* gdbtypes.c (lookup_typename): Rename local variable "tmp" to "type".
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "linespec.h"
37 #include "source.h"
38 #include "filenames.h" /* for FILENAME_CMP */
39 #include "objc-lang.h"
40 #include "d-lang.h"
41 #include "ada-lang.h"
42 #include "go-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "psymtab.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static void output_source_filename (const char *, int *);
80
81 static int find_line_common (struct linetable *, int, int *, int);
82
83 static struct symbol *lookup_symbol_aux (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 int *is_a_field_of_this);
88
89 static
90 struct symbol *lookup_symbol_aux_local (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language);
94
95 static
96 struct symbol *lookup_symbol_aux_symtabs (int block_index,
97 const char *name,
98 const domain_enum domain);
99
100 static
101 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
102 int block_index,
103 const char *name,
104 const domain_enum domain);
105
106 static void print_msymbol_info (struct minimal_symbol *);
107
108 void _initialize_symtab (void);
109
110 /* */
111
112 /* When non-zero, print debugging messages related to symtab creation. */
113 int symtab_create_debug = 0;
114
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
119
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *const multiple_symbols_modes[] =
128 {
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133 };
134 static const char *multiple_symbols_mode = multiple_symbols_all;
135
136 /* Read-only accessor to AUTO_SELECT_MODE. */
137
138 const char *
139 multiple_symbols_select_mode (void)
140 {
141 return multiple_symbols_mode;
142 }
143
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148 const struct block *block_found;
149
150 /* See whether FILENAME matches SEARCH_NAME using the rule that we
151 advertise to the user. (The manual's description of linespecs
152 describes what we advertise). SEARCH_LEN is the length of
153 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
154 Returns true if they match, false otherwise. */
155
156 int
157 compare_filenames_for_search (const char *filename, const char *search_name,
158 int search_len)
159 {
160 int len = strlen (filename);
161
162 if (len < search_len)
163 return 0;
164
165 /* The tail of FILENAME must match. */
166 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
167 return 0;
168
169 /* Either the names must completely match, or the character
170 preceding the trailing SEARCH_NAME segment of FILENAME must be a
171 directory separator. */
172 return (len == search_len
173 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
174 || (HAS_DRIVE_SPEC (filename)
175 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
176 }
177
178 /* Check for a symtab of a specific name by searching some symtabs.
179 This is a helper function for callbacks of iterate_over_symtabs.
180
181 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
182 are identical to the `map_symtabs_matching_filename' method of
183 quick_symbol_functions.
184
185 FIRST and AFTER_LAST indicate the range of symtabs to search.
186 AFTER_LAST is one past the last symtab to search; NULL means to
187 search until the end of the list. */
188
189 int
190 iterate_over_some_symtabs (const char *name,
191 const char *full_path,
192 const char *real_path,
193 int (*callback) (struct symtab *symtab,
194 void *data),
195 void *data,
196 struct symtab *first,
197 struct symtab *after_last)
198 {
199 struct symtab *s = NULL;
200 const char* base_name = lbasename (name);
201 int name_len = strlen (name);
202 int is_abs = IS_ABSOLUTE_PATH (name);
203
204 for (s = first; s != NULL && s != after_last; s = s->next)
205 {
206 /* Exact match is always ok. */
207 if (FILENAME_CMP (name, s->filename) == 0)
208 {
209 if (callback (s, data))
210 return 1;
211 }
212
213 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
214 {
215 if (callback (s, data))
216 return 1;
217 }
218
219 /* Before we invoke realpath, which can get expensive when many
220 files are involved, do a quick comparison of the basenames. */
221 if (! basenames_may_differ
222 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
223 continue;
224
225 /* If the user gave us an absolute path, try to find the file in
226 this symtab and use its absolute path. */
227
228 if (full_path != NULL)
229 {
230 const char *fp = symtab_to_fullname (s);
231
232 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
233 {
234 if (callback (s, data))
235 return 1;
236 }
237
238 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
239 name_len))
240 {
241 if (callback (s, data))
242 return 1;
243 }
244 }
245
246 if (real_path != NULL)
247 {
248 char *fullname = symtab_to_fullname (s);
249
250 if (fullname != NULL)
251 {
252 char *rp = gdb_realpath (fullname);
253
254 make_cleanup (xfree, rp);
255 if (FILENAME_CMP (real_path, rp) == 0)
256 {
257 if (callback (s, data))
258 return 1;
259 }
260
261 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
262 {
263 if (callback (s, data))
264 return 1;
265 }
266 }
267 }
268 }
269
270 return 0;
271 }
272
273 /* Check for a symtab of a specific name; first in symtabs, then in
274 psymtabs. *If* there is no '/' in the name, a match after a '/'
275 in the symtab filename will also work.
276
277 Calls CALLBACK with each symtab that is found and with the supplied
278 DATA. If CALLBACK returns true, the search stops. */
279
280 void
281 iterate_over_symtabs (const char *name,
282 int (*callback) (struct symtab *symtab,
283 void *data),
284 void *data)
285 {
286 struct symtab *s = NULL;
287 struct objfile *objfile;
288 char *real_path = NULL;
289 char *full_path = NULL;
290 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
291
292 /* Here we are interested in canonicalizing an absolute path, not
293 absolutizing a relative path. */
294 if (IS_ABSOLUTE_PATH (name))
295 {
296 full_path = xfullpath (name);
297 make_cleanup (xfree, full_path);
298 real_path = gdb_realpath (name);
299 make_cleanup (xfree, real_path);
300 }
301
302 ALL_OBJFILES (objfile)
303 {
304 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
305 objfile->symtabs, NULL))
306 {
307 do_cleanups (cleanups);
308 return;
309 }
310 }
311
312 /* Same search rules as above apply here, but now we look thru the
313 psymtabs. */
314
315 ALL_OBJFILES (objfile)
316 {
317 if (objfile->sf
318 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
319 name,
320 full_path,
321 real_path,
322 callback,
323 data))
324 {
325 do_cleanups (cleanups);
326 return;
327 }
328 }
329
330 do_cleanups (cleanups);
331 }
332
333 /* The callback function used by lookup_symtab. */
334
335 static int
336 lookup_symtab_callback (struct symtab *symtab, void *data)
337 {
338 struct symtab **result_ptr = data;
339
340 *result_ptr = symtab;
341 return 1;
342 }
343
344 /* A wrapper for iterate_over_symtabs that returns the first matching
345 symtab, or NULL. */
346
347 struct symtab *
348 lookup_symtab (const char *name)
349 {
350 struct symtab *result = NULL;
351
352 iterate_over_symtabs (name, lookup_symtab_callback, &result);
353 return result;
354 }
355
356 \f
357 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
358 full method name, which consist of the class name (from T), the unadorned
359 method name from METHOD_ID, and the signature for the specific overload,
360 specified by SIGNATURE_ID. Note that this function is g++ specific. */
361
362 char *
363 gdb_mangle_name (struct type *type, int method_id, int signature_id)
364 {
365 int mangled_name_len;
366 char *mangled_name;
367 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
368 struct fn_field *method = &f[signature_id];
369 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
370 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
371 const char *newname = type_name_no_tag (type);
372
373 /* Does the form of physname indicate that it is the full mangled name
374 of a constructor (not just the args)? */
375 int is_full_physname_constructor;
376
377 int is_constructor;
378 int is_destructor = is_destructor_name (physname);
379 /* Need a new type prefix. */
380 char *const_prefix = method->is_const ? "C" : "";
381 char *volatile_prefix = method->is_volatile ? "V" : "";
382 char buf[20];
383 int len = (newname == NULL ? 0 : strlen (newname));
384
385 /* Nothing to do if physname already contains a fully mangled v3 abi name
386 or an operator name. */
387 if ((physname[0] == '_' && physname[1] == 'Z')
388 || is_operator_name (field_name))
389 return xstrdup (physname);
390
391 is_full_physname_constructor = is_constructor_name (physname);
392
393 is_constructor = is_full_physname_constructor
394 || (newname && strcmp (field_name, newname) == 0);
395
396 if (!is_destructor)
397 is_destructor = (strncmp (physname, "__dt", 4) == 0);
398
399 if (is_destructor || is_full_physname_constructor)
400 {
401 mangled_name = (char *) xmalloc (strlen (physname) + 1);
402 strcpy (mangled_name, physname);
403 return mangled_name;
404 }
405
406 if (len == 0)
407 {
408 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
409 }
410 else if (physname[0] == 't' || physname[0] == 'Q')
411 {
412 /* The physname for template and qualified methods already includes
413 the class name. */
414 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
415 newname = NULL;
416 len = 0;
417 }
418 else
419 {
420 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
421 }
422 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
423 + strlen (buf) + len + strlen (physname) + 1);
424
425 mangled_name = (char *) xmalloc (mangled_name_len);
426 if (is_constructor)
427 mangled_name[0] = '\0';
428 else
429 strcpy (mangled_name, field_name);
430
431 strcat (mangled_name, buf);
432 /* If the class doesn't have a name, i.e. newname NULL, then we just
433 mangle it using 0 for the length of the class. Thus it gets mangled
434 as something starting with `::' rather than `classname::'. */
435 if (newname != NULL)
436 strcat (mangled_name, newname);
437
438 strcat (mangled_name, physname);
439 return (mangled_name);
440 }
441
442 /* Initialize the cplus_specific structure. 'cplus_specific' should
443 only be allocated for use with cplus symbols. */
444
445 static void
446 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
447 struct objfile *objfile)
448 {
449 /* A language_specific structure should not have been previously
450 initialized. */
451 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
452 gdb_assert (objfile != NULL);
453
454 gsymbol->language_specific.cplus_specific =
455 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
456 }
457
458 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
459 correctly allocated. For C++ symbols a cplus_specific struct is
460 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
461 OBJFILE can be NULL. */
462
463 void
464 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
465 char *name,
466 struct objfile *objfile)
467 {
468 if (gsymbol->language == language_cplus)
469 {
470 if (gsymbol->language_specific.cplus_specific == NULL)
471 symbol_init_cplus_specific (gsymbol, objfile);
472
473 gsymbol->language_specific.cplus_specific->demangled_name = name;
474 }
475 else
476 gsymbol->language_specific.mangled_lang.demangled_name = name;
477 }
478
479 /* Return the demangled name of GSYMBOL. */
480
481 const char *
482 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
483 {
484 if (gsymbol->language == language_cplus)
485 {
486 if (gsymbol->language_specific.cplus_specific != NULL)
487 return gsymbol->language_specific.cplus_specific->demangled_name;
488 else
489 return NULL;
490 }
491 else
492 return gsymbol->language_specific.mangled_lang.demangled_name;
493 }
494
495 \f
496 /* Initialize the language dependent portion of a symbol
497 depending upon the language for the symbol. */
498
499 void
500 symbol_set_language (struct general_symbol_info *gsymbol,
501 enum language language)
502 {
503 gsymbol->language = language;
504 if (gsymbol->language == language_d
505 || gsymbol->language == language_go
506 || gsymbol->language == language_java
507 || gsymbol->language == language_objc
508 || gsymbol->language == language_fortran)
509 {
510 symbol_set_demangled_name (gsymbol, NULL, NULL);
511 }
512 else if (gsymbol->language == language_cplus)
513 gsymbol->language_specific.cplus_specific = NULL;
514 else
515 {
516 memset (&gsymbol->language_specific, 0,
517 sizeof (gsymbol->language_specific));
518 }
519 }
520
521 /* Functions to initialize a symbol's mangled name. */
522
523 /* Objects of this type are stored in the demangled name hash table. */
524 struct demangled_name_entry
525 {
526 char *mangled;
527 char demangled[1];
528 };
529
530 /* Hash function for the demangled name hash. */
531
532 static hashval_t
533 hash_demangled_name_entry (const void *data)
534 {
535 const struct demangled_name_entry *e = data;
536
537 return htab_hash_string (e->mangled);
538 }
539
540 /* Equality function for the demangled name hash. */
541
542 static int
543 eq_demangled_name_entry (const void *a, const void *b)
544 {
545 const struct demangled_name_entry *da = a;
546 const struct demangled_name_entry *db = b;
547
548 return strcmp (da->mangled, db->mangled) == 0;
549 }
550
551 /* Create the hash table used for demangled names. Each hash entry is
552 a pair of strings; one for the mangled name and one for the demangled
553 name. The entry is hashed via just the mangled name. */
554
555 static void
556 create_demangled_names_hash (struct objfile *objfile)
557 {
558 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
559 The hash table code will round this up to the next prime number.
560 Choosing a much larger table size wastes memory, and saves only about
561 1% in symbol reading. */
562
563 objfile->demangled_names_hash = htab_create_alloc
564 (256, hash_demangled_name_entry, eq_demangled_name_entry,
565 NULL, xcalloc, xfree);
566 }
567
568 /* Try to determine the demangled name for a symbol, based on the
569 language of that symbol. If the language is set to language_auto,
570 it will attempt to find any demangling algorithm that works and
571 then set the language appropriately. The returned name is allocated
572 by the demangler and should be xfree'd. */
573
574 static char *
575 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
576 const char *mangled)
577 {
578 char *demangled = NULL;
579
580 if (gsymbol->language == language_unknown)
581 gsymbol->language = language_auto;
582
583 if (gsymbol->language == language_objc
584 || gsymbol->language == language_auto)
585 {
586 demangled =
587 objc_demangle (mangled, 0);
588 if (demangled != NULL)
589 {
590 gsymbol->language = language_objc;
591 return demangled;
592 }
593 }
594 if (gsymbol->language == language_cplus
595 || gsymbol->language == language_auto)
596 {
597 demangled =
598 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
599 if (demangled != NULL)
600 {
601 gsymbol->language = language_cplus;
602 return demangled;
603 }
604 }
605 if (gsymbol->language == language_java)
606 {
607 demangled =
608 cplus_demangle (mangled,
609 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
610 if (demangled != NULL)
611 {
612 gsymbol->language = language_java;
613 return demangled;
614 }
615 }
616 if (gsymbol->language == language_d
617 || gsymbol->language == language_auto)
618 {
619 demangled = d_demangle(mangled, 0);
620 if (demangled != NULL)
621 {
622 gsymbol->language = language_d;
623 return demangled;
624 }
625 }
626 /* FIXME(dje): Continually adding languages here is clumsy.
627 Better to just call la_demangle if !auto, and if auto then call
628 a utility routine that tries successive languages in turn and reports
629 which one it finds. I realize the la_demangle options may be different
630 for different languages but there's already a FIXME for that. */
631 if (gsymbol->language == language_go
632 || gsymbol->language == language_auto)
633 {
634 demangled = go_demangle (mangled, 0);
635 if (demangled != NULL)
636 {
637 gsymbol->language = language_go;
638 return demangled;
639 }
640 }
641
642 /* We could support `gsymbol->language == language_fortran' here to provide
643 module namespaces also for inferiors with only minimal symbol table (ELF
644 symbols). Just the mangling standard is not standardized across compilers
645 and there is no DW_AT_producer available for inferiors with only the ELF
646 symbols to check the mangling kind. */
647 return NULL;
648 }
649
650 /* Set both the mangled and demangled (if any) names for GSYMBOL based
651 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
652 objfile's obstack; but if COPY_NAME is 0 and if NAME is
653 NUL-terminated, then this function assumes that NAME is already
654 correctly saved (either permanently or with a lifetime tied to the
655 objfile), and it will not be copied.
656
657 The hash table corresponding to OBJFILE is used, and the memory
658 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
659 so the pointer can be discarded after calling this function. */
660
661 /* We have to be careful when dealing with Java names: when we run
662 into a Java minimal symbol, we don't know it's a Java symbol, so it
663 gets demangled as a C++ name. This is unfortunate, but there's not
664 much we can do about it: but when demangling partial symbols and
665 regular symbols, we'd better not reuse the wrong demangled name.
666 (See PR gdb/1039.) We solve this by putting a distinctive prefix
667 on Java names when storing them in the hash table. */
668
669 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
670 don't mind the Java prefix so much: different languages have
671 different demangling requirements, so it's only natural that we
672 need to keep language data around in our demangling cache. But
673 it's not good that the minimal symbol has the wrong demangled name.
674 Unfortunately, I can't think of any easy solution to that
675 problem. */
676
677 #define JAVA_PREFIX "##JAVA$$"
678 #define JAVA_PREFIX_LEN 8
679
680 void
681 symbol_set_names (struct general_symbol_info *gsymbol,
682 const char *linkage_name, int len, int copy_name,
683 struct objfile *objfile)
684 {
685 struct demangled_name_entry **slot;
686 /* A 0-terminated copy of the linkage name. */
687 const char *linkage_name_copy;
688 /* A copy of the linkage name that might have a special Java prefix
689 added to it, for use when looking names up in the hash table. */
690 const char *lookup_name;
691 /* The length of lookup_name. */
692 int lookup_len;
693 struct demangled_name_entry entry;
694
695 if (gsymbol->language == language_ada)
696 {
697 /* In Ada, we do the symbol lookups using the mangled name, so
698 we can save some space by not storing the demangled name.
699
700 As a side note, we have also observed some overlap between
701 the C++ mangling and Ada mangling, similarly to what has
702 been observed with Java. Because we don't store the demangled
703 name with the symbol, we don't need to use the same trick
704 as Java. */
705 if (!copy_name)
706 gsymbol->name = linkage_name;
707 else
708 {
709 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
710
711 memcpy (name, linkage_name, len);
712 name[len] = '\0';
713 gsymbol->name = name;
714 }
715 symbol_set_demangled_name (gsymbol, NULL, NULL);
716
717 return;
718 }
719
720 if (objfile->demangled_names_hash == NULL)
721 create_demangled_names_hash (objfile);
722
723 /* The stabs reader generally provides names that are not
724 NUL-terminated; most of the other readers don't do this, so we
725 can just use the given copy, unless we're in the Java case. */
726 if (gsymbol->language == language_java)
727 {
728 char *alloc_name;
729
730 lookup_len = len + JAVA_PREFIX_LEN;
731 alloc_name = alloca (lookup_len + 1);
732 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
733 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
734 alloc_name[lookup_len] = '\0';
735
736 lookup_name = alloc_name;
737 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
738 }
739 else if (linkage_name[len] != '\0')
740 {
741 char *alloc_name;
742
743 lookup_len = len;
744 alloc_name = alloca (lookup_len + 1);
745 memcpy (alloc_name, linkage_name, len);
746 alloc_name[lookup_len] = '\0';
747
748 lookup_name = alloc_name;
749 linkage_name_copy = alloc_name;
750 }
751 else
752 {
753 lookup_len = len;
754 lookup_name = linkage_name;
755 linkage_name_copy = linkage_name;
756 }
757
758 entry.mangled = (char *) lookup_name;
759 slot = ((struct demangled_name_entry **)
760 htab_find_slot (objfile->demangled_names_hash,
761 &entry, INSERT));
762
763 /* If this name is not in the hash table, add it. */
764 if (*slot == NULL
765 /* A C version of the symbol may have already snuck into the table.
766 This happens to, e.g., main.init (__go_init_main). Cope. */
767 || (gsymbol->language == language_go
768 && (*slot)->demangled[0] == '\0'))
769 {
770 char *demangled_name = symbol_find_demangled_name (gsymbol,
771 linkage_name_copy);
772 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
773
774 /* Suppose we have demangled_name==NULL, copy_name==0, and
775 lookup_name==linkage_name. In this case, we already have the
776 mangled name saved, and we don't have a demangled name. So,
777 you might think we could save a little space by not recording
778 this in the hash table at all.
779
780 It turns out that it is actually important to still save such
781 an entry in the hash table, because storing this name gives
782 us better bcache hit rates for partial symbols. */
783 if (!copy_name && lookup_name == linkage_name)
784 {
785 *slot = obstack_alloc (&objfile->objfile_obstack,
786 offsetof (struct demangled_name_entry,
787 demangled)
788 + demangled_len + 1);
789 (*slot)->mangled = (char *) lookup_name;
790 }
791 else
792 {
793 /* If we must copy the mangled name, put it directly after
794 the demangled name so we can have a single
795 allocation. */
796 *slot = obstack_alloc (&objfile->objfile_obstack,
797 offsetof (struct demangled_name_entry,
798 demangled)
799 + lookup_len + demangled_len + 2);
800 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
801 strcpy ((*slot)->mangled, lookup_name);
802 }
803
804 if (demangled_name != NULL)
805 {
806 strcpy ((*slot)->demangled, demangled_name);
807 xfree (demangled_name);
808 }
809 else
810 (*slot)->demangled[0] = '\0';
811 }
812
813 gsymbol->name = (*slot)->mangled + lookup_len - len;
814 if ((*slot)->demangled[0] != '\0')
815 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
816 else
817 symbol_set_demangled_name (gsymbol, NULL, objfile);
818 }
819
820 /* Return the source code name of a symbol. In languages where
821 demangling is necessary, this is the demangled name. */
822
823 const char *
824 symbol_natural_name (const struct general_symbol_info *gsymbol)
825 {
826 switch (gsymbol->language)
827 {
828 case language_cplus:
829 case language_d:
830 case language_go:
831 case language_java:
832 case language_objc:
833 case language_fortran:
834 if (symbol_get_demangled_name (gsymbol) != NULL)
835 return symbol_get_demangled_name (gsymbol);
836 break;
837 case language_ada:
838 if (symbol_get_demangled_name (gsymbol) != NULL)
839 return symbol_get_demangled_name (gsymbol);
840 else
841 return ada_decode_symbol (gsymbol);
842 break;
843 default:
844 break;
845 }
846 return gsymbol->name;
847 }
848
849 /* Return the demangled name for a symbol based on the language for
850 that symbol. If no demangled name exists, return NULL. */
851
852 const char *
853 symbol_demangled_name (const struct general_symbol_info *gsymbol)
854 {
855 const char *dem_name = NULL;
856
857 switch (gsymbol->language)
858 {
859 case language_cplus:
860 case language_d:
861 case language_go:
862 case language_java:
863 case language_objc:
864 case language_fortran:
865 dem_name = symbol_get_demangled_name (gsymbol);
866 break;
867 case language_ada:
868 dem_name = symbol_get_demangled_name (gsymbol);
869 if (dem_name == NULL)
870 dem_name = ada_decode_symbol (gsymbol);
871 break;
872 default:
873 break;
874 }
875 return dem_name;
876 }
877
878 /* Return the search name of a symbol---generally the demangled or
879 linkage name of the symbol, depending on how it will be searched for.
880 If there is no distinct demangled name, then returns the same value
881 (same pointer) as SYMBOL_LINKAGE_NAME. */
882
883 const char *
884 symbol_search_name (const struct general_symbol_info *gsymbol)
885 {
886 if (gsymbol->language == language_ada)
887 return gsymbol->name;
888 else
889 return symbol_natural_name (gsymbol);
890 }
891
892 /* Initialize the structure fields to zero values. */
893
894 void
895 init_sal (struct symtab_and_line *sal)
896 {
897 sal->pspace = NULL;
898 sal->symtab = 0;
899 sal->section = 0;
900 sal->line = 0;
901 sal->pc = 0;
902 sal->end = 0;
903 sal->explicit_pc = 0;
904 sal->explicit_line = 0;
905 sal->probe = NULL;
906 }
907 \f
908
909 /* Return 1 if the two sections are the same, or if they could
910 plausibly be copies of each other, one in an original object
911 file and another in a separated debug file. */
912
913 int
914 matching_obj_sections (struct obj_section *obj_first,
915 struct obj_section *obj_second)
916 {
917 asection *first = obj_first? obj_first->the_bfd_section : NULL;
918 asection *second = obj_second? obj_second->the_bfd_section : NULL;
919 struct objfile *obj;
920
921 /* If they're the same section, then they match. */
922 if (first == second)
923 return 1;
924
925 /* If either is NULL, give up. */
926 if (first == NULL || second == NULL)
927 return 0;
928
929 /* This doesn't apply to absolute symbols. */
930 if (first->owner == NULL || second->owner == NULL)
931 return 0;
932
933 /* If they're in the same object file, they must be different sections. */
934 if (first->owner == second->owner)
935 return 0;
936
937 /* Check whether the two sections are potentially corresponding. They must
938 have the same size, address, and name. We can't compare section indexes,
939 which would be more reliable, because some sections may have been
940 stripped. */
941 if (bfd_get_section_size (first) != bfd_get_section_size (second))
942 return 0;
943
944 /* In-memory addresses may start at a different offset, relativize them. */
945 if (bfd_get_section_vma (first->owner, first)
946 - bfd_get_start_address (first->owner)
947 != bfd_get_section_vma (second->owner, second)
948 - bfd_get_start_address (second->owner))
949 return 0;
950
951 if (bfd_get_section_name (first->owner, first) == NULL
952 || bfd_get_section_name (second->owner, second) == NULL
953 || strcmp (bfd_get_section_name (first->owner, first),
954 bfd_get_section_name (second->owner, second)) != 0)
955 return 0;
956
957 /* Otherwise check that they are in corresponding objfiles. */
958
959 ALL_OBJFILES (obj)
960 if (obj->obfd == first->owner)
961 break;
962 gdb_assert (obj != NULL);
963
964 if (obj->separate_debug_objfile != NULL
965 && obj->separate_debug_objfile->obfd == second->owner)
966 return 1;
967 if (obj->separate_debug_objfile_backlink != NULL
968 && obj->separate_debug_objfile_backlink->obfd == second->owner)
969 return 1;
970
971 return 0;
972 }
973
974 struct symtab *
975 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
976 {
977 struct objfile *objfile;
978 struct minimal_symbol *msymbol;
979
980 /* If we know that this is not a text address, return failure. This is
981 necessary because we loop based on texthigh and textlow, which do
982 not include the data ranges. */
983 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
984 if (msymbol
985 && (MSYMBOL_TYPE (msymbol) == mst_data
986 || MSYMBOL_TYPE (msymbol) == mst_bss
987 || MSYMBOL_TYPE (msymbol) == mst_abs
988 || MSYMBOL_TYPE (msymbol) == mst_file_data
989 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
990 return NULL;
991
992 ALL_OBJFILES (objfile)
993 {
994 struct symtab *result = NULL;
995
996 if (objfile->sf)
997 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
998 pc, section, 0);
999 if (result)
1000 return result;
1001 }
1002
1003 return NULL;
1004 }
1005 \f
1006 /* Debug symbols usually don't have section information. We need to dig that
1007 out of the minimal symbols and stash that in the debug symbol. */
1008
1009 void
1010 fixup_section (struct general_symbol_info *ginfo,
1011 CORE_ADDR addr, struct objfile *objfile)
1012 {
1013 struct minimal_symbol *msym;
1014
1015 /* First, check whether a minimal symbol with the same name exists
1016 and points to the same address. The address check is required
1017 e.g. on PowerPC64, where the minimal symbol for a function will
1018 point to the function descriptor, while the debug symbol will
1019 point to the actual function code. */
1020 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1021 if (msym)
1022 {
1023 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1024 ginfo->section = SYMBOL_SECTION (msym);
1025 }
1026 else
1027 {
1028 /* Static, function-local variables do appear in the linker
1029 (minimal) symbols, but are frequently given names that won't
1030 be found via lookup_minimal_symbol(). E.g., it has been
1031 observed in frv-uclinux (ELF) executables that a static,
1032 function-local variable named "foo" might appear in the
1033 linker symbols as "foo.6" or "foo.3". Thus, there is no
1034 point in attempting to extend the lookup-by-name mechanism to
1035 handle this case due to the fact that there can be multiple
1036 names.
1037
1038 So, instead, search the section table when lookup by name has
1039 failed. The ``addr'' and ``endaddr'' fields may have already
1040 been relocated. If so, the relocation offset (i.e. the
1041 ANOFFSET value) needs to be subtracted from these values when
1042 performing the comparison. We unconditionally subtract it,
1043 because, when no relocation has been performed, the ANOFFSET
1044 value will simply be zero.
1045
1046 The address of the symbol whose section we're fixing up HAS
1047 NOT BEEN adjusted (relocated) yet. It can't have been since
1048 the section isn't yet known and knowing the section is
1049 necessary in order to add the correct relocation value. In
1050 other words, we wouldn't even be in this function (attempting
1051 to compute the section) if it were already known.
1052
1053 Note that it is possible to search the minimal symbols
1054 (subtracting the relocation value if necessary) to find the
1055 matching minimal symbol, but this is overkill and much less
1056 efficient. It is not necessary to find the matching minimal
1057 symbol, only its section.
1058
1059 Note that this technique (of doing a section table search)
1060 can fail when unrelocated section addresses overlap. For
1061 this reason, we still attempt a lookup by name prior to doing
1062 a search of the section table. */
1063
1064 struct obj_section *s;
1065
1066 ALL_OBJFILE_OSECTIONS (objfile, s)
1067 {
1068 int idx = s->the_bfd_section->index;
1069 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1070
1071 if (obj_section_addr (s) - offset <= addr
1072 && addr < obj_section_endaddr (s) - offset)
1073 {
1074 ginfo->obj_section = s;
1075 ginfo->section = idx;
1076 return;
1077 }
1078 }
1079 }
1080 }
1081
1082 struct symbol *
1083 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1084 {
1085 CORE_ADDR addr;
1086
1087 if (!sym)
1088 return NULL;
1089
1090 if (SYMBOL_OBJ_SECTION (sym))
1091 return sym;
1092
1093 /* We either have an OBJFILE, or we can get at it from the sym's
1094 symtab. Anything else is a bug. */
1095 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1096
1097 if (objfile == NULL)
1098 objfile = SYMBOL_SYMTAB (sym)->objfile;
1099
1100 /* We should have an objfile by now. */
1101 gdb_assert (objfile);
1102
1103 switch (SYMBOL_CLASS (sym))
1104 {
1105 case LOC_STATIC:
1106 case LOC_LABEL:
1107 addr = SYMBOL_VALUE_ADDRESS (sym);
1108 break;
1109 case LOC_BLOCK:
1110 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1111 break;
1112
1113 default:
1114 /* Nothing else will be listed in the minsyms -- no use looking
1115 it up. */
1116 return sym;
1117 }
1118
1119 fixup_section (&sym->ginfo, addr, objfile);
1120
1121 return sym;
1122 }
1123
1124 /* Compute the demangled form of NAME as used by the various symbol
1125 lookup functions. The result is stored in *RESULT_NAME. Returns a
1126 cleanup which can be used to clean up the result.
1127
1128 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1129 Normally, Ada symbol lookups are performed using the encoded name
1130 rather than the demangled name, and so it might seem to make sense
1131 for this function to return an encoded version of NAME.
1132 Unfortunately, we cannot do this, because this function is used in
1133 circumstances where it is not appropriate to try to encode NAME.
1134 For instance, when displaying the frame info, we demangle the name
1135 of each parameter, and then perform a symbol lookup inside our
1136 function using that demangled name. In Ada, certain functions
1137 have internally-generated parameters whose name contain uppercase
1138 characters. Encoding those name would result in those uppercase
1139 characters to become lowercase, and thus cause the symbol lookup
1140 to fail. */
1141
1142 struct cleanup *
1143 demangle_for_lookup (const char *name, enum language lang,
1144 const char **result_name)
1145 {
1146 char *demangled_name = NULL;
1147 const char *modified_name = NULL;
1148 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1149
1150 modified_name = name;
1151
1152 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1153 lookup, so we can always binary search. */
1154 if (lang == language_cplus)
1155 {
1156 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1157 if (demangled_name)
1158 {
1159 modified_name = demangled_name;
1160 make_cleanup (xfree, demangled_name);
1161 }
1162 else
1163 {
1164 /* If we were given a non-mangled name, canonicalize it
1165 according to the language (so far only for C++). */
1166 demangled_name = cp_canonicalize_string (name);
1167 if (demangled_name)
1168 {
1169 modified_name = demangled_name;
1170 make_cleanup (xfree, demangled_name);
1171 }
1172 }
1173 }
1174 else if (lang == language_java)
1175 {
1176 demangled_name = cplus_demangle (name,
1177 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1178 if (demangled_name)
1179 {
1180 modified_name = demangled_name;
1181 make_cleanup (xfree, demangled_name);
1182 }
1183 }
1184 else if (lang == language_d)
1185 {
1186 demangled_name = d_demangle (name, 0);
1187 if (demangled_name)
1188 {
1189 modified_name = demangled_name;
1190 make_cleanup (xfree, demangled_name);
1191 }
1192 }
1193 else if (lang == language_go)
1194 {
1195 demangled_name = go_demangle (name, 0);
1196 if (demangled_name)
1197 {
1198 modified_name = demangled_name;
1199 make_cleanup (xfree, demangled_name);
1200 }
1201 }
1202
1203 *result_name = modified_name;
1204 return cleanup;
1205 }
1206
1207 /* Find the definition for a specified symbol name NAME
1208 in domain DOMAIN, visible from lexical block BLOCK.
1209 Returns the struct symbol pointer, or zero if no symbol is found.
1210 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1211 NAME is a field of the current implied argument `this'. If so set
1212 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1213 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1214 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1215
1216 /* This function (or rather its subordinates) have a bunch of loops and
1217 it would seem to be attractive to put in some QUIT's (though I'm not really
1218 sure whether it can run long enough to be really important). But there
1219 are a few calls for which it would appear to be bad news to quit
1220 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1221 that there is C++ code below which can error(), but that probably
1222 doesn't affect these calls since they are looking for a known
1223 variable and thus can probably assume it will never hit the C++
1224 code). */
1225
1226 struct symbol *
1227 lookup_symbol_in_language (const char *name, const struct block *block,
1228 const domain_enum domain, enum language lang,
1229 int *is_a_field_of_this)
1230 {
1231 const char *modified_name;
1232 struct symbol *returnval;
1233 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1234
1235 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1236 is_a_field_of_this);
1237 do_cleanups (cleanup);
1238
1239 return returnval;
1240 }
1241
1242 /* Behave like lookup_symbol_in_language, but performed with the
1243 current language. */
1244
1245 struct symbol *
1246 lookup_symbol (const char *name, const struct block *block,
1247 domain_enum domain, int *is_a_field_of_this)
1248 {
1249 return lookup_symbol_in_language (name, block, domain,
1250 current_language->la_language,
1251 is_a_field_of_this);
1252 }
1253
1254 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1255 found, or NULL if not found. */
1256
1257 struct symbol *
1258 lookup_language_this (const struct language_defn *lang,
1259 const struct block *block)
1260 {
1261 if (lang->la_name_of_this == NULL || block == NULL)
1262 return NULL;
1263
1264 while (block)
1265 {
1266 struct symbol *sym;
1267
1268 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1269 if (sym != NULL)
1270 {
1271 block_found = block;
1272 return sym;
1273 }
1274 if (BLOCK_FUNCTION (block))
1275 break;
1276 block = BLOCK_SUPERBLOCK (block);
1277 }
1278
1279 return NULL;
1280 }
1281
1282 /* Behave like lookup_symbol except that NAME is the natural name
1283 (e.g., demangled name) of the symbol that we're looking for. */
1284
1285 static struct symbol *
1286 lookup_symbol_aux (const char *name, const struct block *block,
1287 const domain_enum domain, enum language language,
1288 int *is_a_field_of_this)
1289 {
1290 struct symbol *sym;
1291 const struct language_defn *langdef;
1292
1293 /* Make sure we do something sensible with is_a_field_of_this, since
1294 the callers that set this parameter to some non-null value will
1295 certainly use it later and expect it to be either 0 or 1.
1296 If we don't set it, the contents of is_a_field_of_this are
1297 undefined. */
1298 if (is_a_field_of_this != NULL)
1299 *is_a_field_of_this = 0;
1300
1301 /* Search specified block and its superiors. Don't search
1302 STATIC_BLOCK or GLOBAL_BLOCK. */
1303
1304 sym = lookup_symbol_aux_local (name, block, domain, language);
1305 if (sym != NULL)
1306 return sym;
1307
1308 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1309 check to see if NAME is a field of `this'. */
1310
1311 langdef = language_def (language);
1312
1313 if (is_a_field_of_this != NULL)
1314 {
1315 struct symbol *sym = lookup_language_this (langdef, block);
1316
1317 if (sym)
1318 {
1319 struct type *t = sym->type;
1320
1321 /* I'm not really sure that type of this can ever
1322 be typedefed; just be safe. */
1323 CHECK_TYPEDEF (t);
1324 if (TYPE_CODE (t) == TYPE_CODE_PTR
1325 || TYPE_CODE (t) == TYPE_CODE_REF)
1326 t = TYPE_TARGET_TYPE (t);
1327
1328 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1329 && TYPE_CODE (t) != TYPE_CODE_UNION)
1330 error (_("Internal error: `%s' is not an aggregate"),
1331 langdef->la_name_of_this);
1332
1333 if (check_field (t, name))
1334 {
1335 *is_a_field_of_this = 1;
1336 return NULL;
1337 }
1338 }
1339 }
1340
1341 /* Now do whatever is appropriate for LANGUAGE to look
1342 up static and global variables. */
1343
1344 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1345 if (sym != NULL)
1346 return sym;
1347
1348 /* Now search all static file-level symbols. Not strictly correct,
1349 but more useful than an error. */
1350
1351 return lookup_static_symbol_aux (name, domain);
1352 }
1353
1354 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1355 first, then check the psymtabs. If a psymtab indicates the existence of the
1356 desired name as a file-level static, then do psymtab-to-symtab conversion on
1357 the fly and return the found symbol. */
1358
1359 struct symbol *
1360 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1361 {
1362 struct objfile *objfile;
1363 struct symbol *sym;
1364
1365 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1366 if (sym != NULL)
1367 return sym;
1368
1369 ALL_OBJFILES (objfile)
1370 {
1371 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1372 if (sym != NULL)
1373 return sym;
1374 }
1375
1376 return NULL;
1377 }
1378
1379 /* Check to see if the symbol is defined in BLOCK or its superiors.
1380 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1381
1382 static struct symbol *
1383 lookup_symbol_aux_local (const char *name, const struct block *block,
1384 const domain_enum domain,
1385 enum language language)
1386 {
1387 struct symbol *sym;
1388 const struct block *static_block = block_static_block (block);
1389 const char *scope = block_scope (block);
1390
1391 /* Check if either no block is specified or it's a global block. */
1392
1393 if (static_block == NULL)
1394 return NULL;
1395
1396 while (block != static_block)
1397 {
1398 sym = lookup_symbol_aux_block (name, block, domain);
1399 if (sym != NULL)
1400 return sym;
1401
1402 if (language == language_cplus || language == language_fortran)
1403 {
1404 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1405 domain);
1406 if (sym != NULL)
1407 return sym;
1408 }
1409
1410 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1411 break;
1412 block = BLOCK_SUPERBLOCK (block);
1413 }
1414
1415 /* We've reached the edge of the function without finding a result. */
1416
1417 return NULL;
1418 }
1419
1420 /* Look up OBJFILE to BLOCK. */
1421
1422 struct objfile *
1423 lookup_objfile_from_block (const struct block *block)
1424 {
1425 struct objfile *obj;
1426 struct symtab *s;
1427
1428 if (block == NULL)
1429 return NULL;
1430
1431 block = block_global_block (block);
1432 /* Go through SYMTABS. */
1433 ALL_SYMTABS (obj, s)
1434 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1435 {
1436 if (obj->separate_debug_objfile_backlink)
1437 obj = obj->separate_debug_objfile_backlink;
1438
1439 return obj;
1440 }
1441
1442 return NULL;
1443 }
1444
1445 /* Look up a symbol in a block; if found, fixup the symbol, and set
1446 block_found appropriately. */
1447
1448 struct symbol *
1449 lookup_symbol_aux_block (const char *name, const struct block *block,
1450 const domain_enum domain)
1451 {
1452 struct symbol *sym;
1453
1454 sym = lookup_block_symbol (block, name, domain);
1455 if (sym)
1456 {
1457 block_found = block;
1458 return fixup_symbol_section (sym, NULL);
1459 }
1460
1461 return NULL;
1462 }
1463
1464 /* Check all global symbols in OBJFILE in symtabs and
1465 psymtabs. */
1466
1467 struct symbol *
1468 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1469 const char *name,
1470 const domain_enum domain)
1471 {
1472 const struct objfile *objfile;
1473 struct symbol *sym;
1474 struct blockvector *bv;
1475 const struct block *block;
1476 struct symtab *s;
1477
1478 for (objfile = main_objfile;
1479 objfile;
1480 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1481 {
1482 /* Go through symtabs. */
1483 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1484 {
1485 bv = BLOCKVECTOR (s);
1486 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1487 sym = lookup_block_symbol (block, name, domain);
1488 if (sym)
1489 {
1490 block_found = block;
1491 return fixup_symbol_section (sym, (struct objfile *)objfile);
1492 }
1493 }
1494
1495 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1496 name, domain);
1497 if (sym)
1498 return sym;
1499 }
1500
1501 return NULL;
1502 }
1503
1504 /* Check to see if the symbol is defined in one of the OBJFILE's
1505 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1506 depending on whether or not we want to search global symbols or
1507 static symbols. */
1508
1509 static struct symbol *
1510 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1511 const char *name, const domain_enum domain)
1512 {
1513 struct symbol *sym = NULL;
1514 struct blockvector *bv;
1515 const struct block *block;
1516 struct symtab *s;
1517
1518 if (objfile->sf)
1519 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1520 name, domain);
1521
1522 ALL_OBJFILE_SYMTABS (objfile, s)
1523 if (s->primary)
1524 {
1525 bv = BLOCKVECTOR (s);
1526 block = BLOCKVECTOR_BLOCK (bv, block_index);
1527 sym = lookup_block_symbol (block, name, domain);
1528 if (sym)
1529 {
1530 block_found = block;
1531 return fixup_symbol_section (sym, objfile);
1532 }
1533 }
1534
1535 return NULL;
1536 }
1537
1538 /* Same as lookup_symbol_aux_objfile, except that it searches all
1539 objfiles. Return the first match found. */
1540
1541 static struct symbol *
1542 lookup_symbol_aux_symtabs (int block_index, const char *name,
1543 const domain_enum domain)
1544 {
1545 struct symbol *sym;
1546 struct objfile *objfile;
1547
1548 ALL_OBJFILES (objfile)
1549 {
1550 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1551 if (sym)
1552 return sym;
1553 }
1554
1555 return NULL;
1556 }
1557
1558 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1559 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1560 and all related objfiles. */
1561
1562 static struct symbol *
1563 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1564 const char *linkage_name,
1565 domain_enum domain)
1566 {
1567 enum language lang = current_language->la_language;
1568 const char *modified_name;
1569 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1570 &modified_name);
1571 struct objfile *main_objfile, *cur_objfile;
1572
1573 if (objfile->separate_debug_objfile_backlink)
1574 main_objfile = objfile->separate_debug_objfile_backlink;
1575 else
1576 main_objfile = objfile;
1577
1578 for (cur_objfile = main_objfile;
1579 cur_objfile;
1580 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1581 {
1582 struct symbol *sym;
1583
1584 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1585 modified_name, domain);
1586 if (sym == NULL)
1587 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1588 modified_name, domain);
1589 if (sym != NULL)
1590 {
1591 do_cleanups (cleanup);
1592 return sym;
1593 }
1594 }
1595
1596 do_cleanups (cleanup);
1597 return NULL;
1598 }
1599
1600 /* A helper function for lookup_symbol_aux that interfaces with the
1601 "quick" symbol table functions. */
1602
1603 static struct symbol *
1604 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1605 const char *name, const domain_enum domain)
1606 {
1607 struct symtab *symtab;
1608 struct blockvector *bv;
1609 const struct block *block;
1610 struct symbol *sym;
1611
1612 if (!objfile->sf)
1613 return NULL;
1614 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1615 if (!symtab)
1616 return NULL;
1617
1618 bv = BLOCKVECTOR (symtab);
1619 block = BLOCKVECTOR_BLOCK (bv, kind);
1620 sym = lookup_block_symbol (block, name, domain);
1621 if (!sym)
1622 {
1623 /* This shouldn't be necessary, but as a last resort try
1624 looking in the statics even though the psymtab claimed
1625 the symbol was global, or vice-versa. It's possible
1626 that the psymtab gets it wrong in some cases. */
1627
1628 /* FIXME: carlton/2002-09-30: Should we really do that?
1629 If that happens, isn't it likely to be a GDB error, in
1630 which case we should fix the GDB error rather than
1631 silently dealing with it here? So I'd vote for
1632 removing the check for the symbol in the other
1633 block. */
1634 block = BLOCKVECTOR_BLOCK (bv,
1635 kind == GLOBAL_BLOCK ?
1636 STATIC_BLOCK : GLOBAL_BLOCK);
1637 sym = lookup_block_symbol (block, name, domain);
1638 if (!sym)
1639 error (_("\
1640 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1641 %s may be an inlined function, or may be a template function\n\
1642 (if a template, try specifying an instantiation: %s<type>)."),
1643 kind == GLOBAL_BLOCK ? "global" : "static",
1644 name, symtab->filename, name, name);
1645 }
1646 return fixup_symbol_section (sym, objfile);
1647 }
1648
1649 /* A default version of lookup_symbol_nonlocal for use by languages
1650 that can't think of anything better to do. This implements the C
1651 lookup rules. */
1652
1653 struct symbol *
1654 basic_lookup_symbol_nonlocal (const char *name,
1655 const struct block *block,
1656 const domain_enum domain)
1657 {
1658 struct symbol *sym;
1659
1660 /* NOTE: carlton/2003-05-19: The comments below were written when
1661 this (or what turned into this) was part of lookup_symbol_aux;
1662 I'm much less worried about these questions now, since these
1663 decisions have turned out well, but I leave these comments here
1664 for posterity. */
1665
1666 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1667 not it would be appropriate to search the current global block
1668 here as well. (That's what this code used to do before the
1669 is_a_field_of_this check was moved up.) On the one hand, it's
1670 redundant with the lookup_symbol_aux_symtabs search that happens
1671 next. On the other hand, if decode_line_1 is passed an argument
1672 like filename:var, then the user presumably wants 'var' to be
1673 searched for in filename. On the third hand, there shouldn't be
1674 multiple global variables all of which are named 'var', and it's
1675 not like decode_line_1 has ever restricted its search to only
1676 global variables in a single filename. All in all, only
1677 searching the static block here seems best: it's correct and it's
1678 cleanest. */
1679
1680 /* NOTE: carlton/2002-12-05: There's also a possible performance
1681 issue here: if you usually search for global symbols in the
1682 current file, then it would be slightly better to search the
1683 current global block before searching all the symtabs. But there
1684 are other factors that have a much greater effect on performance
1685 than that one, so I don't think we should worry about that for
1686 now. */
1687
1688 sym = lookup_symbol_static (name, block, domain);
1689 if (sym != NULL)
1690 return sym;
1691
1692 return lookup_symbol_global (name, block, domain);
1693 }
1694
1695 /* Lookup a symbol in the static block associated to BLOCK, if there
1696 is one; do nothing if BLOCK is NULL or a global block. */
1697
1698 struct symbol *
1699 lookup_symbol_static (const char *name,
1700 const struct block *block,
1701 const domain_enum domain)
1702 {
1703 const struct block *static_block = block_static_block (block);
1704
1705 if (static_block != NULL)
1706 return lookup_symbol_aux_block (name, static_block, domain);
1707 else
1708 return NULL;
1709 }
1710
1711 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1712
1713 struct global_sym_lookup_data
1714 {
1715 /* The name of the symbol we are searching for. */
1716 const char *name;
1717
1718 /* The domain to use for our search. */
1719 domain_enum domain;
1720
1721 /* The field where the callback should store the symbol if found.
1722 It should be initialized to NULL before the search is started. */
1723 struct symbol *result;
1724 };
1725
1726 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1727 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1728 OBJFILE. The arguments for the search are passed via CB_DATA,
1729 which in reality is a pointer to struct global_sym_lookup_data. */
1730
1731 static int
1732 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1733 void *cb_data)
1734 {
1735 struct global_sym_lookup_data *data =
1736 (struct global_sym_lookup_data *) cb_data;
1737
1738 gdb_assert (data->result == NULL);
1739
1740 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1741 data->name, data->domain);
1742 if (data->result == NULL)
1743 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1744 data->name, data->domain);
1745
1746 /* If we found a match, tell the iterator to stop. Otherwise,
1747 keep going. */
1748 return (data->result != NULL);
1749 }
1750
1751 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1752 necessary). */
1753
1754 struct symbol *
1755 lookup_symbol_global (const char *name,
1756 const struct block *block,
1757 const domain_enum domain)
1758 {
1759 struct symbol *sym = NULL;
1760 struct objfile *objfile = NULL;
1761 struct global_sym_lookup_data lookup_data;
1762
1763 /* Call library-specific lookup procedure. */
1764 objfile = lookup_objfile_from_block (block);
1765 if (objfile != NULL)
1766 sym = solib_global_lookup (objfile, name, domain);
1767 if (sym != NULL)
1768 return sym;
1769
1770 memset (&lookup_data, 0, sizeof (lookup_data));
1771 lookup_data.name = name;
1772 lookup_data.domain = domain;
1773 gdbarch_iterate_over_objfiles_in_search_order
1774 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch,
1775 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1776
1777 return lookup_data.result;
1778 }
1779
1780 int
1781 symbol_matches_domain (enum language symbol_language,
1782 domain_enum symbol_domain,
1783 domain_enum domain)
1784 {
1785 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1786 A Java class declaration also defines a typedef for the class.
1787 Similarly, any Ada type declaration implicitly defines a typedef. */
1788 if (symbol_language == language_cplus
1789 || symbol_language == language_d
1790 || symbol_language == language_java
1791 || symbol_language == language_ada)
1792 {
1793 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1794 && symbol_domain == STRUCT_DOMAIN)
1795 return 1;
1796 }
1797 /* For all other languages, strict match is required. */
1798 return (symbol_domain == domain);
1799 }
1800
1801 /* Look up a type named NAME in the struct_domain. The type returned
1802 must not be opaque -- i.e., must have at least one field
1803 defined. */
1804
1805 struct type *
1806 lookup_transparent_type (const char *name)
1807 {
1808 return current_language->la_lookup_transparent_type (name);
1809 }
1810
1811 /* A helper for basic_lookup_transparent_type that interfaces with the
1812 "quick" symbol table functions. */
1813
1814 static struct type *
1815 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1816 const char *name)
1817 {
1818 struct symtab *symtab;
1819 struct blockvector *bv;
1820 struct block *block;
1821 struct symbol *sym;
1822
1823 if (!objfile->sf)
1824 return NULL;
1825 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1826 if (!symtab)
1827 return NULL;
1828
1829 bv = BLOCKVECTOR (symtab);
1830 block = BLOCKVECTOR_BLOCK (bv, kind);
1831 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1832 if (!sym)
1833 {
1834 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1835
1836 /* This shouldn't be necessary, but as a last resort
1837 * try looking in the 'other kind' even though the psymtab
1838 * claimed the symbol was one thing. It's possible that
1839 * the psymtab gets it wrong in some cases.
1840 */
1841 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1842 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1843 if (!sym)
1844 /* FIXME; error is wrong in one case. */
1845 error (_("\
1846 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1847 %s may be an inlined function, or may be a template function\n\
1848 (if a template, try specifying an instantiation: %s<type>)."),
1849 name, symtab->filename, name, name);
1850 }
1851 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1852 return SYMBOL_TYPE (sym);
1853
1854 return NULL;
1855 }
1856
1857 /* The standard implementation of lookup_transparent_type. This code
1858 was modeled on lookup_symbol -- the parts not relevant to looking
1859 up types were just left out. In particular it's assumed here that
1860 types are available in struct_domain and only at file-static or
1861 global blocks. */
1862
1863 struct type *
1864 basic_lookup_transparent_type (const char *name)
1865 {
1866 struct symbol *sym;
1867 struct symtab *s = NULL;
1868 struct blockvector *bv;
1869 struct objfile *objfile;
1870 struct block *block;
1871 struct type *t;
1872
1873 /* Now search all the global symbols. Do the symtab's first, then
1874 check the psymtab's. If a psymtab indicates the existence
1875 of the desired name as a global, then do psymtab-to-symtab
1876 conversion on the fly and return the found symbol. */
1877
1878 ALL_OBJFILES (objfile)
1879 {
1880 if (objfile->sf)
1881 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1882 GLOBAL_BLOCK,
1883 name, STRUCT_DOMAIN);
1884
1885 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1886 {
1887 bv = BLOCKVECTOR (s);
1888 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1889 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1890 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1891 {
1892 return SYMBOL_TYPE (sym);
1893 }
1894 }
1895 }
1896
1897 ALL_OBJFILES (objfile)
1898 {
1899 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1900 if (t)
1901 return t;
1902 }
1903
1904 /* Now search the static file-level symbols.
1905 Not strictly correct, but more useful than an error.
1906 Do the symtab's first, then
1907 check the psymtab's. If a psymtab indicates the existence
1908 of the desired name as a file-level static, then do psymtab-to-symtab
1909 conversion on the fly and return the found symbol. */
1910
1911 ALL_OBJFILES (objfile)
1912 {
1913 if (objfile->sf)
1914 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1915 name, STRUCT_DOMAIN);
1916
1917 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1918 {
1919 bv = BLOCKVECTOR (s);
1920 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1921 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1922 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1923 {
1924 return SYMBOL_TYPE (sym);
1925 }
1926 }
1927 }
1928
1929 ALL_OBJFILES (objfile)
1930 {
1931 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1932 if (t)
1933 return t;
1934 }
1935
1936 return (struct type *) 0;
1937 }
1938
1939 /* Find the name of the file containing main(). */
1940 /* FIXME: What about languages without main() or specially linked
1941 executables that have no main() ? */
1942
1943 const char *
1944 find_main_filename (void)
1945 {
1946 struct objfile *objfile;
1947 char *name = main_name ();
1948
1949 ALL_OBJFILES (objfile)
1950 {
1951 const char *result;
1952
1953 if (!objfile->sf)
1954 continue;
1955 result = objfile->sf->qf->find_symbol_file (objfile, name);
1956 if (result)
1957 return result;
1958 }
1959 return (NULL);
1960 }
1961
1962 /* Search BLOCK for symbol NAME in DOMAIN.
1963
1964 Note that if NAME is the demangled form of a C++ symbol, we will fail
1965 to find a match during the binary search of the non-encoded names, but
1966 for now we don't worry about the slight inefficiency of looking for
1967 a match we'll never find, since it will go pretty quick. Once the
1968 binary search terminates, we drop through and do a straight linear
1969 search on the symbols. Each symbol which is marked as being a ObjC/C++
1970 symbol (language_cplus or language_objc set) has both the encoded and
1971 non-encoded names tested for a match. */
1972
1973 struct symbol *
1974 lookup_block_symbol (const struct block *block, const char *name,
1975 const domain_enum domain)
1976 {
1977 struct block_iterator iter;
1978 struct symbol *sym;
1979
1980 if (!BLOCK_FUNCTION (block))
1981 {
1982 for (sym = block_iter_name_first (block, name, &iter);
1983 sym != NULL;
1984 sym = block_iter_name_next (name, &iter))
1985 {
1986 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1987 SYMBOL_DOMAIN (sym), domain))
1988 return sym;
1989 }
1990 return NULL;
1991 }
1992 else
1993 {
1994 /* Note that parameter symbols do not always show up last in the
1995 list; this loop makes sure to take anything else other than
1996 parameter symbols first; it only uses parameter symbols as a
1997 last resort. Note that this only takes up extra computation
1998 time on a match. */
1999
2000 struct symbol *sym_found = NULL;
2001
2002 for (sym = block_iter_name_first (block, name, &iter);
2003 sym != NULL;
2004 sym = block_iter_name_next (name, &iter))
2005 {
2006 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2007 SYMBOL_DOMAIN (sym), domain))
2008 {
2009 sym_found = sym;
2010 if (!SYMBOL_IS_ARGUMENT (sym))
2011 {
2012 break;
2013 }
2014 }
2015 }
2016 return (sym_found); /* Will be NULL if not found. */
2017 }
2018 }
2019
2020 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2021 BLOCK.
2022
2023 For each symbol that matches, CALLBACK is called. The symbol and
2024 DATA are passed to the callback.
2025
2026 If CALLBACK returns zero, the iteration ends. Otherwise, the
2027 search continues. This function iterates upward through blocks.
2028 When the outermost block has been finished, the function
2029 returns. */
2030
2031 void
2032 iterate_over_symbols (const struct block *block, const char *name,
2033 const domain_enum domain,
2034 symbol_found_callback_ftype *callback,
2035 void *data)
2036 {
2037 while (block)
2038 {
2039 struct block_iterator iter;
2040 struct symbol *sym;
2041
2042 for (sym = block_iter_name_first (block, name, &iter);
2043 sym != NULL;
2044 sym = block_iter_name_next (name, &iter))
2045 {
2046 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2047 SYMBOL_DOMAIN (sym), domain))
2048 {
2049 if (!callback (sym, data))
2050 return;
2051 }
2052 }
2053
2054 block = BLOCK_SUPERBLOCK (block);
2055 }
2056 }
2057
2058 /* Find the symtab associated with PC and SECTION. Look through the
2059 psymtabs and read in another symtab if necessary. */
2060
2061 struct symtab *
2062 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2063 {
2064 struct block *b;
2065 struct blockvector *bv;
2066 struct symtab *s = NULL;
2067 struct symtab *best_s = NULL;
2068 struct objfile *objfile;
2069 struct program_space *pspace;
2070 CORE_ADDR distance = 0;
2071 struct minimal_symbol *msymbol;
2072
2073 pspace = current_program_space;
2074
2075 /* If we know that this is not a text address, return failure. This is
2076 necessary because we loop based on the block's high and low code
2077 addresses, which do not include the data ranges, and because
2078 we call find_pc_sect_psymtab which has a similar restriction based
2079 on the partial_symtab's texthigh and textlow. */
2080 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2081 if (msymbol
2082 && (MSYMBOL_TYPE (msymbol) == mst_data
2083 || MSYMBOL_TYPE (msymbol) == mst_bss
2084 || MSYMBOL_TYPE (msymbol) == mst_abs
2085 || MSYMBOL_TYPE (msymbol) == mst_file_data
2086 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2087 return NULL;
2088
2089 /* Search all symtabs for the one whose file contains our address, and which
2090 is the smallest of all the ones containing the address. This is designed
2091 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2092 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2093 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2094
2095 This happens for native ecoff format, where code from included files
2096 gets its own symtab. The symtab for the included file should have
2097 been read in already via the dependency mechanism.
2098 It might be swifter to create several symtabs with the same name
2099 like xcoff does (I'm not sure).
2100
2101 It also happens for objfiles that have their functions reordered.
2102 For these, the symtab we are looking for is not necessarily read in. */
2103
2104 ALL_PRIMARY_SYMTABS (objfile, s)
2105 {
2106 bv = BLOCKVECTOR (s);
2107 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2108
2109 if (BLOCK_START (b) <= pc
2110 && BLOCK_END (b) > pc
2111 && (distance == 0
2112 || BLOCK_END (b) - BLOCK_START (b) < distance))
2113 {
2114 /* For an objfile that has its functions reordered,
2115 find_pc_psymtab will find the proper partial symbol table
2116 and we simply return its corresponding symtab. */
2117 /* In order to better support objfiles that contain both
2118 stabs and coff debugging info, we continue on if a psymtab
2119 can't be found. */
2120 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2121 {
2122 struct symtab *result;
2123
2124 result
2125 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2126 msymbol,
2127 pc, section,
2128 0);
2129 if (result)
2130 return result;
2131 }
2132 if (section != 0)
2133 {
2134 struct block_iterator iter;
2135 struct symbol *sym = NULL;
2136
2137 ALL_BLOCK_SYMBOLS (b, iter, sym)
2138 {
2139 fixup_symbol_section (sym, objfile);
2140 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2141 break;
2142 }
2143 if (sym == NULL)
2144 continue; /* No symbol in this symtab matches
2145 section. */
2146 }
2147 distance = BLOCK_END (b) - BLOCK_START (b);
2148 best_s = s;
2149 }
2150 }
2151
2152 if (best_s != NULL)
2153 return (best_s);
2154
2155 ALL_OBJFILES (objfile)
2156 {
2157 struct symtab *result;
2158
2159 if (!objfile->sf)
2160 continue;
2161 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2162 msymbol,
2163 pc, section,
2164 1);
2165 if (result)
2166 return result;
2167 }
2168
2169 return NULL;
2170 }
2171
2172 /* Find the symtab associated with PC. Look through the psymtabs and read
2173 in another symtab if necessary. Backward compatibility, no section. */
2174
2175 struct symtab *
2176 find_pc_symtab (CORE_ADDR pc)
2177 {
2178 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2179 }
2180 \f
2181
2182 /* Find the source file and line number for a given PC value and SECTION.
2183 Return a structure containing a symtab pointer, a line number,
2184 and a pc range for the entire source line.
2185 The value's .pc field is NOT the specified pc.
2186 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2187 use the line that ends there. Otherwise, in that case, the line
2188 that begins there is used. */
2189
2190 /* The big complication here is that a line may start in one file, and end just
2191 before the start of another file. This usually occurs when you #include
2192 code in the middle of a subroutine. To properly find the end of a line's PC
2193 range, we must search all symtabs associated with this compilation unit, and
2194 find the one whose first PC is closer than that of the next line in this
2195 symtab. */
2196
2197 /* If it's worth the effort, we could be using a binary search. */
2198
2199 struct symtab_and_line
2200 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2201 {
2202 struct symtab *s;
2203 struct linetable *l;
2204 int len;
2205 int i;
2206 struct linetable_entry *item;
2207 struct symtab_and_line val;
2208 struct blockvector *bv;
2209 struct minimal_symbol *msymbol;
2210 struct minimal_symbol *mfunsym;
2211 struct objfile *objfile;
2212
2213 /* Info on best line seen so far, and where it starts, and its file. */
2214
2215 struct linetable_entry *best = NULL;
2216 CORE_ADDR best_end = 0;
2217 struct symtab *best_symtab = 0;
2218
2219 /* Store here the first line number
2220 of a file which contains the line at the smallest pc after PC.
2221 If we don't find a line whose range contains PC,
2222 we will use a line one less than this,
2223 with a range from the start of that file to the first line's pc. */
2224 struct linetable_entry *alt = NULL;
2225 struct symtab *alt_symtab = 0;
2226
2227 /* Info on best line seen in this file. */
2228
2229 struct linetable_entry *prev;
2230
2231 /* If this pc is not from the current frame,
2232 it is the address of the end of a call instruction.
2233 Quite likely that is the start of the following statement.
2234 But what we want is the statement containing the instruction.
2235 Fudge the pc to make sure we get that. */
2236
2237 init_sal (&val); /* initialize to zeroes */
2238
2239 val.pspace = current_program_space;
2240
2241 /* It's tempting to assume that, if we can't find debugging info for
2242 any function enclosing PC, that we shouldn't search for line
2243 number info, either. However, GAS can emit line number info for
2244 assembly files --- very helpful when debugging hand-written
2245 assembly code. In such a case, we'd have no debug info for the
2246 function, but we would have line info. */
2247
2248 if (notcurrent)
2249 pc -= 1;
2250
2251 /* elz: added this because this function returned the wrong
2252 information if the pc belongs to a stub (import/export)
2253 to call a shlib function. This stub would be anywhere between
2254 two functions in the target, and the line info was erroneously
2255 taken to be the one of the line before the pc. */
2256
2257 /* RT: Further explanation:
2258
2259 * We have stubs (trampolines) inserted between procedures.
2260 *
2261 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2262 * exists in the main image.
2263 *
2264 * In the minimal symbol table, we have a bunch of symbols
2265 * sorted by start address. The stubs are marked as "trampoline",
2266 * the others appear as text. E.g.:
2267 *
2268 * Minimal symbol table for main image
2269 * main: code for main (text symbol)
2270 * shr1: stub (trampoline symbol)
2271 * foo: code for foo (text symbol)
2272 * ...
2273 * Minimal symbol table for "shr1" image:
2274 * ...
2275 * shr1: code for shr1 (text symbol)
2276 * ...
2277 *
2278 * So the code below is trying to detect if we are in the stub
2279 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2280 * and if found, do the symbolization from the real-code address
2281 * rather than the stub address.
2282 *
2283 * Assumptions being made about the minimal symbol table:
2284 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2285 * if we're really in the trampoline.s If we're beyond it (say
2286 * we're in "foo" in the above example), it'll have a closer
2287 * symbol (the "foo" text symbol for example) and will not
2288 * return the trampoline.
2289 * 2. lookup_minimal_symbol_text() will find a real text symbol
2290 * corresponding to the trampoline, and whose address will
2291 * be different than the trampoline address. I put in a sanity
2292 * check for the address being the same, to avoid an
2293 * infinite recursion.
2294 */
2295 msymbol = lookup_minimal_symbol_by_pc (pc);
2296 if (msymbol != NULL)
2297 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2298 {
2299 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2300 NULL);
2301 if (mfunsym == NULL)
2302 /* I eliminated this warning since it is coming out
2303 * in the following situation:
2304 * gdb shmain // test program with shared libraries
2305 * (gdb) break shr1 // function in shared lib
2306 * Warning: In stub for ...
2307 * In the above situation, the shared lib is not loaded yet,
2308 * so of course we can't find the real func/line info,
2309 * but the "break" still works, and the warning is annoying.
2310 * So I commented out the warning. RT */
2311 /* warning ("In stub for %s; unable to find real function/line info",
2312 SYMBOL_LINKAGE_NAME (msymbol)); */
2313 ;
2314 /* fall through */
2315 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2316 == SYMBOL_VALUE_ADDRESS (msymbol))
2317 /* Avoid infinite recursion */
2318 /* See above comment about why warning is commented out. */
2319 /* warning ("In stub for %s; unable to find real function/line info",
2320 SYMBOL_LINKAGE_NAME (msymbol)); */
2321 ;
2322 /* fall through */
2323 else
2324 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2325 }
2326
2327
2328 s = find_pc_sect_symtab (pc, section);
2329 if (!s)
2330 {
2331 /* If no symbol information, return previous pc. */
2332 if (notcurrent)
2333 pc++;
2334 val.pc = pc;
2335 return val;
2336 }
2337
2338 bv = BLOCKVECTOR (s);
2339 objfile = s->objfile;
2340
2341 /* Look at all the symtabs that share this blockvector.
2342 They all have the same apriori range, that we found was right;
2343 but they have different line tables. */
2344
2345 ALL_OBJFILE_SYMTABS (objfile, s)
2346 {
2347 if (BLOCKVECTOR (s) != bv)
2348 continue;
2349
2350 /* Find the best line in this symtab. */
2351 l = LINETABLE (s);
2352 if (!l)
2353 continue;
2354 len = l->nitems;
2355 if (len <= 0)
2356 {
2357 /* I think len can be zero if the symtab lacks line numbers
2358 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2359 I'm not sure which, and maybe it depends on the symbol
2360 reader). */
2361 continue;
2362 }
2363
2364 prev = NULL;
2365 item = l->item; /* Get first line info. */
2366
2367 /* Is this file's first line closer than the first lines of other files?
2368 If so, record this file, and its first line, as best alternate. */
2369 if (item->pc > pc && (!alt || item->pc < alt->pc))
2370 {
2371 alt = item;
2372 alt_symtab = s;
2373 }
2374
2375 for (i = 0; i < len; i++, item++)
2376 {
2377 /* Leave prev pointing to the linetable entry for the last line
2378 that started at or before PC. */
2379 if (item->pc > pc)
2380 break;
2381
2382 prev = item;
2383 }
2384
2385 /* At this point, prev points at the line whose start addr is <= pc, and
2386 item points at the next line. If we ran off the end of the linetable
2387 (pc >= start of the last line), then prev == item. If pc < start of
2388 the first line, prev will not be set. */
2389
2390 /* Is this file's best line closer than the best in the other files?
2391 If so, record this file, and its best line, as best so far. Don't
2392 save prev if it represents the end of a function (i.e. line number
2393 0) instead of a real line. */
2394
2395 if (prev && prev->line && (!best || prev->pc > best->pc))
2396 {
2397 best = prev;
2398 best_symtab = s;
2399
2400 /* Discard BEST_END if it's before the PC of the current BEST. */
2401 if (best_end <= best->pc)
2402 best_end = 0;
2403 }
2404
2405 /* If another line (denoted by ITEM) is in the linetable and its
2406 PC is after BEST's PC, but before the current BEST_END, then
2407 use ITEM's PC as the new best_end. */
2408 if (best && i < len && item->pc > best->pc
2409 && (best_end == 0 || best_end > item->pc))
2410 best_end = item->pc;
2411 }
2412
2413 if (!best_symtab)
2414 {
2415 /* If we didn't find any line number info, just return zeros.
2416 We used to return alt->line - 1 here, but that could be
2417 anywhere; if we don't have line number info for this PC,
2418 don't make some up. */
2419 val.pc = pc;
2420 }
2421 else if (best->line == 0)
2422 {
2423 /* If our best fit is in a range of PC's for which no line
2424 number info is available (line number is zero) then we didn't
2425 find any valid line information. */
2426 val.pc = pc;
2427 }
2428 else
2429 {
2430 val.symtab = best_symtab;
2431 val.line = best->line;
2432 val.pc = best->pc;
2433 if (best_end && (!alt || best_end < alt->pc))
2434 val.end = best_end;
2435 else if (alt)
2436 val.end = alt->pc;
2437 else
2438 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2439 }
2440 val.section = section;
2441 return val;
2442 }
2443
2444 /* Backward compatibility (no section). */
2445
2446 struct symtab_and_line
2447 find_pc_line (CORE_ADDR pc, int notcurrent)
2448 {
2449 struct obj_section *section;
2450
2451 section = find_pc_overlay (pc);
2452 if (pc_in_unmapped_range (pc, section))
2453 pc = overlay_mapped_address (pc, section);
2454 return find_pc_sect_line (pc, section, notcurrent);
2455 }
2456 \f
2457 /* Find line number LINE in any symtab whose name is the same as
2458 SYMTAB.
2459
2460 If found, return the symtab that contains the linetable in which it was
2461 found, set *INDEX to the index in the linetable of the best entry
2462 found, and set *EXACT_MATCH nonzero if the value returned is an
2463 exact match.
2464
2465 If not found, return NULL. */
2466
2467 struct symtab *
2468 find_line_symtab (struct symtab *symtab, int line,
2469 int *index, int *exact_match)
2470 {
2471 int exact = 0; /* Initialized here to avoid a compiler warning. */
2472
2473 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2474 so far seen. */
2475
2476 int best_index;
2477 struct linetable *best_linetable;
2478 struct symtab *best_symtab;
2479
2480 /* First try looking it up in the given symtab. */
2481 best_linetable = LINETABLE (symtab);
2482 best_symtab = symtab;
2483 best_index = find_line_common (best_linetable, line, &exact, 0);
2484 if (best_index < 0 || !exact)
2485 {
2486 /* Didn't find an exact match. So we better keep looking for
2487 another symtab with the same name. In the case of xcoff,
2488 multiple csects for one source file (produced by IBM's FORTRAN
2489 compiler) produce multiple symtabs (this is unavoidable
2490 assuming csects can be at arbitrary places in memory and that
2491 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2492
2493 /* BEST is the smallest linenumber > LINE so far seen,
2494 or 0 if none has been seen so far.
2495 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2496 int best;
2497
2498 struct objfile *objfile;
2499 struct symtab *s;
2500
2501 if (best_index >= 0)
2502 best = best_linetable->item[best_index].line;
2503 else
2504 best = 0;
2505
2506 ALL_OBJFILES (objfile)
2507 {
2508 if (objfile->sf)
2509 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2510 symtab->filename);
2511 }
2512
2513 /* Get symbol full file name if possible. */
2514 symtab_to_fullname (symtab);
2515
2516 ALL_SYMTABS (objfile, s)
2517 {
2518 struct linetable *l;
2519 int ind;
2520
2521 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2522 continue;
2523 if (symtab->fullname != NULL
2524 && symtab_to_fullname (s) != NULL
2525 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2526 continue;
2527 l = LINETABLE (s);
2528 ind = find_line_common (l, line, &exact, 0);
2529 if (ind >= 0)
2530 {
2531 if (exact)
2532 {
2533 best_index = ind;
2534 best_linetable = l;
2535 best_symtab = s;
2536 goto done;
2537 }
2538 if (best == 0 || l->item[ind].line < best)
2539 {
2540 best = l->item[ind].line;
2541 best_index = ind;
2542 best_linetable = l;
2543 best_symtab = s;
2544 }
2545 }
2546 }
2547 }
2548 done:
2549 if (best_index < 0)
2550 return NULL;
2551
2552 if (index)
2553 *index = best_index;
2554 if (exact_match)
2555 *exact_match = exact;
2556
2557 return best_symtab;
2558 }
2559
2560 /* Given SYMTAB, returns all the PCs function in the symtab that
2561 exactly match LINE. Returns NULL if there are no exact matches,
2562 but updates BEST_ITEM in this case. */
2563
2564 VEC (CORE_ADDR) *
2565 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2566 struct linetable_entry **best_item)
2567 {
2568 int start = 0, ix;
2569 struct symbol *previous_function = NULL;
2570 VEC (CORE_ADDR) *result = NULL;
2571
2572 /* First, collect all the PCs that are at this line. */
2573 while (1)
2574 {
2575 int was_exact;
2576 int idx;
2577
2578 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2579 if (idx < 0)
2580 break;
2581
2582 if (!was_exact)
2583 {
2584 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2585
2586 if (*best_item == NULL || item->line < (*best_item)->line)
2587 *best_item = item;
2588
2589 break;
2590 }
2591
2592 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2593 start = idx + 1;
2594 }
2595
2596 return result;
2597 }
2598
2599 \f
2600 /* Set the PC value for a given source file and line number and return true.
2601 Returns zero for invalid line number (and sets the PC to 0).
2602 The source file is specified with a struct symtab. */
2603
2604 int
2605 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2606 {
2607 struct linetable *l;
2608 int ind;
2609
2610 *pc = 0;
2611 if (symtab == 0)
2612 return 0;
2613
2614 symtab = find_line_symtab (symtab, line, &ind, NULL);
2615 if (symtab != NULL)
2616 {
2617 l = LINETABLE (symtab);
2618 *pc = l->item[ind].pc;
2619 return 1;
2620 }
2621 else
2622 return 0;
2623 }
2624
2625 /* Find the range of pc values in a line.
2626 Store the starting pc of the line into *STARTPTR
2627 and the ending pc (start of next line) into *ENDPTR.
2628 Returns 1 to indicate success.
2629 Returns 0 if could not find the specified line. */
2630
2631 int
2632 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2633 CORE_ADDR *endptr)
2634 {
2635 CORE_ADDR startaddr;
2636 struct symtab_and_line found_sal;
2637
2638 startaddr = sal.pc;
2639 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2640 return 0;
2641
2642 /* This whole function is based on address. For example, if line 10 has
2643 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2644 "info line *0x123" should say the line goes from 0x100 to 0x200
2645 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2646 This also insures that we never give a range like "starts at 0x134
2647 and ends at 0x12c". */
2648
2649 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2650 if (found_sal.line != sal.line)
2651 {
2652 /* The specified line (sal) has zero bytes. */
2653 *startptr = found_sal.pc;
2654 *endptr = found_sal.pc;
2655 }
2656 else
2657 {
2658 *startptr = found_sal.pc;
2659 *endptr = found_sal.end;
2660 }
2661 return 1;
2662 }
2663
2664 /* Given a line table and a line number, return the index into the line
2665 table for the pc of the nearest line whose number is >= the specified one.
2666 Return -1 if none is found. The value is >= 0 if it is an index.
2667 START is the index at which to start searching the line table.
2668
2669 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2670
2671 static int
2672 find_line_common (struct linetable *l, int lineno,
2673 int *exact_match, int start)
2674 {
2675 int i;
2676 int len;
2677
2678 /* BEST is the smallest linenumber > LINENO so far seen,
2679 or 0 if none has been seen so far.
2680 BEST_INDEX identifies the item for it. */
2681
2682 int best_index = -1;
2683 int best = 0;
2684
2685 *exact_match = 0;
2686
2687 if (lineno <= 0)
2688 return -1;
2689 if (l == 0)
2690 return -1;
2691
2692 len = l->nitems;
2693 for (i = start; i < len; i++)
2694 {
2695 struct linetable_entry *item = &(l->item[i]);
2696
2697 if (item->line == lineno)
2698 {
2699 /* Return the first (lowest address) entry which matches. */
2700 *exact_match = 1;
2701 return i;
2702 }
2703
2704 if (item->line > lineno && (best == 0 || item->line < best))
2705 {
2706 best = item->line;
2707 best_index = i;
2708 }
2709 }
2710
2711 /* If we got here, we didn't get an exact match. */
2712 return best_index;
2713 }
2714
2715 int
2716 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2717 {
2718 struct symtab_and_line sal;
2719
2720 sal = find_pc_line (pc, 0);
2721 *startptr = sal.pc;
2722 *endptr = sal.end;
2723 return sal.symtab != 0;
2724 }
2725
2726 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2727 address for that function that has an entry in SYMTAB's line info
2728 table. If such an entry cannot be found, return FUNC_ADDR
2729 unaltered. */
2730
2731 static CORE_ADDR
2732 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2733 {
2734 CORE_ADDR func_start, func_end;
2735 struct linetable *l;
2736 int i;
2737
2738 /* Give up if this symbol has no lineinfo table. */
2739 l = LINETABLE (symtab);
2740 if (l == NULL)
2741 return func_addr;
2742
2743 /* Get the range for the function's PC values, or give up if we
2744 cannot, for some reason. */
2745 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2746 return func_addr;
2747
2748 /* Linetable entries are ordered by PC values, see the commentary in
2749 symtab.h where `struct linetable' is defined. Thus, the first
2750 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2751 address we are looking for. */
2752 for (i = 0; i < l->nitems; i++)
2753 {
2754 struct linetable_entry *item = &(l->item[i]);
2755
2756 /* Don't use line numbers of zero, they mark special entries in
2757 the table. See the commentary on symtab.h before the
2758 definition of struct linetable. */
2759 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2760 return item->pc;
2761 }
2762
2763 return func_addr;
2764 }
2765
2766 /* Given a function symbol SYM, find the symtab and line for the start
2767 of the function.
2768 If the argument FUNFIRSTLINE is nonzero, we want the first line
2769 of real code inside the function. */
2770
2771 struct symtab_and_line
2772 find_function_start_sal (struct symbol *sym, int funfirstline)
2773 {
2774 struct symtab_and_line sal;
2775
2776 fixup_symbol_section (sym, NULL);
2777 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2778 SYMBOL_OBJ_SECTION (sym), 0);
2779
2780 /* We always should have a line for the function start address.
2781 If we don't, something is odd. Create a plain SAL refering
2782 just the PC and hope that skip_prologue_sal (if requested)
2783 can find a line number for after the prologue. */
2784 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2785 {
2786 init_sal (&sal);
2787 sal.pspace = current_program_space;
2788 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2789 sal.section = SYMBOL_OBJ_SECTION (sym);
2790 }
2791
2792 if (funfirstline)
2793 skip_prologue_sal (&sal);
2794
2795 return sal;
2796 }
2797
2798 /* Adjust SAL to the first instruction past the function prologue.
2799 If the PC was explicitly specified, the SAL is not changed.
2800 If the line number was explicitly specified, at most the SAL's PC
2801 is updated. If SAL is already past the prologue, then do nothing. */
2802
2803 void
2804 skip_prologue_sal (struct symtab_and_line *sal)
2805 {
2806 struct symbol *sym;
2807 struct symtab_and_line start_sal;
2808 struct cleanup *old_chain;
2809 CORE_ADDR pc, saved_pc;
2810 struct obj_section *section;
2811 const char *name;
2812 struct objfile *objfile;
2813 struct gdbarch *gdbarch;
2814 struct block *b, *function_block;
2815 int force_skip, skip;
2816
2817 /* Do not change the SAL is PC was specified explicitly. */
2818 if (sal->explicit_pc)
2819 return;
2820
2821 old_chain = save_current_space_and_thread ();
2822 switch_to_program_space_and_thread (sal->pspace);
2823
2824 sym = find_pc_sect_function (sal->pc, sal->section);
2825 if (sym != NULL)
2826 {
2827 fixup_symbol_section (sym, NULL);
2828
2829 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2830 section = SYMBOL_OBJ_SECTION (sym);
2831 name = SYMBOL_LINKAGE_NAME (sym);
2832 objfile = SYMBOL_SYMTAB (sym)->objfile;
2833 }
2834 else
2835 {
2836 struct minimal_symbol *msymbol
2837 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2838
2839 if (msymbol == NULL)
2840 {
2841 do_cleanups (old_chain);
2842 return;
2843 }
2844
2845 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2846 section = SYMBOL_OBJ_SECTION (msymbol);
2847 name = SYMBOL_LINKAGE_NAME (msymbol);
2848 objfile = msymbol_objfile (msymbol);
2849 }
2850
2851 gdbarch = get_objfile_arch (objfile);
2852
2853 /* Process the prologue in two passes. In the first pass try to skip the
2854 prologue (SKIP is true) and verify there is a real need for it (indicated
2855 by FORCE_SKIP). If no such reason was found run a second pass where the
2856 prologue is not skipped (SKIP is false). */
2857
2858 skip = 1;
2859 force_skip = 1;
2860
2861 /* Be conservative - allow direct PC (without skipping prologue) only if we
2862 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2863 have to be set by the caller so we use SYM instead. */
2864 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2865 force_skip = 0;
2866
2867 saved_pc = pc;
2868 do
2869 {
2870 pc = saved_pc;
2871
2872 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2873 so that gdbarch_skip_prologue has something unique to work on. */
2874 if (section_is_overlay (section) && !section_is_mapped (section))
2875 pc = overlay_unmapped_address (pc, section);
2876
2877 /* Skip "first line" of function (which is actually its prologue). */
2878 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2879 if (skip)
2880 pc = gdbarch_skip_prologue (gdbarch, pc);
2881
2882 /* For overlays, map pc back into its mapped VMA range. */
2883 pc = overlay_mapped_address (pc, section);
2884
2885 /* Calculate line number. */
2886 start_sal = find_pc_sect_line (pc, section, 0);
2887
2888 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2889 line is still part of the same function. */
2890 if (skip && start_sal.pc != pc
2891 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2892 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2893 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2894 == lookup_minimal_symbol_by_pc_section (pc, section))))
2895 {
2896 /* First pc of next line */
2897 pc = start_sal.end;
2898 /* Recalculate the line number (might not be N+1). */
2899 start_sal = find_pc_sect_line (pc, section, 0);
2900 }
2901
2902 /* On targets with executable formats that don't have a concept of
2903 constructors (ELF with .init has, PE doesn't), gcc emits a call
2904 to `__main' in `main' between the prologue and before user
2905 code. */
2906 if (gdbarch_skip_main_prologue_p (gdbarch)
2907 && name && strcmp_iw (name, "main") == 0)
2908 {
2909 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2910 /* Recalculate the line number (might not be N+1). */
2911 start_sal = find_pc_sect_line (pc, section, 0);
2912 force_skip = 1;
2913 }
2914 }
2915 while (!force_skip && skip--);
2916
2917 /* If we still don't have a valid source line, try to find the first
2918 PC in the lineinfo table that belongs to the same function. This
2919 happens with COFF debug info, which does not seem to have an
2920 entry in lineinfo table for the code after the prologue which has
2921 no direct relation to source. For example, this was found to be
2922 the case with the DJGPP target using "gcc -gcoff" when the
2923 compiler inserted code after the prologue to make sure the stack
2924 is aligned. */
2925 if (!force_skip && sym && start_sal.symtab == NULL)
2926 {
2927 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2928 /* Recalculate the line number. */
2929 start_sal = find_pc_sect_line (pc, section, 0);
2930 }
2931
2932 do_cleanups (old_chain);
2933
2934 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2935 forward SAL to the end of the prologue. */
2936 if (sal->pc >= pc)
2937 return;
2938
2939 sal->pc = pc;
2940 sal->section = section;
2941
2942 /* Unless the explicit_line flag was set, update the SAL line
2943 and symtab to correspond to the modified PC location. */
2944 if (sal->explicit_line)
2945 return;
2946
2947 sal->symtab = start_sal.symtab;
2948 sal->line = start_sal.line;
2949 sal->end = start_sal.end;
2950
2951 /* Check if we are now inside an inlined function. If we can,
2952 use the call site of the function instead. */
2953 b = block_for_pc_sect (sal->pc, sal->section);
2954 function_block = NULL;
2955 while (b != NULL)
2956 {
2957 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2958 function_block = b;
2959 else if (BLOCK_FUNCTION (b) != NULL)
2960 break;
2961 b = BLOCK_SUPERBLOCK (b);
2962 }
2963 if (function_block != NULL
2964 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2965 {
2966 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2967 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2968 }
2969 }
2970
2971 /* If P is of the form "operator[ \t]+..." where `...' is
2972 some legitimate operator text, return a pointer to the
2973 beginning of the substring of the operator text.
2974 Otherwise, return "". */
2975
2976 static char *
2977 operator_chars (char *p, char **end)
2978 {
2979 *end = "";
2980 if (strncmp (p, "operator", 8))
2981 return *end;
2982 p += 8;
2983
2984 /* Don't get faked out by `operator' being part of a longer
2985 identifier. */
2986 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2987 return *end;
2988
2989 /* Allow some whitespace between `operator' and the operator symbol. */
2990 while (*p == ' ' || *p == '\t')
2991 p++;
2992
2993 /* Recognize 'operator TYPENAME'. */
2994
2995 if (isalpha (*p) || *p == '_' || *p == '$')
2996 {
2997 char *q = p + 1;
2998
2999 while (isalnum (*q) || *q == '_' || *q == '$')
3000 q++;
3001 *end = q;
3002 return p;
3003 }
3004
3005 while (*p)
3006 switch (*p)
3007 {
3008 case '\\': /* regexp quoting */
3009 if (p[1] == '*')
3010 {
3011 if (p[2] == '=') /* 'operator\*=' */
3012 *end = p + 3;
3013 else /* 'operator\*' */
3014 *end = p + 2;
3015 return p;
3016 }
3017 else if (p[1] == '[')
3018 {
3019 if (p[2] == ']')
3020 error (_("mismatched quoting on brackets, "
3021 "try 'operator\\[\\]'"));
3022 else if (p[2] == '\\' && p[3] == ']')
3023 {
3024 *end = p + 4; /* 'operator\[\]' */
3025 return p;
3026 }
3027 else
3028 error (_("nothing is allowed between '[' and ']'"));
3029 }
3030 else
3031 {
3032 /* Gratuitous qoute: skip it and move on. */
3033 p++;
3034 continue;
3035 }
3036 break;
3037 case '!':
3038 case '=':
3039 case '*':
3040 case '/':
3041 case '%':
3042 case '^':
3043 if (p[1] == '=')
3044 *end = p + 2;
3045 else
3046 *end = p + 1;
3047 return p;
3048 case '<':
3049 case '>':
3050 case '+':
3051 case '-':
3052 case '&':
3053 case '|':
3054 if (p[0] == '-' && p[1] == '>')
3055 {
3056 /* Struct pointer member operator 'operator->'. */
3057 if (p[2] == '*')
3058 {
3059 *end = p + 3; /* 'operator->*' */
3060 return p;
3061 }
3062 else if (p[2] == '\\')
3063 {
3064 *end = p + 4; /* Hopefully 'operator->\*' */
3065 return p;
3066 }
3067 else
3068 {
3069 *end = p + 2; /* 'operator->' */
3070 return p;
3071 }
3072 }
3073 if (p[1] == '=' || p[1] == p[0])
3074 *end = p + 2;
3075 else
3076 *end = p + 1;
3077 return p;
3078 case '~':
3079 case ',':
3080 *end = p + 1;
3081 return p;
3082 case '(':
3083 if (p[1] != ')')
3084 error (_("`operator ()' must be specified "
3085 "without whitespace in `()'"));
3086 *end = p + 2;
3087 return p;
3088 case '?':
3089 if (p[1] != ':')
3090 error (_("`operator ?:' must be specified "
3091 "without whitespace in `?:'"));
3092 *end = p + 2;
3093 return p;
3094 case '[':
3095 if (p[1] != ']')
3096 error (_("`operator []' must be specified "
3097 "without whitespace in `[]'"));
3098 *end = p + 2;
3099 return p;
3100 default:
3101 error (_("`operator %s' not supported"), p);
3102 break;
3103 }
3104
3105 *end = "";
3106 return *end;
3107 }
3108 \f
3109
3110 /* If FILE is not already in the table of files, return zero;
3111 otherwise return non-zero. Optionally add FILE to the table if ADD
3112 is non-zero. If *FIRST is non-zero, forget the old table
3113 contents. */
3114
3115 static int
3116 filename_seen (const char *file, int add, int *first)
3117 {
3118 /* Table of files seen so far. */
3119 static const char **tab = NULL;
3120 /* Allocated size of tab in elements.
3121 Start with one 256-byte block (when using GNU malloc.c).
3122 24 is the malloc overhead when range checking is in effect. */
3123 static int tab_alloc_size = (256 - 24) / sizeof (char *);
3124 /* Current size of tab in elements. */
3125 static int tab_cur_size;
3126 const char **p;
3127
3128 if (*first)
3129 {
3130 if (tab == NULL)
3131 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3132 tab_cur_size = 0;
3133 }
3134
3135 /* Is FILE in tab? */
3136 for (p = tab; p < tab + tab_cur_size; p++)
3137 if (filename_cmp (*p, file) == 0)
3138 return 1;
3139
3140 /* No; maybe add it to tab. */
3141 if (add)
3142 {
3143 if (tab_cur_size == tab_alloc_size)
3144 {
3145 tab_alloc_size *= 2;
3146 tab = (const char **) xrealloc ((char *) tab,
3147 tab_alloc_size * sizeof (*tab));
3148 }
3149 tab[tab_cur_size++] = file;
3150 }
3151
3152 return 0;
3153 }
3154
3155 /* Slave routine for sources_info. Force line breaks at ,'s.
3156 NAME is the name to print and *FIRST is nonzero if this is the first
3157 name printed. Set *FIRST to zero. */
3158
3159 static void
3160 output_source_filename (const char *name, int *first)
3161 {
3162 /* Since a single source file can result in several partial symbol
3163 tables, we need to avoid printing it more than once. Note: if
3164 some of the psymtabs are read in and some are not, it gets
3165 printed both under "Source files for which symbols have been
3166 read" and "Source files for which symbols will be read in on
3167 demand". I consider this a reasonable way to deal with the
3168 situation. I'm not sure whether this can also happen for
3169 symtabs; it doesn't hurt to check. */
3170
3171 /* Was NAME already seen? */
3172 if (filename_seen (name, 1, first))
3173 {
3174 /* Yes; don't print it again. */
3175 return;
3176 }
3177 /* No; print it and reset *FIRST. */
3178 if (*first)
3179 {
3180 *first = 0;
3181 }
3182 else
3183 {
3184 printf_filtered (", ");
3185 }
3186
3187 wrap_here ("");
3188 fputs_filtered (name, gdb_stdout);
3189 }
3190
3191 /* A callback for map_partial_symbol_filenames. */
3192
3193 static void
3194 output_partial_symbol_filename (const char *filename, const char *fullname,
3195 void *data)
3196 {
3197 output_source_filename (fullname ? fullname : filename, data);
3198 }
3199
3200 static void
3201 sources_info (char *ignore, int from_tty)
3202 {
3203 struct symtab *s;
3204 struct objfile *objfile;
3205 int first;
3206
3207 if (!have_full_symbols () && !have_partial_symbols ())
3208 {
3209 error (_("No symbol table is loaded. Use the \"file\" command."));
3210 }
3211
3212 printf_filtered ("Source files for which symbols have been read in:\n\n");
3213
3214 first = 1;
3215 ALL_SYMTABS (objfile, s)
3216 {
3217 const char *fullname = symtab_to_fullname (s);
3218
3219 output_source_filename (fullname ? fullname : s->filename, &first);
3220 }
3221 printf_filtered ("\n\n");
3222
3223 printf_filtered ("Source files for which symbols "
3224 "will be read in on demand:\n\n");
3225
3226 first = 1;
3227 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3228 1 /*need_fullname*/);
3229 printf_filtered ("\n");
3230 }
3231
3232 static int
3233 file_matches (const char *file, char *files[], int nfiles)
3234 {
3235 int i;
3236
3237 if (file != NULL && nfiles != 0)
3238 {
3239 for (i = 0; i < nfiles; i++)
3240 {
3241 if (filename_cmp (files[i], lbasename (file)) == 0)
3242 return 1;
3243 }
3244 }
3245 else if (nfiles == 0)
3246 return 1;
3247 return 0;
3248 }
3249
3250 /* Free any memory associated with a search. */
3251
3252 void
3253 free_search_symbols (struct symbol_search *symbols)
3254 {
3255 struct symbol_search *p;
3256 struct symbol_search *next;
3257
3258 for (p = symbols; p != NULL; p = next)
3259 {
3260 next = p->next;
3261 xfree (p);
3262 }
3263 }
3264
3265 static void
3266 do_free_search_symbols_cleanup (void *symbols)
3267 {
3268 free_search_symbols (symbols);
3269 }
3270
3271 struct cleanup *
3272 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3273 {
3274 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3275 }
3276
3277 /* Helper function for sort_search_symbols and qsort. Can only
3278 sort symbols, not minimal symbols. */
3279
3280 static int
3281 compare_search_syms (const void *sa, const void *sb)
3282 {
3283 struct symbol_search **sym_a = (struct symbol_search **) sa;
3284 struct symbol_search **sym_b = (struct symbol_search **) sb;
3285
3286 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3287 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3288 }
3289
3290 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3291 prevtail where it is, but update its next pointer to point to
3292 the first of the sorted symbols. */
3293
3294 static struct symbol_search *
3295 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3296 {
3297 struct symbol_search **symbols, *symp, *old_next;
3298 int i;
3299
3300 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3301 * nfound);
3302 symp = prevtail->next;
3303 for (i = 0; i < nfound; i++)
3304 {
3305 symbols[i] = symp;
3306 symp = symp->next;
3307 }
3308 /* Generally NULL. */
3309 old_next = symp;
3310
3311 qsort (symbols, nfound, sizeof (struct symbol_search *),
3312 compare_search_syms);
3313
3314 symp = prevtail;
3315 for (i = 0; i < nfound; i++)
3316 {
3317 symp->next = symbols[i];
3318 symp = symp->next;
3319 }
3320 symp->next = old_next;
3321
3322 xfree (symbols);
3323 return symp;
3324 }
3325
3326 /* An object of this type is passed as the user_data to the
3327 expand_symtabs_matching method. */
3328 struct search_symbols_data
3329 {
3330 int nfiles;
3331 char **files;
3332
3333 /* It is true if PREG contains valid data, false otherwise. */
3334 unsigned preg_p : 1;
3335 regex_t preg;
3336 };
3337
3338 /* A callback for expand_symtabs_matching. */
3339
3340 static int
3341 search_symbols_file_matches (const char *filename, void *user_data)
3342 {
3343 struct search_symbols_data *data = user_data;
3344
3345 return file_matches (filename, data->files, data->nfiles);
3346 }
3347
3348 /* A callback for expand_symtabs_matching. */
3349
3350 static int
3351 search_symbols_name_matches (const char *symname, void *user_data)
3352 {
3353 struct search_symbols_data *data = user_data;
3354
3355 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3356 }
3357
3358 /* Search the symbol table for matches to the regular expression REGEXP,
3359 returning the results in *MATCHES.
3360
3361 Only symbols of KIND are searched:
3362 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3363 and constants (enums)
3364 FUNCTIONS_DOMAIN - search all functions
3365 TYPES_DOMAIN - search all type names
3366 ALL_DOMAIN - an internal error for this function
3367
3368 free_search_symbols should be called when *MATCHES is no longer needed.
3369
3370 The results are sorted locally; each symtab's global and static blocks are
3371 separately alphabetized. */
3372
3373 void
3374 search_symbols (char *regexp, enum search_domain kind,
3375 int nfiles, char *files[],
3376 struct symbol_search **matches)
3377 {
3378 struct symtab *s;
3379 struct blockvector *bv;
3380 struct block *b;
3381 int i = 0;
3382 struct block_iterator iter;
3383 struct symbol *sym;
3384 struct objfile *objfile;
3385 struct minimal_symbol *msymbol;
3386 int found_misc = 0;
3387 static const enum minimal_symbol_type types[]
3388 = {mst_data, mst_text, mst_abs};
3389 static const enum minimal_symbol_type types2[]
3390 = {mst_bss, mst_file_text, mst_abs};
3391 static const enum minimal_symbol_type types3[]
3392 = {mst_file_data, mst_solib_trampoline, mst_abs};
3393 static const enum minimal_symbol_type types4[]
3394 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3395 enum minimal_symbol_type ourtype;
3396 enum minimal_symbol_type ourtype2;
3397 enum minimal_symbol_type ourtype3;
3398 enum minimal_symbol_type ourtype4;
3399 struct symbol_search *sr;
3400 struct symbol_search *psr;
3401 struct symbol_search *tail;
3402 struct search_symbols_data datum;
3403
3404 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3405 CLEANUP_CHAIN is freed only in the case of an error. */
3406 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3407 struct cleanup *retval_chain;
3408
3409 gdb_assert (kind <= TYPES_DOMAIN);
3410
3411 ourtype = types[kind];
3412 ourtype2 = types2[kind];
3413 ourtype3 = types3[kind];
3414 ourtype4 = types4[kind];
3415
3416 sr = *matches = NULL;
3417 tail = NULL;
3418 datum.preg_p = 0;
3419
3420 if (regexp != NULL)
3421 {
3422 /* Make sure spacing is right for C++ operators.
3423 This is just a courtesy to make the matching less sensitive
3424 to how many spaces the user leaves between 'operator'
3425 and <TYPENAME> or <OPERATOR>. */
3426 char *opend;
3427 char *opname = operator_chars (regexp, &opend);
3428 int errcode;
3429
3430 if (*opname)
3431 {
3432 int fix = -1; /* -1 means ok; otherwise number of
3433 spaces needed. */
3434
3435 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3436 {
3437 /* There should 1 space between 'operator' and 'TYPENAME'. */
3438 if (opname[-1] != ' ' || opname[-2] == ' ')
3439 fix = 1;
3440 }
3441 else
3442 {
3443 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3444 if (opname[-1] == ' ')
3445 fix = 0;
3446 }
3447 /* If wrong number of spaces, fix it. */
3448 if (fix >= 0)
3449 {
3450 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3451
3452 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3453 regexp = tmp;
3454 }
3455 }
3456
3457 errcode = regcomp (&datum.preg, regexp,
3458 REG_NOSUB | (case_sensitivity == case_sensitive_off
3459 ? REG_ICASE : 0));
3460 if (errcode != 0)
3461 {
3462 char *err = get_regcomp_error (errcode, &datum.preg);
3463
3464 make_cleanup (xfree, err);
3465 error (_("Invalid regexp (%s): %s"), err, regexp);
3466 }
3467 datum.preg_p = 1;
3468 make_regfree_cleanup (&datum.preg);
3469 }
3470
3471 /* Search through the partial symtabs *first* for all symbols
3472 matching the regexp. That way we don't have to reproduce all of
3473 the machinery below. */
3474
3475 datum.nfiles = nfiles;
3476 datum.files = files;
3477 ALL_OBJFILES (objfile)
3478 {
3479 if (objfile->sf)
3480 objfile->sf->qf->expand_symtabs_matching (objfile,
3481 (nfiles == 0
3482 ? NULL
3483 : search_symbols_file_matches),
3484 search_symbols_name_matches,
3485 kind,
3486 &datum);
3487 }
3488
3489 retval_chain = old_chain;
3490
3491 /* Here, we search through the minimal symbol tables for functions
3492 and variables that match, and force their symbols to be read.
3493 This is in particular necessary for demangled variable names,
3494 which are no longer put into the partial symbol tables.
3495 The symbol will then be found during the scan of symtabs below.
3496
3497 For functions, find_pc_symtab should succeed if we have debug info
3498 for the function, for variables we have to call
3499 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3500 has debug info.
3501 If the lookup fails, set found_misc so that we will rescan to print
3502 any matching symbols without debug info.
3503 We only search the objfile the msymbol came from, we no longer search
3504 all objfiles. In large programs (1000s of shared libs) searching all
3505 objfiles is not worth the pain. */
3506
3507 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3508 {
3509 ALL_MSYMBOLS (objfile, msymbol)
3510 {
3511 QUIT;
3512
3513 if (msymbol->created_by_gdb)
3514 continue;
3515
3516 if (MSYMBOL_TYPE (msymbol) == ourtype
3517 || MSYMBOL_TYPE (msymbol) == ourtype2
3518 || MSYMBOL_TYPE (msymbol) == ourtype3
3519 || MSYMBOL_TYPE (msymbol) == ourtype4)
3520 {
3521 if (!datum.preg_p
3522 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3523 NULL, 0) == 0)
3524 {
3525 /* Note: An important side-effect of these lookup functions
3526 is to expand the symbol table if msymbol is found, for the
3527 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3528 if (kind == FUNCTIONS_DOMAIN
3529 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3530 : (lookup_symbol_in_objfile_from_linkage_name
3531 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3532 == NULL))
3533 found_misc = 1;
3534 }
3535 }
3536 }
3537 }
3538
3539 ALL_PRIMARY_SYMTABS (objfile, s)
3540 {
3541 bv = BLOCKVECTOR (s);
3542 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3543 {
3544 struct symbol_search *prevtail = tail;
3545 int nfound = 0;
3546
3547 b = BLOCKVECTOR_BLOCK (bv, i);
3548 ALL_BLOCK_SYMBOLS (b, iter, sym)
3549 {
3550 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3551
3552 QUIT;
3553
3554 if (file_matches (real_symtab->filename, files, nfiles)
3555 && ((!datum.preg_p
3556 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3557 NULL, 0) == 0)
3558 && ((kind == VARIABLES_DOMAIN
3559 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3560 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3561 && SYMBOL_CLASS (sym) != LOC_BLOCK
3562 /* LOC_CONST can be used for more than just enums,
3563 e.g., c++ static const members.
3564 We only want to skip enums here. */
3565 && !(SYMBOL_CLASS (sym) == LOC_CONST
3566 && TYPE_CODE (SYMBOL_TYPE (sym))
3567 == TYPE_CODE_ENUM))
3568 || (kind == FUNCTIONS_DOMAIN
3569 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3570 || (kind == TYPES_DOMAIN
3571 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3572 {
3573 /* match */
3574 psr = (struct symbol_search *)
3575 xmalloc (sizeof (struct symbol_search));
3576 psr->block = i;
3577 psr->symtab = real_symtab;
3578 psr->symbol = sym;
3579 psr->msymbol = NULL;
3580 psr->next = NULL;
3581 if (tail == NULL)
3582 sr = psr;
3583 else
3584 tail->next = psr;
3585 tail = psr;
3586 nfound ++;
3587 }
3588 }
3589 if (nfound > 0)
3590 {
3591 if (prevtail == NULL)
3592 {
3593 struct symbol_search dummy;
3594
3595 dummy.next = sr;
3596 tail = sort_search_symbols (&dummy, nfound);
3597 sr = dummy.next;
3598
3599 make_cleanup_free_search_symbols (sr);
3600 }
3601 else
3602 tail = sort_search_symbols (prevtail, nfound);
3603 }
3604 }
3605 }
3606
3607 /* If there are no eyes, avoid all contact. I mean, if there are
3608 no debug symbols, then print directly from the msymbol_vector. */
3609
3610 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3611 {
3612 ALL_MSYMBOLS (objfile, msymbol)
3613 {
3614 QUIT;
3615
3616 if (msymbol->created_by_gdb)
3617 continue;
3618
3619 if (MSYMBOL_TYPE (msymbol) == ourtype
3620 || MSYMBOL_TYPE (msymbol) == ourtype2
3621 || MSYMBOL_TYPE (msymbol) == ourtype3
3622 || MSYMBOL_TYPE (msymbol) == ourtype4)
3623 {
3624 if (!datum.preg_p
3625 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3626 NULL, 0) == 0)
3627 {
3628 /* For functions we can do a quick check of whether the
3629 symbol might be found via find_pc_symtab. */
3630 if (kind != FUNCTIONS_DOMAIN
3631 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3632 {
3633 if (lookup_symbol_in_objfile_from_linkage_name
3634 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3635 == NULL)
3636 {
3637 /* match */
3638 psr = (struct symbol_search *)
3639 xmalloc (sizeof (struct symbol_search));
3640 psr->block = i;
3641 psr->msymbol = msymbol;
3642 psr->symtab = NULL;
3643 psr->symbol = NULL;
3644 psr->next = NULL;
3645 if (tail == NULL)
3646 {
3647 sr = psr;
3648 make_cleanup_free_search_symbols (sr);
3649 }
3650 else
3651 tail->next = psr;
3652 tail = psr;
3653 }
3654 }
3655 }
3656 }
3657 }
3658 }
3659
3660 discard_cleanups (retval_chain);
3661 do_cleanups (old_chain);
3662 *matches = sr;
3663 }
3664
3665 /* Helper function for symtab_symbol_info, this function uses
3666 the data returned from search_symbols() to print information
3667 regarding the match to gdb_stdout. */
3668
3669 static void
3670 print_symbol_info (enum search_domain kind,
3671 struct symtab *s, struct symbol *sym,
3672 int block, char *last)
3673 {
3674 if (last == NULL || filename_cmp (last, s->filename) != 0)
3675 {
3676 fputs_filtered ("\nFile ", gdb_stdout);
3677 fputs_filtered (s->filename, gdb_stdout);
3678 fputs_filtered (":\n", gdb_stdout);
3679 }
3680
3681 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3682 printf_filtered ("static ");
3683
3684 /* Typedef that is not a C++ class. */
3685 if (kind == TYPES_DOMAIN
3686 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3687 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3688 /* variable, func, or typedef-that-is-c++-class. */
3689 else if (kind < TYPES_DOMAIN
3690 || (kind == TYPES_DOMAIN
3691 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3692 {
3693 type_print (SYMBOL_TYPE (sym),
3694 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3695 ? "" : SYMBOL_PRINT_NAME (sym)),
3696 gdb_stdout, 0);
3697
3698 printf_filtered (";\n");
3699 }
3700 }
3701
3702 /* This help function for symtab_symbol_info() prints information
3703 for non-debugging symbols to gdb_stdout. */
3704
3705 static void
3706 print_msymbol_info (struct minimal_symbol *msymbol)
3707 {
3708 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3709 char *tmp;
3710
3711 if (gdbarch_addr_bit (gdbarch) <= 32)
3712 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3713 & (CORE_ADDR) 0xffffffff,
3714 8);
3715 else
3716 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3717 16);
3718 printf_filtered ("%s %s\n",
3719 tmp, SYMBOL_PRINT_NAME (msymbol));
3720 }
3721
3722 /* This is the guts of the commands "info functions", "info types", and
3723 "info variables". It calls search_symbols to find all matches and then
3724 print_[m]symbol_info to print out some useful information about the
3725 matches. */
3726
3727 static void
3728 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3729 {
3730 static const char * const classnames[] =
3731 {"variable", "function", "type"};
3732 struct symbol_search *symbols;
3733 struct symbol_search *p;
3734 struct cleanup *old_chain;
3735 char *last_filename = NULL;
3736 int first = 1;
3737
3738 gdb_assert (kind <= TYPES_DOMAIN);
3739
3740 /* Must make sure that if we're interrupted, symbols gets freed. */
3741 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3742 old_chain = make_cleanup_free_search_symbols (symbols);
3743
3744 printf_filtered (regexp
3745 ? "All %ss matching regular expression \"%s\":\n"
3746 : "All defined %ss:\n",
3747 classnames[kind], regexp);
3748
3749 for (p = symbols; p != NULL; p = p->next)
3750 {
3751 QUIT;
3752
3753 if (p->msymbol != NULL)
3754 {
3755 if (first)
3756 {
3757 printf_filtered ("\nNon-debugging symbols:\n");
3758 first = 0;
3759 }
3760 print_msymbol_info (p->msymbol);
3761 }
3762 else
3763 {
3764 print_symbol_info (kind,
3765 p->symtab,
3766 p->symbol,
3767 p->block,
3768 last_filename);
3769 last_filename = p->symtab->filename;
3770 }
3771 }
3772
3773 do_cleanups (old_chain);
3774 }
3775
3776 static void
3777 variables_info (char *regexp, int from_tty)
3778 {
3779 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3780 }
3781
3782 static void
3783 functions_info (char *regexp, int from_tty)
3784 {
3785 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3786 }
3787
3788
3789 static void
3790 types_info (char *regexp, int from_tty)
3791 {
3792 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3793 }
3794
3795 /* Breakpoint all functions matching regular expression. */
3796
3797 void
3798 rbreak_command_wrapper (char *regexp, int from_tty)
3799 {
3800 rbreak_command (regexp, from_tty);
3801 }
3802
3803 /* A cleanup function that calls end_rbreak_breakpoints. */
3804
3805 static void
3806 do_end_rbreak_breakpoints (void *ignore)
3807 {
3808 end_rbreak_breakpoints ();
3809 }
3810
3811 static void
3812 rbreak_command (char *regexp, int from_tty)
3813 {
3814 struct symbol_search *ss;
3815 struct symbol_search *p;
3816 struct cleanup *old_chain;
3817 char *string = NULL;
3818 int len = 0;
3819 char **files = NULL, *file_name;
3820 int nfiles = 0;
3821
3822 if (regexp)
3823 {
3824 char *colon = strchr (regexp, ':');
3825
3826 if (colon && *(colon + 1) != ':')
3827 {
3828 int colon_index;
3829
3830 colon_index = colon - regexp;
3831 file_name = alloca (colon_index + 1);
3832 memcpy (file_name, regexp, colon_index);
3833 file_name[colon_index--] = 0;
3834 while (isspace (file_name[colon_index]))
3835 file_name[colon_index--] = 0;
3836 files = &file_name;
3837 nfiles = 1;
3838 regexp = colon + 1;
3839 while (isspace (*regexp)) regexp++;
3840 }
3841 }
3842
3843 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3844 old_chain = make_cleanup_free_search_symbols (ss);
3845 make_cleanup (free_current_contents, &string);
3846
3847 start_rbreak_breakpoints ();
3848 make_cleanup (do_end_rbreak_breakpoints, NULL);
3849 for (p = ss; p != NULL; p = p->next)
3850 {
3851 if (p->msymbol == NULL)
3852 {
3853 int newlen = (strlen (p->symtab->filename)
3854 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3855 + 4);
3856
3857 if (newlen > len)
3858 {
3859 string = xrealloc (string, newlen);
3860 len = newlen;
3861 }
3862 strcpy (string, p->symtab->filename);
3863 strcat (string, ":'");
3864 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3865 strcat (string, "'");
3866 break_command (string, from_tty);
3867 print_symbol_info (FUNCTIONS_DOMAIN,
3868 p->symtab,
3869 p->symbol,
3870 p->block,
3871 p->symtab->filename);
3872 }
3873 else
3874 {
3875 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3876
3877 if (newlen > len)
3878 {
3879 string = xrealloc (string, newlen);
3880 len = newlen;
3881 }
3882 strcpy (string, "'");
3883 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3884 strcat (string, "'");
3885
3886 break_command (string, from_tty);
3887 printf_filtered ("<function, no debug info> %s;\n",
3888 SYMBOL_PRINT_NAME (p->msymbol));
3889 }
3890 }
3891
3892 do_cleanups (old_chain);
3893 }
3894 \f
3895
3896 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3897
3898 Either sym_text[sym_text_len] != '(' and then we search for any
3899 symbol starting with SYM_TEXT text.
3900
3901 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3902 be terminated at that point. Partial symbol tables do not have parameters
3903 information. */
3904
3905 static int
3906 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3907 {
3908 int (*ncmp) (const char *, const char *, size_t);
3909
3910 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3911
3912 if (ncmp (name, sym_text, sym_text_len) != 0)
3913 return 0;
3914
3915 if (sym_text[sym_text_len] == '(')
3916 {
3917 /* User searches for `name(someth...'. Require NAME to be terminated.
3918 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3919 present but accept even parameters presence. In this case this
3920 function is in fact strcmp_iw but whitespace skipping is not supported
3921 for tab completion. */
3922
3923 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3924 return 0;
3925 }
3926
3927 return 1;
3928 }
3929
3930 /* Free any memory associated with a completion list. */
3931
3932 static void
3933 free_completion_list (VEC (char_ptr) **list_ptr)
3934 {
3935 int i;
3936 char *p;
3937
3938 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3939 xfree (p);
3940 VEC_free (char_ptr, *list_ptr);
3941 }
3942
3943 /* Callback for make_cleanup. */
3944
3945 static void
3946 do_free_completion_list (void *list)
3947 {
3948 free_completion_list (list);
3949 }
3950
3951 /* Helper routine for make_symbol_completion_list. */
3952
3953 static VEC (char_ptr) *return_val;
3954
3955 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3956 completion_list_add_name \
3957 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3958
3959 /* Test to see if the symbol specified by SYMNAME (which is already
3960 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3961 characters. If so, add it to the current completion list. */
3962
3963 static void
3964 completion_list_add_name (const char *symname,
3965 const char *sym_text, int sym_text_len,
3966 const char *text, const char *word)
3967 {
3968 int newsize;
3969
3970 /* Clip symbols that cannot match. */
3971 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3972 return;
3973
3974 /* We have a match for a completion, so add SYMNAME to the current list
3975 of matches. Note that the name is moved to freshly malloc'd space. */
3976
3977 {
3978 char *new;
3979
3980 if (word == sym_text)
3981 {
3982 new = xmalloc (strlen (symname) + 5);
3983 strcpy (new, symname);
3984 }
3985 else if (word > sym_text)
3986 {
3987 /* Return some portion of symname. */
3988 new = xmalloc (strlen (symname) + 5);
3989 strcpy (new, symname + (word - sym_text));
3990 }
3991 else
3992 {
3993 /* Return some of SYM_TEXT plus symname. */
3994 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3995 strncpy (new, word, sym_text - word);
3996 new[sym_text - word] = '\0';
3997 strcat (new, symname);
3998 }
3999
4000 VEC_safe_push (char_ptr, return_val, new);
4001 }
4002 }
4003
4004 /* ObjC: In case we are completing on a selector, look as the msymbol
4005 again and feed all the selectors into the mill. */
4006
4007 static void
4008 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4009 const char *sym_text, int sym_text_len,
4010 const char *text, const char *word)
4011 {
4012 static char *tmp = NULL;
4013 static unsigned int tmplen = 0;
4014
4015 const char *method, *category, *selector;
4016 char *tmp2 = NULL;
4017
4018 method = SYMBOL_NATURAL_NAME (msymbol);
4019
4020 /* Is it a method? */
4021 if ((method[0] != '-') && (method[0] != '+'))
4022 return;
4023
4024 if (sym_text[0] == '[')
4025 /* Complete on shortened method method. */
4026 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4027
4028 while ((strlen (method) + 1) >= tmplen)
4029 {
4030 if (tmplen == 0)
4031 tmplen = 1024;
4032 else
4033 tmplen *= 2;
4034 tmp = xrealloc (tmp, tmplen);
4035 }
4036 selector = strchr (method, ' ');
4037 if (selector != NULL)
4038 selector++;
4039
4040 category = strchr (method, '(');
4041
4042 if ((category != NULL) && (selector != NULL))
4043 {
4044 memcpy (tmp, method, (category - method));
4045 tmp[category - method] = ' ';
4046 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4047 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4048 if (sym_text[0] == '[')
4049 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4050 }
4051
4052 if (selector != NULL)
4053 {
4054 /* Complete on selector only. */
4055 strcpy (tmp, selector);
4056 tmp2 = strchr (tmp, ']');
4057 if (tmp2 != NULL)
4058 *tmp2 = '\0';
4059
4060 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4061 }
4062 }
4063
4064 /* Break the non-quoted text based on the characters which are in
4065 symbols. FIXME: This should probably be language-specific. */
4066
4067 static char *
4068 language_search_unquoted_string (char *text, char *p)
4069 {
4070 for (; p > text; --p)
4071 {
4072 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4073 continue;
4074 else
4075 {
4076 if ((current_language->la_language == language_objc))
4077 {
4078 if (p[-1] == ':') /* Might be part of a method name. */
4079 continue;
4080 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4081 p -= 2; /* Beginning of a method name. */
4082 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4083 { /* Might be part of a method name. */
4084 char *t = p;
4085
4086 /* Seeing a ' ' or a '(' is not conclusive evidence
4087 that we are in the middle of a method name. However,
4088 finding "-[" or "+[" should be pretty un-ambiguous.
4089 Unfortunately we have to find it now to decide. */
4090
4091 while (t > text)
4092 if (isalnum (t[-1]) || t[-1] == '_' ||
4093 t[-1] == ' ' || t[-1] == ':' ||
4094 t[-1] == '(' || t[-1] == ')')
4095 --t;
4096 else
4097 break;
4098
4099 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4100 p = t - 2; /* Method name detected. */
4101 /* Else we leave with p unchanged. */
4102 }
4103 }
4104 break;
4105 }
4106 }
4107 return p;
4108 }
4109
4110 static void
4111 completion_list_add_fields (struct symbol *sym, char *sym_text,
4112 int sym_text_len, char *text, char *word)
4113 {
4114 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4115 {
4116 struct type *t = SYMBOL_TYPE (sym);
4117 enum type_code c = TYPE_CODE (t);
4118 int j;
4119
4120 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4121 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4122 if (TYPE_FIELD_NAME (t, j))
4123 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4124 sym_text, sym_text_len, text, word);
4125 }
4126 }
4127
4128 /* Type of the user_data argument passed to add_macro_name or
4129 expand_partial_symbol_name. The contents are simply whatever is
4130 needed by completion_list_add_name. */
4131 struct add_name_data
4132 {
4133 char *sym_text;
4134 int sym_text_len;
4135 char *text;
4136 char *word;
4137 };
4138
4139 /* A callback used with macro_for_each and macro_for_each_in_scope.
4140 This adds a macro's name to the current completion list. */
4141
4142 static void
4143 add_macro_name (const char *name, const struct macro_definition *ignore,
4144 struct macro_source_file *ignore2, int ignore3,
4145 void *user_data)
4146 {
4147 struct add_name_data *datum = (struct add_name_data *) user_data;
4148
4149 completion_list_add_name ((char *) name,
4150 datum->sym_text, datum->sym_text_len,
4151 datum->text, datum->word);
4152 }
4153
4154 /* A callback for expand_partial_symbol_names. */
4155
4156 static int
4157 expand_partial_symbol_name (const char *name, void *user_data)
4158 {
4159 struct add_name_data *datum = (struct add_name_data *) user_data;
4160
4161 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4162 }
4163
4164 VEC (char_ptr) *
4165 default_make_symbol_completion_list_break_on (char *text, char *word,
4166 const char *break_on)
4167 {
4168 /* Problem: All of the symbols have to be copied because readline
4169 frees them. I'm not going to worry about this; hopefully there
4170 won't be that many. */
4171
4172 struct symbol *sym;
4173 struct symtab *s;
4174 struct minimal_symbol *msymbol;
4175 struct objfile *objfile;
4176 struct block *b;
4177 const struct block *surrounding_static_block, *surrounding_global_block;
4178 struct block_iterator iter;
4179 /* The symbol we are completing on. Points in same buffer as text. */
4180 char *sym_text;
4181 /* Length of sym_text. */
4182 int sym_text_len;
4183 struct add_name_data datum;
4184 struct cleanup *back_to;
4185
4186 /* Now look for the symbol we are supposed to complete on. */
4187 {
4188 char *p;
4189 char quote_found;
4190 char *quote_pos = NULL;
4191
4192 /* First see if this is a quoted string. */
4193 quote_found = '\0';
4194 for (p = text; *p != '\0'; ++p)
4195 {
4196 if (quote_found != '\0')
4197 {
4198 if (*p == quote_found)
4199 /* Found close quote. */
4200 quote_found = '\0';
4201 else if (*p == '\\' && p[1] == quote_found)
4202 /* A backslash followed by the quote character
4203 doesn't end the string. */
4204 ++p;
4205 }
4206 else if (*p == '\'' || *p == '"')
4207 {
4208 quote_found = *p;
4209 quote_pos = p;
4210 }
4211 }
4212 if (quote_found == '\'')
4213 /* A string within single quotes can be a symbol, so complete on it. */
4214 sym_text = quote_pos + 1;
4215 else if (quote_found == '"')
4216 /* A double-quoted string is never a symbol, nor does it make sense
4217 to complete it any other way. */
4218 {
4219 return NULL;
4220 }
4221 else
4222 {
4223 /* It is not a quoted string. Break it based on the characters
4224 which are in symbols. */
4225 while (p > text)
4226 {
4227 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4228 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4229 --p;
4230 else
4231 break;
4232 }
4233 sym_text = p;
4234 }
4235 }
4236
4237 sym_text_len = strlen (sym_text);
4238
4239 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4240
4241 if (current_language->la_language == language_cplus
4242 || current_language->la_language == language_java
4243 || current_language->la_language == language_fortran)
4244 {
4245 /* These languages may have parameters entered by user but they are never
4246 present in the partial symbol tables. */
4247
4248 const char *cs = memchr (sym_text, '(', sym_text_len);
4249
4250 if (cs)
4251 sym_text_len = cs - sym_text;
4252 }
4253 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4254
4255 return_val = NULL;
4256 back_to = make_cleanup (do_free_completion_list, &return_val);
4257
4258 datum.sym_text = sym_text;
4259 datum.sym_text_len = sym_text_len;
4260 datum.text = text;
4261 datum.word = word;
4262
4263 /* Look through the partial symtabs for all symbols which begin
4264 by matching SYM_TEXT. Expand all CUs that you find to the list.
4265 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4266 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4267
4268 /* At this point scan through the misc symbol vectors and add each
4269 symbol you find to the list. Eventually we want to ignore
4270 anything that isn't a text symbol (everything else will be
4271 handled by the psymtab code above). */
4272
4273 ALL_MSYMBOLS (objfile, msymbol)
4274 {
4275 QUIT;
4276 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4277
4278 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4279 }
4280
4281 /* Search upwards from currently selected frame (so that we can
4282 complete on local vars). Also catch fields of types defined in
4283 this places which match our text string. Only complete on types
4284 visible from current context. */
4285
4286 b = get_selected_block (0);
4287 surrounding_static_block = block_static_block (b);
4288 surrounding_global_block = block_global_block (b);
4289 if (surrounding_static_block != NULL)
4290 while (b != surrounding_static_block)
4291 {
4292 QUIT;
4293
4294 ALL_BLOCK_SYMBOLS (b, iter, sym)
4295 {
4296 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4297 word);
4298 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4299 word);
4300 }
4301
4302 /* Stop when we encounter an enclosing function. Do not stop for
4303 non-inlined functions - the locals of the enclosing function
4304 are in scope for a nested function. */
4305 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4306 break;
4307 b = BLOCK_SUPERBLOCK (b);
4308 }
4309
4310 /* Add fields from the file's types; symbols will be added below. */
4311
4312 if (surrounding_static_block != NULL)
4313 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4314 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4315
4316 if (surrounding_global_block != NULL)
4317 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4318 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4319
4320 /* Go through the symtabs and check the externs and statics for
4321 symbols which match. */
4322
4323 ALL_PRIMARY_SYMTABS (objfile, s)
4324 {
4325 QUIT;
4326 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4327 ALL_BLOCK_SYMBOLS (b, iter, sym)
4328 {
4329 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4330 }
4331 }
4332
4333 ALL_PRIMARY_SYMTABS (objfile, s)
4334 {
4335 QUIT;
4336 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4337 ALL_BLOCK_SYMBOLS (b, iter, sym)
4338 {
4339 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4340 }
4341 }
4342
4343 if (current_language->la_macro_expansion == macro_expansion_c)
4344 {
4345 struct macro_scope *scope;
4346
4347 /* Add any macros visible in the default scope. Note that this
4348 may yield the occasional wrong result, because an expression
4349 might be evaluated in a scope other than the default. For
4350 example, if the user types "break file:line if <TAB>", the
4351 resulting expression will be evaluated at "file:line" -- but
4352 at there does not seem to be a way to detect this at
4353 completion time. */
4354 scope = default_macro_scope ();
4355 if (scope)
4356 {
4357 macro_for_each_in_scope (scope->file, scope->line,
4358 add_macro_name, &datum);
4359 xfree (scope);
4360 }
4361
4362 /* User-defined macros are always visible. */
4363 macro_for_each (macro_user_macros, add_macro_name, &datum);
4364 }
4365
4366 discard_cleanups (back_to);
4367 return (return_val);
4368 }
4369
4370 VEC (char_ptr) *
4371 default_make_symbol_completion_list (char *text, char *word)
4372 {
4373 return default_make_symbol_completion_list_break_on (text, word, "");
4374 }
4375
4376 /* Return a vector of all symbols (regardless of class) which begin by
4377 matching TEXT. If the answer is no symbols, then the return value
4378 is NULL. */
4379
4380 VEC (char_ptr) *
4381 make_symbol_completion_list (char *text, char *word)
4382 {
4383 return current_language->la_make_symbol_completion_list (text, word);
4384 }
4385
4386 /* Like make_symbol_completion_list, but suitable for use as a
4387 completion function. */
4388
4389 VEC (char_ptr) *
4390 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4391 char *text, char *word)
4392 {
4393 return make_symbol_completion_list (text, word);
4394 }
4395
4396 /* Like make_symbol_completion_list, but returns a list of symbols
4397 defined in a source file FILE. */
4398
4399 VEC (char_ptr) *
4400 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4401 {
4402 struct symbol *sym;
4403 struct symtab *s;
4404 struct block *b;
4405 struct block_iterator iter;
4406 /* The symbol we are completing on. Points in same buffer as text. */
4407 char *sym_text;
4408 /* Length of sym_text. */
4409 int sym_text_len;
4410
4411 /* Now look for the symbol we are supposed to complete on.
4412 FIXME: This should be language-specific. */
4413 {
4414 char *p;
4415 char quote_found;
4416 char *quote_pos = NULL;
4417
4418 /* First see if this is a quoted string. */
4419 quote_found = '\0';
4420 for (p = text; *p != '\0'; ++p)
4421 {
4422 if (quote_found != '\0')
4423 {
4424 if (*p == quote_found)
4425 /* Found close quote. */
4426 quote_found = '\0';
4427 else if (*p == '\\' && p[1] == quote_found)
4428 /* A backslash followed by the quote character
4429 doesn't end the string. */
4430 ++p;
4431 }
4432 else if (*p == '\'' || *p == '"')
4433 {
4434 quote_found = *p;
4435 quote_pos = p;
4436 }
4437 }
4438 if (quote_found == '\'')
4439 /* A string within single quotes can be a symbol, so complete on it. */
4440 sym_text = quote_pos + 1;
4441 else if (quote_found == '"')
4442 /* A double-quoted string is never a symbol, nor does it make sense
4443 to complete it any other way. */
4444 {
4445 return NULL;
4446 }
4447 else
4448 {
4449 /* Not a quoted string. */
4450 sym_text = language_search_unquoted_string (text, p);
4451 }
4452 }
4453
4454 sym_text_len = strlen (sym_text);
4455
4456 return_val = NULL;
4457
4458 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4459 in). */
4460 s = lookup_symtab (srcfile);
4461 if (s == NULL)
4462 {
4463 /* Maybe they typed the file with leading directories, while the
4464 symbol tables record only its basename. */
4465 const char *tail = lbasename (srcfile);
4466
4467 if (tail > srcfile)
4468 s = lookup_symtab (tail);
4469 }
4470
4471 /* If we have no symtab for that file, return an empty list. */
4472 if (s == NULL)
4473 return (return_val);
4474
4475 /* Go through this symtab and check the externs and statics for
4476 symbols which match. */
4477
4478 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4479 ALL_BLOCK_SYMBOLS (b, iter, sym)
4480 {
4481 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4482 }
4483
4484 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4485 ALL_BLOCK_SYMBOLS (b, iter, sym)
4486 {
4487 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4488 }
4489
4490 return (return_val);
4491 }
4492
4493 /* A helper function for make_source_files_completion_list. It adds
4494 another file name to a list of possible completions, growing the
4495 list as necessary. */
4496
4497 static void
4498 add_filename_to_list (const char *fname, char *text, char *word,
4499 VEC (char_ptr) **list)
4500 {
4501 char *new;
4502 size_t fnlen = strlen (fname);
4503
4504 if (word == text)
4505 {
4506 /* Return exactly fname. */
4507 new = xmalloc (fnlen + 5);
4508 strcpy (new, fname);
4509 }
4510 else if (word > text)
4511 {
4512 /* Return some portion of fname. */
4513 new = xmalloc (fnlen + 5);
4514 strcpy (new, fname + (word - text));
4515 }
4516 else
4517 {
4518 /* Return some of TEXT plus fname. */
4519 new = xmalloc (fnlen + (text - word) + 5);
4520 strncpy (new, word, text - word);
4521 new[text - word] = '\0';
4522 strcat (new, fname);
4523 }
4524 VEC_safe_push (char_ptr, *list, new);
4525 }
4526
4527 static int
4528 not_interesting_fname (const char *fname)
4529 {
4530 static const char *illegal_aliens[] = {
4531 "_globals_", /* inserted by coff_symtab_read */
4532 NULL
4533 };
4534 int i;
4535
4536 for (i = 0; illegal_aliens[i]; i++)
4537 {
4538 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4539 return 1;
4540 }
4541 return 0;
4542 }
4543
4544 /* An object of this type is passed as the user_data argument to
4545 map_partial_symbol_filenames. */
4546 struct add_partial_filename_data
4547 {
4548 int *first;
4549 char *text;
4550 char *word;
4551 int text_len;
4552 VEC (char_ptr) **list;
4553 };
4554
4555 /* A callback for map_partial_symbol_filenames. */
4556
4557 static void
4558 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4559 void *user_data)
4560 {
4561 struct add_partial_filename_data *data = user_data;
4562
4563 if (not_interesting_fname (filename))
4564 return;
4565 if (!filename_seen (filename, 1, data->first)
4566 && filename_ncmp (filename, data->text, data->text_len) == 0)
4567 {
4568 /* This file matches for a completion; add it to the
4569 current list of matches. */
4570 add_filename_to_list (filename, data->text, data->word, data->list);
4571 }
4572 else
4573 {
4574 const char *base_name = lbasename (filename);
4575
4576 if (base_name != filename
4577 && !filename_seen (base_name, 1, data->first)
4578 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4579 add_filename_to_list (base_name, data->text, data->word, data->list);
4580 }
4581 }
4582
4583 /* Return a vector of all source files whose names begin with matching
4584 TEXT. The file names are looked up in the symbol tables of this
4585 program. If the answer is no matchess, then the return value is
4586 NULL. */
4587
4588 VEC (char_ptr) *
4589 make_source_files_completion_list (char *text, char *word)
4590 {
4591 struct symtab *s;
4592 struct objfile *objfile;
4593 int first = 1;
4594 size_t text_len = strlen (text);
4595 VEC (char_ptr) *list = NULL;
4596 const char *base_name;
4597 struct add_partial_filename_data datum;
4598 struct cleanup *back_to;
4599
4600 if (!have_full_symbols () && !have_partial_symbols ())
4601 return list;
4602
4603 back_to = make_cleanup (do_free_completion_list, &list);
4604
4605 ALL_SYMTABS (objfile, s)
4606 {
4607 if (not_interesting_fname (s->filename))
4608 continue;
4609 if (!filename_seen (s->filename, 1, &first)
4610 && filename_ncmp (s->filename, text, text_len) == 0)
4611 {
4612 /* This file matches for a completion; add it to the current
4613 list of matches. */
4614 add_filename_to_list (s->filename, text, word, &list);
4615 }
4616 else
4617 {
4618 /* NOTE: We allow the user to type a base name when the
4619 debug info records leading directories, but not the other
4620 way around. This is what subroutines of breakpoint
4621 command do when they parse file names. */
4622 base_name = lbasename (s->filename);
4623 if (base_name != s->filename
4624 && !filename_seen (base_name, 1, &first)
4625 && filename_ncmp (base_name, text, text_len) == 0)
4626 add_filename_to_list (base_name, text, word, &list);
4627 }
4628 }
4629
4630 datum.first = &first;
4631 datum.text = text;
4632 datum.word = word;
4633 datum.text_len = text_len;
4634 datum.list = &list;
4635 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4636 0 /*need_fullname*/);
4637 discard_cleanups (back_to);
4638
4639 return list;
4640 }
4641
4642 /* Determine if PC is in the prologue of a function. The prologue is the area
4643 between the first instruction of a function, and the first executable line.
4644 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4645
4646 If non-zero, func_start is where we think the prologue starts, possibly
4647 by previous examination of symbol table information. */
4648
4649 int
4650 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4651 {
4652 struct symtab_and_line sal;
4653 CORE_ADDR func_addr, func_end;
4654
4655 /* We have several sources of information we can consult to figure
4656 this out.
4657 - Compilers usually emit line number info that marks the prologue
4658 as its own "source line". So the ending address of that "line"
4659 is the end of the prologue. If available, this is the most
4660 reliable method.
4661 - The minimal symbols and partial symbols, which can usually tell
4662 us the starting and ending addresses of a function.
4663 - If we know the function's start address, we can call the
4664 architecture-defined gdbarch_skip_prologue function to analyze the
4665 instruction stream and guess where the prologue ends.
4666 - Our `func_start' argument; if non-zero, this is the caller's
4667 best guess as to the function's entry point. At the time of
4668 this writing, handle_inferior_event doesn't get this right, so
4669 it should be our last resort. */
4670
4671 /* Consult the partial symbol table, to find which function
4672 the PC is in. */
4673 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4674 {
4675 CORE_ADDR prologue_end;
4676
4677 /* We don't even have minsym information, so fall back to using
4678 func_start, if given. */
4679 if (! func_start)
4680 return 1; /* We *might* be in a prologue. */
4681
4682 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4683
4684 return func_start <= pc && pc < prologue_end;
4685 }
4686
4687 /* If we have line number information for the function, that's
4688 usually pretty reliable. */
4689 sal = find_pc_line (func_addr, 0);
4690
4691 /* Now sal describes the source line at the function's entry point,
4692 which (by convention) is the prologue. The end of that "line",
4693 sal.end, is the end of the prologue.
4694
4695 Note that, for functions whose source code is all on a single
4696 line, the line number information doesn't always end up this way.
4697 So we must verify that our purported end-of-prologue address is
4698 *within* the function, not at its start or end. */
4699 if (sal.line == 0
4700 || sal.end <= func_addr
4701 || func_end <= sal.end)
4702 {
4703 /* We don't have any good line number info, so use the minsym
4704 information, together with the architecture-specific prologue
4705 scanning code. */
4706 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4707
4708 return func_addr <= pc && pc < prologue_end;
4709 }
4710
4711 /* We have line number info, and it looks good. */
4712 return func_addr <= pc && pc < sal.end;
4713 }
4714
4715 /* Given PC at the function's start address, attempt to find the
4716 prologue end using SAL information. Return zero if the skip fails.
4717
4718 A non-optimized prologue traditionally has one SAL for the function
4719 and a second for the function body. A single line function has
4720 them both pointing at the same line.
4721
4722 An optimized prologue is similar but the prologue may contain
4723 instructions (SALs) from the instruction body. Need to skip those
4724 while not getting into the function body.
4725
4726 The functions end point and an increasing SAL line are used as
4727 indicators of the prologue's endpoint.
4728
4729 This code is based on the function refine_prologue_limit
4730 (found in ia64). */
4731
4732 CORE_ADDR
4733 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4734 {
4735 struct symtab_and_line prologue_sal;
4736 CORE_ADDR start_pc;
4737 CORE_ADDR end_pc;
4738 struct block *bl;
4739
4740 /* Get an initial range for the function. */
4741 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4742 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4743
4744 prologue_sal = find_pc_line (start_pc, 0);
4745 if (prologue_sal.line != 0)
4746 {
4747 /* For languages other than assembly, treat two consecutive line
4748 entries at the same address as a zero-instruction prologue.
4749 The GNU assembler emits separate line notes for each instruction
4750 in a multi-instruction macro, but compilers generally will not
4751 do this. */
4752 if (prologue_sal.symtab->language != language_asm)
4753 {
4754 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4755 int idx = 0;
4756
4757 /* Skip any earlier lines, and any end-of-sequence marker
4758 from a previous function. */
4759 while (linetable->item[idx].pc != prologue_sal.pc
4760 || linetable->item[idx].line == 0)
4761 idx++;
4762
4763 if (idx+1 < linetable->nitems
4764 && linetable->item[idx+1].line != 0
4765 && linetable->item[idx+1].pc == start_pc)
4766 return start_pc;
4767 }
4768
4769 /* If there is only one sal that covers the entire function,
4770 then it is probably a single line function, like
4771 "foo(){}". */
4772 if (prologue_sal.end >= end_pc)
4773 return 0;
4774
4775 while (prologue_sal.end < end_pc)
4776 {
4777 struct symtab_and_line sal;
4778
4779 sal = find_pc_line (prologue_sal.end, 0);
4780 if (sal.line == 0)
4781 break;
4782 /* Assume that a consecutive SAL for the same (or larger)
4783 line mark the prologue -> body transition. */
4784 if (sal.line >= prologue_sal.line)
4785 break;
4786
4787 /* The line number is smaller. Check that it's from the
4788 same function, not something inlined. If it's inlined,
4789 then there is no point comparing the line numbers. */
4790 bl = block_for_pc (prologue_sal.end);
4791 while (bl)
4792 {
4793 if (block_inlined_p (bl))
4794 break;
4795 if (BLOCK_FUNCTION (bl))
4796 {
4797 bl = NULL;
4798 break;
4799 }
4800 bl = BLOCK_SUPERBLOCK (bl);
4801 }
4802 if (bl != NULL)
4803 break;
4804
4805 /* The case in which compiler's optimizer/scheduler has
4806 moved instructions into the prologue. We look ahead in
4807 the function looking for address ranges whose
4808 corresponding line number is less the first one that we
4809 found for the function. This is more conservative then
4810 refine_prologue_limit which scans a large number of SALs
4811 looking for any in the prologue. */
4812 prologue_sal = sal;
4813 }
4814 }
4815
4816 if (prologue_sal.end < end_pc)
4817 /* Return the end of this line, or zero if we could not find a
4818 line. */
4819 return prologue_sal.end;
4820 else
4821 /* Don't return END_PC, which is past the end of the function. */
4822 return prologue_sal.pc;
4823 }
4824 \f
4825 struct symtabs_and_lines
4826 decode_line_spec (char *string, int flags)
4827 {
4828 struct symtabs_and_lines sals;
4829 struct symtab_and_line cursal;
4830
4831 if (string == 0)
4832 error (_("Empty line specification."));
4833
4834 /* We use whatever is set as the current source line. We do not try
4835 and get a default or it will recursively call us! */
4836 cursal = get_current_source_symtab_and_line ();
4837
4838 sals = decode_line_1 (&string, flags,
4839 cursal.symtab, cursal.line);
4840
4841 if (*string)
4842 error (_("Junk at end of line specification: %s"), string);
4843 return sals;
4844 }
4845
4846 /* Track MAIN */
4847 static char *name_of_main;
4848 enum language language_of_main = language_unknown;
4849
4850 void
4851 set_main_name (const char *name)
4852 {
4853 if (name_of_main != NULL)
4854 {
4855 xfree (name_of_main);
4856 name_of_main = NULL;
4857 language_of_main = language_unknown;
4858 }
4859 if (name != NULL)
4860 {
4861 name_of_main = xstrdup (name);
4862 language_of_main = language_unknown;
4863 }
4864 }
4865
4866 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4867 accordingly. */
4868
4869 static void
4870 find_main_name (void)
4871 {
4872 const char *new_main_name;
4873
4874 /* Try to see if the main procedure is in Ada. */
4875 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4876 be to add a new method in the language vector, and call this
4877 method for each language until one of them returns a non-empty
4878 name. This would allow us to remove this hard-coded call to
4879 an Ada function. It is not clear that this is a better approach
4880 at this point, because all methods need to be written in a way
4881 such that false positives never be returned. For instance, it is
4882 important that a method does not return a wrong name for the main
4883 procedure if the main procedure is actually written in a different
4884 language. It is easy to guaranty this with Ada, since we use a
4885 special symbol generated only when the main in Ada to find the name
4886 of the main procedure. It is difficult however to see how this can
4887 be guarantied for languages such as C, for instance. This suggests
4888 that order of call for these methods becomes important, which means
4889 a more complicated approach. */
4890 new_main_name = ada_main_name ();
4891 if (new_main_name != NULL)
4892 {
4893 set_main_name (new_main_name);
4894 return;
4895 }
4896
4897 new_main_name = go_main_name ();
4898 if (new_main_name != NULL)
4899 {
4900 set_main_name (new_main_name);
4901 return;
4902 }
4903
4904 new_main_name = pascal_main_name ();
4905 if (new_main_name != NULL)
4906 {
4907 set_main_name (new_main_name);
4908 return;
4909 }
4910
4911 /* The languages above didn't identify the name of the main procedure.
4912 Fallback to "main". */
4913 set_main_name ("main");
4914 }
4915
4916 char *
4917 main_name (void)
4918 {
4919 if (name_of_main == NULL)
4920 find_main_name ();
4921
4922 return name_of_main;
4923 }
4924
4925 /* Handle ``executable_changed'' events for the symtab module. */
4926
4927 static void
4928 symtab_observer_executable_changed (void)
4929 {
4930 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4931 set_main_name (NULL);
4932 }
4933
4934 /* Return 1 if the supplied producer string matches the ARM RealView
4935 compiler (armcc). */
4936
4937 int
4938 producer_is_realview (const char *producer)
4939 {
4940 static const char *const arm_idents[] = {
4941 "ARM C Compiler, ADS",
4942 "Thumb C Compiler, ADS",
4943 "ARM C++ Compiler, ADS",
4944 "Thumb C++ Compiler, ADS",
4945 "ARM/Thumb C/C++ Compiler, RVCT",
4946 "ARM C/C++ Compiler, RVCT"
4947 };
4948 int i;
4949
4950 if (producer == NULL)
4951 return 0;
4952
4953 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4954 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4955 return 1;
4956
4957 return 0;
4958 }
4959
4960 void
4961 _initialize_symtab (void)
4962 {
4963 add_info ("variables", variables_info, _("\
4964 All global and static variable names, or those matching REGEXP."));
4965 if (dbx_commands)
4966 add_com ("whereis", class_info, variables_info, _("\
4967 All global and static variable names, or those matching REGEXP."));
4968
4969 add_info ("functions", functions_info,
4970 _("All function names, or those matching REGEXP."));
4971
4972 /* FIXME: This command has at least the following problems:
4973 1. It prints builtin types (in a very strange and confusing fashion).
4974 2. It doesn't print right, e.g. with
4975 typedef struct foo *FOO
4976 type_print prints "FOO" when we want to make it (in this situation)
4977 print "struct foo *".
4978 I also think "ptype" or "whatis" is more likely to be useful (but if
4979 there is much disagreement "info types" can be fixed). */
4980 add_info ("types", types_info,
4981 _("All type names, or those matching REGEXP."));
4982
4983 add_info ("sources", sources_info,
4984 _("Source files in the program."));
4985
4986 add_com ("rbreak", class_breakpoint, rbreak_command,
4987 _("Set a breakpoint for all functions matching REGEXP."));
4988
4989 if (xdb_commands)
4990 {
4991 add_com ("lf", class_info, sources_info,
4992 _("Source files in the program"));
4993 add_com ("lg", class_info, variables_info, _("\
4994 All global and static variable names, or those matching REGEXP."));
4995 }
4996
4997 add_setshow_enum_cmd ("multiple-symbols", no_class,
4998 multiple_symbols_modes, &multiple_symbols_mode,
4999 _("\
5000 Set the debugger behavior when more than one symbol are possible matches\n\
5001 in an expression."), _("\
5002 Show how the debugger handles ambiguities in expressions."), _("\
5003 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5004 NULL, NULL, &setlist, &showlist);
5005
5006 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5007 &basenames_may_differ, _("\
5008 Set whether a source file may have multiple base names."), _("\
5009 Show whether a source file may have multiple base names."), _("\
5010 (A \"base name\" is the name of a file with the directory part removed.\n\
5011 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5012 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5013 before comparing them. Canonicalization is an expensive operation,\n\
5014 but it allows the same file be known by more than one base name.\n\
5015 If not set (the default), all source files are assumed to have just\n\
5016 one base name, and gdb will do file name comparisons more efficiently."),
5017 NULL, NULL,
5018 &setlist, &showlist);
5019
5020 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5021 _("Set debugging of symbol table creation."),
5022 _("Show debugging of symbol table creation."), _("\
5023 When enabled, debugging messages are printed when building symbol tables."),
5024 NULL,
5025 NULL,
5026 &setdebuglist, &showdebuglist);
5027
5028 observer_attach_executable_changed (symtab_observer_executable_changed);
5029 }
This page took 0.129686 seconds and 5 git commands to generate.