled
432 name. The entry is hashed via just the mangled name. */
433
434 static void
435 create_demangled_names_hash (struct objfile *objfile)
436 {
437 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
438 The hash table code will round this up to the next prime number.
439 Choosing a much larger table size wastes memory, and saves only about
440 1% in symbol reading. */
441
442 objfile->demangled_names_hash = htab_create_alloc
443 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
444 NULL, xcalloc, xfree);
445 }
446
447 /* Try to determine the demangled name for a symbol, based on the
448 language of that symbol. If the language is set to language_auto,
449 it will attempt to find any demangling algorithm that works and
450 then set the language appropriately. The returned name is allocated
451 by the demangler and should be xfree'd. */
452
453 static char *
454 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
455 const char *mangled)
456 {
457 char *demangled = NULL;
458
459 if (gsymbol->language == language_unknown)
460 gsymbol->language = language_auto;
461
462 if (gsymbol->language == language_objc
463 || gsymbol->language == language_auto)
464 {
465 demangled =
466 objc_demangle (mangled, 0);
467 if (demangled != NULL)
468 {
469 gsymbol->language = language_objc;
470 return demangled;
471 }
472 }
473 if (gsymbol->language == language_cplus
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_cplus;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_java)
485 {
486 demangled =
487 cplus_demangle (mangled,
488 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_java;
492 return demangled;
493 }
494 }
495 return NULL;
496 }
497
498 /* Set both the mangled and demangled (if any) names for GSYMBOL based
499 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
500 is used, and the memory comes from that objfile's objfile_obstack.
501 LINKAGE_NAME is copied, so the pointer can be discarded after
502 calling this function. */
503
504 /* We have to be careful when dealing with Java names: when we run
505 into a Java minimal symbol, we don't know it's a Java symbol, so it
506 gets demangled as a C++ name. This is unfortunate, but there's not
507 much we can do about it: but when demangling partial symbols and
508 regular symbols, we'd better not reuse the wrong demangled name.
509 (See PR gdb/1039.) We solve this by putting a distinctive prefix
510 on Java names when storing them in the hash table. */
511
512 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
513 don't mind the Java prefix so much: different languages have
514 different demangling requirements, so it's only natural that we
515 need to keep language data around in our demangling cache. But
516 it's not good that the minimal symbol has the wrong demangled name.
517 Unfortunately, I can't think of any easy solution to that
518 problem. */
519
520 #define JAVA_PREFIX "##JAVA$$"
521 #define JAVA_PREFIX_LEN 8
522
523 void
524 symbol_set_names (struct general_symbol_info *gsymbol,
525 const char *linkage_name, int len, struct objfile *objfile)
526 {
527 char **slot;
528 /* A 0-terminated copy of the linkage name. */
529 const char *linkage_name_copy;
530 /* A copy of the linkage name that might have a special Java prefix
531 added to it, for use when looking names up in the hash table. */
532 const char *lookup_name;
533 /* The length of lookup_name. */
534 int lookup_len;
535
536 if (objfile->demangled_names_hash == NULL)
537 create_demangled_names_hash (objfile);
538
539 if (gsymbol->language == language_ada)
540 {
541 /* In Ada, we do the symbol lookups using the mangled name, so
542 we can save some space by not storing the demangled name.
543
544 As a side note, we have also observed some overlap between
545 the C++ mangling and Ada mangling, similarly to what has
546 been observed with Java. Because we don't store the demangled
547 name with the symbol, we don't need to use the same trick
548 as Java. */
549 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
550 memcpy (gsymbol->name, linkage_name, len);
551 gsymbol->name[len] = '\0';
552 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
553
554 return;
555 }
556
557 /* The stabs reader generally provides names that are not
558 NUL-terminated; most of the other readers don't do this, so we
559 can just use the given copy, unless we're in the Java case. */
560 if (gsymbol->language == language_java)
561 {
562 char *alloc_name;
563 lookup_len = len + JAVA_PREFIX_LEN;
564
565 alloc_name = alloca (lookup_len + 1);
566 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
567 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
568 alloc_name[lookup_len] = '\0';
569
570 lookup_name = alloc_name;
571 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
572 }
573 else if (linkage_name[len] != '\0')
574 {
575 char *alloc_name;
576 lookup_len = len;
577
578 alloc_name = alloca (lookup_len + 1);
579 memcpy (alloc_name, linkage_name, len);
580 alloc_name[lookup_len] = '\0';
581
582 lookup_name = alloc_name;
583 linkage_name_copy = alloc_name;
584 }
585 else
586 {
587 lookup_len = len;
588 lookup_name = linkage_name;
589 linkage_name_copy = linkage_name;
590 }
591
592 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
593 lookup_name, INSERT);
594
595 /* If this name is not in the hash table, add it. */
596 if (*slot == NULL)
597 {
598 char *demangled_name = symbol_find_demangled_name (gsymbol,
599 linkage_name_copy);
600 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
601
602 /* If there is a demangled name, place it right after the mangled name.
603 Otherwise, just place a second zero byte after the end of the mangled
604 name. */
605 *slot = obstack_alloc (&objfile->objfile_obstack,
606 lookup_len + demangled_len + 2);
607 memcpy (*slot, lookup_name, lookup_len + 1);
608 if (demangled_name != NULL)
609 {
610 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
611 xfree (demangled_name);
612 }
613 else
614 (*slot)[lookup_len + 1] = '\0';
615 }
616
617 gsymbol->name = *slot + lookup_len - len;
618 if ((*slot)[lookup_len + 1] != '\0')
619 gsymbol->language_specific.cplus_specific.demangled_name
620 = &(*slot)[lookup_len + 1];
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624
625 /* Return the source code name of a symbol. In languages where
626 demangling is necessary, this is the demangled name. */
627
628 char *
629 symbol_natural_name (const struct general_symbol_info *gsymbol)
630 {
631 switch (gsymbol->language)
632 {
633 case language_cplus:
634 case language_java:
635 case language_objc:
636 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
637 return gsymbol->language_specific.cplus_specific.demangled_name;
638 break;
639 case language_ada:
640 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
641 return gsymbol->language_specific.cplus_specific.demangled_name;
642 else
643 return ada_decode_symbol (gsymbol);
644 break;
645 default:
646 break;
647 }
648 return gsymbol->name;
649 }
650
651 /* Return the demangled name for a symbol based on the language for
652 that symbol. If no demangled name exists, return NULL. */
653 char *
654 symbol_demangled_name (const struct general_symbol_info *gsymbol)
655 {
656 switch (gsymbol->language)
657 {
658 case language_cplus:
659 case language_java:
660 case language_objc:
661 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
662 return gsymbol->language_specific.cplus_specific.demangled_name;
663 break;
664 case language_ada:
665 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
666 return gsymbol->language_specific.cplus_specific.demangled_name;
667 else
668 return ada_decode_symbol (gsymbol);
669 break;
670 default:
671 break;
672 }
673 return NULL;
674 }
675
676 /* Return the search name of a symbol---generally the demangled or
677 linkage name of the symbol, depending on how it will be searched for.
678 If there is no distinct demangled name, then returns the same value
679 (same pointer) as SYMBOL_LINKAGE_NAME. */
680 char *
681 symbol_search_name (const struct general_symbol_info *gsymbol)
682 {
683 if (gsymbol->language == language_ada)
684 return gsymbol->name;
685 else
686 return symbol_natural_name (gsymbol);
687 }
688
689 /* Initialize the structure fields to zero values. */
690 void
691 init_sal (struct symtab_and_line *sal)
692 {
693 sal->pspace = NULL;
694 sal->symtab = 0;
695 sal->section = 0;
696 sal->line = 0;
697 sal->pc = 0;
698 sal->end = 0;
699 sal->explicit_pc = 0;
700 sal->explicit_line = 0;
701 }
702 \f
703
704 /* Return 1 if the two sections are the same, or if they could
705 plausibly be copies of each other, one in an original object
706 file and another in a separated debug file. */
707
708 int
709 matching_obj_sections (struct obj_section *obj_first,
710 struct obj_section *obj_second)
711 {
712 asection *first = obj_first? obj_first->the_bfd_section : NULL;
713 asection *second = obj_second? obj_second->the_bfd_section : NULL;
714 struct objfile *obj;
715
716 /* If they're the same section, then they match. */
717 if (first == second)
718 return 1;
719
720 /* If either is NULL, give up. */
721 if (first == NULL || second == NULL)
722 return 0;
723
724 /* This doesn't apply to absolute symbols. */
725 if (first->owner == NULL || second->owner == NULL)
726 return 0;
727
728 /* If they're in the same object file, they must be different sections. */
729 if (first->owner == second->owner)
730 return 0;
731
732 /* Check whether the two sections are potentially corresponding. They must
733 have the same size, address, and name. We can't compare section indexes,
734 which would be more reliable, because some sections may have been
735 stripped. */
736 if (bfd_get_section_size (first) != bfd_get_section_size (second))
737 return 0;
738
739 /* In-memory addresses may start at a different offset, relativize them. */
740 if (bfd_get_section_vma (first->owner, first)
741 - bfd_get_start_address (first->owner)
742 != bfd_get_section_vma (second->owner, second)
743 - bfd_get_start_address (second->owner))
744 return 0;
745
746 if (bfd_get_section_name (first->owner, first) == NULL
747 || bfd_get_section_name (second->owner, second) == NULL
748 || strcmp (bfd_get_section_name (first->owner, first),
749 bfd_get_section_name (second->owner, second)) != 0)
750 return 0;
751
752 /* Otherwise check that they are in corresponding objfiles. */
753
754 ALL_OBJFILES (obj)
755 if (obj->obfd == first->owner)
756 break;
757 gdb_assert (obj != NULL);
758
759 if (obj->separate_debug_objfile != NULL
760 && obj->separate_debug_objfile->obfd == second->owner)
761 return 1;
762 if (obj->separate_debug_objfile_backlink != NULL
763 && obj->separate_debug_objfile_backlink->obfd == second->owner)
764 return 1;
765
766 return 0;
767 }
768
769 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
770 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
771
772 static struct partial_symtab *
773 find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
774 struct partial_symtab *pst,
775 struct minimal_symbol *msymbol)
776 {
777 struct objfile *objfile = pst->objfile;
778 struct partial_symtab *tpst;
779 struct partial_symtab *best_pst = pst;
780 CORE_ADDR best_addr = pst->textlow;
781
782 /* An objfile that has its functions reordered might have
783 many partial symbol tables containing the PC, but
784 we want the partial symbol table that contains the
785 function containing the PC. */
786 if (!(objfile->flags & OBJF_REORDERED) &&
787 section == 0) /* can't validate section this way */
788 return pst;
789
790 if (msymbol == NULL)
791 return (pst);
792
793 /* The code range of partial symtabs sometimes overlap, so, in
794 the loop below, we need to check all partial symtabs and
795 find the one that fits better for the given PC address. We
796 select the partial symtab that contains a symbol whose
797 address is closest to the PC address. By closest we mean
798 that find_pc_sect_symbol returns the symbol with address
799 that is closest and still less than the given PC. */
800 for (tpst = pst; tpst != NULL; tpst = tpst->next)
801 {
802 if (pc >= tpst->textlow && pc < tpst->texthigh)
803 {
804 struct partial_symbol *p;
805 CORE_ADDR this_addr;
806
807 /* NOTE: This assumes that every psymbol has a
808 corresponding msymbol, which is not necessarily
809 true; the debug info might be much richer than the
810 object's symbol table. */
811 p = find_pc_sect_psymbol (tpst, pc, section);
812 if (p != NULL
813 && SYMBOL_VALUE_ADDRESS (p)
814 == SYMBOL_VALUE_ADDRESS (msymbol))
815 return tpst;
816
817 /* Also accept the textlow value of a psymtab as a
818 "symbol", to provide some support for partial
819 symbol tables with line information but no debug
820 symbols (e.g. those produced by an assembler). */
821 if (p != NULL)
822 this_addr = SYMBOL_VALUE_ADDRESS (p);
823 else
824 this_addr = tpst->textlow;
825
826 /* Check whether it is closer than our current
827 BEST_ADDR. Since this symbol address is
828 necessarily lower or equal to PC, the symbol closer
829 to PC is the symbol which address is the highest.
830 This way we return the psymtab which contains such
831 best match symbol. This can help in cases where the
832 symbol information/debuginfo is not complete, like
833 for instance on IRIX6 with gcc, where no debug info
834 is emitted for statics. (See also the nodebug.exp
835 testcase.) */
836 if (this_addr > best_addr)
837 {
838 best_addr = this_addr;
839 best_pst = tpst;
840 }
841 }
842 }
843 return best_pst;
844 }
845
846 /* Find which partial symtab contains PC and SECTION. Return 0 if
847 none. We return the psymtab that contains a symbol whose address
848 exactly matches PC, or, if we cannot find an exact match, the
849 psymtab that contains a symbol whose address is closest to PC. */
850 struct partial_symtab *
851 find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
852 {
853 struct objfile *objfile;
854 struct minimal_symbol *msymbol;
855
856 /* If we know that this is not a text address, return failure. This is
857 necessary because we loop based on texthigh and textlow, which do
858 not include the data ranges. */
859 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
860 if (msymbol
861 && (MSYMBOL_TYPE (msymbol) == mst_data
862 || MSYMBOL_TYPE (msymbol) == mst_bss
863 || MSYMBOL_TYPE (msymbol) == mst_abs
864 || MSYMBOL_TYPE (msymbol) == mst_file_data
865 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
866 return NULL;
867
868 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
869 than the later used TEXTLOW/TEXTHIGH one. */
870
871 ALL_OBJFILES (objfile)
872 if (objfile->psymtabs_addrmap != NULL)
873 {
874 struct partial_symtab *pst;
875
876 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
877 if (pst != NULL)
878 {
879 /* FIXME: addrmaps currently do not handle overlayed sections,
880 so fall back to the non-addrmap case if we're debugging
881 overlays and the addrmap returned the wrong section. */
882 if (overlay_debugging && msymbol && section)
883 {
884 struct partial_symbol *p;
885 /* NOTE: This assumes that every psymbol has a
886 corresponding msymbol, which is not necessarily
887 true; the debug info might be much richer than the
888 object's symbol table. */
889 p = find_pc_sect_psymbol (pst, pc, section);
890 if (!p
891 || SYMBOL_VALUE_ADDRESS (p)
892 != SYMBOL_VALUE_ADDRESS (msymbol))
893 continue;
894 }
895
896 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
897 PSYMTABS_ADDRMAP we used has already the best 1-byte
898 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
899 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
900 overlap. */
901
902 return pst;
903 }
904 }
905
906 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
907 which still have no corresponding full SYMTABs read. But it is not
908 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
909 so far. */
910
911 ALL_OBJFILES (objfile)
912 {
913 struct partial_symtab *pst;
914
915 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
916 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
917 debug info type in single OBJFILE. */
918
919 ALL_OBJFILE_PSYMTABS (objfile, pst)
920 if (pc >= pst->textlow && pc < pst->texthigh)
921 {
922 struct partial_symtab *best_pst;
923
924 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
925 msymbol);
926 if (best_pst != NULL)
927 return best_pst;
928 }
929 }
930
931 return NULL;
932 }
933
934 /* Find which partial symtab contains PC. Return 0 if none.
935 Backward compatibility, no section */
936
937 struct partial_symtab *
938 find_pc_psymtab (CORE_ADDR pc)
939 {
940 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
941 }
942
943 /* Find which partial symbol within a psymtab matches PC and SECTION.
944 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
945
946 struct partial_symbol *
947 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
948 struct obj_section *section)
949 {
950 struct partial_symbol *best = NULL, *p, **pp;
951 CORE_ADDR best_pc;
952
953 if (!psymtab)
954 psymtab = find_pc_sect_psymtab (pc, section);
955 if (!psymtab)
956 return 0;
957
958 /* Cope with programs that start at address 0 */
959 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
960
961 /* Search the global symbols as well as the static symbols, so that
962 find_pc_partial_function doesn't use a minimal symbol and thus
963 cache a bad endaddr. */
964 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
965 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
966 < psymtab->n_global_syms);
967 pp++)
968 {
969 p = *pp;
970 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
971 && SYMBOL_CLASS (p) == LOC_BLOCK
972 && pc >= SYMBOL_VALUE_ADDRESS (p)
973 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
974 || (psymtab->textlow == 0
975 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
976 {
977 if (section) /* match on a specific section */
978 {
979 fixup_psymbol_section (p, psymtab->objfile);
980 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
981 continue;
982 }
983 best_pc = SYMBOL_VALUE_ADDRESS (p);
984 best = p;
985 }
986 }
987
988 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
989 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
990 < psymtab->n_static_syms);
991 pp++)
992 {
993 p = *pp;
994 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
995 && SYMBOL_CLASS (p) == LOC_BLOCK
996 && pc >= SYMBOL_VALUE_ADDRESS (p)
997 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
998 || (psymtab->textlow == 0
999 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1000 {
1001 if (section) /* match on a specific section */
1002 {
1003 fixup_psymbol_section (p, psymtab->objfile);
1004 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1005 continue;
1006 }
1007 best_pc = SYMBOL_VALUE_ADDRESS (p);
1008 best = p;
1009 }
1010 }
1011
1012 return best;
1013 }
1014
1015 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1016 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1017
1018 struct partial_symbol *
1019 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1020 {
1021 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1022 }
1023 \f
1024 /* Debug symbols usually don't have section information. We need to dig that
1025 out of the minimal symbols and stash that in the debug symbol. */
1026
1027 static void
1028 fixup_section (struct general_symbol_info *ginfo,
1029 CORE_ADDR addr, struct objfile *objfile)
1030 {
1031 struct minimal_symbol *msym;
1032
1033 /* First, check whether a minimal symbol with the same name exists
1034 and points to the same address. The address check is required
1035 e.g. on PowerPC64, where the minimal symbol for a function will
1036 point to the function descriptor, while the debug symbol will
1037 point to the actual function code. */
1038 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1039 if (msym)
1040 {
1041 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1042 ginfo->section = SYMBOL_SECTION (msym);
1043 }
1044 else
1045 {
1046 /* Static, function-local variables do appear in the linker
1047 (minimal) symbols, but are frequently given names that won't
1048 be found via lookup_minimal_symbol(). E.g., it has been
1049 observed in frv-uclinux (ELF) executables that a static,
1050 function-local variable named "foo" might appear in the
1051 linker symbols as "foo.6" or "foo.3". Thus, there is no
1052 point in attempting to extend the lookup-by-name mechanism to
1053 handle this case due to the fact that there can be multiple
1054 names.
1055
1056 So, instead, search the section table when lookup by name has
1057 failed. The ``addr'' and ``endaddr'' fields may have already
1058 been relocated. If so, the relocation offset (i.e. the
1059 ANOFFSET value) needs to be subtracted from these values when
1060 performing the comparison. We unconditionally subtract it,
1061 because, when no relocation has been performed, the ANOFFSET
1062 value will simply be zero.
1063
1064 The address of the symbol whose section we're fixing up HAS
1065 NOT BEEN adjusted (relocated) yet. It can't have been since
1066 the section isn't yet known and knowing the section is
1067 necessary in order to add the correct relocation value. In
1068 other words, we wouldn't even be in this function (attempting
1069 to compute the section) if it were already known.
1070
1071 Note that it is possible to search the minimal symbols
1072 (subtracting the relocation value if necessary) to find the
1073 matching minimal symbol, but this is overkill and much less
1074 efficient. It is not necessary to find the matching minimal
1075 symbol, only its section.
1076
1077 Note that this technique (of doing a section table search)
1078 can fail when unrelocated section addresses overlap. For
1079 this reason, we still attempt a lookup by name prior to doing
1080 a search of the section table. */
1081
1082 struct obj_section *s;
1083 ALL_OBJFILE_OSECTIONS (objfile, s)
1084 {
1085 int idx = s->the_bfd_section->index;
1086 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1087
1088 if (obj_section_addr (s) - offset <= addr
1089 && addr < obj_section_endaddr (s) - offset)
1090 {
1091 ginfo->obj_section = s;
1092 ginfo->section = idx;
1093 return;
1094 }
1095 }
1096 }
1097 }
1098
1099 struct symbol *
1100 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1101 {
1102 CORE_ADDR addr;
1103
1104 if (!sym)
1105 return NULL;
1106
1107 if (SYMBOL_OBJ_SECTION (sym))
1108 return sym;
1109
1110 /* We either have an OBJFILE, or we can get at it from the sym's
1111 symtab. Anything else is a bug. */
1112 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1113
1114 if (objfile == NULL)
1115 objfile = SYMBOL_SYMTAB (sym)->objfile;
1116
1117 /* We should have an objfile by now. */
1118 gdb_assert (objfile);
1119
1120 switch (SYMBOL_CLASS (sym))
1121 {
1122 case LOC_STATIC:
1123 case LOC_LABEL:
1124 addr = SYMBOL_VALUE_ADDRESS (sym);
1125 break;
1126 case LOC_BLOCK:
1127 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1128 break;
1129
1130 default:
1131 /* Nothing else will be listed in the minsyms -- no use looking
1132 it up. */
1133 return sym;
1134 }
1135
1136 fixup_section (&sym->ginfo, addr, objfile);
1137
1138 return sym;
1139 }
1140
1141 struct partial_symbol *
1142 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1143 {
1144 CORE_ADDR addr;
1145
1146 if (!psym)
1147 return NULL;
1148
1149 if (SYMBOL_OBJ_SECTION (psym))
1150 return psym;
1151
1152 gdb_assert (objfile);
1153
1154 switch (SYMBOL_CLASS (psym))
1155 {
1156 case LOC_STATIC:
1157 case LOC_LABEL:
1158 case LOC_BLOCK:
1159 addr = SYMBOL_VALUE_ADDRESS (psym);
1160 break;
1161 default:
1162 /* Nothing else will be listed in the minsyms -- no use looking
1163 it up. */
1164 return psym;
1165 }
1166
1167 fixup_section (&psym->ginfo, addr, objfile);
1168
1169 return psym;
1170 }
1171
1172 /* Find the definition for a specified symbol name NAME
1173 in domain DOMAIN, visible from lexical block BLOCK.
1174 Returns the struct symbol pointer, or zero if no symbol is found.
1175 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1176 NAME is a field of the current implied argument `this'. If so set
1177 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1178 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1179 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1180
1181 /* This function has a bunch of loops in it and it would seem to be
1182 attractive to put in some QUIT's (though I'm not really sure
1183 whether it can run long enough to be really important). But there
1184 are a few calls for which it would appear to be bad news to quit
1185 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1186 that there is C++ code below which can error(), but that probably
1187 doesn't affect these calls since they are looking for a known
1188 variable and thus can probably assume it will never hit the C++
1189 code). */
1190
1191 struct symbol *
1192 lookup_symbol_in_language (const char *name, const struct block *block,
1193 const domain_enum domain, enum language lang,
1194 int *is_a_field_of_this)
1195 {
1196 char *demangled_name = NULL;
1197 const char *modified_name = NULL;
1198 const char *mangled_name = NULL;
1199 struct symbol *returnval;
1200 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1201
1202 modified_name = name;
1203
1204 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1205 we can always binary search. */
1206 if (lang == language_cplus)
1207 {
1208 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1209 if (demangled_name)
1210 {
1211 mangled_name = name;
1212 modified_name = demangled_name;
1213 make_cleanup (xfree, demangled_name);
1214 }
1215 else
1216 {
1217 /* If we were given a non-mangled name, canonicalize it
1218 according to the language (so far only for C++). */
1219 demangled_name = cp_canonicalize_string (name);
1220 if (demangled_name)
1221 {
1222 modified_name = demangled_name;
1223 make_cleanup (xfree, demangled_name);
1224 }
1225 }
1226 }
1227 else if (lang == language_java)
1228 {
1229 demangled_name = cplus_demangle (name,
1230 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1231 if (demangled_name)
1232 {
1233 mangled_name = name;
1234 modified_name = demangled_name;
1235 make_cleanup (xfree, demangled_name);
1236 }
1237 }
1238
1239 if (case_sensitivity == case_sensitive_off)
1240 {
1241 char *copy;
1242 int len, i;
1243
1244 len = strlen (name);
1245 copy = (char *) alloca (len + 1);
1246 for (i= 0; i < len; i++)
1247 copy[i] = tolower (name[i]);
1248 copy[len] = 0;
1249 modified_name = copy;
1250 }
1251
1252 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1253 domain, lang, is_a_field_of_this);
1254 do_cleanups (cleanup);
1255
1256 return returnval;
1257 }
1258
1259 /* Behave like lookup_symbol_in_language, but performed with the
1260 current language. */
1261
1262 struct symbol *
1263 lookup_symbol (const char *name, const struct block *block,
1264 domain_enum domain, int *is_a_field_of_this)
1265 {
1266 return lookup_symbol_in_language (name, block, domain,
1267 current_language->la_language,
1268 is_a_field_of_this);
1269 }
1270
1271 /* Behave like lookup_symbol except that NAME is the natural name
1272 of the symbol that we're looking for and, if LINKAGE_NAME is
1273 non-NULL, ensure that the symbol's linkage name matches as
1274 well. */
1275
1276 static struct symbol *
1277 lookup_symbol_aux (const char *name, const char *linkage_name,
1278 const struct block *block, const domain_enum domain,
1279 enum language language, int *is_a_field_of_this)
1280 {
1281 struct symbol *sym;
1282 const struct language_defn *langdef;
1283
1284 /* Make sure we do something sensible with is_a_field_of_this, since
1285 the callers that set this parameter to some non-null value will
1286 certainly use it later and expect it to be either 0 or 1.
1287 If we don't set it, the contents of is_a_field_of_this are
1288 undefined. */
1289 if (is_a_field_of_this != NULL)
1290 *is_a_field_of_this = 0;
1291
1292 /* Search specified block and its superiors. Don't search
1293 STATIC_BLOCK or GLOBAL_BLOCK. */
1294
1295 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1296 if (sym != NULL)
1297 return sym;
1298
1299 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1300 check to see if NAME is a field of `this'. */
1301
1302 langdef = language_def (language);
1303
1304 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1305 && block != NULL)
1306 {
1307 struct symbol *sym = NULL;
1308 /* 'this' is only defined in the function's block, so find the
1309 enclosing function block. */
1310 for (; block && !BLOCK_FUNCTION (block);
1311 block = BLOCK_SUPERBLOCK (block));
1312
1313 if (block && !dict_empty (BLOCK_DICT (block)))
1314 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1315 NULL, VAR_DOMAIN);
1316 if (sym)
1317 {
1318 struct type *t = sym->type;
1319
1320 /* I'm not really sure that type of this can ever
1321 be typedefed; just be safe. */
1322 CHECK_TYPEDEF (t);
1323 if (TYPE_CODE (t) == TYPE_CODE_PTR
1324 || TYPE_CODE (t) == TYPE_CODE_REF)
1325 t = TYPE_TARGET_TYPE (t);
1326
1327 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1328 && TYPE_CODE (t) != TYPE_CODE_UNION)
1329 error (_("Internal error: `%s' is not an aggregate"),
1330 langdef->la_name_of_this);
1331
1332 if (check_field (t, name))
1333 {
1334 *is_a_field_of_this = 1;
1335 return NULL;
1336 }
1337 }
1338 }
1339
1340 /* Now do whatever is appropriate for LANGUAGE to look
1341 up static and global variables. */
1342
1343 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1344 if (sym != NULL)
1345 return sym;
1346
1347 /* Now search all static file-level symbols. Not strictly correct,
1348 but more useful than an error. Do the symtabs first, then check
1349 the psymtabs. If a psymtab indicates the existence of the
1350 desired name as a file-level static, then do psymtab-to-symtab
1351 conversion on the fly and return the found symbol. */
1352
1353 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1354 if (sym != NULL)
1355 return sym;
1356
1357 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1358 if (sym != NULL)
1359 return sym;
1360
1361 return NULL;
1362 }
1363
1364 /* Check to see if the symbol is defined in BLOCK or its superiors.
1365 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1366
1367 static struct symbol *
1368 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1369 const struct block *block,
1370 const domain_enum domain)
1371 {
1372 struct symbol *sym;
1373 const struct block *static_block = block_static_block (block);
1374
1375 /* Check if either no block is specified or it's a global block. */
1376
1377 if (static_block == NULL)
1378 return NULL;
1379
1380 while (block != static_block)
1381 {
1382 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1383 if (sym != NULL)
1384 return sym;
1385
1386 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1387 break;
1388 block = BLOCK_SUPERBLOCK (block);
1389 }
1390
1391 /* We've reached the edge of the function without finding a result. */
1392
1393 return NULL;
1394 }
1395
1396 /* Look up OBJFILE to BLOCK. */
1397
1398 static struct objfile *
1399 lookup_objfile_from_block (const struct block *block)
1400 {
1401 struct objfile *obj;
1402 struct symtab *s;
1403
1404 if (block == NULL)
1405 return NULL;
1406
1407 block = block_global_block (block);
1408 /* Go through SYMTABS. */
1409 ALL_SYMTABS (obj, s)
1410 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1411 return obj;
1412
1413 return NULL;
1414 }
1415
1416 /* Look up a symbol in a block; if found, fixup the symbol, and set
1417 block_found appropriately. */
1418
1419 struct symbol *
1420 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1421 const struct block *block,
1422 const domain_enum domain)
1423 {
1424 struct symbol *sym;
1425
1426 sym = lookup_block_symbol (block, name, linkage_name, domain);
1427 if (sym)
1428 {
1429 block_found = block;
1430 return fixup_symbol_section (sym, NULL);
1431 }
1432
1433 return NULL;
1434 }
1435
1436 /* Check all global symbols in OBJFILE in symtabs and
1437 psymtabs. */
1438
1439 struct symbol *
1440 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1441 const char *name,
1442 const char *linkage_name,
1443 const domain_enum domain)
1444 {
1445 struct symbol *sym;
1446 struct blockvector *bv;
1447 const struct block *block;
1448 struct symtab *s;
1449 struct partial_symtab *ps;
1450
1451 /* Go through symtabs. */
1452 ALL_OBJFILE_SYMTABS (objfile, s)
1453 {
1454 bv = BLOCKVECTOR (s);
1455 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1456 sym = lookup_block_symbol (block, name, linkage_name, domain);
1457 if (sym)
1458 {
1459 block_found = block;
1460 return fixup_symbol_section (sym, (struct objfile *)objfile);
1461 }
1462 }
1463
1464 /* Now go through psymtabs. */
1465 ALL_OBJFILE_PSYMTABS (objfile, ps)
1466 {
1467 if (!ps->readin
1468 && lookup_partial_symbol (ps, name, linkage_name,
1469 1, domain))
1470 {
1471 s = PSYMTAB_TO_SYMTAB (ps);
1472 bv = BLOCKVECTOR (s);
1473 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1474 sym = lookup_block_symbol (block, name, linkage_name, domain);
1475 return fixup_symbol_section (sym, (struct objfile *)objfile);
1476 }
1477 }
1478
1479 if (objfile->separate_debug_objfile)
1480 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1481 name, linkage_name, domain);
1482
1483 return NULL;
1484 }
1485
1486 /* Check to see if the symbol is defined in one of the symtabs.
1487 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1488 depending on whether or not we want to search global symbols or
1489 static symbols. */
1490
1491 static struct symbol *
1492 lookup_symbol_aux_symtabs (int block_index,
1493 const char *name, const char *linkage_name,
1494 const domain_enum domain)
1495 {
1496 struct symbol *sym;
1497 struct objfile *objfile;
1498 struct blockvector *bv;
1499 const struct block *block;
1500 struct symtab *s;
1501
1502 ALL_PRIMARY_SYMTABS (objfile, s)
1503 {
1504 bv = BLOCKVECTOR (s);
1505 block = BLOCKVECTOR_BLOCK (bv, block_index);
1506 sym = lookup_block_symbol (block, name, linkage_name, domain);
1507 if (sym)
1508 {
1509 block_found = block;
1510 return fixup_symbol_section (sym, objfile);
1511 }
1512 }
1513
1514 return NULL;
1515 }
1516
1517 /* Check to see if the symbol is defined in one of the partial
1518 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1519 STATIC_BLOCK, depending on whether or not we want to search global
1520 symbols or static symbols. */
1521
1522 static struct symbol *
1523 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1524 const char *linkage_name,
1525 const domain_enum domain)
1526 {
1527 struct symbol *sym;
1528 struct objfile *objfile;
1529 struct blockvector *bv;
1530 const struct block *block;
1531 struct partial_symtab *ps;
1532 struct symtab *s;
1533 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1534
1535 ALL_PSYMTABS (objfile, ps)
1536 {
1537 if (!ps->readin
1538 && lookup_partial_symbol (ps, name, linkage_name,
1539 psymtab_index, domain))
1540 {
1541 s = PSYMTAB_TO_SYMTAB (ps);
1542 bv = BLOCKVECTOR (s);
1543 block = BLOCKVECTOR_BLOCK (bv, block_index);
1544 sym = lookup_block_symbol (block, name, linkage_name, domain);
1545 if (!sym)
1546 {
1547 /* This shouldn't be necessary, but as a last resort try
1548 looking in the statics even though the psymtab claimed
1549 the symbol was global, or vice-versa. It's possible
1550 that the psymtab gets it wrong in some cases. */
1551
1552 /* FIXME: carlton/2002-09-30: Should we really do that?
1553 If that happens, isn't it likely to be a GDB error, in
1554 which case we should fix the GDB error rather than
1555 silently dealing with it here? So I'd vote for
1556 removing the check for the symbol in the other
1557 block. */
1558 block = BLOCKVECTOR_BLOCK (bv,
1559 block_index == GLOBAL_BLOCK ?
1560 STATIC_BLOCK : GLOBAL_BLOCK);
1561 sym = lookup_block_symbol (block, name, linkage_name, domain);
1562 if (!sym)
1563 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1564 block_index == GLOBAL_BLOCK ? "global" : "static",
1565 name, ps->filename, name, name);
1566 }
1567 return fixup_symbol_section (sym, objfile);
1568 }
1569 }
1570
1571 return NULL;
1572 }
1573
1574 /* A default version of lookup_symbol_nonlocal for use by languages
1575 that can't think of anything better to do. This implements the C
1576 lookup rules. */
1577
1578 struct symbol *
1579 basic_lookup_symbol_nonlocal (const char *name,
1580 const char *linkage_name,
1581 const struct block *block,
1582 const domain_enum domain)
1583 {
1584 struct symbol *sym;
1585
1586 /* NOTE: carlton/2003-05-19: The comments below were written when
1587 this (or what turned into this) was part of lookup_symbol_aux;
1588 I'm much less worried about these questions now, since these
1589 decisions have turned out well, but I leave these comments here
1590 for posterity. */
1591
1592 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1593 not it would be appropriate to search the current global block
1594 here as well. (That's what this code used to do before the
1595 is_a_field_of_this check was moved up.) On the one hand, it's
1596 redundant with the lookup_symbol_aux_symtabs search that happens
1597 next. On the other hand, if decode_line_1 is passed an argument
1598 like filename:var, then the user presumably wants 'var' to be
1599 searched for in filename. On the third hand, there shouldn't be
1600 multiple global variables all of which are named 'var', and it's
1601 not like decode_line_1 has ever restricted its search to only
1602 global variables in a single filename. All in all, only
1603 searching the static block here seems best: it's correct and it's
1604 cleanest. */
1605
1606 /* NOTE: carlton/2002-12-05: There's also a possible performance
1607 issue here: if you usually search for global symbols in the
1608 current file, then it would be slightly better to search the
1609 current global block before searching all the symtabs. But there
1610 are other factors that have a much greater effect on performance
1611 than that one, so I don't think we should worry about that for
1612 now. */
1613
1614 sym = lookup_symbol_static (name, linkage_name, block, domain);
1615 if (sym != NULL)
1616 return sym;
1617
1618 return lookup_symbol_global (name, linkage_name, block, domain);
1619 }
1620
1621 /* Lookup a symbol in the static block associated to BLOCK, if there
1622 is one; do nothing if BLOCK is NULL or a global block. */
1623
1624 struct symbol *
1625 lookup_symbol_static (const char *name,
1626 const char *linkage_name,
1627 const struct block *block,
1628 const domain_enum domain)
1629 {
1630 const struct block *static_block = block_static_block (block);
1631
1632 if (static_block != NULL)
1633 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1634 else
1635 return NULL;
1636 }
1637
1638 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1639 necessary). */
1640
1641 struct symbol *
1642 lookup_symbol_global (const char *name,
1643 const char *linkage_name,
1644 const struct block *block,
1645 const domain_enum domain)
1646 {
1647 struct symbol *sym = NULL;
1648 struct objfile *objfile = NULL;
1649
1650 /* Call library-specific lookup procedure. */
1651 objfile = lookup_objfile_from_block (block);
1652 if (objfile != NULL)
1653 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1654 if (sym != NULL)
1655 return sym;
1656
1657 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1658 if (sym != NULL)
1659 return sym;
1660
1661 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1662 }
1663
1664 int
1665 symbol_matches_domain (enum language symbol_language,
1666 domain_enum symbol_domain,
1667 domain_enum domain)
1668 {
1669 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1670 A Java class declaration also defines a typedef for the class.
1671 Similarly, any Ada type declaration implicitly defines a typedef. */
1672 if (symbol_language == language_cplus
1673 || symbol_language == language_java
1674 || symbol_language == language_ada)
1675 {
1676 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1677 && symbol_domain == STRUCT_DOMAIN)
1678 return 1;
1679 }
1680 /* For all other languages, strict match is required. */
1681 return (symbol_domain == domain);
1682 }
1683
1684 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1685 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1686 linkage name matches it. Check the global symbols if GLOBAL, the
1687 static symbols if not */
1688
1689 struct partial_symbol *
1690 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1691 const char *linkage_name, int global,
1692 domain_enum domain)
1693 {
1694 struct partial_symbol *temp;
1695 struct partial_symbol **start, **psym;
1696 struct partial_symbol **top, **real_top, **bottom, **center;
1697 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1698 int do_linear_search = 1;
1699
1700 if (length == 0)
1701 {
1702 return (NULL);
1703 }
1704 start = (global ?
1705 pst->objfile->global_psymbols.list + pst->globals_offset :
1706 pst->objfile->static_psymbols.list + pst->statics_offset);
1707
1708 if (global) /* This means we can use a binary search. */
1709 {
1710 do_linear_search = 0;
1711
1712 /* Binary search. This search is guaranteed to end with center
1713 pointing at the earliest partial symbol whose name might be
1714 correct. At that point *all* partial symbols with an
1715 appropriate name will be checked against the correct
1716 domain. */
1717
1718 bottom = start;
1719 top = start + length - 1;
1720 real_top = top;
1721 while (top > bottom)
1722 {
1723 center = bottom + (top - bottom) / 2;
1724 if (!(center < top))
1725 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1726 if (!do_linear_search
1727 && (SYMBOL_LANGUAGE (*center) == language_java))
1728 {
1729 do_linear_search = 1;
1730 }
1731 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1732 {
1733 top = center;
1734 }
1735 else
1736 {
1737 bottom = center + 1;
1738 }
1739 }
1740 if (!(top == bottom))
1741 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1742
1743 while (top <= real_top
1744 && (linkage_name != NULL
1745 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1746 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1747 {
1748 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1749 SYMBOL_DOMAIN (*top), domain))
1750 return (*top);
1751 top++;
1752 }
1753 }
1754
1755 /* Can't use a binary search or else we found during the binary search that
1756 we should also do a linear search. */
1757
1758 if (do_linear_search)
1759 {
1760 for (psym = start; psym < start + length; psym++)
1761 {
1762 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1763 SYMBOL_DOMAIN (*psym), domain))
1764 {
1765 if (linkage_name != NULL
1766 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1767 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1768 {
1769 return (*psym);
1770 }
1771 }
1772 }
1773 }
1774
1775 return (NULL);
1776 }
1777
1778 /* Look up a type named NAME in the struct_domain. The type returned
1779 must not be opaque -- i.e., must have at least one field
1780 defined. */
1781
1782 struct type *
1783 lookup_transparent_type (const char *name)
1784 {
1785 return current_language->la_lookup_transparent_type (name);
1786 }
1787
1788 /* The standard implementation of lookup_transparent_type. This code
1789 was modeled on lookup_symbol -- the parts not relevant to looking
1790 up types were just left out. In particular it's assumed here that
1791 types are available in struct_domain and only at file-static or
1792 global blocks. */
1793
1794 struct type *
1795 basic_lookup_transparent_type (const char *name)
1796 {
1797 struct symbol *sym;
1798 struct symtab *s = NULL;
1799 struct partial_symtab *ps;
1800 struct blockvector *bv;
1801 struct objfile *objfile;
1802 struct block *block;
1803
1804 /* Now search all the global symbols. Do the symtab's first, then
1805 check the psymtab's. If a psymtab indicates the existence
1806 of the desired name as a global, then do psymtab-to-symtab
1807 conversion on the fly and return the found symbol. */
1808
1809 ALL_PRIMARY_SYMTABS (objfile, s)
1810 {
1811 bv = BLOCKVECTOR (s);
1812 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1813 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1814 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1815 {
1816 return SYMBOL_TYPE (sym);
1817 }
1818 }
1819
1820 ALL_PSYMTABS (objfile, ps)
1821 {
1822 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1823 1, STRUCT_DOMAIN))
1824 {
1825 s = PSYMTAB_TO_SYMTAB (ps);
1826 bv = BLOCKVECTOR (s);
1827 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1828 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1829 if (!sym)
1830 {
1831 /* This shouldn't be necessary, but as a last resort
1832 * try looking in the statics even though the psymtab
1833 * claimed the symbol was global. It's possible that
1834 * the psymtab gets it wrong in some cases.
1835 */
1836 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1837 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1838 if (!sym)
1839 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1840 %s may be an inlined function, or may be a template function\n\
1841 (if a template, try specifying an instantiation: %s<type>)."),
1842 name, ps->filename, name, name);
1843 }
1844 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1845 return SYMBOL_TYPE (sym);
1846 }
1847 }
1848
1849 /* Now search the static file-level symbols.
1850 Not strictly correct, but more useful than an error.
1851 Do the symtab's first, then
1852 check the psymtab's. If a psymtab indicates the existence
1853 of the desired name as a file-level static, then do psymtab-to-symtab
1854 conversion on the fly and return the found symbol.
1855 */
1856
1857 ALL_PRIMARY_SYMTABS (objfile, s)
1858 {
1859 bv = BLOCKVECTOR (s);
1860 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1861 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1862 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1863 {
1864 return SYMBOL_TYPE (sym);
1865 }
1866 }
1867
1868 ALL_PSYMTABS (objfile, ps)
1869 {
1870 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1871 {
1872 s = PSYMTAB_TO_SYMTAB (ps);
1873 bv = BLOCKVECTOR (s);
1874 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1875 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1876 if (!sym)
1877 {
1878 /* This shouldn't be necessary, but as a last resort
1879 * try looking in the globals even though the psymtab
1880 * claimed the symbol was static. It's possible that
1881 * the psymtab gets it wrong in some cases.
1882 */
1883 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1884 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1885 if (!sym)
1886 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1887 %s may be an inlined function, or may be a template function\n\
1888 (if a template, try specifying an instantiation: %s<type>)."),
1889 name, ps->filename, name, name);
1890 }
1891 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1892 return SYMBOL_TYPE (sym);
1893 }
1894 }
1895 return (struct type *) 0;
1896 }
1897
1898
1899 /* Find the psymtab containing main(). */
1900 /* FIXME: What about languages without main() or specially linked
1901 executables that have no main() ? */
1902
1903 struct partial_symtab *
1904 find_main_psymtab (void)
1905 {
1906 struct partial_symtab *pst;
1907 struct objfile *objfile;
1908
1909 ALL_PSYMTABS (objfile, pst)
1910 {
1911 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1912 {
1913 return (pst);
1914 }
1915 }
1916 return (NULL);
1917 }
1918
1919 /* Search BLOCK for symbol NAME in DOMAIN.
1920
1921 Note that if NAME is the demangled form of a C++ symbol, we will fail
1922 to find a match during the binary search of the non-encoded names, but
1923 for now we don't worry about the slight inefficiency of looking for
1924 a match we'll never find, since it will go pretty quick. Once the
1925 binary search terminates, we drop through and do a straight linear
1926 search on the symbols. Each symbol which is marked as being a ObjC/C++
1927 symbol (language_cplus or language_objc set) has both the encoded and
1928 non-encoded names tested for a match.
1929
1930 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1931 particular mangled name.
1932 */
1933
1934 struct symbol *
1935 lookup_block_symbol (const struct block *block, const char *name,
1936 const char *linkage_name,
1937 const domain_enum domain)
1938 {
1939 struct dict_iterator iter;
1940 struct symbol *sym;
1941
1942 if (!BLOCK_FUNCTION (block))
1943 {
1944 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1945 sym != NULL;
1946 sym = dict_iter_name_next (name, &iter))
1947 {
1948 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1949 SYMBOL_DOMAIN (sym), domain)
1950 && (linkage_name != NULL
1951 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1952 return sym;
1953 }
1954 return NULL;
1955 }
1956 else
1957 {
1958 /* Note that parameter symbols do not always show up last in the
1959 list; this loop makes sure to take anything else other than
1960 parameter symbols first; it only uses parameter symbols as a
1961 last resort. Note that this only takes up extra computation
1962 time on a match. */
1963
1964 struct symbol *sym_found = NULL;
1965
1966 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1967 sym != NULL;
1968 sym = dict_iter_name_next (name, &iter))
1969 {
1970 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1971 SYMBOL_DOMAIN (sym), domain)
1972 && (linkage_name != NULL
1973 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1974 {
1975 sym_found = sym;
1976 if (!SYMBOL_IS_ARGUMENT (sym))
1977 {
1978 break;
1979 }
1980 }
1981 }
1982 return (sym_found); /* Will be NULL if not found. */
1983 }
1984 }
1985
1986 /* Find the symtab associated with PC and SECTION. Look through the
1987 psymtabs and read in another symtab if necessary. */
1988
1989 struct symtab *
1990 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1991 {
1992 struct block *b;
1993 struct blockvector *bv;
1994 struct symtab *s = NULL;
1995 struct symtab *best_s = NULL;
1996 struct partial_symtab *ps;
1997 struct objfile *objfile;
1998 struct program_space *pspace;
1999 CORE_ADDR distance = 0;
2000 struct minimal_symbol *msymbol;
2001
2002 pspace = current_program_space;
2003
2004 /* If we know that this is not a text address, return failure. This is
2005 necessary because we loop based on the block's high and low code
2006 addresses, which do not include the data ranges, and because
2007 we call find_pc_sect_psymtab which has a similar restriction based
2008 on the partial_symtab's texthigh and textlow. */
2009 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2010 if (msymbol
2011 && (MSYMBOL_TYPE (msymbol) == mst_data
2012 || MSYMBOL_TYPE (msymbol) == mst_bss
2013 || MSYMBOL_TYPE (msymbol) == mst_abs
2014 || MSYMBOL_TYPE (msymbol) == mst_file_data
2015 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2016 return NULL;
2017
2018 /* Search all symtabs for the one whose file contains our address, and which
2019 is the smallest of all the ones containing the address. This is designed
2020 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2021 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2022 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2023
2024 This happens for native ecoff format, where code from included files
2025 gets its own symtab. The symtab for the included file should have
2026 been read in already via the dependency mechanism.
2027 It might be swifter to create several symtabs with the same name
2028 like xcoff does (I'm not sure).
2029
2030 It also happens for objfiles that have their functions reordered.
2031 For these, the symtab we are looking for is not necessarily read in. */
2032
2033 ALL_PRIMARY_SYMTABS (objfile, s)
2034 {
2035 bv = BLOCKVECTOR (s);
2036 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2037
2038 if (BLOCK_START (b) <= pc
2039 && BLOCK_END (b) > pc
2040 && (distance == 0
2041 || BLOCK_END (b) - BLOCK_START (b) < distance))
2042 {
2043 /* For an objfile that has its functions reordered,
2044 find_pc_psymtab will find the proper partial symbol table
2045 and we simply return its corresponding symtab. */
2046 /* In order to better support objfiles that contain both
2047 stabs and coff debugging info, we continue on if a psymtab
2048 can't be found. */
2049 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2050 {
2051 ps = find_pc_sect_psymtab (pc, section);
2052 if (ps)
2053 return PSYMTAB_TO_SYMTAB (ps);
2054 }
2055 if (section != 0)
2056 {
2057 struct dict_iterator iter;
2058 struct symbol *sym = NULL;
2059
2060 ALL_BLOCK_SYMBOLS (b, iter, sym)
2061 {
2062 fixup_symbol_section (sym, objfile);
2063 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2064 break;
2065 }
2066 if (sym == NULL)
2067 continue; /* no symbol in this symtab matches section */
2068 }
2069 distance = BLOCK_END (b) - BLOCK_START (b);
2070 best_s = s;
2071 }
2072 }
2073
2074 if (best_s != NULL)
2075 return (best_s);
2076
2077 s = NULL;
2078 ps = find_pc_sect_psymtab (pc, section);
2079 if (ps)
2080 {
2081 if (ps->readin)
2082 /* Might want to error() here (in case symtab is corrupt and
2083 will cause a core dump), but maybe we can successfully
2084 continue, so let's not. */
2085 warning (_("\
2086 (Internal error: pc %s in read in psymtab, but not in symtab.)\n"),
2087 paddress (get_objfile_arch (ps->objfile), pc));
2088 s = PSYMTAB_TO_SYMTAB (ps);
2089 }
2090 return (s);
2091 }
2092
2093 /* Find the symtab associated with PC. Look through the psymtabs and
2094 read in another symtab if necessary. Backward compatibility, no section */
2095
2096 struct symtab *
2097 find_pc_symtab (CORE_ADDR pc)
2098 {
2099 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2100 }
2101 \f
2102
2103 /* Find the source file and line number for a given PC value and SECTION.
2104 Return a structure containing a symtab pointer, a line number,
2105 and a pc range for the entire source line.
2106 The value's .pc field is NOT the specified pc.
2107 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2108 use the line that ends there. Otherwise, in that case, the line
2109 that begins there is used. */
2110
2111 /* The big complication here is that a line may start in one file, and end just
2112 before the start of another file. This usually occurs when you #include
2113 code in the middle of a subroutine. To properly find the end of a line's PC
2114 range, we must search all symtabs associated with this compilation unit, and
2115 find the one whose first PC is closer than that of the next line in this
2116 symtab. */
2117
2118 /* If it's worth the effort, we could be using a binary search. */
2119
2120 struct symtab_and_line
2121 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2122 {
2123 struct symtab *s;
2124 struct linetable *l;
2125 int len;
2126 int i;
2127 struct linetable_entry *item;
2128 struct symtab_and_line val;
2129 struct blockvector *bv;
2130 struct minimal_symbol *msymbol;
2131 struct minimal_symbol *mfunsym;
2132
2133 /* Info on best line seen so far, and where it starts, and its file. */
2134
2135 struct linetable_entry *best = NULL;
2136 CORE_ADDR best_end = 0;
2137 struct symtab *best_symtab = 0;
2138
2139 /* Store here the first line number
2140 of a file which contains the line at the smallest pc after PC.
2141 If we don't find a line whose range contains PC,
2142 we will use a line one less than this,
2143 with a range from the start of that file to the first line's pc. */
2144 struct linetable_entry *alt = NULL;
2145 struct symtab *alt_symtab = 0;
2146
2147 /* Info on best line seen in this file. */
2148
2149 struct linetable_entry *prev;
2150
2151 /* If this pc is not from the current frame,
2152 it is the address of the end of a call instruction.
2153 Quite likely that is the start of the following statement.
2154 But what we want is the statement containing the instruction.
2155 Fudge the pc to make sure we get that. */
2156
2157 init_sal (&val); /* initialize to zeroes */
2158
2159 val.pspace = current_program_space;
2160
2161 /* It's tempting to assume that, if we can't find debugging info for
2162 any function enclosing PC, that we shouldn't search for line
2163 number info, either. However, GAS can emit line number info for
2164 assembly files --- very helpful when debugging hand-written
2165 assembly code. In such a case, we'd have no debug info for the
2166 function, but we would have line info. */
2167
2168 if (notcurrent)
2169 pc -= 1;
2170
2171 /* elz: added this because this function returned the wrong
2172 information if the pc belongs to a stub (import/export)
2173 to call a shlib function. This stub would be anywhere between
2174 two functions in the target, and the line info was erroneously
2175 taken to be the one of the line before the pc.
2176 */
2177 /* RT: Further explanation:
2178
2179 * We have stubs (trampolines) inserted between procedures.
2180 *
2181 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2182 * exists in the main image.
2183 *
2184 * In the minimal symbol table, we have a bunch of symbols
2185 * sorted by start address. The stubs are marked as "trampoline",
2186 * the others appear as text. E.g.:
2187 *
2188 * Minimal symbol table for main image
2189 * main: code for main (text symbol)
2190 * shr1: stub (trampoline symbol)
2191 * foo: code for foo (text symbol)
2192 * ...
2193 * Minimal symbol table for "shr1" image:
2194 * ...
2195 * shr1: code for shr1 (text symbol)
2196 * ...
2197 *
2198 * So the code below is trying to detect if we are in the stub
2199 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2200 * and if found, do the symbolization from the real-code address
2201 * rather than the stub address.
2202 *
2203 * Assumptions being made about the minimal symbol table:
2204 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2205 * if we're really in the trampoline. If we're beyond it (say
2206 * we're in "foo" in the above example), it'll have a closer
2207 * symbol (the "foo" text symbol for example) and will not
2208 * return the trampoline.
2209 * 2. lookup_minimal_symbol_text() will find a real text symbol
2210 * corresponding to the trampoline, and whose address will
2211 * be different than the trampoline address. I put in a sanity
2212 * check for the address being the same, to avoid an
2213 * infinite recursion.
2214 */
2215 msymbol = lookup_minimal_symbol_by_pc (pc);
2216 if (msymbol != NULL)
2217 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2218 {
2219 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2220 NULL);
2221 if (mfunsym == NULL)
2222 /* I eliminated this warning since it is coming out
2223 * in the following situation:
2224 * gdb shmain // test program with shared libraries
2225 * (gdb) break shr1 // function in shared lib
2226 * Warning: In stub for ...
2227 * In the above situation, the shared lib is not loaded yet,
2228 * so of course we can't find the real func/line info,
2229 * but the "break" still works, and the warning is annoying.
2230 * So I commented out the warning. RT */
2231 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2232 /* fall through */
2233 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2234 /* Avoid infinite recursion */
2235 /* See above comment about why warning is commented out */
2236 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2237 /* fall through */
2238 else
2239 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2240 }
2241
2242
2243 s = find_pc_sect_symtab (pc, section);
2244 if (!s)
2245 {
2246 /* if no symbol information, return previous pc */
2247 if (notcurrent)
2248 pc++;
2249 val.pc = pc;
2250 return val;
2251 }
2252
2253 bv = BLOCKVECTOR (s);
2254
2255 /* Look at all the symtabs that share this blockvector.
2256 They all have the same apriori range, that we found was right;
2257 but they have different line tables. */
2258
2259 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2260 {
2261 /* Find the best line in this symtab. */
2262 l = LINETABLE (s);
2263 if (!l)
2264 continue;
2265 len = l->nitems;
2266 if (len <= 0)
2267 {
2268 /* I think len can be zero if the symtab lacks line numbers
2269 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2270 I'm not sure which, and maybe it depends on the symbol
2271 reader). */
2272 continue;
2273 }
2274
2275 prev = NULL;
2276 item = l->item; /* Get first line info */
2277
2278 /* Is this file's first line closer than the first lines of other files?
2279 If so, record this file, and its first line, as best alternate. */
2280 if (item->pc > pc && (!alt || item->pc < alt->pc))
2281 {
2282 alt = item;
2283 alt_symtab = s;
2284 }
2285
2286 for (i = 0; i < len; i++, item++)
2287 {
2288 /* Leave prev pointing to the linetable entry for the last line
2289 that started at or before PC. */
2290 if (item->pc > pc)
2291 break;
2292
2293 prev = item;
2294 }
2295
2296 /* At this point, prev points at the line whose start addr is <= pc, and
2297 item points at the next line. If we ran off the end of the linetable
2298 (pc >= start of the last line), then prev == item. If pc < start of
2299 the first line, prev will not be set. */
2300
2301 /* Is this file's best line closer than the best in the other files?
2302 If so, record this file, and its best line, as best so far. Don't
2303 save prev if it represents the end of a function (i.e. line number
2304 0) instead of a real line. */
2305
2306 if (prev && prev->line && (!best || prev->pc > best->pc))
2307 {
2308 best = prev;
2309 best_symtab = s;
2310
2311 /* Discard BEST_END if it's before the PC of the current BEST. */
2312 if (best_end <= best->pc)
2313 best_end = 0;
2314 }
2315
2316 /* If another line (denoted by ITEM) is in the linetable and its
2317 PC is after BEST's PC, but before the current BEST_END, then
2318 use ITEM's PC as the new best_end. */
2319 if (best && i < len && item->pc > best->pc
2320 && (best_end == 0 || best_end > item->pc))
2321 best_end = item->pc;
2322 }
2323
2324 if (!best_symtab)
2325 {
2326 /* If we didn't find any line number info, just return zeros.
2327 We used to return alt->line - 1 here, but that could be
2328 anywhere; if we don't have line number info for this PC,
2329 don't make some up. */
2330 val.pc = pc;
2331 }
2332 else if (best->line == 0)
2333 {
2334 /* If our best fit is in a range of PC's for which no line
2335 number info is available (line number is zero) then we didn't
2336 find any valid line information. */
2337 val.pc = pc;
2338 }
2339 else
2340 {
2341 val.symtab = best_symtab;
2342 val.line = best->line;
2343 val.pc = best->pc;
2344 if (best_end && (!alt || best_end < alt->pc))
2345 val.end = best_end;
2346 else if (alt)
2347 val.end = alt->pc;
2348 else
2349 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2350 }
2351 val.section = section;
2352 return val;
2353 }
2354
2355 /* Backward compatibility (no section) */
2356
2357 struct symtab_and_line
2358 find_pc_line (CORE_ADDR pc, int notcurrent)
2359 {
2360 struct obj_section *section;
2361
2362 section = find_pc_overlay (pc);
2363 if (pc_in_unmapped_range (pc, section))
2364 pc = overlay_mapped_address (pc, section);
2365 return find_pc_sect_line (pc, section, notcurrent);
2366 }
2367 \f
2368 /* Find line number LINE in any symtab whose name is the same as
2369 SYMTAB.
2370
2371 If found, return the symtab that contains the linetable in which it was
2372 found, set *INDEX to the index in the linetable of the best entry
2373 found, and set *EXACT_MATCH nonzero if the value returned is an
2374 exact match.
2375
2376 If not found, return NULL. */
2377
2378 struct symtab *
2379 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2380 {
2381 int exact = 0; /* Initialized here to avoid a compiler warning. */
2382
2383 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2384 so far seen. */
2385
2386 int best_index;
2387 struct linetable *best_linetable;
2388 struct symtab *best_symtab;
2389
2390 /* First try looking it up in the given symtab. */
2391 best_linetable = LINETABLE (symtab);
2392 best_symtab = symtab;
2393 best_index = find_line_common (best_linetable, line, &exact);
2394 if (best_index < 0 || !exact)
2395 {
2396 /* Didn't find an exact match. So we better keep looking for
2397 another symtab with the same name. In the case of xcoff,
2398 multiple csects for one source file (produced by IBM's FORTRAN
2399 compiler) produce multiple symtabs (this is unavoidable
2400 assuming csects can be at arbitrary places in memory and that
2401 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2402
2403 /* BEST is the smallest linenumber > LINE so far seen,
2404 or 0 if none has been seen so far.
2405 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2406 int best;
2407
2408 struct objfile *objfile;
2409 struct symtab *s;
2410 struct partial_symtab *p;
2411
2412 if (best_index >= 0)
2413 best = best_linetable->item[best_index].line;
2414 else
2415 best = 0;
2416
2417 ALL_PSYMTABS (objfile, p)
2418 {
2419 if (FILENAME_CMP (symtab->filename, p->filename) != 0)
2420 continue;
2421 PSYMTAB_TO_SYMTAB (p);
2422 }
2423
2424 /* Get symbol full file name if possible. */
2425 symtab_to_fullname (symtab);
2426
2427 ALL_SYMTABS (objfile, s)
2428 {
2429 struct linetable *l;
2430 int ind;
2431
2432 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2433 continue;
2434 if (symtab->fullname != NULL
2435 && symtab_to_fullname (s) != NULL
2436 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2437 continue;
2438 l = LINETABLE (s);
2439 ind = find_line_common (l, line, &exact);
2440 if (ind >= 0)
2441 {
2442 if (exact)
2443 {
2444 best_index = ind;
2445 best_linetable = l;
2446 best_symtab = s;
2447 goto done;
2448 }
2449 if (best == 0 || l->item[ind].line < best)
2450 {
2451 best = l->item[ind].line;
2452 best_index = ind;
2453 best_linetable = l;
2454 best_symtab = s;
2455 }
2456 }
2457 }
2458 }
2459 done:
2460 if (best_index < 0)
2461 return NULL;
2462
2463 if (index)
2464 *index = best_index;
2465 if (exact_match)
2466 *exact_match = exact;
2467
2468 return best_symtab;
2469 }
2470 \f
2471 /* Set the PC value for a given source file and line number and return true.
2472 Returns zero for invalid line number (and sets the PC to 0).
2473 The source file is specified with a struct symtab. */
2474
2475 int
2476 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2477 {
2478 struct linetable *l;
2479 int ind;
2480
2481 *pc = 0;
2482 if (symtab == 0)
2483 return 0;
2484
2485 symtab = find_line_symtab (symtab, line, &ind, NULL);
2486 if (symtab != NULL)
2487 {
2488 l = LINETABLE (symtab);
2489 *pc = l->item[ind].pc;
2490 return 1;
2491 }
2492 else
2493 return 0;
2494 }
2495
2496 /* Find the range of pc values in a line.
2497 Store the starting pc of the line into *STARTPTR
2498 and the ending pc (start of next line) into *ENDPTR.
2499 Returns 1 to indicate success.
2500 Returns 0 if could not find the specified line. */
2501
2502 int
2503 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2504 CORE_ADDR *endptr)
2505 {
2506 CORE_ADDR startaddr;
2507 struct symtab_and_line found_sal;
2508
2509 startaddr = sal.pc;
2510 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2511 return 0;
2512
2513 /* This whole function is based on address. For example, if line 10 has
2514 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2515 "info line *0x123" should say the line goes from 0x100 to 0x200
2516 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2517 This also insures that we never give a range like "starts at 0x134
2518 and ends at 0x12c". */
2519
2520 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2521 if (found_sal.line != sal.line)
2522 {
2523 /* The specified line (sal) has zero bytes. */
2524 *startptr = found_sal.pc;
2525 *endptr = found_sal.pc;
2526 }
2527 else
2528 {
2529 *startptr = found_sal.pc;
2530 *endptr = found_sal.end;
2531 }
2532 return 1;
2533 }
2534
2535 /* Given a line table and a line number, return the index into the line
2536 table for the pc of the nearest line whose number is >= the specified one.
2537 Return -1 if none is found. The value is >= 0 if it is an index.
2538
2539 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2540
2541 static int
2542 find_line_common (struct linetable *l, int lineno,
2543 int *exact_match)
2544 {
2545 int i;
2546 int len;
2547
2548 /* BEST is the smallest linenumber > LINENO so far seen,
2549 or 0 if none has been seen so far.
2550 BEST_INDEX identifies the item for it. */
2551
2552 int best_index = -1;
2553 int best = 0;
2554
2555 *exact_match = 0;
2556
2557 if (lineno <= 0)
2558 return -1;
2559 if (l == 0)
2560 return -1;
2561
2562 len = l->nitems;
2563 for (i = 0; i < len; i++)
2564 {
2565 struct linetable_entry *item = &(l->item[i]);
2566
2567 if (item->line == lineno)
2568 {
2569 /* Return the first (lowest address) entry which matches. */
2570 *exact_match = 1;
2571 return i;
2572 }
2573
2574 if (item->line > lineno && (best == 0 || item->line < best))
2575 {
2576 best = item->line;
2577 best_index = i;
2578 }
2579 }
2580
2581 /* If we got here, we didn't get an exact match. */
2582 return best_index;
2583 }
2584
2585 int
2586 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2587 {
2588 struct symtab_and_line sal;
2589 sal = find_pc_line (pc, 0);
2590 *startptr = sal.pc;
2591 *endptr = sal.end;
2592 return sal.symtab != 0;
2593 }
2594
2595 /* Given a function start address PC and SECTION, find the first
2596 address after the function prologue. */
2597 CORE_ADDR
2598 find_function_start_pc (struct gdbarch *gdbarch,
2599 CORE_ADDR pc, struct obj_section *section)
2600 {
2601 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2602 so that gdbarch_skip_prologue has something unique to work on. */
2603 if (section_is_overlay (section) && !section_is_mapped (section))
2604 pc = overlay_unmapped_address (pc, section);
2605
2606 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2607 pc = gdbarch_skip_prologue (gdbarch, pc);
2608
2609 /* For overlays, map pc back into its mapped VMA range. */
2610 pc = overlay_mapped_address (pc, section);
2611
2612 return pc;
2613 }
2614
2615 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2616 address for that function that has an entry in SYMTAB's line info
2617 table. If such an entry cannot be found, return FUNC_ADDR
2618 unaltered. */
2619 CORE_ADDR
2620 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2621 {
2622 CORE_ADDR func_start, func_end;
2623 struct linetable *l;
2624 int ind, i, len;
2625 int best_lineno = 0;
2626 CORE_ADDR best_pc = func_addr;
2627
2628 /* Give up if this symbol has no lineinfo table. */
2629 l = LINETABLE (symtab);
2630 if (l == NULL)
2631 return func_addr;
2632
2633 /* Get the range for the function's PC values, or give up if we
2634 cannot, for some reason. */
2635 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2636 return func_addr;
2637
2638 /* Linetable entries are ordered by PC values, see the commentary in
2639 symtab.h where `struct linetable' is defined. Thus, the first
2640 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2641 address we are looking for. */
2642 for (i = 0; i < l->nitems; i++)
2643 {
2644 struct linetable_entry *item = &(l->item[i]);
2645
2646 /* Don't use line numbers of zero, they mark special entries in
2647 the table. See the commentary on symtab.h before the
2648 definition of struct linetable. */
2649 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2650 return item->pc;
2651 }
2652
2653 return func_addr;
2654 }
2655
2656 /* Given a function symbol SYM, find the symtab and line for the start
2657 of the function.
2658 If the argument FUNFIRSTLINE is nonzero, we want the first line
2659 of real code inside the function. */
2660
2661 struct symtab_and_line
2662 find_function_start_sal (struct symbol *sym, int funfirstline)
2663 {
2664 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2665 struct objfile *objfile = lookup_objfile_from_block (block);
2666 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2667
2668 CORE_ADDR pc;
2669 struct symtab_and_line sal;
2670 struct block *b, *function_block;
2671
2672 struct cleanup *old_chain;
2673
2674 old_chain = save_current_space_and_thread ();
2675 switch_to_program_space_and_thread (objfile->pspace);
2676
2677 pc = BLOCK_START (block);
2678 fixup_symbol_section (sym, objfile);
2679 if (funfirstline)
2680 {
2681 /* Skip "first line" of function (which is actually its prologue). */
2682 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2683 }
2684 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2685
2686 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2687 line is still part of the same function. */
2688 if (sal.pc != pc
2689 && BLOCK_START (block) <= sal.end
2690 && sal.end < BLOCK_END (block))
2691 {
2692 /* First pc of next line */
2693 pc = sal.end;
2694 /* Recalculate the line number (might not be N+1). */
2695 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2696 }
2697
2698 /* On targets with executable formats that don't have a concept of
2699 constructors (ELF with .init has, PE doesn't), gcc emits a call
2700 to `__main' in `main' between the prologue and before user
2701 code. */
2702 if (funfirstline
2703 && gdbarch_skip_main_prologue_p (gdbarch)
2704 && SYMBOL_LINKAGE_NAME (sym)
2705 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2706 {
2707 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2708 /* Recalculate the line number (might not be N+1). */
2709 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2710 }
2711
2712 /* If we still don't have a valid source line, try to find the first
2713 PC in the lineinfo table that belongs to the same function. This
2714 happens with COFF debug info, which does not seem to have an
2715 entry in lineinfo table for the code after the prologue which has
2716 no direct relation to source. For example, this was found to be
2717 the case with the DJGPP target using "gcc -gcoff" when the
2718 compiler inserted code after the prologue to make sure the stack
2719 is aligned. */
2720 if (funfirstline && sal.symtab == NULL)
2721 {
2722 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2723 /* Recalculate the line number. */
2724 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2725 }
2726
2727 sal.pc = pc;
2728 sal.pspace = objfile->pspace;
2729
2730 /* Check if we are now inside an inlined function. If we can,
2731 use the call site of the function instead. */
2732 b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym));
2733 function_block = NULL;
2734 while (b != NULL)
2735 {
2736 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2737 function_block = b;
2738 else if (BLOCK_FUNCTION (b) != NULL)
2739 break;
2740 b = BLOCK_SUPERBLOCK (b);
2741 }
2742 if (function_block != NULL
2743 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2744 {
2745 sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2746 sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2747 }
2748
2749 do_cleanups (old_chain);
2750 return sal;
2751 }
2752
2753 /* If P is of the form "operator[ \t]+..." where `...' is
2754 some legitimate operator text, return a pointer to the
2755 beginning of the substring of the operator text.
2756 Otherwise, return "". */
2757 char *
2758 operator_chars (char *p, char **end)
2759 {
2760 *end = "";
2761 if (strncmp (p, "operator", 8))
2762 return *end;
2763 p += 8;
2764
2765 /* Don't get faked out by `operator' being part of a longer
2766 identifier. */
2767 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2768 return *end;
2769
2770 /* Allow some whitespace between `operator' and the operator symbol. */
2771 while (*p == ' ' || *p == '\t')
2772 p++;
2773
2774 /* Recognize 'operator TYPENAME'. */
2775
2776 if (isalpha (*p) || *p == '_' || *p == '$')
2777 {
2778 char *q = p + 1;
2779 while (isalnum (*q) || *q == '_' || *q == '$')
2780 q++;
2781 *end = q;
2782 return p;
2783 }
2784
2785 while (*p)
2786 switch (*p)
2787 {
2788 case '\\': /* regexp quoting */
2789 if (p[1] == '*')
2790 {
2791 if (p[2] == '=') /* 'operator\*=' */
2792 *end = p + 3;
2793 else /* 'operator\*' */
2794 *end = p + 2;
2795 return p;
2796 }
2797 else if (p[1] == '[')
2798 {
2799 if (p[2] == ']')
2800 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2801 else if (p[2] == '\\' && p[3] == ']')
2802 {
2803 *end = p + 4; /* 'operator\[\]' */
2804 return p;
2805 }
2806 else
2807 error (_("nothing is allowed between '[' and ']'"));
2808 }
2809 else
2810 {
2811 /* Gratuitous qoute: skip it and move on. */
2812 p++;
2813 continue;
2814 }
2815 break;
2816 case '!':
2817 case '=':
2818 case '*':
2819 case '/':
2820 case '%':
2821 case '^':
2822 if (p[1] == '=')
2823 *end = p + 2;
2824 else
2825 *end = p + 1;
2826 return p;
2827 case '<':
2828 case '>':
2829 case '+':
2830 case '-':
2831 case '&':
2832 case '|':
2833 if (p[0] == '-' && p[1] == '>')
2834 {
2835 /* Struct pointer member operator 'operator->'. */
2836 if (p[2] == '*')
2837 {
2838 *end = p + 3; /* 'operator->*' */
2839 return p;
2840 }
2841 else if (p[2] == '\\')
2842 {
2843 *end = p + 4; /* Hopefully 'operator->\*' */
2844 return p;
2845 }
2846 else
2847 {
2848 *end = p + 2; /* 'operator->' */
2849 return p;
2850 }
2851 }
2852 if (p[1] == '=' || p[1] == p[0])
2853 *end = p + 2;
2854 else
2855 *end = p + 1;
2856 return p;
2857 case '~':
2858 case ',':
2859 *end = p + 1;
2860 return p;
2861 case '(':
2862 if (p[1] != ')')
2863 error (_("`operator ()' must be specified without whitespace in `()'"));
2864 *end = p + 2;
2865 return p;
2866 case '?':
2867 if (p[1] != ':')
2868 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2869 *end = p + 2;
2870 return p;
2871 case '[':
2872 if (p[1] != ']')
2873 error (_("`operator []' must be specified without whitespace in `[]'"));
2874 *end = p + 2;
2875 return p;
2876 default:
2877 error (_("`operator %s' not supported"), p);
2878 break;
2879 }
2880
2881 *end = "";
2882 return *end;
2883 }
2884 \f
2885
2886 /* If FILE is not already in the table of files, return zero;
2887 otherwise return non-zero. Optionally add FILE to the table if ADD
2888 is non-zero. If *FIRST is non-zero, forget the old table
2889 contents. */
2890 static int
2891 filename_seen (const char *file, int add, int *first)
2892 {
2893 /* Table of files seen so far. */
2894 static const char **tab = NULL;
2895 /* Allocated size of tab in elements.
2896 Start with one 256-byte block (when using GNU malloc.c).
2897 24 is the malloc overhead when range checking is in effect. */
2898 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2899 /* Current size of tab in elements. */
2900 static int tab_cur_size;
2901 const char **p;
2902
2903 if (*first)
2904 {
2905 if (tab == NULL)
2906 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2907 tab_cur_size = 0;
2908 }
2909
2910 /* Is FILE in tab? */
2911 for (p = tab; p < tab + tab_cur_size; p++)
2912 if (strcmp (*p, file) == 0)
2913 return 1;
2914
2915 /* No; maybe add it to tab. */
2916 if (add)
2917 {
2918 if (tab_cur_size == tab_alloc_size)
2919 {
2920 tab_alloc_size *= 2;
2921 tab = (const char **) xrealloc ((char *) tab,
2922 tab_alloc_size * sizeof (*tab));
2923 }
2924 tab[tab_cur_size++] = file;
2925 }
2926
2927 return 0;
2928 }
2929
2930 /* Slave routine for sources_info. Force line breaks at ,'s.
2931 NAME is the name to print and *FIRST is nonzero if this is the first
2932 name printed. Set *FIRST to zero. */
2933 static void
2934 output_source_filename (const char *name, int *first)
2935 {
2936 /* Since a single source file can result in several partial symbol
2937 tables, we need to avoid printing it more than once. Note: if
2938 some of the psymtabs are read in and some are not, it gets
2939 printed both under "Source files for which symbols have been
2940 read" and "Source files for which symbols will be read in on
2941 demand". I consider this a reasonable way to deal with the
2942 situation. I'm not sure whether this can also happen for
2943 symtabs; it doesn't hurt to check. */
2944
2945 /* Was NAME already seen? */
2946 if (filename_seen (name, 1, first))
2947 {
2948 /* Yes; don't print it again. */
2949 return;
2950 }
2951 /* No; print it and reset *FIRST. */
2952 if (*first)
2953 {
2954 *first = 0;
2955 }
2956 else
2957 {
2958 printf_filtered (", ");
2959 }
2960
2961 wrap_here ("");
2962 fputs_filtered (name, gdb_stdout);
2963 }
2964
2965 static void
2966 sources_info (char *ignore, int from_tty)
2967 {
2968 struct symtab *s;
2969 struct partial_symtab *ps;
2970 struct objfile *objfile;
2971 int first;
2972
2973 if (!have_full_symbols () && !have_partial_symbols ())
2974 {
2975 error (_("No symbol table is loaded. Use the \"file\" command."));
2976 }
2977
2978 printf_filtered ("Source files for which symbols have been read in:\n\n");
2979
2980 first = 1;
2981 ALL_SYMTABS (objfile, s)
2982 {
2983 const char *fullname = symtab_to_fullname (s);
2984 output_source_filename (fullname ? fullname : s->filename, &first);
2985 }
2986 printf_filtered ("\n\n");
2987
2988 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2989
2990 first = 1;
2991 ALL_PSYMTABS (objfile, ps)
2992 {
2993 if (!ps->readin)
2994 {
2995 const char *fullname = psymtab_to_fullname (ps);
2996 output_source_filename (fullname ? fullname : ps->filename, &first);
2997 }
2998 }
2999 printf_filtered ("\n");
3000 }
3001
3002 static int
3003 file_matches (char *file, char *files[], int nfiles)
3004 {
3005 int i;
3006
3007 if (file != NULL && nfiles != 0)
3008 {
3009 for (i = 0; i < nfiles; i++)
3010 {
3011 if (strcmp (files[i], lbasename (file)) == 0)
3012 return 1;
3013 }
3014 }
3015 else if (nfiles == 0)
3016 return 1;
3017 return 0;
3018 }
3019
3020 /* Free any memory associated with a search. */
3021 void
3022 free_search_symbols (struct symbol_search *symbols)
3023 {
3024 struct symbol_search *p;
3025 struct symbol_search *next;
3026
3027 for (p = symbols; p != NULL; p = next)
3028 {
3029 next = p->next;
3030 xfree (p);
3031 }
3032 }
3033
3034 static void
3035 do_free_search_symbols_cleanup (void *symbols)
3036 {
3037 free_search_symbols (symbols);
3038 }
3039
3040 struct cleanup *
3041 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3042 {
3043 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3044 }
3045
3046 /* Helper function for sort_search_symbols and qsort. Can only
3047 sort symbols, not minimal symbols. */
3048 static int
3049 compare_search_syms (const void *sa, const void *sb)
3050 {
3051 struct symbol_search **sym_a = (struct symbol_search **) sa;
3052 struct symbol_search **sym_b = (struct symbol_search **) sb;
3053
3054 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3055 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3056 }
3057
3058 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3059 prevtail where it is, but update its next pointer to point to
3060 the first of the sorted symbols. */
3061 static struct symbol_search *
3062 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3063 {
3064 struct symbol_search **symbols, *symp, *old_next;
3065 int i;
3066
3067 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3068 * nfound);
3069 symp = prevtail->next;
3070 for (i = 0; i < nfound; i++)
3071 {
3072 symbols[i] = symp;
3073 symp = symp->next;
3074 }
3075 /* Generally NULL. */
3076 old_next = symp;
3077
3078 qsort (symbols, nfound, sizeof (struct symbol_search *),
3079 compare_search_syms);
3080
3081 symp = prevtail;
3082 for (i = 0; i < nfound; i++)
3083 {
3084 symp->next = symbols[i];
3085 symp = symp->next;
3086 }
3087 symp->next = old_next;
3088
3089 xfree (symbols);
3090 return symp;
3091 }
3092
3093 /* Search the symbol table for matches to the regular expression REGEXP,
3094 returning the results in *MATCHES.
3095
3096 Only symbols of KIND are searched:
3097 FUNCTIONS_DOMAIN - search all functions
3098 TYPES_DOMAIN - search all type names
3099 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3100 and constants (enums)
3101
3102 free_search_symbols should be called when *MATCHES is no longer needed.
3103
3104 The results are sorted locally; each symtab's global and static blocks are
3105 separately alphabetized.
3106 */
3107 void
3108 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3109 struct symbol_search **matches)
3110 {
3111 struct symtab *s;
3112 struct partial_symtab *ps;
3113 struct blockvector *bv;
3114 struct block *b;
3115 int i = 0;
3116 struct dict_iterator iter;
3117 struct symbol *sym;
3118 struct partial_symbol **psym;
3119 struct objfile *objfile;
3120 struct minimal_symbol *msymbol;
3121 char *val;
3122 int found_misc = 0;
3123 static enum minimal_symbol_type types[]
3124 =
3125 {mst_data, mst_text, mst_abs, mst_unknown};
3126 static enum minimal_symbol_type types2[]
3127 =
3128 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3129 static enum minimal_symbol_type types3[]
3130 =
3131 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3132 static enum minimal_symbol_type types4[]
3133 =
3134 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3135 enum minimal_symbol_type ourtype;
3136 enum minimal_symbol_type ourtype2;
3137 enum minimal_symbol_type ourtype3;
3138 enum minimal_symbol_type ourtype4;
3139 struct symbol_search *sr;
3140 struct symbol_search *psr;
3141 struct symbol_search *tail;
3142 struct cleanup *old_chain = NULL;
3143
3144 if (kind < VARIABLES_DOMAIN)
3145 error (_("must search on specific domain"));
3146
3147 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3148 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3149 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3150 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3151
3152 sr = *matches = NULL;
3153 tail = NULL;
3154
3155 if (regexp != NULL)
3156 {
3157 /* Make sure spacing is right for C++ operators.
3158 This is just a courtesy to make the matching less sensitive
3159 to how many spaces the user leaves between 'operator'
3160 and <TYPENAME> or <OPERATOR>. */
3161 char *opend;
3162 char *opname = operator_chars (regexp, &opend);
3163 if (*opname)
3164 {
3165 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3166 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3167 {
3168 /* There should 1 space between 'operator' and 'TYPENAME'. */
3169 if (opname[-1] != ' ' || opname[-2] == ' ')
3170 fix = 1;
3171 }
3172 else
3173 {
3174 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3175 if (opname[-1] == ' ')
3176 fix = 0;
3177 }
3178 /* If wrong number of spaces, fix it. */
3179 if (fix >= 0)
3180 {
3181 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3182 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3183 regexp = tmp;
3184 }
3185 }
3186
3187 if (0 != (val = re_comp (regexp)))
3188 error (_("Invalid regexp (%s): %s"), val, regexp);
3189 }
3190
3191 /* Search through the partial symtabs *first* for all symbols
3192 matching the regexp. That way we don't have to reproduce all of
3193 the machinery below. */
3194
3195 ALL_PSYMTABS (objfile, ps)
3196 {
3197 struct partial_symbol **bound, **gbound, **sbound;
3198 int keep_going = 1;
3199
3200 if (ps->readin)
3201 continue;
3202
3203 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3204 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3205 bound = gbound;
3206
3207 /* Go through all of the symbols stored in a partial
3208 symtab in one loop. */
3209 psym = objfile->global_psymbols.list + ps->globals_offset;
3210 while (keep_going)
3211 {
3212 if (psym >= bound)
3213 {
3214 if (bound == gbound && ps->n_static_syms != 0)
3215 {
3216 psym = objfile->static_psymbols.list + ps->statics_offset;
3217 bound = sbound;
3218 }
3219 else
3220 keep_going = 0;
3221 continue;
3222 }
3223 else
3224 {
3225 QUIT;
3226
3227 /* If it would match (logic taken from loop below)
3228 load the file and go on to the next one. We check the
3229 filename here, but that's a bit bogus: we don't know
3230 what file it really comes from until we have full
3231 symtabs. The symbol might be in a header file included by
3232 this psymtab. This only affects Insight. */
3233 if (file_matches (ps->filename, files, nfiles)
3234 && ((regexp == NULL
3235 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3236 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3237 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3238 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3239 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
3240 {
3241 PSYMTAB_TO_SYMTAB (ps);
3242 keep_going = 0;
3243 }
3244 }
3245 psym++;
3246 }
3247 }
3248
3249 /* Here, we search through the minimal symbol tables for functions
3250 and variables that match, and force their symbols to be read.
3251 This is in particular necessary for demangled variable names,
3252 which are no longer put into the partial symbol tables.
3253 The symbol will then be found during the scan of symtabs below.
3254
3255 For functions, find_pc_symtab should succeed if we have debug info
3256 for the function, for variables we have to call lookup_symbol
3257 to determine if the variable has debug info.
3258 If the lookup fails, set found_misc so that we will rescan to print
3259 any matching symbols without debug info.
3260 */
3261
3262 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3263 {
3264 ALL_MSYMBOLS (objfile, msymbol)
3265 {
3266 QUIT;
3267
3268 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3269 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3270 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3271 MSYMBOL_TYPE (msymbol) == ourtype4)
3272 {
3273 if (regexp == NULL
3274 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3275 {
3276 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3277 {
3278 /* FIXME: carlton/2003-02-04: Given that the
3279 semantics of lookup_symbol keeps on changing
3280 slightly, it would be a nice idea if we had a
3281 function lookup_symbol_minsym that found the
3282 symbol associated to a given minimal symbol (if
3283 any). */
3284 if (kind == FUNCTIONS_DOMAIN
3285 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3286 (struct block *) NULL,
3287 VAR_DOMAIN, 0)
3288 == NULL)
3289 found_misc = 1;
3290 }
3291 }
3292 }
3293 }
3294 }
3295
3296 ALL_PRIMARY_SYMTABS (objfile, s)
3297 {
3298 bv = BLOCKVECTOR (s);
3299 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3300 {
3301 struct symbol_search *prevtail = tail;
3302 int nfound = 0;
3303 b = BLOCKVECTOR_BLOCK (bv, i);
3304 ALL_BLOCK_SYMBOLS (b, iter, sym)
3305 {
3306 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3307 QUIT;
3308
3309 if (file_matches (real_symtab->filename, files, nfiles)
3310 && ((regexp == NULL
3311 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3312 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3313 && SYMBOL_CLASS (sym) != LOC_BLOCK
3314 && SYMBOL_CLASS (sym) != LOC_CONST)
3315 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3316 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3317 {
3318 /* match */
3319 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3320 psr->block = i;
3321 psr->symtab = real_symtab;
3322 psr->symbol = sym;
3323 psr->msymbol = NULL;
3324 psr->next = NULL;
3325 if (tail == NULL)
3326 sr = psr;
3327 else
3328 tail->next = psr;
3329 tail = psr;
3330 nfound ++;
3331 }
3332 }
3333 if (nfound > 0)
3334 {
3335 if (prevtail == NULL)
3336 {
3337 struct symbol_search dummy;
3338
3339 dummy.next = sr;
3340 tail = sort_search_symbols (&dummy, nfound);
3341 sr = dummy.next;
3342
3343 old_chain = make_cleanup_free_search_symbols (sr);
3344 }
3345 else
3346 tail = sort_search_symbols (prevtail, nfound);
3347 }
3348 }
3349 }
3350
3351 /* If there are no eyes, avoid all contact. I mean, if there are
3352 no debug symbols, then print directly from the msymbol_vector. */
3353
3354 if (found_misc || kind != FUNCTIONS_DOMAIN)
3355 {
3356 ALL_MSYMBOLS (objfile, msymbol)
3357 {
3358 QUIT;
3359
3360 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3361 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3362 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3363 MSYMBOL_TYPE (msymbol) == ourtype4)
3364 {
3365 if (regexp == NULL
3366 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3367 {
3368 /* Functions: Look up by address. */
3369 if (kind != FUNCTIONS_DOMAIN ||
3370 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3371 {
3372 /* Variables/Absolutes: Look up by name */
3373 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3374 (struct block *) NULL, VAR_DOMAIN, 0)
3375 == NULL)
3376 {
3377 /* match */
3378 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3379 psr->block = i;
3380 psr->msymbol = msymbol;
3381 psr->symtab = NULL;
3382 psr->symbol = NULL;
3383 psr->next = NULL;
3384 if (tail == NULL)
3385 {
3386 sr = psr;
3387 old_chain = make_cleanup_free_search_symbols (sr);
3388 }
3389 else
3390 tail->next = psr;
3391 tail = psr;
3392 }
3393 }
3394 }
3395 }
3396 }
3397 }
3398
3399 *matches = sr;
3400 if (sr != NULL)
3401 discard_cleanups (old_chain);
3402 }
3403
3404 /* Helper function for symtab_symbol_info, this function uses
3405 the data returned from search_symbols() to print information
3406 regarding the match to gdb_stdout.
3407 */
3408 static void
3409 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3410 int block, char *last)
3411 {
3412 if (last == NULL || strcmp (last, s->filename) != 0)
3413 {
3414 fputs_filtered ("\nFile ", gdb_stdout);
3415 fputs_filtered (s->filename, gdb_stdout);
3416 fputs_filtered (":\n", gdb_stdout);
3417 }
3418
3419 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3420 printf_filtered ("static ");
3421
3422 /* Typedef that is not a C++ class */
3423 if (kind == TYPES_DOMAIN
3424 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3425 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3426 /* variable, func, or typedef-that-is-c++-class */
3427 else if (kind < TYPES_DOMAIN ||
3428 (kind == TYPES_DOMAIN &&
3429 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3430 {
3431 type_print (SYMBOL_TYPE (sym),
3432 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3433 ? "" : SYMBOL_PRINT_NAME (sym)),
3434 gdb_stdout, 0);
3435
3436 printf_filtered (";\n");
3437 }
3438 }
3439
3440 /* This help function for symtab_symbol_info() prints information
3441 for non-debugging symbols to gdb_stdout.
3442 */
3443 static void
3444 print_msymbol_info (struct minimal_symbol *msymbol)
3445 {
3446 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3447 char *tmp;
3448
3449 if (gdbarch_addr_bit (gdbarch) <= 32)
3450 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3451 & (CORE_ADDR) 0xffffffff,
3452 8);
3453 else
3454 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3455 16);
3456 printf_filtered ("%s %s\n",
3457 tmp, SYMBOL_PRINT_NAME (msymbol));
3458 }
3459
3460 /* This is the guts of the commands "info functions", "info types", and
3461 "info variables". It calls search_symbols to find all matches and then
3462 print_[m]symbol_info to print out some useful information about the
3463 matches.
3464 */
3465 static void
3466 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3467 {
3468 static char *classnames[]
3469 =
3470 {"variable", "function", "type", "method"};
3471 struct symbol_search *symbols;
3472 struct symbol_search *p;
3473 struct cleanup *old_chain;
3474 char *last_filename = NULL;
3475 int first = 1;
3476
3477 /* must make sure that if we're interrupted, symbols gets freed */
3478 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3479 old_chain = make_cleanup_free_search_symbols (symbols);
3480
3481 printf_filtered (regexp
3482 ? "All %ss matching regular expression \"%s\":\n"
3483 : "All defined %ss:\n",
3484 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3485
3486 for (p = symbols; p != NULL; p = p->next)
3487 {
3488 QUIT;
3489
3490 if (p->msymbol != NULL)
3491 {
3492 if (first)
3493 {
3494 printf_filtered ("\nNon-debugging symbols:\n");
3495 first = 0;
3496 }
3497 print_msymbol_info (p->msymbol);
3498 }
3499 else
3500 {
3501 print_symbol_info (kind,
3502 p->symtab,
3503 p->symbol,
3504 p->block,
3505 last_filename);
3506 last_filename = p->symtab->filename;
3507 }
3508 }
3509
3510 do_cleanups (old_chain);
3511 }
3512
3513 static void
3514 variables_info (char *regexp, int from_tty)
3515 {
3516 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3517 }
3518
3519 static void
3520 functions_info (char *regexp, int from_tty)
3521 {
3522 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3523 }
3524
3525
3526 static void
3527 types_info (char *regexp, int from_tty)
3528 {
3529 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3530 }
3531
3532 /* Breakpoint all functions matching regular expression. */
3533
3534 void
3535 rbreak_command_wrapper (char *regexp, int from_tty)
3536 {
3537 rbreak_command (regexp, from_tty);
3538 }
3539
3540 static void
3541 rbreak_command (char *regexp, int from_tty)
3542 {
3543 struct symbol_search *ss;
3544 struct symbol_search *p;
3545 struct cleanup *old_chain;
3546
3547 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3548 old_chain = make_cleanup_free_search_symbols (ss);
3549
3550 for (p = ss; p != NULL; p = p->next)
3551 {
3552 if (p->msymbol == NULL)
3553 {
3554 char *string = alloca (strlen (p->symtab->filename)
3555 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3556 + 4);
3557 strcpy (string, p->symtab->filename);
3558 strcat (string, ":'");
3559 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3560 strcat (string, "'");
3561 break_command (string, from_tty);
3562 print_symbol_info (FUNCTIONS_DOMAIN,
3563 p->symtab,
3564 p->symbol,
3565 p->block,
3566 p->symtab->filename);
3567 }
3568 else
3569 {
3570 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3571 + 3);
3572 strcpy (string, "'");
3573 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3574 strcat (string, "'");
3575
3576 break_command (string, from_tty);
3577 printf_filtered ("<function, no debug info> %s;\n",
3578 SYMBOL_PRINT_NAME (p->msymbol));
3579 }
3580 }
3581
3582 do_cleanups (old_chain);
3583 }
3584 \f
3585
3586 /* Helper routine for make_symbol_completion_list. */
3587
3588 static int return_val_size;
3589 static int return_val_index;
3590 static char **return_val;
3591
3592 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3593 completion_list_add_name \
3594 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3595
3596 /* Test to see if the symbol specified by SYMNAME (which is already
3597 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3598 characters. If so, add it to the current completion list. */
3599
3600 static void
3601 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3602 char *text, char *word)
3603 {
3604 int newsize;
3605 int i;
3606
3607 /* clip symbols that cannot match */
3608
3609 if (strncmp (symname, sym_text, sym_text_len) != 0)
3610 {
3611 return;
3612 }
3613
3614 /* We have a match for a completion, so add SYMNAME to the current list
3615 of matches. Note that the name is moved to freshly malloc'd space. */
3616
3617 {
3618 char *new;
3619 if (word == sym_text)
3620 {
3621 new = xmalloc (strlen (symname) + 5);
3622 strcpy (new, symname);
3623 }
3624 else if (word > sym_text)
3625 {
3626 /* Return some portion of symname. */
3627 new = xmalloc (strlen (symname) + 5);
3628 strcpy (new, symname + (word - sym_text));
3629 }
3630 else
3631 {
3632 /* Return some of SYM_TEXT plus symname. */
3633 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3634 strncpy (new, word, sym_text - word);
3635 new[sym_text - word] = '\0';
3636 strcat (new, symname);
3637 }
3638
3639 if (return_val_index + 3 > return_val_size)
3640 {
3641 newsize = (return_val_size *= 2) * sizeof (char *);
3642 return_val = (char **) xrealloc ((char *) return_val, newsize);
3643 }
3644 return_val[return_val_index++] = new;
3645 return_val[return_val_index] = NULL;
3646 }
3647 }
3648
3649 /* ObjC: In case we are completing on a selector, look as the msymbol
3650 again and feed all the selectors into the mill. */
3651
3652 static void
3653 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3654 int sym_text_len, char *text, char *word)
3655 {
3656 static char *tmp = NULL;
3657 static unsigned int tmplen = 0;
3658
3659 char *method, *category, *selector;
3660 char *tmp2 = NULL;
3661
3662 method = SYMBOL_NATURAL_NAME (msymbol);
3663
3664 /* Is it a method? */
3665 if ((method[0] != '-') && (method[0] != '+'))
3666 return;
3667
3668 if (sym_text[0] == '[')
3669 /* Complete on shortened method method. */
3670 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3671
3672 while ((strlen (method) + 1) >= tmplen)
3673 {
3674 if (tmplen == 0)
3675 tmplen = 1024;
3676 else
3677 tmplen *= 2;
3678 tmp = xrealloc (tmp, tmplen);
3679 }
3680 selector = strchr (method, ' ');
3681 if (selector != NULL)
3682 selector++;
3683
3684 category = strchr (method, '(');
3685
3686 if ((category != NULL) && (selector != NULL))
3687 {
3688 memcpy (tmp, method, (category - method));
3689 tmp[category - method] = ' ';
3690 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3691 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3692 if (sym_text[0] == '[')
3693 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3694 }
3695
3696 if (selector != NULL)
3697 {
3698 /* Complete on selector only. */
3699 strcpy (tmp, selector);
3700 tmp2 = strchr (tmp, ']');
3701 if (tmp2 != NULL)
3702 *tmp2 = '\0';
3703
3704 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3705 }
3706 }
3707
3708 /* Break the non-quoted text based on the characters which are in
3709 symbols. FIXME: This should probably be language-specific. */
3710
3711 static char *
3712 language_search_unquoted_string (char *text, char *p)
3713 {
3714 for (; p > text; --p)
3715 {
3716 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3717 continue;
3718 else
3719 {
3720 if ((current_language->la_language == language_objc))
3721 {
3722 if (p[-1] == ':') /* might be part of a method name */
3723 continue;
3724 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3725 p -= 2; /* beginning of a method name */
3726 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3727 { /* might be part of a method name */
3728 char *t = p;
3729
3730 /* Seeing a ' ' or a '(' is not conclusive evidence
3731 that we are in the middle of a method name. However,
3732 finding "-[" or "+[" should be pretty un-ambiguous.
3733 Unfortunately we have to find it now to decide. */
3734
3735 while (t > text)
3736 if (isalnum (t[-1]) || t[-1] == '_' ||
3737 t[-1] == ' ' || t[-1] == ':' ||
3738 t[-1] == '(' || t[-1] == ')')
3739 --t;
3740 else
3741 break;
3742
3743 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3744 p = t - 2; /* method name detected */
3745 /* else we leave with p unchanged */
3746 }
3747 }
3748 break;
3749 }
3750 }
3751 return p;
3752 }
3753
3754 static void
3755 completion_list_add_fields (struct symbol *sym, char *sym_text,
3756 int sym_text_len, char *text, char *word)
3757 {
3758 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3759 {
3760 struct type *t = SYMBOL_TYPE (sym);
3761 enum type_code c = TYPE_CODE (t);
3762 int j;
3763
3764 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3765 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3766 if (TYPE_FIELD_NAME (t, j))
3767 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3768 sym_text, sym_text_len, text, word);
3769 }
3770 }
3771
3772 /* Type of the user_data argument passed to add_macro_name. The
3773 contents are simply whatever is needed by
3774 completion_list_add_name. */
3775 struct add_macro_name_data
3776 {
3777 char *sym_text;
3778 int sym_text_len;
3779 char *text;
3780 char *word;
3781 };
3782
3783 /* A callback used with macro_for_each and macro_for_each_in_scope.
3784 This adds a macro's name to the current completion list. */
3785 static void
3786 add_macro_name (const char *name, const struct macro_definition *ignore,
3787 void *user_data)
3788 {
3789 struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3790 completion_list_add_name ((char *) name,
3791 datum->sym_text, datum->sym_text_len,
3792 datum->text, datum->word);
3793 }
3794
3795 char **
3796 default_make_symbol_completion_list (char *text, char *word)
3797 {
3798 /* Problem: All of the symbols have to be copied because readline
3799 frees them. I'm not going to worry about this; hopefully there
3800 won't be that many. */
3801
3802 struct symbol *sym;
3803 struct symtab *s;
3804 struct partial_symtab *ps;
3805 struct minimal_symbol *msymbol;
3806 struct objfile *objfile;
3807 struct block *b;
3808 const struct block *surrounding_static_block, *surrounding_global_block;
3809 struct dict_iterator iter;
3810 struct partial_symbol **psym;
3811 /* The symbol we are completing on. Points in same buffer as text. */
3812 char *sym_text;
3813 /* Length of sym_text. */
3814 int sym_text_len;
3815
3816 /* Now look for the symbol we are supposed to complete on. */
3817 {
3818 char *p;
3819 char quote_found;
3820 char *quote_pos = NULL;
3821
3822 /* First see if this is a quoted string. */
3823 quote_found = '\0';
3824 for (p = text; *p != '\0'; ++p)
3825 {
3826 if (quote_found != '\0')
3827 {
3828 if (*p == quote_found)
3829 /* Found close quote. */
3830 quote_found = '\0';
3831 else if (*p == '\\' && p[1] == quote_found)
3832 /* A backslash followed by the quote character
3833 doesn't end the string. */
3834 ++p;
3835 }
3836 else if (*p == '\'' || *p == '"')
3837 {
3838 quote_found = *p;
3839 quote_pos = p;
3840 }
3841 }
3842 if (quote_found == '\'')
3843 /* A string within single quotes can be a symbol, so complete on it. */
3844 sym_text = quote_pos + 1;
3845 else if (quote_found == '"')
3846 /* A double-quoted string is never a symbol, nor does it make sense
3847 to complete it any other way. */
3848 {
3849 return_val = (char **) xmalloc (sizeof (char *));
3850 return_val[0] = NULL;
3851 return return_val;
3852 }
3853 else
3854 {
3855 /* It is not a quoted string. Break it based on the characters
3856 which are in symbols. */
3857 while (p > text)
3858 {
3859 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3860 || p[-1] == ':')
3861 --p;
3862 else
3863 break;
3864 }
3865 sym_text = p;
3866 }
3867 }
3868
3869 sym_text_len = strlen (sym_text);
3870
3871 return_val_size = 100;
3872 return_val_index = 0;
3873 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3874 return_val[0] = NULL;
3875
3876 /* Look through the partial symtabs for all symbols which begin
3877 by matching SYM_TEXT. Add each one that you find to the list. */
3878
3879 ALL_PSYMTABS (objfile, ps)
3880 {
3881 /* If the psymtab's been read in we'll get it when we search
3882 through the blockvector. */
3883 if (ps->readin)
3884 continue;
3885
3886 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3887 psym < (objfile->global_psymbols.list + ps->globals_offset
3888 + ps->n_global_syms);
3889 psym++)
3890 {
3891 /* If interrupted, then quit. */
3892 QUIT;
3893 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3894 }
3895
3896 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3897 psym < (objfile->static_psymbols.list + ps->statics_offset
3898 + ps->n_static_syms);
3899 psym++)
3900 {
3901 QUIT;
3902 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3903 }
3904 }
3905
3906 /* At this point scan through the misc symbol vectors and add each
3907 symbol you find to the list. Eventually we want to ignore
3908 anything that isn't a text symbol (everything else will be
3909 handled by the psymtab code above). */
3910
3911 ALL_MSYMBOLS (objfile, msymbol)
3912 {
3913 QUIT;
3914 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3915
3916 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3917 }
3918
3919 /* Search upwards from currently selected frame (so that we can
3920 complete on local vars). Also catch fields of types defined in
3921 this places which match our text string. Only complete on types
3922 visible from current context. */
3923
3924 b = get_selected_block (0);
3925 surrounding_static_block = block_static_block (b);
3926 surrounding_global_block = block_global_block (b);
3927 if (surrounding_static_block != NULL)
3928 while (b != surrounding_static_block)
3929 {
3930 QUIT;
3931
3932 ALL_BLOCK_SYMBOLS (b, iter, sym)
3933 {
3934 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3935 word);
3936 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3937 word);
3938 }
3939
3940 /* Stop when we encounter an enclosing function. Do not stop for
3941 non-inlined functions - the locals of the enclosing function
3942 are in scope for a nested function. */
3943 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3944 break;
3945 b = BLOCK_SUPERBLOCK (b);
3946 }
3947
3948 /* Add fields from the file's types; symbols will be added below. */
3949
3950 if (surrounding_static_block != NULL)
3951 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3952 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3953
3954 if (surrounding_global_block != NULL)
3955 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3956 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3957
3958 /* Go through the symtabs and check the externs and statics for
3959 symbols which match. */
3960
3961 ALL_PRIMARY_SYMTABS (objfile, s)
3962 {
3963 QUIT;
3964 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3965 ALL_BLOCK_SYMBOLS (b, iter, sym)
3966 {
3967 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3968 }
3969 }
3970
3971 ALL_PRIMARY_SYMTABS (objfile, s)
3972 {
3973 QUIT;
3974 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3975 ALL_BLOCK_SYMBOLS (b, iter, sym)
3976 {
3977 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3978 }
3979 }
3980
3981 if (current_language->la_macro_expansion == macro_expansion_c)
3982 {
3983 struct macro_scope *scope;
3984 struct add_macro_name_data datum;
3985
3986 datum.sym_text = sym_text;
3987 datum.sym_text_len = sym_text_len;
3988 datum.text = text;
3989 datum.word = word;
3990
3991 /* Add any macros visible in the default scope. Note that this
3992 may yield the occasional wrong result, because an expression
3993 might be evaluated in a scope other than the default. For
3994 example, if the user types "break file:line if <TAB>", the
3995 resulting expression will be evaluated at "file:line" -- but
3996 at there does not seem to be a way to detect this at
3997 completion time. */
3998 scope = default_macro_scope ();
3999 if (scope)
4000 {
4001 macro_for_each_in_scope (scope->file, scope->line,
4002 add_macro_name, &datum);
4003 xfree (scope);
4004 }
4005
4006 /* User-defined macros are always visible. */
4007 macro_for_each (macro_user_macros, add_macro_name, &datum);
4008 }
4009
4010 return (return_val);
4011 }
4012
4013 /* Return a NULL terminated array of all symbols (regardless of class)
4014 which begin by matching TEXT. If the answer is no symbols, then
4015 the return value is an array which contains only a NULL pointer. */
4016
4017 char **
4018 make_symbol_completion_list (char *text, char *word)
4019 {
4020 return current_language->la_make_symbol_completion_list (text, word);
4021 }
4022
4023 /* Like make_symbol_completion_list, but suitable for use as a
4024 completion function. */
4025
4026 char **
4027 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4028 char *text, char *word)
4029 {
4030 return make_symbol_completion_list (text, word);
4031 }
4032
4033 /* Like make_symbol_completion_list, but returns a list of symbols
4034 defined in a source file FILE. */
4035
4036 char **
4037 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4038 {
4039 struct symbol *sym;
4040 struct symtab *s;
4041 struct block *b;
4042 struct dict_iterator iter;
4043 /* The symbol we are completing on. Points in same buffer as text. */
4044 char *sym_text;
4045 /* Length of sym_text. */
4046 int sym_text_len;
4047
4048 /* Now look for the symbol we are supposed to complete on.
4049 FIXME: This should be language-specific. */
4050 {
4051 char *p;
4052 char quote_found;
4053 char *quote_pos = NULL;
4054
4055 /* First see if this is a quoted string. */
4056 quote_found = '\0';
4057 for (p = text; *p != '\0'; ++p)
4058 {
4059 if (quote_found != '\0')
4060 {
4061 if (*p == quote_found)
4062 /* Found close quote. */
4063 quote_found = '\0';
4064 else if (*p == '\\' && p[1] == quote_found)
4065 /* A backslash followed by the quote character
4066 doesn't end the string. */
4067 ++p;
4068 }
4069 else if (*p == '\'' || *p == '"')
4070 {
4071 quote_found = *p;
4072 quote_pos = p;
4073 }
4074 }
4075 if (quote_found == '\'')
4076 /* A string within single quotes can be a symbol, so complete on it. */
4077 sym_text = quote_pos + 1;
4078 else if (quote_found == '"')
4079 /* A double-quoted string is never a symbol, nor does it make sense
4080 to complete it any other way. */
4081 {
4082 return_val = (char **) xmalloc (sizeof (char *));
4083 return_val[0] = NULL;
4084 return return_val;
4085 }
4086 else
4087 {
4088 /* Not a quoted string. */
4089 sym_text = language_search_unquoted_string (text, p);
4090 }
4091 }
4092
4093 sym_text_len = strlen (sym_text);
4094
4095 return_val_size = 10;
4096 return_val_index = 0;
4097 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4098 return_val[0] = NULL;
4099
4100 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4101 in). */
4102 s = lookup_symtab (srcfile);
4103 if (s == NULL)
4104 {
4105 /* Maybe they typed the file with leading directories, while the
4106 symbol tables record only its basename. */
4107 const char *tail = lbasename (srcfile);
4108
4109 if (tail > srcfile)
4110 s = lookup_symtab (tail);
4111 }
4112
4113 /* If we have no symtab for that file, return an empty list. */
4114 if (s == NULL)
4115 return (return_val);
4116
4117 /* Go through this symtab and check the externs and statics for
4118 symbols which match. */
4119
4120 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4121 ALL_BLOCK_SYMBOLS (b, iter, sym)
4122 {
4123 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4124 }
4125
4126 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4127 ALL_BLOCK_SYMBOLS (b, iter, sym)
4128 {
4129 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4130 }
4131
4132 return (return_val);
4133 }
4134
4135 /* A helper function for make_source_files_completion_list. It adds
4136 another file name to a list of possible completions, growing the
4137 list as necessary. */
4138
4139 static void
4140 add_filename_to_list (const char *fname, char *text, char *word,
4141 char ***list, int *list_used, int *list_alloced)
4142 {
4143 char *new;
4144 size_t fnlen = strlen (fname);
4145
4146 if (*list_used + 1 >= *list_alloced)
4147 {
4148 *list_alloced *= 2;
4149 *list = (char **) xrealloc ((char *) *list,
4150 *list_alloced * sizeof (char *));
4151 }
4152
4153 if (word == text)
4154 {
4155 /* Return exactly fname. */
4156 new = xmalloc (fnlen + 5);
4157 strcpy (new, fname);
4158 }
4159 else if (word > text)
4160 {
4161 /* Return some portion of fname. */
4162 new = xmalloc (fnlen + 5);
4163 strcpy (new, fname + (word - text));
4164 }
4165 else
4166 {
4167 /* Return some of TEXT plus fname. */
4168 new = xmalloc (fnlen + (text - word) + 5);
4169 strncpy (new, word, text - word);
4170 new[text - word] = '\0';
4171 strcat (new, fname);
4172 }
4173 (*list)[*list_used] = new;
4174 (*list)[++*list_used] = NULL;
4175 }
4176
4177 static int
4178 not_interesting_fname (const char *fname)
4179 {
4180 static const char *illegal_aliens[] = {
4181 "_globals_", /* inserted by coff_symtab_read */
4182 NULL
4183 };
4184 int i;
4185
4186 for (i = 0; illegal_aliens[i]; i++)
4187 {
4188 if (strcmp (fname, illegal_aliens[i]) == 0)
4189 return 1;
4190 }
4191 return 0;
4192 }
4193
4194 /* Return a NULL terminated array of all source files whose names
4195 begin with matching TEXT. The file names are looked up in the
4196 symbol tables of this program. If the answer is no matchess, then
4197 the return value is an array which contains only a NULL pointer. */
4198
4199 char **
4200 make_source_files_completion_list (char *text, char *word)
4201 {
4202 struct symtab *s;
4203 struct partial_symtab *ps;
4204 struct objfile *objfile;
4205 int first = 1;
4206 int list_alloced = 1;
4207 int list_used = 0;
4208 size_t text_len = strlen (text);
4209 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4210 const char *base_name;
4211
4212 list[0] = NULL;
4213
4214 if (!have_full_symbols () && !have_partial_symbols ())
4215 return list;
4216
4217 ALL_SYMTABS (objfile, s)
4218 {
4219 if (not_interesting_fname (s->filename))
4220 continue;
4221 if (!filename_seen (s->filename, 1, &first)
4222 #if HAVE_DOS_BASED_FILE_SYSTEM
4223 && strncasecmp (s->filename, text, text_len) == 0
4224 #else
4225 && strncmp (s->filename, text, text_len) == 0
4226 #endif
4227 )
4228 {
4229 /* This file matches for a completion; add it to the current
4230 list of matches. */
4231 add_filename_to_list (s->filename, text, word,
4232 &list, &list_used, &list_alloced);
4233 }
4234 else
4235 {
4236 /* NOTE: We allow the user to type a base name when the
4237 debug info records leading directories, but not the other
4238 way around. This is what subroutines of breakpoint
4239 command do when they parse file names. */
4240 base_name = lbasename (s->filename);
4241 if (base_name != s->filename
4242 && !filename_seen (base_name, 1, &first)
4243 #if HAVE_DOS_BASED_FILE_SYSTEM
4244 && strncasecmp (base_name, text, text_len) == 0
4245 #else
4246 && strncmp (base_name, text, text_len) == 0
4247 #endif
4248 )
4249 add_filename_to_list (base_name, text, word,
4250 &list, &list_used, &list_alloced);
4251 }
4252 }
4253
4254 ALL_PSYMTABS (objfile, ps)
4255 {
4256 if (not_interesting_fname (ps->filename))
4257 continue;
4258 if (!ps->readin)
4259 {
4260 if (!filename_seen (ps->filename, 1, &first)
4261 #if HAVE_DOS_BASED_FILE_SYSTEM
4262 && strncasecmp (ps->filename, text, text_len) == 0
4263 #else
4264 && strncmp (ps->filename, text, text_len) == 0
4265 #endif
4266 )
4267 {
4268 /* This file matches for a completion; add it to the
4269 current list of matches. */
4270 add_filename_to_list (ps->filename, text, word,
4271 &list, &list_used, &list_alloced);
4272
4273 }
4274 else
4275 {
4276 base_name = lbasename (ps->filename);
4277 if (base_name != ps->filename
4278 && !filename_seen (base_name, 1, &first)
4279 #if HAVE_DOS_BASED_FILE_SYSTEM
4280 && strncasecmp (base_name, text, text_len) == 0
4281 #else
4282 && strncmp (base_name, text, text_len) == 0
4283 #endif
4284 )
4285 add_filename_to_list (base_name, text, word,
4286 &list, &list_used, &list_alloced);
4287 }
4288 }
4289 }
4290
4291 return list;
4292 }
4293
4294 /* Determine if PC is in the prologue of a function. The prologue is the area
4295 between the first instruction of a function, and the first executable line.
4296 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4297
4298 If non-zero, func_start is where we think the prologue starts, possibly
4299 by previous examination of symbol table information.
4300 */
4301
4302 int
4303 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4304 {
4305 struct symtab_and_line sal;
4306 CORE_ADDR func_addr, func_end;
4307
4308 /* We have several sources of information we can consult to figure
4309 this out.
4310 - Compilers usually emit line number info that marks the prologue
4311 as its own "source line". So the ending address of that "line"
4312 is the end of the prologue. If available, this is the most
4313 reliable method.
4314 - The minimal symbols and partial symbols, which can usually tell
4315 us the starting and ending addresses of a function.
4316 - If we know the function's start address, we can call the
4317 architecture-defined gdbarch_skip_prologue function to analyze the
4318 instruction stream and guess where the prologue ends.
4319 - Our `func_start' argument; if non-zero, this is the caller's
4320 best guess as to the function's entry point. At the time of
4321 this writing, handle_inferior_event doesn't get this right, so
4322 it should be our last resort. */
4323
4324 /* Consult the partial symbol table, to find which function
4325 the PC is in. */
4326 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4327 {
4328 CORE_ADDR prologue_end;
4329
4330 /* We don't even have minsym information, so fall back to using
4331 func_start, if given. */
4332 if (! func_start)
4333 return 1; /* We *might* be in a prologue. */
4334
4335 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4336
4337 return func_start <= pc && pc < prologue_end;
4338 }
4339
4340 /* If we have line number information for the function, that's
4341 usually pretty reliable. */
4342 sal = find_pc_line (func_addr, 0);
4343
4344 /* Now sal describes the source line at the function's entry point,
4345 which (by convention) is the prologue. The end of that "line",
4346 sal.end, is the end of the prologue.
4347
4348 Note that, for functions whose source code is all on a single
4349 line, the line number information doesn't always end up this way.
4350 So we must verify that our purported end-of-prologue address is
4351 *within* the function, not at its start or end. */
4352 if (sal.line == 0
4353 || sal.end <= func_addr
4354 || func_end <= sal.end)
4355 {
4356 /* We don't have any good line number info, so use the minsym
4357 information, together with the architecture-specific prologue
4358 scanning code. */
4359 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4360
4361 return func_addr <= pc && pc < prologue_end;
4362 }
4363
4364 /* We have line number info, and it looks good. */
4365 return func_addr <= pc && pc < sal.end;
4366 }
4367
4368 /* Given PC at the function's start address, attempt to find the
4369 prologue end using SAL information. Return zero if the skip fails.
4370
4371 A non-optimized prologue traditionally has one SAL for the function
4372 and a second for the function body. A single line function has
4373 them both pointing at the same line.
4374
4375 An optimized prologue is similar but the prologue may contain
4376 instructions (SALs) from the instruction body. Need to skip those
4377 while not getting into the function body.
4378
4379 The functions end point and an increasing SAL line are used as
4380 indicators of the prologue's endpoint.
4381
4382 This code is based on the function refine_prologue_limit (versions
4383 found in both ia64 and ppc). */
4384
4385 CORE_ADDR
4386 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4387 {
4388 struct symtab_and_line prologue_sal;
4389 CORE_ADDR start_pc;
4390 CORE_ADDR end_pc;
4391 struct block *bl;
4392
4393 /* Get an initial range for the function. */
4394 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4395 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4396
4397 prologue_sal = find_pc_line (start_pc, 0);
4398 if (prologue_sal.line != 0)
4399 {
4400 /* For langauges other than assembly, treat two consecutive line
4401 entries at the same address as a zero-instruction prologue.
4402 The GNU assembler emits separate line notes for each instruction
4403 in a multi-instruction macro, but compilers generally will not
4404 do this. */
4405 if (prologue_sal.symtab->language != language_asm)
4406 {
4407 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4408 int exact;
4409 int idx = 0;
4410
4411 /* Skip any earlier lines, and any end-of-sequence marker
4412 from a previous function. */
4413 while (linetable->item[idx].pc != prologue_sal.pc
4414 || linetable->item[idx].line == 0)
4415 idx++;
4416
4417 if (idx+1 < linetable->nitems
4418 && linetable->item[idx+1].line != 0
4419 && linetable->item[idx+1].pc == start_pc)
4420 return start_pc;
4421 }
4422
4423 /* If there is only one sal that covers the entire function,
4424 then it is probably a single line function, like
4425 "foo(){}". */
4426 if (prologue_sal.end >= end_pc)
4427 return 0;
4428
4429 while (prologue_sal.end < end_pc)
4430 {
4431 struct symtab_and_line sal;
4432
4433 sal = find_pc_line (prologue_sal.end, 0);
4434 if (sal.line == 0)
4435 break;
4436 /* Assume that a consecutive SAL for the same (or larger)
4437 line mark the prologue -> body transition. */
4438 if (sal.line >= prologue_sal.line)
4439 break;
4440
4441 /* The line number is smaller. Check that it's from the
4442 same function, not something inlined. If it's inlined,
4443 then there is no point comparing the line numbers. */
4444 bl = block_for_pc (prologue_sal.end);
4445 while (bl)
4446 {
4447 if (block_inlined_p (bl))
4448 break;
4449 if (BLOCK_FUNCTION (bl))
4450 {
4451 bl = NULL;
4452 break;
4453 }
4454 bl = BLOCK_SUPERBLOCK (bl);
4455 }
4456 if (bl != NULL)
4457 break;
4458
4459 /* The case in which compiler's optimizer/scheduler has
4460 moved instructions into the prologue. We look ahead in
4461 the function looking for address ranges whose
4462 corresponding line number is less the first one that we
4463 found for the function. This is more conservative then
4464 refine_prologue_limit which scans a large number of SALs
4465 looking for any in the prologue */
4466 prologue_sal = sal;
4467 }
4468 }
4469
4470 if (prologue_sal.end < end_pc)
4471 /* Return the end of this line, or zero if we could not find a
4472 line. */
4473 return prologue_sal.end;
4474 else
4475 /* Don't return END_PC, which is past the end of the function. */
4476 return prologue_sal.pc;
4477 }
4478 \f
4479 struct symtabs_and_lines
4480 decode_line_spec (char *string, int funfirstline)
4481 {
4482 struct symtabs_and_lines sals;
4483 struct symtab_and_line cursal;
4484
4485 if (string == 0)
4486 error (_("Empty line specification."));
4487
4488 /* We use whatever is set as the current source line. We do not try
4489 and get a default or it will recursively call us! */
4490 cursal = get_current_source_symtab_and_line ();
4491
4492 sals = decode_line_1 (&string, funfirstline,
4493 cursal.symtab, cursal.line,
4494 (char ***) NULL, NULL);
4495
4496 if (*string)
4497 error (_("Junk at end of line specification: %s"), string);
4498 return sals;
4499 }
4500
4501 /* Track MAIN */
4502 static char *name_of_main;
4503
4504 void
4505 set_main_name (const char *name)
4506 {
4507 if (name_of_main != NULL)
4508 {
4509 xfree (name_of_main);
4510 name_of_main = NULL;
4511 }
4512 if (name != NULL)
4513 {
4514 name_of_main = xstrdup (name);
4515 }
4516 }
4517
4518 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4519 accordingly. */
4520
4521 static void
4522 find_main_name (void)
4523 {
4524 const char *new_main_name;
4525
4526 /* Try to see if the main procedure is in Ada. */
4527 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4528 be to add a new method in the language vector, and call this
4529 method for each language until one of them returns a non-empty
4530 name. This would allow us to remove this hard-coded call to
4531 an Ada function. It is not clear that this is a better approach
4532 at this point, because all methods need to be written in a way
4533 such that false positives never be returned. For instance, it is
4534 important that a method does not return a wrong name for the main
4535 procedure if the main procedure is actually written in a different
4536 language. It is easy to guaranty this with Ada, since we use a
4537 special symbol generated only when the main in Ada to find the name
4538 of the main procedure. It is difficult however to see how this can
4539 be guarantied for languages such as C, for instance. This suggests
4540 that order of call for these methods becomes important, which means
4541 a more complicated approach. */
4542 new_main_name = ada_main_name ();
4543 if (new_main_name != NULL)
4544 {
4545 set_main_name (new_main_name);
4546 return;
4547 }
4548
4549 new_main_name = pascal_main_name ();
4550 if (new_main_name != NULL)
4551 {
4552 set_main_name (new_main_name);
4553 return;
4554 }
4555
4556 /* The languages above didn't identify the name of the main procedure.
4557 Fallback to "main". */
4558 set_main_name ("main");
4559 }
4560
4561 char *
4562 main_name (void)
4563 {
4564 if (name_of_main == NULL)
4565 find_main_name ();
4566
4567 return name_of_main;
4568 }
4569
4570 /* Handle ``executable_changed'' events for the symtab module. */
4571
4572 static void
4573 symtab_observer_executable_changed (void)
4574 {
4575 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4576 set_main_name (NULL);
4577 }
4578
4579 /* Helper to expand_line_sal below. Appends new sal to SAL,
4580 initializing it from SYMTAB, LINENO and PC. */
4581 static void
4582 append_expanded_sal (struct symtabs_and_lines *sal,
4583 struct program_space *pspace,
4584 struct symtab *symtab,
4585 int lineno, CORE_ADDR pc)
4586 {
4587 sal->sals = xrealloc (sal->sals,
4588 sizeof (sal->sals[0])
4589 * (sal->nelts + 1));
4590 init_sal (sal->sals + sal->nelts);
4591 sal->sals[sal->nelts].pspace = pspace;
4592 sal->sals[sal->nelts].symtab = symtab;
4593 sal->sals[sal->nelts].section = NULL;
4594 sal->sals[sal->nelts].end = 0;
4595 sal->sals[sal->nelts].line = lineno;
4596 sal->sals[sal->nelts].pc = pc;
4597 ++sal->nelts;
4598 }
4599
4600 /* Helper to expand_line_sal below. Search in the symtabs for any
4601 linetable entry that exactly matches FULLNAME and LINENO and append
4602 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4603 use FILENAME and LINENO instead. If there is at least one match,
4604 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4605 and BEST_SYMTAB. */
4606
4607 static int
4608 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4609 struct symtabs_and_lines *ret,
4610 struct linetable_entry **best_item,
4611 struct symtab **best_symtab)
4612 {
4613 struct program_space *pspace;
4614 struct objfile *objfile;
4615 struct symtab *symtab;
4616 int exact = 0;
4617 int j;
4618 *best_item = 0;
4619 *best_symtab = 0;
4620
4621 ALL_PSPACES (pspace)
4622 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4623 {
4624 if (FILENAME_CMP (filename, symtab->filename) == 0)
4625 {
4626 struct linetable *l;
4627 int len;
4628 if (fullname != NULL
4629 && symtab_to_fullname (symtab) != NULL
4630 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4631 continue;
4632 l = LINETABLE (symtab);
4633 if (!l)
4634 continue;
4635 len = l->nitems;
4636
4637 for (j = 0; j < len; j++)
4638 {
4639 struct linetable_entry *item = &(l->item[j]);
4640
4641 if (item->line == lineno)
4642 {
4643 exact = 1;
4644 append_expanded_sal (ret, objfile->pspace,
4645 symtab, lineno, item->pc);
4646 }
4647 else if (!exact && item->line > lineno
4648 && (*best_item == NULL
4649 || item->line < (*best_item)->line))
4650 {
4651 *best_item = item;
4652 *best_symtab = symtab;
4653 }
4654 }
4655 }
4656 }
4657 return exact;
4658 }
4659
4660 /* Compute a set of all sals in all program spaces that correspond to
4661 same file and line as SAL and return those. If there are several
4662 sals that belong to the same block, only one sal for the block is
4663 included in results. */
4664
4665 struct symtabs_and_lines
4666 expand_line_sal (struct symtab_and_line sal)
4667 {
4668 struct symtabs_and_lines ret, this_line;
4669 int i, j;
4670 struct objfile *objfile;
4671 struct partial_symtab *psymtab;
4672 struct symtab *symtab;
4673 int lineno;
4674 int deleted = 0;
4675 struct block **blocks = NULL;
4676 int *filter;
4677 struct cleanup *old_chain;
4678
4679 ret.nelts = 0;
4680 ret.sals = NULL;
4681
4682 /* Only expand sals that represent file.c:line. */
4683 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4684 {
4685 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4686 ret.sals[0] = sal;
4687 ret.nelts = 1;
4688 return ret;
4689 }
4690 else
4691 {
4692 struct program_space *pspace;
4693 struct linetable_entry *best_item = 0;
4694 struct symtab *best_symtab = 0;
4695 int exact = 0;
4696 char *match_filename;
4697
4698 lineno = sal.line;
4699 match_filename = sal.symtab->filename;
4700
4701 /* We need to find all symtabs for a file which name
4702 is described by sal. We cannot just directly
4703 iterate over symtabs, since a symtab might not be
4704 yet created. We also cannot iterate over psymtabs,
4705 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4706 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4707 corresponding to an included file. Therefore, we do
4708 first pass over psymtabs, reading in those with
4709 the right name. Then, we iterate over symtabs, knowing
4710 that all symtabs we're interested in are loaded. */
4711
4712 old_chain = save_current_program_space ();
4713 ALL_PSPACES (pspace)
4714 ALL_PSPACE_PSYMTABS (pspace, objfile, psymtab)
4715 {
4716 if (FILENAME_CMP (match_filename, psymtab->filename) == 0)
4717 {
4718 set_current_program_space (pspace);
4719
4720 PSYMTAB_TO_SYMTAB (psymtab);
4721 }
4722 }
4723 do_cleanups (old_chain);
4724
4725 /* Now search the symtab for exact matches and append them. If
4726 none is found, append the best_item and all its exact
4727 matches. */
4728 symtab_to_fullname (sal.symtab);
4729 exact = append_exact_match_to_sals (sal.symtab->filename,
4730 sal.symtab->fullname, lineno,
4731 &ret, &best_item, &best_symtab);
4732 if (!exact && best_item)
4733 append_exact_match_to_sals (best_symtab->filename,
4734 best_symtab->fullname, best_item->line,
4735 &ret, &best_item, &best_symtab);
4736 }
4737
4738 /* For optimized code, compiler can scatter one source line accross
4739 disjoint ranges of PC values, even when no duplicate functions
4740 or inline functions are involved. For example, 'for (;;)' inside
4741 non-template non-inline non-ctor-or-dtor function can result
4742 in two PC ranges. In this case, we don't want to set breakpoint
4743 on first PC of each range. To filter such cases, we use containing
4744 blocks -- for each PC found above we see if there are other PCs
4745 that are in the same block. If yes, the other PCs are filtered out. */
4746
4747 old_chain = save_current_program_space ();
4748 filter = alloca (ret.nelts * sizeof (int));
4749 blocks = alloca (ret.nelts * sizeof (struct block *));
4750 for (i = 0; i < ret.nelts; ++i)
4751 {
4752 struct blockvector *bl;
4753 struct block *b;
4754
4755 set_current_program_space (ret.sals[i].pspace);
4756
4757 filter[i] = 1;
4758 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4759
4760 }
4761 do_cleanups (old_chain);
4762
4763 for (i = 0; i < ret.nelts; ++i)
4764 if (blocks[i] != NULL)
4765 for (j = i+1; j < ret.nelts; ++j)
4766 if (blocks[j] == blocks[i])
4767 {
4768 filter[j] = 0;
4769 ++deleted;
4770 break;
4771 }
4772
4773 {
4774 struct symtab_and_line *final =
4775 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4776
4777 for (i = 0, j = 0; i < ret.nelts; ++i)
4778 if (filter[i])
4779 final[j++] = ret.sals[i];
4780
4781 ret.nelts -= deleted;
4782 xfree (ret.sals);
4783 ret.sals = final;
4784 }
4785
4786 return ret;
4787 }
4788
4789
4790 void
4791 _initialize_symtab (void)
4792 {
4793 add_info ("variables", variables_info, _("\
4794 All global and static variable names, or those matching REGEXP."));
4795 if (dbx_commands)
4796 add_com ("whereis", class_info, variables_info, _("\
4797 All global and static variable names, or those matching REGEXP."));
4798
4799 add_info ("functions", functions_info,
4800 _("All function names, or those matching REGEXP."));
4801
4802 /* FIXME: This command has at least the following problems:
4803 1. It prints builtin types (in a very strange and confusing fashion).
4804 2. It doesn't print right, e.g. with
4805 typedef struct foo *FOO
4806 type_print prints "FOO" when we want to make it (in this situation)
4807 print "struct foo *".
4808 I also think "ptype" or "whatis" is more likely to be useful (but if
4809 there is much disagreement "info types" can be fixed). */
4810 add_info ("types", types_info,
4811 _("All type names, or those matching REGEXP."));
4812
4813 add_info ("sources", sources_info,
4814 _("Source files in the program."));
4815
4816 add_com ("rbreak", class_breakpoint, rbreak_command,
4817 _("Set a breakpoint for all functions matching REGEXP."));
4818
4819 if (xdb_commands)
4820 {
4821 add_com ("lf", class_info, sources_info,
4822 _("Source files in the program"));
4823 add_com ("lg", class_info, variables_info, _("\
4824 All global and static variable names, or those matching REGEXP."));
4825 }
4826
4827 add_setshow_enum_cmd ("multiple-symbols", no_class,
4828 multiple_symbols_modes, &multiple_symbols_mode,
4829 _("\
4830 Set the debugger behavior when more than one symbol are possible matches\n\
4831 in an expression."), _("\
4832 Show how the debugger handles ambiguities in expressions."), _("\
4833 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4834 NULL, NULL, &setlist, &showlist);
4835
4836 observer_attach_executable_changed (symtab_observer_executable_changed);
4837 }
This page took 0.121971 seconds and 5 git commands to generate.