Constify some commands in symtab.c
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
68
69 /* Forward declarations for local functions. */
70
71 static void rbreak_command (char *, int);
72
73 static int find_line_common (struct linetable *, int, int *, int);
74
75 static struct block_symbol
76 lookup_symbol_aux (const char *name,
77 const struct block *block,
78 const domain_enum domain,
79 enum language language,
80 struct field_of_this_result *);
81
82 static
83 struct block_symbol lookup_local_symbol (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language);
87
88 static struct block_symbol
89 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
90 const char *name, const domain_enum domain);
91
92 /* See symtab.h. */
93 const struct block_symbol null_block_symbol = { NULL, NULL };
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* Program space key for finding its symbol cache. */
113
114 static const struct program_space_data *symbol_cache_key;
115
116 /* The default symbol cache size.
117 There is no extra cpu cost for large N (except when flushing the cache,
118 which is rare). The value here is just a first attempt. A better default
119 value may be higher or lower. A prime number can make up for a bad hash
120 computation, so that's why the number is what it is. */
121 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
122
123 /* The maximum symbol cache size.
124 There's no method to the decision of what value to use here, other than
125 there's no point in allowing a user typo to make gdb consume all memory. */
126 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
127
128 /* symbol_cache_lookup returns this if a previous lookup failed to find the
129 symbol in any objfile. */
130 #define SYMBOL_LOOKUP_FAILED \
131 ((struct block_symbol) {(struct symbol *) 1, NULL})
132 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
133
134 /* Recording lookups that don't find the symbol is just as important, if not
135 more so, than recording found symbols. */
136
137 enum symbol_cache_slot_state
138 {
139 SYMBOL_SLOT_UNUSED,
140 SYMBOL_SLOT_NOT_FOUND,
141 SYMBOL_SLOT_FOUND
142 };
143
144 struct symbol_cache_slot
145 {
146 enum symbol_cache_slot_state state;
147
148 /* The objfile that was current when the symbol was looked up.
149 This is only needed for global blocks, but for simplicity's sake
150 we allocate the space for both. If data shows the extra space used
151 for static blocks is a problem, we can split things up then.
152
153 Global blocks need cache lookup to include the objfile context because
154 we need to account for gdbarch_iterate_over_objfiles_in_search_order
155 which can traverse objfiles in, effectively, any order, depending on
156 the current objfile, thus affecting which symbol is found. Normally,
157 only the current objfile is searched first, and then the rest are
158 searched in recorded order; but putting cache lookup inside
159 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
160 Instead we just make the current objfile part of the context of
161 cache lookup. This means we can record the same symbol multiple times,
162 each with a different "current objfile" that was in effect when the
163 lookup was saved in the cache, but cache space is pretty cheap. */
164 const struct objfile *objfile_context;
165
166 union
167 {
168 struct block_symbol found;
169 struct
170 {
171 char *name;
172 domain_enum domain;
173 } not_found;
174 } value;
175 };
176
177 /* Symbols don't specify global vs static block.
178 So keep them in separate caches. */
179
180 struct block_symbol_cache
181 {
182 unsigned int hits;
183 unsigned int misses;
184 unsigned int collisions;
185
186 /* SYMBOLS is a variable length array of this size.
187 One can imagine that in general one cache (global/static) should be a
188 fraction of the size of the other, but there's no data at the moment
189 on which to decide. */
190 unsigned int size;
191
192 struct symbol_cache_slot symbols[1];
193 };
194
195 /* The symbol cache.
196
197 Searching for symbols in the static and global blocks over multiple objfiles
198 again and again can be slow, as can searching very big objfiles. This is a
199 simple cache to improve symbol lookup performance, which is critical to
200 overall gdb performance.
201
202 Symbols are hashed on the name, its domain, and block.
203 They are also hashed on their objfile for objfile-specific lookups. */
204
205 struct symbol_cache
206 {
207 struct block_symbol_cache *global_symbols;
208 struct block_symbol_cache *static_symbols;
209 };
210
211 /* When non-zero, print debugging messages related to symtab creation. */
212 unsigned int symtab_create_debug = 0;
213
214 /* When non-zero, print debugging messages related to symbol lookup. */
215 unsigned int symbol_lookup_debug = 0;
216
217 /* The size of the cache is staged here. */
218 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
219
220 /* The current value of the symbol cache size.
221 This is saved so that if the user enters a value too big we can restore
222 the original value from here. */
223 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
224
225 /* Non-zero if a file may be known by two different basenames.
226 This is the uncommon case, and significantly slows down gdb.
227 Default set to "off" to not slow down the common case. */
228 int basenames_may_differ = 0;
229
230 /* Allow the user to configure the debugger behavior with respect
231 to multiple-choice menus when more than one symbol matches during
232 a symbol lookup. */
233
234 const char multiple_symbols_ask[] = "ask";
235 const char multiple_symbols_all[] = "all";
236 const char multiple_symbols_cancel[] = "cancel";
237 static const char *const multiple_symbols_modes[] =
238 {
239 multiple_symbols_ask,
240 multiple_symbols_all,
241 multiple_symbols_cancel,
242 NULL
243 };
244 static const char *multiple_symbols_mode = multiple_symbols_all;
245
246 /* Read-only accessor to AUTO_SELECT_MODE. */
247
248 const char *
249 multiple_symbols_select_mode (void)
250 {
251 return multiple_symbols_mode;
252 }
253
254 /* Return the name of a domain_enum. */
255
256 const char *
257 domain_name (domain_enum e)
258 {
259 switch (e)
260 {
261 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
262 case VAR_DOMAIN: return "VAR_DOMAIN";
263 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
264 case MODULE_DOMAIN: return "MODULE_DOMAIN";
265 case LABEL_DOMAIN: return "LABEL_DOMAIN";
266 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
267 default: gdb_assert_not_reached ("bad domain_enum");
268 }
269 }
270
271 /* Return the name of a search_domain . */
272
273 const char *
274 search_domain_name (enum search_domain e)
275 {
276 switch (e)
277 {
278 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
279 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
280 case TYPES_DOMAIN: return "TYPES_DOMAIN";
281 case ALL_DOMAIN: return "ALL_DOMAIN";
282 default: gdb_assert_not_reached ("bad search_domain");
283 }
284 }
285
286 /* See symtab.h. */
287
288 struct symtab *
289 compunit_primary_filetab (const struct compunit_symtab *cust)
290 {
291 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
292
293 /* The primary file symtab is the first one in the list. */
294 return COMPUNIT_FILETABS (cust);
295 }
296
297 /* See symtab.h. */
298
299 enum language
300 compunit_language (const struct compunit_symtab *cust)
301 {
302 struct symtab *symtab = compunit_primary_filetab (cust);
303
304 /* The language of the compunit symtab is the language of its primary
305 source file. */
306 return SYMTAB_LANGUAGE (symtab);
307 }
308
309 /* See whether FILENAME matches SEARCH_NAME using the rule that we
310 advertise to the user. (The manual's description of linespecs
311 describes what we advertise). Returns true if they match, false
312 otherwise. */
313
314 int
315 compare_filenames_for_search (const char *filename, const char *search_name)
316 {
317 int len = strlen (filename);
318 size_t search_len = strlen (search_name);
319
320 if (len < search_len)
321 return 0;
322
323 /* The tail of FILENAME must match. */
324 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
325 return 0;
326
327 /* Either the names must completely match, or the character
328 preceding the trailing SEARCH_NAME segment of FILENAME must be a
329 directory separator.
330
331 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
332 cannot match FILENAME "/path//dir/file.c" - as user has requested
333 absolute path. The sama applies for "c:\file.c" possibly
334 incorrectly hypothetically matching "d:\dir\c:\file.c".
335
336 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
337 compatible with SEARCH_NAME "file.c". In such case a compiler had
338 to put the "c:file.c" name into debug info. Such compatibility
339 works only on GDB built for DOS host. */
340 return (len == search_len
341 || (!IS_ABSOLUTE_PATH (search_name)
342 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
343 || (HAS_DRIVE_SPEC (filename)
344 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
345 }
346
347 /* Same as compare_filenames_for_search, but for glob-style patterns.
348 Heads up on the order of the arguments. They match the order of
349 compare_filenames_for_search, but it's the opposite of the order of
350 arguments to gdb_filename_fnmatch. */
351
352 int
353 compare_glob_filenames_for_search (const char *filename,
354 const char *search_name)
355 {
356 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
357 all /s have to be explicitly specified. */
358 int file_path_elements = count_path_elements (filename);
359 int search_path_elements = count_path_elements (search_name);
360
361 if (search_path_elements > file_path_elements)
362 return 0;
363
364 if (IS_ABSOLUTE_PATH (search_name))
365 {
366 return (search_path_elements == file_path_elements
367 && gdb_filename_fnmatch (search_name, filename,
368 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
369 }
370
371 {
372 const char *file_to_compare
373 = strip_leading_path_elements (filename,
374 file_path_elements - search_path_elements);
375
376 return gdb_filename_fnmatch (search_name, file_to_compare,
377 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
378 }
379 }
380
381 /* Check for a symtab of a specific name by searching some symtabs.
382 This is a helper function for callbacks of iterate_over_symtabs.
383
384 If NAME is not absolute, then REAL_PATH is NULL
385 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
386
387 The return value, NAME, REAL_PATH and CALLBACK are identical to the
388 `map_symtabs_matching_filename' method of quick_symbol_functions.
389
390 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
391 Each symtab within the specified compunit symtab is also searched.
392 AFTER_LAST is one past the last compunit symtab to search; NULL means to
393 search until the end of the list. */
394
395 bool
396 iterate_over_some_symtabs (const char *name,
397 const char *real_path,
398 struct compunit_symtab *first,
399 struct compunit_symtab *after_last,
400 gdb::function_view<bool (symtab *)> callback)
401 {
402 struct compunit_symtab *cust;
403 struct symtab *s;
404 const char* base_name = lbasename (name);
405
406 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
407 {
408 ALL_COMPUNIT_FILETABS (cust, s)
409 {
410 if (compare_filenames_for_search (s->filename, name))
411 {
412 if (callback (s))
413 return true;
414 continue;
415 }
416
417 /* Before we invoke realpath, which can get expensive when many
418 files are involved, do a quick comparison of the basenames. */
419 if (! basenames_may_differ
420 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
421 continue;
422
423 if (compare_filenames_for_search (symtab_to_fullname (s), name))
424 {
425 if (callback (s))
426 return true;
427 continue;
428 }
429
430 /* If the user gave us an absolute path, try to find the file in
431 this symtab and use its absolute path. */
432 if (real_path != NULL)
433 {
434 const char *fullname = symtab_to_fullname (s);
435
436 gdb_assert (IS_ABSOLUTE_PATH (real_path));
437 gdb_assert (IS_ABSOLUTE_PATH (name));
438 if (FILENAME_CMP (real_path, fullname) == 0)
439 {
440 if (callback (s))
441 return true;
442 continue;
443 }
444 }
445 }
446 }
447
448 return false;
449 }
450
451 /* Check for a symtab of a specific name; first in symtabs, then in
452 psymtabs. *If* there is no '/' in the name, a match after a '/'
453 in the symtab filename will also work.
454
455 Calls CALLBACK with each symtab that is found. If CALLBACK returns
456 true, the search stops. */
457
458 void
459 iterate_over_symtabs (const char *name,
460 gdb::function_view<bool (symtab *)> callback)
461 {
462 struct objfile *objfile;
463 gdb::unique_xmalloc_ptr<char> real_path;
464
465 /* Here we are interested in canonicalizing an absolute path, not
466 absolutizing a relative path. */
467 if (IS_ABSOLUTE_PATH (name))
468 {
469 real_path = gdb_realpath (name);
470 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
471 }
472
473 ALL_OBJFILES (objfile)
474 {
475 if (iterate_over_some_symtabs (name, real_path.get (),
476 objfile->compunit_symtabs, NULL,
477 callback))
478 return;
479 }
480
481 /* Same search rules as above apply here, but now we look thru the
482 psymtabs. */
483
484 ALL_OBJFILES (objfile)
485 {
486 if (objfile->sf
487 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
488 name,
489 real_path.get (),
490 callback))
491 return;
492 }
493 }
494
495 /* A wrapper for iterate_over_symtabs that returns the first matching
496 symtab, or NULL. */
497
498 struct symtab *
499 lookup_symtab (const char *name)
500 {
501 struct symtab *result = NULL;
502
503 iterate_over_symtabs (name, [&] (symtab *symtab)
504 {
505 result = symtab;
506 return true;
507 });
508
509 return result;
510 }
511
512 \f
513 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
514 full method name, which consist of the class name (from T), the unadorned
515 method name from METHOD_ID, and the signature for the specific overload,
516 specified by SIGNATURE_ID. Note that this function is g++ specific. */
517
518 char *
519 gdb_mangle_name (struct type *type, int method_id, int signature_id)
520 {
521 int mangled_name_len;
522 char *mangled_name;
523 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
524 struct fn_field *method = &f[signature_id];
525 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
526 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
527 const char *newname = type_name_no_tag (type);
528
529 /* Does the form of physname indicate that it is the full mangled name
530 of a constructor (not just the args)? */
531 int is_full_physname_constructor;
532
533 int is_constructor;
534 int is_destructor = is_destructor_name (physname);
535 /* Need a new type prefix. */
536 const char *const_prefix = method->is_const ? "C" : "";
537 const char *volatile_prefix = method->is_volatile ? "V" : "";
538 char buf[20];
539 int len = (newname == NULL ? 0 : strlen (newname));
540
541 /* Nothing to do if physname already contains a fully mangled v3 abi name
542 or an operator name. */
543 if ((physname[0] == '_' && physname[1] == 'Z')
544 || is_operator_name (field_name))
545 return xstrdup (physname);
546
547 is_full_physname_constructor = is_constructor_name (physname);
548
549 is_constructor = is_full_physname_constructor
550 || (newname && strcmp (field_name, newname) == 0);
551
552 if (!is_destructor)
553 is_destructor = (startswith (physname, "__dt"));
554
555 if (is_destructor || is_full_physname_constructor)
556 {
557 mangled_name = (char *) xmalloc (strlen (physname) + 1);
558 strcpy (mangled_name, physname);
559 return mangled_name;
560 }
561
562 if (len == 0)
563 {
564 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
565 }
566 else if (physname[0] == 't' || physname[0] == 'Q')
567 {
568 /* The physname for template and qualified methods already includes
569 the class name. */
570 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
571 newname = NULL;
572 len = 0;
573 }
574 else
575 {
576 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
577 volatile_prefix, len);
578 }
579 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
580 + strlen (buf) + len + strlen (physname) + 1);
581
582 mangled_name = (char *) xmalloc (mangled_name_len);
583 if (is_constructor)
584 mangled_name[0] = '\0';
585 else
586 strcpy (mangled_name, field_name);
587
588 strcat (mangled_name, buf);
589 /* If the class doesn't have a name, i.e. newname NULL, then we just
590 mangle it using 0 for the length of the class. Thus it gets mangled
591 as something starting with `::' rather than `classname::'. */
592 if (newname != NULL)
593 strcat (mangled_name, newname);
594
595 strcat (mangled_name, physname);
596 return (mangled_name);
597 }
598
599 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
600 correctly allocated. */
601
602 void
603 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
604 const char *name,
605 struct obstack *obstack)
606 {
607 if (gsymbol->language == language_ada)
608 {
609 if (name == NULL)
610 {
611 gsymbol->ada_mangled = 0;
612 gsymbol->language_specific.obstack = obstack;
613 }
614 else
615 {
616 gsymbol->ada_mangled = 1;
617 gsymbol->language_specific.demangled_name = name;
618 }
619 }
620 else
621 gsymbol->language_specific.demangled_name = name;
622 }
623
624 /* Return the demangled name of GSYMBOL. */
625
626 const char *
627 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
628 {
629 if (gsymbol->language == language_ada)
630 {
631 if (!gsymbol->ada_mangled)
632 return NULL;
633 /* Fall through. */
634 }
635
636 return gsymbol->language_specific.demangled_name;
637 }
638
639 \f
640 /* Initialize the language dependent portion of a symbol
641 depending upon the language for the symbol. */
642
643 void
644 symbol_set_language (struct general_symbol_info *gsymbol,
645 enum language language,
646 struct obstack *obstack)
647 {
648 gsymbol->language = language;
649 if (gsymbol->language == language_cplus
650 || gsymbol->language == language_d
651 || gsymbol->language == language_go
652 || gsymbol->language == language_objc
653 || gsymbol->language == language_fortran)
654 {
655 symbol_set_demangled_name (gsymbol, NULL, obstack);
656 }
657 else if (gsymbol->language == language_ada)
658 {
659 gdb_assert (gsymbol->ada_mangled == 0);
660 gsymbol->language_specific.obstack = obstack;
661 }
662 else
663 {
664 memset (&gsymbol->language_specific, 0,
665 sizeof (gsymbol->language_specific));
666 }
667 }
668
669 /* Functions to initialize a symbol's mangled name. */
670
671 /* Objects of this type are stored in the demangled name hash table. */
672 struct demangled_name_entry
673 {
674 const char *mangled;
675 char demangled[1];
676 };
677
678 /* Hash function for the demangled name hash. */
679
680 static hashval_t
681 hash_demangled_name_entry (const void *data)
682 {
683 const struct demangled_name_entry *e
684 = (const struct demangled_name_entry *) data;
685
686 return htab_hash_string (e->mangled);
687 }
688
689 /* Equality function for the demangled name hash. */
690
691 static int
692 eq_demangled_name_entry (const void *a, const void *b)
693 {
694 const struct demangled_name_entry *da
695 = (const struct demangled_name_entry *) a;
696 const struct demangled_name_entry *db
697 = (const struct demangled_name_entry *) b;
698
699 return strcmp (da->mangled, db->mangled) == 0;
700 }
701
702 /* Create the hash table used for demangled names. Each hash entry is
703 a pair of strings; one for the mangled name and one for the demangled
704 name. The entry is hashed via just the mangled name. */
705
706 static void
707 create_demangled_names_hash (struct objfile *objfile)
708 {
709 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
710 The hash table code will round this up to the next prime number.
711 Choosing a much larger table size wastes memory, and saves only about
712 1% in symbol reading. */
713
714 objfile->per_bfd->demangled_names_hash = htab_create_alloc
715 (256, hash_demangled_name_entry, eq_demangled_name_entry,
716 NULL, xcalloc, xfree);
717 }
718
719 /* Try to determine the demangled name for a symbol, based on the
720 language of that symbol. If the language is set to language_auto,
721 it will attempt to find any demangling algorithm that works and
722 then set the language appropriately. The returned name is allocated
723 by the demangler and should be xfree'd. */
724
725 static char *
726 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
727 const char *mangled)
728 {
729 char *demangled = NULL;
730 int i;
731 int recognized;
732
733 if (gsymbol->language == language_unknown)
734 gsymbol->language = language_auto;
735
736 if (gsymbol->language != language_auto)
737 {
738 const struct language_defn *lang = language_def (gsymbol->language);
739
740 language_sniff_from_mangled_name (lang, mangled, &demangled);
741 return demangled;
742 }
743
744 for (i = language_unknown; i < nr_languages; ++i)
745 {
746 enum language l = (enum language) i;
747 const struct language_defn *lang = language_def (l);
748
749 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
750 {
751 gsymbol->language = l;
752 return demangled;
753 }
754 }
755
756 return NULL;
757 }
758
759 /* Set both the mangled and demangled (if any) names for GSYMBOL based
760 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
761 objfile's obstack; but if COPY_NAME is 0 and if NAME is
762 NUL-terminated, then this function assumes that NAME is already
763 correctly saved (either permanently or with a lifetime tied to the
764 objfile), and it will not be copied.
765
766 The hash table corresponding to OBJFILE is used, and the memory
767 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
768 so the pointer can be discarded after calling this function. */
769
770 void
771 symbol_set_names (struct general_symbol_info *gsymbol,
772 const char *linkage_name, int len, int copy_name,
773 struct objfile *objfile)
774 {
775 struct demangled_name_entry **slot;
776 /* A 0-terminated copy of the linkage name. */
777 const char *linkage_name_copy;
778 struct demangled_name_entry entry;
779 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
780
781 if (gsymbol->language == language_ada)
782 {
783 /* In Ada, we do the symbol lookups using the mangled name, so
784 we can save some space by not storing the demangled name. */
785 if (!copy_name)
786 gsymbol->name = linkage_name;
787 else
788 {
789 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
790 len + 1);
791
792 memcpy (name, linkage_name, len);
793 name[len] = '\0';
794 gsymbol->name = name;
795 }
796 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
797
798 return;
799 }
800
801 if (per_bfd->demangled_names_hash == NULL)
802 create_demangled_names_hash (objfile);
803
804 if (linkage_name[len] != '\0')
805 {
806 char *alloc_name;
807
808 alloc_name = (char *) alloca (len + 1);
809 memcpy (alloc_name, linkage_name, len);
810 alloc_name[len] = '\0';
811
812 linkage_name_copy = alloc_name;
813 }
814 else
815 linkage_name_copy = linkage_name;
816
817 entry.mangled = linkage_name_copy;
818 slot = ((struct demangled_name_entry **)
819 htab_find_slot (per_bfd->demangled_names_hash,
820 &entry, INSERT));
821
822 /* If this name is not in the hash table, add it. */
823 if (*slot == NULL
824 /* A C version of the symbol may have already snuck into the table.
825 This happens to, e.g., main.init (__go_init_main). Cope. */
826 || (gsymbol->language == language_go
827 && (*slot)->demangled[0] == '\0'))
828 {
829 char *demangled_name = symbol_find_demangled_name (gsymbol,
830 linkage_name_copy);
831 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
832
833 /* Suppose we have demangled_name==NULL, copy_name==0, and
834 linkage_name_copy==linkage_name. In this case, we already have the
835 mangled name saved, and we don't have a demangled name. So,
836 you might think we could save a little space by not recording
837 this in the hash table at all.
838
839 It turns out that it is actually important to still save such
840 an entry in the hash table, because storing this name gives
841 us better bcache hit rates for partial symbols. */
842 if (!copy_name && linkage_name_copy == linkage_name)
843 {
844 *slot
845 = ((struct demangled_name_entry *)
846 obstack_alloc (&per_bfd->storage_obstack,
847 offsetof (struct demangled_name_entry, demangled)
848 + demangled_len + 1));
849 (*slot)->mangled = linkage_name;
850 }
851 else
852 {
853 char *mangled_ptr;
854
855 /* If we must copy the mangled name, put it directly after
856 the demangled name so we can have a single
857 allocation. */
858 *slot
859 = ((struct demangled_name_entry *)
860 obstack_alloc (&per_bfd->storage_obstack,
861 offsetof (struct demangled_name_entry, demangled)
862 + len + demangled_len + 2));
863 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
864 strcpy (mangled_ptr, linkage_name_copy);
865 (*slot)->mangled = mangled_ptr;
866 }
867
868 if (demangled_name != NULL)
869 {
870 strcpy ((*slot)->demangled, demangled_name);
871 xfree (demangled_name);
872 }
873 else
874 (*slot)->demangled[0] = '\0';
875 }
876
877 gsymbol->name = (*slot)->mangled;
878 if ((*slot)->demangled[0] != '\0')
879 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
880 &per_bfd->storage_obstack);
881 else
882 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
883 }
884
885 /* Return the source code name of a symbol. In languages where
886 demangling is necessary, this is the demangled name. */
887
888 const char *
889 symbol_natural_name (const struct general_symbol_info *gsymbol)
890 {
891 switch (gsymbol->language)
892 {
893 case language_cplus:
894 case language_d:
895 case language_go:
896 case language_objc:
897 case language_fortran:
898 if (symbol_get_demangled_name (gsymbol) != NULL)
899 return symbol_get_demangled_name (gsymbol);
900 break;
901 case language_ada:
902 return ada_decode_symbol (gsymbol);
903 default:
904 break;
905 }
906 return gsymbol->name;
907 }
908
909 /* Return the demangled name for a symbol based on the language for
910 that symbol. If no demangled name exists, return NULL. */
911
912 const char *
913 symbol_demangled_name (const struct general_symbol_info *gsymbol)
914 {
915 const char *dem_name = NULL;
916
917 switch (gsymbol->language)
918 {
919 case language_cplus:
920 case language_d:
921 case language_go:
922 case language_objc:
923 case language_fortran:
924 dem_name = symbol_get_demangled_name (gsymbol);
925 break;
926 case language_ada:
927 dem_name = ada_decode_symbol (gsymbol);
928 break;
929 default:
930 break;
931 }
932 return dem_name;
933 }
934
935 /* Return the search name of a symbol---generally the demangled or
936 linkage name of the symbol, depending on how it will be searched for.
937 If there is no distinct demangled name, then returns the same value
938 (same pointer) as SYMBOL_LINKAGE_NAME. */
939
940 const char *
941 symbol_search_name (const struct general_symbol_info *gsymbol)
942 {
943 if (gsymbol->language == language_ada)
944 return gsymbol->name;
945 else
946 return symbol_natural_name (gsymbol);
947 }
948 \f
949
950 /* Return 1 if the two sections are the same, or if they could
951 plausibly be copies of each other, one in an original object
952 file and another in a separated debug file. */
953
954 int
955 matching_obj_sections (struct obj_section *obj_first,
956 struct obj_section *obj_second)
957 {
958 asection *first = obj_first? obj_first->the_bfd_section : NULL;
959 asection *second = obj_second? obj_second->the_bfd_section : NULL;
960 struct objfile *obj;
961
962 /* If they're the same section, then they match. */
963 if (first == second)
964 return 1;
965
966 /* If either is NULL, give up. */
967 if (first == NULL || second == NULL)
968 return 0;
969
970 /* This doesn't apply to absolute symbols. */
971 if (first->owner == NULL || second->owner == NULL)
972 return 0;
973
974 /* If they're in the same object file, they must be different sections. */
975 if (first->owner == second->owner)
976 return 0;
977
978 /* Check whether the two sections are potentially corresponding. They must
979 have the same size, address, and name. We can't compare section indexes,
980 which would be more reliable, because some sections may have been
981 stripped. */
982 if (bfd_get_section_size (first) != bfd_get_section_size (second))
983 return 0;
984
985 /* In-memory addresses may start at a different offset, relativize them. */
986 if (bfd_get_section_vma (first->owner, first)
987 - bfd_get_start_address (first->owner)
988 != bfd_get_section_vma (second->owner, second)
989 - bfd_get_start_address (second->owner))
990 return 0;
991
992 if (bfd_get_section_name (first->owner, first) == NULL
993 || bfd_get_section_name (second->owner, second) == NULL
994 || strcmp (bfd_get_section_name (first->owner, first),
995 bfd_get_section_name (second->owner, second)) != 0)
996 return 0;
997
998 /* Otherwise check that they are in corresponding objfiles. */
999
1000 ALL_OBJFILES (obj)
1001 if (obj->obfd == first->owner)
1002 break;
1003 gdb_assert (obj != NULL);
1004
1005 if (obj->separate_debug_objfile != NULL
1006 && obj->separate_debug_objfile->obfd == second->owner)
1007 return 1;
1008 if (obj->separate_debug_objfile_backlink != NULL
1009 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1010 return 1;
1011
1012 return 0;
1013 }
1014
1015 /* See symtab.h. */
1016
1017 void
1018 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1019 {
1020 struct objfile *objfile;
1021 struct bound_minimal_symbol msymbol;
1022
1023 /* If we know that this is not a text address, return failure. This is
1024 necessary because we loop based on texthigh and textlow, which do
1025 not include the data ranges. */
1026 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1027 if (msymbol.minsym
1028 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1029 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1030 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1031 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1032 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1033 return;
1034
1035 ALL_OBJFILES (objfile)
1036 {
1037 struct compunit_symtab *cust = NULL;
1038
1039 if (objfile->sf)
1040 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1041 pc, section, 0);
1042 if (cust)
1043 return;
1044 }
1045 }
1046 \f
1047 /* Hash function for the symbol cache. */
1048
1049 static unsigned int
1050 hash_symbol_entry (const struct objfile *objfile_context,
1051 const char *name, domain_enum domain)
1052 {
1053 unsigned int hash = (uintptr_t) objfile_context;
1054
1055 if (name != NULL)
1056 hash += htab_hash_string (name);
1057
1058 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1059 to map to the same slot. */
1060 if (domain == STRUCT_DOMAIN)
1061 hash += VAR_DOMAIN * 7;
1062 else
1063 hash += domain * 7;
1064
1065 return hash;
1066 }
1067
1068 /* Equality function for the symbol cache. */
1069
1070 static int
1071 eq_symbol_entry (const struct symbol_cache_slot *slot,
1072 const struct objfile *objfile_context,
1073 const char *name, domain_enum domain)
1074 {
1075 const char *slot_name;
1076 domain_enum slot_domain;
1077
1078 if (slot->state == SYMBOL_SLOT_UNUSED)
1079 return 0;
1080
1081 if (slot->objfile_context != objfile_context)
1082 return 0;
1083
1084 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1085 {
1086 slot_name = slot->value.not_found.name;
1087 slot_domain = slot->value.not_found.domain;
1088 }
1089 else
1090 {
1091 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1092 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1093 }
1094
1095 /* NULL names match. */
1096 if (slot_name == NULL && name == NULL)
1097 {
1098 /* But there's no point in calling symbol_matches_domain in the
1099 SYMBOL_SLOT_FOUND case. */
1100 if (slot_domain != domain)
1101 return 0;
1102 }
1103 else if (slot_name != NULL && name != NULL)
1104 {
1105 /* It's important that we use the same comparison that was done the
1106 first time through. If the slot records a found symbol, then this
1107 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1108 It also means using symbol_matches_domain for found symbols.
1109 See block.c.
1110
1111 If the slot records a not-found symbol, then require a precise match.
1112 We could still be lax with whitespace like strcmp_iw though. */
1113
1114 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1115 {
1116 if (strcmp (slot_name, name) != 0)
1117 return 0;
1118 if (slot_domain != domain)
1119 return 0;
1120 }
1121 else
1122 {
1123 struct symbol *sym = slot->value.found.symbol;
1124
1125 if (strcmp_iw (slot_name, name) != 0)
1126 return 0;
1127 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1128 slot_domain, domain))
1129 return 0;
1130 }
1131 }
1132 else
1133 {
1134 /* Only one name is NULL. */
1135 return 0;
1136 }
1137
1138 return 1;
1139 }
1140
1141 /* Given a cache of size SIZE, return the size of the struct (with variable
1142 length array) in bytes. */
1143
1144 static size_t
1145 symbol_cache_byte_size (unsigned int size)
1146 {
1147 return (sizeof (struct block_symbol_cache)
1148 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1149 }
1150
1151 /* Resize CACHE. */
1152
1153 static void
1154 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1155 {
1156 /* If there's no change in size, don't do anything.
1157 All caches have the same size, so we can just compare with the size
1158 of the global symbols cache. */
1159 if ((cache->global_symbols != NULL
1160 && cache->global_symbols->size == new_size)
1161 || (cache->global_symbols == NULL
1162 && new_size == 0))
1163 return;
1164
1165 xfree (cache->global_symbols);
1166 xfree (cache->static_symbols);
1167
1168 if (new_size == 0)
1169 {
1170 cache->global_symbols = NULL;
1171 cache->static_symbols = NULL;
1172 }
1173 else
1174 {
1175 size_t total_size = symbol_cache_byte_size (new_size);
1176
1177 cache->global_symbols
1178 = (struct block_symbol_cache *) xcalloc (1, total_size);
1179 cache->static_symbols
1180 = (struct block_symbol_cache *) xcalloc (1, total_size);
1181 cache->global_symbols->size = new_size;
1182 cache->static_symbols->size = new_size;
1183 }
1184 }
1185
1186 /* Make a symbol cache of size SIZE. */
1187
1188 static struct symbol_cache *
1189 make_symbol_cache (unsigned int size)
1190 {
1191 struct symbol_cache *cache;
1192
1193 cache = XCNEW (struct symbol_cache);
1194 resize_symbol_cache (cache, symbol_cache_size);
1195 return cache;
1196 }
1197
1198 /* Free the space used by CACHE. */
1199
1200 static void
1201 free_symbol_cache (struct symbol_cache *cache)
1202 {
1203 xfree (cache->global_symbols);
1204 xfree (cache->static_symbols);
1205 xfree (cache);
1206 }
1207
1208 /* Return the symbol cache of PSPACE.
1209 Create one if it doesn't exist yet. */
1210
1211 static struct symbol_cache *
1212 get_symbol_cache (struct program_space *pspace)
1213 {
1214 struct symbol_cache *cache
1215 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1216
1217 if (cache == NULL)
1218 {
1219 cache = make_symbol_cache (symbol_cache_size);
1220 set_program_space_data (pspace, symbol_cache_key, cache);
1221 }
1222
1223 return cache;
1224 }
1225
1226 /* Delete the symbol cache of PSPACE.
1227 Called when PSPACE is destroyed. */
1228
1229 static void
1230 symbol_cache_cleanup (struct program_space *pspace, void *data)
1231 {
1232 struct symbol_cache *cache = (struct symbol_cache *) data;
1233
1234 free_symbol_cache (cache);
1235 }
1236
1237 /* Set the size of the symbol cache in all program spaces. */
1238
1239 static void
1240 set_symbol_cache_size (unsigned int new_size)
1241 {
1242 struct program_space *pspace;
1243
1244 ALL_PSPACES (pspace)
1245 {
1246 struct symbol_cache *cache
1247 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1248
1249 /* The pspace could have been created but not have a cache yet. */
1250 if (cache != NULL)
1251 resize_symbol_cache (cache, new_size);
1252 }
1253 }
1254
1255 /* Called when symbol-cache-size is set. */
1256
1257 static void
1258 set_symbol_cache_size_handler (char *args, int from_tty,
1259 struct cmd_list_element *c)
1260 {
1261 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1262 {
1263 /* Restore the previous value.
1264 This is the value the "show" command prints. */
1265 new_symbol_cache_size = symbol_cache_size;
1266
1267 error (_("Symbol cache size is too large, max is %u."),
1268 MAX_SYMBOL_CACHE_SIZE);
1269 }
1270 symbol_cache_size = new_symbol_cache_size;
1271
1272 set_symbol_cache_size (symbol_cache_size);
1273 }
1274
1275 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1276 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1277 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1278 failed (and thus this one will too), or NULL if the symbol is not present
1279 in the cache.
1280 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1281 set to the cache and slot of the symbol to save the result of a full lookup
1282 attempt. */
1283
1284 static struct block_symbol
1285 symbol_cache_lookup (struct symbol_cache *cache,
1286 struct objfile *objfile_context, int block,
1287 const char *name, domain_enum domain,
1288 struct block_symbol_cache **bsc_ptr,
1289 struct symbol_cache_slot **slot_ptr)
1290 {
1291 struct block_symbol_cache *bsc;
1292 unsigned int hash;
1293 struct symbol_cache_slot *slot;
1294
1295 if (block == GLOBAL_BLOCK)
1296 bsc = cache->global_symbols;
1297 else
1298 bsc = cache->static_symbols;
1299 if (bsc == NULL)
1300 {
1301 *bsc_ptr = NULL;
1302 *slot_ptr = NULL;
1303 return (struct block_symbol) {NULL, NULL};
1304 }
1305
1306 hash = hash_symbol_entry (objfile_context, name, domain);
1307 slot = bsc->symbols + hash % bsc->size;
1308
1309 if (eq_symbol_entry (slot, objfile_context, name, domain))
1310 {
1311 if (symbol_lookup_debug)
1312 fprintf_unfiltered (gdb_stdlog,
1313 "%s block symbol cache hit%s for %s, %s\n",
1314 block == GLOBAL_BLOCK ? "Global" : "Static",
1315 slot->state == SYMBOL_SLOT_NOT_FOUND
1316 ? " (not found)" : "",
1317 name, domain_name (domain));
1318 ++bsc->hits;
1319 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1320 return SYMBOL_LOOKUP_FAILED;
1321 return slot->value.found;
1322 }
1323
1324 /* Symbol is not present in the cache. */
1325
1326 *bsc_ptr = bsc;
1327 *slot_ptr = slot;
1328
1329 if (symbol_lookup_debug)
1330 {
1331 fprintf_unfiltered (gdb_stdlog,
1332 "%s block symbol cache miss for %s, %s\n",
1333 block == GLOBAL_BLOCK ? "Global" : "Static",
1334 name, domain_name (domain));
1335 }
1336 ++bsc->misses;
1337 return (struct block_symbol) {NULL, NULL};
1338 }
1339
1340 /* Clear out SLOT. */
1341
1342 static void
1343 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1344 {
1345 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1346 xfree (slot->value.not_found.name);
1347 slot->state = SYMBOL_SLOT_UNUSED;
1348 }
1349
1350 /* Mark SYMBOL as found in SLOT.
1351 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1352 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1353 necessarily the objfile the symbol was found in. */
1354
1355 static void
1356 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1357 struct symbol_cache_slot *slot,
1358 struct objfile *objfile_context,
1359 struct symbol *symbol,
1360 const struct block *block)
1361 {
1362 if (bsc == NULL)
1363 return;
1364 if (slot->state != SYMBOL_SLOT_UNUSED)
1365 {
1366 ++bsc->collisions;
1367 symbol_cache_clear_slot (slot);
1368 }
1369 slot->state = SYMBOL_SLOT_FOUND;
1370 slot->objfile_context = objfile_context;
1371 slot->value.found.symbol = symbol;
1372 slot->value.found.block = block;
1373 }
1374
1375 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1376 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1377 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1378
1379 static void
1380 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1381 struct symbol_cache_slot *slot,
1382 struct objfile *objfile_context,
1383 const char *name, domain_enum domain)
1384 {
1385 if (bsc == NULL)
1386 return;
1387 if (slot->state != SYMBOL_SLOT_UNUSED)
1388 {
1389 ++bsc->collisions;
1390 symbol_cache_clear_slot (slot);
1391 }
1392 slot->state = SYMBOL_SLOT_NOT_FOUND;
1393 slot->objfile_context = objfile_context;
1394 slot->value.not_found.name = xstrdup (name);
1395 slot->value.not_found.domain = domain;
1396 }
1397
1398 /* Flush the symbol cache of PSPACE. */
1399
1400 static void
1401 symbol_cache_flush (struct program_space *pspace)
1402 {
1403 struct symbol_cache *cache
1404 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1405 int pass;
1406
1407 if (cache == NULL)
1408 return;
1409 if (cache->global_symbols == NULL)
1410 {
1411 gdb_assert (symbol_cache_size == 0);
1412 gdb_assert (cache->static_symbols == NULL);
1413 return;
1414 }
1415
1416 /* If the cache is untouched since the last flush, early exit.
1417 This is important for performance during the startup of a program linked
1418 with 100s (or 1000s) of shared libraries. */
1419 if (cache->global_symbols->misses == 0
1420 && cache->static_symbols->misses == 0)
1421 return;
1422
1423 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1424 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1425
1426 for (pass = 0; pass < 2; ++pass)
1427 {
1428 struct block_symbol_cache *bsc
1429 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1430 unsigned int i;
1431
1432 for (i = 0; i < bsc->size; ++i)
1433 symbol_cache_clear_slot (&bsc->symbols[i]);
1434 }
1435
1436 cache->global_symbols->hits = 0;
1437 cache->global_symbols->misses = 0;
1438 cache->global_symbols->collisions = 0;
1439 cache->static_symbols->hits = 0;
1440 cache->static_symbols->misses = 0;
1441 cache->static_symbols->collisions = 0;
1442 }
1443
1444 /* Dump CACHE. */
1445
1446 static void
1447 symbol_cache_dump (const struct symbol_cache *cache)
1448 {
1449 int pass;
1450
1451 if (cache->global_symbols == NULL)
1452 {
1453 printf_filtered (" <disabled>\n");
1454 return;
1455 }
1456
1457 for (pass = 0; pass < 2; ++pass)
1458 {
1459 const struct block_symbol_cache *bsc
1460 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1461 unsigned int i;
1462
1463 if (pass == 0)
1464 printf_filtered ("Global symbols:\n");
1465 else
1466 printf_filtered ("Static symbols:\n");
1467
1468 for (i = 0; i < bsc->size; ++i)
1469 {
1470 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1471
1472 QUIT;
1473
1474 switch (slot->state)
1475 {
1476 case SYMBOL_SLOT_UNUSED:
1477 break;
1478 case SYMBOL_SLOT_NOT_FOUND:
1479 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1480 host_address_to_string (slot->objfile_context),
1481 slot->value.not_found.name,
1482 domain_name (slot->value.not_found.domain));
1483 break;
1484 case SYMBOL_SLOT_FOUND:
1485 {
1486 struct symbol *found = slot->value.found.symbol;
1487 const struct objfile *context = slot->objfile_context;
1488
1489 printf_filtered (" [%4u] = %s, %s %s\n", i,
1490 host_address_to_string (context),
1491 SYMBOL_PRINT_NAME (found),
1492 domain_name (SYMBOL_DOMAIN (found)));
1493 break;
1494 }
1495 }
1496 }
1497 }
1498 }
1499
1500 /* The "mt print symbol-cache" command. */
1501
1502 static void
1503 maintenance_print_symbol_cache (const char *args, int from_tty)
1504 {
1505 struct program_space *pspace;
1506
1507 ALL_PSPACES (pspace)
1508 {
1509 struct symbol_cache *cache;
1510
1511 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1512 pspace->num,
1513 pspace->symfile_object_file != NULL
1514 ? objfile_name (pspace->symfile_object_file)
1515 : "(no object file)");
1516
1517 /* If the cache hasn't been created yet, avoid creating one. */
1518 cache
1519 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1520 if (cache == NULL)
1521 printf_filtered (" <empty>\n");
1522 else
1523 symbol_cache_dump (cache);
1524 }
1525 }
1526
1527 /* The "mt flush-symbol-cache" command. */
1528
1529 static void
1530 maintenance_flush_symbol_cache (const char *args, int from_tty)
1531 {
1532 struct program_space *pspace;
1533
1534 ALL_PSPACES (pspace)
1535 {
1536 symbol_cache_flush (pspace);
1537 }
1538 }
1539
1540 /* Print usage statistics of CACHE. */
1541
1542 static void
1543 symbol_cache_stats (struct symbol_cache *cache)
1544 {
1545 int pass;
1546
1547 if (cache->global_symbols == NULL)
1548 {
1549 printf_filtered (" <disabled>\n");
1550 return;
1551 }
1552
1553 for (pass = 0; pass < 2; ++pass)
1554 {
1555 const struct block_symbol_cache *bsc
1556 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1557
1558 QUIT;
1559
1560 if (pass == 0)
1561 printf_filtered ("Global block cache stats:\n");
1562 else
1563 printf_filtered ("Static block cache stats:\n");
1564
1565 printf_filtered (" size: %u\n", bsc->size);
1566 printf_filtered (" hits: %u\n", bsc->hits);
1567 printf_filtered (" misses: %u\n", bsc->misses);
1568 printf_filtered (" collisions: %u\n", bsc->collisions);
1569 }
1570 }
1571
1572 /* The "mt print symbol-cache-statistics" command. */
1573
1574 static void
1575 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1576 {
1577 struct program_space *pspace;
1578
1579 ALL_PSPACES (pspace)
1580 {
1581 struct symbol_cache *cache;
1582
1583 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1584 pspace->num,
1585 pspace->symfile_object_file != NULL
1586 ? objfile_name (pspace->symfile_object_file)
1587 : "(no object file)");
1588
1589 /* If the cache hasn't been created yet, avoid creating one. */
1590 cache
1591 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1592 if (cache == NULL)
1593 printf_filtered (" empty, no stats available\n");
1594 else
1595 symbol_cache_stats (cache);
1596 }
1597 }
1598
1599 /* This module's 'new_objfile' observer. */
1600
1601 static void
1602 symtab_new_objfile_observer (struct objfile *objfile)
1603 {
1604 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1605 symbol_cache_flush (current_program_space);
1606 }
1607
1608 /* This module's 'free_objfile' observer. */
1609
1610 static void
1611 symtab_free_objfile_observer (struct objfile *objfile)
1612 {
1613 symbol_cache_flush (objfile->pspace);
1614 }
1615 \f
1616 /* Debug symbols usually don't have section information. We need to dig that
1617 out of the minimal symbols and stash that in the debug symbol. */
1618
1619 void
1620 fixup_section (struct general_symbol_info *ginfo,
1621 CORE_ADDR addr, struct objfile *objfile)
1622 {
1623 struct minimal_symbol *msym;
1624
1625 /* First, check whether a minimal symbol with the same name exists
1626 and points to the same address. The address check is required
1627 e.g. on PowerPC64, where the minimal symbol for a function will
1628 point to the function descriptor, while the debug symbol will
1629 point to the actual function code. */
1630 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1631 if (msym)
1632 ginfo->section = MSYMBOL_SECTION (msym);
1633 else
1634 {
1635 /* Static, function-local variables do appear in the linker
1636 (minimal) symbols, but are frequently given names that won't
1637 be found via lookup_minimal_symbol(). E.g., it has been
1638 observed in frv-uclinux (ELF) executables that a static,
1639 function-local variable named "foo" might appear in the
1640 linker symbols as "foo.6" or "foo.3". Thus, there is no
1641 point in attempting to extend the lookup-by-name mechanism to
1642 handle this case due to the fact that there can be multiple
1643 names.
1644
1645 So, instead, search the section table when lookup by name has
1646 failed. The ``addr'' and ``endaddr'' fields may have already
1647 been relocated. If so, the relocation offset (i.e. the
1648 ANOFFSET value) needs to be subtracted from these values when
1649 performing the comparison. We unconditionally subtract it,
1650 because, when no relocation has been performed, the ANOFFSET
1651 value will simply be zero.
1652
1653 The address of the symbol whose section we're fixing up HAS
1654 NOT BEEN adjusted (relocated) yet. It can't have been since
1655 the section isn't yet known and knowing the section is
1656 necessary in order to add the correct relocation value. In
1657 other words, we wouldn't even be in this function (attempting
1658 to compute the section) if it were already known.
1659
1660 Note that it is possible to search the minimal symbols
1661 (subtracting the relocation value if necessary) to find the
1662 matching minimal symbol, but this is overkill and much less
1663 efficient. It is not necessary to find the matching minimal
1664 symbol, only its section.
1665
1666 Note that this technique (of doing a section table search)
1667 can fail when unrelocated section addresses overlap. For
1668 this reason, we still attempt a lookup by name prior to doing
1669 a search of the section table. */
1670
1671 struct obj_section *s;
1672 int fallback = -1;
1673
1674 ALL_OBJFILE_OSECTIONS (objfile, s)
1675 {
1676 int idx = s - objfile->sections;
1677 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1678
1679 if (fallback == -1)
1680 fallback = idx;
1681
1682 if (obj_section_addr (s) - offset <= addr
1683 && addr < obj_section_endaddr (s) - offset)
1684 {
1685 ginfo->section = idx;
1686 return;
1687 }
1688 }
1689
1690 /* If we didn't find the section, assume it is in the first
1691 section. If there is no allocated section, then it hardly
1692 matters what we pick, so just pick zero. */
1693 if (fallback == -1)
1694 ginfo->section = 0;
1695 else
1696 ginfo->section = fallback;
1697 }
1698 }
1699
1700 struct symbol *
1701 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1702 {
1703 CORE_ADDR addr;
1704
1705 if (!sym)
1706 return NULL;
1707
1708 if (!SYMBOL_OBJFILE_OWNED (sym))
1709 return sym;
1710
1711 /* We either have an OBJFILE, or we can get at it from the sym's
1712 symtab. Anything else is a bug. */
1713 gdb_assert (objfile || symbol_symtab (sym));
1714
1715 if (objfile == NULL)
1716 objfile = symbol_objfile (sym);
1717
1718 if (SYMBOL_OBJ_SECTION (objfile, sym))
1719 return sym;
1720
1721 /* We should have an objfile by now. */
1722 gdb_assert (objfile);
1723
1724 switch (SYMBOL_CLASS (sym))
1725 {
1726 case LOC_STATIC:
1727 case LOC_LABEL:
1728 addr = SYMBOL_VALUE_ADDRESS (sym);
1729 break;
1730 case LOC_BLOCK:
1731 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1732 break;
1733
1734 default:
1735 /* Nothing else will be listed in the minsyms -- no use looking
1736 it up. */
1737 return sym;
1738 }
1739
1740 fixup_section (&sym->ginfo, addr, objfile);
1741
1742 return sym;
1743 }
1744
1745 /* Compute the demangled form of NAME as used by the various symbol
1746 lookup functions. The result can either be the input NAME
1747 directly, or a pointer to a buffer owned by the STORAGE object.
1748
1749 For Ada, this function just returns NAME, unmodified.
1750 Normally, Ada symbol lookups are performed using the encoded name
1751 rather than the demangled name, and so it might seem to make sense
1752 for this function to return an encoded version of NAME.
1753 Unfortunately, we cannot do this, because this function is used in
1754 circumstances where it is not appropriate to try to encode NAME.
1755 For instance, when displaying the frame info, we demangle the name
1756 of each parameter, and then perform a symbol lookup inside our
1757 function using that demangled name. In Ada, certain functions
1758 have internally-generated parameters whose name contain uppercase
1759 characters. Encoding those name would result in those uppercase
1760 characters to become lowercase, and thus cause the symbol lookup
1761 to fail. */
1762
1763 const char *
1764 demangle_for_lookup (const char *name, enum language lang,
1765 demangle_result_storage &storage)
1766 {
1767 /* If we are using C++, D, or Go, demangle the name before doing a
1768 lookup, so we can always binary search. */
1769 if (lang == language_cplus)
1770 {
1771 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1772 if (demangled_name != NULL)
1773 return storage.set_malloc_ptr (demangled_name);
1774
1775 /* If we were given a non-mangled name, canonicalize it
1776 according to the language (so far only for C++). */
1777 std::string canon = cp_canonicalize_string (name);
1778 if (!canon.empty ())
1779 return storage.swap_string (canon);
1780 }
1781 else if (lang == language_d)
1782 {
1783 char *demangled_name = d_demangle (name, 0);
1784 if (demangled_name != NULL)
1785 return storage.set_malloc_ptr (demangled_name);
1786 }
1787 else if (lang == language_go)
1788 {
1789 char *demangled_name = go_demangle (name, 0);
1790 if (demangled_name != NULL)
1791 return storage.set_malloc_ptr (demangled_name);
1792 }
1793
1794 return name;
1795 }
1796
1797 /* See symtab.h.
1798
1799 This function (or rather its subordinates) have a bunch of loops and
1800 it would seem to be attractive to put in some QUIT's (though I'm not really
1801 sure whether it can run long enough to be really important). But there
1802 are a few calls for which it would appear to be bad news to quit
1803 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1804 that there is C++ code below which can error(), but that probably
1805 doesn't affect these calls since they are looking for a known
1806 variable and thus can probably assume it will never hit the C++
1807 code). */
1808
1809 struct block_symbol
1810 lookup_symbol_in_language (const char *name, const struct block *block,
1811 const domain_enum domain, enum language lang,
1812 struct field_of_this_result *is_a_field_of_this)
1813 {
1814 demangle_result_storage storage;
1815 const char *modified_name = demangle_for_lookup (name, lang, storage);
1816
1817 return lookup_symbol_aux (modified_name, block, domain, lang,
1818 is_a_field_of_this);
1819 }
1820
1821 /* See symtab.h. */
1822
1823 struct block_symbol
1824 lookup_symbol (const char *name, const struct block *block,
1825 domain_enum domain,
1826 struct field_of_this_result *is_a_field_of_this)
1827 {
1828 return lookup_symbol_in_language (name, block, domain,
1829 current_language->la_language,
1830 is_a_field_of_this);
1831 }
1832
1833 /* See symtab.h. */
1834
1835 struct block_symbol
1836 lookup_language_this (const struct language_defn *lang,
1837 const struct block *block)
1838 {
1839 if (lang->la_name_of_this == NULL || block == NULL)
1840 return (struct block_symbol) {NULL, NULL};
1841
1842 if (symbol_lookup_debug > 1)
1843 {
1844 struct objfile *objfile = lookup_objfile_from_block (block);
1845
1846 fprintf_unfiltered (gdb_stdlog,
1847 "lookup_language_this (%s, %s (objfile %s))",
1848 lang->la_name, host_address_to_string (block),
1849 objfile_debug_name (objfile));
1850 }
1851
1852 while (block)
1853 {
1854 struct symbol *sym;
1855
1856 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1857 if (sym != NULL)
1858 {
1859 if (symbol_lookup_debug > 1)
1860 {
1861 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1862 SYMBOL_PRINT_NAME (sym),
1863 host_address_to_string (sym),
1864 host_address_to_string (block));
1865 }
1866 return (struct block_symbol) {sym, block};
1867 }
1868 if (BLOCK_FUNCTION (block))
1869 break;
1870 block = BLOCK_SUPERBLOCK (block);
1871 }
1872
1873 if (symbol_lookup_debug > 1)
1874 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1875 return (struct block_symbol) {NULL, NULL};
1876 }
1877
1878 /* Given TYPE, a structure/union,
1879 return 1 if the component named NAME from the ultimate target
1880 structure/union is defined, otherwise, return 0. */
1881
1882 static int
1883 check_field (struct type *type, const char *name,
1884 struct field_of_this_result *is_a_field_of_this)
1885 {
1886 int i;
1887
1888 /* The type may be a stub. */
1889 type = check_typedef (type);
1890
1891 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1892 {
1893 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1894
1895 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1896 {
1897 is_a_field_of_this->type = type;
1898 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1899 return 1;
1900 }
1901 }
1902
1903 /* C++: If it was not found as a data field, then try to return it
1904 as a pointer to a method. */
1905
1906 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1907 {
1908 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1909 {
1910 is_a_field_of_this->type = type;
1911 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1912 return 1;
1913 }
1914 }
1915
1916 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1917 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1918 return 1;
1919
1920 return 0;
1921 }
1922
1923 /* Behave like lookup_symbol except that NAME is the natural name
1924 (e.g., demangled name) of the symbol that we're looking for. */
1925
1926 static struct block_symbol
1927 lookup_symbol_aux (const char *name, const struct block *block,
1928 const domain_enum domain, enum language language,
1929 struct field_of_this_result *is_a_field_of_this)
1930 {
1931 struct block_symbol result;
1932 const struct language_defn *langdef;
1933
1934 if (symbol_lookup_debug)
1935 {
1936 struct objfile *objfile = lookup_objfile_from_block (block);
1937
1938 fprintf_unfiltered (gdb_stdlog,
1939 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1940 name, host_address_to_string (block),
1941 objfile != NULL
1942 ? objfile_debug_name (objfile) : "NULL",
1943 domain_name (domain), language_str (language));
1944 }
1945
1946 /* Make sure we do something sensible with is_a_field_of_this, since
1947 the callers that set this parameter to some non-null value will
1948 certainly use it later. If we don't set it, the contents of
1949 is_a_field_of_this are undefined. */
1950 if (is_a_field_of_this != NULL)
1951 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1952
1953 /* Search specified block and its superiors. Don't search
1954 STATIC_BLOCK or GLOBAL_BLOCK. */
1955
1956 result = lookup_local_symbol (name, block, domain, language);
1957 if (result.symbol != NULL)
1958 {
1959 if (symbol_lookup_debug)
1960 {
1961 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1962 host_address_to_string (result.symbol));
1963 }
1964 return result;
1965 }
1966
1967 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1968 check to see if NAME is a field of `this'. */
1969
1970 langdef = language_def (language);
1971
1972 /* Don't do this check if we are searching for a struct. It will
1973 not be found by check_field, but will be found by other
1974 means. */
1975 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1976 {
1977 result = lookup_language_this (langdef, block);
1978
1979 if (result.symbol)
1980 {
1981 struct type *t = result.symbol->type;
1982
1983 /* I'm not really sure that type of this can ever
1984 be typedefed; just be safe. */
1985 t = check_typedef (t);
1986 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1987 t = TYPE_TARGET_TYPE (t);
1988
1989 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1990 && TYPE_CODE (t) != TYPE_CODE_UNION)
1991 error (_("Internal error: `%s' is not an aggregate"),
1992 langdef->la_name_of_this);
1993
1994 if (check_field (t, name, is_a_field_of_this))
1995 {
1996 if (symbol_lookup_debug)
1997 {
1998 fprintf_unfiltered (gdb_stdlog,
1999 "lookup_symbol_aux (...) = NULL\n");
2000 }
2001 return (struct block_symbol) {NULL, NULL};
2002 }
2003 }
2004 }
2005
2006 /* Now do whatever is appropriate for LANGUAGE to look
2007 up static and global variables. */
2008
2009 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2010 if (result.symbol != NULL)
2011 {
2012 if (symbol_lookup_debug)
2013 {
2014 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2015 host_address_to_string (result.symbol));
2016 }
2017 return result;
2018 }
2019
2020 /* Now search all static file-level symbols. Not strictly correct,
2021 but more useful than an error. */
2022
2023 result = lookup_static_symbol (name, domain);
2024 if (symbol_lookup_debug)
2025 {
2026 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2027 result.symbol != NULL
2028 ? host_address_to_string (result.symbol)
2029 : "NULL");
2030 }
2031 return result;
2032 }
2033
2034 /* Check to see if the symbol is defined in BLOCK or its superiors.
2035 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2036
2037 static struct block_symbol
2038 lookup_local_symbol (const char *name, const struct block *block,
2039 const domain_enum domain,
2040 enum language language)
2041 {
2042 struct symbol *sym;
2043 const struct block *static_block = block_static_block (block);
2044 const char *scope = block_scope (block);
2045
2046 /* Check if either no block is specified or it's a global block. */
2047
2048 if (static_block == NULL)
2049 return (struct block_symbol) {NULL, NULL};
2050
2051 while (block != static_block)
2052 {
2053 sym = lookup_symbol_in_block (name, block, domain);
2054 if (sym != NULL)
2055 return (struct block_symbol) {sym, block};
2056
2057 if (language == language_cplus || language == language_fortran)
2058 {
2059 struct block_symbol sym
2060 = cp_lookup_symbol_imports_or_template (scope, name, block,
2061 domain);
2062
2063 if (sym.symbol != NULL)
2064 return sym;
2065 }
2066
2067 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2068 break;
2069 block = BLOCK_SUPERBLOCK (block);
2070 }
2071
2072 /* We've reached the end of the function without finding a result. */
2073
2074 return (struct block_symbol) {NULL, NULL};
2075 }
2076
2077 /* See symtab.h. */
2078
2079 struct objfile *
2080 lookup_objfile_from_block (const struct block *block)
2081 {
2082 struct objfile *obj;
2083 struct compunit_symtab *cust;
2084
2085 if (block == NULL)
2086 return NULL;
2087
2088 block = block_global_block (block);
2089 /* Look through all blockvectors. */
2090 ALL_COMPUNITS (obj, cust)
2091 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2092 GLOBAL_BLOCK))
2093 {
2094 if (obj->separate_debug_objfile_backlink)
2095 obj = obj->separate_debug_objfile_backlink;
2096
2097 return obj;
2098 }
2099
2100 return NULL;
2101 }
2102
2103 /* See symtab.h. */
2104
2105 struct symbol *
2106 lookup_symbol_in_block (const char *name, const struct block *block,
2107 const domain_enum domain)
2108 {
2109 struct symbol *sym;
2110
2111 if (symbol_lookup_debug > 1)
2112 {
2113 struct objfile *objfile = lookup_objfile_from_block (block);
2114
2115 fprintf_unfiltered (gdb_stdlog,
2116 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2117 name, host_address_to_string (block),
2118 objfile_debug_name (objfile),
2119 domain_name (domain));
2120 }
2121
2122 sym = block_lookup_symbol (block, name, domain);
2123 if (sym)
2124 {
2125 if (symbol_lookup_debug > 1)
2126 {
2127 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2128 host_address_to_string (sym));
2129 }
2130 return fixup_symbol_section (sym, NULL);
2131 }
2132
2133 if (symbol_lookup_debug > 1)
2134 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2135 return NULL;
2136 }
2137
2138 /* See symtab.h. */
2139
2140 struct block_symbol
2141 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2142 const char *name,
2143 const domain_enum domain)
2144 {
2145 struct objfile *objfile;
2146
2147 for (objfile = main_objfile;
2148 objfile;
2149 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2150 {
2151 struct block_symbol result
2152 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2153
2154 if (result.symbol != NULL)
2155 return result;
2156 }
2157
2158 return (struct block_symbol) {NULL, NULL};
2159 }
2160
2161 /* Check to see if the symbol is defined in one of the OBJFILE's
2162 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2163 depending on whether or not we want to search global symbols or
2164 static symbols. */
2165
2166 static struct block_symbol
2167 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2168 const char *name, const domain_enum domain)
2169 {
2170 struct compunit_symtab *cust;
2171
2172 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2173
2174 if (symbol_lookup_debug > 1)
2175 {
2176 fprintf_unfiltered (gdb_stdlog,
2177 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2178 objfile_debug_name (objfile),
2179 block_index == GLOBAL_BLOCK
2180 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2181 name, domain_name (domain));
2182 }
2183
2184 ALL_OBJFILE_COMPUNITS (objfile, cust)
2185 {
2186 const struct blockvector *bv;
2187 const struct block *block;
2188 struct block_symbol result;
2189
2190 bv = COMPUNIT_BLOCKVECTOR (cust);
2191 block = BLOCKVECTOR_BLOCK (bv, block_index);
2192 result.symbol = block_lookup_symbol_primary (block, name, domain);
2193 result.block = block;
2194 if (result.symbol != NULL)
2195 {
2196 if (symbol_lookup_debug > 1)
2197 {
2198 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2199 host_address_to_string (result.symbol),
2200 host_address_to_string (block));
2201 }
2202 result.symbol = fixup_symbol_section (result.symbol, objfile);
2203 return result;
2204
2205 }
2206 }
2207
2208 if (symbol_lookup_debug > 1)
2209 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2210 return (struct block_symbol) {NULL, NULL};
2211 }
2212
2213 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2214 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2215 and all associated separate debug objfiles.
2216
2217 Normally we only look in OBJFILE, and not any separate debug objfiles
2218 because the outer loop will cause them to be searched too. This case is
2219 different. Here we're called from search_symbols where it will only
2220 call us for the the objfile that contains a matching minsym. */
2221
2222 static struct block_symbol
2223 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2224 const char *linkage_name,
2225 domain_enum domain)
2226 {
2227 enum language lang = current_language->la_language;
2228 struct objfile *main_objfile, *cur_objfile;
2229
2230 demangle_result_storage storage;
2231 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2232
2233 if (objfile->separate_debug_objfile_backlink)
2234 main_objfile = objfile->separate_debug_objfile_backlink;
2235 else
2236 main_objfile = objfile;
2237
2238 for (cur_objfile = main_objfile;
2239 cur_objfile;
2240 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2241 {
2242 struct block_symbol result;
2243
2244 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2245 modified_name, domain);
2246 if (result.symbol == NULL)
2247 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2248 modified_name, domain);
2249 if (result.symbol != NULL)
2250 return result;
2251 }
2252
2253 return (struct block_symbol) {NULL, NULL};
2254 }
2255
2256 /* A helper function that throws an exception when a symbol was found
2257 in a psymtab but not in a symtab. */
2258
2259 static void ATTRIBUTE_NORETURN
2260 error_in_psymtab_expansion (int block_index, const char *name,
2261 struct compunit_symtab *cust)
2262 {
2263 error (_("\
2264 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2265 %s may be an inlined function, or may be a template function\n \
2266 (if a template, try specifying an instantiation: %s<type>)."),
2267 block_index == GLOBAL_BLOCK ? "global" : "static",
2268 name,
2269 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2270 name, name);
2271 }
2272
2273 /* A helper function for various lookup routines that interfaces with
2274 the "quick" symbol table functions. */
2275
2276 static struct block_symbol
2277 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2278 const char *name, const domain_enum domain)
2279 {
2280 struct compunit_symtab *cust;
2281 const struct blockvector *bv;
2282 const struct block *block;
2283 struct block_symbol result;
2284
2285 if (!objfile->sf)
2286 return (struct block_symbol) {NULL, NULL};
2287
2288 if (symbol_lookup_debug > 1)
2289 {
2290 fprintf_unfiltered (gdb_stdlog,
2291 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2292 objfile_debug_name (objfile),
2293 block_index == GLOBAL_BLOCK
2294 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2295 name, domain_name (domain));
2296 }
2297
2298 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2299 if (cust == NULL)
2300 {
2301 if (symbol_lookup_debug > 1)
2302 {
2303 fprintf_unfiltered (gdb_stdlog,
2304 "lookup_symbol_via_quick_fns (...) = NULL\n");
2305 }
2306 return (struct block_symbol) {NULL, NULL};
2307 }
2308
2309 bv = COMPUNIT_BLOCKVECTOR (cust);
2310 block = BLOCKVECTOR_BLOCK (bv, block_index);
2311 result.symbol = block_lookup_symbol (block, name, domain);
2312 if (result.symbol == NULL)
2313 error_in_psymtab_expansion (block_index, name, cust);
2314
2315 if (symbol_lookup_debug > 1)
2316 {
2317 fprintf_unfiltered (gdb_stdlog,
2318 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2319 host_address_to_string (result.symbol),
2320 host_address_to_string (block));
2321 }
2322
2323 result.symbol = fixup_symbol_section (result.symbol, objfile);
2324 result.block = block;
2325 return result;
2326 }
2327
2328 /* See symtab.h. */
2329
2330 struct block_symbol
2331 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2332 const char *name,
2333 const struct block *block,
2334 const domain_enum domain)
2335 {
2336 struct block_symbol result;
2337
2338 /* NOTE: carlton/2003-05-19: The comments below were written when
2339 this (or what turned into this) was part of lookup_symbol_aux;
2340 I'm much less worried about these questions now, since these
2341 decisions have turned out well, but I leave these comments here
2342 for posterity. */
2343
2344 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2345 not it would be appropriate to search the current global block
2346 here as well. (That's what this code used to do before the
2347 is_a_field_of_this check was moved up.) On the one hand, it's
2348 redundant with the lookup in all objfiles search that happens
2349 next. On the other hand, if decode_line_1 is passed an argument
2350 like filename:var, then the user presumably wants 'var' to be
2351 searched for in filename. On the third hand, there shouldn't be
2352 multiple global variables all of which are named 'var', and it's
2353 not like decode_line_1 has ever restricted its search to only
2354 global variables in a single filename. All in all, only
2355 searching the static block here seems best: it's correct and it's
2356 cleanest. */
2357
2358 /* NOTE: carlton/2002-12-05: There's also a possible performance
2359 issue here: if you usually search for global symbols in the
2360 current file, then it would be slightly better to search the
2361 current global block before searching all the symtabs. But there
2362 are other factors that have a much greater effect on performance
2363 than that one, so I don't think we should worry about that for
2364 now. */
2365
2366 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2367 the current objfile. Searching the current objfile first is useful
2368 for both matching user expectations as well as performance. */
2369
2370 result = lookup_symbol_in_static_block (name, block, domain);
2371 if (result.symbol != NULL)
2372 return result;
2373
2374 /* If we didn't find a definition for a builtin type in the static block,
2375 search for it now. This is actually the right thing to do and can be
2376 a massive performance win. E.g., when debugging a program with lots of
2377 shared libraries we could search all of them only to find out the
2378 builtin type isn't defined in any of them. This is common for types
2379 like "void". */
2380 if (domain == VAR_DOMAIN)
2381 {
2382 struct gdbarch *gdbarch;
2383
2384 if (block == NULL)
2385 gdbarch = target_gdbarch ();
2386 else
2387 gdbarch = block_gdbarch (block);
2388 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2389 gdbarch, name);
2390 result.block = NULL;
2391 if (result.symbol != NULL)
2392 return result;
2393 }
2394
2395 return lookup_global_symbol (name, block, domain);
2396 }
2397
2398 /* See symtab.h. */
2399
2400 struct block_symbol
2401 lookup_symbol_in_static_block (const char *name,
2402 const struct block *block,
2403 const domain_enum domain)
2404 {
2405 const struct block *static_block = block_static_block (block);
2406 struct symbol *sym;
2407
2408 if (static_block == NULL)
2409 return (struct block_symbol) {NULL, NULL};
2410
2411 if (symbol_lookup_debug)
2412 {
2413 struct objfile *objfile = lookup_objfile_from_block (static_block);
2414
2415 fprintf_unfiltered (gdb_stdlog,
2416 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2417 " %s)\n",
2418 name,
2419 host_address_to_string (block),
2420 objfile_debug_name (objfile),
2421 domain_name (domain));
2422 }
2423
2424 sym = lookup_symbol_in_block (name, static_block, domain);
2425 if (symbol_lookup_debug)
2426 {
2427 fprintf_unfiltered (gdb_stdlog,
2428 "lookup_symbol_in_static_block (...) = %s\n",
2429 sym != NULL ? host_address_to_string (sym) : "NULL");
2430 }
2431 return (struct block_symbol) {sym, static_block};
2432 }
2433
2434 /* Perform the standard symbol lookup of NAME in OBJFILE:
2435 1) First search expanded symtabs, and if not found
2436 2) Search the "quick" symtabs (partial or .gdb_index).
2437 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2438
2439 static struct block_symbol
2440 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2441 const char *name, const domain_enum domain)
2442 {
2443 struct block_symbol result;
2444
2445 if (symbol_lookup_debug)
2446 {
2447 fprintf_unfiltered (gdb_stdlog,
2448 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2449 objfile_debug_name (objfile),
2450 block_index == GLOBAL_BLOCK
2451 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2452 name, domain_name (domain));
2453 }
2454
2455 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2456 name, domain);
2457 if (result.symbol != NULL)
2458 {
2459 if (symbol_lookup_debug)
2460 {
2461 fprintf_unfiltered (gdb_stdlog,
2462 "lookup_symbol_in_objfile (...) = %s"
2463 " (in symtabs)\n",
2464 host_address_to_string (result.symbol));
2465 }
2466 return result;
2467 }
2468
2469 result = lookup_symbol_via_quick_fns (objfile, block_index,
2470 name, domain);
2471 if (symbol_lookup_debug)
2472 {
2473 fprintf_unfiltered (gdb_stdlog,
2474 "lookup_symbol_in_objfile (...) = %s%s\n",
2475 result.symbol != NULL
2476 ? host_address_to_string (result.symbol)
2477 : "NULL",
2478 result.symbol != NULL ? " (via quick fns)" : "");
2479 }
2480 return result;
2481 }
2482
2483 /* See symtab.h. */
2484
2485 struct block_symbol
2486 lookup_static_symbol (const char *name, const domain_enum domain)
2487 {
2488 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2489 struct objfile *objfile;
2490 struct block_symbol result;
2491 struct block_symbol_cache *bsc;
2492 struct symbol_cache_slot *slot;
2493
2494 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2495 NULL for OBJFILE_CONTEXT. */
2496 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2497 &bsc, &slot);
2498 if (result.symbol != NULL)
2499 {
2500 if (SYMBOL_LOOKUP_FAILED_P (result))
2501 return (struct block_symbol) {NULL, NULL};
2502 return result;
2503 }
2504
2505 ALL_OBJFILES (objfile)
2506 {
2507 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2508 if (result.symbol != NULL)
2509 {
2510 /* Still pass NULL for OBJFILE_CONTEXT here. */
2511 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2512 result.block);
2513 return result;
2514 }
2515 }
2516
2517 /* Still pass NULL for OBJFILE_CONTEXT here. */
2518 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2519 return (struct block_symbol) {NULL, NULL};
2520 }
2521
2522 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2523
2524 struct global_sym_lookup_data
2525 {
2526 /* The name of the symbol we are searching for. */
2527 const char *name;
2528
2529 /* The domain to use for our search. */
2530 domain_enum domain;
2531
2532 /* The field where the callback should store the symbol if found.
2533 It should be initialized to {NULL, NULL} before the search is started. */
2534 struct block_symbol result;
2535 };
2536
2537 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2538 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2539 OBJFILE. The arguments for the search are passed via CB_DATA,
2540 which in reality is a pointer to struct global_sym_lookup_data. */
2541
2542 static int
2543 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2544 void *cb_data)
2545 {
2546 struct global_sym_lookup_data *data =
2547 (struct global_sym_lookup_data *) cb_data;
2548
2549 gdb_assert (data->result.symbol == NULL
2550 && data->result.block == NULL);
2551
2552 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2553 data->name, data->domain);
2554
2555 /* If we found a match, tell the iterator to stop. Otherwise,
2556 keep going. */
2557 return (data->result.symbol != NULL);
2558 }
2559
2560 /* See symtab.h. */
2561
2562 struct block_symbol
2563 lookup_global_symbol (const char *name,
2564 const struct block *block,
2565 const domain_enum domain)
2566 {
2567 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2568 struct block_symbol result;
2569 struct objfile *objfile;
2570 struct global_sym_lookup_data lookup_data;
2571 struct block_symbol_cache *bsc;
2572 struct symbol_cache_slot *slot;
2573
2574 objfile = lookup_objfile_from_block (block);
2575
2576 /* First see if we can find the symbol in the cache.
2577 This works because we use the current objfile to qualify the lookup. */
2578 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2579 &bsc, &slot);
2580 if (result.symbol != NULL)
2581 {
2582 if (SYMBOL_LOOKUP_FAILED_P (result))
2583 return (struct block_symbol) {NULL, NULL};
2584 return result;
2585 }
2586
2587 /* Call library-specific lookup procedure. */
2588 if (objfile != NULL)
2589 result = solib_global_lookup (objfile, name, domain);
2590
2591 /* If that didn't work go a global search (of global blocks, heh). */
2592 if (result.symbol == NULL)
2593 {
2594 memset (&lookup_data, 0, sizeof (lookup_data));
2595 lookup_data.name = name;
2596 lookup_data.domain = domain;
2597 gdbarch_iterate_over_objfiles_in_search_order
2598 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2599 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2600 result = lookup_data.result;
2601 }
2602
2603 if (result.symbol != NULL)
2604 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2605 else
2606 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2607
2608 return result;
2609 }
2610
2611 int
2612 symbol_matches_domain (enum language symbol_language,
2613 domain_enum symbol_domain,
2614 domain_enum domain)
2615 {
2616 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2617 Similarly, any Ada type declaration implicitly defines a typedef. */
2618 if (symbol_language == language_cplus
2619 || symbol_language == language_d
2620 || symbol_language == language_ada
2621 || symbol_language == language_rust)
2622 {
2623 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2624 && symbol_domain == STRUCT_DOMAIN)
2625 return 1;
2626 }
2627 /* For all other languages, strict match is required. */
2628 return (symbol_domain == domain);
2629 }
2630
2631 /* See symtab.h. */
2632
2633 struct type *
2634 lookup_transparent_type (const char *name)
2635 {
2636 return current_language->la_lookup_transparent_type (name);
2637 }
2638
2639 /* A helper for basic_lookup_transparent_type that interfaces with the
2640 "quick" symbol table functions. */
2641
2642 static struct type *
2643 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2644 const char *name)
2645 {
2646 struct compunit_symtab *cust;
2647 const struct blockvector *bv;
2648 struct block *block;
2649 struct symbol *sym;
2650
2651 if (!objfile->sf)
2652 return NULL;
2653 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2654 STRUCT_DOMAIN);
2655 if (cust == NULL)
2656 return NULL;
2657
2658 bv = COMPUNIT_BLOCKVECTOR (cust);
2659 block = BLOCKVECTOR_BLOCK (bv, block_index);
2660 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2661 block_find_non_opaque_type, NULL);
2662 if (sym == NULL)
2663 error_in_psymtab_expansion (block_index, name, cust);
2664 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2665 return SYMBOL_TYPE (sym);
2666 }
2667
2668 /* Subroutine of basic_lookup_transparent_type to simplify it.
2669 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2670 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2671
2672 static struct type *
2673 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2674 const char *name)
2675 {
2676 const struct compunit_symtab *cust;
2677 const struct blockvector *bv;
2678 const struct block *block;
2679 const struct symbol *sym;
2680
2681 ALL_OBJFILE_COMPUNITS (objfile, cust)
2682 {
2683 bv = COMPUNIT_BLOCKVECTOR (cust);
2684 block = BLOCKVECTOR_BLOCK (bv, block_index);
2685 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2686 block_find_non_opaque_type, NULL);
2687 if (sym != NULL)
2688 {
2689 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2690 return SYMBOL_TYPE (sym);
2691 }
2692 }
2693
2694 return NULL;
2695 }
2696
2697 /* The standard implementation of lookup_transparent_type. This code
2698 was modeled on lookup_symbol -- the parts not relevant to looking
2699 up types were just left out. In particular it's assumed here that
2700 types are available in STRUCT_DOMAIN and only in file-static or
2701 global blocks. */
2702
2703 struct type *
2704 basic_lookup_transparent_type (const char *name)
2705 {
2706 struct objfile *objfile;
2707 struct type *t;
2708
2709 /* Now search all the global symbols. Do the symtab's first, then
2710 check the psymtab's. If a psymtab indicates the existence
2711 of the desired name as a global, then do psymtab-to-symtab
2712 conversion on the fly and return the found symbol. */
2713
2714 ALL_OBJFILES (objfile)
2715 {
2716 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2717 if (t)
2718 return t;
2719 }
2720
2721 ALL_OBJFILES (objfile)
2722 {
2723 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2724 if (t)
2725 return t;
2726 }
2727
2728 /* Now search the static file-level symbols.
2729 Not strictly correct, but more useful than an error.
2730 Do the symtab's first, then
2731 check the psymtab's. If a psymtab indicates the existence
2732 of the desired name as a file-level static, then do psymtab-to-symtab
2733 conversion on the fly and return the found symbol. */
2734
2735 ALL_OBJFILES (objfile)
2736 {
2737 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2738 if (t)
2739 return t;
2740 }
2741
2742 ALL_OBJFILES (objfile)
2743 {
2744 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2745 if (t)
2746 return t;
2747 }
2748
2749 return (struct type *) 0;
2750 }
2751
2752 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2753
2754 For each symbol that matches, CALLBACK is called. The symbol is
2755 passed to the callback.
2756
2757 If CALLBACK returns false, the iteration ends. Otherwise, the
2758 search continues. */
2759
2760 void
2761 iterate_over_symbols (const struct block *block, const char *name,
2762 const domain_enum domain,
2763 gdb::function_view<symbol_found_callback_ftype> callback)
2764 {
2765 struct block_iterator iter;
2766 struct symbol *sym;
2767
2768 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2769 {
2770 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2771 SYMBOL_DOMAIN (sym), domain))
2772 {
2773 if (!callback (sym))
2774 return;
2775 }
2776 }
2777 }
2778
2779 /* Find the compunit symtab associated with PC and SECTION.
2780 This will read in debug info as necessary. */
2781
2782 struct compunit_symtab *
2783 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2784 {
2785 struct compunit_symtab *cust;
2786 struct compunit_symtab *best_cust = NULL;
2787 struct objfile *objfile;
2788 CORE_ADDR distance = 0;
2789 struct bound_minimal_symbol msymbol;
2790
2791 /* If we know that this is not a text address, return failure. This is
2792 necessary because we loop based on the block's high and low code
2793 addresses, which do not include the data ranges, and because
2794 we call find_pc_sect_psymtab which has a similar restriction based
2795 on the partial_symtab's texthigh and textlow. */
2796 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2797 if (msymbol.minsym
2798 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2799 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2800 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2801 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2802 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2803 return NULL;
2804
2805 /* Search all symtabs for the one whose file contains our address, and which
2806 is the smallest of all the ones containing the address. This is designed
2807 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2808 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2809 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2810
2811 This happens for native ecoff format, where code from included files
2812 gets its own symtab. The symtab for the included file should have
2813 been read in already via the dependency mechanism.
2814 It might be swifter to create several symtabs with the same name
2815 like xcoff does (I'm not sure).
2816
2817 It also happens for objfiles that have their functions reordered.
2818 For these, the symtab we are looking for is not necessarily read in. */
2819
2820 ALL_COMPUNITS (objfile, cust)
2821 {
2822 struct block *b;
2823 const struct blockvector *bv;
2824
2825 bv = COMPUNIT_BLOCKVECTOR (cust);
2826 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2827
2828 if (BLOCK_START (b) <= pc
2829 && BLOCK_END (b) > pc
2830 && (distance == 0
2831 || BLOCK_END (b) - BLOCK_START (b) < distance))
2832 {
2833 /* For an objfile that has its functions reordered,
2834 find_pc_psymtab will find the proper partial symbol table
2835 and we simply return its corresponding symtab. */
2836 /* In order to better support objfiles that contain both
2837 stabs and coff debugging info, we continue on if a psymtab
2838 can't be found. */
2839 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2840 {
2841 struct compunit_symtab *result;
2842
2843 result
2844 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2845 msymbol,
2846 pc, section,
2847 0);
2848 if (result != NULL)
2849 return result;
2850 }
2851 if (section != 0)
2852 {
2853 struct block_iterator iter;
2854 struct symbol *sym = NULL;
2855
2856 ALL_BLOCK_SYMBOLS (b, iter, sym)
2857 {
2858 fixup_symbol_section (sym, objfile);
2859 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2860 section))
2861 break;
2862 }
2863 if (sym == NULL)
2864 continue; /* No symbol in this symtab matches
2865 section. */
2866 }
2867 distance = BLOCK_END (b) - BLOCK_START (b);
2868 best_cust = cust;
2869 }
2870 }
2871
2872 if (best_cust != NULL)
2873 return best_cust;
2874
2875 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2876
2877 ALL_OBJFILES (objfile)
2878 {
2879 struct compunit_symtab *result;
2880
2881 if (!objfile->sf)
2882 continue;
2883 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2884 msymbol,
2885 pc, section,
2886 1);
2887 if (result != NULL)
2888 return result;
2889 }
2890
2891 return NULL;
2892 }
2893
2894 /* Find the compunit symtab associated with PC.
2895 This will read in debug info as necessary.
2896 Backward compatibility, no section. */
2897
2898 struct compunit_symtab *
2899 find_pc_compunit_symtab (CORE_ADDR pc)
2900 {
2901 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2902 }
2903 \f
2904
2905 /* Find the source file and line number for a given PC value and SECTION.
2906 Return a structure containing a symtab pointer, a line number,
2907 and a pc range for the entire source line.
2908 The value's .pc field is NOT the specified pc.
2909 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2910 use the line that ends there. Otherwise, in that case, the line
2911 that begins there is used. */
2912
2913 /* The big complication here is that a line may start in one file, and end just
2914 before the start of another file. This usually occurs when you #include
2915 code in the middle of a subroutine. To properly find the end of a line's PC
2916 range, we must search all symtabs associated with this compilation unit, and
2917 find the one whose first PC is closer than that of the next line in this
2918 symtab. */
2919
2920 /* If it's worth the effort, we could be using a binary search. */
2921
2922 struct symtab_and_line
2923 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2924 {
2925 struct compunit_symtab *cust;
2926 struct symtab *iter_s;
2927 struct linetable *l;
2928 int len;
2929 int i;
2930 struct linetable_entry *item;
2931 const struct blockvector *bv;
2932 struct bound_minimal_symbol msymbol;
2933
2934 /* Info on best line seen so far, and where it starts, and its file. */
2935
2936 struct linetable_entry *best = NULL;
2937 CORE_ADDR best_end = 0;
2938 struct symtab *best_symtab = 0;
2939
2940 /* Store here the first line number
2941 of a file which contains the line at the smallest pc after PC.
2942 If we don't find a line whose range contains PC,
2943 we will use a line one less than this,
2944 with a range from the start of that file to the first line's pc. */
2945 struct linetable_entry *alt = NULL;
2946
2947 /* Info on best line seen in this file. */
2948
2949 struct linetable_entry *prev;
2950
2951 /* If this pc is not from the current frame,
2952 it is the address of the end of a call instruction.
2953 Quite likely that is the start of the following statement.
2954 But what we want is the statement containing the instruction.
2955 Fudge the pc to make sure we get that. */
2956
2957 /* It's tempting to assume that, if we can't find debugging info for
2958 any function enclosing PC, that we shouldn't search for line
2959 number info, either. However, GAS can emit line number info for
2960 assembly files --- very helpful when debugging hand-written
2961 assembly code. In such a case, we'd have no debug info for the
2962 function, but we would have line info. */
2963
2964 if (notcurrent)
2965 pc -= 1;
2966
2967 /* elz: added this because this function returned the wrong
2968 information if the pc belongs to a stub (import/export)
2969 to call a shlib function. This stub would be anywhere between
2970 two functions in the target, and the line info was erroneously
2971 taken to be the one of the line before the pc. */
2972
2973 /* RT: Further explanation:
2974
2975 * We have stubs (trampolines) inserted between procedures.
2976 *
2977 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2978 * exists in the main image.
2979 *
2980 * In the minimal symbol table, we have a bunch of symbols
2981 * sorted by start address. The stubs are marked as "trampoline",
2982 * the others appear as text. E.g.:
2983 *
2984 * Minimal symbol table for main image
2985 * main: code for main (text symbol)
2986 * shr1: stub (trampoline symbol)
2987 * foo: code for foo (text symbol)
2988 * ...
2989 * Minimal symbol table for "shr1" image:
2990 * ...
2991 * shr1: code for shr1 (text symbol)
2992 * ...
2993 *
2994 * So the code below is trying to detect if we are in the stub
2995 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2996 * and if found, do the symbolization from the real-code address
2997 * rather than the stub address.
2998 *
2999 * Assumptions being made about the minimal symbol table:
3000 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3001 * if we're really in the trampoline.s If we're beyond it (say
3002 * we're in "foo" in the above example), it'll have a closer
3003 * symbol (the "foo" text symbol for example) and will not
3004 * return the trampoline.
3005 * 2. lookup_minimal_symbol_text() will find a real text symbol
3006 * corresponding to the trampoline, and whose address will
3007 * be different than the trampoline address. I put in a sanity
3008 * check for the address being the same, to avoid an
3009 * infinite recursion.
3010 */
3011 msymbol = lookup_minimal_symbol_by_pc (pc);
3012 if (msymbol.minsym != NULL)
3013 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3014 {
3015 struct bound_minimal_symbol mfunsym
3016 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3017 NULL);
3018
3019 if (mfunsym.minsym == NULL)
3020 /* I eliminated this warning since it is coming out
3021 * in the following situation:
3022 * gdb shmain // test program with shared libraries
3023 * (gdb) break shr1 // function in shared lib
3024 * Warning: In stub for ...
3025 * In the above situation, the shared lib is not loaded yet,
3026 * so of course we can't find the real func/line info,
3027 * but the "break" still works, and the warning is annoying.
3028 * So I commented out the warning. RT */
3029 /* warning ("In stub for %s; unable to find real function/line info",
3030 SYMBOL_LINKAGE_NAME (msymbol)); */
3031 ;
3032 /* fall through */
3033 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3034 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3035 /* Avoid infinite recursion */
3036 /* See above comment about why warning is commented out. */
3037 /* warning ("In stub for %s; unable to find real function/line info",
3038 SYMBOL_LINKAGE_NAME (msymbol)); */
3039 ;
3040 /* fall through */
3041 else
3042 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3043 }
3044
3045 symtab_and_line val;
3046 val.pspace = current_program_space;
3047
3048 cust = find_pc_sect_compunit_symtab (pc, section);
3049 if (cust == NULL)
3050 {
3051 /* If no symbol information, return previous pc. */
3052 if (notcurrent)
3053 pc++;
3054 val.pc = pc;
3055 return val;
3056 }
3057
3058 bv = COMPUNIT_BLOCKVECTOR (cust);
3059
3060 /* Look at all the symtabs that share this blockvector.
3061 They all have the same apriori range, that we found was right;
3062 but they have different line tables. */
3063
3064 ALL_COMPUNIT_FILETABS (cust, iter_s)
3065 {
3066 /* Find the best line in this symtab. */
3067 l = SYMTAB_LINETABLE (iter_s);
3068 if (!l)
3069 continue;
3070 len = l->nitems;
3071 if (len <= 0)
3072 {
3073 /* I think len can be zero if the symtab lacks line numbers
3074 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3075 I'm not sure which, and maybe it depends on the symbol
3076 reader). */
3077 continue;
3078 }
3079
3080 prev = NULL;
3081 item = l->item; /* Get first line info. */
3082
3083 /* Is this file's first line closer than the first lines of other files?
3084 If so, record this file, and its first line, as best alternate. */
3085 if (item->pc > pc && (!alt || item->pc < alt->pc))
3086 alt = item;
3087
3088 for (i = 0; i < len; i++, item++)
3089 {
3090 /* Leave prev pointing to the linetable entry for the last line
3091 that started at or before PC. */
3092 if (item->pc > pc)
3093 break;
3094
3095 prev = item;
3096 }
3097
3098 /* At this point, prev points at the line whose start addr is <= pc, and
3099 item points at the next line. If we ran off the end of the linetable
3100 (pc >= start of the last line), then prev == item. If pc < start of
3101 the first line, prev will not be set. */
3102
3103 /* Is this file's best line closer than the best in the other files?
3104 If so, record this file, and its best line, as best so far. Don't
3105 save prev if it represents the end of a function (i.e. line number
3106 0) instead of a real line. */
3107
3108 if (prev && prev->line && (!best || prev->pc > best->pc))
3109 {
3110 best = prev;
3111 best_symtab = iter_s;
3112
3113 /* Discard BEST_END if it's before the PC of the current BEST. */
3114 if (best_end <= best->pc)
3115 best_end = 0;
3116 }
3117
3118 /* If another line (denoted by ITEM) is in the linetable and its
3119 PC is after BEST's PC, but before the current BEST_END, then
3120 use ITEM's PC as the new best_end. */
3121 if (best && i < len && item->pc > best->pc
3122 && (best_end == 0 || best_end > item->pc))
3123 best_end = item->pc;
3124 }
3125
3126 if (!best_symtab)
3127 {
3128 /* If we didn't find any line number info, just return zeros.
3129 We used to return alt->line - 1 here, but that could be
3130 anywhere; if we don't have line number info for this PC,
3131 don't make some up. */
3132 val.pc = pc;
3133 }
3134 else if (best->line == 0)
3135 {
3136 /* If our best fit is in a range of PC's for which no line
3137 number info is available (line number is zero) then we didn't
3138 find any valid line information. */
3139 val.pc = pc;
3140 }
3141 else
3142 {
3143 val.symtab = best_symtab;
3144 val.line = best->line;
3145 val.pc = best->pc;
3146 if (best_end && (!alt || best_end < alt->pc))
3147 val.end = best_end;
3148 else if (alt)
3149 val.end = alt->pc;
3150 else
3151 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3152 }
3153 val.section = section;
3154 return val;
3155 }
3156
3157 /* Backward compatibility (no section). */
3158
3159 struct symtab_and_line
3160 find_pc_line (CORE_ADDR pc, int notcurrent)
3161 {
3162 struct obj_section *section;
3163
3164 section = find_pc_overlay (pc);
3165 if (pc_in_unmapped_range (pc, section))
3166 pc = overlay_mapped_address (pc, section);
3167 return find_pc_sect_line (pc, section, notcurrent);
3168 }
3169
3170 /* See symtab.h. */
3171
3172 struct symtab *
3173 find_pc_line_symtab (CORE_ADDR pc)
3174 {
3175 struct symtab_and_line sal;
3176
3177 /* This always passes zero for NOTCURRENT to find_pc_line.
3178 There are currently no callers that ever pass non-zero. */
3179 sal = find_pc_line (pc, 0);
3180 return sal.symtab;
3181 }
3182 \f
3183 /* Find line number LINE in any symtab whose name is the same as
3184 SYMTAB.
3185
3186 If found, return the symtab that contains the linetable in which it was
3187 found, set *INDEX to the index in the linetable of the best entry
3188 found, and set *EXACT_MATCH nonzero if the value returned is an
3189 exact match.
3190
3191 If not found, return NULL. */
3192
3193 struct symtab *
3194 find_line_symtab (struct symtab *symtab, int line,
3195 int *index, int *exact_match)
3196 {
3197 int exact = 0; /* Initialized here to avoid a compiler warning. */
3198
3199 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3200 so far seen. */
3201
3202 int best_index;
3203 struct linetable *best_linetable;
3204 struct symtab *best_symtab;
3205
3206 /* First try looking it up in the given symtab. */
3207 best_linetable = SYMTAB_LINETABLE (symtab);
3208 best_symtab = symtab;
3209 best_index = find_line_common (best_linetable, line, &exact, 0);
3210 if (best_index < 0 || !exact)
3211 {
3212 /* Didn't find an exact match. So we better keep looking for
3213 another symtab with the same name. In the case of xcoff,
3214 multiple csects for one source file (produced by IBM's FORTRAN
3215 compiler) produce multiple symtabs (this is unavoidable
3216 assuming csects can be at arbitrary places in memory and that
3217 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3218
3219 /* BEST is the smallest linenumber > LINE so far seen,
3220 or 0 if none has been seen so far.
3221 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3222 int best;
3223
3224 struct objfile *objfile;
3225 struct compunit_symtab *cu;
3226 struct symtab *s;
3227
3228 if (best_index >= 0)
3229 best = best_linetable->item[best_index].line;
3230 else
3231 best = 0;
3232
3233 ALL_OBJFILES (objfile)
3234 {
3235 if (objfile->sf)
3236 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3237 symtab_to_fullname (symtab));
3238 }
3239
3240 ALL_FILETABS (objfile, cu, s)
3241 {
3242 struct linetable *l;
3243 int ind;
3244
3245 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3246 continue;
3247 if (FILENAME_CMP (symtab_to_fullname (symtab),
3248 symtab_to_fullname (s)) != 0)
3249 continue;
3250 l = SYMTAB_LINETABLE (s);
3251 ind = find_line_common (l, line, &exact, 0);
3252 if (ind >= 0)
3253 {
3254 if (exact)
3255 {
3256 best_index = ind;
3257 best_linetable = l;
3258 best_symtab = s;
3259 goto done;
3260 }
3261 if (best == 0 || l->item[ind].line < best)
3262 {
3263 best = l->item[ind].line;
3264 best_index = ind;
3265 best_linetable = l;
3266 best_symtab = s;
3267 }
3268 }
3269 }
3270 }
3271 done:
3272 if (best_index < 0)
3273 return NULL;
3274
3275 if (index)
3276 *index = best_index;
3277 if (exact_match)
3278 *exact_match = exact;
3279
3280 return best_symtab;
3281 }
3282
3283 /* Given SYMTAB, returns all the PCs function in the symtab that
3284 exactly match LINE. Returns an empty vector if there are no exact
3285 matches, but updates BEST_ITEM in this case. */
3286
3287 std::vector<CORE_ADDR>
3288 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3289 struct linetable_entry **best_item)
3290 {
3291 int start = 0;
3292 std::vector<CORE_ADDR> result;
3293
3294 /* First, collect all the PCs that are at this line. */
3295 while (1)
3296 {
3297 int was_exact;
3298 int idx;
3299
3300 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3301 start);
3302 if (idx < 0)
3303 break;
3304
3305 if (!was_exact)
3306 {
3307 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3308
3309 if (*best_item == NULL || item->line < (*best_item)->line)
3310 *best_item = item;
3311
3312 break;
3313 }
3314
3315 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3316 start = idx + 1;
3317 }
3318
3319 return result;
3320 }
3321
3322 \f
3323 /* Set the PC value for a given source file and line number and return true.
3324 Returns zero for invalid line number (and sets the PC to 0).
3325 The source file is specified with a struct symtab. */
3326
3327 int
3328 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3329 {
3330 struct linetable *l;
3331 int ind;
3332
3333 *pc = 0;
3334 if (symtab == 0)
3335 return 0;
3336
3337 symtab = find_line_symtab (symtab, line, &ind, NULL);
3338 if (symtab != NULL)
3339 {
3340 l = SYMTAB_LINETABLE (symtab);
3341 *pc = l->item[ind].pc;
3342 return 1;
3343 }
3344 else
3345 return 0;
3346 }
3347
3348 /* Find the range of pc values in a line.
3349 Store the starting pc of the line into *STARTPTR
3350 and the ending pc (start of next line) into *ENDPTR.
3351 Returns 1 to indicate success.
3352 Returns 0 if could not find the specified line. */
3353
3354 int
3355 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3356 CORE_ADDR *endptr)
3357 {
3358 CORE_ADDR startaddr;
3359 struct symtab_and_line found_sal;
3360
3361 startaddr = sal.pc;
3362 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3363 return 0;
3364
3365 /* This whole function is based on address. For example, if line 10 has
3366 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3367 "info line *0x123" should say the line goes from 0x100 to 0x200
3368 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3369 This also insures that we never give a range like "starts at 0x134
3370 and ends at 0x12c". */
3371
3372 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3373 if (found_sal.line != sal.line)
3374 {
3375 /* The specified line (sal) has zero bytes. */
3376 *startptr = found_sal.pc;
3377 *endptr = found_sal.pc;
3378 }
3379 else
3380 {
3381 *startptr = found_sal.pc;
3382 *endptr = found_sal.end;
3383 }
3384 return 1;
3385 }
3386
3387 /* Given a line table and a line number, return the index into the line
3388 table for the pc of the nearest line whose number is >= the specified one.
3389 Return -1 if none is found. The value is >= 0 if it is an index.
3390 START is the index at which to start searching the line table.
3391
3392 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3393
3394 static int
3395 find_line_common (struct linetable *l, int lineno,
3396 int *exact_match, int start)
3397 {
3398 int i;
3399 int len;
3400
3401 /* BEST is the smallest linenumber > LINENO so far seen,
3402 or 0 if none has been seen so far.
3403 BEST_INDEX identifies the item for it. */
3404
3405 int best_index = -1;
3406 int best = 0;
3407
3408 *exact_match = 0;
3409
3410 if (lineno <= 0)
3411 return -1;
3412 if (l == 0)
3413 return -1;
3414
3415 len = l->nitems;
3416 for (i = start; i < len; i++)
3417 {
3418 struct linetable_entry *item = &(l->item[i]);
3419
3420 if (item->line == lineno)
3421 {
3422 /* Return the first (lowest address) entry which matches. */
3423 *exact_match = 1;
3424 return i;
3425 }
3426
3427 if (item->line > lineno && (best == 0 || item->line < best))
3428 {
3429 best = item->line;
3430 best_index = i;
3431 }
3432 }
3433
3434 /* If we got here, we didn't get an exact match. */
3435 return best_index;
3436 }
3437
3438 int
3439 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3440 {
3441 struct symtab_and_line sal;
3442
3443 sal = find_pc_line (pc, 0);
3444 *startptr = sal.pc;
3445 *endptr = sal.end;
3446 return sal.symtab != 0;
3447 }
3448
3449 /* Given a function symbol SYM, find the symtab and line for the start
3450 of the function.
3451 If the argument FUNFIRSTLINE is nonzero, we want the first line
3452 of real code inside the function.
3453 This function should return SALs matching those from minsym_found,
3454 otherwise false multiple-locations breakpoints could be placed. */
3455
3456 struct symtab_and_line
3457 find_function_start_sal (struct symbol *sym, int funfirstline)
3458 {
3459 fixup_symbol_section (sym, NULL);
3460
3461 obj_section *section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3462 symtab_and_line sal
3463 = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3464 sal.symbol = sym;
3465
3466 if (funfirstline && sal.symtab != NULL
3467 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3468 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3469 {
3470 struct gdbarch *gdbarch = symbol_arch (sym);
3471
3472 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3473 if (gdbarch_skip_entrypoint_p (gdbarch))
3474 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3475 return sal;
3476 }
3477
3478 /* We always should have a line for the function start address.
3479 If we don't, something is odd. Create a plain SAL refering
3480 just the PC and hope that skip_prologue_sal (if requested)
3481 can find a line number for after the prologue. */
3482 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3483 {
3484 sal = {};
3485 sal.pspace = current_program_space;
3486 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3487 sal.section = section;
3488 sal.symbol = sym;
3489 }
3490
3491 if (funfirstline)
3492 skip_prologue_sal (&sal);
3493
3494 return sal;
3495 }
3496
3497 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3498 address for that function that has an entry in SYMTAB's line info
3499 table. If such an entry cannot be found, return FUNC_ADDR
3500 unaltered. */
3501
3502 static CORE_ADDR
3503 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3504 {
3505 CORE_ADDR func_start, func_end;
3506 struct linetable *l;
3507 int i;
3508
3509 /* Give up if this symbol has no lineinfo table. */
3510 l = SYMTAB_LINETABLE (symtab);
3511 if (l == NULL)
3512 return func_addr;
3513
3514 /* Get the range for the function's PC values, or give up if we
3515 cannot, for some reason. */
3516 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3517 return func_addr;
3518
3519 /* Linetable entries are ordered by PC values, see the commentary in
3520 symtab.h where `struct linetable' is defined. Thus, the first
3521 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3522 address we are looking for. */
3523 for (i = 0; i < l->nitems; i++)
3524 {
3525 struct linetable_entry *item = &(l->item[i]);
3526
3527 /* Don't use line numbers of zero, they mark special entries in
3528 the table. See the commentary on symtab.h before the
3529 definition of struct linetable. */
3530 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3531 return item->pc;
3532 }
3533
3534 return func_addr;
3535 }
3536
3537 /* Adjust SAL to the first instruction past the function prologue.
3538 If the PC was explicitly specified, the SAL is not changed.
3539 If the line number was explicitly specified, at most the SAL's PC
3540 is updated. If SAL is already past the prologue, then do nothing. */
3541
3542 void
3543 skip_prologue_sal (struct symtab_and_line *sal)
3544 {
3545 struct symbol *sym;
3546 struct symtab_and_line start_sal;
3547 CORE_ADDR pc, saved_pc;
3548 struct obj_section *section;
3549 const char *name;
3550 struct objfile *objfile;
3551 struct gdbarch *gdbarch;
3552 const struct block *b, *function_block;
3553 int force_skip, skip;
3554
3555 /* Do not change the SAL if PC was specified explicitly. */
3556 if (sal->explicit_pc)
3557 return;
3558
3559 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3560
3561 switch_to_program_space_and_thread (sal->pspace);
3562
3563 sym = find_pc_sect_function (sal->pc, sal->section);
3564 if (sym != NULL)
3565 {
3566 fixup_symbol_section (sym, NULL);
3567
3568 objfile = symbol_objfile (sym);
3569 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3570 section = SYMBOL_OBJ_SECTION (objfile, sym);
3571 name = SYMBOL_LINKAGE_NAME (sym);
3572 }
3573 else
3574 {
3575 struct bound_minimal_symbol msymbol
3576 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3577
3578 if (msymbol.minsym == NULL)
3579 return;
3580
3581 objfile = msymbol.objfile;
3582 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3583 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3584 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3585 }
3586
3587 gdbarch = get_objfile_arch (objfile);
3588
3589 /* Process the prologue in two passes. In the first pass try to skip the
3590 prologue (SKIP is true) and verify there is a real need for it (indicated
3591 by FORCE_SKIP). If no such reason was found run a second pass where the
3592 prologue is not skipped (SKIP is false). */
3593
3594 skip = 1;
3595 force_skip = 1;
3596
3597 /* Be conservative - allow direct PC (without skipping prologue) only if we
3598 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3599 have to be set by the caller so we use SYM instead. */
3600 if (sym != NULL
3601 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3602 force_skip = 0;
3603
3604 saved_pc = pc;
3605 do
3606 {
3607 pc = saved_pc;
3608
3609 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3610 so that gdbarch_skip_prologue has something unique to work on. */
3611 if (section_is_overlay (section) && !section_is_mapped (section))
3612 pc = overlay_unmapped_address (pc, section);
3613
3614 /* Skip "first line" of function (which is actually its prologue). */
3615 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3616 if (gdbarch_skip_entrypoint_p (gdbarch))
3617 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3618 if (skip)
3619 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3620
3621 /* For overlays, map pc back into its mapped VMA range. */
3622 pc = overlay_mapped_address (pc, section);
3623
3624 /* Calculate line number. */
3625 start_sal = find_pc_sect_line (pc, section, 0);
3626
3627 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3628 line is still part of the same function. */
3629 if (skip && start_sal.pc != pc
3630 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3631 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3632 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3633 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3634 {
3635 /* First pc of next line */
3636 pc = start_sal.end;
3637 /* Recalculate the line number (might not be N+1). */
3638 start_sal = find_pc_sect_line (pc, section, 0);
3639 }
3640
3641 /* On targets with executable formats that don't have a concept of
3642 constructors (ELF with .init has, PE doesn't), gcc emits a call
3643 to `__main' in `main' between the prologue and before user
3644 code. */
3645 if (gdbarch_skip_main_prologue_p (gdbarch)
3646 && name && strcmp_iw (name, "main") == 0)
3647 {
3648 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3649 /* Recalculate the line number (might not be N+1). */
3650 start_sal = find_pc_sect_line (pc, section, 0);
3651 force_skip = 1;
3652 }
3653 }
3654 while (!force_skip && skip--);
3655
3656 /* If we still don't have a valid source line, try to find the first
3657 PC in the lineinfo table that belongs to the same function. This
3658 happens with COFF debug info, which does not seem to have an
3659 entry in lineinfo table for the code after the prologue which has
3660 no direct relation to source. For example, this was found to be
3661 the case with the DJGPP target using "gcc -gcoff" when the
3662 compiler inserted code after the prologue to make sure the stack
3663 is aligned. */
3664 if (!force_skip && sym && start_sal.symtab == NULL)
3665 {
3666 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3667 /* Recalculate the line number. */
3668 start_sal = find_pc_sect_line (pc, section, 0);
3669 }
3670
3671 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3672 forward SAL to the end of the prologue. */
3673 if (sal->pc >= pc)
3674 return;
3675
3676 sal->pc = pc;
3677 sal->section = section;
3678
3679 /* Unless the explicit_line flag was set, update the SAL line
3680 and symtab to correspond to the modified PC location. */
3681 if (sal->explicit_line)
3682 return;
3683
3684 sal->symtab = start_sal.symtab;
3685 sal->line = start_sal.line;
3686 sal->end = start_sal.end;
3687
3688 /* Check if we are now inside an inlined function. If we can,
3689 use the call site of the function instead. */
3690 b = block_for_pc_sect (sal->pc, sal->section);
3691 function_block = NULL;
3692 while (b != NULL)
3693 {
3694 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3695 function_block = b;
3696 else if (BLOCK_FUNCTION (b) != NULL)
3697 break;
3698 b = BLOCK_SUPERBLOCK (b);
3699 }
3700 if (function_block != NULL
3701 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3702 {
3703 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3704 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3705 }
3706 }
3707
3708 /* Given PC at the function's start address, attempt to find the
3709 prologue end using SAL information. Return zero if the skip fails.
3710
3711 A non-optimized prologue traditionally has one SAL for the function
3712 and a second for the function body. A single line function has
3713 them both pointing at the same line.
3714
3715 An optimized prologue is similar but the prologue may contain
3716 instructions (SALs) from the instruction body. Need to skip those
3717 while not getting into the function body.
3718
3719 The functions end point and an increasing SAL line are used as
3720 indicators of the prologue's endpoint.
3721
3722 This code is based on the function refine_prologue_limit
3723 (found in ia64). */
3724
3725 CORE_ADDR
3726 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3727 {
3728 struct symtab_and_line prologue_sal;
3729 CORE_ADDR start_pc;
3730 CORE_ADDR end_pc;
3731 const struct block *bl;
3732
3733 /* Get an initial range for the function. */
3734 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3735 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3736
3737 prologue_sal = find_pc_line (start_pc, 0);
3738 if (prologue_sal.line != 0)
3739 {
3740 /* For languages other than assembly, treat two consecutive line
3741 entries at the same address as a zero-instruction prologue.
3742 The GNU assembler emits separate line notes for each instruction
3743 in a multi-instruction macro, but compilers generally will not
3744 do this. */
3745 if (prologue_sal.symtab->language != language_asm)
3746 {
3747 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3748 int idx = 0;
3749
3750 /* Skip any earlier lines, and any end-of-sequence marker
3751 from a previous function. */
3752 while (linetable->item[idx].pc != prologue_sal.pc
3753 || linetable->item[idx].line == 0)
3754 idx++;
3755
3756 if (idx+1 < linetable->nitems
3757 && linetable->item[idx+1].line != 0
3758 && linetable->item[idx+1].pc == start_pc)
3759 return start_pc;
3760 }
3761
3762 /* If there is only one sal that covers the entire function,
3763 then it is probably a single line function, like
3764 "foo(){}". */
3765 if (prologue_sal.end >= end_pc)
3766 return 0;
3767
3768 while (prologue_sal.end < end_pc)
3769 {
3770 struct symtab_and_line sal;
3771
3772 sal = find_pc_line (prologue_sal.end, 0);
3773 if (sal.line == 0)
3774 break;
3775 /* Assume that a consecutive SAL for the same (or larger)
3776 line mark the prologue -> body transition. */
3777 if (sal.line >= prologue_sal.line)
3778 break;
3779 /* Likewise if we are in a different symtab altogether
3780 (e.g. within a file included via #include).  */
3781 if (sal.symtab != prologue_sal.symtab)
3782 break;
3783
3784 /* The line number is smaller. Check that it's from the
3785 same function, not something inlined. If it's inlined,
3786 then there is no point comparing the line numbers. */
3787 bl = block_for_pc (prologue_sal.end);
3788 while (bl)
3789 {
3790 if (block_inlined_p (bl))
3791 break;
3792 if (BLOCK_FUNCTION (bl))
3793 {
3794 bl = NULL;
3795 break;
3796 }
3797 bl = BLOCK_SUPERBLOCK (bl);
3798 }
3799 if (bl != NULL)
3800 break;
3801
3802 /* The case in which compiler's optimizer/scheduler has
3803 moved instructions into the prologue. We look ahead in
3804 the function looking for address ranges whose
3805 corresponding line number is less the first one that we
3806 found for the function. This is more conservative then
3807 refine_prologue_limit which scans a large number of SALs
3808 looking for any in the prologue. */
3809 prologue_sal = sal;
3810 }
3811 }
3812
3813 if (prologue_sal.end < end_pc)
3814 /* Return the end of this line, or zero if we could not find a
3815 line. */
3816 return prologue_sal.end;
3817 else
3818 /* Don't return END_PC, which is past the end of the function. */
3819 return prologue_sal.pc;
3820 }
3821
3822 /* See symtab.h. */
3823
3824 symbol *
3825 find_function_alias_target (bound_minimal_symbol msymbol)
3826 {
3827 if (!msymbol_is_text (msymbol.minsym))
3828 return NULL;
3829
3830 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
3831 symbol *sym = find_pc_function (addr);
3832 if (sym != NULL
3833 && SYMBOL_CLASS (sym) == LOC_BLOCK
3834 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == addr)
3835 return sym;
3836
3837 return NULL;
3838 }
3839
3840 \f
3841 /* If P is of the form "operator[ \t]+..." where `...' is
3842 some legitimate operator text, return a pointer to the
3843 beginning of the substring of the operator text.
3844 Otherwise, return "". */
3845
3846 static const char *
3847 operator_chars (const char *p, const char **end)
3848 {
3849 *end = "";
3850 if (!startswith (p, CP_OPERATOR_STR))
3851 return *end;
3852 p += CP_OPERATOR_LEN;
3853
3854 /* Don't get faked out by `operator' being part of a longer
3855 identifier. */
3856 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3857 return *end;
3858
3859 /* Allow some whitespace between `operator' and the operator symbol. */
3860 while (*p == ' ' || *p == '\t')
3861 p++;
3862
3863 /* Recognize 'operator TYPENAME'. */
3864
3865 if (isalpha (*p) || *p == '_' || *p == '$')
3866 {
3867 const char *q = p + 1;
3868
3869 while (isalnum (*q) || *q == '_' || *q == '$')
3870 q++;
3871 *end = q;
3872 return p;
3873 }
3874
3875 while (*p)
3876 switch (*p)
3877 {
3878 case '\\': /* regexp quoting */
3879 if (p[1] == '*')
3880 {
3881 if (p[2] == '=') /* 'operator\*=' */
3882 *end = p + 3;
3883 else /* 'operator\*' */
3884 *end = p + 2;
3885 return p;
3886 }
3887 else if (p[1] == '[')
3888 {
3889 if (p[2] == ']')
3890 error (_("mismatched quoting on brackets, "
3891 "try 'operator\\[\\]'"));
3892 else if (p[2] == '\\' && p[3] == ']')
3893 {
3894 *end = p + 4; /* 'operator\[\]' */
3895 return p;
3896 }
3897 else
3898 error (_("nothing is allowed between '[' and ']'"));
3899 }
3900 else
3901 {
3902 /* Gratuitous qoute: skip it and move on. */
3903 p++;
3904 continue;
3905 }
3906 break;
3907 case '!':
3908 case '=':
3909 case '*':
3910 case '/':
3911 case '%':
3912 case '^':
3913 if (p[1] == '=')
3914 *end = p + 2;
3915 else
3916 *end = p + 1;
3917 return p;
3918 case '<':
3919 case '>':
3920 case '+':
3921 case '-':
3922 case '&':
3923 case '|':
3924 if (p[0] == '-' && p[1] == '>')
3925 {
3926 /* Struct pointer member operator 'operator->'. */
3927 if (p[2] == '*')
3928 {
3929 *end = p + 3; /* 'operator->*' */
3930 return p;
3931 }
3932 else if (p[2] == '\\')
3933 {
3934 *end = p + 4; /* Hopefully 'operator->\*' */
3935 return p;
3936 }
3937 else
3938 {
3939 *end = p + 2; /* 'operator->' */
3940 return p;
3941 }
3942 }
3943 if (p[1] == '=' || p[1] == p[0])
3944 *end = p + 2;
3945 else
3946 *end = p + 1;
3947 return p;
3948 case '~':
3949 case ',':
3950 *end = p + 1;
3951 return p;
3952 case '(':
3953 if (p[1] != ')')
3954 error (_("`operator ()' must be specified "
3955 "without whitespace in `()'"));
3956 *end = p + 2;
3957 return p;
3958 case '?':
3959 if (p[1] != ':')
3960 error (_("`operator ?:' must be specified "
3961 "without whitespace in `?:'"));
3962 *end = p + 2;
3963 return p;
3964 case '[':
3965 if (p[1] != ']')
3966 error (_("`operator []' must be specified "
3967 "without whitespace in `[]'"));
3968 *end = p + 2;
3969 return p;
3970 default:
3971 error (_("`operator %s' not supported"), p);
3972 break;
3973 }
3974
3975 *end = "";
3976 return *end;
3977 }
3978 \f
3979
3980 /* Data structure to maintain printing state for output_source_filename. */
3981
3982 struct output_source_filename_data
3983 {
3984 /* Cache of what we've seen so far. */
3985 struct filename_seen_cache *filename_seen_cache;
3986
3987 /* Flag of whether we're printing the first one. */
3988 int first;
3989 };
3990
3991 /* Slave routine for sources_info. Force line breaks at ,'s.
3992 NAME is the name to print.
3993 DATA contains the state for printing and watching for duplicates. */
3994
3995 static void
3996 output_source_filename (const char *name,
3997 struct output_source_filename_data *data)
3998 {
3999 /* Since a single source file can result in several partial symbol
4000 tables, we need to avoid printing it more than once. Note: if
4001 some of the psymtabs are read in and some are not, it gets
4002 printed both under "Source files for which symbols have been
4003 read" and "Source files for which symbols will be read in on
4004 demand". I consider this a reasonable way to deal with the
4005 situation. I'm not sure whether this can also happen for
4006 symtabs; it doesn't hurt to check. */
4007
4008 /* Was NAME already seen? */
4009 if (data->filename_seen_cache->seen (name))
4010 {
4011 /* Yes; don't print it again. */
4012 return;
4013 }
4014
4015 /* No; print it and reset *FIRST. */
4016 if (! data->first)
4017 printf_filtered (", ");
4018 data->first = 0;
4019
4020 wrap_here ("");
4021 fputs_filtered (name, gdb_stdout);
4022 }
4023
4024 /* A callback for map_partial_symbol_filenames. */
4025
4026 static void
4027 output_partial_symbol_filename (const char *filename, const char *fullname,
4028 void *data)
4029 {
4030 output_source_filename (fullname ? fullname : filename,
4031 (struct output_source_filename_data *) data);
4032 }
4033
4034 static void
4035 info_sources_command (char *ignore, int from_tty)
4036 {
4037 struct compunit_symtab *cu;
4038 struct symtab *s;
4039 struct objfile *objfile;
4040 struct output_source_filename_data data;
4041
4042 if (!have_full_symbols () && !have_partial_symbols ())
4043 {
4044 error (_("No symbol table is loaded. Use the \"file\" command."));
4045 }
4046
4047 filename_seen_cache filenames_seen;
4048
4049 data.filename_seen_cache = &filenames_seen;
4050
4051 printf_filtered ("Source files for which symbols have been read in:\n\n");
4052
4053 data.first = 1;
4054 ALL_FILETABS (objfile, cu, s)
4055 {
4056 const char *fullname = symtab_to_fullname (s);
4057
4058 output_source_filename (fullname, &data);
4059 }
4060 printf_filtered ("\n\n");
4061
4062 printf_filtered ("Source files for which symbols "
4063 "will be read in on demand:\n\n");
4064
4065 filenames_seen.clear ();
4066 data.first = 1;
4067 map_symbol_filenames (output_partial_symbol_filename, &data,
4068 1 /*need_fullname*/);
4069 printf_filtered ("\n");
4070 }
4071
4072 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4073 non-zero compare only lbasename of FILES. */
4074
4075 static int
4076 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4077 {
4078 int i;
4079
4080 if (file != NULL && nfiles != 0)
4081 {
4082 for (i = 0; i < nfiles; i++)
4083 {
4084 if (compare_filenames_for_search (file, (basenames
4085 ? lbasename (files[i])
4086 : files[i])))
4087 return 1;
4088 }
4089 }
4090 else if (nfiles == 0)
4091 return 1;
4092 return 0;
4093 }
4094
4095 /* Free any memory associated with a search. */
4096
4097 void
4098 free_search_symbols (struct symbol_search *symbols)
4099 {
4100 struct symbol_search *p;
4101 struct symbol_search *next;
4102
4103 for (p = symbols; p != NULL; p = next)
4104 {
4105 next = p->next;
4106 xfree (p);
4107 }
4108 }
4109
4110 static void
4111 do_free_search_symbols_cleanup (void *symbolsp)
4112 {
4113 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4114
4115 free_search_symbols (symbols);
4116 }
4117
4118 struct cleanup *
4119 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4120 {
4121 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4122 }
4123
4124 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4125 sort symbols, not minimal symbols. */
4126
4127 static int
4128 compare_search_syms (const void *sa, const void *sb)
4129 {
4130 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4131 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4132 int c;
4133
4134 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4135 symbol_symtab (sym_b->symbol)->filename);
4136 if (c != 0)
4137 return c;
4138
4139 if (sym_a->block != sym_b->block)
4140 return sym_a->block - sym_b->block;
4141
4142 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4143 SYMBOL_PRINT_NAME (sym_b->symbol));
4144 }
4145
4146 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4147 The duplicates are freed, and the new list is returned in
4148 *NEW_HEAD, *NEW_TAIL. */
4149
4150 static void
4151 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4152 struct symbol_search **new_head,
4153 struct symbol_search **new_tail)
4154 {
4155 struct symbol_search **symbols, *symp;
4156 int i, j, nunique;
4157
4158 gdb_assert (found != NULL && nfound > 0);
4159
4160 /* Build an array out of the list so we can easily sort them. */
4161 symbols = XNEWVEC (struct symbol_search *, nfound);
4162
4163 symp = found;
4164 for (i = 0; i < nfound; i++)
4165 {
4166 gdb_assert (symp != NULL);
4167 gdb_assert (symp->block >= 0 && symp->block <= 1);
4168 symbols[i] = symp;
4169 symp = symp->next;
4170 }
4171 gdb_assert (symp == NULL);
4172
4173 qsort (symbols, nfound, sizeof (struct symbol_search *),
4174 compare_search_syms);
4175
4176 /* Collapse out the dups. */
4177 for (i = 1, j = 1; i < nfound; ++i)
4178 {
4179 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4180 symbols[j++] = symbols[i];
4181 else
4182 xfree (symbols[i]);
4183 }
4184 nunique = j;
4185 symbols[j - 1]->next = NULL;
4186
4187 /* Rebuild the linked list. */
4188 for (i = 0; i < nunique - 1; i++)
4189 symbols[i]->next = symbols[i + 1];
4190 symbols[nunique - 1]->next = NULL;
4191
4192 *new_head = symbols[0];
4193 *new_tail = symbols[nunique - 1];
4194 xfree (symbols);
4195 }
4196
4197 /* Search the symbol table for matches to the regular expression REGEXP,
4198 returning the results in *MATCHES.
4199
4200 Only symbols of KIND are searched:
4201 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4202 and constants (enums)
4203 FUNCTIONS_DOMAIN - search all functions
4204 TYPES_DOMAIN - search all type names
4205 ALL_DOMAIN - an internal error for this function
4206
4207 free_search_symbols should be called when *MATCHES is no longer needed.
4208
4209 Within each file the results are sorted locally; each symtab's global and
4210 static blocks are separately alphabetized.
4211 Duplicate entries are removed. */
4212
4213 void
4214 search_symbols (const char *regexp, enum search_domain kind,
4215 int nfiles, const char *files[],
4216 struct symbol_search **matches)
4217 {
4218 struct compunit_symtab *cust;
4219 const struct blockvector *bv;
4220 struct block *b;
4221 int i = 0;
4222 struct block_iterator iter;
4223 struct symbol *sym;
4224 struct objfile *objfile;
4225 struct minimal_symbol *msymbol;
4226 int found_misc = 0;
4227 static const enum minimal_symbol_type types[]
4228 = {mst_data, mst_text, mst_abs};
4229 static const enum minimal_symbol_type types2[]
4230 = {mst_bss, mst_file_text, mst_abs};
4231 static const enum minimal_symbol_type types3[]
4232 = {mst_file_data, mst_solib_trampoline, mst_abs};
4233 static const enum minimal_symbol_type types4[]
4234 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4235 enum minimal_symbol_type ourtype;
4236 enum minimal_symbol_type ourtype2;
4237 enum minimal_symbol_type ourtype3;
4238 enum minimal_symbol_type ourtype4;
4239 struct symbol_search *found;
4240 struct symbol_search *tail;
4241 int nfound;
4242 gdb::optional<compiled_regex> preg;
4243
4244 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4245 CLEANUP_CHAIN is freed only in the case of an error. */
4246 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4247 struct cleanup *retval_chain;
4248
4249 gdb_assert (kind <= TYPES_DOMAIN);
4250
4251 ourtype = types[kind];
4252 ourtype2 = types2[kind];
4253 ourtype3 = types3[kind];
4254 ourtype4 = types4[kind];
4255
4256 *matches = NULL;
4257
4258 if (regexp != NULL)
4259 {
4260 /* Make sure spacing is right for C++ operators.
4261 This is just a courtesy to make the matching less sensitive
4262 to how many spaces the user leaves between 'operator'
4263 and <TYPENAME> or <OPERATOR>. */
4264 const char *opend;
4265 const char *opname = operator_chars (regexp, &opend);
4266 int errcode;
4267
4268 if (*opname)
4269 {
4270 int fix = -1; /* -1 means ok; otherwise number of
4271 spaces needed. */
4272
4273 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4274 {
4275 /* There should 1 space between 'operator' and 'TYPENAME'. */
4276 if (opname[-1] != ' ' || opname[-2] == ' ')
4277 fix = 1;
4278 }
4279 else
4280 {
4281 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4282 if (opname[-1] == ' ')
4283 fix = 0;
4284 }
4285 /* If wrong number of spaces, fix it. */
4286 if (fix >= 0)
4287 {
4288 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4289
4290 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4291 regexp = tmp;
4292 }
4293 }
4294
4295 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4296 ? REG_ICASE : 0);
4297 preg.emplace (regexp, cflags, _("Invalid regexp"));
4298 }
4299
4300 /* Search through the partial symtabs *first* for all symbols
4301 matching the regexp. That way we don't have to reproduce all of
4302 the machinery below. */
4303 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4304 {
4305 return file_matches (filename, files, nfiles,
4306 basenames);
4307 },
4308 [&] (const char *symname)
4309 {
4310 return (!preg || preg->exec (symname,
4311 0, NULL, 0) == 0);
4312 },
4313 NULL,
4314 kind);
4315
4316 /* Here, we search through the minimal symbol tables for functions
4317 and variables that match, and force their symbols to be read.
4318 This is in particular necessary for demangled variable names,
4319 which are no longer put into the partial symbol tables.
4320 The symbol will then be found during the scan of symtabs below.
4321
4322 For functions, find_pc_symtab should succeed if we have debug info
4323 for the function, for variables we have to call
4324 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4325 has debug info.
4326 If the lookup fails, set found_misc so that we will rescan to print
4327 any matching symbols without debug info.
4328 We only search the objfile the msymbol came from, we no longer search
4329 all objfiles. In large programs (1000s of shared libs) searching all
4330 objfiles is not worth the pain. */
4331
4332 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4333 {
4334 ALL_MSYMBOLS (objfile, msymbol)
4335 {
4336 QUIT;
4337
4338 if (msymbol->created_by_gdb)
4339 continue;
4340
4341 if (MSYMBOL_TYPE (msymbol) == ourtype
4342 || MSYMBOL_TYPE (msymbol) == ourtype2
4343 || MSYMBOL_TYPE (msymbol) == ourtype3
4344 || MSYMBOL_TYPE (msymbol) == ourtype4)
4345 {
4346 if (!preg
4347 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4348 NULL, 0) == 0)
4349 {
4350 /* Note: An important side-effect of these lookup functions
4351 is to expand the symbol table if msymbol is found, for the
4352 benefit of the next loop on ALL_COMPUNITS. */
4353 if (kind == FUNCTIONS_DOMAIN
4354 ? (find_pc_compunit_symtab
4355 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4356 : (lookup_symbol_in_objfile_from_linkage_name
4357 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4358 .symbol == NULL))
4359 found_misc = 1;
4360 }
4361 }
4362 }
4363 }
4364
4365 found = NULL;
4366 tail = NULL;
4367 nfound = 0;
4368 retval_chain = make_cleanup_free_search_symbols (&found);
4369
4370 ALL_COMPUNITS (objfile, cust)
4371 {
4372 bv = COMPUNIT_BLOCKVECTOR (cust);
4373 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4374 {
4375 b = BLOCKVECTOR_BLOCK (bv, i);
4376 ALL_BLOCK_SYMBOLS (b, iter, sym)
4377 {
4378 struct symtab *real_symtab = symbol_symtab (sym);
4379
4380 QUIT;
4381
4382 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4383 a substring of symtab_to_fullname as it may contain "./" etc. */
4384 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4385 || ((basenames_may_differ
4386 || file_matches (lbasename (real_symtab->filename),
4387 files, nfiles, 1))
4388 && file_matches (symtab_to_fullname (real_symtab),
4389 files, nfiles, 0)))
4390 && ((!preg
4391 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4392 NULL, 0) == 0)
4393 && ((kind == VARIABLES_DOMAIN
4394 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4395 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4396 && SYMBOL_CLASS (sym) != LOC_BLOCK
4397 /* LOC_CONST can be used for more than just enums,
4398 e.g., c++ static const members.
4399 We only want to skip enums here. */
4400 && !(SYMBOL_CLASS (sym) == LOC_CONST
4401 && (TYPE_CODE (SYMBOL_TYPE (sym))
4402 == TYPE_CODE_ENUM)))
4403 || (kind == FUNCTIONS_DOMAIN
4404 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4405 || (kind == TYPES_DOMAIN
4406 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4407 {
4408 /* match */
4409 struct symbol_search *psr = XCNEW (struct symbol_search);
4410
4411 psr->block = i;
4412 psr->symbol = sym;
4413 psr->next = NULL;
4414 if (tail == NULL)
4415 found = psr;
4416 else
4417 tail->next = psr;
4418 tail = psr;
4419 nfound ++;
4420 }
4421 }
4422 }
4423 }
4424
4425 if (found != NULL)
4426 {
4427 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4428 /* Note: nfound is no longer useful beyond this point. */
4429 }
4430
4431 /* If there are no eyes, avoid all contact. I mean, if there are
4432 no debug symbols, then add matching minsyms. */
4433
4434 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4435 {
4436 ALL_MSYMBOLS (objfile, msymbol)
4437 {
4438 QUIT;
4439
4440 if (msymbol->created_by_gdb)
4441 continue;
4442
4443 if (MSYMBOL_TYPE (msymbol) == ourtype
4444 || MSYMBOL_TYPE (msymbol) == ourtype2
4445 || MSYMBOL_TYPE (msymbol) == ourtype3
4446 || MSYMBOL_TYPE (msymbol) == ourtype4)
4447 {
4448 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4449 NULL, 0) == 0)
4450 {
4451 /* For functions we can do a quick check of whether the
4452 symbol might be found via find_pc_symtab. */
4453 if (kind != FUNCTIONS_DOMAIN
4454 || (find_pc_compunit_symtab
4455 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4456 {
4457 if (lookup_symbol_in_objfile_from_linkage_name
4458 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4459 .symbol == NULL)
4460 {
4461 /* match */
4462 struct symbol_search *psr = XNEW (struct symbol_search);
4463 psr->block = i;
4464 psr->msymbol.minsym = msymbol;
4465 psr->msymbol.objfile = objfile;
4466 psr->symbol = NULL;
4467 psr->next = NULL;
4468 if (tail == NULL)
4469 found = psr;
4470 else
4471 tail->next = psr;
4472 tail = psr;
4473 }
4474 }
4475 }
4476 }
4477 }
4478 }
4479
4480 discard_cleanups (retval_chain);
4481 do_cleanups (old_chain);
4482 *matches = found;
4483 }
4484
4485 /* Helper function for symtab_symbol_info, this function uses
4486 the data returned from search_symbols() to print information
4487 regarding the match to gdb_stdout. */
4488
4489 static void
4490 print_symbol_info (enum search_domain kind,
4491 struct symbol *sym,
4492 int block, const char *last)
4493 {
4494 struct symtab *s = symbol_symtab (sym);
4495 const char *s_filename = symtab_to_filename_for_display (s);
4496
4497 if (last == NULL || filename_cmp (last, s_filename) != 0)
4498 {
4499 fputs_filtered ("\nFile ", gdb_stdout);
4500 fputs_filtered (s_filename, gdb_stdout);
4501 fputs_filtered (":\n", gdb_stdout);
4502 }
4503
4504 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4505 printf_filtered ("static ");
4506
4507 /* Typedef that is not a C++ class. */
4508 if (kind == TYPES_DOMAIN
4509 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4510 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4511 /* variable, func, or typedef-that-is-c++-class. */
4512 else if (kind < TYPES_DOMAIN
4513 || (kind == TYPES_DOMAIN
4514 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4515 {
4516 type_print (SYMBOL_TYPE (sym),
4517 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4518 ? "" : SYMBOL_PRINT_NAME (sym)),
4519 gdb_stdout, 0);
4520
4521 printf_filtered (";\n");
4522 }
4523 }
4524
4525 /* This help function for symtab_symbol_info() prints information
4526 for non-debugging symbols to gdb_stdout. */
4527
4528 static void
4529 print_msymbol_info (struct bound_minimal_symbol msymbol)
4530 {
4531 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4532 char *tmp;
4533
4534 if (gdbarch_addr_bit (gdbarch) <= 32)
4535 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4536 & (CORE_ADDR) 0xffffffff,
4537 8);
4538 else
4539 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4540 16);
4541 printf_filtered ("%s %s\n",
4542 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4543 }
4544
4545 /* This is the guts of the commands "info functions", "info types", and
4546 "info variables". It calls search_symbols to find all matches and then
4547 print_[m]symbol_info to print out some useful information about the
4548 matches. */
4549
4550 static void
4551 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4552 {
4553 static const char * const classnames[] =
4554 {"variable", "function", "type"};
4555 struct symbol_search *symbols;
4556 struct symbol_search *p;
4557 struct cleanup *old_chain;
4558 const char *last_filename = NULL;
4559 int first = 1;
4560
4561 gdb_assert (kind <= TYPES_DOMAIN);
4562
4563 /* Must make sure that if we're interrupted, symbols gets freed. */
4564 search_symbols (regexp, kind, 0, NULL, &symbols);
4565 old_chain = make_cleanup_free_search_symbols (&symbols);
4566
4567 if (regexp != NULL)
4568 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4569 classnames[kind], regexp);
4570 else
4571 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4572
4573 for (p = symbols; p != NULL; p = p->next)
4574 {
4575 QUIT;
4576
4577 if (p->msymbol.minsym != NULL)
4578 {
4579 if (first)
4580 {
4581 printf_filtered (_("\nNon-debugging symbols:\n"));
4582 first = 0;
4583 }
4584 print_msymbol_info (p->msymbol);
4585 }
4586 else
4587 {
4588 print_symbol_info (kind,
4589 p->symbol,
4590 p->block,
4591 last_filename);
4592 last_filename
4593 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4594 }
4595 }
4596
4597 do_cleanups (old_chain);
4598 }
4599
4600 static void
4601 info_variables_command (char *regexp, int from_tty)
4602 {
4603 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4604 }
4605
4606 static void
4607 info_functions_command (char *regexp, int from_tty)
4608 {
4609 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4610 }
4611
4612
4613 static void
4614 info_types_command (char *regexp, int from_tty)
4615 {
4616 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4617 }
4618
4619 /* Breakpoint all functions matching regular expression. */
4620
4621 void
4622 rbreak_command_wrapper (char *regexp, int from_tty)
4623 {
4624 rbreak_command (regexp, from_tty);
4625 }
4626
4627 /* A cleanup function that calls end_rbreak_breakpoints. */
4628
4629 static void
4630 do_end_rbreak_breakpoints (void *ignore)
4631 {
4632 end_rbreak_breakpoints ();
4633 }
4634
4635 static void
4636 rbreak_command (char *regexp, int from_tty)
4637 {
4638 struct symbol_search *ss;
4639 struct symbol_search *p;
4640 struct cleanup *old_chain;
4641 char *string = NULL;
4642 int len = 0;
4643 const char **files = NULL;
4644 const char *file_name;
4645 int nfiles = 0;
4646
4647 if (regexp)
4648 {
4649 char *colon = strchr (regexp, ':');
4650
4651 if (colon && *(colon + 1) != ':')
4652 {
4653 int colon_index;
4654 char *local_name;
4655
4656 colon_index = colon - regexp;
4657 local_name = (char *) alloca (colon_index + 1);
4658 memcpy (local_name, regexp, colon_index);
4659 local_name[colon_index--] = 0;
4660 while (isspace (local_name[colon_index]))
4661 local_name[colon_index--] = 0;
4662 file_name = local_name;
4663 files = &file_name;
4664 nfiles = 1;
4665 regexp = skip_spaces (colon + 1);
4666 }
4667 }
4668
4669 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4670 old_chain = make_cleanup_free_search_symbols (&ss);
4671 make_cleanup (free_current_contents, &string);
4672
4673 start_rbreak_breakpoints ();
4674 make_cleanup (do_end_rbreak_breakpoints, NULL);
4675 for (p = ss; p != NULL; p = p->next)
4676 {
4677 if (p->msymbol.minsym == NULL)
4678 {
4679 struct symtab *symtab = symbol_symtab (p->symbol);
4680 const char *fullname = symtab_to_fullname (symtab);
4681
4682 int newlen = (strlen (fullname)
4683 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4684 + 4);
4685
4686 if (newlen > len)
4687 {
4688 string = (char *) xrealloc (string, newlen);
4689 len = newlen;
4690 }
4691 strcpy (string, fullname);
4692 strcat (string, ":'");
4693 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4694 strcat (string, "'");
4695 break_command (string, from_tty);
4696 print_symbol_info (FUNCTIONS_DOMAIN,
4697 p->symbol,
4698 p->block,
4699 symtab_to_filename_for_display (symtab));
4700 }
4701 else
4702 {
4703 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4704
4705 if (newlen > len)
4706 {
4707 string = (char *) xrealloc (string, newlen);
4708 len = newlen;
4709 }
4710 strcpy (string, "'");
4711 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4712 strcat (string, "'");
4713
4714 break_command (string, from_tty);
4715 printf_filtered ("<function, no debug info> %s;\n",
4716 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4717 }
4718 }
4719
4720 do_cleanups (old_chain);
4721 }
4722 \f
4723
4724 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4725
4726 Either sym_text[sym_text_len] != '(' and then we search for any
4727 symbol starting with SYM_TEXT text.
4728
4729 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4730 be terminated at that point. Partial symbol tables do not have parameters
4731 information. */
4732
4733 static int
4734 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4735 {
4736 int (*ncmp) (const char *, const char *, size_t);
4737
4738 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4739
4740 if (ncmp (name, sym_text, sym_text_len) != 0)
4741 return 0;
4742
4743 if (sym_text[sym_text_len] == '(')
4744 {
4745 /* User searches for `name(someth...'. Require NAME to be terminated.
4746 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4747 present but accept even parameters presence. In this case this
4748 function is in fact strcmp_iw but whitespace skipping is not supported
4749 for tab completion. */
4750
4751 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4752 return 0;
4753 }
4754
4755 return 1;
4756 }
4757
4758 /* Test to see if the symbol specified by SYMNAME (which is already
4759 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4760 characters. If so, add it to the current completion list. */
4761
4762 static void
4763 completion_list_add_name (completion_tracker &tracker,
4764 const char *symname,
4765 const char *sym_text, int sym_text_len,
4766 const char *text, const char *word)
4767 {
4768 /* Clip symbols that cannot match. */
4769 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4770 return;
4771
4772 /* We have a match for a completion, so add SYMNAME to the current list
4773 of matches. Note that the name is moved to freshly malloc'd space. */
4774
4775 {
4776 char *newobj;
4777
4778 if (word == sym_text)
4779 {
4780 newobj = (char *) xmalloc (strlen (symname) + 5);
4781 strcpy (newobj, symname);
4782 }
4783 else if (word > sym_text)
4784 {
4785 /* Return some portion of symname. */
4786 newobj = (char *) xmalloc (strlen (symname) + 5);
4787 strcpy (newobj, symname + (word - sym_text));
4788 }
4789 else
4790 {
4791 /* Return some of SYM_TEXT plus symname. */
4792 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4793 strncpy (newobj, word, sym_text - word);
4794 newobj[sym_text - word] = '\0';
4795 strcat (newobj, symname);
4796 }
4797
4798 gdb::unique_xmalloc_ptr<char> completion (newobj);
4799
4800 tracker.add_completion (std::move (completion));
4801 }
4802 }
4803
4804 /* completion_list_add_name wrapper for struct symbol. */
4805
4806 static void
4807 completion_list_add_symbol (completion_tracker &tracker,
4808 symbol *sym,
4809 const char *sym_text, int sym_text_len,
4810 const char *text, const char *word)
4811 {
4812 completion_list_add_name (tracker, SYMBOL_NATURAL_NAME (sym),
4813 sym_text, sym_text_len, text, word);
4814 }
4815
4816 /* completion_list_add_name wrapper for struct minimal_symbol. */
4817
4818 static void
4819 completion_list_add_msymbol (completion_tracker &tracker,
4820 minimal_symbol *sym,
4821 const char *sym_text, int sym_text_len,
4822 const char *text, const char *word)
4823 {
4824 completion_list_add_name (tracker, MSYMBOL_NATURAL_NAME (sym),
4825 sym_text, sym_text_len, text, word);
4826 }
4827
4828 /* ObjC: In case we are completing on a selector, look as the msymbol
4829 again and feed all the selectors into the mill. */
4830
4831 static void
4832 completion_list_objc_symbol (completion_tracker &tracker,
4833 struct minimal_symbol *msymbol,
4834 const char *sym_text, int sym_text_len,
4835 const char *text, const char *word)
4836 {
4837 static char *tmp = NULL;
4838 static unsigned int tmplen = 0;
4839
4840 const char *method, *category, *selector;
4841 char *tmp2 = NULL;
4842
4843 method = MSYMBOL_NATURAL_NAME (msymbol);
4844
4845 /* Is it a method? */
4846 if ((method[0] != '-') && (method[0] != '+'))
4847 return;
4848
4849 if (sym_text[0] == '[')
4850 /* Complete on shortened method method. */
4851 completion_list_add_name (tracker, method + 1,
4852 sym_text, sym_text_len, text, word);
4853
4854 while ((strlen (method) + 1) >= tmplen)
4855 {
4856 if (tmplen == 0)
4857 tmplen = 1024;
4858 else
4859 tmplen *= 2;
4860 tmp = (char *) xrealloc (tmp, tmplen);
4861 }
4862 selector = strchr (method, ' ');
4863 if (selector != NULL)
4864 selector++;
4865
4866 category = strchr (method, '(');
4867
4868 if ((category != NULL) && (selector != NULL))
4869 {
4870 memcpy (tmp, method, (category - method));
4871 tmp[category - method] = ' ';
4872 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4873 completion_list_add_name (tracker, tmp,
4874 sym_text, sym_text_len, text, word);
4875 if (sym_text[0] == '[')
4876 completion_list_add_name (tracker, tmp + 1,
4877 sym_text, sym_text_len, text, word);
4878 }
4879
4880 if (selector != NULL)
4881 {
4882 /* Complete on selector only. */
4883 strcpy (tmp, selector);
4884 tmp2 = strchr (tmp, ']');
4885 if (tmp2 != NULL)
4886 *tmp2 = '\0';
4887
4888 completion_list_add_name (tracker, tmp,
4889 sym_text, sym_text_len, text, word);
4890 }
4891 }
4892
4893 /* Break the non-quoted text based on the characters which are in
4894 symbols. FIXME: This should probably be language-specific. */
4895
4896 static const char *
4897 language_search_unquoted_string (const char *text, const char *p)
4898 {
4899 for (; p > text; --p)
4900 {
4901 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4902 continue;
4903 else
4904 {
4905 if ((current_language->la_language == language_objc))
4906 {
4907 if (p[-1] == ':') /* Might be part of a method name. */
4908 continue;
4909 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4910 p -= 2; /* Beginning of a method name. */
4911 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4912 { /* Might be part of a method name. */
4913 const char *t = p;
4914
4915 /* Seeing a ' ' or a '(' is not conclusive evidence
4916 that we are in the middle of a method name. However,
4917 finding "-[" or "+[" should be pretty un-ambiguous.
4918 Unfortunately we have to find it now to decide. */
4919
4920 while (t > text)
4921 if (isalnum (t[-1]) || t[-1] == '_' ||
4922 t[-1] == ' ' || t[-1] == ':' ||
4923 t[-1] == '(' || t[-1] == ')')
4924 --t;
4925 else
4926 break;
4927
4928 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4929 p = t - 2; /* Method name detected. */
4930 /* Else we leave with p unchanged. */
4931 }
4932 }
4933 break;
4934 }
4935 }
4936 return p;
4937 }
4938
4939 static void
4940 completion_list_add_fields (completion_tracker &tracker,
4941 struct symbol *sym,
4942 const char *sym_text, int sym_text_len,
4943 const char *text, const char *word)
4944 {
4945 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4946 {
4947 struct type *t = SYMBOL_TYPE (sym);
4948 enum type_code c = TYPE_CODE (t);
4949 int j;
4950
4951 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4952 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4953 if (TYPE_FIELD_NAME (t, j))
4954 completion_list_add_name (tracker, TYPE_FIELD_NAME (t, j),
4955 sym_text, sym_text_len, text, word);
4956 }
4957 }
4958
4959 /* Add matching symbols from SYMTAB to the current completion list. */
4960
4961 static void
4962 add_symtab_completions (struct compunit_symtab *cust,
4963 completion_tracker &tracker,
4964 const char *sym_text, int sym_text_len,
4965 const char *text, const char *word,
4966 enum type_code code)
4967 {
4968 struct symbol *sym;
4969 const struct block *b;
4970 struct block_iterator iter;
4971 int i;
4972
4973 if (cust == NULL)
4974 return;
4975
4976 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4977 {
4978 QUIT;
4979 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4980 ALL_BLOCK_SYMBOLS (b, iter, sym)
4981 {
4982 if (code == TYPE_CODE_UNDEF
4983 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4984 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4985 completion_list_add_symbol (tracker, sym,
4986 sym_text, sym_text_len,
4987 text, word);
4988 }
4989 }
4990 }
4991
4992 void
4993 default_collect_symbol_completion_matches_break_on
4994 (completion_tracker &tracker,
4995 complete_symbol_mode mode,
4996 const char *text, const char *word,
4997 const char *break_on, enum type_code code)
4998 {
4999 /* Problem: All of the symbols have to be copied because readline
5000 frees them. I'm not going to worry about this; hopefully there
5001 won't be that many. */
5002
5003 struct symbol *sym;
5004 struct compunit_symtab *cust;
5005 struct minimal_symbol *msymbol;
5006 struct objfile *objfile;
5007 const struct block *b;
5008 const struct block *surrounding_static_block, *surrounding_global_block;
5009 struct block_iterator iter;
5010 /* The symbol we are completing on. Points in same buffer as text. */
5011 const char *sym_text;
5012 /* Length of sym_text. */
5013 int sym_text_len;
5014
5015 /* Now look for the symbol we are supposed to complete on. */
5016 if (mode == complete_symbol_mode::LINESPEC)
5017 sym_text = text;
5018 else
5019 {
5020 const char *p;
5021 char quote_found;
5022 const char *quote_pos = NULL;
5023
5024 /* First see if this is a quoted string. */
5025 quote_found = '\0';
5026 for (p = text; *p != '\0'; ++p)
5027 {
5028 if (quote_found != '\0')
5029 {
5030 if (*p == quote_found)
5031 /* Found close quote. */
5032 quote_found = '\0';
5033 else if (*p == '\\' && p[1] == quote_found)
5034 /* A backslash followed by the quote character
5035 doesn't end the string. */
5036 ++p;
5037 }
5038 else if (*p == '\'' || *p == '"')
5039 {
5040 quote_found = *p;
5041 quote_pos = p;
5042 }
5043 }
5044 if (quote_found == '\'')
5045 /* A string within single quotes can be a symbol, so complete on it. */
5046 sym_text = quote_pos + 1;
5047 else if (quote_found == '"')
5048 /* A double-quoted string is never a symbol, nor does it make sense
5049 to complete it any other way. */
5050 {
5051 return;
5052 }
5053 else
5054 {
5055 /* It is not a quoted string. Break it based on the characters
5056 which are in symbols. */
5057 while (p > text)
5058 {
5059 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5060 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5061 --p;
5062 else
5063 break;
5064 }
5065 sym_text = p;
5066 }
5067 }
5068
5069 sym_text_len = strlen (sym_text);
5070
5071 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5072
5073 if (current_language->la_language == language_cplus
5074 || current_language->la_language == language_fortran)
5075 {
5076 /* These languages may have parameters entered by user but they are never
5077 present in the partial symbol tables. */
5078
5079 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5080
5081 if (cs)
5082 sym_text_len = cs - sym_text;
5083 }
5084 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5085
5086 /* At this point scan through the misc symbol vectors and add each
5087 symbol you find to the list. Eventually we want to ignore
5088 anything that isn't a text symbol (everything else will be
5089 handled by the psymtab code below). */
5090
5091 if (code == TYPE_CODE_UNDEF)
5092 {
5093 ALL_MSYMBOLS (objfile, msymbol)
5094 {
5095 QUIT;
5096
5097 completion_list_add_msymbol (tracker,
5098 msymbol, sym_text, sym_text_len,
5099 text, word);
5100
5101 completion_list_objc_symbol (tracker,
5102 msymbol, sym_text, sym_text_len,
5103 text, word);
5104 }
5105 }
5106
5107 /* Add completions for all currently loaded symbol tables. */
5108 ALL_COMPUNITS (objfile, cust)
5109 add_symtab_completions (cust, tracker,
5110 sym_text, sym_text_len, text, word, code);
5111
5112 /* Look through the partial symtabs for all symbols which begin by
5113 matching SYM_TEXT. Expand all CUs that you find to the list. */
5114 expand_symtabs_matching (NULL,
5115 [&] (const char *name) /* symbol matcher */
5116 {
5117 return compare_symbol_name (name,
5118 sym_text,
5119 sym_text_len);
5120 },
5121 [&] (compunit_symtab *symtab) /* expansion notify */
5122 {
5123 add_symtab_completions (symtab,
5124 tracker,
5125 sym_text, sym_text_len,
5126 text, word, code);
5127 },
5128 ALL_DOMAIN);
5129
5130 /* Search upwards from currently selected frame (so that we can
5131 complete on local vars). Also catch fields of types defined in
5132 this places which match our text string. Only complete on types
5133 visible from current context. */
5134
5135 b = get_selected_block (0);
5136 surrounding_static_block = block_static_block (b);
5137 surrounding_global_block = block_global_block (b);
5138 if (surrounding_static_block != NULL)
5139 while (b != surrounding_static_block)
5140 {
5141 QUIT;
5142
5143 ALL_BLOCK_SYMBOLS (b, iter, sym)
5144 {
5145 if (code == TYPE_CODE_UNDEF)
5146 {
5147 completion_list_add_symbol (tracker, sym,
5148 sym_text, sym_text_len, text,
5149 word);
5150 completion_list_add_fields (tracker, sym,
5151 sym_text, sym_text_len, text,
5152 word);
5153 }
5154 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5155 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5156 completion_list_add_symbol (tracker, sym,
5157 sym_text, sym_text_len, text,
5158 word);
5159 }
5160
5161 /* Stop when we encounter an enclosing function. Do not stop for
5162 non-inlined functions - the locals of the enclosing function
5163 are in scope for a nested function. */
5164 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5165 break;
5166 b = BLOCK_SUPERBLOCK (b);
5167 }
5168
5169 /* Add fields from the file's types; symbols will be added below. */
5170
5171 if (code == TYPE_CODE_UNDEF)
5172 {
5173 if (surrounding_static_block != NULL)
5174 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5175 completion_list_add_fields (tracker, sym,
5176 sym_text, sym_text_len, text, word);
5177
5178 if (surrounding_global_block != NULL)
5179 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5180 completion_list_add_fields (tracker, sym,
5181 sym_text, sym_text_len, text, word);
5182 }
5183
5184 /* Skip macros if we are completing a struct tag -- arguable but
5185 usually what is expected. */
5186 if (current_language->la_macro_expansion == macro_expansion_c
5187 && code == TYPE_CODE_UNDEF)
5188 {
5189 struct macro_scope *scope;
5190
5191 /* This adds a macro's name to the current completion list. */
5192 auto add_macro_name = [&] (const char *macro_name,
5193 const macro_definition *,
5194 macro_source_file *,
5195 int)
5196 {
5197 completion_list_add_name (tracker, macro_name,
5198 sym_text, sym_text_len,
5199 text, word);
5200 };
5201
5202 /* Add any macros visible in the default scope. Note that this
5203 may yield the occasional wrong result, because an expression
5204 might be evaluated in a scope other than the default. For
5205 example, if the user types "break file:line if <TAB>", the
5206 resulting expression will be evaluated at "file:line" -- but
5207 at there does not seem to be a way to detect this at
5208 completion time. */
5209 scope = default_macro_scope ();
5210 if (scope)
5211 {
5212 macro_for_each_in_scope (scope->file, scope->line,
5213 add_macro_name);
5214 xfree (scope);
5215 }
5216
5217 /* User-defined macros are always visible. */
5218 macro_for_each (macro_user_macros, add_macro_name);
5219 }
5220 }
5221
5222 void
5223 default_collect_symbol_completion_matches (completion_tracker &tracker,
5224 complete_symbol_mode mode,
5225 const char *text, const char *word,
5226 enum type_code code)
5227 {
5228 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5229 text, word, "",
5230 code);
5231 }
5232
5233 /* Collect all symbols (regardless of class) which begin by matching
5234 TEXT. */
5235
5236 void
5237 collect_symbol_completion_matches (completion_tracker &tracker,
5238 complete_symbol_mode mode,
5239 const char *text, const char *word)
5240 {
5241 current_language->la_collect_symbol_completion_matches (tracker, mode,
5242 text, word,
5243 TYPE_CODE_UNDEF);
5244 }
5245
5246 /* Like collect_symbol_completion_matches, but only collect
5247 STRUCT_DOMAIN symbols whose type code is CODE. */
5248
5249 void
5250 collect_symbol_completion_matches_type (completion_tracker &tracker,
5251 const char *text, const char *word,
5252 enum type_code code)
5253 {
5254 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5255
5256 gdb_assert (code == TYPE_CODE_UNION
5257 || code == TYPE_CODE_STRUCT
5258 || code == TYPE_CODE_ENUM);
5259 current_language->la_collect_symbol_completion_matches (tracker, mode,
5260 text, word, code);
5261 }
5262
5263 /* Like collect_symbol_completion_matches, but collects a list of
5264 symbols defined in all source files named SRCFILE. */
5265
5266 void
5267 collect_file_symbol_completion_matches (completion_tracker &tracker,
5268 complete_symbol_mode mode,
5269 const char *text, const char *word,
5270 const char *srcfile)
5271 {
5272 /* The symbol we are completing on. Points in same buffer as text. */
5273 const char *sym_text;
5274 /* Length of sym_text. */
5275 int sym_text_len;
5276
5277 /* Now look for the symbol we are supposed to complete on.
5278 FIXME: This should be language-specific. */
5279 if (mode == complete_symbol_mode::LINESPEC)
5280 sym_text = text;
5281 else
5282 {
5283 const char *p;
5284 char quote_found;
5285 const char *quote_pos = NULL;
5286
5287 /* First see if this is a quoted string. */
5288 quote_found = '\0';
5289 for (p = text; *p != '\0'; ++p)
5290 {
5291 if (quote_found != '\0')
5292 {
5293 if (*p == quote_found)
5294 /* Found close quote. */
5295 quote_found = '\0';
5296 else if (*p == '\\' && p[1] == quote_found)
5297 /* A backslash followed by the quote character
5298 doesn't end the string. */
5299 ++p;
5300 }
5301 else if (*p == '\'' || *p == '"')
5302 {
5303 quote_found = *p;
5304 quote_pos = p;
5305 }
5306 }
5307 if (quote_found == '\'')
5308 /* A string within single quotes can be a symbol, so complete on it. */
5309 sym_text = quote_pos + 1;
5310 else if (quote_found == '"')
5311 /* A double-quoted string is never a symbol, nor does it make sense
5312 to complete it any other way. */
5313 {
5314 return;
5315 }
5316 else
5317 {
5318 /* Not a quoted string. */
5319 sym_text = language_search_unquoted_string (text, p);
5320 }
5321 }
5322
5323 sym_text_len = strlen (sym_text);
5324
5325 /* Go through symtabs for SRCFILE and check the externs and statics
5326 for symbols which match. */
5327 iterate_over_symtabs (srcfile, [&] (symtab *s)
5328 {
5329 add_symtab_completions (SYMTAB_COMPUNIT (s),
5330 tracker,
5331 sym_text, sym_text_len,
5332 text, word, TYPE_CODE_UNDEF);
5333 return false;
5334 });
5335 }
5336
5337 /* A helper function for make_source_files_completion_list. It adds
5338 another file name to a list of possible completions, growing the
5339 list as necessary. */
5340
5341 static void
5342 add_filename_to_list (const char *fname, const char *text, const char *word,
5343 completion_list *list)
5344 {
5345 char *newobj;
5346 size_t fnlen = strlen (fname);
5347
5348 if (word == text)
5349 {
5350 /* Return exactly fname. */
5351 newobj = (char *) xmalloc (fnlen + 5);
5352 strcpy (newobj, fname);
5353 }
5354 else if (word > text)
5355 {
5356 /* Return some portion of fname. */
5357 newobj = (char *) xmalloc (fnlen + 5);
5358 strcpy (newobj, fname + (word - text));
5359 }
5360 else
5361 {
5362 /* Return some of TEXT plus fname. */
5363 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5364 strncpy (newobj, word, text - word);
5365 newobj[text - word] = '\0';
5366 strcat (newobj, fname);
5367 }
5368 list->emplace_back (newobj);
5369 }
5370
5371 static int
5372 not_interesting_fname (const char *fname)
5373 {
5374 static const char *illegal_aliens[] = {
5375 "_globals_", /* inserted by coff_symtab_read */
5376 NULL
5377 };
5378 int i;
5379
5380 for (i = 0; illegal_aliens[i]; i++)
5381 {
5382 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5383 return 1;
5384 }
5385 return 0;
5386 }
5387
5388 /* An object of this type is passed as the user_data argument to
5389 map_partial_symbol_filenames. */
5390 struct add_partial_filename_data
5391 {
5392 struct filename_seen_cache *filename_seen_cache;
5393 const char *text;
5394 const char *word;
5395 int text_len;
5396 completion_list *list;
5397 };
5398
5399 /* A callback for map_partial_symbol_filenames. */
5400
5401 static void
5402 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5403 void *user_data)
5404 {
5405 struct add_partial_filename_data *data
5406 = (struct add_partial_filename_data *) user_data;
5407
5408 if (not_interesting_fname (filename))
5409 return;
5410 if (!data->filename_seen_cache->seen (filename)
5411 && filename_ncmp (filename, data->text, data->text_len) == 0)
5412 {
5413 /* This file matches for a completion; add it to the
5414 current list of matches. */
5415 add_filename_to_list (filename, data->text, data->word, data->list);
5416 }
5417 else
5418 {
5419 const char *base_name = lbasename (filename);
5420
5421 if (base_name != filename
5422 && !data->filename_seen_cache->seen (base_name)
5423 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5424 add_filename_to_list (base_name, data->text, data->word, data->list);
5425 }
5426 }
5427
5428 /* Return a list of all source files whose names begin with matching
5429 TEXT. The file names are looked up in the symbol tables of this
5430 program. */
5431
5432 completion_list
5433 make_source_files_completion_list (const char *text, const char *word)
5434 {
5435 struct compunit_symtab *cu;
5436 struct symtab *s;
5437 struct objfile *objfile;
5438 size_t text_len = strlen (text);
5439 completion_list list;
5440 const char *base_name;
5441 struct add_partial_filename_data datum;
5442 struct cleanup *back_to;
5443
5444 if (!have_full_symbols () && !have_partial_symbols ())
5445 return list;
5446
5447 filename_seen_cache filenames_seen;
5448
5449 ALL_FILETABS (objfile, cu, s)
5450 {
5451 if (not_interesting_fname (s->filename))
5452 continue;
5453 if (!filenames_seen.seen (s->filename)
5454 && filename_ncmp (s->filename, text, text_len) == 0)
5455 {
5456 /* This file matches for a completion; add it to the current
5457 list of matches. */
5458 add_filename_to_list (s->filename, text, word, &list);
5459 }
5460 else
5461 {
5462 /* NOTE: We allow the user to type a base name when the
5463 debug info records leading directories, but not the other
5464 way around. This is what subroutines of breakpoint
5465 command do when they parse file names. */
5466 base_name = lbasename (s->filename);
5467 if (base_name != s->filename
5468 && !filenames_seen.seen (base_name)
5469 && filename_ncmp (base_name, text, text_len) == 0)
5470 add_filename_to_list (base_name, text, word, &list);
5471 }
5472 }
5473
5474 datum.filename_seen_cache = &filenames_seen;
5475 datum.text = text;
5476 datum.word = word;
5477 datum.text_len = text_len;
5478 datum.list = &list;
5479 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5480 0 /*need_fullname*/);
5481
5482 return list;
5483 }
5484 \f
5485 /* Track MAIN */
5486
5487 /* Return the "main_info" object for the current program space. If
5488 the object has not yet been created, create it and fill in some
5489 default values. */
5490
5491 static struct main_info *
5492 get_main_info (void)
5493 {
5494 struct main_info *info
5495 = (struct main_info *) program_space_data (current_program_space,
5496 main_progspace_key);
5497
5498 if (info == NULL)
5499 {
5500 /* It may seem strange to store the main name in the progspace
5501 and also in whatever objfile happens to see a main name in
5502 its debug info. The reason for this is mainly historical:
5503 gdb returned "main" as the name even if no function named
5504 "main" was defined the program; and this approach lets us
5505 keep compatibility. */
5506 info = XCNEW (struct main_info);
5507 info->language_of_main = language_unknown;
5508 set_program_space_data (current_program_space, main_progspace_key,
5509 info);
5510 }
5511
5512 return info;
5513 }
5514
5515 /* A cleanup to destroy a struct main_info when a progspace is
5516 destroyed. */
5517
5518 static void
5519 main_info_cleanup (struct program_space *pspace, void *data)
5520 {
5521 struct main_info *info = (struct main_info *) data;
5522
5523 if (info != NULL)
5524 xfree (info->name_of_main);
5525 xfree (info);
5526 }
5527
5528 static void
5529 set_main_name (const char *name, enum language lang)
5530 {
5531 struct main_info *info = get_main_info ();
5532
5533 if (info->name_of_main != NULL)
5534 {
5535 xfree (info->name_of_main);
5536 info->name_of_main = NULL;
5537 info->language_of_main = language_unknown;
5538 }
5539 if (name != NULL)
5540 {
5541 info->name_of_main = xstrdup (name);
5542 info->language_of_main = lang;
5543 }
5544 }
5545
5546 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5547 accordingly. */
5548
5549 static void
5550 find_main_name (void)
5551 {
5552 const char *new_main_name;
5553 struct objfile *objfile;
5554
5555 /* First check the objfiles to see whether a debuginfo reader has
5556 picked up the appropriate main name. Historically the main name
5557 was found in a more or less random way; this approach instead
5558 relies on the order of objfile creation -- which still isn't
5559 guaranteed to get the correct answer, but is just probably more
5560 accurate. */
5561 ALL_OBJFILES (objfile)
5562 {
5563 if (objfile->per_bfd->name_of_main != NULL)
5564 {
5565 set_main_name (objfile->per_bfd->name_of_main,
5566 objfile->per_bfd->language_of_main);
5567 return;
5568 }
5569 }
5570
5571 /* Try to see if the main procedure is in Ada. */
5572 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5573 be to add a new method in the language vector, and call this
5574 method for each language until one of them returns a non-empty
5575 name. This would allow us to remove this hard-coded call to
5576 an Ada function. It is not clear that this is a better approach
5577 at this point, because all methods need to be written in a way
5578 such that false positives never be returned. For instance, it is
5579 important that a method does not return a wrong name for the main
5580 procedure if the main procedure is actually written in a different
5581 language. It is easy to guaranty this with Ada, since we use a
5582 special symbol generated only when the main in Ada to find the name
5583 of the main procedure. It is difficult however to see how this can
5584 be guarantied for languages such as C, for instance. This suggests
5585 that order of call for these methods becomes important, which means
5586 a more complicated approach. */
5587 new_main_name = ada_main_name ();
5588 if (new_main_name != NULL)
5589 {
5590 set_main_name (new_main_name, language_ada);
5591 return;
5592 }
5593
5594 new_main_name = d_main_name ();
5595 if (new_main_name != NULL)
5596 {
5597 set_main_name (new_main_name, language_d);
5598 return;
5599 }
5600
5601 new_main_name = go_main_name ();
5602 if (new_main_name != NULL)
5603 {
5604 set_main_name (new_main_name, language_go);
5605 return;
5606 }
5607
5608 new_main_name = pascal_main_name ();
5609 if (new_main_name != NULL)
5610 {
5611 set_main_name (new_main_name, language_pascal);
5612 return;
5613 }
5614
5615 /* The languages above didn't identify the name of the main procedure.
5616 Fallback to "main". */
5617 set_main_name ("main", language_unknown);
5618 }
5619
5620 char *
5621 main_name (void)
5622 {
5623 struct main_info *info = get_main_info ();
5624
5625 if (info->name_of_main == NULL)
5626 find_main_name ();
5627
5628 return info->name_of_main;
5629 }
5630
5631 /* Return the language of the main function. If it is not known,
5632 return language_unknown. */
5633
5634 enum language
5635 main_language (void)
5636 {
5637 struct main_info *info = get_main_info ();
5638
5639 if (info->name_of_main == NULL)
5640 find_main_name ();
5641
5642 return info->language_of_main;
5643 }
5644
5645 /* Handle ``executable_changed'' events for the symtab module. */
5646
5647 static void
5648 symtab_observer_executable_changed (void)
5649 {
5650 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5651 set_main_name (NULL, language_unknown);
5652 }
5653
5654 /* Return 1 if the supplied producer string matches the ARM RealView
5655 compiler (armcc). */
5656
5657 int
5658 producer_is_realview (const char *producer)
5659 {
5660 static const char *const arm_idents[] = {
5661 "ARM C Compiler, ADS",
5662 "Thumb C Compiler, ADS",
5663 "ARM C++ Compiler, ADS",
5664 "Thumb C++ Compiler, ADS",
5665 "ARM/Thumb C/C++ Compiler, RVCT",
5666 "ARM C/C++ Compiler, RVCT"
5667 };
5668 int i;
5669
5670 if (producer == NULL)
5671 return 0;
5672
5673 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5674 if (startswith (producer, arm_idents[i]))
5675 return 1;
5676
5677 return 0;
5678 }
5679
5680 \f
5681
5682 /* The next index to hand out in response to a registration request. */
5683
5684 static int next_aclass_value = LOC_FINAL_VALUE;
5685
5686 /* The maximum number of "aclass" registrations we support. This is
5687 constant for convenience. */
5688 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5689
5690 /* The objects representing the various "aclass" values. The elements
5691 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5692 elements are those registered at gdb initialization time. */
5693
5694 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5695
5696 /* The globally visible pointer. This is separate from 'symbol_impl'
5697 so that it can be const. */
5698
5699 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5700
5701 /* Make sure we saved enough room in struct symbol. */
5702
5703 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5704
5705 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5706 is the ops vector associated with this index. This returns the new
5707 index, which should be used as the aclass_index field for symbols
5708 of this type. */
5709
5710 int
5711 register_symbol_computed_impl (enum address_class aclass,
5712 const struct symbol_computed_ops *ops)
5713 {
5714 int result = next_aclass_value++;
5715
5716 gdb_assert (aclass == LOC_COMPUTED);
5717 gdb_assert (result < MAX_SYMBOL_IMPLS);
5718 symbol_impl[result].aclass = aclass;
5719 symbol_impl[result].ops_computed = ops;
5720
5721 /* Sanity check OPS. */
5722 gdb_assert (ops != NULL);
5723 gdb_assert (ops->tracepoint_var_ref != NULL);
5724 gdb_assert (ops->describe_location != NULL);
5725 gdb_assert (ops->get_symbol_read_needs != NULL);
5726 gdb_assert (ops->read_variable != NULL);
5727
5728 return result;
5729 }
5730
5731 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5732 OPS is the ops vector associated with this index. This returns the
5733 new index, which should be used as the aclass_index field for symbols
5734 of this type. */
5735
5736 int
5737 register_symbol_block_impl (enum address_class aclass,
5738 const struct symbol_block_ops *ops)
5739 {
5740 int result = next_aclass_value++;
5741
5742 gdb_assert (aclass == LOC_BLOCK);
5743 gdb_assert (result < MAX_SYMBOL_IMPLS);
5744 symbol_impl[result].aclass = aclass;
5745 symbol_impl[result].ops_block = ops;
5746
5747 /* Sanity check OPS. */
5748 gdb_assert (ops != NULL);
5749 gdb_assert (ops->find_frame_base_location != NULL);
5750
5751 return result;
5752 }
5753
5754 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5755 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5756 this index. This returns the new index, which should be used as
5757 the aclass_index field for symbols of this type. */
5758
5759 int
5760 register_symbol_register_impl (enum address_class aclass,
5761 const struct symbol_register_ops *ops)
5762 {
5763 int result = next_aclass_value++;
5764
5765 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5766 gdb_assert (result < MAX_SYMBOL_IMPLS);
5767 symbol_impl[result].aclass = aclass;
5768 symbol_impl[result].ops_register = ops;
5769
5770 return result;
5771 }
5772
5773 /* Initialize elements of 'symbol_impl' for the constants in enum
5774 address_class. */
5775
5776 static void
5777 initialize_ordinary_address_classes (void)
5778 {
5779 int i;
5780
5781 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5782 symbol_impl[i].aclass = (enum address_class) i;
5783 }
5784
5785 \f
5786
5787 /* Helper function to initialize the fields of an objfile-owned symbol.
5788 It assumed that *SYM is already all zeroes. */
5789
5790 static void
5791 initialize_objfile_symbol_1 (struct symbol *sym)
5792 {
5793 SYMBOL_OBJFILE_OWNED (sym) = 1;
5794 SYMBOL_SECTION (sym) = -1;
5795 }
5796
5797 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5798
5799 void
5800 initialize_objfile_symbol (struct symbol *sym)
5801 {
5802 memset (sym, 0, sizeof (*sym));
5803 initialize_objfile_symbol_1 (sym);
5804 }
5805
5806 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5807 obstack. */
5808
5809 struct symbol *
5810 allocate_symbol (struct objfile *objfile)
5811 {
5812 struct symbol *result;
5813
5814 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5815 initialize_objfile_symbol_1 (result);
5816
5817 return result;
5818 }
5819
5820 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5821 obstack. */
5822
5823 struct template_symbol *
5824 allocate_template_symbol (struct objfile *objfile)
5825 {
5826 struct template_symbol *result;
5827
5828 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5829 initialize_objfile_symbol_1 (&result->base);
5830
5831 return result;
5832 }
5833
5834 /* See symtab.h. */
5835
5836 struct objfile *
5837 symbol_objfile (const struct symbol *symbol)
5838 {
5839 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5840 return SYMTAB_OBJFILE (symbol->owner.symtab);
5841 }
5842
5843 /* See symtab.h. */
5844
5845 struct gdbarch *
5846 symbol_arch (const struct symbol *symbol)
5847 {
5848 if (!SYMBOL_OBJFILE_OWNED (symbol))
5849 return symbol->owner.arch;
5850 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5851 }
5852
5853 /* See symtab.h. */
5854
5855 struct symtab *
5856 symbol_symtab (const struct symbol *symbol)
5857 {
5858 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5859 return symbol->owner.symtab;
5860 }
5861
5862 /* See symtab.h. */
5863
5864 void
5865 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5866 {
5867 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5868 symbol->owner.symtab = symtab;
5869 }
5870
5871 \f
5872
5873 void
5874 _initialize_symtab (void)
5875 {
5876 initialize_ordinary_address_classes ();
5877
5878 main_progspace_key
5879 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5880
5881 symbol_cache_key
5882 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5883
5884 add_info ("variables", info_variables_command, _("\
5885 All global and static variable names, or those matching REGEXP."));
5886 if (dbx_commands)
5887 add_com ("whereis", class_info, info_variables_command, _("\
5888 All global and static variable names, or those matching REGEXP."));
5889
5890 add_info ("functions", info_functions_command,
5891 _("All function names, or those matching REGEXP."));
5892
5893 /* FIXME: This command has at least the following problems:
5894 1. It prints builtin types (in a very strange and confusing fashion).
5895 2. It doesn't print right, e.g. with
5896 typedef struct foo *FOO
5897 type_print prints "FOO" when we want to make it (in this situation)
5898 print "struct foo *".
5899 I also think "ptype" or "whatis" is more likely to be useful (but if
5900 there is much disagreement "info types" can be fixed). */
5901 add_info ("types", info_types_command,
5902 _("All type names, or those matching REGEXP."));
5903
5904 add_info ("sources", info_sources_command,
5905 _("Source files in the program."));
5906
5907 add_com ("rbreak", class_breakpoint, rbreak_command,
5908 _("Set a breakpoint for all functions matching REGEXP."));
5909
5910 add_setshow_enum_cmd ("multiple-symbols", no_class,
5911 multiple_symbols_modes, &multiple_symbols_mode,
5912 _("\
5913 Set the debugger behavior when more than one symbol are possible matches\n\
5914 in an expression."), _("\
5915 Show how the debugger handles ambiguities in expressions."), _("\
5916 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5917 NULL, NULL, &setlist, &showlist);
5918
5919 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5920 &basenames_may_differ, _("\
5921 Set whether a source file may have multiple base names."), _("\
5922 Show whether a source file may have multiple base names."), _("\
5923 (A \"base name\" is the name of a file with the directory part removed.\n\
5924 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5925 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5926 before comparing them. Canonicalization is an expensive operation,\n\
5927 but it allows the same file be known by more than one base name.\n\
5928 If not set (the default), all source files are assumed to have just\n\
5929 one base name, and gdb will do file name comparisons more efficiently."),
5930 NULL, NULL,
5931 &setlist, &showlist);
5932
5933 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5934 _("Set debugging of symbol table creation."),
5935 _("Show debugging of symbol table creation."), _("\
5936 When enabled (non-zero), debugging messages are printed when building\n\
5937 symbol tables. A value of 1 (one) normally provides enough information.\n\
5938 A value greater than 1 provides more verbose information."),
5939 NULL,
5940 NULL,
5941 &setdebuglist, &showdebuglist);
5942
5943 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5944 _("\
5945 Set debugging of symbol lookup."), _("\
5946 Show debugging of symbol lookup."), _("\
5947 When enabled (non-zero), symbol lookups are logged."),
5948 NULL, NULL,
5949 &setdebuglist, &showdebuglist);
5950
5951 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5952 &new_symbol_cache_size,
5953 _("Set the size of the symbol cache."),
5954 _("Show the size of the symbol cache."), _("\
5955 The size of the symbol cache.\n\
5956 If zero then the symbol cache is disabled."),
5957 set_symbol_cache_size_handler, NULL,
5958 &maintenance_set_cmdlist,
5959 &maintenance_show_cmdlist);
5960
5961 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5962 _("Dump the symbol cache for each program space."),
5963 &maintenanceprintlist);
5964
5965 add_cmd ("symbol-cache-statistics", class_maintenance,
5966 maintenance_print_symbol_cache_statistics,
5967 _("Print symbol cache statistics for each program space."),
5968 &maintenanceprintlist);
5969
5970 add_cmd ("flush-symbol-cache", class_maintenance,
5971 maintenance_flush_symbol_cache,
5972 _("Flush the symbol cache for each program space."),
5973 &maintenancelist);
5974
5975 observer_attach_executable_changed (symtab_observer_executable_changed);
5976 observer_attach_new_objfile (symtab_new_objfile_observer);
5977 observer_attach_free_objfile (symtab_free_objfile_observer);
5978 }
This page took 0.151329 seconds and 5 git commands to generate.