gdb
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "source.h"
37 #include "filenames.h" /* for FILENAME_CMP */
38 #include "objc-lang.h"
39 #include "d-lang.h"
40 #include "ada-lang.h"
41 #include "go-lang.h"
42 #include "p-lang.h"
43 #include "addrmap.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 int *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 static void print_msymbol_info (struct minimal_symbol *);
105
106 void _initialize_symtab (void);
107
108 /* */
109
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). SEARCH_LEN is the length of
151 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
152 Returns true if they match, false otherwise. */
153
154 int
155 compare_filenames_for_search (const char *filename, const char *search_name,
156 int search_len)
157 {
158 int len = strlen (filename);
159
160 if (len < search_len)
161 return 0;
162
163 /* The tail of FILENAME must match. */
164 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
165 return 0;
166
167 /* Either the names must completely match, or the character
168 preceding the trailing SEARCH_NAME segment of FILENAME must be a
169 directory separator. */
170 return (len == search_len
171 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
172 || (HAS_DRIVE_SPEC (filename)
173 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
174 }
175
176 /* Check for a symtab of a specific name by searching some symtabs.
177 This is a helper function for callbacks of iterate_over_symtabs.
178
179 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
180 are identical to the `map_symtabs_matching_filename' method of
181 quick_symbol_functions.
182
183 FIRST and AFTER_LAST indicate the range of symtabs to search.
184 AFTER_LAST is one past the last symtab to search; NULL means to
185 search until the end of the list. */
186
187 int
188 iterate_over_some_symtabs (const char *name,
189 const char *full_path,
190 const char *real_path,
191 int (*callback) (struct symtab *symtab,
192 void *data),
193 void *data,
194 struct symtab *first,
195 struct symtab *after_last)
196 {
197 struct symtab *s = NULL;
198 const char* base_name = lbasename (name);
199 int name_len = strlen (name);
200 int is_abs = IS_ABSOLUTE_PATH (name);
201
202 for (s = first; s != NULL && s != after_last; s = s->next)
203 {
204 /* Exact match is always ok. */
205 if (FILENAME_CMP (name, s->filename) == 0)
206 {
207 if (callback (s, data))
208 return 1;
209 }
210
211 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
212 {
213 if (callback (s, data))
214 return 1;
215 }
216
217 /* Before we invoke realpath, which can get expensive when many
218 files are involved, do a quick comparison of the basenames. */
219 if (! basenames_may_differ
220 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
221 continue;
222
223 /* If the user gave us an absolute path, try to find the file in
224 this symtab and use its absolute path. */
225
226 if (full_path != NULL)
227 {
228 const char *fp = symtab_to_fullname (s);
229
230 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
231 {
232 if (callback (s, data))
233 return 1;
234 }
235
236 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
237 name_len))
238 {
239 if (callback (s, data))
240 return 1;
241 }
242 }
243
244 if (real_path != NULL)
245 {
246 const char *fullname = symtab_to_fullname (s);
247
248 if (fullname != NULL)
249 {
250 char *rp = gdb_realpath (fullname);
251
252 make_cleanup (xfree, rp);
253 if (FILENAME_CMP (real_path, rp) == 0)
254 {
255 if (callback (s, data))
256 return 1;
257 }
258
259 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
260 {
261 if (callback (s, data))
262 return 1;
263 }
264 }
265 }
266 }
267
268 return 0;
269 }
270
271 /* Check for a symtab of a specific name; first in symtabs, then in
272 psymtabs. *If* there is no '/' in the name, a match after a '/'
273 in the symtab filename will also work.
274
275 Calls CALLBACK with each symtab that is found and with the supplied
276 DATA. If CALLBACK returns true, the search stops. */
277
278 void
279 iterate_over_symtabs (const char *name,
280 int (*callback) (struct symtab *symtab,
281 void *data),
282 void *data)
283 {
284 struct symtab *s = NULL;
285 struct objfile *objfile;
286 char *real_path = NULL;
287 char *full_path = NULL;
288 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
289
290 /* Here we are interested in canonicalizing an absolute path, not
291 absolutizing a relative path. */
292 if (IS_ABSOLUTE_PATH (name))
293 {
294 full_path = xfullpath (name);
295 make_cleanup (xfree, full_path);
296 real_path = gdb_realpath (name);
297 make_cleanup (xfree, real_path);
298 }
299
300 ALL_OBJFILES (objfile)
301 {
302 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
303 objfile->symtabs, NULL))
304 {
305 do_cleanups (cleanups);
306 return;
307 }
308 }
309
310 /* Same search rules as above apply here, but now we look thru the
311 psymtabs. */
312
313 ALL_OBJFILES (objfile)
314 {
315 if (objfile->sf
316 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
317 name,
318 full_path,
319 real_path,
320 callback,
321 data))
322 {
323 do_cleanups (cleanups);
324 return;
325 }
326 }
327
328 do_cleanups (cleanups);
329 }
330
331 /* The callback function used by lookup_symtab. */
332
333 static int
334 lookup_symtab_callback (struct symtab *symtab, void *data)
335 {
336 struct symtab **result_ptr = data;
337
338 *result_ptr = symtab;
339 return 1;
340 }
341
342 /* A wrapper for iterate_over_symtabs that returns the first matching
343 symtab, or NULL. */
344
345 struct symtab *
346 lookup_symtab (const char *name)
347 {
348 struct symtab *result = NULL;
349
350 iterate_over_symtabs (name, lookup_symtab_callback, &result);
351 return result;
352 }
353
354 \f
355 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
356 full method name, which consist of the class name (from T), the unadorned
357 method name from METHOD_ID, and the signature for the specific overload,
358 specified by SIGNATURE_ID. Note that this function is g++ specific. */
359
360 char *
361 gdb_mangle_name (struct type *type, int method_id, int signature_id)
362 {
363 int mangled_name_len;
364 char *mangled_name;
365 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
366 struct fn_field *method = &f[signature_id];
367 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
368 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
369 const char *newname = type_name_no_tag (type);
370
371 /* Does the form of physname indicate that it is the full mangled name
372 of a constructor (not just the args)? */
373 int is_full_physname_constructor;
374
375 int is_constructor;
376 int is_destructor = is_destructor_name (physname);
377 /* Need a new type prefix. */
378 char *const_prefix = method->is_const ? "C" : "";
379 char *volatile_prefix = method->is_volatile ? "V" : "";
380 char buf[20];
381 int len = (newname == NULL ? 0 : strlen (newname));
382
383 /* Nothing to do if physname already contains a fully mangled v3 abi name
384 or an operator name. */
385 if ((physname[0] == '_' && physname[1] == 'Z')
386 || is_operator_name (field_name))
387 return xstrdup (physname);
388
389 is_full_physname_constructor = is_constructor_name (physname);
390
391 is_constructor = is_full_physname_constructor
392 || (newname && strcmp (field_name, newname) == 0);
393
394 if (!is_destructor)
395 is_destructor = (strncmp (physname, "__dt", 4) == 0);
396
397 if (is_destructor || is_full_physname_constructor)
398 {
399 mangled_name = (char *) xmalloc (strlen (physname) + 1);
400 strcpy (mangled_name, physname);
401 return mangled_name;
402 }
403
404 if (len == 0)
405 {
406 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
407 }
408 else if (physname[0] == 't' || physname[0] == 'Q')
409 {
410 /* The physname for template and qualified methods already includes
411 the class name. */
412 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
413 newname = NULL;
414 len = 0;
415 }
416 else
417 {
418 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
419 volatile_prefix, len);
420 }
421 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
422 + strlen (buf) + len + strlen (physname) + 1);
423
424 mangled_name = (char *) xmalloc (mangled_name_len);
425 if (is_constructor)
426 mangled_name[0] = '\0';
427 else
428 strcpy (mangled_name, field_name);
429
430 strcat (mangled_name, buf);
431 /* If the class doesn't have a name, i.e. newname NULL, then we just
432 mangle it using 0 for the length of the class. Thus it gets mangled
433 as something starting with `::' rather than `classname::'. */
434 if (newname != NULL)
435 strcat (mangled_name, newname);
436
437 strcat (mangled_name, physname);
438 return (mangled_name);
439 }
440
441 /* Initialize the cplus_specific structure. 'cplus_specific' should
442 only be allocated for use with cplus symbols. */
443
444 static void
445 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
446 struct objfile *objfile)
447 {
448 /* A language_specific structure should not have been previously
449 initialized. */
450 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
451 gdb_assert (objfile != NULL);
452
453 gsymbol->language_specific.cplus_specific =
454 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
455 }
456
457 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
458 correctly allocated. For C++ symbols a cplus_specific struct is
459 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
460 OBJFILE can be NULL. */
461
462 void
463 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
464 char *name,
465 struct objfile *objfile)
466 {
467 if (gsymbol->language == language_cplus)
468 {
469 if (gsymbol->language_specific.cplus_specific == NULL)
470 symbol_init_cplus_specific (gsymbol, objfile);
471
472 gsymbol->language_specific.cplus_specific->demangled_name = name;
473 }
474 else
475 gsymbol->language_specific.mangled_lang.demangled_name = name;
476 }
477
478 /* Return the demangled name of GSYMBOL. */
479
480 const char *
481 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
482 {
483 if (gsymbol->language == language_cplus)
484 {
485 if (gsymbol->language_specific.cplus_specific != NULL)
486 return gsymbol->language_specific.cplus_specific->demangled_name;
487 else
488 return NULL;
489 }
490 else
491 return gsymbol->language_specific.mangled_lang.demangled_name;
492 }
493
494 \f
495 /* Initialize the language dependent portion of a symbol
496 depending upon the language for the symbol. */
497
498 void
499 symbol_set_language (struct general_symbol_info *gsymbol,
500 enum language language)
501 {
502 gsymbol->language = language;
503 if (gsymbol->language == language_d
504 || gsymbol->language == language_go
505 || gsymbol->language == language_java
506 || gsymbol->language == language_objc
507 || gsymbol->language == language_fortran)
508 {
509 symbol_set_demangled_name (gsymbol, NULL, NULL);
510 }
511 else if (gsymbol->language == language_cplus)
512 gsymbol->language_specific.cplus_specific = NULL;
513 else
514 {
515 memset (&gsymbol->language_specific, 0,
516 sizeof (gsymbol->language_specific));
517 }
518 }
519
520 /* Functions to initialize a symbol's mangled name. */
521
522 /* Objects of this type are stored in the demangled name hash table. */
523 struct demangled_name_entry
524 {
525 char *mangled;
526 char demangled[1];
527 };
528
529 /* Hash function for the demangled name hash. */
530
531 static hashval_t
532 hash_demangled_name_entry (const void *data)
533 {
534 const struct demangled_name_entry *e = data;
535
536 return htab_hash_string (e->mangled);
537 }
538
539 /* Equality function for the demangled name hash. */
540
541 static int
542 eq_demangled_name_entry (const void *a, const void *b)
543 {
544 const struct demangled_name_entry *da = a;
545 const struct demangled_name_entry *db = b;
546
547 return strcmp (da->mangled, db->mangled) == 0;
548 }
549
550 /* Create the hash table used for demangled names. Each hash entry is
551 a pair of strings; one for the mangled name and one for the demangled
552 name. The entry is hashed via just the mangled name. */
553
554 static void
555 create_demangled_names_hash (struct objfile *objfile)
556 {
557 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
558 The hash table code will round this up to the next prime number.
559 Choosing a much larger table size wastes memory, and saves only about
560 1% in symbol reading. */
561
562 objfile->demangled_names_hash = htab_create_alloc
563 (256, hash_demangled_name_entry, eq_demangled_name_entry,
564 NULL, xcalloc, xfree);
565 }
566
567 /* Try to determine the demangled name for a symbol, based on the
568 language of that symbol. If the language is set to language_auto,
569 it will attempt to find any demangling algorithm that works and
570 then set the language appropriately. The returned name is allocated
571 by the demangler and should be xfree'd. */
572
573 static char *
574 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
575 const char *mangled)
576 {
577 char *demangled = NULL;
578
579 if (gsymbol->language == language_unknown)
580 gsymbol->language = language_auto;
581
582 if (gsymbol->language == language_objc
583 || gsymbol->language == language_auto)
584 {
585 demangled =
586 objc_demangle (mangled, 0);
587 if (demangled != NULL)
588 {
589 gsymbol->language = language_objc;
590 return demangled;
591 }
592 }
593 if (gsymbol->language == language_cplus
594 || gsymbol->language == language_auto)
595 {
596 demangled =
597 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
598 if (demangled != NULL)
599 {
600 gsymbol->language = language_cplus;
601 return demangled;
602 }
603 }
604 if (gsymbol->language == language_java)
605 {
606 demangled =
607 cplus_demangle (mangled,
608 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
609 if (demangled != NULL)
610 {
611 gsymbol->language = language_java;
612 return demangled;
613 }
614 }
615 if (gsymbol->language == language_d
616 || gsymbol->language == language_auto)
617 {
618 demangled = d_demangle(mangled, 0);
619 if (demangled != NULL)
620 {
621 gsymbol->language = language_d;
622 return demangled;
623 }
624 }
625 /* FIXME(dje): Continually adding languages here is clumsy.
626 Better to just call la_demangle if !auto, and if auto then call
627 a utility routine that tries successive languages in turn and reports
628 which one it finds. I realize the la_demangle options may be different
629 for different languages but there's already a FIXME for that. */
630 if (gsymbol->language == language_go
631 || gsymbol->language == language_auto)
632 {
633 demangled = go_demangle (mangled, 0);
634 if (demangled != NULL)
635 {
636 gsymbol->language = language_go;
637 return demangled;
638 }
639 }
640
641 /* We could support `gsymbol->language == language_fortran' here to provide
642 module namespaces also for inferiors with only minimal symbol table (ELF
643 symbols). Just the mangling standard is not standardized across compilers
644 and there is no DW_AT_producer available for inferiors with only the ELF
645 symbols to check the mangling kind. */
646 return NULL;
647 }
648
649 /* Set both the mangled and demangled (if any) names for GSYMBOL based
650 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
651 objfile's obstack; but if COPY_NAME is 0 and if NAME is
652 NUL-terminated, then this function assumes that NAME is already
653 correctly saved (either permanently or with a lifetime tied to the
654 objfile), and it will not be copied.
655
656 The hash table corresponding to OBJFILE is used, and the memory
657 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
658 so the pointer can be discarded after calling this function. */
659
660 /* We have to be careful when dealing with Java names: when we run
661 into a Java minimal symbol, we don't know it's a Java symbol, so it
662 gets demangled as a C++ name. This is unfortunate, but there's not
663 much we can do about it: but when demangling partial symbols and
664 regular symbols, we'd better not reuse the wrong demangled name.
665 (See PR gdb/1039.) We solve this by putting a distinctive prefix
666 on Java names when storing them in the hash table. */
667
668 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
669 don't mind the Java prefix so much: different languages have
670 different demangling requirements, so it's only natural that we
671 need to keep language data around in our demangling cache. But
672 it's not good that the minimal symbol has the wrong demangled name.
673 Unfortunately, I can't think of any easy solution to that
674 problem. */
675
676 #define JAVA_PREFIX "##JAVA$$"
677 #define JAVA_PREFIX_LEN 8
678
679 void
680 symbol_set_names (struct general_symbol_info *gsymbol,
681 const char *linkage_name, int len, int copy_name,
682 struct objfile *objfile)
683 {
684 struct demangled_name_entry **slot;
685 /* A 0-terminated copy of the linkage name. */
686 const char *linkage_name_copy;
687 /* A copy of the linkage name that might have a special Java prefix
688 added to it, for use when looking names up in the hash table. */
689 const char *lookup_name;
690 /* The length of lookup_name. */
691 int lookup_len;
692 struct demangled_name_entry entry;
693
694 if (gsymbol->language == language_ada)
695 {
696 /* In Ada, we do the symbol lookups using the mangled name, so
697 we can save some space by not storing the demangled name.
698
699 As a side note, we have also observed some overlap between
700 the C++ mangling and Ada mangling, similarly to what has
701 been observed with Java. Because we don't store the demangled
702 name with the symbol, we don't need to use the same trick
703 as Java. */
704 if (!copy_name)
705 gsymbol->name = linkage_name;
706 else
707 {
708 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
709
710 memcpy (name, linkage_name, len);
711 name[len] = '\0';
712 gsymbol->name = name;
713 }
714 symbol_set_demangled_name (gsymbol, NULL, NULL);
715
716 return;
717 }
718
719 if (objfile->demangled_names_hash == NULL)
720 create_demangled_names_hash (objfile);
721
722 /* The stabs reader generally provides names that are not
723 NUL-terminated; most of the other readers don't do this, so we
724 can just use the given copy, unless we're in the Java case. */
725 if (gsymbol->language == language_java)
726 {
727 char *alloc_name;
728
729 lookup_len = len + JAVA_PREFIX_LEN;
730 alloc_name = alloca (lookup_len + 1);
731 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
732 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
733 alloc_name[lookup_len] = '\0';
734
735 lookup_name = alloc_name;
736 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
737 }
738 else if (linkage_name[len] != '\0')
739 {
740 char *alloc_name;
741
742 lookup_len = len;
743 alloc_name = alloca (lookup_len + 1);
744 memcpy (alloc_name, linkage_name, len);
745 alloc_name[lookup_len] = '\0';
746
747 lookup_name = alloc_name;
748 linkage_name_copy = alloc_name;
749 }
750 else
751 {
752 lookup_len = len;
753 lookup_name = linkage_name;
754 linkage_name_copy = linkage_name;
755 }
756
757 entry.mangled = (char *) lookup_name;
758 slot = ((struct demangled_name_entry **)
759 htab_find_slot (objfile->demangled_names_hash,
760 &entry, INSERT));
761
762 /* If this name is not in the hash table, add it. */
763 if (*slot == NULL
764 /* A C version of the symbol may have already snuck into the table.
765 This happens to, e.g., main.init (__go_init_main). Cope. */
766 || (gsymbol->language == language_go
767 && (*slot)->demangled[0] == '\0'))
768 {
769 char *demangled_name = symbol_find_demangled_name (gsymbol,
770 linkage_name_copy);
771 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
772
773 /* Suppose we have demangled_name==NULL, copy_name==0, and
774 lookup_name==linkage_name. In this case, we already have the
775 mangled name saved, and we don't have a demangled name. So,
776 you might think we could save a little space by not recording
777 this in the hash table at all.
778
779 It turns out that it is actually important to still save such
780 an entry in the hash table, because storing this name gives
781 us better bcache hit rates for partial symbols. */
782 if (!copy_name && lookup_name == linkage_name)
783 {
784 *slot = obstack_alloc (&objfile->objfile_obstack,
785 offsetof (struct demangled_name_entry,
786 demangled)
787 + demangled_len + 1);
788 (*slot)->mangled = (char *) lookup_name;
789 }
790 else
791 {
792 /* If we must copy the mangled name, put it directly after
793 the demangled name so we can have a single
794 allocation. */
795 *slot = obstack_alloc (&objfile->objfile_obstack,
796 offsetof (struct demangled_name_entry,
797 demangled)
798 + lookup_len + demangled_len + 2);
799 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
800 strcpy ((*slot)->mangled, lookup_name);
801 }
802
803 if (demangled_name != NULL)
804 {
805 strcpy ((*slot)->demangled, demangled_name);
806 xfree (demangled_name);
807 }
808 else
809 (*slot)->demangled[0] = '\0';
810 }
811
812 gsymbol->name = (*slot)->mangled + lookup_len - len;
813 if ((*slot)->demangled[0] != '\0')
814 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
815 else
816 symbol_set_demangled_name (gsymbol, NULL, objfile);
817 }
818
819 /* Return the source code name of a symbol. In languages where
820 demangling is necessary, this is the demangled name. */
821
822 const char *
823 symbol_natural_name (const struct general_symbol_info *gsymbol)
824 {
825 switch (gsymbol->language)
826 {
827 case language_cplus:
828 case language_d:
829 case language_go:
830 case language_java:
831 case language_objc:
832 case language_fortran:
833 if (symbol_get_demangled_name (gsymbol) != NULL)
834 return symbol_get_demangled_name (gsymbol);
835 break;
836 case language_ada:
837 if (symbol_get_demangled_name (gsymbol) != NULL)
838 return symbol_get_demangled_name (gsymbol);
839 else
840 return ada_decode_symbol (gsymbol);
841 break;
842 default:
843 break;
844 }
845 return gsymbol->name;
846 }
847
848 /* Return the demangled name for a symbol based on the language for
849 that symbol. If no demangled name exists, return NULL. */
850
851 const char *
852 symbol_demangled_name (const struct general_symbol_info *gsymbol)
853 {
854 const char *dem_name = NULL;
855
856 switch (gsymbol->language)
857 {
858 case language_cplus:
859 case language_d:
860 case language_go:
861 case language_java:
862 case language_objc:
863 case language_fortran:
864 dem_name = symbol_get_demangled_name (gsymbol);
865 break;
866 case language_ada:
867 dem_name = symbol_get_demangled_name (gsymbol);
868 if (dem_name == NULL)
869 dem_name = ada_decode_symbol (gsymbol);
870 break;
871 default:
872 break;
873 }
874 return dem_name;
875 }
876
877 /* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
881
882 const char *
883 symbol_search_name (const struct general_symbol_info *gsymbol)
884 {
885 if (gsymbol->language == language_ada)
886 return gsymbol->name;
887 else
888 return symbol_natural_name (gsymbol);
889 }
890
891 /* Initialize the structure fields to zero values. */
892
893 void
894 init_sal (struct symtab_and_line *sal)
895 {
896 sal->pspace = NULL;
897 sal->symtab = 0;
898 sal->section = 0;
899 sal->line = 0;
900 sal->pc = 0;
901 sal->end = 0;
902 sal->explicit_pc = 0;
903 sal->explicit_line = 0;
904 sal->probe = NULL;
905 }
906 \f
907
908 /* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
911
912 int
913 matching_obj_sections (struct obj_section *obj_first,
914 struct obj_section *obj_second)
915 {
916 asection *first = obj_first? obj_first->the_bfd_section : NULL;
917 asection *second = obj_second? obj_second->the_bfd_section : NULL;
918 struct objfile *obj;
919
920 /* If they're the same section, then they match. */
921 if (first == second)
922 return 1;
923
924 /* If either is NULL, give up. */
925 if (first == NULL || second == NULL)
926 return 0;
927
928 /* This doesn't apply to absolute symbols. */
929 if (first->owner == NULL || second->owner == NULL)
930 return 0;
931
932 /* If they're in the same object file, they must be different sections. */
933 if (first->owner == second->owner)
934 return 0;
935
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
939 stripped. */
940 if (bfd_get_section_size (first) != bfd_get_section_size (second))
941 return 0;
942
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first->owner, first)
945 - bfd_get_start_address (first->owner)
946 != bfd_get_section_vma (second->owner, second)
947 - bfd_get_start_address (second->owner))
948 return 0;
949
950 if (bfd_get_section_name (first->owner, first) == NULL
951 || bfd_get_section_name (second->owner, second) == NULL
952 || strcmp (bfd_get_section_name (first->owner, first),
953 bfd_get_section_name (second->owner, second)) != 0)
954 return 0;
955
956 /* Otherwise check that they are in corresponding objfiles. */
957
958 ALL_OBJFILES (obj)
959 if (obj->obfd == first->owner)
960 break;
961 gdb_assert (obj != NULL);
962
963 if (obj->separate_debug_objfile != NULL
964 && obj->separate_debug_objfile->obfd == second->owner)
965 return 1;
966 if (obj->separate_debug_objfile_backlink != NULL
967 && obj->separate_debug_objfile_backlink->obfd == second->owner)
968 return 1;
969
970 return 0;
971 }
972
973 struct symtab *
974 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
975 {
976 struct objfile *objfile;
977 struct minimal_symbol *msymbol;
978
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
983 if (msymbol
984 && (MSYMBOL_TYPE (msymbol) == mst_data
985 || MSYMBOL_TYPE (msymbol) == mst_bss
986 || MSYMBOL_TYPE (msymbol) == mst_abs
987 || MSYMBOL_TYPE (msymbol) == mst_file_data
988 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
989 return NULL;
990
991 ALL_OBJFILES (objfile)
992 {
993 struct symtab *result = NULL;
994
995 if (objfile->sf)
996 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
997 pc, section, 0);
998 if (result)
999 return result;
1000 }
1001
1002 return NULL;
1003 }
1004 \f
1005 /* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1007
1008 void
1009 fixup_section (struct general_symbol_info *ginfo,
1010 CORE_ADDR addr, struct objfile *objfile)
1011 {
1012 struct minimal_symbol *msym;
1013
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1020 if (msym)
1021 {
1022 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1023 ginfo->section = SYMBOL_SECTION (msym);
1024 }
1025 else
1026 {
1027 /* Static, function-local variables do appear in the linker
1028 (minimal) symbols, but are frequently given names that won't
1029 be found via lookup_minimal_symbol(). E.g., it has been
1030 observed in frv-uclinux (ELF) executables that a static,
1031 function-local variable named "foo" might appear in the
1032 linker symbols as "foo.6" or "foo.3". Thus, there is no
1033 point in attempting to extend the lookup-by-name mechanism to
1034 handle this case due to the fact that there can be multiple
1035 names.
1036
1037 So, instead, search the section table when lookup by name has
1038 failed. The ``addr'' and ``endaddr'' fields may have already
1039 been relocated. If so, the relocation offset (i.e. the
1040 ANOFFSET value) needs to be subtracted from these values when
1041 performing the comparison. We unconditionally subtract it,
1042 because, when no relocation has been performed, the ANOFFSET
1043 value will simply be zero.
1044
1045 The address of the symbol whose section we're fixing up HAS
1046 NOT BEEN adjusted (relocated) yet. It can't have been since
1047 the section isn't yet known and knowing the section is
1048 necessary in order to add the correct relocation value. In
1049 other words, we wouldn't even be in this function (attempting
1050 to compute the section) if it were already known.
1051
1052 Note that it is possible to search the minimal symbols
1053 (subtracting the relocation value if necessary) to find the
1054 matching minimal symbol, but this is overkill and much less
1055 efficient. It is not necessary to find the matching minimal
1056 symbol, only its section.
1057
1058 Note that this technique (of doing a section table search)
1059 can fail when unrelocated section addresses overlap. For
1060 this reason, we still attempt a lookup by name prior to doing
1061 a search of the section table. */
1062
1063 struct obj_section *s;
1064
1065 ALL_OBJFILE_OSECTIONS (objfile, s)
1066 {
1067 int idx = s->the_bfd_section->index;
1068 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1069
1070 if (obj_section_addr (s) - offset <= addr
1071 && addr < obj_section_endaddr (s) - offset)
1072 {
1073 ginfo->obj_section = s;
1074 ginfo->section = idx;
1075 return;
1076 }
1077 }
1078 }
1079 }
1080
1081 struct symbol *
1082 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1083 {
1084 CORE_ADDR addr;
1085
1086 if (!sym)
1087 return NULL;
1088
1089 if (SYMBOL_OBJ_SECTION (sym))
1090 return sym;
1091
1092 /* We either have an OBJFILE, or we can get at it from the sym's
1093 symtab. Anything else is a bug. */
1094 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1095
1096 if (objfile == NULL)
1097 objfile = SYMBOL_SYMTAB (sym)->objfile;
1098
1099 /* We should have an objfile by now. */
1100 gdb_assert (objfile);
1101
1102 switch (SYMBOL_CLASS (sym))
1103 {
1104 case LOC_STATIC:
1105 case LOC_LABEL:
1106 addr = SYMBOL_VALUE_ADDRESS (sym);
1107 break;
1108 case LOC_BLOCK:
1109 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1110 break;
1111
1112 default:
1113 /* Nothing else will be listed in the minsyms -- no use looking
1114 it up. */
1115 return sym;
1116 }
1117
1118 fixup_section (&sym->ginfo, addr, objfile);
1119
1120 return sym;
1121 }
1122
1123 /* Compute the demangled form of NAME as used by the various symbol
1124 lookup functions. The result is stored in *RESULT_NAME. Returns a
1125 cleanup which can be used to clean up the result.
1126
1127 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1128 Normally, Ada symbol lookups are performed using the encoded name
1129 rather than the demangled name, and so it might seem to make sense
1130 for this function to return an encoded version of NAME.
1131 Unfortunately, we cannot do this, because this function is used in
1132 circumstances where it is not appropriate to try to encode NAME.
1133 For instance, when displaying the frame info, we demangle the name
1134 of each parameter, and then perform a symbol lookup inside our
1135 function using that demangled name. In Ada, certain functions
1136 have internally-generated parameters whose name contain uppercase
1137 characters. Encoding those name would result in those uppercase
1138 characters to become lowercase, and thus cause the symbol lookup
1139 to fail. */
1140
1141 struct cleanup *
1142 demangle_for_lookup (const char *name, enum language lang,
1143 const char **result_name)
1144 {
1145 char *demangled_name = NULL;
1146 const char *modified_name = NULL;
1147 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1148
1149 modified_name = name;
1150
1151 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1152 lookup, so we can always binary search. */
1153 if (lang == language_cplus)
1154 {
1155 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1156 if (demangled_name)
1157 {
1158 modified_name = demangled_name;
1159 make_cleanup (xfree, demangled_name);
1160 }
1161 else
1162 {
1163 /* If we were given a non-mangled name, canonicalize it
1164 according to the language (so far only for C++). */
1165 demangled_name = cp_canonicalize_string (name);
1166 if (demangled_name)
1167 {
1168 modified_name = demangled_name;
1169 make_cleanup (xfree, demangled_name);
1170 }
1171 }
1172 }
1173 else if (lang == language_java)
1174 {
1175 demangled_name = cplus_demangle (name,
1176 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1177 if (demangled_name)
1178 {
1179 modified_name = demangled_name;
1180 make_cleanup (xfree, demangled_name);
1181 }
1182 }
1183 else if (lang == language_d)
1184 {
1185 demangled_name = d_demangle (name, 0);
1186 if (demangled_name)
1187 {
1188 modified_name = demangled_name;
1189 make_cleanup (xfree, demangled_name);
1190 }
1191 }
1192 else if (lang == language_go)
1193 {
1194 demangled_name = go_demangle (name, 0);
1195 if (demangled_name)
1196 {
1197 modified_name = demangled_name;
1198 make_cleanup (xfree, demangled_name);
1199 }
1200 }
1201
1202 *result_name = modified_name;
1203 return cleanup;
1204 }
1205
1206 /* Find the definition for a specified symbol name NAME
1207 in domain DOMAIN, visible from lexical block BLOCK.
1208 Returns the struct symbol pointer, or zero if no symbol is found.
1209 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1210 NAME is a field of the current implied argument `this'. If so set
1211 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1212 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1213 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1214
1215 /* This function (or rather its subordinates) have a bunch of loops and
1216 it would seem to be attractive to put in some QUIT's (though I'm not really
1217 sure whether it can run long enough to be really important). But there
1218 are a few calls for which it would appear to be bad news to quit
1219 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1220 that there is C++ code below which can error(), but that probably
1221 doesn't affect these calls since they are looking for a known
1222 variable and thus can probably assume it will never hit the C++
1223 code). */
1224
1225 struct symbol *
1226 lookup_symbol_in_language (const char *name, const struct block *block,
1227 const domain_enum domain, enum language lang,
1228 int *is_a_field_of_this)
1229 {
1230 const char *modified_name;
1231 struct symbol *returnval;
1232 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1233
1234 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1235 is_a_field_of_this);
1236 do_cleanups (cleanup);
1237
1238 return returnval;
1239 }
1240
1241 /* Behave like lookup_symbol_in_language, but performed with the
1242 current language. */
1243
1244 struct symbol *
1245 lookup_symbol (const char *name, const struct block *block,
1246 domain_enum domain, int *is_a_field_of_this)
1247 {
1248 return lookup_symbol_in_language (name, block, domain,
1249 current_language->la_language,
1250 is_a_field_of_this);
1251 }
1252
1253 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1254 found, or NULL if not found. */
1255
1256 struct symbol *
1257 lookup_language_this (const struct language_defn *lang,
1258 const struct block *block)
1259 {
1260 if (lang->la_name_of_this == NULL || block == NULL)
1261 return NULL;
1262
1263 while (block)
1264 {
1265 struct symbol *sym;
1266
1267 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1268 if (sym != NULL)
1269 {
1270 block_found = block;
1271 return sym;
1272 }
1273 if (BLOCK_FUNCTION (block))
1274 break;
1275 block = BLOCK_SUPERBLOCK (block);
1276 }
1277
1278 return NULL;
1279 }
1280
1281 /* Behave like lookup_symbol except that NAME is the natural name
1282 (e.g., demangled name) of the symbol that we're looking for. */
1283
1284 static struct symbol *
1285 lookup_symbol_aux (const char *name, const struct block *block,
1286 const domain_enum domain, enum language language,
1287 int *is_a_field_of_this)
1288 {
1289 struct symbol *sym;
1290 const struct language_defn *langdef;
1291
1292 /* Make sure we do something sensible with is_a_field_of_this, since
1293 the callers that set this parameter to some non-null value will
1294 certainly use it later and expect it to be either 0 or 1.
1295 If we don't set it, the contents of is_a_field_of_this are
1296 undefined. */
1297 if (is_a_field_of_this != NULL)
1298 *is_a_field_of_this = 0;
1299
1300 /* Search specified block and its superiors. Don't search
1301 STATIC_BLOCK or GLOBAL_BLOCK. */
1302
1303 sym = lookup_symbol_aux_local (name, block, domain, language);
1304 if (sym != NULL)
1305 return sym;
1306
1307 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1308 check to see if NAME is a field of `this'. */
1309
1310 langdef = language_def (language);
1311
1312 if (is_a_field_of_this != NULL)
1313 {
1314 struct symbol *sym = lookup_language_this (langdef, block);
1315
1316 if (sym)
1317 {
1318 struct type *t = sym->type;
1319
1320 /* I'm not really sure that type of this can ever
1321 be typedefed; just be safe. */
1322 CHECK_TYPEDEF (t);
1323 if (TYPE_CODE (t) == TYPE_CODE_PTR
1324 || TYPE_CODE (t) == TYPE_CODE_REF)
1325 t = TYPE_TARGET_TYPE (t);
1326
1327 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1328 && TYPE_CODE (t) != TYPE_CODE_UNION)
1329 error (_("Internal error: `%s' is not an aggregate"),
1330 langdef->la_name_of_this);
1331
1332 if (check_field (t, name))
1333 {
1334 *is_a_field_of_this = 1;
1335 return NULL;
1336 }
1337 }
1338 }
1339
1340 /* Now do whatever is appropriate for LANGUAGE to look
1341 up static and global variables. */
1342
1343 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1344 if (sym != NULL)
1345 return sym;
1346
1347 /* Now search all static file-level symbols. Not strictly correct,
1348 but more useful than an error. */
1349
1350 return lookup_static_symbol_aux (name, domain);
1351 }
1352
1353 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1354 first, then check the psymtabs. If a psymtab indicates the existence of the
1355 desired name as a file-level static, then do psymtab-to-symtab conversion on
1356 the fly and return the found symbol. */
1357
1358 struct symbol *
1359 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1360 {
1361 struct objfile *objfile;
1362 struct symbol *sym;
1363
1364 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1365 if (sym != NULL)
1366 return sym;
1367
1368 ALL_OBJFILES (objfile)
1369 {
1370 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1371 if (sym != NULL)
1372 return sym;
1373 }
1374
1375 return NULL;
1376 }
1377
1378 /* Check to see if the symbol is defined in BLOCK or its superiors.
1379 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1380
1381 static struct symbol *
1382 lookup_symbol_aux_local (const char *name, const struct block *block,
1383 const domain_enum domain,
1384 enum language language)
1385 {
1386 struct symbol *sym;
1387 const struct block *static_block = block_static_block (block);
1388 const char *scope = block_scope (block);
1389
1390 /* Check if either no block is specified or it's a global block. */
1391
1392 if (static_block == NULL)
1393 return NULL;
1394
1395 while (block != static_block)
1396 {
1397 sym = lookup_symbol_aux_block (name, block, domain);
1398 if (sym != NULL)
1399 return sym;
1400
1401 if (language == language_cplus || language == language_fortran)
1402 {
1403 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1404 domain);
1405 if (sym != NULL)
1406 return sym;
1407 }
1408
1409 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1410 break;
1411 block = BLOCK_SUPERBLOCK (block);
1412 }
1413
1414 /* We've reached the edge of the function without finding a result. */
1415
1416 return NULL;
1417 }
1418
1419 /* Look up OBJFILE to BLOCK. */
1420
1421 struct objfile *
1422 lookup_objfile_from_block (const struct block *block)
1423 {
1424 struct objfile *obj;
1425 struct symtab *s;
1426
1427 if (block == NULL)
1428 return NULL;
1429
1430 block = block_global_block (block);
1431 /* Go through SYMTABS. */
1432 ALL_SYMTABS (obj, s)
1433 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1434 {
1435 if (obj->separate_debug_objfile_backlink)
1436 obj = obj->separate_debug_objfile_backlink;
1437
1438 return obj;
1439 }
1440
1441 return NULL;
1442 }
1443
1444 /* Look up a symbol in a block; if found, fixup the symbol, and set
1445 block_found appropriately. */
1446
1447 struct symbol *
1448 lookup_symbol_aux_block (const char *name, const struct block *block,
1449 const domain_enum domain)
1450 {
1451 struct symbol *sym;
1452
1453 sym = lookup_block_symbol (block, name, domain);
1454 if (sym)
1455 {
1456 block_found = block;
1457 return fixup_symbol_section (sym, NULL);
1458 }
1459
1460 return NULL;
1461 }
1462
1463 /* Check all global symbols in OBJFILE in symtabs and
1464 psymtabs. */
1465
1466 struct symbol *
1467 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1468 const char *name,
1469 const domain_enum domain)
1470 {
1471 const struct objfile *objfile;
1472 struct symbol *sym;
1473 struct blockvector *bv;
1474 const struct block *block;
1475 struct symtab *s;
1476
1477 for (objfile = main_objfile;
1478 objfile;
1479 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1480 {
1481 /* Go through symtabs. */
1482 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1483 {
1484 bv = BLOCKVECTOR (s);
1485 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1486 sym = lookup_block_symbol (block, name, domain);
1487 if (sym)
1488 {
1489 block_found = block;
1490 return fixup_symbol_section (sym, (struct objfile *)objfile);
1491 }
1492 }
1493
1494 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1495 name, domain);
1496 if (sym)
1497 return sym;
1498 }
1499
1500 return NULL;
1501 }
1502
1503 /* Check to see if the symbol is defined in one of the OBJFILE's
1504 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1505 depending on whether or not we want to search global symbols or
1506 static symbols. */
1507
1508 static struct symbol *
1509 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1510 const char *name, const domain_enum domain)
1511 {
1512 struct symbol *sym = NULL;
1513 struct blockvector *bv;
1514 const struct block *block;
1515 struct symtab *s;
1516
1517 if (objfile->sf)
1518 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1519 name, domain);
1520
1521 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1522 {
1523 bv = BLOCKVECTOR (s);
1524 block = BLOCKVECTOR_BLOCK (bv, block_index);
1525 sym = lookup_block_symbol (block, name, domain);
1526 if (sym)
1527 {
1528 block_found = block;
1529 return fixup_symbol_section (sym, objfile);
1530 }
1531 }
1532
1533 return NULL;
1534 }
1535
1536 /* Same as lookup_symbol_aux_objfile, except that it searches all
1537 objfiles. Return the first match found. */
1538
1539 static struct symbol *
1540 lookup_symbol_aux_symtabs (int block_index, const char *name,
1541 const domain_enum domain)
1542 {
1543 struct symbol *sym;
1544 struct objfile *objfile;
1545
1546 ALL_OBJFILES (objfile)
1547 {
1548 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1549 if (sym)
1550 return sym;
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1557 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1558 and all related objfiles. */
1559
1560 static struct symbol *
1561 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1562 const char *linkage_name,
1563 domain_enum domain)
1564 {
1565 enum language lang = current_language->la_language;
1566 const char *modified_name;
1567 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1568 &modified_name);
1569 struct objfile *main_objfile, *cur_objfile;
1570
1571 if (objfile->separate_debug_objfile_backlink)
1572 main_objfile = objfile->separate_debug_objfile_backlink;
1573 else
1574 main_objfile = objfile;
1575
1576 for (cur_objfile = main_objfile;
1577 cur_objfile;
1578 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1579 {
1580 struct symbol *sym;
1581
1582 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1583 modified_name, domain);
1584 if (sym == NULL)
1585 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1586 modified_name, domain);
1587 if (sym != NULL)
1588 {
1589 do_cleanups (cleanup);
1590 return sym;
1591 }
1592 }
1593
1594 do_cleanups (cleanup);
1595 return NULL;
1596 }
1597
1598 /* A helper function for lookup_symbol_aux that interfaces with the
1599 "quick" symbol table functions. */
1600
1601 static struct symbol *
1602 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1603 const char *name, const domain_enum domain)
1604 {
1605 struct symtab *symtab;
1606 struct blockvector *bv;
1607 const struct block *block;
1608 struct symbol *sym;
1609
1610 if (!objfile->sf)
1611 return NULL;
1612 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1613 if (!symtab)
1614 return NULL;
1615
1616 bv = BLOCKVECTOR (symtab);
1617 block = BLOCKVECTOR_BLOCK (bv, kind);
1618 sym = lookup_block_symbol (block, name, domain);
1619 if (!sym)
1620 {
1621 /* This shouldn't be necessary, but as a last resort try
1622 looking in the statics even though the psymtab claimed
1623 the symbol was global, or vice-versa. It's possible
1624 that the psymtab gets it wrong in some cases. */
1625
1626 /* FIXME: carlton/2002-09-30: Should we really do that?
1627 If that happens, isn't it likely to be a GDB error, in
1628 which case we should fix the GDB error rather than
1629 silently dealing with it here? So I'd vote for
1630 removing the check for the symbol in the other
1631 block. */
1632 block = BLOCKVECTOR_BLOCK (bv,
1633 kind == GLOBAL_BLOCK ?
1634 STATIC_BLOCK : GLOBAL_BLOCK);
1635 sym = lookup_block_symbol (block, name, domain);
1636 if (!sym)
1637 error (_("\
1638 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1639 %s may be an inlined function, or may be a template function\n\
1640 (if a template, try specifying an instantiation: %s<type>)."),
1641 kind == GLOBAL_BLOCK ? "global" : "static",
1642 name, symtab->filename, name, name);
1643 }
1644 return fixup_symbol_section (sym, objfile);
1645 }
1646
1647 /* A default version of lookup_symbol_nonlocal for use by languages
1648 that can't think of anything better to do. This implements the C
1649 lookup rules. */
1650
1651 struct symbol *
1652 basic_lookup_symbol_nonlocal (const char *name,
1653 const struct block *block,
1654 const domain_enum domain)
1655 {
1656 struct symbol *sym;
1657
1658 /* NOTE: carlton/2003-05-19: The comments below were written when
1659 this (or what turned into this) was part of lookup_symbol_aux;
1660 I'm much less worried about these questions now, since these
1661 decisions have turned out well, but I leave these comments here
1662 for posterity. */
1663
1664 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1665 not it would be appropriate to search the current global block
1666 here as well. (That's what this code used to do before the
1667 is_a_field_of_this check was moved up.) On the one hand, it's
1668 redundant with the lookup_symbol_aux_symtabs search that happens
1669 next. On the other hand, if decode_line_1 is passed an argument
1670 like filename:var, then the user presumably wants 'var' to be
1671 searched for in filename. On the third hand, there shouldn't be
1672 multiple global variables all of which are named 'var', and it's
1673 not like decode_line_1 has ever restricted its search to only
1674 global variables in a single filename. All in all, only
1675 searching the static block here seems best: it's correct and it's
1676 cleanest. */
1677
1678 /* NOTE: carlton/2002-12-05: There's also a possible performance
1679 issue here: if you usually search for global symbols in the
1680 current file, then it would be slightly better to search the
1681 current global block before searching all the symtabs. But there
1682 are other factors that have a much greater effect on performance
1683 than that one, so I don't think we should worry about that for
1684 now. */
1685
1686 sym = lookup_symbol_static (name, block, domain);
1687 if (sym != NULL)
1688 return sym;
1689
1690 return lookup_symbol_global (name, block, domain);
1691 }
1692
1693 /* Lookup a symbol in the static block associated to BLOCK, if there
1694 is one; do nothing if BLOCK is NULL or a global block. */
1695
1696 struct symbol *
1697 lookup_symbol_static (const char *name,
1698 const struct block *block,
1699 const domain_enum domain)
1700 {
1701 const struct block *static_block = block_static_block (block);
1702
1703 if (static_block != NULL)
1704 return lookup_symbol_aux_block (name, static_block, domain);
1705 else
1706 return NULL;
1707 }
1708
1709 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1710
1711 struct global_sym_lookup_data
1712 {
1713 /* The name of the symbol we are searching for. */
1714 const char *name;
1715
1716 /* The domain to use for our search. */
1717 domain_enum domain;
1718
1719 /* The field where the callback should store the symbol if found.
1720 It should be initialized to NULL before the search is started. */
1721 struct symbol *result;
1722 };
1723
1724 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1725 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1726 OBJFILE. The arguments for the search are passed via CB_DATA,
1727 which in reality is a pointer to struct global_sym_lookup_data. */
1728
1729 static int
1730 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1731 void *cb_data)
1732 {
1733 struct global_sym_lookup_data *data =
1734 (struct global_sym_lookup_data *) cb_data;
1735
1736 gdb_assert (data->result == NULL);
1737
1738 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1739 data->name, data->domain);
1740 if (data->result == NULL)
1741 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1742 data->name, data->domain);
1743
1744 /* If we found a match, tell the iterator to stop. Otherwise,
1745 keep going. */
1746 return (data->result != NULL);
1747 }
1748
1749 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1750 necessary). */
1751
1752 struct symbol *
1753 lookup_symbol_global (const char *name,
1754 const struct block *block,
1755 const domain_enum domain)
1756 {
1757 struct symbol *sym = NULL;
1758 struct objfile *objfile = NULL;
1759 struct global_sym_lookup_data lookup_data;
1760
1761 /* Call library-specific lookup procedure. */
1762 objfile = lookup_objfile_from_block (block);
1763 if (objfile != NULL)
1764 sym = solib_global_lookup (objfile, name, domain);
1765 if (sym != NULL)
1766 return sym;
1767
1768 memset (&lookup_data, 0, sizeof (lookup_data));
1769 lookup_data.name = name;
1770 lookup_data.domain = domain;
1771 gdbarch_iterate_over_objfiles_in_search_order
1772 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1773 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1774
1775 return lookup_data.result;
1776 }
1777
1778 int
1779 symbol_matches_domain (enum language symbol_language,
1780 domain_enum symbol_domain,
1781 domain_enum domain)
1782 {
1783 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1784 A Java class declaration also defines a typedef for the class.
1785 Similarly, any Ada type declaration implicitly defines a typedef. */
1786 if (symbol_language == language_cplus
1787 || symbol_language == language_d
1788 || symbol_language == language_java
1789 || symbol_language == language_ada)
1790 {
1791 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1792 && symbol_domain == STRUCT_DOMAIN)
1793 return 1;
1794 }
1795 /* For all other languages, strict match is required. */
1796 return (symbol_domain == domain);
1797 }
1798
1799 /* Look up a type named NAME in the struct_domain. The type returned
1800 must not be opaque -- i.e., must have at least one field
1801 defined. */
1802
1803 struct type *
1804 lookup_transparent_type (const char *name)
1805 {
1806 return current_language->la_lookup_transparent_type (name);
1807 }
1808
1809 /* A helper for basic_lookup_transparent_type that interfaces with the
1810 "quick" symbol table functions. */
1811
1812 static struct type *
1813 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1814 const char *name)
1815 {
1816 struct symtab *symtab;
1817 struct blockvector *bv;
1818 struct block *block;
1819 struct symbol *sym;
1820
1821 if (!objfile->sf)
1822 return NULL;
1823 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1824 if (!symtab)
1825 return NULL;
1826
1827 bv = BLOCKVECTOR (symtab);
1828 block = BLOCKVECTOR_BLOCK (bv, kind);
1829 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1830 if (!sym)
1831 {
1832 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1833
1834 /* This shouldn't be necessary, but as a last resort
1835 * try looking in the 'other kind' even though the psymtab
1836 * claimed the symbol was one thing. It's possible that
1837 * the psymtab gets it wrong in some cases.
1838 */
1839 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1840 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1841 if (!sym)
1842 /* FIXME; error is wrong in one case. */
1843 error (_("\
1844 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1845 %s may be an inlined function, or may be a template function\n\
1846 (if a template, try specifying an instantiation: %s<type>)."),
1847 name, symtab->filename, name, name);
1848 }
1849 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1850 return SYMBOL_TYPE (sym);
1851
1852 return NULL;
1853 }
1854
1855 /* The standard implementation of lookup_transparent_type. This code
1856 was modeled on lookup_symbol -- the parts not relevant to looking
1857 up types were just left out. In particular it's assumed here that
1858 types are available in struct_domain and only at file-static or
1859 global blocks. */
1860
1861 struct type *
1862 basic_lookup_transparent_type (const char *name)
1863 {
1864 struct symbol *sym;
1865 struct symtab *s = NULL;
1866 struct blockvector *bv;
1867 struct objfile *objfile;
1868 struct block *block;
1869 struct type *t;
1870
1871 /* Now search all the global symbols. Do the symtab's first, then
1872 check the psymtab's. If a psymtab indicates the existence
1873 of the desired name as a global, then do psymtab-to-symtab
1874 conversion on the fly and return the found symbol. */
1875
1876 ALL_OBJFILES (objfile)
1877 {
1878 if (objfile->sf)
1879 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1880 GLOBAL_BLOCK,
1881 name, STRUCT_DOMAIN);
1882
1883 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1884 {
1885 bv = BLOCKVECTOR (s);
1886 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1887 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1888 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1889 {
1890 return SYMBOL_TYPE (sym);
1891 }
1892 }
1893 }
1894
1895 ALL_OBJFILES (objfile)
1896 {
1897 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1898 if (t)
1899 return t;
1900 }
1901
1902 /* Now search the static file-level symbols.
1903 Not strictly correct, but more useful than an error.
1904 Do the symtab's first, then
1905 check the psymtab's. If a psymtab indicates the existence
1906 of the desired name as a file-level static, then do psymtab-to-symtab
1907 conversion on the fly and return the found symbol. */
1908
1909 ALL_OBJFILES (objfile)
1910 {
1911 if (objfile->sf)
1912 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1913 name, STRUCT_DOMAIN);
1914
1915 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1916 {
1917 bv = BLOCKVECTOR (s);
1918 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1919 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1920 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1921 {
1922 return SYMBOL_TYPE (sym);
1923 }
1924 }
1925 }
1926
1927 ALL_OBJFILES (objfile)
1928 {
1929 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1930 if (t)
1931 return t;
1932 }
1933
1934 return (struct type *) 0;
1935 }
1936
1937 /* Find the name of the file containing main(). */
1938 /* FIXME: What about languages without main() or specially linked
1939 executables that have no main() ? */
1940
1941 const char *
1942 find_main_filename (void)
1943 {
1944 struct objfile *objfile;
1945 char *name = main_name ();
1946
1947 ALL_OBJFILES (objfile)
1948 {
1949 const char *result;
1950
1951 if (!objfile->sf)
1952 continue;
1953 result = objfile->sf->qf->find_symbol_file (objfile, name);
1954 if (result)
1955 return result;
1956 }
1957 return (NULL);
1958 }
1959
1960 /* Search BLOCK for symbol NAME in DOMAIN.
1961
1962 Note that if NAME is the demangled form of a C++ symbol, we will fail
1963 to find a match during the binary search of the non-encoded names, but
1964 for now we don't worry about the slight inefficiency of looking for
1965 a match we'll never find, since it will go pretty quick. Once the
1966 binary search terminates, we drop through and do a straight linear
1967 search on the symbols. Each symbol which is marked as being a ObjC/C++
1968 symbol (language_cplus or language_objc set) has both the encoded and
1969 non-encoded names tested for a match. */
1970
1971 struct symbol *
1972 lookup_block_symbol (const struct block *block, const char *name,
1973 const domain_enum domain)
1974 {
1975 struct block_iterator iter;
1976 struct symbol *sym;
1977
1978 if (!BLOCK_FUNCTION (block))
1979 {
1980 for (sym = block_iter_name_first (block, name, &iter);
1981 sym != NULL;
1982 sym = block_iter_name_next (name, &iter))
1983 {
1984 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1985 SYMBOL_DOMAIN (sym), domain))
1986 return sym;
1987 }
1988 return NULL;
1989 }
1990 else
1991 {
1992 /* Note that parameter symbols do not always show up last in the
1993 list; this loop makes sure to take anything else other than
1994 parameter symbols first; it only uses parameter symbols as a
1995 last resort. Note that this only takes up extra computation
1996 time on a match. */
1997
1998 struct symbol *sym_found = NULL;
1999
2000 for (sym = block_iter_name_first (block, name, &iter);
2001 sym != NULL;
2002 sym = block_iter_name_next (name, &iter))
2003 {
2004 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2005 SYMBOL_DOMAIN (sym), domain))
2006 {
2007 sym_found = sym;
2008 if (!SYMBOL_IS_ARGUMENT (sym))
2009 {
2010 break;
2011 }
2012 }
2013 }
2014 return (sym_found); /* Will be NULL if not found. */
2015 }
2016 }
2017
2018 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2019 BLOCK.
2020
2021 For each symbol that matches, CALLBACK is called. The symbol and
2022 DATA are passed to the callback.
2023
2024 If CALLBACK returns zero, the iteration ends. Otherwise, the
2025 search continues. This function iterates upward through blocks.
2026 When the outermost block has been finished, the function
2027 returns. */
2028
2029 void
2030 iterate_over_symbols (const struct block *block, const char *name,
2031 const domain_enum domain,
2032 symbol_found_callback_ftype *callback,
2033 void *data)
2034 {
2035 while (block)
2036 {
2037 struct block_iterator iter;
2038 struct symbol *sym;
2039
2040 for (sym = block_iter_name_first (block, name, &iter);
2041 sym != NULL;
2042 sym = block_iter_name_next (name, &iter))
2043 {
2044 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2045 SYMBOL_DOMAIN (sym), domain))
2046 {
2047 if (!callback (sym, data))
2048 return;
2049 }
2050 }
2051
2052 block = BLOCK_SUPERBLOCK (block);
2053 }
2054 }
2055
2056 /* Find the symtab associated with PC and SECTION. Look through the
2057 psymtabs and read in another symtab if necessary. */
2058
2059 struct symtab *
2060 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2061 {
2062 struct block *b;
2063 struct blockvector *bv;
2064 struct symtab *s = NULL;
2065 struct symtab *best_s = NULL;
2066 struct objfile *objfile;
2067 struct program_space *pspace;
2068 CORE_ADDR distance = 0;
2069 struct minimal_symbol *msymbol;
2070
2071 pspace = current_program_space;
2072
2073 /* If we know that this is not a text address, return failure. This is
2074 necessary because we loop based on the block's high and low code
2075 addresses, which do not include the data ranges, and because
2076 we call find_pc_sect_psymtab which has a similar restriction based
2077 on the partial_symtab's texthigh and textlow. */
2078 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2079 if (msymbol
2080 && (MSYMBOL_TYPE (msymbol) == mst_data
2081 || MSYMBOL_TYPE (msymbol) == mst_bss
2082 || MSYMBOL_TYPE (msymbol) == mst_abs
2083 || MSYMBOL_TYPE (msymbol) == mst_file_data
2084 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2085 return NULL;
2086
2087 /* Search all symtabs for the one whose file contains our address, and which
2088 is the smallest of all the ones containing the address. This is designed
2089 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2090 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2091 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2092
2093 This happens for native ecoff format, where code from included files
2094 gets its own symtab. The symtab for the included file should have
2095 been read in already via the dependency mechanism.
2096 It might be swifter to create several symtabs with the same name
2097 like xcoff does (I'm not sure).
2098
2099 It also happens for objfiles that have their functions reordered.
2100 For these, the symtab we are looking for is not necessarily read in. */
2101
2102 ALL_PRIMARY_SYMTABS (objfile, s)
2103 {
2104 bv = BLOCKVECTOR (s);
2105 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2106
2107 if (BLOCK_START (b) <= pc
2108 && BLOCK_END (b) > pc
2109 && (distance == 0
2110 || BLOCK_END (b) - BLOCK_START (b) < distance))
2111 {
2112 /* For an objfile that has its functions reordered,
2113 find_pc_psymtab will find the proper partial symbol table
2114 and we simply return its corresponding symtab. */
2115 /* In order to better support objfiles that contain both
2116 stabs and coff debugging info, we continue on if a psymtab
2117 can't be found. */
2118 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2119 {
2120 struct symtab *result;
2121
2122 result
2123 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2124 msymbol,
2125 pc, section,
2126 0);
2127 if (result)
2128 return result;
2129 }
2130 if (section != 0)
2131 {
2132 struct block_iterator iter;
2133 struct symbol *sym = NULL;
2134
2135 ALL_BLOCK_SYMBOLS (b, iter, sym)
2136 {
2137 fixup_symbol_section (sym, objfile);
2138 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2139 break;
2140 }
2141 if (sym == NULL)
2142 continue; /* No symbol in this symtab matches
2143 section. */
2144 }
2145 distance = BLOCK_END (b) - BLOCK_START (b);
2146 best_s = s;
2147 }
2148 }
2149
2150 if (best_s != NULL)
2151 return (best_s);
2152
2153 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2154
2155 ALL_OBJFILES (objfile)
2156 {
2157 struct symtab *result;
2158
2159 if (!objfile->sf)
2160 continue;
2161 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2162 msymbol,
2163 pc, section,
2164 1);
2165 if (result)
2166 return result;
2167 }
2168
2169 return NULL;
2170 }
2171
2172 /* Find the symtab associated with PC. Look through the psymtabs and read
2173 in another symtab if necessary. Backward compatibility, no section. */
2174
2175 struct symtab *
2176 find_pc_symtab (CORE_ADDR pc)
2177 {
2178 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2179 }
2180 \f
2181
2182 /* Find the source file and line number for a given PC value and SECTION.
2183 Return a structure containing a symtab pointer, a line number,
2184 and a pc range for the entire source line.
2185 The value's .pc field is NOT the specified pc.
2186 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2187 use the line that ends there. Otherwise, in that case, the line
2188 that begins there is used. */
2189
2190 /* The big complication here is that a line may start in one file, and end just
2191 before the start of another file. This usually occurs when you #include
2192 code in the middle of a subroutine. To properly find the end of a line's PC
2193 range, we must search all symtabs associated with this compilation unit, and
2194 find the one whose first PC is closer than that of the next line in this
2195 symtab. */
2196
2197 /* If it's worth the effort, we could be using a binary search. */
2198
2199 struct symtab_and_line
2200 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2201 {
2202 struct symtab *s;
2203 struct linetable *l;
2204 int len;
2205 int i;
2206 struct linetable_entry *item;
2207 struct symtab_and_line val;
2208 struct blockvector *bv;
2209 struct minimal_symbol *msymbol;
2210 struct minimal_symbol *mfunsym;
2211 struct objfile *objfile;
2212
2213 /* Info on best line seen so far, and where it starts, and its file. */
2214
2215 struct linetable_entry *best = NULL;
2216 CORE_ADDR best_end = 0;
2217 struct symtab *best_symtab = 0;
2218
2219 /* Store here the first line number
2220 of a file which contains the line at the smallest pc after PC.
2221 If we don't find a line whose range contains PC,
2222 we will use a line one less than this,
2223 with a range from the start of that file to the first line's pc. */
2224 struct linetable_entry *alt = NULL;
2225 struct symtab *alt_symtab = 0;
2226
2227 /* Info on best line seen in this file. */
2228
2229 struct linetable_entry *prev;
2230
2231 /* If this pc is not from the current frame,
2232 it is the address of the end of a call instruction.
2233 Quite likely that is the start of the following statement.
2234 But what we want is the statement containing the instruction.
2235 Fudge the pc to make sure we get that. */
2236
2237 init_sal (&val); /* initialize to zeroes */
2238
2239 val.pspace = current_program_space;
2240
2241 /* It's tempting to assume that, if we can't find debugging info for
2242 any function enclosing PC, that we shouldn't search for line
2243 number info, either. However, GAS can emit line number info for
2244 assembly files --- very helpful when debugging hand-written
2245 assembly code. In such a case, we'd have no debug info for the
2246 function, but we would have line info. */
2247
2248 if (notcurrent)
2249 pc -= 1;
2250
2251 /* elz: added this because this function returned the wrong
2252 information if the pc belongs to a stub (import/export)
2253 to call a shlib function. This stub would be anywhere between
2254 two functions in the target, and the line info was erroneously
2255 taken to be the one of the line before the pc. */
2256
2257 /* RT: Further explanation:
2258
2259 * We have stubs (trampolines) inserted between procedures.
2260 *
2261 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2262 * exists in the main image.
2263 *
2264 * In the minimal symbol table, we have a bunch of symbols
2265 * sorted by start address. The stubs are marked as "trampoline",
2266 * the others appear as text. E.g.:
2267 *
2268 * Minimal symbol table for main image
2269 * main: code for main (text symbol)
2270 * shr1: stub (trampoline symbol)
2271 * foo: code for foo (text symbol)
2272 * ...
2273 * Minimal symbol table for "shr1" image:
2274 * ...
2275 * shr1: code for shr1 (text symbol)
2276 * ...
2277 *
2278 * So the code below is trying to detect if we are in the stub
2279 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2280 * and if found, do the symbolization from the real-code address
2281 * rather than the stub address.
2282 *
2283 * Assumptions being made about the minimal symbol table:
2284 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2285 * if we're really in the trampoline.s If we're beyond it (say
2286 * we're in "foo" in the above example), it'll have a closer
2287 * symbol (the "foo" text symbol for example) and will not
2288 * return the trampoline.
2289 * 2. lookup_minimal_symbol_text() will find a real text symbol
2290 * corresponding to the trampoline, and whose address will
2291 * be different than the trampoline address. I put in a sanity
2292 * check for the address being the same, to avoid an
2293 * infinite recursion.
2294 */
2295 msymbol = lookup_minimal_symbol_by_pc (pc);
2296 if (msymbol != NULL)
2297 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2298 {
2299 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2300 NULL);
2301 if (mfunsym == NULL)
2302 /* I eliminated this warning since it is coming out
2303 * in the following situation:
2304 * gdb shmain // test program with shared libraries
2305 * (gdb) break shr1 // function in shared lib
2306 * Warning: In stub for ...
2307 * In the above situation, the shared lib is not loaded yet,
2308 * so of course we can't find the real func/line info,
2309 * but the "break" still works, and the warning is annoying.
2310 * So I commented out the warning. RT */
2311 /* warning ("In stub for %s; unable to find real function/line info",
2312 SYMBOL_LINKAGE_NAME (msymbol)); */
2313 ;
2314 /* fall through */
2315 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2316 == SYMBOL_VALUE_ADDRESS (msymbol))
2317 /* Avoid infinite recursion */
2318 /* See above comment about why warning is commented out. */
2319 /* warning ("In stub for %s; unable to find real function/line info",
2320 SYMBOL_LINKAGE_NAME (msymbol)); */
2321 ;
2322 /* fall through */
2323 else
2324 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2325 }
2326
2327
2328 s = find_pc_sect_symtab (pc, section);
2329 if (!s)
2330 {
2331 /* If no symbol information, return previous pc. */
2332 if (notcurrent)
2333 pc++;
2334 val.pc = pc;
2335 return val;
2336 }
2337
2338 bv = BLOCKVECTOR (s);
2339 objfile = s->objfile;
2340
2341 /* Look at all the symtabs that share this blockvector.
2342 They all have the same apriori range, that we found was right;
2343 but they have different line tables. */
2344
2345 ALL_OBJFILE_SYMTABS (objfile, s)
2346 {
2347 if (BLOCKVECTOR (s) != bv)
2348 continue;
2349
2350 /* Find the best line in this symtab. */
2351 l = LINETABLE (s);
2352 if (!l)
2353 continue;
2354 len = l->nitems;
2355 if (len <= 0)
2356 {
2357 /* I think len can be zero if the symtab lacks line numbers
2358 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2359 I'm not sure which, and maybe it depends on the symbol
2360 reader). */
2361 continue;
2362 }
2363
2364 prev = NULL;
2365 item = l->item; /* Get first line info. */
2366
2367 /* Is this file's first line closer than the first lines of other files?
2368 If so, record this file, and its first line, as best alternate. */
2369 if (item->pc > pc && (!alt || item->pc < alt->pc))
2370 {
2371 alt = item;
2372 alt_symtab = s;
2373 }
2374
2375 for (i = 0; i < len; i++, item++)
2376 {
2377 /* Leave prev pointing to the linetable entry for the last line
2378 that started at or before PC. */
2379 if (item->pc > pc)
2380 break;
2381
2382 prev = item;
2383 }
2384
2385 /* At this point, prev points at the line whose start addr is <= pc, and
2386 item points at the next line. If we ran off the end of the linetable
2387 (pc >= start of the last line), then prev == item. If pc < start of
2388 the first line, prev will not be set. */
2389
2390 /* Is this file's best line closer than the best in the other files?
2391 If so, record this file, and its best line, as best so far. Don't
2392 save prev if it represents the end of a function (i.e. line number
2393 0) instead of a real line. */
2394
2395 if (prev && prev->line && (!best || prev->pc > best->pc))
2396 {
2397 best = prev;
2398 best_symtab = s;
2399
2400 /* Discard BEST_END if it's before the PC of the current BEST. */
2401 if (best_end <= best->pc)
2402 best_end = 0;
2403 }
2404
2405 /* If another line (denoted by ITEM) is in the linetable and its
2406 PC is after BEST's PC, but before the current BEST_END, then
2407 use ITEM's PC as the new best_end. */
2408 if (best && i < len && item->pc > best->pc
2409 && (best_end == 0 || best_end > item->pc))
2410 best_end = item->pc;
2411 }
2412
2413 if (!best_symtab)
2414 {
2415 /* If we didn't find any line number info, just return zeros.
2416 We used to return alt->line - 1 here, but that could be
2417 anywhere; if we don't have line number info for this PC,
2418 don't make some up. */
2419 val.pc = pc;
2420 }
2421 else if (best->line == 0)
2422 {
2423 /* If our best fit is in a range of PC's for which no line
2424 number info is available (line number is zero) then we didn't
2425 find any valid line information. */
2426 val.pc = pc;
2427 }
2428 else
2429 {
2430 val.symtab = best_symtab;
2431 val.line = best->line;
2432 val.pc = best->pc;
2433 if (best_end && (!alt || best_end < alt->pc))
2434 val.end = best_end;
2435 else if (alt)
2436 val.end = alt->pc;
2437 else
2438 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2439 }
2440 val.section = section;
2441 return val;
2442 }
2443
2444 /* Backward compatibility (no section). */
2445
2446 struct symtab_and_line
2447 find_pc_line (CORE_ADDR pc, int notcurrent)
2448 {
2449 struct obj_section *section;
2450
2451 section = find_pc_overlay (pc);
2452 if (pc_in_unmapped_range (pc, section))
2453 pc = overlay_mapped_address (pc, section);
2454 return find_pc_sect_line (pc, section, notcurrent);
2455 }
2456 \f
2457 /* Find line number LINE in any symtab whose name is the same as
2458 SYMTAB.
2459
2460 If found, return the symtab that contains the linetable in which it was
2461 found, set *INDEX to the index in the linetable of the best entry
2462 found, and set *EXACT_MATCH nonzero if the value returned is an
2463 exact match.
2464
2465 If not found, return NULL. */
2466
2467 struct symtab *
2468 find_line_symtab (struct symtab *symtab, int line,
2469 int *index, int *exact_match)
2470 {
2471 int exact = 0; /* Initialized here to avoid a compiler warning. */
2472
2473 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2474 so far seen. */
2475
2476 int best_index;
2477 struct linetable *best_linetable;
2478 struct symtab *best_symtab;
2479
2480 /* First try looking it up in the given symtab. */
2481 best_linetable = LINETABLE (symtab);
2482 best_symtab = symtab;
2483 best_index = find_line_common (best_linetable, line, &exact, 0);
2484 if (best_index < 0 || !exact)
2485 {
2486 /* Didn't find an exact match. So we better keep looking for
2487 another symtab with the same name. In the case of xcoff,
2488 multiple csects for one source file (produced by IBM's FORTRAN
2489 compiler) produce multiple symtabs (this is unavoidable
2490 assuming csects can be at arbitrary places in memory and that
2491 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2492
2493 /* BEST is the smallest linenumber > LINE so far seen,
2494 or 0 if none has been seen so far.
2495 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2496 int best;
2497
2498 struct objfile *objfile;
2499 struct symtab *s;
2500
2501 if (best_index >= 0)
2502 best = best_linetable->item[best_index].line;
2503 else
2504 best = 0;
2505
2506 ALL_OBJFILES (objfile)
2507 {
2508 if (objfile->sf)
2509 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2510 symtab->filename);
2511 }
2512
2513 /* Get symbol full file name if possible. */
2514 symtab_to_fullname (symtab);
2515
2516 ALL_SYMTABS (objfile, s)
2517 {
2518 struct linetable *l;
2519 int ind;
2520
2521 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2522 continue;
2523 if (symtab->fullname != NULL
2524 && symtab_to_fullname (s) != NULL
2525 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2526 continue;
2527 l = LINETABLE (s);
2528 ind = find_line_common (l, line, &exact, 0);
2529 if (ind >= 0)
2530 {
2531 if (exact)
2532 {
2533 best_index = ind;
2534 best_linetable = l;
2535 best_symtab = s;
2536 goto done;
2537 }
2538 if (best == 0 || l->item[ind].line < best)
2539 {
2540 best = l->item[ind].line;
2541 best_index = ind;
2542 best_linetable = l;
2543 best_symtab = s;
2544 }
2545 }
2546 }
2547 }
2548 done:
2549 if (best_index < 0)
2550 return NULL;
2551
2552 if (index)
2553 *index = best_index;
2554 if (exact_match)
2555 *exact_match = exact;
2556
2557 return best_symtab;
2558 }
2559
2560 /* Given SYMTAB, returns all the PCs function in the symtab that
2561 exactly match LINE. Returns NULL if there are no exact matches,
2562 but updates BEST_ITEM in this case. */
2563
2564 VEC (CORE_ADDR) *
2565 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2566 struct linetable_entry **best_item)
2567 {
2568 int start = 0, ix;
2569 struct symbol *previous_function = NULL;
2570 VEC (CORE_ADDR) *result = NULL;
2571
2572 /* First, collect all the PCs that are at this line. */
2573 while (1)
2574 {
2575 int was_exact;
2576 int idx;
2577
2578 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2579 if (idx < 0)
2580 break;
2581
2582 if (!was_exact)
2583 {
2584 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2585
2586 if (*best_item == NULL || item->line < (*best_item)->line)
2587 *best_item = item;
2588
2589 break;
2590 }
2591
2592 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2593 start = idx + 1;
2594 }
2595
2596 return result;
2597 }
2598
2599 \f
2600 /* Set the PC value for a given source file and line number and return true.
2601 Returns zero for invalid line number (and sets the PC to 0).
2602 The source file is specified with a struct symtab. */
2603
2604 int
2605 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2606 {
2607 struct linetable *l;
2608 int ind;
2609
2610 *pc = 0;
2611 if (symtab == 0)
2612 return 0;
2613
2614 symtab = find_line_symtab (symtab, line, &ind, NULL);
2615 if (symtab != NULL)
2616 {
2617 l = LINETABLE (symtab);
2618 *pc = l->item[ind].pc;
2619 return 1;
2620 }
2621 else
2622 return 0;
2623 }
2624
2625 /* Find the range of pc values in a line.
2626 Store the starting pc of the line into *STARTPTR
2627 and the ending pc (start of next line) into *ENDPTR.
2628 Returns 1 to indicate success.
2629 Returns 0 if could not find the specified line. */
2630
2631 int
2632 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2633 CORE_ADDR *endptr)
2634 {
2635 CORE_ADDR startaddr;
2636 struct symtab_and_line found_sal;
2637
2638 startaddr = sal.pc;
2639 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2640 return 0;
2641
2642 /* This whole function is based on address. For example, if line 10 has
2643 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2644 "info line *0x123" should say the line goes from 0x100 to 0x200
2645 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2646 This also insures that we never give a range like "starts at 0x134
2647 and ends at 0x12c". */
2648
2649 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2650 if (found_sal.line != sal.line)
2651 {
2652 /* The specified line (sal) has zero bytes. */
2653 *startptr = found_sal.pc;
2654 *endptr = found_sal.pc;
2655 }
2656 else
2657 {
2658 *startptr = found_sal.pc;
2659 *endptr = found_sal.end;
2660 }
2661 return 1;
2662 }
2663
2664 /* Given a line table and a line number, return the index into the line
2665 table for the pc of the nearest line whose number is >= the specified one.
2666 Return -1 if none is found. The value is >= 0 if it is an index.
2667 START is the index at which to start searching the line table.
2668
2669 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2670
2671 static int
2672 find_line_common (struct linetable *l, int lineno,
2673 int *exact_match, int start)
2674 {
2675 int i;
2676 int len;
2677
2678 /* BEST is the smallest linenumber > LINENO so far seen,
2679 or 0 if none has been seen so far.
2680 BEST_INDEX identifies the item for it. */
2681
2682 int best_index = -1;
2683 int best = 0;
2684
2685 *exact_match = 0;
2686
2687 if (lineno <= 0)
2688 return -1;
2689 if (l == 0)
2690 return -1;
2691
2692 len = l->nitems;
2693 for (i = start; i < len; i++)
2694 {
2695 struct linetable_entry *item = &(l->item[i]);
2696
2697 if (item->line == lineno)
2698 {
2699 /* Return the first (lowest address) entry which matches. */
2700 *exact_match = 1;
2701 return i;
2702 }
2703
2704 if (item->line > lineno && (best == 0 || item->line < best))
2705 {
2706 best = item->line;
2707 best_index = i;
2708 }
2709 }
2710
2711 /* If we got here, we didn't get an exact match. */
2712 return best_index;
2713 }
2714
2715 int
2716 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2717 {
2718 struct symtab_and_line sal;
2719
2720 sal = find_pc_line (pc, 0);
2721 *startptr = sal.pc;
2722 *endptr = sal.end;
2723 return sal.symtab != 0;
2724 }
2725
2726 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2727 address for that function that has an entry in SYMTAB's line info
2728 table. If such an entry cannot be found, return FUNC_ADDR
2729 unaltered. */
2730
2731 static CORE_ADDR
2732 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2733 {
2734 CORE_ADDR func_start, func_end;
2735 struct linetable *l;
2736 int i;
2737
2738 /* Give up if this symbol has no lineinfo table. */
2739 l = LINETABLE (symtab);
2740 if (l == NULL)
2741 return func_addr;
2742
2743 /* Get the range for the function's PC values, or give up if we
2744 cannot, for some reason. */
2745 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2746 return func_addr;
2747
2748 /* Linetable entries are ordered by PC values, see the commentary in
2749 symtab.h where `struct linetable' is defined. Thus, the first
2750 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2751 address we are looking for. */
2752 for (i = 0; i < l->nitems; i++)
2753 {
2754 struct linetable_entry *item = &(l->item[i]);
2755
2756 /* Don't use line numbers of zero, they mark special entries in
2757 the table. See the commentary on symtab.h before the
2758 definition of struct linetable. */
2759 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2760 return item->pc;
2761 }
2762
2763 return func_addr;
2764 }
2765
2766 /* Given a function symbol SYM, find the symtab and line for the start
2767 of the function.
2768 If the argument FUNFIRSTLINE is nonzero, we want the first line
2769 of real code inside the function. */
2770
2771 struct symtab_and_line
2772 find_function_start_sal (struct symbol *sym, int funfirstline)
2773 {
2774 struct symtab_and_line sal;
2775
2776 fixup_symbol_section (sym, NULL);
2777 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2778 SYMBOL_OBJ_SECTION (sym), 0);
2779
2780 /* We always should have a line for the function start address.
2781 If we don't, something is odd. Create a plain SAL refering
2782 just the PC and hope that skip_prologue_sal (if requested)
2783 can find a line number for after the prologue. */
2784 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2785 {
2786 init_sal (&sal);
2787 sal.pspace = current_program_space;
2788 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2789 sal.section = SYMBOL_OBJ_SECTION (sym);
2790 }
2791
2792 if (funfirstline)
2793 skip_prologue_sal (&sal);
2794
2795 return sal;
2796 }
2797
2798 /* Adjust SAL to the first instruction past the function prologue.
2799 If the PC was explicitly specified, the SAL is not changed.
2800 If the line number was explicitly specified, at most the SAL's PC
2801 is updated. If SAL is already past the prologue, then do nothing. */
2802
2803 void
2804 skip_prologue_sal (struct symtab_and_line *sal)
2805 {
2806 struct symbol *sym;
2807 struct symtab_and_line start_sal;
2808 struct cleanup *old_chain;
2809 CORE_ADDR pc, saved_pc;
2810 struct obj_section *section;
2811 const char *name;
2812 struct objfile *objfile;
2813 struct gdbarch *gdbarch;
2814 struct block *b, *function_block;
2815 int force_skip, skip;
2816
2817 /* Do not change the SAL if PC was specified explicitly. */
2818 if (sal->explicit_pc)
2819 return;
2820
2821 old_chain = save_current_space_and_thread ();
2822 switch_to_program_space_and_thread (sal->pspace);
2823
2824 sym = find_pc_sect_function (sal->pc, sal->section);
2825 if (sym != NULL)
2826 {
2827 fixup_symbol_section (sym, NULL);
2828
2829 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2830 section = SYMBOL_OBJ_SECTION (sym);
2831 name = SYMBOL_LINKAGE_NAME (sym);
2832 objfile = SYMBOL_SYMTAB (sym)->objfile;
2833 }
2834 else
2835 {
2836 struct minimal_symbol *msymbol
2837 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2838
2839 if (msymbol == NULL)
2840 {
2841 do_cleanups (old_chain);
2842 return;
2843 }
2844
2845 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2846 section = SYMBOL_OBJ_SECTION (msymbol);
2847 name = SYMBOL_LINKAGE_NAME (msymbol);
2848 objfile = msymbol_objfile (msymbol);
2849 }
2850
2851 gdbarch = get_objfile_arch (objfile);
2852
2853 /* Process the prologue in two passes. In the first pass try to skip the
2854 prologue (SKIP is true) and verify there is a real need for it (indicated
2855 by FORCE_SKIP). If no such reason was found run a second pass where the
2856 prologue is not skipped (SKIP is false). */
2857
2858 skip = 1;
2859 force_skip = 1;
2860
2861 /* Be conservative - allow direct PC (without skipping prologue) only if we
2862 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2863 have to be set by the caller so we use SYM instead. */
2864 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2865 force_skip = 0;
2866
2867 saved_pc = pc;
2868 do
2869 {
2870 pc = saved_pc;
2871
2872 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2873 so that gdbarch_skip_prologue has something unique to work on. */
2874 if (section_is_overlay (section) && !section_is_mapped (section))
2875 pc = overlay_unmapped_address (pc, section);
2876
2877 /* Skip "first line" of function (which is actually its prologue). */
2878 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2879 if (skip)
2880 pc = gdbarch_skip_prologue (gdbarch, pc);
2881
2882 /* For overlays, map pc back into its mapped VMA range. */
2883 pc = overlay_mapped_address (pc, section);
2884
2885 /* Calculate line number. */
2886 start_sal = find_pc_sect_line (pc, section, 0);
2887
2888 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2889 line is still part of the same function. */
2890 if (skip && start_sal.pc != pc
2891 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2892 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2893 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2894 == lookup_minimal_symbol_by_pc_section (pc, section))))
2895 {
2896 /* First pc of next line */
2897 pc = start_sal.end;
2898 /* Recalculate the line number (might not be N+1). */
2899 start_sal = find_pc_sect_line (pc, section, 0);
2900 }
2901
2902 /* On targets with executable formats that don't have a concept of
2903 constructors (ELF with .init has, PE doesn't), gcc emits a call
2904 to `__main' in `main' between the prologue and before user
2905 code. */
2906 if (gdbarch_skip_main_prologue_p (gdbarch)
2907 && name && strcmp_iw (name, "main") == 0)
2908 {
2909 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2910 /* Recalculate the line number (might not be N+1). */
2911 start_sal = find_pc_sect_line (pc, section, 0);
2912 force_skip = 1;
2913 }
2914 }
2915 while (!force_skip && skip--);
2916
2917 /* If we still don't have a valid source line, try to find the first
2918 PC in the lineinfo table that belongs to the same function. This
2919 happens with COFF debug info, which does not seem to have an
2920 entry in lineinfo table for the code after the prologue which has
2921 no direct relation to source. For example, this was found to be
2922 the case with the DJGPP target using "gcc -gcoff" when the
2923 compiler inserted code after the prologue to make sure the stack
2924 is aligned. */
2925 if (!force_skip && sym && start_sal.symtab == NULL)
2926 {
2927 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2928 /* Recalculate the line number. */
2929 start_sal = find_pc_sect_line (pc, section, 0);
2930 }
2931
2932 do_cleanups (old_chain);
2933
2934 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2935 forward SAL to the end of the prologue. */
2936 if (sal->pc >= pc)
2937 return;
2938
2939 sal->pc = pc;
2940 sal->section = section;
2941
2942 /* Unless the explicit_line flag was set, update the SAL line
2943 and symtab to correspond to the modified PC location. */
2944 if (sal->explicit_line)
2945 return;
2946
2947 sal->symtab = start_sal.symtab;
2948 sal->line = start_sal.line;
2949 sal->end = start_sal.end;
2950
2951 /* Check if we are now inside an inlined function. If we can,
2952 use the call site of the function instead. */
2953 b = block_for_pc_sect (sal->pc, sal->section);
2954 function_block = NULL;
2955 while (b != NULL)
2956 {
2957 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2958 function_block = b;
2959 else if (BLOCK_FUNCTION (b) != NULL)
2960 break;
2961 b = BLOCK_SUPERBLOCK (b);
2962 }
2963 if (function_block != NULL
2964 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2965 {
2966 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2967 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2968 }
2969 }
2970
2971 /* If P is of the form "operator[ \t]+..." where `...' is
2972 some legitimate operator text, return a pointer to the
2973 beginning of the substring of the operator text.
2974 Otherwise, return "". */
2975
2976 static char *
2977 operator_chars (char *p, char **end)
2978 {
2979 *end = "";
2980 if (strncmp (p, "operator", 8))
2981 return *end;
2982 p += 8;
2983
2984 /* Don't get faked out by `operator' being part of a longer
2985 identifier. */
2986 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2987 return *end;
2988
2989 /* Allow some whitespace between `operator' and the operator symbol. */
2990 while (*p == ' ' || *p == '\t')
2991 p++;
2992
2993 /* Recognize 'operator TYPENAME'. */
2994
2995 if (isalpha (*p) || *p == '_' || *p == '$')
2996 {
2997 char *q = p + 1;
2998
2999 while (isalnum (*q) || *q == '_' || *q == '$')
3000 q++;
3001 *end = q;
3002 return p;
3003 }
3004
3005 while (*p)
3006 switch (*p)
3007 {
3008 case '\\': /* regexp quoting */
3009 if (p[1] == '*')
3010 {
3011 if (p[2] == '=') /* 'operator\*=' */
3012 *end = p + 3;
3013 else /* 'operator\*' */
3014 *end = p + 2;
3015 return p;
3016 }
3017 else if (p[1] == '[')
3018 {
3019 if (p[2] == ']')
3020 error (_("mismatched quoting on brackets, "
3021 "try 'operator\\[\\]'"));
3022 else if (p[2] == '\\' && p[3] == ']')
3023 {
3024 *end = p + 4; /* 'operator\[\]' */
3025 return p;
3026 }
3027 else
3028 error (_("nothing is allowed between '[' and ']'"));
3029 }
3030 else
3031 {
3032 /* Gratuitous qoute: skip it and move on. */
3033 p++;
3034 continue;
3035 }
3036 break;
3037 case '!':
3038 case '=':
3039 case '*':
3040 case '/':
3041 case '%':
3042 case '^':
3043 if (p[1] == '=')
3044 *end = p + 2;
3045 else
3046 *end = p + 1;
3047 return p;
3048 case '<':
3049 case '>':
3050 case '+':
3051 case '-':
3052 case '&':
3053 case '|':
3054 if (p[0] == '-' && p[1] == '>')
3055 {
3056 /* Struct pointer member operator 'operator->'. */
3057 if (p[2] == '*')
3058 {
3059 *end = p + 3; /* 'operator->*' */
3060 return p;
3061 }
3062 else if (p[2] == '\\')
3063 {
3064 *end = p + 4; /* Hopefully 'operator->\*' */
3065 return p;
3066 }
3067 else
3068 {
3069 *end = p + 2; /* 'operator->' */
3070 return p;
3071 }
3072 }
3073 if (p[1] == '=' || p[1] == p[0])
3074 *end = p + 2;
3075 else
3076 *end = p + 1;
3077 return p;
3078 case '~':
3079 case ',':
3080 *end = p + 1;
3081 return p;
3082 case '(':
3083 if (p[1] != ')')
3084 error (_("`operator ()' must be specified "
3085 "without whitespace in `()'"));
3086 *end = p + 2;
3087 return p;
3088 case '?':
3089 if (p[1] != ':')
3090 error (_("`operator ?:' must be specified "
3091 "without whitespace in `?:'"));
3092 *end = p + 2;
3093 return p;
3094 case '[':
3095 if (p[1] != ']')
3096 error (_("`operator []' must be specified "
3097 "without whitespace in `[]'"));
3098 *end = p + 2;
3099 return p;
3100 default:
3101 error (_("`operator %s' not supported"), p);
3102 break;
3103 }
3104
3105 *end = "";
3106 return *end;
3107 }
3108 \f
3109
3110 /* Cache to watch for file names already seen by filename_seen. */
3111
3112 struct filename_seen_cache
3113 {
3114 /* Table of files seen so far. */
3115 htab_t tab;
3116 /* Initial size of the table. It automagically grows from here. */
3117 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3118 };
3119
3120 /* filename_seen_cache constructor. */
3121
3122 static struct filename_seen_cache *
3123 create_filename_seen_cache (void)
3124 {
3125 struct filename_seen_cache *cache;
3126
3127 cache = XNEW (struct filename_seen_cache);
3128 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3129 filename_hash, filename_eq,
3130 NULL, xcalloc, xfree);
3131
3132 return cache;
3133 }
3134
3135 /* Empty the cache, but do not delete it. */
3136
3137 static void
3138 clear_filename_seen_cache (struct filename_seen_cache *cache)
3139 {
3140 htab_empty (cache->tab);
3141 }
3142
3143 /* filename_seen_cache destructor.
3144 This takes a void * argument as it is generally used as a cleanup. */
3145
3146 static void
3147 delete_filename_seen_cache (void *ptr)
3148 {
3149 struct filename_seen_cache *cache = ptr;
3150
3151 htab_delete (cache->tab);
3152 xfree (cache);
3153 }
3154
3155 /* If FILE is not already in the table of files in CACHE, return zero;
3156 otherwise return non-zero. Optionally add FILE to the table if ADD
3157 is non-zero.
3158
3159 NOTE: We don't manage space for FILE, we assume FILE lives as long
3160 as the caller needs. */
3161
3162 static int
3163 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3164 {
3165 void **slot;
3166
3167 /* Is FILE in tab? */
3168 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3169 if (*slot != NULL)
3170 return 1;
3171
3172 /* No; maybe add it to tab. */
3173 if (add)
3174 *slot = (char *) file;
3175
3176 return 0;
3177 }
3178
3179 /* Data structure to maintain printing state for output_source_filename. */
3180
3181 struct output_source_filename_data
3182 {
3183 /* Cache of what we've seen so far. */
3184 struct filename_seen_cache *filename_seen_cache;
3185
3186 /* Flag of whether we're printing the first one. */
3187 int first;
3188 };
3189
3190 /* Slave routine for sources_info. Force line breaks at ,'s.
3191 NAME is the name to print.
3192 DATA contains the state for printing and watching for duplicates. */
3193
3194 static void
3195 output_source_filename (const char *name,
3196 struct output_source_filename_data *data)
3197 {
3198 /* Since a single source file can result in several partial symbol
3199 tables, we need to avoid printing it more than once. Note: if
3200 some of the psymtabs are read in and some are not, it gets
3201 printed both under "Source files for which symbols have been
3202 read" and "Source files for which symbols will be read in on
3203 demand". I consider this a reasonable way to deal with the
3204 situation. I'm not sure whether this can also happen for
3205 symtabs; it doesn't hurt to check. */
3206
3207 /* Was NAME already seen? */
3208 if (filename_seen (data->filename_seen_cache, name, 1))
3209 {
3210 /* Yes; don't print it again. */
3211 return;
3212 }
3213
3214 /* No; print it and reset *FIRST. */
3215 if (! data->first)
3216 printf_filtered (", ");
3217 data->first = 0;
3218
3219 wrap_here ("");
3220 fputs_filtered (name, gdb_stdout);
3221 }
3222
3223 /* A callback for map_partial_symbol_filenames. */
3224
3225 static void
3226 output_partial_symbol_filename (const char *filename, const char *fullname,
3227 void *data)
3228 {
3229 output_source_filename (fullname ? fullname : filename, data);
3230 }
3231
3232 static void
3233 sources_info (char *ignore, int from_tty)
3234 {
3235 struct symtab *s;
3236 struct objfile *objfile;
3237 struct output_source_filename_data data;
3238 struct cleanup *cleanups;
3239
3240 if (!have_full_symbols () && !have_partial_symbols ())
3241 {
3242 error (_("No symbol table is loaded. Use the \"file\" command."));
3243 }
3244
3245 data.filename_seen_cache = create_filename_seen_cache ();
3246 cleanups = make_cleanup (delete_filename_seen_cache,
3247 data.filename_seen_cache);
3248
3249 printf_filtered ("Source files for which symbols have been read in:\n\n");
3250
3251 data.first = 1;
3252 ALL_SYMTABS (objfile, s)
3253 {
3254 const char *fullname = symtab_to_fullname (s);
3255
3256 output_source_filename (fullname ? fullname : s->filename, &data);
3257 }
3258 printf_filtered ("\n\n");
3259
3260 printf_filtered ("Source files for which symbols "
3261 "will be read in on demand:\n\n");
3262
3263 clear_filename_seen_cache (data.filename_seen_cache);
3264 data.first = 1;
3265 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3266 1 /*need_fullname*/);
3267 printf_filtered ("\n");
3268
3269 do_cleanups (cleanups);
3270 }
3271
3272 static int
3273 file_matches (const char *file, char *files[], int nfiles)
3274 {
3275 int i;
3276
3277 if (file != NULL && nfiles != 0)
3278 {
3279 for (i = 0; i < nfiles; i++)
3280 {
3281 if (filename_cmp (files[i], lbasename (file)) == 0)
3282 return 1;
3283 }
3284 }
3285 else if (nfiles == 0)
3286 return 1;
3287 return 0;
3288 }
3289
3290 /* Free any memory associated with a search. */
3291
3292 void
3293 free_search_symbols (struct symbol_search *symbols)
3294 {
3295 struct symbol_search *p;
3296 struct symbol_search *next;
3297
3298 for (p = symbols; p != NULL; p = next)
3299 {
3300 next = p->next;
3301 xfree (p);
3302 }
3303 }
3304
3305 static void
3306 do_free_search_symbols_cleanup (void *symbols)
3307 {
3308 free_search_symbols (symbols);
3309 }
3310
3311 struct cleanup *
3312 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3313 {
3314 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3315 }
3316
3317 /* Helper function for sort_search_symbols and qsort. Can only
3318 sort symbols, not minimal symbols. */
3319
3320 static int
3321 compare_search_syms (const void *sa, const void *sb)
3322 {
3323 struct symbol_search **sym_a = (struct symbol_search **) sa;
3324 struct symbol_search **sym_b = (struct symbol_search **) sb;
3325
3326 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3327 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3328 }
3329
3330 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3331 prevtail where it is, but update its next pointer to point to
3332 the first of the sorted symbols. */
3333
3334 static struct symbol_search *
3335 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3336 {
3337 struct symbol_search **symbols, *symp, *old_next;
3338 int i;
3339
3340 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3341 * nfound);
3342 symp = prevtail->next;
3343 for (i = 0; i < nfound; i++)
3344 {
3345 symbols[i] = symp;
3346 symp = symp->next;
3347 }
3348 /* Generally NULL. */
3349 old_next = symp;
3350
3351 qsort (symbols, nfound, sizeof (struct symbol_search *),
3352 compare_search_syms);
3353
3354 symp = prevtail;
3355 for (i = 0; i < nfound; i++)
3356 {
3357 symp->next = symbols[i];
3358 symp = symp->next;
3359 }
3360 symp->next = old_next;
3361
3362 xfree (symbols);
3363 return symp;
3364 }
3365
3366 /* An object of this type is passed as the user_data to the
3367 expand_symtabs_matching method. */
3368 struct search_symbols_data
3369 {
3370 int nfiles;
3371 char **files;
3372
3373 /* It is true if PREG contains valid data, false otherwise. */
3374 unsigned preg_p : 1;
3375 regex_t preg;
3376 };
3377
3378 /* A callback for expand_symtabs_matching. */
3379
3380 static int
3381 search_symbols_file_matches (const char *filename, void *user_data)
3382 {
3383 struct search_symbols_data *data = user_data;
3384
3385 return file_matches (filename, data->files, data->nfiles);
3386 }
3387
3388 /* A callback for expand_symtabs_matching. */
3389
3390 static int
3391 search_symbols_name_matches (const char *symname, void *user_data)
3392 {
3393 struct search_symbols_data *data = user_data;
3394
3395 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3396 }
3397
3398 /* Search the symbol table for matches to the regular expression REGEXP,
3399 returning the results in *MATCHES.
3400
3401 Only symbols of KIND are searched:
3402 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3403 and constants (enums)
3404 FUNCTIONS_DOMAIN - search all functions
3405 TYPES_DOMAIN - search all type names
3406 ALL_DOMAIN - an internal error for this function
3407
3408 free_search_symbols should be called when *MATCHES is no longer needed.
3409
3410 The results are sorted locally; each symtab's global and static blocks are
3411 separately alphabetized. */
3412
3413 void
3414 search_symbols (char *regexp, enum search_domain kind,
3415 int nfiles, char *files[],
3416 struct symbol_search **matches)
3417 {
3418 struct symtab *s;
3419 struct blockvector *bv;
3420 struct block *b;
3421 int i = 0;
3422 struct block_iterator iter;
3423 struct symbol *sym;
3424 struct objfile *objfile;
3425 struct minimal_symbol *msymbol;
3426 int found_misc = 0;
3427 static const enum minimal_symbol_type types[]
3428 = {mst_data, mst_text, mst_abs};
3429 static const enum minimal_symbol_type types2[]
3430 = {mst_bss, mst_file_text, mst_abs};
3431 static const enum minimal_symbol_type types3[]
3432 = {mst_file_data, mst_solib_trampoline, mst_abs};
3433 static const enum minimal_symbol_type types4[]
3434 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3435 enum minimal_symbol_type ourtype;
3436 enum minimal_symbol_type ourtype2;
3437 enum minimal_symbol_type ourtype3;
3438 enum minimal_symbol_type ourtype4;
3439 struct symbol_search *sr;
3440 struct symbol_search *psr;
3441 struct symbol_search *tail;
3442 struct search_symbols_data datum;
3443
3444 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3445 CLEANUP_CHAIN is freed only in the case of an error. */
3446 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3447 struct cleanup *retval_chain;
3448
3449 gdb_assert (kind <= TYPES_DOMAIN);
3450
3451 ourtype = types[kind];
3452 ourtype2 = types2[kind];
3453 ourtype3 = types3[kind];
3454 ourtype4 = types4[kind];
3455
3456 sr = *matches = NULL;
3457 tail = NULL;
3458 datum.preg_p = 0;
3459
3460 if (regexp != NULL)
3461 {
3462 /* Make sure spacing is right for C++ operators.
3463 This is just a courtesy to make the matching less sensitive
3464 to how many spaces the user leaves between 'operator'
3465 and <TYPENAME> or <OPERATOR>. */
3466 char *opend;
3467 char *opname = operator_chars (regexp, &opend);
3468 int errcode;
3469
3470 if (*opname)
3471 {
3472 int fix = -1; /* -1 means ok; otherwise number of
3473 spaces needed. */
3474
3475 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3476 {
3477 /* There should 1 space between 'operator' and 'TYPENAME'. */
3478 if (opname[-1] != ' ' || opname[-2] == ' ')
3479 fix = 1;
3480 }
3481 else
3482 {
3483 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3484 if (opname[-1] == ' ')
3485 fix = 0;
3486 }
3487 /* If wrong number of spaces, fix it. */
3488 if (fix >= 0)
3489 {
3490 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3491
3492 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3493 regexp = tmp;
3494 }
3495 }
3496
3497 errcode = regcomp (&datum.preg, regexp,
3498 REG_NOSUB | (case_sensitivity == case_sensitive_off
3499 ? REG_ICASE : 0));
3500 if (errcode != 0)
3501 {
3502 char *err = get_regcomp_error (errcode, &datum.preg);
3503
3504 make_cleanup (xfree, err);
3505 error (_("Invalid regexp (%s): %s"), err, regexp);
3506 }
3507 datum.preg_p = 1;
3508 make_regfree_cleanup (&datum.preg);
3509 }
3510
3511 /* Search through the partial symtabs *first* for all symbols
3512 matching the regexp. That way we don't have to reproduce all of
3513 the machinery below. */
3514
3515 datum.nfiles = nfiles;
3516 datum.files = files;
3517 ALL_OBJFILES (objfile)
3518 {
3519 if (objfile->sf)
3520 objfile->sf->qf->expand_symtabs_matching (objfile,
3521 (nfiles == 0
3522 ? NULL
3523 : search_symbols_file_matches),
3524 search_symbols_name_matches,
3525 kind,
3526 &datum);
3527 }
3528
3529 retval_chain = old_chain;
3530
3531 /* Here, we search through the minimal symbol tables for functions
3532 and variables that match, and force their symbols to be read.
3533 This is in particular necessary for demangled variable names,
3534 which are no longer put into the partial symbol tables.
3535 The symbol will then be found during the scan of symtabs below.
3536
3537 For functions, find_pc_symtab should succeed if we have debug info
3538 for the function, for variables we have to call
3539 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3540 has debug info.
3541 If the lookup fails, set found_misc so that we will rescan to print
3542 any matching symbols without debug info.
3543 We only search the objfile the msymbol came from, we no longer search
3544 all objfiles. In large programs (1000s of shared libs) searching all
3545 objfiles is not worth the pain. */
3546
3547 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3548 {
3549 ALL_MSYMBOLS (objfile, msymbol)
3550 {
3551 QUIT;
3552
3553 if (msymbol->created_by_gdb)
3554 continue;
3555
3556 if (MSYMBOL_TYPE (msymbol) == ourtype
3557 || MSYMBOL_TYPE (msymbol) == ourtype2
3558 || MSYMBOL_TYPE (msymbol) == ourtype3
3559 || MSYMBOL_TYPE (msymbol) == ourtype4)
3560 {
3561 if (!datum.preg_p
3562 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3563 NULL, 0) == 0)
3564 {
3565 /* Note: An important side-effect of these lookup functions
3566 is to expand the symbol table if msymbol is found, for the
3567 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3568 if (kind == FUNCTIONS_DOMAIN
3569 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3570 : (lookup_symbol_in_objfile_from_linkage_name
3571 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3572 == NULL))
3573 found_misc = 1;
3574 }
3575 }
3576 }
3577 }
3578
3579 ALL_PRIMARY_SYMTABS (objfile, s)
3580 {
3581 bv = BLOCKVECTOR (s);
3582 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3583 {
3584 struct symbol_search *prevtail = tail;
3585 int nfound = 0;
3586
3587 b = BLOCKVECTOR_BLOCK (bv, i);
3588 ALL_BLOCK_SYMBOLS (b, iter, sym)
3589 {
3590 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3591
3592 QUIT;
3593
3594 if (file_matches (real_symtab->filename, files, nfiles)
3595 && ((!datum.preg_p
3596 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3597 NULL, 0) == 0)
3598 && ((kind == VARIABLES_DOMAIN
3599 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3600 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3601 && SYMBOL_CLASS (sym) != LOC_BLOCK
3602 /* LOC_CONST can be used for more than just enums,
3603 e.g., c++ static const members.
3604 We only want to skip enums here. */
3605 && !(SYMBOL_CLASS (sym) == LOC_CONST
3606 && TYPE_CODE (SYMBOL_TYPE (sym))
3607 == TYPE_CODE_ENUM))
3608 || (kind == FUNCTIONS_DOMAIN
3609 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3610 || (kind == TYPES_DOMAIN
3611 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3612 {
3613 /* match */
3614 psr = (struct symbol_search *)
3615 xmalloc (sizeof (struct symbol_search));
3616 psr->block = i;
3617 psr->symtab = real_symtab;
3618 psr->symbol = sym;
3619 psr->msymbol = NULL;
3620 psr->next = NULL;
3621 if (tail == NULL)
3622 sr = psr;
3623 else
3624 tail->next = psr;
3625 tail = psr;
3626 nfound ++;
3627 }
3628 }
3629 if (nfound > 0)
3630 {
3631 if (prevtail == NULL)
3632 {
3633 struct symbol_search dummy;
3634
3635 dummy.next = sr;
3636 tail = sort_search_symbols (&dummy, nfound);
3637 sr = dummy.next;
3638
3639 make_cleanup_free_search_symbols (sr);
3640 }
3641 else
3642 tail = sort_search_symbols (prevtail, nfound);
3643 }
3644 }
3645 }
3646
3647 /* If there are no eyes, avoid all contact. I mean, if there are
3648 no debug symbols, then print directly from the msymbol_vector. */
3649
3650 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3651 {
3652 ALL_MSYMBOLS (objfile, msymbol)
3653 {
3654 QUIT;
3655
3656 if (msymbol->created_by_gdb)
3657 continue;
3658
3659 if (MSYMBOL_TYPE (msymbol) == ourtype
3660 || MSYMBOL_TYPE (msymbol) == ourtype2
3661 || MSYMBOL_TYPE (msymbol) == ourtype3
3662 || MSYMBOL_TYPE (msymbol) == ourtype4)
3663 {
3664 if (!datum.preg_p
3665 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3666 NULL, 0) == 0)
3667 {
3668 /* For functions we can do a quick check of whether the
3669 symbol might be found via find_pc_symtab. */
3670 if (kind != FUNCTIONS_DOMAIN
3671 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3672 {
3673 if (lookup_symbol_in_objfile_from_linkage_name
3674 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3675 == NULL)
3676 {
3677 /* match */
3678 psr = (struct symbol_search *)
3679 xmalloc (sizeof (struct symbol_search));
3680 psr->block = i;
3681 psr->msymbol = msymbol;
3682 psr->symtab = NULL;
3683 psr->symbol = NULL;
3684 psr->next = NULL;
3685 if (tail == NULL)
3686 {
3687 sr = psr;
3688 make_cleanup_free_search_symbols (sr);
3689 }
3690 else
3691 tail->next = psr;
3692 tail = psr;
3693 }
3694 }
3695 }
3696 }
3697 }
3698 }
3699
3700 discard_cleanups (retval_chain);
3701 do_cleanups (old_chain);
3702 *matches = sr;
3703 }
3704
3705 /* Helper function for symtab_symbol_info, this function uses
3706 the data returned from search_symbols() to print information
3707 regarding the match to gdb_stdout. */
3708
3709 static void
3710 print_symbol_info (enum search_domain kind,
3711 struct symtab *s, struct symbol *sym,
3712 int block, char *last)
3713 {
3714 if (last == NULL || filename_cmp (last, s->filename) != 0)
3715 {
3716 fputs_filtered ("\nFile ", gdb_stdout);
3717 fputs_filtered (s->filename, gdb_stdout);
3718 fputs_filtered (":\n", gdb_stdout);
3719 }
3720
3721 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3722 printf_filtered ("static ");
3723
3724 /* Typedef that is not a C++ class. */
3725 if (kind == TYPES_DOMAIN
3726 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3727 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3728 /* variable, func, or typedef-that-is-c++-class. */
3729 else if (kind < TYPES_DOMAIN
3730 || (kind == TYPES_DOMAIN
3731 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3732 {
3733 type_print (SYMBOL_TYPE (sym),
3734 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3735 ? "" : SYMBOL_PRINT_NAME (sym)),
3736 gdb_stdout, 0);
3737
3738 printf_filtered (";\n");
3739 }
3740 }
3741
3742 /* This help function for symtab_symbol_info() prints information
3743 for non-debugging symbols to gdb_stdout. */
3744
3745 static void
3746 print_msymbol_info (struct minimal_symbol *msymbol)
3747 {
3748 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3749 char *tmp;
3750
3751 if (gdbarch_addr_bit (gdbarch) <= 32)
3752 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3753 & (CORE_ADDR) 0xffffffff,
3754 8);
3755 else
3756 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3757 16);
3758 printf_filtered ("%s %s\n",
3759 tmp, SYMBOL_PRINT_NAME (msymbol));
3760 }
3761
3762 /* This is the guts of the commands "info functions", "info types", and
3763 "info variables". It calls search_symbols to find all matches and then
3764 print_[m]symbol_info to print out some useful information about the
3765 matches. */
3766
3767 static void
3768 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3769 {
3770 static const char * const classnames[] =
3771 {"variable", "function", "type"};
3772 struct symbol_search *symbols;
3773 struct symbol_search *p;
3774 struct cleanup *old_chain;
3775 char *last_filename = NULL;
3776 int first = 1;
3777
3778 gdb_assert (kind <= TYPES_DOMAIN);
3779
3780 /* Must make sure that if we're interrupted, symbols gets freed. */
3781 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3782 old_chain = make_cleanup_free_search_symbols (symbols);
3783
3784 if (regexp != NULL)
3785 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3786 classnames[kind], regexp);
3787 else
3788 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3789
3790 for (p = symbols; p != NULL; p = p->next)
3791 {
3792 QUIT;
3793
3794 if (p->msymbol != NULL)
3795 {
3796 if (first)
3797 {
3798 printf_filtered (_("\nNon-debugging symbols:\n"));
3799 first = 0;
3800 }
3801 print_msymbol_info (p->msymbol);
3802 }
3803 else
3804 {
3805 print_symbol_info (kind,
3806 p->symtab,
3807 p->symbol,
3808 p->block,
3809 last_filename);
3810 last_filename = p->symtab->filename;
3811 }
3812 }
3813
3814 do_cleanups (old_chain);
3815 }
3816
3817 static void
3818 variables_info (char *regexp, int from_tty)
3819 {
3820 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3821 }
3822
3823 static void
3824 functions_info (char *regexp, int from_tty)
3825 {
3826 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3827 }
3828
3829
3830 static void
3831 types_info (char *regexp, int from_tty)
3832 {
3833 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3834 }
3835
3836 /* Breakpoint all functions matching regular expression. */
3837
3838 void
3839 rbreak_command_wrapper (char *regexp, int from_tty)
3840 {
3841 rbreak_command (regexp, from_tty);
3842 }
3843
3844 /* A cleanup function that calls end_rbreak_breakpoints. */
3845
3846 static void
3847 do_end_rbreak_breakpoints (void *ignore)
3848 {
3849 end_rbreak_breakpoints ();
3850 }
3851
3852 static void
3853 rbreak_command (char *regexp, int from_tty)
3854 {
3855 struct symbol_search *ss;
3856 struct symbol_search *p;
3857 struct cleanup *old_chain;
3858 char *string = NULL;
3859 int len = 0;
3860 char **files = NULL, *file_name;
3861 int nfiles = 0;
3862
3863 if (regexp)
3864 {
3865 char *colon = strchr (regexp, ':');
3866
3867 if (colon && *(colon + 1) != ':')
3868 {
3869 int colon_index;
3870
3871 colon_index = colon - regexp;
3872 file_name = alloca (colon_index + 1);
3873 memcpy (file_name, regexp, colon_index);
3874 file_name[colon_index--] = 0;
3875 while (isspace (file_name[colon_index]))
3876 file_name[colon_index--] = 0;
3877 files = &file_name;
3878 nfiles = 1;
3879 regexp = colon + 1;
3880 while (isspace (*regexp)) regexp++;
3881 }
3882 }
3883
3884 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3885 old_chain = make_cleanup_free_search_symbols (ss);
3886 make_cleanup (free_current_contents, &string);
3887
3888 start_rbreak_breakpoints ();
3889 make_cleanup (do_end_rbreak_breakpoints, NULL);
3890 for (p = ss; p != NULL; p = p->next)
3891 {
3892 if (p->msymbol == NULL)
3893 {
3894 int newlen = (strlen (p->symtab->filename)
3895 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3896 + 4);
3897
3898 if (newlen > len)
3899 {
3900 string = xrealloc (string, newlen);
3901 len = newlen;
3902 }
3903 strcpy (string, p->symtab->filename);
3904 strcat (string, ":'");
3905 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3906 strcat (string, "'");
3907 break_command (string, from_tty);
3908 print_symbol_info (FUNCTIONS_DOMAIN,
3909 p->symtab,
3910 p->symbol,
3911 p->block,
3912 p->symtab->filename);
3913 }
3914 else
3915 {
3916 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3917
3918 if (newlen > len)
3919 {
3920 string = xrealloc (string, newlen);
3921 len = newlen;
3922 }
3923 strcpy (string, "'");
3924 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3925 strcat (string, "'");
3926
3927 break_command (string, from_tty);
3928 printf_filtered ("<function, no debug info> %s;\n",
3929 SYMBOL_PRINT_NAME (p->msymbol));
3930 }
3931 }
3932
3933 do_cleanups (old_chain);
3934 }
3935 \f
3936
3937 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3938
3939 Either sym_text[sym_text_len] != '(' and then we search for any
3940 symbol starting with SYM_TEXT text.
3941
3942 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3943 be terminated at that point. Partial symbol tables do not have parameters
3944 information. */
3945
3946 static int
3947 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3948 {
3949 int (*ncmp) (const char *, const char *, size_t);
3950
3951 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3952
3953 if (ncmp (name, sym_text, sym_text_len) != 0)
3954 return 0;
3955
3956 if (sym_text[sym_text_len] == '(')
3957 {
3958 /* User searches for `name(someth...'. Require NAME to be terminated.
3959 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3960 present but accept even parameters presence. In this case this
3961 function is in fact strcmp_iw but whitespace skipping is not supported
3962 for tab completion. */
3963
3964 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3965 return 0;
3966 }
3967
3968 return 1;
3969 }
3970
3971 /* Free any memory associated with a completion list. */
3972
3973 static void
3974 free_completion_list (VEC (char_ptr) **list_ptr)
3975 {
3976 int i;
3977 char *p;
3978
3979 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3980 xfree (p);
3981 VEC_free (char_ptr, *list_ptr);
3982 }
3983
3984 /* Callback for make_cleanup. */
3985
3986 static void
3987 do_free_completion_list (void *list)
3988 {
3989 free_completion_list (list);
3990 }
3991
3992 /* Helper routine for make_symbol_completion_list. */
3993
3994 static VEC (char_ptr) *return_val;
3995
3996 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3997 completion_list_add_name \
3998 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3999
4000 /* Test to see if the symbol specified by SYMNAME (which is already
4001 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4002 characters. If so, add it to the current completion list. */
4003
4004 static void
4005 completion_list_add_name (const char *symname,
4006 const char *sym_text, int sym_text_len,
4007 const char *text, const char *word)
4008 {
4009 int newsize;
4010
4011 /* Clip symbols that cannot match. */
4012 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4013 return;
4014
4015 /* We have a match for a completion, so add SYMNAME to the current list
4016 of matches. Note that the name is moved to freshly malloc'd space. */
4017
4018 {
4019 char *new;
4020
4021 if (word == sym_text)
4022 {
4023 new = xmalloc (strlen (symname) + 5);
4024 strcpy (new, symname);
4025 }
4026 else if (word > sym_text)
4027 {
4028 /* Return some portion of symname. */
4029 new = xmalloc (strlen (symname) + 5);
4030 strcpy (new, symname + (word - sym_text));
4031 }
4032 else
4033 {
4034 /* Return some of SYM_TEXT plus symname. */
4035 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4036 strncpy (new, word, sym_text - word);
4037 new[sym_text - word] = '\0';
4038 strcat (new, symname);
4039 }
4040
4041 VEC_safe_push (char_ptr, return_val, new);
4042 }
4043 }
4044
4045 /* ObjC: In case we are completing on a selector, look as the msymbol
4046 again and feed all the selectors into the mill. */
4047
4048 static void
4049 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4050 const char *sym_text, int sym_text_len,
4051 const char *text, const char *word)
4052 {
4053 static char *tmp = NULL;
4054 static unsigned int tmplen = 0;
4055
4056 const char *method, *category, *selector;
4057 char *tmp2 = NULL;
4058
4059 method = SYMBOL_NATURAL_NAME (msymbol);
4060
4061 /* Is it a method? */
4062 if ((method[0] != '-') && (method[0] != '+'))
4063 return;
4064
4065 if (sym_text[0] == '[')
4066 /* Complete on shortened method method. */
4067 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4068
4069 while ((strlen (method) + 1) >= tmplen)
4070 {
4071 if (tmplen == 0)
4072 tmplen = 1024;
4073 else
4074 tmplen *= 2;
4075 tmp = xrealloc (tmp, tmplen);
4076 }
4077 selector = strchr (method, ' ');
4078 if (selector != NULL)
4079 selector++;
4080
4081 category = strchr (method, '(');
4082
4083 if ((category != NULL) && (selector != NULL))
4084 {
4085 memcpy (tmp, method, (category - method));
4086 tmp[category - method] = ' ';
4087 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4088 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4089 if (sym_text[0] == '[')
4090 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4091 }
4092
4093 if (selector != NULL)
4094 {
4095 /* Complete on selector only. */
4096 strcpy (tmp, selector);
4097 tmp2 = strchr (tmp, ']');
4098 if (tmp2 != NULL)
4099 *tmp2 = '\0';
4100
4101 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4102 }
4103 }
4104
4105 /* Break the non-quoted text based on the characters which are in
4106 symbols. FIXME: This should probably be language-specific. */
4107
4108 static char *
4109 language_search_unquoted_string (char *text, char *p)
4110 {
4111 for (; p > text; --p)
4112 {
4113 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4114 continue;
4115 else
4116 {
4117 if ((current_language->la_language == language_objc))
4118 {
4119 if (p[-1] == ':') /* Might be part of a method name. */
4120 continue;
4121 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4122 p -= 2; /* Beginning of a method name. */
4123 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4124 { /* Might be part of a method name. */
4125 char *t = p;
4126
4127 /* Seeing a ' ' or a '(' is not conclusive evidence
4128 that we are in the middle of a method name. However,
4129 finding "-[" or "+[" should be pretty un-ambiguous.
4130 Unfortunately we have to find it now to decide. */
4131
4132 while (t > text)
4133 if (isalnum (t[-1]) || t[-1] == '_' ||
4134 t[-1] == ' ' || t[-1] == ':' ||
4135 t[-1] == '(' || t[-1] == ')')
4136 --t;
4137 else
4138 break;
4139
4140 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4141 p = t - 2; /* Method name detected. */
4142 /* Else we leave with p unchanged. */
4143 }
4144 }
4145 break;
4146 }
4147 }
4148 return p;
4149 }
4150
4151 static void
4152 completion_list_add_fields (struct symbol *sym, char *sym_text,
4153 int sym_text_len, char *text, char *word)
4154 {
4155 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4156 {
4157 struct type *t = SYMBOL_TYPE (sym);
4158 enum type_code c = TYPE_CODE (t);
4159 int j;
4160
4161 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4162 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4163 if (TYPE_FIELD_NAME (t, j))
4164 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4165 sym_text, sym_text_len, text, word);
4166 }
4167 }
4168
4169 /* Type of the user_data argument passed to add_macro_name or
4170 expand_partial_symbol_name. The contents are simply whatever is
4171 needed by completion_list_add_name. */
4172 struct add_name_data
4173 {
4174 char *sym_text;
4175 int sym_text_len;
4176 char *text;
4177 char *word;
4178 };
4179
4180 /* A callback used with macro_for_each and macro_for_each_in_scope.
4181 This adds a macro's name to the current completion list. */
4182
4183 static void
4184 add_macro_name (const char *name, const struct macro_definition *ignore,
4185 struct macro_source_file *ignore2, int ignore3,
4186 void *user_data)
4187 {
4188 struct add_name_data *datum = (struct add_name_data *) user_data;
4189
4190 completion_list_add_name ((char *) name,
4191 datum->sym_text, datum->sym_text_len,
4192 datum->text, datum->word);
4193 }
4194
4195 /* A callback for expand_partial_symbol_names. */
4196
4197 static int
4198 expand_partial_symbol_name (const char *name, void *user_data)
4199 {
4200 struct add_name_data *datum = (struct add_name_data *) user_data;
4201
4202 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4203 }
4204
4205 VEC (char_ptr) *
4206 default_make_symbol_completion_list_break_on (char *text, char *word,
4207 const char *break_on,
4208 enum type_code code)
4209 {
4210 /* Problem: All of the symbols have to be copied because readline
4211 frees them. I'm not going to worry about this; hopefully there
4212 won't be that many. */
4213
4214 struct symbol *sym;
4215 struct symtab *s;
4216 struct minimal_symbol *msymbol;
4217 struct objfile *objfile;
4218 struct block *b;
4219 const struct block *surrounding_static_block, *surrounding_global_block;
4220 struct block_iterator iter;
4221 /* The symbol we are completing on. Points in same buffer as text. */
4222 char *sym_text;
4223 /* Length of sym_text. */
4224 int sym_text_len;
4225 struct add_name_data datum;
4226 struct cleanup *back_to;
4227
4228 /* Now look for the symbol we are supposed to complete on. */
4229 {
4230 char *p;
4231 char quote_found;
4232 char *quote_pos = NULL;
4233
4234 /* First see if this is a quoted string. */
4235 quote_found = '\0';
4236 for (p = text; *p != '\0'; ++p)
4237 {
4238 if (quote_found != '\0')
4239 {
4240 if (*p == quote_found)
4241 /* Found close quote. */
4242 quote_found = '\0';
4243 else if (*p == '\\' && p[1] == quote_found)
4244 /* A backslash followed by the quote character
4245 doesn't end the string. */
4246 ++p;
4247 }
4248 else if (*p == '\'' || *p == '"')
4249 {
4250 quote_found = *p;
4251 quote_pos = p;
4252 }
4253 }
4254 if (quote_found == '\'')
4255 /* A string within single quotes can be a symbol, so complete on it. */
4256 sym_text = quote_pos + 1;
4257 else if (quote_found == '"')
4258 /* A double-quoted string is never a symbol, nor does it make sense
4259 to complete it any other way. */
4260 {
4261 return NULL;
4262 }
4263 else
4264 {
4265 /* It is not a quoted string. Break it based on the characters
4266 which are in symbols. */
4267 while (p > text)
4268 {
4269 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4270 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4271 --p;
4272 else
4273 break;
4274 }
4275 sym_text = p;
4276 }
4277 }
4278
4279 sym_text_len = strlen (sym_text);
4280
4281 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4282
4283 if (current_language->la_language == language_cplus
4284 || current_language->la_language == language_java
4285 || current_language->la_language == language_fortran)
4286 {
4287 /* These languages may have parameters entered by user but they are never
4288 present in the partial symbol tables. */
4289
4290 const char *cs = memchr (sym_text, '(', sym_text_len);
4291
4292 if (cs)
4293 sym_text_len = cs - sym_text;
4294 }
4295 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4296
4297 return_val = NULL;
4298 back_to = make_cleanup (do_free_completion_list, &return_val);
4299
4300 datum.sym_text = sym_text;
4301 datum.sym_text_len = sym_text_len;
4302 datum.text = text;
4303 datum.word = word;
4304
4305 /* Look through the partial symtabs for all symbols which begin
4306 by matching SYM_TEXT. Expand all CUs that you find to the list.
4307 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4308 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4309
4310 /* At this point scan through the misc symbol vectors and add each
4311 symbol you find to the list. Eventually we want to ignore
4312 anything that isn't a text symbol (everything else will be
4313 handled by the psymtab code above). */
4314
4315 if (code == TYPE_CODE_UNDEF)
4316 {
4317 ALL_MSYMBOLS (objfile, msymbol)
4318 {
4319 QUIT;
4320 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4321 word);
4322
4323 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4324 word);
4325 }
4326 }
4327
4328 /* Search upwards from currently selected frame (so that we can
4329 complete on local vars). Also catch fields of types defined in
4330 this places which match our text string. Only complete on types
4331 visible from current context. */
4332
4333 b = get_selected_block (0);
4334 surrounding_static_block = block_static_block (b);
4335 surrounding_global_block = block_global_block (b);
4336 if (surrounding_static_block != NULL)
4337 while (b != surrounding_static_block)
4338 {
4339 QUIT;
4340
4341 ALL_BLOCK_SYMBOLS (b, iter, sym)
4342 {
4343 if (code == TYPE_CODE_UNDEF)
4344 {
4345 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4346 word);
4347 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4348 word);
4349 }
4350 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4351 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4352 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4353 word);
4354 }
4355
4356 /* Stop when we encounter an enclosing function. Do not stop for
4357 non-inlined functions - the locals of the enclosing function
4358 are in scope for a nested function. */
4359 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4360 break;
4361 b = BLOCK_SUPERBLOCK (b);
4362 }
4363
4364 /* Add fields from the file's types; symbols will be added below. */
4365
4366 if (code == TYPE_CODE_UNDEF)
4367 {
4368 if (surrounding_static_block != NULL)
4369 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4370 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4371
4372 if (surrounding_global_block != NULL)
4373 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4374 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4375 }
4376
4377 /* Go through the symtabs and check the externs and statics for
4378 symbols which match. */
4379
4380 ALL_PRIMARY_SYMTABS (objfile, s)
4381 {
4382 QUIT;
4383 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4384 ALL_BLOCK_SYMBOLS (b, iter, sym)
4385 {
4386 if (code == TYPE_CODE_UNDEF
4387 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4388 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4389 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4390 }
4391 }
4392
4393 ALL_PRIMARY_SYMTABS (objfile, s)
4394 {
4395 QUIT;
4396 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4397 ALL_BLOCK_SYMBOLS (b, iter, sym)
4398 {
4399 if (code == TYPE_CODE_UNDEF
4400 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4401 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4402 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4403 }
4404 }
4405
4406 /* Skip macros if we are completing a struct tag -- arguable but
4407 usually what is expected. */
4408 if (current_language->la_macro_expansion == macro_expansion_c
4409 && code == TYPE_CODE_UNDEF)
4410 {
4411 struct macro_scope *scope;
4412
4413 /* Add any macros visible in the default scope. Note that this
4414 may yield the occasional wrong result, because an expression
4415 might be evaluated in a scope other than the default. For
4416 example, if the user types "break file:line if <TAB>", the
4417 resulting expression will be evaluated at "file:line" -- but
4418 at there does not seem to be a way to detect this at
4419 completion time. */
4420 scope = default_macro_scope ();
4421 if (scope)
4422 {
4423 macro_for_each_in_scope (scope->file, scope->line,
4424 add_macro_name, &datum);
4425 xfree (scope);
4426 }
4427
4428 /* User-defined macros are always visible. */
4429 macro_for_each (macro_user_macros, add_macro_name, &datum);
4430 }
4431
4432 discard_cleanups (back_to);
4433 return (return_val);
4434 }
4435
4436 VEC (char_ptr) *
4437 default_make_symbol_completion_list (char *text, char *word,
4438 enum type_code code)
4439 {
4440 return default_make_symbol_completion_list_break_on (text, word, "", code);
4441 }
4442
4443 /* Return a vector of all symbols (regardless of class) which begin by
4444 matching TEXT. If the answer is no symbols, then the return value
4445 is NULL. */
4446
4447 VEC (char_ptr) *
4448 make_symbol_completion_list (char *text, char *word)
4449 {
4450 return current_language->la_make_symbol_completion_list (text, word,
4451 TYPE_CODE_UNDEF);
4452 }
4453
4454 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4455 symbols whose type code is CODE. */
4456
4457 VEC (char_ptr) *
4458 make_symbol_completion_type (char *text, char *word, enum type_code code)
4459 {
4460 gdb_assert (code == TYPE_CODE_UNION
4461 || code == TYPE_CODE_STRUCT
4462 || code == TYPE_CODE_CLASS
4463 || code == TYPE_CODE_ENUM);
4464 return current_language->la_make_symbol_completion_list (text, word, code);
4465 }
4466
4467 /* Like make_symbol_completion_list, but suitable for use as a
4468 completion function. */
4469
4470 VEC (char_ptr) *
4471 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4472 char *text, char *word)
4473 {
4474 return make_symbol_completion_list (text, word);
4475 }
4476
4477 /* Like make_symbol_completion_list, but returns a list of symbols
4478 defined in a source file FILE. */
4479
4480 VEC (char_ptr) *
4481 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4482 {
4483 struct symbol *sym;
4484 struct symtab *s;
4485 struct block *b;
4486 struct block_iterator iter;
4487 /* The symbol we are completing on. Points in same buffer as text. */
4488 char *sym_text;
4489 /* Length of sym_text. */
4490 int sym_text_len;
4491
4492 /* Now look for the symbol we are supposed to complete on.
4493 FIXME: This should be language-specific. */
4494 {
4495 char *p;
4496 char quote_found;
4497 char *quote_pos = NULL;
4498
4499 /* First see if this is a quoted string. */
4500 quote_found = '\0';
4501 for (p = text; *p != '\0'; ++p)
4502 {
4503 if (quote_found != '\0')
4504 {
4505 if (*p == quote_found)
4506 /* Found close quote. */
4507 quote_found = '\0';
4508 else if (*p == '\\' && p[1] == quote_found)
4509 /* A backslash followed by the quote character
4510 doesn't end the string. */
4511 ++p;
4512 }
4513 else if (*p == '\'' || *p == '"')
4514 {
4515 quote_found = *p;
4516 quote_pos = p;
4517 }
4518 }
4519 if (quote_found == '\'')
4520 /* A string within single quotes can be a symbol, so complete on it. */
4521 sym_text = quote_pos + 1;
4522 else if (quote_found == '"')
4523 /* A double-quoted string is never a symbol, nor does it make sense
4524 to complete it any other way. */
4525 {
4526 return NULL;
4527 }
4528 else
4529 {
4530 /* Not a quoted string. */
4531 sym_text = language_search_unquoted_string (text, p);
4532 }
4533 }
4534
4535 sym_text_len = strlen (sym_text);
4536
4537 return_val = NULL;
4538
4539 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4540 in). */
4541 s = lookup_symtab (srcfile);
4542 if (s == NULL)
4543 {
4544 /* Maybe they typed the file with leading directories, while the
4545 symbol tables record only its basename. */
4546 const char *tail = lbasename (srcfile);
4547
4548 if (tail > srcfile)
4549 s = lookup_symtab (tail);
4550 }
4551
4552 /* If we have no symtab for that file, return an empty list. */
4553 if (s == NULL)
4554 return (return_val);
4555
4556 /* Go through this symtab and check the externs and statics for
4557 symbols which match. */
4558
4559 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4560 ALL_BLOCK_SYMBOLS (b, iter, sym)
4561 {
4562 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4563 }
4564
4565 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4566 ALL_BLOCK_SYMBOLS (b, iter, sym)
4567 {
4568 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4569 }
4570
4571 return (return_val);
4572 }
4573
4574 /* A helper function for make_source_files_completion_list. It adds
4575 another file name to a list of possible completions, growing the
4576 list as necessary. */
4577
4578 static void
4579 add_filename_to_list (const char *fname, char *text, char *word,
4580 VEC (char_ptr) **list)
4581 {
4582 char *new;
4583 size_t fnlen = strlen (fname);
4584
4585 if (word == text)
4586 {
4587 /* Return exactly fname. */
4588 new = xmalloc (fnlen + 5);
4589 strcpy (new, fname);
4590 }
4591 else if (word > text)
4592 {
4593 /* Return some portion of fname. */
4594 new = xmalloc (fnlen + 5);
4595 strcpy (new, fname + (word - text));
4596 }
4597 else
4598 {
4599 /* Return some of TEXT plus fname. */
4600 new = xmalloc (fnlen + (text - word) + 5);
4601 strncpy (new, word, text - word);
4602 new[text - word] = '\0';
4603 strcat (new, fname);
4604 }
4605 VEC_safe_push (char_ptr, *list, new);
4606 }
4607
4608 static int
4609 not_interesting_fname (const char *fname)
4610 {
4611 static const char *illegal_aliens[] = {
4612 "_globals_", /* inserted by coff_symtab_read */
4613 NULL
4614 };
4615 int i;
4616
4617 for (i = 0; illegal_aliens[i]; i++)
4618 {
4619 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4620 return 1;
4621 }
4622 return 0;
4623 }
4624
4625 /* An object of this type is passed as the user_data argument to
4626 map_partial_symbol_filenames. */
4627 struct add_partial_filename_data
4628 {
4629 struct filename_seen_cache *filename_seen_cache;
4630 char *text;
4631 char *word;
4632 int text_len;
4633 VEC (char_ptr) **list;
4634 };
4635
4636 /* A callback for map_partial_symbol_filenames. */
4637
4638 static void
4639 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4640 void *user_data)
4641 {
4642 struct add_partial_filename_data *data = user_data;
4643
4644 if (not_interesting_fname (filename))
4645 return;
4646 if (!filename_seen (data->filename_seen_cache, filename, 1)
4647 && filename_ncmp (filename, data->text, data->text_len) == 0)
4648 {
4649 /* This file matches for a completion; add it to the
4650 current list of matches. */
4651 add_filename_to_list (filename, data->text, data->word, data->list);
4652 }
4653 else
4654 {
4655 const char *base_name = lbasename (filename);
4656
4657 if (base_name != filename
4658 && !filename_seen (data->filename_seen_cache, base_name, 1)
4659 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4660 add_filename_to_list (base_name, data->text, data->word, data->list);
4661 }
4662 }
4663
4664 /* Return a vector of all source files whose names begin with matching
4665 TEXT. The file names are looked up in the symbol tables of this
4666 program. If the answer is no matchess, then the return value is
4667 NULL. */
4668
4669 VEC (char_ptr) *
4670 make_source_files_completion_list (char *text, char *word)
4671 {
4672 struct symtab *s;
4673 struct objfile *objfile;
4674 size_t text_len = strlen (text);
4675 VEC (char_ptr) *list = NULL;
4676 const char *base_name;
4677 struct add_partial_filename_data datum;
4678 struct filename_seen_cache *filename_seen_cache;
4679 struct cleanup *back_to, *cache_cleanup;
4680
4681 if (!have_full_symbols () && !have_partial_symbols ())
4682 return list;
4683
4684 back_to = make_cleanup (do_free_completion_list, &list);
4685
4686 filename_seen_cache = create_filename_seen_cache ();
4687 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4688 filename_seen_cache);
4689
4690 ALL_SYMTABS (objfile, s)
4691 {
4692 if (not_interesting_fname (s->filename))
4693 continue;
4694 if (!filename_seen (filename_seen_cache, s->filename, 1)
4695 && filename_ncmp (s->filename, text, text_len) == 0)
4696 {
4697 /* This file matches for a completion; add it to the current
4698 list of matches. */
4699 add_filename_to_list (s->filename, text, word, &list);
4700 }
4701 else
4702 {
4703 /* NOTE: We allow the user to type a base name when the
4704 debug info records leading directories, but not the other
4705 way around. This is what subroutines of breakpoint
4706 command do when they parse file names. */
4707 base_name = lbasename (s->filename);
4708 if (base_name != s->filename
4709 && !filename_seen (filename_seen_cache, base_name, 1)
4710 && filename_ncmp (base_name, text, text_len) == 0)
4711 add_filename_to_list (base_name, text, word, &list);
4712 }
4713 }
4714
4715 datum.filename_seen_cache = filename_seen_cache;
4716 datum.text = text;
4717 datum.word = word;
4718 datum.text_len = text_len;
4719 datum.list = &list;
4720 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4721 0 /*need_fullname*/);
4722
4723 do_cleanups (cache_cleanup);
4724 discard_cleanups (back_to);
4725
4726 return list;
4727 }
4728
4729 /* Determine if PC is in the prologue of a function. The prologue is the area
4730 between the first instruction of a function, and the first executable line.
4731 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4732
4733 If non-zero, func_start is where we think the prologue starts, possibly
4734 by previous examination of symbol table information. */
4735
4736 int
4737 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4738 {
4739 struct symtab_and_line sal;
4740 CORE_ADDR func_addr, func_end;
4741
4742 /* We have several sources of information we can consult to figure
4743 this out.
4744 - Compilers usually emit line number info that marks the prologue
4745 as its own "source line". So the ending address of that "line"
4746 is the end of the prologue. If available, this is the most
4747 reliable method.
4748 - The minimal symbols and partial symbols, which can usually tell
4749 us the starting and ending addresses of a function.
4750 - If we know the function's start address, we can call the
4751 architecture-defined gdbarch_skip_prologue function to analyze the
4752 instruction stream and guess where the prologue ends.
4753 - Our `func_start' argument; if non-zero, this is the caller's
4754 best guess as to the function's entry point. At the time of
4755 this writing, handle_inferior_event doesn't get this right, so
4756 it should be our last resort. */
4757
4758 /* Consult the partial symbol table, to find which function
4759 the PC is in. */
4760 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4761 {
4762 CORE_ADDR prologue_end;
4763
4764 /* We don't even have minsym information, so fall back to using
4765 func_start, if given. */
4766 if (! func_start)
4767 return 1; /* We *might* be in a prologue. */
4768
4769 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4770
4771 return func_start <= pc && pc < prologue_end;
4772 }
4773
4774 /* If we have line number information for the function, that's
4775 usually pretty reliable. */
4776 sal = find_pc_line (func_addr, 0);
4777
4778 /* Now sal describes the source line at the function's entry point,
4779 which (by convention) is the prologue. The end of that "line",
4780 sal.end, is the end of the prologue.
4781
4782 Note that, for functions whose source code is all on a single
4783 line, the line number information doesn't always end up this way.
4784 So we must verify that our purported end-of-prologue address is
4785 *within* the function, not at its start or end. */
4786 if (sal.line == 0
4787 || sal.end <= func_addr
4788 || func_end <= sal.end)
4789 {
4790 /* We don't have any good line number info, so use the minsym
4791 information, together with the architecture-specific prologue
4792 scanning code. */
4793 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4794
4795 return func_addr <= pc && pc < prologue_end;
4796 }
4797
4798 /* We have line number info, and it looks good. */
4799 return func_addr <= pc && pc < sal.end;
4800 }
4801
4802 /* Given PC at the function's start address, attempt to find the
4803 prologue end using SAL information. Return zero if the skip fails.
4804
4805 A non-optimized prologue traditionally has one SAL for the function
4806 and a second for the function body. A single line function has
4807 them both pointing at the same line.
4808
4809 An optimized prologue is similar but the prologue may contain
4810 instructions (SALs) from the instruction body. Need to skip those
4811 while not getting into the function body.
4812
4813 The functions end point and an increasing SAL line are used as
4814 indicators of the prologue's endpoint.
4815
4816 This code is based on the function refine_prologue_limit
4817 (found in ia64). */
4818
4819 CORE_ADDR
4820 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4821 {
4822 struct symtab_and_line prologue_sal;
4823 CORE_ADDR start_pc;
4824 CORE_ADDR end_pc;
4825 struct block *bl;
4826
4827 /* Get an initial range for the function. */
4828 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4829 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4830
4831 prologue_sal = find_pc_line (start_pc, 0);
4832 if (prologue_sal.line != 0)
4833 {
4834 /* For languages other than assembly, treat two consecutive line
4835 entries at the same address as a zero-instruction prologue.
4836 The GNU assembler emits separate line notes for each instruction
4837 in a multi-instruction macro, but compilers generally will not
4838 do this. */
4839 if (prologue_sal.symtab->language != language_asm)
4840 {
4841 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4842 int idx = 0;
4843
4844 /* Skip any earlier lines, and any end-of-sequence marker
4845 from a previous function. */
4846 while (linetable->item[idx].pc != prologue_sal.pc
4847 || linetable->item[idx].line == 0)
4848 idx++;
4849
4850 if (idx+1 < linetable->nitems
4851 && linetable->item[idx+1].line != 0
4852 && linetable->item[idx+1].pc == start_pc)
4853 return start_pc;
4854 }
4855
4856 /* If there is only one sal that covers the entire function,
4857 then it is probably a single line function, like
4858 "foo(){}". */
4859 if (prologue_sal.end >= end_pc)
4860 return 0;
4861
4862 while (prologue_sal.end < end_pc)
4863 {
4864 struct symtab_and_line sal;
4865
4866 sal = find_pc_line (prologue_sal.end, 0);
4867 if (sal.line == 0)
4868 break;
4869 /* Assume that a consecutive SAL for the same (or larger)
4870 line mark the prologue -> body transition. */
4871 if (sal.line >= prologue_sal.line)
4872 break;
4873
4874 /* The line number is smaller. Check that it's from the
4875 same function, not something inlined. If it's inlined,
4876 then there is no point comparing the line numbers. */
4877 bl = block_for_pc (prologue_sal.end);
4878 while (bl)
4879 {
4880 if (block_inlined_p (bl))
4881 break;
4882 if (BLOCK_FUNCTION (bl))
4883 {
4884 bl = NULL;
4885 break;
4886 }
4887 bl = BLOCK_SUPERBLOCK (bl);
4888 }
4889 if (bl != NULL)
4890 break;
4891
4892 /* The case in which compiler's optimizer/scheduler has
4893 moved instructions into the prologue. We look ahead in
4894 the function looking for address ranges whose
4895 corresponding line number is less the first one that we
4896 found for the function. This is more conservative then
4897 refine_prologue_limit which scans a large number of SALs
4898 looking for any in the prologue. */
4899 prologue_sal = sal;
4900 }
4901 }
4902
4903 if (prologue_sal.end < end_pc)
4904 /* Return the end of this line, or zero if we could not find a
4905 line. */
4906 return prologue_sal.end;
4907 else
4908 /* Don't return END_PC, which is past the end of the function. */
4909 return prologue_sal.pc;
4910 }
4911 \f
4912 /* Track MAIN */
4913 static char *name_of_main;
4914 enum language language_of_main = language_unknown;
4915
4916 void
4917 set_main_name (const char *name)
4918 {
4919 if (name_of_main != NULL)
4920 {
4921 xfree (name_of_main);
4922 name_of_main = NULL;
4923 language_of_main = language_unknown;
4924 }
4925 if (name != NULL)
4926 {
4927 name_of_main = xstrdup (name);
4928 language_of_main = language_unknown;
4929 }
4930 }
4931
4932 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4933 accordingly. */
4934
4935 static void
4936 find_main_name (void)
4937 {
4938 const char *new_main_name;
4939
4940 /* Try to see if the main procedure is in Ada. */
4941 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4942 be to add a new method in the language vector, and call this
4943 method for each language until one of them returns a non-empty
4944 name. This would allow us to remove this hard-coded call to
4945 an Ada function. It is not clear that this is a better approach
4946 at this point, because all methods need to be written in a way
4947 such that false positives never be returned. For instance, it is
4948 important that a method does not return a wrong name for the main
4949 procedure if the main procedure is actually written in a different
4950 language. It is easy to guaranty this with Ada, since we use a
4951 special symbol generated only when the main in Ada to find the name
4952 of the main procedure. It is difficult however to see how this can
4953 be guarantied for languages such as C, for instance. This suggests
4954 that order of call for these methods becomes important, which means
4955 a more complicated approach. */
4956 new_main_name = ada_main_name ();
4957 if (new_main_name != NULL)
4958 {
4959 set_main_name (new_main_name);
4960 return;
4961 }
4962
4963 new_main_name = go_main_name ();
4964 if (new_main_name != NULL)
4965 {
4966 set_main_name (new_main_name);
4967 return;
4968 }
4969
4970 new_main_name = pascal_main_name ();
4971 if (new_main_name != NULL)
4972 {
4973 set_main_name (new_main_name);
4974 return;
4975 }
4976
4977 /* The languages above didn't identify the name of the main procedure.
4978 Fallback to "main". */
4979 set_main_name ("main");
4980 }
4981
4982 char *
4983 main_name (void)
4984 {
4985 if (name_of_main == NULL)
4986 find_main_name ();
4987
4988 return name_of_main;
4989 }
4990
4991 /* Handle ``executable_changed'' events for the symtab module. */
4992
4993 static void
4994 symtab_observer_executable_changed (void)
4995 {
4996 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4997 set_main_name (NULL);
4998 }
4999
5000 /* Return 1 if the supplied producer string matches the ARM RealView
5001 compiler (armcc). */
5002
5003 int
5004 producer_is_realview (const char *producer)
5005 {
5006 static const char *const arm_idents[] = {
5007 "ARM C Compiler, ADS",
5008 "Thumb C Compiler, ADS",
5009 "ARM C++ Compiler, ADS",
5010 "Thumb C++ Compiler, ADS",
5011 "ARM/Thumb C/C++ Compiler, RVCT",
5012 "ARM C/C++ Compiler, RVCT"
5013 };
5014 int i;
5015
5016 if (producer == NULL)
5017 return 0;
5018
5019 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5020 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5021 return 1;
5022
5023 return 0;
5024 }
5025
5026 void
5027 _initialize_symtab (void)
5028 {
5029 add_info ("variables", variables_info, _("\
5030 All global and static variable names, or those matching REGEXP."));
5031 if (dbx_commands)
5032 add_com ("whereis", class_info, variables_info, _("\
5033 All global and static variable names, or those matching REGEXP."));
5034
5035 add_info ("functions", functions_info,
5036 _("All function names, or those matching REGEXP."));
5037
5038 /* FIXME: This command has at least the following problems:
5039 1. It prints builtin types (in a very strange and confusing fashion).
5040 2. It doesn't print right, e.g. with
5041 typedef struct foo *FOO
5042 type_print prints "FOO" when we want to make it (in this situation)
5043 print "struct foo *".
5044 I also think "ptype" or "whatis" is more likely to be useful (but if
5045 there is much disagreement "info types" can be fixed). */
5046 add_info ("types", types_info,
5047 _("All type names, or those matching REGEXP."));
5048
5049 add_info ("sources", sources_info,
5050 _("Source files in the program."));
5051
5052 add_com ("rbreak", class_breakpoint, rbreak_command,
5053 _("Set a breakpoint for all functions matching REGEXP."));
5054
5055 if (xdb_commands)
5056 {
5057 add_com ("lf", class_info, sources_info,
5058 _("Source files in the program"));
5059 add_com ("lg", class_info, variables_info, _("\
5060 All global and static variable names, or those matching REGEXP."));
5061 }
5062
5063 add_setshow_enum_cmd ("multiple-symbols", no_class,
5064 multiple_symbols_modes, &multiple_symbols_mode,
5065 _("\
5066 Set the debugger behavior when more than one symbol are possible matches\n\
5067 in an expression."), _("\
5068 Show how the debugger handles ambiguities in expressions."), _("\
5069 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5070 NULL, NULL, &setlist, &showlist);
5071
5072 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5073 &basenames_may_differ, _("\
5074 Set whether a source file may have multiple base names."), _("\
5075 Show whether a source file may have multiple base names."), _("\
5076 (A \"base name\" is the name of a file with the directory part removed.\n\
5077 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5078 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5079 before comparing them. Canonicalization is an expensive operation,\n\
5080 but it allows the same file be known by more than one base name.\n\
5081 If not set (the default), all source files are assumed to have just\n\
5082 one base name, and gdb will do file name comparisons more efficiently."),
5083 NULL, NULL,
5084 &setlist, &showlist);
5085
5086 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5087 _("Set debugging of symbol table creation."),
5088 _("Show debugging of symbol table creation."), _("\
5089 When enabled, debugging messages are printed when building symbol tables."),
5090 NULL,
5091 NULL,
5092 &setdebuglist, &showdebuglist);
5093
5094 observer_attach_executable_changed (symtab_observer_executable_changed);
5095 }
This page took 0.139164 seconds and 5 git commands to generate.