* python/lib/gdb/command/pretty_printers.py
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 static struct symbol *lookup_symbol_aux (const char *name,
87 const struct block *block,
88 const domain_enum domain,
89 enum language language,
90 int *is_a_field_of_this);
91
92 static
93 struct symbol *lookup_symbol_aux_local (const char *name,
94 const struct block *block,
95 const domain_enum domain,
96 enum language language);
97
98 static
99 struct symbol *lookup_symbol_aux_symtabs (int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 static
104 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
105 int block_index,
106 const char *name,
107 const domain_enum domain);
108
109 static void print_msymbol_info (struct minimal_symbol *);
110
111 void _initialize_symtab (void);
112
113 /* */
114
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
119
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *multiple_symbols_modes[] =
128 {
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133 };
134 static const char *multiple_symbols_mode = multiple_symbols_all;
135
136 /* Read-only accessor to AUTO_SELECT_MODE. */
137
138 const char *
139 multiple_symbols_select_mode (void)
140 {
141 return multiple_symbols_mode;
142 }
143
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148 const struct block *block_found;
149
150 /* Check for a symtab of a specific name; first in symtabs, then in
151 psymtabs. *If* there is no '/' in the name, a match after a '/'
152 in the symtab filename will also work. */
153
154 struct symtab *
155 lookup_symtab (const char *name)
156 {
157 int found;
158 struct symtab *s = NULL;
159 struct objfile *objfile;
160 char *real_path = NULL;
161 char *full_path = NULL;
162 struct cleanup *cleanup;
163 const char* base_name = lbasename (name);
164
165 cleanup = make_cleanup (null_cleanup, NULL);
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match. */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 do_cleanups (cleanup);
186 return s;
187 }
188
189 /* Before we invoke realpath, which can get expensive when many
190 files are involved, do a quick comparison of the basenames. */
191 if (! basenames_may_differ
192 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
193 continue;
194
195 /* If the user gave us an absolute path, try to find the file in
196 this symtab and use its absolute path. */
197
198 if (full_path != NULL)
199 {
200 const char *fp = symtab_to_fullname (s);
201
202 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
203 {
204 do_cleanups (cleanup);
205 return s;
206 }
207 }
208
209 if (real_path != NULL)
210 {
211 char *fullname = symtab_to_fullname (s);
212
213 if (fullname != NULL)
214 {
215 char *rp = gdb_realpath (fullname);
216
217 make_cleanup (xfree, rp);
218 if (FILENAME_CMP (real_path, rp) == 0)
219 {
220 do_cleanups (cleanup);
221 return s;
222 }
223 }
224 }
225 }
226
227 /* Now, search for a matching tail (only if name doesn't have any dirs). */
228
229 if (lbasename (name) == name)
230 ALL_SYMTABS (objfile, s)
231 {
232 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
233 {
234 do_cleanups (cleanup);
235 return s;
236 }
237 }
238
239 /* Same search rules as above apply here, but now we look thru the
240 psymtabs. */
241
242 found = 0;
243 ALL_OBJFILES (objfile)
244 {
245 if (objfile->sf
246 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
247 &s))
248 {
249 found = 1;
250 break;
251 }
252 }
253
254 if (s != NULL)
255 {
256 do_cleanups (cleanup);
257 return s;
258 }
259 if (!found)
260 {
261 do_cleanups (cleanup);
262 return NULL;
263 }
264
265 /* At this point, we have located the psymtab for this file, but
266 the conversion to a symtab has failed. This usually happens
267 when we are looking up an include file. In this case,
268 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
269 been created. So, we need to run through the symtabs again in
270 order to find the file.
271 XXX - This is a crock, and should be fixed inside of the
272 symbol parsing routines. */
273 goto got_symtab;
274 }
275 \f
276 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
277 full method name, which consist of the class name (from T), the unadorned
278 method name from METHOD_ID, and the signature for the specific overload,
279 specified by SIGNATURE_ID. Note that this function is g++ specific. */
280
281 char *
282 gdb_mangle_name (struct type *type, int method_id, int signature_id)
283 {
284 int mangled_name_len;
285 char *mangled_name;
286 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
287 struct fn_field *method = &f[signature_id];
288 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
289 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
290 char *newname = type_name_no_tag (type);
291
292 /* Does the form of physname indicate that it is the full mangled name
293 of a constructor (not just the args)? */
294 int is_full_physname_constructor;
295
296 int is_constructor;
297 int is_destructor = is_destructor_name (physname);
298 /* Need a new type prefix. */
299 char *const_prefix = method->is_const ? "C" : "";
300 char *volatile_prefix = method->is_volatile ? "V" : "";
301 char buf[20];
302 int len = (newname == NULL ? 0 : strlen (newname));
303
304 /* Nothing to do if physname already contains a fully mangled v3 abi name
305 or an operator name. */
306 if ((physname[0] == '_' && physname[1] == 'Z')
307 || is_operator_name (field_name))
308 return xstrdup (physname);
309
310 is_full_physname_constructor = is_constructor_name (physname);
311
312 is_constructor = is_full_physname_constructor
313 || (newname && strcmp (field_name, newname) == 0);
314
315 if (!is_destructor)
316 is_destructor = (strncmp (physname, "__dt", 4) == 0);
317
318 if (is_destructor || is_full_physname_constructor)
319 {
320 mangled_name = (char *) xmalloc (strlen (physname) + 1);
321 strcpy (mangled_name, physname);
322 return mangled_name;
323 }
324
325 if (len == 0)
326 {
327 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
328 }
329 else if (physname[0] == 't' || physname[0] == 'Q')
330 {
331 /* The physname for template and qualified methods already includes
332 the class name. */
333 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
334 newname = NULL;
335 len = 0;
336 }
337 else
338 {
339 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
340 }
341 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
342 + strlen (buf) + len + strlen (physname) + 1);
343
344 mangled_name = (char *) xmalloc (mangled_name_len);
345 if (is_constructor)
346 mangled_name[0] = '\0';
347 else
348 strcpy (mangled_name, field_name);
349
350 strcat (mangled_name, buf);
351 /* If the class doesn't have a name, i.e. newname NULL, then we just
352 mangle it using 0 for the length of the class. Thus it gets mangled
353 as something starting with `::' rather than `classname::'. */
354 if (newname != NULL)
355 strcat (mangled_name, newname);
356
357 strcat (mangled_name, physname);
358 return (mangled_name);
359 }
360
361 /* Initialize the cplus_specific structure. 'cplus_specific' should
362 only be allocated for use with cplus symbols. */
363
364 static void
365 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
366 struct objfile *objfile)
367 {
368 /* A language_specific structure should not have been previously
369 initialized. */
370 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
371 gdb_assert (objfile != NULL);
372
373 gsymbol->language_specific.cplus_specific =
374 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
375 }
376
377 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
378 correctly allocated. For C++ symbols a cplus_specific struct is
379 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
380 OBJFILE can be NULL. */
381 void
382 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
383 char *name,
384 struct objfile *objfile)
385 {
386 if (gsymbol->language == language_cplus)
387 {
388 if (gsymbol->language_specific.cplus_specific == NULL)
389 symbol_init_cplus_specific (gsymbol, objfile);
390
391 gsymbol->language_specific.cplus_specific->demangled_name = name;
392 }
393 else
394 gsymbol->language_specific.mangled_lang.demangled_name = name;
395 }
396
397 /* Return the demangled name of GSYMBOL. */
398 char *
399 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
400 {
401 if (gsymbol->language == language_cplus)
402 {
403 if (gsymbol->language_specific.cplus_specific != NULL)
404 return gsymbol->language_specific.cplus_specific->demangled_name;
405 else
406 return NULL;
407 }
408 else
409 return gsymbol->language_specific.mangled_lang.demangled_name;
410 }
411
412 \f
413 /* Initialize the language dependent portion of a symbol
414 depending upon the language for the symbol. */
415 void
416 symbol_set_language (struct general_symbol_info *gsymbol,
417 enum language language)
418 {
419 gsymbol->language = language;
420 if (gsymbol->language == language_d
421 || gsymbol->language == language_java
422 || gsymbol->language == language_objc
423 || gsymbol->language == language_fortran)
424 {
425 symbol_set_demangled_name (gsymbol, NULL, NULL);
426 }
427 else if (gsymbol->language == language_cplus)
428 gsymbol->language_specific.cplus_specific = NULL;
429 else
430 {
431 memset (&gsymbol->language_specific, 0,
432 sizeof (gsymbol->language_specific));
433 }
434 }
435
436 /* Functions to initialize a symbol's mangled name. */
437
438 /* Objects of this type are stored in the demangled name hash table. */
439 struct demangled_name_entry
440 {
441 char *mangled;
442 char demangled[1];
443 };
444
445 /* Hash function for the demangled name hash. */
446 static hashval_t
447 hash_demangled_name_entry (const void *data)
448 {
449 const struct demangled_name_entry *e = data;
450
451 return htab_hash_string (e->mangled);
452 }
453
454 /* Equality function for the demangled name hash. */
455 static int
456 eq_demangled_name_entry (const void *a, const void *b)
457 {
458 const struct demangled_name_entry *da = a;
459 const struct demangled_name_entry *db = b;
460
461 return strcmp (da->mangled, db->mangled) == 0;
462 }
463
464 /* Create the hash table used for demangled names. Each hash entry is
465 a pair of strings; one for the mangled name and one for the demangled
466 name. The entry is hashed via just the mangled name. */
467
468 static void
469 create_demangled_names_hash (struct objfile *objfile)
470 {
471 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
472 The hash table code will round this up to the next prime number.
473 Choosing a much larger table size wastes memory, and saves only about
474 1% in symbol reading. */
475
476 objfile->demangled_names_hash = htab_create_alloc
477 (256, hash_demangled_name_entry, eq_demangled_name_entry,
478 NULL, xcalloc, xfree);
479 }
480
481 /* Try to determine the demangled name for a symbol, based on the
482 language of that symbol. If the language is set to language_auto,
483 it will attempt to find any demangling algorithm that works and
484 then set the language appropriately. The returned name is allocated
485 by the demangler and should be xfree'd. */
486
487 static char *
488 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
489 const char *mangled)
490 {
491 char *demangled = NULL;
492
493 if (gsymbol->language == language_unknown)
494 gsymbol->language = language_auto;
495
496 if (gsymbol->language == language_objc
497 || gsymbol->language == language_auto)
498 {
499 demangled =
500 objc_demangle (mangled, 0);
501 if (demangled != NULL)
502 {
503 gsymbol->language = language_objc;
504 return demangled;
505 }
506 }
507 if (gsymbol->language == language_cplus
508 || gsymbol->language == language_auto)
509 {
510 demangled =
511 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
512 if (demangled != NULL)
513 {
514 gsymbol->language = language_cplus;
515 return demangled;
516 }
517 }
518 if (gsymbol->language == language_java)
519 {
520 demangled =
521 cplus_demangle (mangled,
522 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
523 if (demangled != NULL)
524 {
525 gsymbol->language = language_java;
526 return demangled;
527 }
528 }
529 if (gsymbol->language == language_d
530 || gsymbol->language == language_auto)
531 {
532 demangled = d_demangle(mangled, 0);
533 if (demangled != NULL)
534 {
535 gsymbol->language = language_d;
536 return demangled;
537 }
538 }
539 /* We could support `gsymbol->language == language_fortran' here to provide
540 module namespaces also for inferiors with only minimal symbol table (ELF
541 symbols). Just the mangling standard is not standardized across compilers
542 and there is no DW_AT_producer available for inferiors with only the ELF
543 symbols to check the mangling kind. */
544 return NULL;
545 }
546
547 /* Set both the mangled and demangled (if any) names for GSYMBOL based
548 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
549 objfile's obstack; but if COPY_NAME is 0 and if NAME is
550 NUL-terminated, then this function assumes that NAME is already
551 correctly saved (either permanently or with a lifetime tied to the
552 objfile), and it will not be copied.
553
554 The hash table corresponding to OBJFILE is used, and the memory
555 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
556 so the pointer can be discarded after calling this function. */
557
558 /* We have to be careful when dealing with Java names: when we run
559 into a Java minimal symbol, we don't know it's a Java symbol, so it
560 gets demangled as a C++ name. This is unfortunate, but there's not
561 much we can do about it: but when demangling partial symbols and
562 regular symbols, we'd better not reuse the wrong demangled name.
563 (See PR gdb/1039.) We solve this by putting a distinctive prefix
564 on Java names when storing them in the hash table. */
565
566 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
567 don't mind the Java prefix so much: different languages have
568 different demangling requirements, so it's only natural that we
569 need to keep language data around in our demangling cache. But
570 it's not good that the minimal symbol has the wrong demangled name.
571 Unfortunately, I can't think of any easy solution to that
572 problem. */
573
574 #define JAVA_PREFIX "##JAVA$$"
575 #define JAVA_PREFIX_LEN 8
576
577 void
578 symbol_set_names (struct general_symbol_info *gsymbol,
579 const char *linkage_name, int len, int copy_name,
580 struct objfile *objfile)
581 {
582 struct demangled_name_entry **slot;
583 /* A 0-terminated copy of the linkage name. */
584 const char *linkage_name_copy;
585 /* A copy of the linkage name that might have a special Java prefix
586 added to it, for use when looking names up in the hash table. */
587 const char *lookup_name;
588 /* The length of lookup_name. */
589 int lookup_len;
590 struct demangled_name_entry entry;
591
592 if (gsymbol->language == language_ada)
593 {
594 /* In Ada, we do the symbol lookups using the mangled name, so
595 we can save some space by not storing the demangled name.
596
597 As a side note, we have also observed some overlap between
598 the C++ mangling and Ada mangling, similarly to what has
599 been observed with Java. Because we don't store the demangled
600 name with the symbol, we don't need to use the same trick
601 as Java. */
602 if (!copy_name)
603 gsymbol->name = (char *) linkage_name;
604 else
605 {
606 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
607 memcpy (gsymbol->name, linkage_name, len);
608 gsymbol->name[len] = '\0';
609 }
610 symbol_set_demangled_name (gsymbol, NULL, NULL);
611
612 return;
613 }
614
615 if (objfile->demangled_names_hash == NULL)
616 create_demangled_names_hash (objfile);
617
618 /* The stabs reader generally provides names that are not
619 NUL-terminated; most of the other readers don't do this, so we
620 can just use the given copy, unless we're in the Java case. */
621 if (gsymbol->language == language_java)
622 {
623 char *alloc_name;
624
625 lookup_len = len + JAVA_PREFIX_LEN;
626 alloc_name = alloca (lookup_len + 1);
627 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
628 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
629 alloc_name[lookup_len] = '\0';
630
631 lookup_name = alloc_name;
632 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
633 }
634 else if (linkage_name[len] != '\0')
635 {
636 char *alloc_name;
637
638 lookup_len = len;
639 alloc_name = alloca (lookup_len + 1);
640 memcpy (alloc_name, linkage_name, len);
641 alloc_name[lookup_len] = '\0';
642
643 lookup_name = alloc_name;
644 linkage_name_copy = alloc_name;
645 }
646 else
647 {
648 lookup_len = len;
649 lookup_name = linkage_name;
650 linkage_name_copy = linkage_name;
651 }
652
653 entry.mangled = (char *) lookup_name;
654 slot = ((struct demangled_name_entry **)
655 htab_find_slot (objfile->demangled_names_hash,
656 &entry, INSERT));
657
658 /* If this name is not in the hash table, add it. */
659 if (*slot == NULL)
660 {
661 char *demangled_name = symbol_find_demangled_name (gsymbol,
662 linkage_name_copy);
663 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
664
665 /* Suppose we have demangled_name==NULL, copy_name==0, and
666 lookup_name==linkage_name. In this case, we already have the
667 mangled name saved, and we don't have a demangled name. So,
668 you might think we could save a little space by not recording
669 this in the hash table at all.
670
671 It turns out that it is actually important to still save such
672 an entry in the hash table, because storing this name gives
673 us better bcache hit rates for partial symbols. */
674 if (!copy_name && lookup_name == linkage_name)
675 {
676 *slot = obstack_alloc (&objfile->objfile_obstack,
677 offsetof (struct demangled_name_entry,
678 demangled)
679 + demangled_len + 1);
680 (*slot)->mangled = (char *) lookup_name;
681 }
682 else
683 {
684 /* If we must copy the mangled name, put it directly after
685 the demangled name so we can have a single
686 allocation. */
687 *slot = obstack_alloc (&objfile->objfile_obstack,
688 offsetof (struct demangled_name_entry,
689 demangled)
690 + lookup_len + demangled_len + 2);
691 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
692 strcpy ((*slot)->mangled, lookup_name);
693 }
694
695 if (demangled_name != NULL)
696 {
697 strcpy ((*slot)->demangled, demangled_name);
698 xfree (demangled_name);
699 }
700 else
701 (*slot)->demangled[0] = '\0';
702 }
703
704 gsymbol->name = (*slot)->mangled + lookup_len - len;
705 if ((*slot)->demangled[0] != '\0')
706 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
707 else
708 symbol_set_demangled_name (gsymbol, NULL, objfile);
709 }
710
711 /* Return the source code name of a symbol. In languages where
712 demangling is necessary, this is the demangled name. */
713
714 char *
715 symbol_natural_name (const struct general_symbol_info *gsymbol)
716 {
717 switch (gsymbol->language)
718 {
719 case language_cplus:
720 case language_d:
721 case language_java:
722 case language_objc:
723 case language_fortran:
724 if (symbol_get_demangled_name (gsymbol) != NULL)
725 return symbol_get_demangled_name (gsymbol);
726 break;
727 case language_ada:
728 if (symbol_get_demangled_name (gsymbol) != NULL)
729 return symbol_get_demangled_name (gsymbol);
730 else
731 return ada_decode_symbol (gsymbol);
732 break;
733 default:
734 break;
735 }
736 return gsymbol->name;
737 }
738
739 /* Return the demangled name for a symbol based on the language for
740 that symbol. If no demangled name exists, return NULL. */
741 char *
742 symbol_demangled_name (const struct general_symbol_info *gsymbol)
743 {
744 switch (gsymbol->language)
745 {
746 case language_cplus:
747 case language_d:
748 case language_java:
749 case language_objc:
750 case language_fortran:
751 if (symbol_get_demangled_name (gsymbol) != NULL)
752 return symbol_get_demangled_name (gsymbol);
753 break;
754 case language_ada:
755 if (symbol_get_demangled_name (gsymbol) != NULL)
756 return symbol_get_demangled_name (gsymbol);
757 else
758 return ada_decode_symbol (gsymbol);
759 break;
760 default:
761 break;
762 }
763 return NULL;
764 }
765
766 /* Return the search name of a symbol---generally the demangled or
767 linkage name of the symbol, depending on how it will be searched for.
768 If there is no distinct demangled name, then returns the same value
769 (same pointer) as SYMBOL_LINKAGE_NAME. */
770 char *
771 symbol_search_name (const struct general_symbol_info *gsymbol)
772 {
773 if (gsymbol->language == language_ada)
774 return gsymbol->name;
775 else
776 return symbol_natural_name (gsymbol);
777 }
778
779 /* Initialize the structure fields to zero values. */
780 void
781 init_sal (struct symtab_and_line *sal)
782 {
783 sal->pspace = NULL;
784 sal->symtab = 0;
785 sal->section = 0;
786 sal->line = 0;
787 sal->pc = 0;
788 sal->end = 0;
789 sal->explicit_pc = 0;
790 sal->explicit_line = 0;
791 }
792 \f
793
794 /* Return 1 if the two sections are the same, or if they could
795 plausibly be copies of each other, one in an original object
796 file and another in a separated debug file. */
797
798 int
799 matching_obj_sections (struct obj_section *obj_first,
800 struct obj_section *obj_second)
801 {
802 asection *first = obj_first? obj_first->the_bfd_section : NULL;
803 asection *second = obj_second? obj_second->the_bfd_section : NULL;
804 struct objfile *obj;
805
806 /* If they're the same section, then they match. */
807 if (first == second)
808 return 1;
809
810 /* If either is NULL, give up. */
811 if (first == NULL || second == NULL)
812 return 0;
813
814 /* This doesn't apply to absolute symbols. */
815 if (first->owner == NULL || second->owner == NULL)
816 return 0;
817
818 /* If they're in the same object file, they must be different sections. */
819 if (first->owner == second->owner)
820 return 0;
821
822 /* Check whether the two sections are potentially corresponding. They must
823 have the same size, address, and name. We can't compare section indexes,
824 which would be more reliable, because some sections may have been
825 stripped. */
826 if (bfd_get_section_size (first) != bfd_get_section_size (second))
827 return 0;
828
829 /* In-memory addresses may start at a different offset, relativize them. */
830 if (bfd_get_section_vma (first->owner, first)
831 - bfd_get_start_address (first->owner)
832 != bfd_get_section_vma (second->owner, second)
833 - bfd_get_start_address (second->owner))
834 return 0;
835
836 if (bfd_get_section_name (first->owner, first) == NULL
837 || bfd_get_section_name (second->owner, second) == NULL
838 || strcmp (bfd_get_section_name (first->owner, first),
839 bfd_get_section_name (second->owner, second)) != 0)
840 return 0;
841
842 /* Otherwise check that they are in corresponding objfiles. */
843
844 ALL_OBJFILES (obj)
845 if (obj->obfd == first->owner)
846 break;
847 gdb_assert (obj != NULL);
848
849 if (obj->separate_debug_objfile != NULL
850 && obj->separate_debug_objfile->obfd == second->owner)
851 return 1;
852 if (obj->separate_debug_objfile_backlink != NULL
853 && obj->separate_debug_objfile_backlink->obfd == second->owner)
854 return 1;
855
856 return 0;
857 }
858
859 struct symtab *
860 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
861 {
862 struct objfile *objfile;
863 struct minimal_symbol *msymbol;
864
865 /* If we know that this is not a text address, return failure. This is
866 necessary because we loop based on texthigh and textlow, which do
867 not include the data ranges. */
868 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
869 if (msymbol
870 && (MSYMBOL_TYPE (msymbol) == mst_data
871 || MSYMBOL_TYPE (msymbol) == mst_bss
872 || MSYMBOL_TYPE (msymbol) == mst_abs
873 || MSYMBOL_TYPE (msymbol) == mst_file_data
874 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
875 return NULL;
876
877 ALL_OBJFILES (objfile)
878 {
879 struct symtab *result = NULL;
880
881 if (objfile->sf)
882 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
883 pc, section, 0);
884 if (result)
885 return result;
886 }
887
888 return NULL;
889 }
890 \f
891 /* Debug symbols usually don't have section information. We need to dig that
892 out of the minimal symbols and stash that in the debug symbol. */
893
894 void
895 fixup_section (struct general_symbol_info *ginfo,
896 CORE_ADDR addr, struct objfile *objfile)
897 {
898 struct minimal_symbol *msym;
899
900 /* First, check whether a minimal symbol with the same name exists
901 and points to the same address. The address check is required
902 e.g. on PowerPC64, where the minimal symbol for a function will
903 point to the function descriptor, while the debug symbol will
904 point to the actual function code. */
905 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
906 if (msym)
907 {
908 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
909 ginfo->section = SYMBOL_SECTION (msym);
910 }
911 else
912 {
913 /* Static, function-local variables do appear in the linker
914 (minimal) symbols, but are frequently given names that won't
915 be found via lookup_minimal_symbol(). E.g., it has been
916 observed in frv-uclinux (ELF) executables that a static,
917 function-local variable named "foo" might appear in the
918 linker symbols as "foo.6" or "foo.3". Thus, there is no
919 point in attempting to extend the lookup-by-name mechanism to
920 handle this case due to the fact that there can be multiple
921 names.
922
923 So, instead, search the section table when lookup by name has
924 failed. The ``addr'' and ``endaddr'' fields may have already
925 been relocated. If so, the relocation offset (i.e. the
926 ANOFFSET value) needs to be subtracted from these values when
927 performing the comparison. We unconditionally subtract it,
928 because, when no relocation has been performed, the ANOFFSET
929 value will simply be zero.
930
931 The address of the symbol whose section we're fixing up HAS
932 NOT BEEN adjusted (relocated) yet. It can't have been since
933 the section isn't yet known and knowing the section is
934 necessary in order to add the correct relocation value. In
935 other words, we wouldn't even be in this function (attempting
936 to compute the section) if it were already known.
937
938 Note that it is possible to search the minimal symbols
939 (subtracting the relocation value if necessary) to find the
940 matching minimal symbol, but this is overkill and much less
941 efficient. It is not necessary to find the matching minimal
942 symbol, only its section.
943
944 Note that this technique (of doing a section table search)
945 can fail when unrelocated section addresses overlap. For
946 this reason, we still attempt a lookup by name prior to doing
947 a search of the section table. */
948
949 struct obj_section *s;
950
951 ALL_OBJFILE_OSECTIONS (objfile, s)
952 {
953 int idx = s->the_bfd_section->index;
954 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
955
956 if (obj_section_addr (s) - offset <= addr
957 && addr < obj_section_endaddr (s) - offset)
958 {
959 ginfo->obj_section = s;
960 ginfo->section = idx;
961 return;
962 }
963 }
964 }
965 }
966
967 struct symbol *
968 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
969 {
970 CORE_ADDR addr;
971
972 if (!sym)
973 return NULL;
974
975 if (SYMBOL_OBJ_SECTION (sym))
976 return sym;
977
978 /* We either have an OBJFILE, or we can get at it from the sym's
979 symtab. Anything else is a bug. */
980 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
981
982 if (objfile == NULL)
983 objfile = SYMBOL_SYMTAB (sym)->objfile;
984
985 /* We should have an objfile by now. */
986 gdb_assert (objfile);
987
988 switch (SYMBOL_CLASS (sym))
989 {
990 case LOC_STATIC:
991 case LOC_LABEL:
992 addr = SYMBOL_VALUE_ADDRESS (sym);
993 break;
994 case LOC_BLOCK:
995 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
996 break;
997
998 default:
999 /* Nothing else will be listed in the minsyms -- no use looking
1000 it up. */
1001 return sym;
1002 }
1003
1004 fixup_section (&sym->ginfo, addr, objfile);
1005
1006 return sym;
1007 }
1008
1009 /* Find the definition for a specified symbol name NAME
1010 in domain DOMAIN, visible from lexical block BLOCK.
1011 Returns the struct symbol pointer, or zero if no symbol is found.
1012 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1013 NAME is a field of the current implied argument `this'. If so set
1014 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1015 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1016 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1017
1018 /* This function has a bunch of loops in it and it would seem to be
1019 attractive to put in some QUIT's (though I'm not really sure
1020 whether it can run long enough to be really important). But there
1021 are a few calls for which it would appear to be bad news to quit
1022 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1023 that there is C++ code below which can error(), but that probably
1024 doesn't affect these calls since they are looking for a known
1025 variable and thus can probably assume it will never hit the C++
1026 code). */
1027
1028 struct symbol *
1029 lookup_symbol_in_language (const char *name, const struct block *block,
1030 const domain_enum domain, enum language lang,
1031 int *is_a_field_of_this)
1032 {
1033 char *demangled_name = NULL;
1034 const char *modified_name = NULL;
1035 struct symbol *returnval;
1036 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1037
1038 modified_name = name;
1039
1040 /* If we are using C++, D, or Java, demangle the name before doing a
1041 lookup, so we can always binary search. */
1042 if (lang == language_cplus)
1043 {
1044 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1045 if (demangled_name)
1046 {
1047 modified_name = demangled_name;
1048 make_cleanup (xfree, demangled_name);
1049 }
1050 else
1051 {
1052 /* If we were given a non-mangled name, canonicalize it
1053 according to the language (so far only for C++). */
1054 demangled_name = cp_canonicalize_string (name);
1055 if (demangled_name)
1056 {
1057 modified_name = demangled_name;
1058 make_cleanup (xfree, demangled_name);
1059 }
1060 }
1061 }
1062 else if (lang == language_java)
1063 {
1064 demangled_name = cplus_demangle (name,
1065 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1066 if (demangled_name)
1067 {
1068 modified_name = demangled_name;
1069 make_cleanup (xfree, demangled_name);
1070 }
1071 }
1072 else if (lang == language_d)
1073 {
1074 demangled_name = d_demangle (name, 0);
1075 if (demangled_name)
1076 {
1077 modified_name = demangled_name;
1078 make_cleanup (xfree, demangled_name);
1079 }
1080 }
1081
1082 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1083 is_a_field_of_this);
1084 do_cleanups (cleanup);
1085
1086 return returnval;
1087 }
1088
1089 /* Behave like lookup_symbol_in_language, but performed with the
1090 current language. */
1091
1092 struct symbol *
1093 lookup_symbol (const char *name, const struct block *block,
1094 domain_enum domain, int *is_a_field_of_this)
1095 {
1096 return lookup_symbol_in_language (name, block, domain,
1097 current_language->la_language,
1098 is_a_field_of_this);
1099 }
1100
1101 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1102 found, or NULL if not found. */
1103
1104 struct symbol *
1105 lookup_language_this (const struct language_defn *lang,
1106 const struct block *block)
1107 {
1108 if (lang->la_name_of_this == NULL || block == NULL)
1109 return NULL;
1110
1111 while (block)
1112 {
1113 struct symbol *sym;
1114
1115 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1116 if (sym != NULL)
1117 return sym;
1118 if (BLOCK_FUNCTION (block))
1119 break;
1120 block = BLOCK_SUPERBLOCK (block);
1121 }
1122
1123 return NULL;
1124 }
1125
1126 /* Behave like lookup_symbol except that NAME is the natural name
1127 of the symbol that we're looking for and, if LINKAGE_NAME is
1128 non-NULL, ensure that the symbol's linkage name matches as
1129 well. */
1130
1131 static struct symbol *
1132 lookup_symbol_aux (const char *name, const struct block *block,
1133 const domain_enum domain, enum language language,
1134 int *is_a_field_of_this)
1135 {
1136 struct symbol *sym;
1137 const struct language_defn *langdef;
1138
1139 /* Make sure we do something sensible with is_a_field_of_this, since
1140 the callers that set this parameter to some non-null value will
1141 certainly use it later and expect it to be either 0 or 1.
1142 If we don't set it, the contents of is_a_field_of_this are
1143 undefined. */
1144 if (is_a_field_of_this != NULL)
1145 *is_a_field_of_this = 0;
1146
1147 /* Search specified block and its superiors. Don't search
1148 STATIC_BLOCK or GLOBAL_BLOCK. */
1149
1150 sym = lookup_symbol_aux_local (name, block, domain, language);
1151 if (sym != NULL)
1152 return sym;
1153
1154 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1155 check to see if NAME is a field of `this'. */
1156
1157 langdef = language_def (language);
1158
1159 if (is_a_field_of_this != NULL)
1160 {
1161 struct symbol *sym = lookup_language_this (langdef, block);
1162
1163 if (sym)
1164 {
1165 struct type *t = sym->type;
1166
1167 /* I'm not really sure that type of this can ever
1168 be typedefed; just be safe. */
1169 CHECK_TYPEDEF (t);
1170 if (TYPE_CODE (t) == TYPE_CODE_PTR
1171 || TYPE_CODE (t) == TYPE_CODE_REF)
1172 t = TYPE_TARGET_TYPE (t);
1173
1174 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1175 && TYPE_CODE (t) != TYPE_CODE_UNION)
1176 error (_("Internal error: `%s' is not an aggregate"),
1177 langdef->la_name_of_this);
1178
1179 if (check_field (t, name))
1180 {
1181 *is_a_field_of_this = 1;
1182 return NULL;
1183 }
1184 }
1185 }
1186
1187 /* Now do whatever is appropriate for LANGUAGE to look
1188 up static and global variables. */
1189
1190 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1191 if (sym != NULL)
1192 return sym;
1193
1194 /* Now search all static file-level symbols. Not strictly correct,
1195 but more useful than an error. */
1196
1197 return lookup_static_symbol_aux (name, domain);
1198 }
1199
1200 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1201 first, then check the psymtabs. If a psymtab indicates the existence of the
1202 desired name as a file-level static, then do psymtab-to-symtab conversion on
1203 the fly and return the found symbol. */
1204
1205 struct symbol *
1206 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1207 {
1208 struct objfile *objfile;
1209 struct symbol *sym;
1210
1211 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1212 if (sym != NULL)
1213 return sym;
1214
1215 ALL_OBJFILES (objfile)
1216 {
1217 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1218 if (sym != NULL)
1219 return sym;
1220 }
1221
1222 return NULL;
1223 }
1224
1225 /* Check to see if the symbol is defined in BLOCK or its superiors.
1226 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1227
1228 static struct symbol *
1229 lookup_symbol_aux_local (const char *name, const struct block *block,
1230 const domain_enum domain,
1231 enum language language)
1232 {
1233 struct symbol *sym;
1234 const struct block *static_block = block_static_block (block);
1235 const char *scope = block_scope (block);
1236
1237 /* Check if either no block is specified or it's a global block. */
1238
1239 if (static_block == NULL)
1240 return NULL;
1241
1242 while (block != static_block)
1243 {
1244 sym = lookup_symbol_aux_block (name, block, domain);
1245 if (sym != NULL)
1246 return sym;
1247
1248 if (language == language_cplus || language == language_fortran)
1249 {
1250 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1251 domain);
1252 if (sym != NULL)
1253 return sym;
1254 }
1255
1256 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1257 break;
1258 block = BLOCK_SUPERBLOCK (block);
1259 }
1260
1261 /* We've reached the edge of the function without finding a result. */
1262
1263 return NULL;
1264 }
1265
1266 /* Look up OBJFILE to BLOCK. */
1267
1268 struct objfile *
1269 lookup_objfile_from_block (const struct block *block)
1270 {
1271 struct objfile *obj;
1272 struct symtab *s;
1273
1274 if (block == NULL)
1275 return NULL;
1276
1277 block = block_global_block (block);
1278 /* Go through SYMTABS. */
1279 ALL_SYMTABS (obj, s)
1280 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1281 {
1282 if (obj->separate_debug_objfile_backlink)
1283 obj = obj->separate_debug_objfile_backlink;
1284
1285 return obj;
1286 }
1287
1288 return NULL;
1289 }
1290
1291 /* Look up a symbol in a block; if found, fixup the symbol, and set
1292 block_found appropriately. */
1293
1294 struct symbol *
1295 lookup_symbol_aux_block (const char *name, const struct block *block,
1296 const domain_enum domain)
1297 {
1298 struct symbol *sym;
1299
1300 sym = lookup_block_symbol (block, name, domain);
1301 if (sym)
1302 {
1303 block_found = block;
1304 return fixup_symbol_section (sym, NULL);
1305 }
1306
1307 return NULL;
1308 }
1309
1310 /* Check all global symbols in OBJFILE in symtabs and
1311 psymtabs. */
1312
1313 struct symbol *
1314 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1315 const char *name,
1316 const domain_enum domain)
1317 {
1318 const struct objfile *objfile;
1319 struct symbol *sym;
1320 struct blockvector *bv;
1321 const struct block *block;
1322 struct symtab *s;
1323
1324 for (objfile = main_objfile;
1325 objfile;
1326 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1327 {
1328 /* Go through symtabs. */
1329 ALL_OBJFILE_SYMTABS (objfile, s)
1330 {
1331 bv = BLOCKVECTOR (s);
1332 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1333 sym = lookup_block_symbol (block, name, domain);
1334 if (sym)
1335 {
1336 block_found = block;
1337 return fixup_symbol_section (sym, (struct objfile *)objfile);
1338 }
1339 }
1340
1341 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1342 name, domain);
1343 if (sym)
1344 return sym;
1345 }
1346
1347 return NULL;
1348 }
1349
1350 /* Check to see if the symbol is defined in one of the symtabs.
1351 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1352 depending on whether or not we want to search global symbols or
1353 static symbols. */
1354
1355 static struct symbol *
1356 lookup_symbol_aux_symtabs (int block_index, const char *name,
1357 const domain_enum domain)
1358 {
1359 struct symbol *sym;
1360 struct objfile *objfile;
1361 struct blockvector *bv;
1362 const struct block *block;
1363 struct symtab *s;
1364
1365 ALL_OBJFILES (objfile)
1366 {
1367 if (objfile->sf)
1368 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1369 block_index,
1370 name, domain);
1371
1372 ALL_OBJFILE_SYMTABS (objfile, s)
1373 if (s->primary)
1374 {
1375 bv = BLOCKVECTOR (s);
1376 block = BLOCKVECTOR_BLOCK (bv, block_index);
1377 sym = lookup_block_symbol (block, name, domain);
1378 if (sym)
1379 {
1380 block_found = block;
1381 return fixup_symbol_section (sym, objfile);
1382 }
1383 }
1384 }
1385
1386 return NULL;
1387 }
1388
1389 /* A helper function for lookup_symbol_aux that interfaces with the
1390 "quick" symbol table functions. */
1391
1392 static struct symbol *
1393 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1394 const char *name, const domain_enum domain)
1395 {
1396 struct symtab *symtab;
1397 struct blockvector *bv;
1398 const struct block *block;
1399 struct symbol *sym;
1400
1401 if (!objfile->sf)
1402 return NULL;
1403 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1404 if (!symtab)
1405 return NULL;
1406
1407 bv = BLOCKVECTOR (symtab);
1408 block = BLOCKVECTOR_BLOCK (bv, kind);
1409 sym = lookup_block_symbol (block, name, domain);
1410 if (!sym)
1411 {
1412 /* This shouldn't be necessary, but as a last resort try
1413 looking in the statics even though the psymtab claimed
1414 the symbol was global, or vice-versa. It's possible
1415 that the psymtab gets it wrong in some cases. */
1416
1417 /* FIXME: carlton/2002-09-30: Should we really do that?
1418 If that happens, isn't it likely to be a GDB error, in
1419 which case we should fix the GDB error rather than
1420 silently dealing with it here? So I'd vote for
1421 removing the check for the symbol in the other
1422 block. */
1423 block = BLOCKVECTOR_BLOCK (bv,
1424 kind == GLOBAL_BLOCK ?
1425 STATIC_BLOCK : GLOBAL_BLOCK);
1426 sym = lookup_block_symbol (block, name, domain);
1427 if (!sym)
1428 error (_("\
1429 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1430 %s may be an inlined function, or may be a template function\n\
1431 (if a template, try specifying an instantiation: %s<type>)."),
1432 kind == GLOBAL_BLOCK ? "global" : "static",
1433 name, symtab->filename, name, name);
1434 }
1435 return fixup_symbol_section (sym, objfile);
1436 }
1437
1438 /* A default version of lookup_symbol_nonlocal for use by languages
1439 that can't think of anything better to do. This implements the C
1440 lookup rules. */
1441
1442 struct symbol *
1443 basic_lookup_symbol_nonlocal (const char *name,
1444 const struct block *block,
1445 const domain_enum domain)
1446 {
1447 struct symbol *sym;
1448
1449 /* NOTE: carlton/2003-05-19: The comments below were written when
1450 this (or what turned into this) was part of lookup_symbol_aux;
1451 I'm much less worried about these questions now, since these
1452 decisions have turned out well, but I leave these comments here
1453 for posterity. */
1454
1455 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1456 not it would be appropriate to search the current global block
1457 here as well. (That's what this code used to do before the
1458 is_a_field_of_this check was moved up.) On the one hand, it's
1459 redundant with the lookup_symbol_aux_symtabs search that happens
1460 next. On the other hand, if decode_line_1 is passed an argument
1461 like filename:var, then the user presumably wants 'var' to be
1462 searched for in filename. On the third hand, there shouldn't be
1463 multiple global variables all of which are named 'var', and it's
1464 not like decode_line_1 has ever restricted its search to only
1465 global variables in a single filename. All in all, only
1466 searching the static block here seems best: it's correct and it's
1467 cleanest. */
1468
1469 /* NOTE: carlton/2002-12-05: There's also a possible performance
1470 issue here: if you usually search for global symbols in the
1471 current file, then it would be slightly better to search the
1472 current global block before searching all the symtabs. But there
1473 are other factors that have a much greater effect on performance
1474 than that one, so I don't think we should worry about that for
1475 now. */
1476
1477 sym = lookup_symbol_static (name, block, domain);
1478 if (sym != NULL)
1479 return sym;
1480
1481 return lookup_symbol_global (name, block, domain);
1482 }
1483
1484 /* Lookup a symbol in the static block associated to BLOCK, if there
1485 is one; do nothing if BLOCK is NULL or a global block. */
1486
1487 struct symbol *
1488 lookup_symbol_static (const char *name,
1489 const struct block *block,
1490 const domain_enum domain)
1491 {
1492 const struct block *static_block = block_static_block (block);
1493
1494 if (static_block != NULL)
1495 return lookup_symbol_aux_block (name, static_block, domain);
1496 else
1497 return NULL;
1498 }
1499
1500 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1501 necessary). */
1502
1503 struct symbol *
1504 lookup_symbol_global (const char *name,
1505 const struct block *block,
1506 const domain_enum domain)
1507 {
1508 struct symbol *sym = NULL;
1509 struct objfile *objfile = NULL;
1510
1511 /* Call library-specific lookup procedure. */
1512 objfile = lookup_objfile_from_block (block);
1513 if (objfile != NULL)
1514 sym = solib_global_lookup (objfile, name, domain);
1515 if (sym != NULL)
1516 return sym;
1517
1518 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1519 if (sym != NULL)
1520 return sym;
1521
1522 ALL_OBJFILES (objfile)
1523 {
1524 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1525 if (sym)
1526 return sym;
1527 }
1528
1529 return NULL;
1530 }
1531
1532 int
1533 symbol_matches_domain (enum language symbol_language,
1534 domain_enum symbol_domain,
1535 domain_enum domain)
1536 {
1537 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1538 A Java class declaration also defines a typedef for the class.
1539 Similarly, any Ada type declaration implicitly defines a typedef. */
1540 if (symbol_language == language_cplus
1541 || symbol_language == language_d
1542 || symbol_language == language_java
1543 || symbol_language == language_ada)
1544 {
1545 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1546 && symbol_domain == STRUCT_DOMAIN)
1547 return 1;
1548 }
1549 /* For all other languages, strict match is required. */
1550 return (symbol_domain == domain);
1551 }
1552
1553 /* Look up a type named NAME in the struct_domain. The type returned
1554 must not be opaque -- i.e., must have at least one field
1555 defined. */
1556
1557 struct type *
1558 lookup_transparent_type (const char *name)
1559 {
1560 return current_language->la_lookup_transparent_type (name);
1561 }
1562
1563 /* A helper for basic_lookup_transparent_type that interfaces with the
1564 "quick" symbol table functions. */
1565
1566 static struct type *
1567 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1568 const char *name)
1569 {
1570 struct symtab *symtab;
1571 struct blockvector *bv;
1572 struct block *block;
1573 struct symbol *sym;
1574
1575 if (!objfile->sf)
1576 return NULL;
1577 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1578 if (!symtab)
1579 return NULL;
1580
1581 bv = BLOCKVECTOR (symtab);
1582 block = BLOCKVECTOR_BLOCK (bv, kind);
1583 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1584 if (!sym)
1585 {
1586 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1587
1588 /* This shouldn't be necessary, but as a last resort
1589 * try looking in the 'other kind' even though the psymtab
1590 * claimed the symbol was one thing. It's possible that
1591 * the psymtab gets it wrong in some cases.
1592 */
1593 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1594 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1595 if (!sym)
1596 /* FIXME; error is wrong in one case. */
1597 error (_("\
1598 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1599 %s may be an inlined function, or may be a template function\n\
1600 (if a template, try specifying an instantiation: %s<type>)."),
1601 name, symtab->filename, name, name);
1602 }
1603 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1604 return SYMBOL_TYPE (sym);
1605
1606 return NULL;
1607 }
1608
1609 /* The standard implementation of lookup_transparent_type. This code
1610 was modeled on lookup_symbol -- the parts not relevant to looking
1611 up types were just left out. In particular it's assumed here that
1612 types are available in struct_domain and only at file-static or
1613 global blocks. */
1614
1615 struct type *
1616 basic_lookup_transparent_type (const char *name)
1617 {
1618 struct symbol *sym;
1619 struct symtab *s = NULL;
1620 struct blockvector *bv;
1621 struct objfile *objfile;
1622 struct block *block;
1623 struct type *t;
1624
1625 /* Now search all the global symbols. Do the symtab's first, then
1626 check the psymtab's. If a psymtab indicates the existence
1627 of the desired name as a global, then do psymtab-to-symtab
1628 conversion on the fly and return the found symbol. */
1629
1630 ALL_OBJFILES (objfile)
1631 {
1632 if (objfile->sf)
1633 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1634 GLOBAL_BLOCK,
1635 name, STRUCT_DOMAIN);
1636
1637 ALL_OBJFILE_SYMTABS (objfile, s)
1638 if (s->primary)
1639 {
1640 bv = BLOCKVECTOR (s);
1641 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1642 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1643 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1644 {
1645 return SYMBOL_TYPE (sym);
1646 }
1647 }
1648 }
1649
1650 ALL_OBJFILES (objfile)
1651 {
1652 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1653 if (t)
1654 return t;
1655 }
1656
1657 /* Now search the static file-level symbols.
1658 Not strictly correct, but more useful than an error.
1659 Do the symtab's first, then
1660 check the psymtab's. If a psymtab indicates the existence
1661 of the desired name as a file-level static, then do psymtab-to-symtab
1662 conversion on the fly and return the found symbol. */
1663
1664 ALL_OBJFILES (objfile)
1665 {
1666 if (objfile->sf)
1667 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1668 name, STRUCT_DOMAIN);
1669
1670 ALL_OBJFILE_SYMTABS (objfile, s)
1671 {
1672 bv = BLOCKVECTOR (s);
1673 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1674 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1675 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1676 {
1677 return SYMBOL_TYPE (sym);
1678 }
1679 }
1680 }
1681
1682 ALL_OBJFILES (objfile)
1683 {
1684 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1685 if (t)
1686 return t;
1687 }
1688
1689 return (struct type *) 0;
1690 }
1691
1692
1693 /* Find the name of the file containing main(). */
1694 /* FIXME: What about languages without main() or specially linked
1695 executables that have no main() ? */
1696
1697 const char *
1698 find_main_filename (void)
1699 {
1700 struct objfile *objfile;
1701 char *name = main_name ();
1702
1703 ALL_OBJFILES (objfile)
1704 {
1705 const char *result;
1706
1707 if (!objfile->sf)
1708 continue;
1709 result = objfile->sf->qf->find_symbol_file (objfile, name);
1710 if (result)
1711 return result;
1712 }
1713 return (NULL);
1714 }
1715
1716 /* Search BLOCK for symbol NAME in DOMAIN.
1717
1718 Note that if NAME is the demangled form of a C++ symbol, we will fail
1719 to find a match during the binary search of the non-encoded names, but
1720 for now we don't worry about the slight inefficiency of looking for
1721 a match we'll never find, since it will go pretty quick. Once the
1722 binary search terminates, we drop through and do a straight linear
1723 search on the symbols. Each symbol which is marked as being a ObjC/C++
1724 symbol (language_cplus or language_objc set) has both the encoded and
1725 non-encoded names tested for a match. */
1726
1727 struct symbol *
1728 lookup_block_symbol (const struct block *block, const char *name,
1729 const domain_enum domain)
1730 {
1731 struct dict_iterator iter;
1732 struct symbol *sym;
1733
1734 if (!BLOCK_FUNCTION (block))
1735 {
1736 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1737 sym != NULL;
1738 sym = dict_iter_name_next (name, &iter))
1739 {
1740 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1741 SYMBOL_DOMAIN (sym), domain))
1742 return sym;
1743 }
1744 return NULL;
1745 }
1746 else
1747 {
1748 /* Note that parameter symbols do not always show up last in the
1749 list; this loop makes sure to take anything else other than
1750 parameter symbols first; it only uses parameter symbols as a
1751 last resort. Note that this only takes up extra computation
1752 time on a match. */
1753
1754 struct symbol *sym_found = NULL;
1755
1756 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1757 sym != NULL;
1758 sym = dict_iter_name_next (name, &iter))
1759 {
1760 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1761 SYMBOL_DOMAIN (sym), domain))
1762 {
1763 sym_found = sym;
1764 if (!SYMBOL_IS_ARGUMENT (sym))
1765 {
1766 break;
1767 }
1768 }
1769 }
1770 return (sym_found); /* Will be NULL if not found. */
1771 }
1772 }
1773
1774 /* Find the symtab associated with PC and SECTION. Look through the
1775 psymtabs and read in another symtab if necessary. */
1776
1777 struct symtab *
1778 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1779 {
1780 struct block *b;
1781 struct blockvector *bv;
1782 struct symtab *s = NULL;
1783 struct symtab *best_s = NULL;
1784 struct objfile *objfile;
1785 struct program_space *pspace;
1786 CORE_ADDR distance = 0;
1787 struct minimal_symbol *msymbol;
1788
1789 pspace = current_program_space;
1790
1791 /* If we know that this is not a text address, return failure. This is
1792 necessary because we loop based on the block's high and low code
1793 addresses, which do not include the data ranges, and because
1794 we call find_pc_sect_psymtab which has a similar restriction based
1795 on the partial_symtab's texthigh and textlow. */
1796 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1797 if (msymbol
1798 && (MSYMBOL_TYPE (msymbol) == mst_data
1799 || MSYMBOL_TYPE (msymbol) == mst_bss
1800 || MSYMBOL_TYPE (msymbol) == mst_abs
1801 || MSYMBOL_TYPE (msymbol) == mst_file_data
1802 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1803 return NULL;
1804
1805 /* Search all symtabs for the one whose file contains our address, and which
1806 is the smallest of all the ones containing the address. This is designed
1807 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1808 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1809 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1810
1811 This happens for native ecoff format, where code from included files
1812 gets its own symtab. The symtab for the included file should have
1813 been read in already via the dependency mechanism.
1814 It might be swifter to create several symtabs with the same name
1815 like xcoff does (I'm not sure).
1816
1817 It also happens for objfiles that have their functions reordered.
1818 For these, the symtab we are looking for is not necessarily read in. */
1819
1820 ALL_PRIMARY_SYMTABS (objfile, s)
1821 {
1822 bv = BLOCKVECTOR (s);
1823 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1824
1825 if (BLOCK_START (b) <= pc
1826 && BLOCK_END (b) > pc
1827 && (distance == 0
1828 || BLOCK_END (b) - BLOCK_START (b) < distance))
1829 {
1830 /* For an objfile that has its functions reordered,
1831 find_pc_psymtab will find the proper partial symbol table
1832 and we simply return its corresponding symtab. */
1833 /* In order to better support objfiles that contain both
1834 stabs and coff debugging info, we continue on if a psymtab
1835 can't be found. */
1836 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1837 {
1838 struct symtab *result;
1839
1840 result
1841 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1842 msymbol,
1843 pc, section,
1844 0);
1845 if (result)
1846 return result;
1847 }
1848 if (section != 0)
1849 {
1850 struct dict_iterator iter;
1851 struct symbol *sym = NULL;
1852
1853 ALL_BLOCK_SYMBOLS (b, iter, sym)
1854 {
1855 fixup_symbol_section (sym, objfile);
1856 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1857 break;
1858 }
1859 if (sym == NULL)
1860 continue; /* No symbol in this symtab matches
1861 section. */
1862 }
1863 distance = BLOCK_END (b) - BLOCK_START (b);
1864 best_s = s;
1865 }
1866 }
1867
1868 if (best_s != NULL)
1869 return (best_s);
1870
1871 ALL_OBJFILES (objfile)
1872 {
1873 struct symtab *result;
1874
1875 if (!objfile->sf)
1876 continue;
1877 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1878 msymbol,
1879 pc, section,
1880 1);
1881 if (result)
1882 return result;
1883 }
1884
1885 return NULL;
1886 }
1887
1888 /* Find the symtab associated with PC. Look through the psymtabs and read
1889 in another symtab if necessary. Backward compatibility, no section. */
1890
1891 struct symtab *
1892 find_pc_symtab (CORE_ADDR pc)
1893 {
1894 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1895 }
1896 \f
1897
1898 /* Find the source file and line number for a given PC value and SECTION.
1899 Return a structure containing a symtab pointer, a line number,
1900 and a pc range for the entire source line.
1901 The value's .pc field is NOT the specified pc.
1902 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1903 use the line that ends there. Otherwise, in that case, the line
1904 that begins there is used. */
1905
1906 /* The big complication here is that a line may start in one file, and end just
1907 before the start of another file. This usually occurs when you #include
1908 code in the middle of a subroutine. To properly find the end of a line's PC
1909 range, we must search all symtabs associated with this compilation unit, and
1910 find the one whose first PC is closer than that of the next line in this
1911 symtab. */
1912
1913 /* If it's worth the effort, we could be using a binary search. */
1914
1915 struct symtab_and_line
1916 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1917 {
1918 struct symtab *s;
1919 struct linetable *l;
1920 int len;
1921 int i;
1922 struct linetable_entry *item;
1923 struct symtab_and_line val;
1924 struct blockvector *bv;
1925 struct minimal_symbol *msymbol;
1926 struct minimal_symbol *mfunsym;
1927 struct objfile *objfile;
1928
1929 /* Info on best line seen so far, and where it starts, and its file. */
1930
1931 struct linetable_entry *best = NULL;
1932 CORE_ADDR best_end = 0;
1933 struct symtab *best_symtab = 0;
1934
1935 /* Store here the first line number
1936 of a file which contains the line at the smallest pc after PC.
1937 If we don't find a line whose range contains PC,
1938 we will use a line one less than this,
1939 with a range from the start of that file to the first line's pc. */
1940 struct linetable_entry *alt = NULL;
1941 struct symtab *alt_symtab = 0;
1942
1943 /* Info on best line seen in this file. */
1944
1945 struct linetable_entry *prev;
1946
1947 /* If this pc is not from the current frame,
1948 it is the address of the end of a call instruction.
1949 Quite likely that is the start of the following statement.
1950 But what we want is the statement containing the instruction.
1951 Fudge the pc to make sure we get that. */
1952
1953 init_sal (&val); /* initialize to zeroes */
1954
1955 val.pspace = current_program_space;
1956
1957 /* It's tempting to assume that, if we can't find debugging info for
1958 any function enclosing PC, that we shouldn't search for line
1959 number info, either. However, GAS can emit line number info for
1960 assembly files --- very helpful when debugging hand-written
1961 assembly code. In such a case, we'd have no debug info for the
1962 function, but we would have line info. */
1963
1964 if (notcurrent)
1965 pc -= 1;
1966
1967 /* elz: added this because this function returned the wrong
1968 information if the pc belongs to a stub (import/export)
1969 to call a shlib function. This stub would be anywhere between
1970 two functions in the target, and the line info was erroneously
1971 taken to be the one of the line before the pc. */
1972
1973 /* RT: Further explanation:
1974
1975 * We have stubs (trampolines) inserted between procedures.
1976 *
1977 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1978 * exists in the main image.
1979 *
1980 * In the minimal symbol table, we have a bunch of symbols
1981 * sorted by start address. The stubs are marked as "trampoline",
1982 * the others appear as text. E.g.:
1983 *
1984 * Minimal symbol table for main image
1985 * main: code for main (text symbol)
1986 * shr1: stub (trampoline symbol)
1987 * foo: code for foo (text symbol)
1988 * ...
1989 * Minimal symbol table for "shr1" image:
1990 * ...
1991 * shr1: code for shr1 (text symbol)
1992 * ...
1993 *
1994 * So the code below is trying to detect if we are in the stub
1995 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1996 * and if found, do the symbolization from the real-code address
1997 * rather than the stub address.
1998 *
1999 * Assumptions being made about the minimal symbol table:
2000 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2001 * if we're really in the trampoline.s If we're beyond it (say
2002 * we're in "foo" in the above example), it'll have a closer
2003 * symbol (the "foo" text symbol for example) and will not
2004 * return the trampoline.
2005 * 2. lookup_minimal_symbol_text() will find a real text symbol
2006 * corresponding to the trampoline, and whose address will
2007 * be different than the trampoline address. I put in a sanity
2008 * check for the address being the same, to avoid an
2009 * infinite recursion.
2010 */
2011 msymbol = lookup_minimal_symbol_by_pc (pc);
2012 if (msymbol != NULL)
2013 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2014 {
2015 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2016 NULL);
2017 if (mfunsym == NULL)
2018 /* I eliminated this warning since it is coming out
2019 * in the following situation:
2020 * gdb shmain // test program with shared libraries
2021 * (gdb) break shr1 // function in shared lib
2022 * Warning: In stub for ...
2023 * In the above situation, the shared lib is not loaded yet,
2024 * so of course we can't find the real func/line info,
2025 * but the "break" still works, and the warning is annoying.
2026 * So I commented out the warning. RT */
2027 /* warning ("In stub for %s; unable to find real function/line info",
2028 SYMBOL_LINKAGE_NAME (msymbol)); */
2029 ;
2030 /* fall through */
2031 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2032 == SYMBOL_VALUE_ADDRESS (msymbol))
2033 /* Avoid infinite recursion */
2034 /* See above comment about why warning is commented out. */
2035 /* warning ("In stub for %s; unable to find real function/line info",
2036 SYMBOL_LINKAGE_NAME (msymbol)); */
2037 ;
2038 /* fall through */
2039 else
2040 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2041 }
2042
2043
2044 s = find_pc_sect_symtab (pc, section);
2045 if (!s)
2046 {
2047 /* If no symbol information, return previous pc. */
2048 if (notcurrent)
2049 pc++;
2050 val.pc = pc;
2051 return val;
2052 }
2053
2054 bv = BLOCKVECTOR (s);
2055 objfile = s->objfile;
2056
2057 /* Look at all the symtabs that share this blockvector.
2058 They all have the same apriori range, that we found was right;
2059 but they have different line tables. */
2060
2061 ALL_OBJFILE_SYMTABS (objfile, s)
2062 {
2063 if (BLOCKVECTOR (s) != bv)
2064 continue;
2065
2066 /* Find the best line in this symtab. */
2067 l = LINETABLE (s);
2068 if (!l)
2069 continue;
2070 len = l->nitems;
2071 if (len <= 0)
2072 {
2073 /* I think len can be zero if the symtab lacks line numbers
2074 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2075 I'm not sure which, and maybe it depends on the symbol
2076 reader). */
2077 continue;
2078 }
2079
2080 prev = NULL;
2081 item = l->item; /* Get first line info. */
2082
2083 /* Is this file's first line closer than the first lines of other files?
2084 If so, record this file, and its first line, as best alternate. */
2085 if (item->pc > pc && (!alt || item->pc < alt->pc))
2086 {
2087 alt = item;
2088 alt_symtab = s;
2089 }
2090
2091 for (i = 0; i < len; i++, item++)
2092 {
2093 /* Leave prev pointing to the linetable entry for the last line
2094 that started at or before PC. */
2095 if (item->pc > pc)
2096 break;
2097
2098 prev = item;
2099 }
2100
2101 /* At this point, prev points at the line whose start addr is <= pc, and
2102 item points at the next line. If we ran off the end of the linetable
2103 (pc >= start of the last line), then prev == item. If pc < start of
2104 the first line, prev will not be set. */
2105
2106 /* Is this file's best line closer than the best in the other files?
2107 If so, record this file, and its best line, as best so far. Don't
2108 save prev if it represents the end of a function (i.e. line number
2109 0) instead of a real line. */
2110
2111 if (prev && prev->line && (!best || prev->pc > best->pc))
2112 {
2113 best = prev;
2114 best_symtab = s;
2115
2116 /* Discard BEST_END if it's before the PC of the current BEST. */
2117 if (best_end <= best->pc)
2118 best_end = 0;
2119 }
2120
2121 /* If another line (denoted by ITEM) is in the linetable and its
2122 PC is after BEST's PC, but before the current BEST_END, then
2123 use ITEM's PC as the new best_end. */
2124 if (best && i < len && item->pc > best->pc
2125 && (best_end == 0 || best_end > item->pc))
2126 best_end = item->pc;
2127 }
2128
2129 if (!best_symtab)
2130 {
2131 /* If we didn't find any line number info, just return zeros.
2132 We used to return alt->line - 1 here, but that could be
2133 anywhere; if we don't have line number info for this PC,
2134 don't make some up. */
2135 val.pc = pc;
2136 }
2137 else if (best->line == 0)
2138 {
2139 /* If our best fit is in a range of PC's for which no line
2140 number info is available (line number is zero) then we didn't
2141 find any valid line information. */
2142 val.pc = pc;
2143 }
2144 else
2145 {
2146 val.symtab = best_symtab;
2147 val.line = best->line;
2148 val.pc = best->pc;
2149 if (best_end && (!alt || best_end < alt->pc))
2150 val.end = best_end;
2151 else if (alt)
2152 val.end = alt->pc;
2153 else
2154 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2155 }
2156 val.section = section;
2157 return val;
2158 }
2159
2160 /* Backward compatibility (no section). */
2161
2162 struct symtab_and_line
2163 find_pc_line (CORE_ADDR pc, int notcurrent)
2164 {
2165 struct obj_section *section;
2166
2167 section = find_pc_overlay (pc);
2168 if (pc_in_unmapped_range (pc, section))
2169 pc = overlay_mapped_address (pc, section);
2170 return find_pc_sect_line (pc, section, notcurrent);
2171 }
2172 \f
2173 /* Find line number LINE in any symtab whose name is the same as
2174 SYMTAB.
2175
2176 If found, return the symtab that contains the linetable in which it was
2177 found, set *INDEX to the index in the linetable of the best entry
2178 found, and set *EXACT_MATCH nonzero if the value returned is an
2179 exact match.
2180
2181 If not found, return NULL. */
2182
2183 struct symtab *
2184 find_line_symtab (struct symtab *symtab, int line,
2185 int *index, int *exact_match)
2186 {
2187 int exact = 0; /* Initialized here to avoid a compiler warning. */
2188
2189 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2190 so far seen. */
2191
2192 int best_index;
2193 struct linetable *best_linetable;
2194 struct symtab *best_symtab;
2195
2196 /* First try looking it up in the given symtab. */
2197 best_linetable = LINETABLE (symtab);
2198 best_symtab = symtab;
2199 best_index = find_line_common (best_linetable, line, &exact);
2200 if (best_index < 0 || !exact)
2201 {
2202 /* Didn't find an exact match. So we better keep looking for
2203 another symtab with the same name. In the case of xcoff,
2204 multiple csects for one source file (produced by IBM's FORTRAN
2205 compiler) produce multiple symtabs (this is unavoidable
2206 assuming csects can be at arbitrary places in memory and that
2207 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2208
2209 /* BEST is the smallest linenumber > LINE so far seen,
2210 or 0 if none has been seen so far.
2211 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2212 int best;
2213
2214 struct objfile *objfile;
2215 struct symtab *s;
2216
2217 if (best_index >= 0)
2218 best = best_linetable->item[best_index].line;
2219 else
2220 best = 0;
2221
2222 ALL_OBJFILES (objfile)
2223 {
2224 if (objfile->sf)
2225 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2226 symtab->filename);
2227 }
2228
2229 /* Get symbol full file name if possible. */
2230 symtab_to_fullname (symtab);
2231
2232 ALL_SYMTABS (objfile, s)
2233 {
2234 struct linetable *l;
2235 int ind;
2236
2237 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2238 continue;
2239 if (symtab->fullname != NULL
2240 && symtab_to_fullname (s) != NULL
2241 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2242 continue;
2243 l = LINETABLE (s);
2244 ind = find_line_common (l, line, &exact);
2245 if (ind >= 0)
2246 {
2247 if (exact)
2248 {
2249 best_index = ind;
2250 best_linetable = l;
2251 best_symtab = s;
2252 goto done;
2253 }
2254 if (best == 0 || l->item[ind].line < best)
2255 {
2256 best = l->item[ind].line;
2257 best_index = ind;
2258 best_linetable = l;
2259 best_symtab = s;
2260 }
2261 }
2262 }
2263 }
2264 done:
2265 if (best_index < 0)
2266 return NULL;
2267
2268 if (index)
2269 *index = best_index;
2270 if (exact_match)
2271 *exact_match = exact;
2272
2273 return best_symtab;
2274 }
2275 \f
2276 /* Set the PC value for a given source file and line number and return true.
2277 Returns zero for invalid line number (and sets the PC to 0).
2278 The source file is specified with a struct symtab. */
2279
2280 int
2281 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2282 {
2283 struct linetable *l;
2284 int ind;
2285
2286 *pc = 0;
2287 if (symtab == 0)
2288 return 0;
2289
2290 symtab = find_line_symtab (symtab, line, &ind, NULL);
2291 if (symtab != NULL)
2292 {
2293 l = LINETABLE (symtab);
2294 *pc = l->item[ind].pc;
2295 return 1;
2296 }
2297 else
2298 return 0;
2299 }
2300
2301 /* Find the range of pc values in a line.
2302 Store the starting pc of the line into *STARTPTR
2303 and the ending pc (start of next line) into *ENDPTR.
2304 Returns 1 to indicate success.
2305 Returns 0 if could not find the specified line. */
2306
2307 int
2308 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2309 CORE_ADDR *endptr)
2310 {
2311 CORE_ADDR startaddr;
2312 struct symtab_and_line found_sal;
2313
2314 startaddr = sal.pc;
2315 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2316 return 0;
2317
2318 /* This whole function is based on address. For example, if line 10 has
2319 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2320 "info line *0x123" should say the line goes from 0x100 to 0x200
2321 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2322 This also insures that we never give a range like "starts at 0x134
2323 and ends at 0x12c". */
2324
2325 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2326 if (found_sal.line != sal.line)
2327 {
2328 /* The specified line (sal) has zero bytes. */
2329 *startptr = found_sal.pc;
2330 *endptr = found_sal.pc;
2331 }
2332 else
2333 {
2334 *startptr = found_sal.pc;
2335 *endptr = found_sal.end;
2336 }
2337 return 1;
2338 }
2339
2340 /* Given a line table and a line number, return the index into the line
2341 table for the pc of the nearest line whose number is >= the specified one.
2342 Return -1 if none is found. The value is >= 0 if it is an index.
2343
2344 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2345
2346 static int
2347 find_line_common (struct linetable *l, int lineno,
2348 int *exact_match)
2349 {
2350 int i;
2351 int len;
2352
2353 /* BEST is the smallest linenumber > LINENO so far seen,
2354 or 0 if none has been seen so far.
2355 BEST_INDEX identifies the item for it. */
2356
2357 int best_index = -1;
2358 int best = 0;
2359
2360 *exact_match = 0;
2361
2362 if (lineno <= 0)
2363 return -1;
2364 if (l == 0)
2365 return -1;
2366
2367 len = l->nitems;
2368 for (i = 0; i < len; i++)
2369 {
2370 struct linetable_entry *item = &(l->item[i]);
2371
2372 if (item->line == lineno)
2373 {
2374 /* Return the first (lowest address) entry which matches. */
2375 *exact_match = 1;
2376 return i;
2377 }
2378
2379 if (item->line > lineno && (best == 0 || item->line < best))
2380 {
2381 best = item->line;
2382 best_index = i;
2383 }
2384 }
2385
2386 /* If we got here, we didn't get an exact match. */
2387 return best_index;
2388 }
2389
2390 int
2391 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2392 {
2393 struct symtab_and_line sal;
2394
2395 sal = find_pc_line (pc, 0);
2396 *startptr = sal.pc;
2397 *endptr = sal.end;
2398 return sal.symtab != 0;
2399 }
2400
2401 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2402 address for that function that has an entry in SYMTAB's line info
2403 table. If such an entry cannot be found, return FUNC_ADDR
2404 unaltered. */
2405 CORE_ADDR
2406 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2407 {
2408 CORE_ADDR func_start, func_end;
2409 struct linetable *l;
2410 int i;
2411
2412 /* Give up if this symbol has no lineinfo table. */
2413 l = LINETABLE (symtab);
2414 if (l == NULL)
2415 return func_addr;
2416
2417 /* Get the range for the function's PC values, or give up if we
2418 cannot, for some reason. */
2419 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2420 return func_addr;
2421
2422 /* Linetable entries are ordered by PC values, see the commentary in
2423 symtab.h where `struct linetable' is defined. Thus, the first
2424 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2425 address we are looking for. */
2426 for (i = 0; i < l->nitems; i++)
2427 {
2428 struct linetable_entry *item = &(l->item[i]);
2429
2430 /* Don't use line numbers of zero, they mark special entries in
2431 the table. See the commentary on symtab.h before the
2432 definition of struct linetable. */
2433 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2434 return item->pc;
2435 }
2436
2437 return func_addr;
2438 }
2439
2440 /* Given a function symbol SYM, find the symtab and line for the start
2441 of the function.
2442 If the argument FUNFIRSTLINE is nonzero, we want the first line
2443 of real code inside the function. */
2444
2445 struct symtab_and_line
2446 find_function_start_sal (struct symbol *sym, int funfirstline)
2447 {
2448 struct symtab_and_line sal;
2449
2450 fixup_symbol_section (sym, NULL);
2451 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2452 SYMBOL_OBJ_SECTION (sym), 0);
2453
2454 /* We always should have a line for the function start address.
2455 If we don't, something is odd. Create a plain SAL refering
2456 just the PC and hope that skip_prologue_sal (if requested)
2457 can find a line number for after the prologue. */
2458 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2459 {
2460 init_sal (&sal);
2461 sal.pspace = current_program_space;
2462 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2463 sal.section = SYMBOL_OBJ_SECTION (sym);
2464 }
2465
2466 if (funfirstline)
2467 skip_prologue_sal (&sal);
2468
2469 return sal;
2470 }
2471
2472 /* Adjust SAL to the first instruction past the function prologue.
2473 If the PC was explicitly specified, the SAL is not changed.
2474 If the line number was explicitly specified, at most the SAL's PC
2475 is updated. If SAL is already past the prologue, then do nothing. */
2476 void
2477 skip_prologue_sal (struct symtab_and_line *sal)
2478 {
2479 struct symbol *sym;
2480 struct symtab_and_line start_sal;
2481 struct cleanup *old_chain;
2482 CORE_ADDR pc, saved_pc;
2483 struct obj_section *section;
2484 const char *name;
2485 struct objfile *objfile;
2486 struct gdbarch *gdbarch;
2487 struct block *b, *function_block;
2488 int force_skip, skip;
2489
2490 /* Do not change the SAL is PC was specified explicitly. */
2491 if (sal->explicit_pc)
2492 return;
2493
2494 old_chain = save_current_space_and_thread ();
2495 switch_to_program_space_and_thread (sal->pspace);
2496
2497 sym = find_pc_sect_function (sal->pc, sal->section);
2498 if (sym != NULL)
2499 {
2500 fixup_symbol_section (sym, NULL);
2501
2502 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2503 section = SYMBOL_OBJ_SECTION (sym);
2504 name = SYMBOL_LINKAGE_NAME (sym);
2505 objfile = SYMBOL_SYMTAB (sym)->objfile;
2506 }
2507 else
2508 {
2509 struct minimal_symbol *msymbol
2510 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2511
2512 if (msymbol == NULL)
2513 {
2514 do_cleanups (old_chain);
2515 return;
2516 }
2517
2518 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2519 section = SYMBOL_OBJ_SECTION (msymbol);
2520 name = SYMBOL_LINKAGE_NAME (msymbol);
2521 objfile = msymbol_objfile (msymbol);
2522 }
2523
2524 gdbarch = get_objfile_arch (objfile);
2525
2526 /* Process the prologue in two passes. In the first pass try to skip the
2527 prologue (SKIP is true) and verify there is a real need for it (indicated
2528 by FORCE_SKIP). If no such reason was found run a second pass where the
2529 prologue is not skipped (SKIP is false). */
2530
2531 skip = 1;
2532 force_skip = 1;
2533
2534 /* Be conservative - allow direct PC (without skipping prologue) only if we
2535 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2536 have to be set by the caller so we use SYM instead. */
2537 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2538 force_skip = 0;
2539
2540 saved_pc = pc;
2541 do
2542 {
2543 pc = saved_pc;
2544
2545 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2546 so that gdbarch_skip_prologue has something unique to work on. */
2547 if (section_is_overlay (section) && !section_is_mapped (section))
2548 pc = overlay_unmapped_address (pc, section);
2549
2550 /* Skip "first line" of function (which is actually its prologue). */
2551 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2552 if (skip)
2553 pc = gdbarch_skip_prologue (gdbarch, pc);
2554
2555 /* For overlays, map pc back into its mapped VMA range. */
2556 pc = overlay_mapped_address (pc, section);
2557
2558 /* Calculate line number. */
2559 start_sal = find_pc_sect_line (pc, section, 0);
2560
2561 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2562 line is still part of the same function. */
2563 if (skip && start_sal.pc != pc
2564 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2565 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2566 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2567 == lookup_minimal_symbol_by_pc_section (pc, section))))
2568 {
2569 /* First pc of next line */
2570 pc = start_sal.end;
2571 /* Recalculate the line number (might not be N+1). */
2572 start_sal = find_pc_sect_line (pc, section, 0);
2573 }
2574
2575 /* On targets with executable formats that don't have a concept of
2576 constructors (ELF with .init has, PE doesn't), gcc emits a call
2577 to `__main' in `main' between the prologue and before user
2578 code. */
2579 if (gdbarch_skip_main_prologue_p (gdbarch)
2580 && name && strcmp (name, "main") == 0)
2581 {
2582 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2583 /* Recalculate the line number (might not be N+1). */
2584 start_sal = find_pc_sect_line (pc, section, 0);
2585 force_skip = 1;
2586 }
2587 }
2588 while (!force_skip && skip--);
2589
2590 /* If we still don't have a valid source line, try to find the first
2591 PC in the lineinfo table that belongs to the same function. This
2592 happens with COFF debug info, which does not seem to have an
2593 entry in lineinfo table for the code after the prologue which has
2594 no direct relation to source. For example, this was found to be
2595 the case with the DJGPP target using "gcc -gcoff" when the
2596 compiler inserted code after the prologue to make sure the stack
2597 is aligned. */
2598 if (!force_skip && sym && start_sal.symtab == NULL)
2599 {
2600 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2601 /* Recalculate the line number. */
2602 start_sal = find_pc_sect_line (pc, section, 0);
2603 }
2604
2605 do_cleanups (old_chain);
2606
2607 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2608 forward SAL to the end of the prologue. */
2609 if (sal->pc >= pc)
2610 return;
2611
2612 sal->pc = pc;
2613 sal->section = section;
2614
2615 /* Unless the explicit_line flag was set, update the SAL line
2616 and symtab to correspond to the modified PC location. */
2617 if (sal->explicit_line)
2618 return;
2619
2620 sal->symtab = start_sal.symtab;
2621 sal->line = start_sal.line;
2622 sal->end = start_sal.end;
2623
2624 /* Check if we are now inside an inlined function. If we can,
2625 use the call site of the function instead. */
2626 b = block_for_pc_sect (sal->pc, sal->section);
2627 function_block = NULL;
2628 while (b != NULL)
2629 {
2630 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2631 function_block = b;
2632 else if (BLOCK_FUNCTION (b) != NULL)
2633 break;
2634 b = BLOCK_SUPERBLOCK (b);
2635 }
2636 if (function_block != NULL
2637 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2638 {
2639 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2640 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2641 }
2642 }
2643
2644 /* If P is of the form "operator[ \t]+..." where `...' is
2645 some legitimate operator text, return a pointer to the
2646 beginning of the substring of the operator text.
2647 Otherwise, return "". */
2648 static char *
2649 operator_chars (char *p, char **end)
2650 {
2651 *end = "";
2652 if (strncmp (p, "operator", 8))
2653 return *end;
2654 p += 8;
2655
2656 /* Don't get faked out by `operator' being part of a longer
2657 identifier. */
2658 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2659 return *end;
2660
2661 /* Allow some whitespace between `operator' and the operator symbol. */
2662 while (*p == ' ' || *p == '\t')
2663 p++;
2664
2665 /* Recognize 'operator TYPENAME'. */
2666
2667 if (isalpha (*p) || *p == '_' || *p == '$')
2668 {
2669 char *q = p + 1;
2670
2671 while (isalnum (*q) || *q == '_' || *q == '$')
2672 q++;
2673 *end = q;
2674 return p;
2675 }
2676
2677 while (*p)
2678 switch (*p)
2679 {
2680 case '\\': /* regexp quoting */
2681 if (p[1] == '*')
2682 {
2683 if (p[2] == '=') /* 'operator\*=' */
2684 *end = p + 3;
2685 else /* 'operator\*' */
2686 *end = p + 2;
2687 return p;
2688 }
2689 else if (p[1] == '[')
2690 {
2691 if (p[2] == ']')
2692 error (_("mismatched quoting on brackets, "
2693 "try 'operator\\[\\]'"));
2694 else if (p[2] == '\\' && p[3] == ']')
2695 {
2696 *end = p + 4; /* 'operator\[\]' */
2697 return p;
2698 }
2699 else
2700 error (_("nothing is allowed between '[' and ']'"));
2701 }
2702 else
2703 {
2704 /* Gratuitous qoute: skip it and move on. */
2705 p++;
2706 continue;
2707 }
2708 break;
2709 case '!':
2710 case '=':
2711 case '*':
2712 case '/':
2713 case '%':
2714 case '^':
2715 if (p[1] == '=')
2716 *end = p + 2;
2717 else
2718 *end = p + 1;
2719 return p;
2720 case '<':
2721 case '>':
2722 case '+':
2723 case '-':
2724 case '&':
2725 case '|':
2726 if (p[0] == '-' && p[1] == '>')
2727 {
2728 /* Struct pointer member operator 'operator->'. */
2729 if (p[2] == '*')
2730 {
2731 *end = p + 3; /* 'operator->*' */
2732 return p;
2733 }
2734 else if (p[2] == '\\')
2735 {
2736 *end = p + 4; /* Hopefully 'operator->\*' */
2737 return p;
2738 }
2739 else
2740 {
2741 *end = p + 2; /* 'operator->' */
2742 return p;
2743 }
2744 }
2745 if (p[1] == '=' || p[1] == p[0])
2746 *end = p + 2;
2747 else
2748 *end = p + 1;
2749 return p;
2750 case '~':
2751 case ',':
2752 *end = p + 1;
2753 return p;
2754 case '(':
2755 if (p[1] != ')')
2756 error (_("`operator ()' must be specified "
2757 "without whitespace in `()'"));
2758 *end = p + 2;
2759 return p;
2760 case '?':
2761 if (p[1] != ':')
2762 error (_("`operator ?:' must be specified "
2763 "without whitespace in `?:'"));
2764 *end = p + 2;
2765 return p;
2766 case '[':
2767 if (p[1] != ']')
2768 error (_("`operator []' must be specified "
2769 "without whitespace in `[]'"));
2770 *end = p + 2;
2771 return p;
2772 default:
2773 error (_("`operator %s' not supported"), p);
2774 break;
2775 }
2776
2777 *end = "";
2778 return *end;
2779 }
2780 \f
2781
2782 /* If FILE is not already in the table of files, return zero;
2783 otherwise return non-zero. Optionally add FILE to the table if ADD
2784 is non-zero. If *FIRST is non-zero, forget the old table
2785 contents. */
2786 static int
2787 filename_seen (const char *file, int add, int *first)
2788 {
2789 /* Table of files seen so far. */
2790 static const char **tab = NULL;
2791 /* Allocated size of tab in elements.
2792 Start with one 256-byte block (when using GNU malloc.c).
2793 24 is the malloc overhead when range checking is in effect. */
2794 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2795 /* Current size of tab in elements. */
2796 static int tab_cur_size;
2797 const char **p;
2798
2799 if (*first)
2800 {
2801 if (tab == NULL)
2802 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2803 tab_cur_size = 0;
2804 }
2805
2806 /* Is FILE in tab? */
2807 for (p = tab; p < tab + tab_cur_size; p++)
2808 if (filename_cmp (*p, file) == 0)
2809 return 1;
2810
2811 /* No; maybe add it to tab. */
2812 if (add)
2813 {
2814 if (tab_cur_size == tab_alloc_size)
2815 {
2816 tab_alloc_size *= 2;
2817 tab = (const char **) xrealloc ((char *) tab,
2818 tab_alloc_size * sizeof (*tab));
2819 }
2820 tab[tab_cur_size++] = file;
2821 }
2822
2823 return 0;
2824 }
2825
2826 /* Slave routine for sources_info. Force line breaks at ,'s.
2827 NAME is the name to print and *FIRST is nonzero if this is the first
2828 name printed. Set *FIRST to zero. */
2829 static void
2830 output_source_filename (const char *name, int *first)
2831 {
2832 /* Since a single source file can result in several partial symbol
2833 tables, we need to avoid printing it more than once. Note: if
2834 some of the psymtabs are read in and some are not, it gets
2835 printed both under "Source files for which symbols have been
2836 read" and "Source files for which symbols will be read in on
2837 demand". I consider this a reasonable way to deal with the
2838 situation. I'm not sure whether this can also happen for
2839 symtabs; it doesn't hurt to check. */
2840
2841 /* Was NAME already seen? */
2842 if (filename_seen (name, 1, first))
2843 {
2844 /* Yes; don't print it again. */
2845 return;
2846 }
2847 /* No; print it and reset *FIRST. */
2848 if (*first)
2849 {
2850 *first = 0;
2851 }
2852 else
2853 {
2854 printf_filtered (", ");
2855 }
2856
2857 wrap_here ("");
2858 fputs_filtered (name, gdb_stdout);
2859 }
2860
2861 /* A callback for map_partial_symbol_filenames. */
2862 static void
2863 output_partial_symbol_filename (const char *filename, const char *fullname,
2864 void *data)
2865 {
2866 output_source_filename (fullname ? fullname : filename, data);
2867 }
2868
2869 static void
2870 sources_info (char *ignore, int from_tty)
2871 {
2872 struct symtab *s;
2873 struct objfile *objfile;
2874 int first;
2875
2876 if (!have_full_symbols () && !have_partial_symbols ())
2877 {
2878 error (_("No symbol table is loaded. Use the \"file\" command."));
2879 }
2880
2881 printf_filtered ("Source files for which symbols have been read in:\n\n");
2882
2883 first = 1;
2884 ALL_SYMTABS (objfile, s)
2885 {
2886 const char *fullname = symtab_to_fullname (s);
2887
2888 output_source_filename (fullname ? fullname : s->filename, &first);
2889 }
2890 printf_filtered ("\n\n");
2891
2892 printf_filtered ("Source files for which symbols "
2893 "will be read in on demand:\n\n");
2894
2895 first = 1;
2896 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
2897 1 /*need_fullname*/);
2898 printf_filtered ("\n");
2899 }
2900
2901 static int
2902 file_matches (const char *file, char *files[], int nfiles)
2903 {
2904 int i;
2905
2906 if (file != NULL && nfiles != 0)
2907 {
2908 for (i = 0; i < nfiles; i++)
2909 {
2910 if (filename_cmp (files[i], lbasename (file)) == 0)
2911 return 1;
2912 }
2913 }
2914 else if (nfiles == 0)
2915 return 1;
2916 return 0;
2917 }
2918
2919 /* Free any memory associated with a search. */
2920 void
2921 free_search_symbols (struct symbol_search *symbols)
2922 {
2923 struct symbol_search *p;
2924 struct symbol_search *next;
2925
2926 for (p = symbols; p != NULL; p = next)
2927 {
2928 next = p->next;
2929 xfree (p);
2930 }
2931 }
2932
2933 static void
2934 do_free_search_symbols_cleanup (void *symbols)
2935 {
2936 free_search_symbols (symbols);
2937 }
2938
2939 struct cleanup *
2940 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2941 {
2942 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2943 }
2944
2945 /* Helper function for sort_search_symbols and qsort. Can only
2946 sort symbols, not minimal symbols. */
2947 static int
2948 compare_search_syms (const void *sa, const void *sb)
2949 {
2950 struct symbol_search **sym_a = (struct symbol_search **) sa;
2951 struct symbol_search **sym_b = (struct symbol_search **) sb;
2952
2953 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2954 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2955 }
2956
2957 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2958 prevtail where it is, but update its next pointer to point to
2959 the first of the sorted symbols. */
2960 static struct symbol_search *
2961 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2962 {
2963 struct symbol_search **symbols, *symp, *old_next;
2964 int i;
2965
2966 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2967 * nfound);
2968 symp = prevtail->next;
2969 for (i = 0; i < nfound; i++)
2970 {
2971 symbols[i] = symp;
2972 symp = symp->next;
2973 }
2974 /* Generally NULL. */
2975 old_next = symp;
2976
2977 qsort (symbols, nfound, sizeof (struct symbol_search *),
2978 compare_search_syms);
2979
2980 symp = prevtail;
2981 for (i = 0; i < nfound; i++)
2982 {
2983 symp->next = symbols[i];
2984 symp = symp->next;
2985 }
2986 symp->next = old_next;
2987
2988 xfree (symbols);
2989 return symp;
2990 }
2991
2992 /* An object of this type is passed as the user_data to the
2993 expand_symtabs_matching method. */
2994 struct search_symbols_data
2995 {
2996 int nfiles;
2997 char **files;
2998
2999 /* It is true if PREG contains valid data, false otherwise. */
3000 unsigned preg_p : 1;
3001 regex_t preg;
3002 };
3003
3004 /* A callback for expand_symtabs_matching. */
3005 static int
3006 search_symbols_file_matches (const char *filename, void *user_data)
3007 {
3008 struct search_symbols_data *data = user_data;
3009
3010 return file_matches (filename, data->files, data->nfiles);
3011 }
3012
3013 /* A callback for expand_symtabs_matching. */
3014 static int
3015 search_symbols_name_matches (const char *symname, void *user_data)
3016 {
3017 struct search_symbols_data *data = user_data;
3018
3019 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3020 }
3021
3022 /* Search the symbol table for matches to the regular expression REGEXP,
3023 returning the results in *MATCHES.
3024
3025 Only symbols of KIND are searched:
3026 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3027 and constants (enums)
3028 FUNCTIONS_DOMAIN - search all functions
3029 TYPES_DOMAIN - search all type names
3030 ALL_DOMAIN - an internal error for this function
3031
3032 free_search_symbols should be called when *MATCHES is no longer needed.
3033
3034 The results are sorted locally; each symtab's global and static blocks are
3035 separately alphabetized. */
3036
3037 void
3038 search_symbols (char *regexp, enum search_domain kind,
3039 int nfiles, char *files[],
3040 struct symbol_search **matches)
3041 {
3042 struct symtab *s;
3043 struct blockvector *bv;
3044 struct block *b;
3045 int i = 0;
3046 struct dict_iterator iter;
3047 struct symbol *sym;
3048 struct objfile *objfile;
3049 struct minimal_symbol *msymbol;
3050 char *val;
3051 int found_misc = 0;
3052 static const enum minimal_symbol_type types[]
3053 = {mst_data, mst_text, mst_abs};
3054 static const enum minimal_symbol_type types2[]
3055 = {mst_bss, mst_file_text, mst_abs};
3056 static const enum minimal_symbol_type types3[]
3057 = {mst_file_data, mst_solib_trampoline, mst_abs};
3058 static const enum minimal_symbol_type types4[]
3059 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3060 enum minimal_symbol_type ourtype;
3061 enum minimal_symbol_type ourtype2;
3062 enum minimal_symbol_type ourtype3;
3063 enum minimal_symbol_type ourtype4;
3064 struct symbol_search *sr;
3065 struct symbol_search *psr;
3066 struct symbol_search *tail;
3067 struct search_symbols_data datum;
3068
3069 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3070 CLEANUP_CHAIN is freed only in the case of an error. */
3071 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3072 struct cleanup *retval_chain;
3073
3074 gdb_assert (kind <= TYPES_DOMAIN);
3075
3076 ourtype = types[kind];
3077 ourtype2 = types2[kind];
3078 ourtype3 = types3[kind];
3079 ourtype4 = types4[kind];
3080
3081 sr = *matches = NULL;
3082 tail = NULL;
3083 datum.preg_p = 0;
3084
3085 if (regexp != NULL)
3086 {
3087 /* Make sure spacing is right for C++ operators.
3088 This is just a courtesy to make the matching less sensitive
3089 to how many spaces the user leaves between 'operator'
3090 and <TYPENAME> or <OPERATOR>. */
3091 char *opend;
3092 char *opname = operator_chars (regexp, &opend);
3093 int errcode;
3094
3095 if (*opname)
3096 {
3097 int fix = -1; /* -1 means ok; otherwise number of
3098 spaces needed. */
3099
3100 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3101 {
3102 /* There should 1 space between 'operator' and 'TYPENAME'. */
3103 if (opname[-1] != ' ' || opname[-2] == ' ')
3104 fix = 1;
3105 }
3106 else
3107 {
3108 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3109 if (opname[-1] == ' ')
3110 fix = 0;
3111 }
3112 /* If wrong number of spaces, fix it. */
3113 if (fix >= 0)
3114 {
3115 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3116
3117 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3118 regexp = tmp;
3119 }
3120 }
3121
3122 errcode = regcomp (&datum.preg, regexp,
3123 REG_NOSUB | (case_sensitivity == case_sensitive_off
3124 ? REG_ICASE : 0));
3125 if (errcode != 0)
3126 {
3127 char *err = get_regcomp_error (errcode, &datum.preg);
3128
3129 make_cleanup (xfree, err);
3130 error (_("Invalid regexp (%s): %s"), err, regexp);
3131 }
3132 datum.preg_p = 1;
3133 make_regfree_cleanup (&datum.preg);
3134 }
3135
3136 /* Search through the partial symtabs *first* for all symbols
3137 matching the regexp. That way we don't have to reproduce all of
3138 the machinery below. */
3139
3140 datum.nfiles = nfiles;
3141 datum.files = files;
3142 ALL_OBJFILES (objfile)
3143 {
3144 if (objfile->sf)
3145 objfile->sf->qf->expand_symtabs_matching (objfile,
3146 search_symbols_file_matches,
3147 search_symbols_name_matches,
3148 kind,
3149 &datum);
3150 }
3151
3152 retval_chain = old_chain;
3153
3154 /* Here, we search through the minimal symbol tables for functions
3155 and variables that match, and force their symbols to be read.
3156 This is in particular necessary for demangled variable names,
3157 which are no longer put into the partial symbol tables.
3158 The symbol will then be found during the scan of symtabs below.
3159
3160 For functions, find_pc_symtab should succeed if we have debug info
3161 for the function, for variables we have to call lookup_symbol
3162 to determine if the variable has debug info.
3163 If the lookup fails, set found_misc so that we will rescan to print
3164 any matching symbols without debug info. */
3165
3166 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3167 {
3168 ALL_MSYMBOLS (objfile, msymbol)
3169 {
3170 QUIT;
3171
3172 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3173 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3174 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3175 MSYMBOL_TYPE (msymbol) == ourtype4)
3176 {
3177 if (!datum.preg_p
3178 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3179 NULL, 0) == 0)
3180 {
3181 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3182 {
3183 /* FIXME: carlton/2003-02-04: Given that the
3184 semantics of lookup_symbol keeps on changing
3185 slightly, it would be a nice idea if we had a
3186 function lookup_symbol_minsym that found the
3187 symbol associated to a given minimal symbol (if
3188 any). */
3189 if (kind == FUNCTIONS_DOMAIN
3190 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3191 (struct block *) NULL,
3192 VAR_DOMAIN, 0)
3193 == NULL)
3194 found_misc = 1;
3195 }
3196 }
3197 }
3198 }
3199 }
3200
3201 ALL_PRIMARY_SYMTABS (objfile, s)
3202 {
3203 bv = BLOCKVECTOR (s);
3204 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3205 {
3206 struct symbol_search *prevtail = tail;
3207 int nfound = 0;
3208
3209 b = BLOCKVECTOR_BLOCK (bv, i);
3210 ALL_BLOCK_SYMBOLS (b, iter, sym)
3211 {
3212 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3213
3214 QUIT;
3215
3216 if (file_matches (real_symtab->filename, files, nfiles)
3217 && ((!datum.preg_p
3218 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3219 NULL, 0) == 0)
3220 && ((kind == VARIABLES_DOMAIN
3221 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3222 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3223 && SYMBOL_CLASS (sym) != LOC_BLOCK
3224 /* LOC_CONST can be used for more than just enums,
3225 e.g., c++ static const members.
3226 We only want to skip enums here. */
3227 && !(SYMBOL_CLASS (sym) == LOC_CONST
3228 && TYPE_CODE (SYMBOL_TYPE (sym))
3229 == TYPE_CODE_ENUM))
3230 || (kind == FUNCTIONS_DOMAIN
3231 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3232 || (kind == TYPES_DOMAIN
3233 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3234 {
3235 /* match */
3236 psr = (struct symbol_search *)
3237 xmalloc (sizeof (struct symbol_search));
3238 psr->block = i;
3239 psr->symtab = real_symtab;
3240 psr->symbol = sym;
3241 psr->msymbol = NULL;
3242 psr->next = NULL;
3243 if (tail == NULL)
3244 sr = psr;
3245 else
3246 tail->next = psr;
3247 tail = psr;
3248 nfound ++;
3249 }
3250 }
3251 if (nfound > 0)
3252 {
3253 if (prevtail == NULL)
3254 {
3255 struct symbol_search dummy;
3256
3257 dummy.next = sr;
3258 tail = sort_search_symbols (&dummy, nfound);
3259 sr = dummy.next;
3260
3261 make_cleanup_free_search_symbols (sr);
3262 }
3263 else
3264 tail = sort_search_symbols (prevtail, nfound);
3265 }
3266 }
3267 }
3268
3269 /* If there are no eyes, avoid all contact. I mean, if there are
3270 no debug symbols, then print directly from the msymbol_vector. */
3271
3272 if (found_misc || kind != FUNCTIONS_DOMAIN)
3273 {
3274 ALL_MSYMBOLS (objfile, msymbol)
3275 {
3276 QUIT;
3277
3278 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3279 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3280 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3281 MSYMBOL_TYPE (msymbol) == ourtype4)
3282 {
3283 if (!datum.preg_p
3284 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3285 NULL, 0) == 0)
3286 {
3287 /* Functions: Look up by address. */
3288 if (kind != FUNCTIONS_DOMAIN ||
3289 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3290 {
3291 /* Variables/Absolutes: Look up by name. */
3292 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3293 (struct block *) NULL, VAR_DOMAIN, 0)
3294 == NULL)
3295 {
3296 /* match */
3297 psr = (struct symbol_search *)
3298 xmalloc (sizeof (struct symbol_search));
3299 psr->block = i;
3300 psr->msymbol = msymbol;
3301 psr->symtab = NULL;
3302 psr->symbol = NULL;
3303 psr->next = NULL;
3304 if (tail == NULL)
3305 {
3306 sr = psr;
3307 make_cleanup_free_search_symbols (sr);
3308 }
3309 else
3310 tail->next = psr;
3311 tail = psr;
3312 }
3313 }
3314 }
3315 }
3316 }
3317 }
3318
3319 discard_cleanups (retval_chain);
3320 do_cleanups (old_chain);
3321 *matches = sr;
3322 }
3323
3324 /* Helper function for symtab_symbol_info, this function uses
3325 the data returned from search_symbols() to print information
3326 regarding the match to gdb_stdout. */
3327
3328 static void
3329 print_symbol_info (enum search_domain kind,
3330 struct symtab *s, struct symbol *sym,
3331 int block, char *last)
3332 {
3333 if (last == NULL || filename_cmp (last, s->filename) != 0)
3334 {
3335 fputs_filtered ("\nFile ", gdb_stdout);
3336 fputs_filtered (s->filename, gdb_stdout);
3337 fputs_filtered (":\n", gdb_stdout);
3338 }
3339
3340 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3341 printf_filtered ("static ");
3342
3343 /* Typedef that is not a C++ class. */
3344 if (kind == TYPES_DOMAIN
3345 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3346 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3347 /* variable, func, or typedef-that-is-c++-class. */
3348 else if (kind < TYPES_DOMAIN ||
3349 (kind == TYPES_DOMAIN &&
3350 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3351 {
3352 type_print (SYMBOL_TYPE (sym),
3353 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3354 ? "" : SYMBOL_PRINT_NAME (sym)),
3355 gdb_stdout, 0);
3356
3357 printf_filtered (";\n");
3358 }
3359 }
3360
3361 /* This help function for symtab_symbol_info() prints information
3362 for non-debugging symbols to gdb_stdout. */
3363
3364 static void
3365 print_msymbol_info (struct minimal_symbol *msymbol)
3366 {
3367 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3368 char *tmp;
3369
3370 if (gdbarch_addr_bit (gdbarch) <= 32)
3371 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3372 & (CORE_ADDR) 0xffffffff,
3373 8);
3374 else
3375 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3376 16);
3377 printf_filtered ("%s %s\n",
3378 tmp, SYMBOL_PRINT_NAME (msymbol));
3379 }
3380
3381 /* This is the guts of the commands "info functions", "info types", and
3382 "info variables". It calls search_symbols to find all matches and then
3383 print_[m]symbol_info to print out some useful information about the
3384 matches. */
3385
3386 static void
3387 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3388 {
3389 static const char * const classnames[] =
3390 {"variable", "function", "type"};
3391 struct symbol_search *symbols;
3392 struct symbol_search *p;
3393 struct cleanup *old_chain;
3394 char *last_filename = NULL;
3395 int first = 1;
3396
3397 gdb_assert (kind <= TYPES_DOMAIN);
3398
3399 /* Must make sure that if we're interrupted, symbols gets freed. */
3400 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3401 old_chain = make_cleanup_free_search_symbols (symbols);
3402
3403 printf_filtered (regexp
3404 ? "All %ss matching regular expression \"%s\":\n"
3405 : "All defined %ss:\n",
3406 classnames[kind], regexp);
3407
3408 for (p = symbols; p != NULL; p = p->next)
3409 {
3410 QUIT;
3411
3412 if (p->msymbol != NULL)
3413 {
3414 if (first)
3415 {
3416 printf_filtered ("\nNon-debugging symbols:\n");
3417 first = 0;
3418 }
3419 print_msymbol_info (p->msymbol);
3420 }
3421 else
3422 {
3423 print_symbol_info (kind,
3424 p->symtab,
3425 p->symbol,
3426 p->block,
3427 last_filename);
3428 last_filename = p->symtab->filename;
3429 }
3430 }
3431
3432 do_cleanups (old_chain);
3433 }
3434
3435 static void
3436 variables_info (char *regexp, int from_tty)
3437 {
3438 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3439 }
3440
3441 static void
3442 functions_info (char *regexp, int from_tty)
3443 {
3444 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3445 }
3446
3447
3448 static void
3449 types_info (char *regexp, int from_tty)
3450 {
3451 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3452 }
3453
3454 /* Breakpoint all functions matching regular expression. */
3455
3456 void
3457 rbreak_command_wrapper (char *regexp, int from_tty)
3458 {
3459 rbreak_command (regexp, from_tty);
3460 }
3461
3462 /* A cleanup function that calls end_rbreak_breakpoints. */
3463
3464 static void
3465 do_end_rbreak_breakpoints (void *ignore)
3466 {
3467 end_rbreak_breakpoints ();
3468 }
3469
3470 static void
3471 rbreak_command (char *regexp, int from_tty)
3472 {
3473 struct symbol_search *ss;
3474 struct symbol_search *p;
3475 struct cleanup *old_chain;
3476 char *string = NULL;
3477 int len = 0;
3478 char **files = NULL, *file_name;
3479 int nfiles = 0;
3480
3481 if (regexp)
3482 {
3483 char *colon = strchr (regexp, ':');
3484
3485 if (colon && *(colon + 1) != ':')
3486 {
3487 int colon_index;
3488
3489 colon_index = colon - regexp;
3490 file_name = alloca (colon_index + 1);
3491 memcpy (file_name, regexp, colon_index);
3492 file_name[colon_index--] = 0;
3493 while (isspace (file_name[colon_index]))
3494 file_name[colon_index--] = 0;
3495 files = &file_name;
3496 nfiles = 1;
3497 regexp = colon + 1;
3498 while (isspace (*regexp)) regexp++;
3499 }
3500 }
3501
3502 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3503 old_chain = make_cleanup_free_search_symbols (ss);
3504 make_cleanup (free_current_contents, &string);
3505
3506 start_rbreak_breakpoints ();
3507 make_cleanup (do_end_rbreak_breakpoints, NULL);
3508 for (p = ss; p != NULL; p = p->next)
3509 {
3510 if (p->msymbol == NULL)
3511 {
3512 int newlen = (strlen (p->symtab->filename)
3513 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3514 + 4);
3515
3516 if (newlen > len)
3517 {
3518 string = xrealloc (string, newlen);
3519 len = newlen;
3520 }
3521 strcpy (string, p->symtab->filename);
3522 strcat (string, ":'");
3523 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3524 strcat (string, "'");
3525 break_command (string, from_tty);
3526 print_symbol_info (FUNCTIONS_DOMAIN,
3527 p->symtab,
3528 p->symbol,
3529 p->block,
3530 p->symtab->filename);
3531 }
3532 else
3533 {
3534 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3535
3536 if (newlen > len)
3537 {
3538 string = xrealloc (string, newlen);
3539 len = newlen;
3540 }
3541 strcpy (string, "'");
3542 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3543 strcat (string, "'");
3544
3545 break_command (string, from_tty);
3546 printf_filtered ("<function, no debug info> %s;\n",
3547 SYMBOL_PRINT_NAME (p->msymbol));
3548 }
3549 }
3550
3551 do_cleanups (old_chain);
3552 }
3553 \f
3554
3555 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3556
3557 Either sym_text[sym_text_len] != '(' and then we search for any
3558 symbol starting with SYM_TEXT text.
3559
3560 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3561 be terminated at that point. Partial symbol tables do not have parameters
3562 information. */
3563
3564 static int
3565 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3566 {
3567 int (*ncmp) (const char *, const char *, size_t);
3568
3569 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3570
3571 if (ncmp (name, sym_text, sym_text_len) != 0)
3572 return 0;
3573
3574 if (sym_text[sym_text_len] == '(')
3575 {
3576 /* User searches for `name(someth...'. Require NAME to be terminated.
3577 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3578 present but accept even parameters presence. In this case this
3579 function is in fact strcmp_iw but whitespace skipping is not supported
3580 for tab completion. */
3581
3582 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3583 return 0;
3584 }
3585
3586 return 1;
3587 }
3588
3589 /* Free any memory associated with a completion list. */
3590
3591 static void
3592 free_completion_list (char ***list_ptr)
3593 {
3594 int i = 0;
3595 char **list = *list_ptr;
3596
3597 while (list[i] != NULL)
3598 {
3599 xfree (list[i]);
3600 i++;
3601 }
3602 xfree (list);
3603 }
3604
3605 /* Callback for make_cleanup. */
3606
3607 static void
3608 do_free_completion_list (void *list)
3609 {
3610 free_completion_list (list);
3611 }
3612
3613 /* Helper routine for make_symbol_completion_list. */
3614
3615 static int return_val_size;
3616 static int return_val_index;
3617 static char **return_val;
3618
3619 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3620 completion_list_add_name \
3621 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3622
3623 /* Test to see if the symbol specified by SYMNAME (which is already
3624 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3625 characters. If so, add it to the current completion list. */
3626
3627 static void
3628 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3629 char *text, char *word)
3630 {
3631 int newsize;
3632
3633 /* Clip symbols that cannot match. */
3634 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3635 return;
3636
3637 /* We have a match for a completion, so add SYMNAME to the current list
3638 of matches. Note that the name is moved to freshly malloc'd space. */
3639
3640 {
3641 char *new;
3642
3643 if (word == sym_text)
3644 {
3645 new = xmalloc (strlen (symname) + 5);
3646 strcpy (new, symname);
3647 }
3648 else if (word > sym_text)
3649 {
3650 /* Return some portion of symname. */
3651 new = xmalloc (strlen (symname) + 5);
3652 strcpy (new, symname + (word - sym_text));
3653 }
3654 else
3655 {
3656 /* Return some of SYM_TEXT plus symname. */
3657 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3658 strncpy (new, word, sym_text - word);
3659 new[sym_text - word] = '\0';
3660 strcat (new, symname);
3661 }
3662
3663 if (return_val_index + 3 > return_val_size)
3664 {
3665 newsize = (return_val_size *= 2) * sizeof (char *);
3666 return_val = (char **) xrealloc ((char *) return_val, newsize);
3667 }
3668 return_val[return_val_index++] = new;
3669 return_val[return_val_index] = NULL;
3670 }
3671 }
3672
3673 /* ObjC: In case we are completing on a selector, look as the msymbol
3674 again and feed all the selectors into the mill. */
3675
3676 static void
3677 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3678 int sym_text_len, char *text, char *word)
3679 {
3680 static char *tmp = NULL;
3681 static unsigned int tmplen = 0;
3682
3683 char *method, *category, *selector;
3684 char *tmp2 = NULL;
3685
3686 method = SYMBOL_NATURAL_NAME (msymbol);
3687
3688 /* Is it a method? */
3689 if ((method[0] != '-') && (method[0] != '+'))
3690 return;
3691
3692 if (sym_text[0] == '[')
3693 /* Complete on shortened method method. */
3694 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3695
3696 while ((strlen (method) + 1) >= tmplen)
3697 {
3698 if (tmplen == 0)
3699 tmplen = 1024;
3700 else
3701 tmplen *= 2;
3702 tmp = xrealloc (tmp, tmplen);
3703 }
3704 selector = strchr (method, ' ');
3705 if (selector != NULL)
3706 selector++;
3707
3708 category = strchr (method, '(');
3709
3710 if ((category != NULL) && (selector != NULL))
3711 {
3712 memcpy (tmp, method, (category - method));
3713 tmp[category - method] = ' ';
3714 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3715 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3716 if (sym_text[0] == '[')
3717 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3718 }
3719
3720 if (selector != NULL)
3721 {
3722 /* Complete on selector only. */
3723 strcpy (tmp, selector);
3724 tmp2 = strchr (tmp, ']');
3725 if (tmp2 != NULL)
3726 *tmp2 = '\0';
3727
3728 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3729 }
3730 }
3731
3732 /* Break the non-quoted text based on the characters which are in
3733 symbols. FIXME: This should probably be language-specific. */
3734
3735 static char *
3736 language_search_unquoted_string (char *text, char *p)
3737 {
3738 for (; p > text; --p)
3739 {
3740 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3741 continue;
3742 else
3743 {
3744 if ((current_language->la_language == language_objc))
3745 {
3746 if (p[-1] == ':') /* Might be part of a method name. */
3747 continue;
3748 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3749 p -= 2; /* Beginning of a method name. */
3750 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3751 { /* Might be part of a method name. */
3752 char *t = p;
3753
3754 /* Seeing a ' ' or a '(' is not conclusive evidence
3755 that we are in the middle of a method name. However,
3756 finding "-[" or "+[" should be pretty un-ambiguous.
3757 Unfortunately we have to find it now to decide. */
3758
3759 while (t > text)
3760 if (isalnum (t[-1]) || t[-1] == '_' ||
3761 t[-1] == ' ' || t[-1] == ':' ||
3762 t[-1] == '(' || t[-1] == ')')
3763 --t;
3764 else
3765 break;
3766
3767 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3768 p = t - 2; /* Method name detected. */
3769 /* Else we leave with p unchanged. */
3770 }
3771 }
3772 break;
3773 }
3774 }
3775 return p;
3776 }
3777
3778 static void
3779 completion_list_add_fields (struct symbol *sym, char *sym_text,
3780 int sym_text_len, char *text, char *word)
3781 {
3782 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3783 {
3784 struct type *t = SYMBOL_TYPE (sym);
3785 enum type_code c = TYPE_CODE (t);
3786 int j;
3787
3788 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3789 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3790 if (TYPE_FIELD_NAME (t, j))
3791 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3792 sym_text, sym_text_len, text, word);
3793 }
3794 }
3795
3796 /* Type of the user_data argument passed to add_macro_name or
3797 expand_partial_symbol_name. The contents are simply whatever is
3798 needed by completion_list_add_name. */
3799 struct add_name_data
3800 {
3801 char *sym_text;
3802 int sym_text_len;
3803 char *text;
3804 char *word;
3805 };
3806
3807 /* A callback used with macro_for_each and macro_for_each_in_scope.
3808 This adds a macro's name to the current completion list. */
3809 static void
3810 add_macro_name (const char *name, const struct macro_definition *ignore,
3811 struct macro_source_file *ignore2, int ignore3,
3812 void *user_data)
3813 {
3814 struct add_name_data *datum = (struct add_name_data *) user_data;
3815
3816 completion_list_add_name ((char *) name,
3817 datum->sym_text, datum->sym_text_len,
3818 datum->text, datum->word);
3819 }
3820
3821 /* A callback for expand_partial_symbol_names. */
3822 static int
3823 expand_partial_symbol_name (const char *name, void *user_data)
3824 {
3825 struct add_name_data *datum = (struct add_name_data *) user_data;
3826
3827 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
3828 }
3829
3830 char **
3831 default_make_symbol_completion_list_break_on (char *text, char *word,
3832 const char *break_on)
3833 {
3834 /* Problem: All of the symbols have to be copied because readline
3835 frees them. I'm not going to worry about this; hopefully there
3836 won't be that many. */
3837
3838 struct symbol *sym;
3839 struct symtab *s;
3840 struct minimal_symbol *msymbol;
3841 struct objfile *objfile;
3842 struct block *b;
3843 const struct block *surrounding_static_block, *surrounding_global_block;
3844 struct dict_iterator iter;
3845 /* The symbol we are completing on. Points in same buffer as text. */
3846 char *sym_text;
3847 /* Length of sym_text. */
3848 int sym_text_len;
3849 struct add_name_data datum;
3850 struct cleanup *back_to;
3851
3852 /* Now look for the symbol we are supposed to complete on. */
3853 {
3854 char *p;
3855 char quote_found;
3856 char *quote_pos = NULL;
3857
3858 /* First see if this is a quoted string. */
3859 quote_found = '\0';
3860 for (p = text; *p != '\0'; ++p)
3861 {
3862 if (quote_found != '\0')
3863 {
3864 if (*p == quote_found)
3865 /* Found close quote. */
3866 quote_found = '\0';
3867 else if (*p == '\\' && p[1] == quote_found)
3868 /* A backslash followed by the quote character
3869 doesn't end the string. */
3870 ++p;
3871 }
3872 else if (*p == '\'' || *p == '"')
3873 {
3874 quote_found = *p;
3875 quote_pos = p;
3876 }
3877 }
3878 if (quote_found == '\'')
3879 /* A string within single quotes can be a symbol, so complete on it. */
3880 sym_text = quote_pos + 1;
3881 else if (quote_found == '"')
3882 /* A double-quoted string is never a symbol, nor does it make sense
3883 to complete it any other way. */
3884 {
3885 return_val = (char **) xmalloc (sizeof (char *));
3886 return_val[0] = NULL;
3887 return return_val;
3888 }
3889 else
3890 {
3891 /* It is not a quoted string. Break it based on the characters
3892 which are in symbols. */
3893 while (p > text)
3894 {
3895 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3896 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3897 --p;
3898 else
3899 break;
3900 }
3901 sym_text = p;
3902 }
3903 }
3904
3905 sym_text_len = strlen (sym_text);
3906
3907 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
3908
3909 if (current_language->la_language == language_cplus
3910 || current_language->la_language == language_java
3911 || current_language->la_language == language_fortran)
3912 {
3913 /* These languages may have parameters entered by user but they are never
3914 present in the partial symbol tables. */
3915
3916 const char *cs = memchr (sym_text, '(', sym_text_len);
3917
3918 if (cs)
3919 sym_text_len = cs - sym_text;
3920 }
3921 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
3922
3923 return_val_size = 100;
3924 return_val_index = 0;
3925 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3926 return_val[0] = NULL;
3927 back_to = make_cleanup (do_free_completion_list, &return_val);
3928
3929 datum.sym_text = sym_text;
3930 datum.sym_text_len = sym_text_len;
3931 datum.text = text;
3932 datum.word = word;
3933
3934 /* Look through the partial symtabs for all symbols which begin
3935 by matching SYM_TEXT. Expand all CUs that you find to the list.
3936 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
3937 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
3938
3939 /* At this point scan through the misc symbol vectors and add each
3940 symbol you find to the list. Eventually we want to ignore
3941 anything that isn't a text symbol (everything else will be
3942 handled by the psymtab code above). */
3943
3944 ALL_MSYMBOLS (objfile, msymbol)
3945 {
3946 QUIT;
3947 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3948
3949 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3950 }
3951
3952 /* Search upwards from currently selected frame (so that we can
3953 complete on local vars). Also catch fields of types defined in
3954 this places which match our text string. Only complete on types
3955 visible from current context. */
3956
3957 b = get_selected_block (0);
3958 surrounding_static_block = block_static_block (b);
3959 surrounding_global_block = block_global_block (b);
3960 if (surrounding_static_block != NULL)
3961 while (b != surrounding_static_block)
3962 {
3963 QUIT;
3964
3965 ALL_BLOCK_SYMBOLS (b, iter, sym)
3966 {
3967 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3968 word);
3969 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3970 word);
3971 }
3972
3973 /* Stop when we encounter an enclosing function. Do not stop for
3974 non-inlined functions - the locals of the enclosing function
3975 are in scope for a nested function. */
3976 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3977 break;
3978 b = BLOCK_SUPERBLOCK (b);
3979 }
3980
3981 /* Add fields from the file's types; symbols will be added below. */
3982
3983 if (surrounding_static_block != NULL)
3984 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3985 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3986
3987 if (surrounding_global_block != NULL)
3988 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3989 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3990
3991 /* Go through the symtabs and check the externs and statics for
3992 symbols which match. */
3993
3994 ALL_PRIMARY_SYMTABS (objfile, s)
3995 {
3996 QUIT;
3997 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3998 ALL_BLOCK_SYMBOLS (b, iter, sym)
3999 {
4000 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4001 }
4002 }
4003
4004 ALL_PRIMARY_SYMTABS (objfile, s)
4005 {
4006 QUIT;
4007 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4008 ALL_BLOCK_SYMBOLS (b, iter, sym)
4009 {
4010 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4011 }
4012 }
4013
4014 if (current_language->la_macro_expansion == macro_expansion_c)
4015 {
4016 struct macro_scope *scope;
4017
4018 /* Add any macros visible in the default scope. Note that this
4019 may yield the occasional wrong result, because an expression
4020 might be evaluated in a scope other than the default. For
4021 example, if the user types "break file:line if <TAB>", the
4022 resulting expression will be evaluated at "file:line" -- but
4023 at there does not seem to be a way to detect this at
4024 completion time. */
4025 scope = default_macro_scope ();
4026 if (scope)
4027 {
4028 macro_for_each_in_scope (scope->file, scope->line,
4029 add_macro_name, &datum);
4030 xfree (scope);
4031 }
4032
4033 /* User-defined macros are always visible. */
4034 macro_for_each (macro_user_macros, add_macro_name, &datum);
4035 }
4036
4037 discard_cleanups (back_to);
4038 return (return_val);
4039 }
4040
4041 char **
4042 default_make_symbol_completion_list (char *text, char *word)
4043 {
4044 return default_make_symbol_completion_list_break_on (text, word, "");
4045 }
4046
4047 /* Return a NULL terminated array of all symbols (regardless of class)
4048 which begin by matching TEXT. If the answer is no symbols, then
4049 the return value is an array which contains only a NULL pointer. */
4050
4051 char **
4052 make_symbol_completion_list (char *text, char *word)
4053 {
4054 return current_language->la_make_symbol_completion_list (text, word);
4055 }
4056
4057 /* Like make_symbol_completion_list, but suitable for use as a
4058 completion function. */
4059
4060 char **
4061 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4062 char *text, char *word)
4063 {
4064 return make_symbol_completion_list (text, word);
4065 }
4066
4067 /* Like make_symbol_completion_list, but returns a list of symbols
4068 defined in a source file FILE. */
4069
4070 char **
4071 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4072 {
4073 struct symbol *sym;
4074 struct symtab *s;
4075 struct block *b;
4076 struct dict_iterator iter;
4077 /* The symbol we are completing on. Points in same buffer as text. */
4078 char *sym_text;
4079 /* Length of sym_text. */
4080 int sym_text_len;
4081
4082 /* Now look for the symbol we are supposed to complete on.
4083 FIXME: This should be language-specific. */
4084 {
4085 char *p;
4086 char quote_found;
4087 char *quote_pos = NULL;
4088
4089 /* First see if this is a quoted string. */
4090 quote_found = '\0';
4091 for (p = text; *p != '\0'; ++p)
4092 {
4093 if (quote_found != '\0')
4094 {
4095 if (*p == quote_found)
4096 /* Found close quote. */
4097 quote_found = '\0';
4098 else if (*p == '\\' && p[1] == quote_found)
4099 /* A backslash followed by the quote character
4100 doesn't end the string. */
4101 ++p;
4102 }
4103 else if (*p == '\'' || *p == '"')
4104 {
4105 quote_found = *p;
4106 quote_pos = p;
4107 }
4108 }
4109 if (quote_found == '\'')
4110 /* A string within single quotes can be a symbol, so complete on it. */
4111 sym_text = quote_pos + 1;
4112 else if (quote_found == '"')
4113 /* A double-quoted string is never a symbol, nor does it make sense
4114 to complete it any other way. */
4115 {
4116 return_val = (char **) xmalloc (sizeof (char *));
4117 return_val[0] = NULL;
4118 return return_val;
4119 }
4120 else
4121 {
4122 /* Not a quoted string. */
4123 sym_text = language_search_unquoted_string (text, p);
4124 }
4125 }
4126
4127 sym_text_len = strlen (sym_text);
4128
4129 return_val_size = 10;
4130 return_val_index = 0;
4131 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4132 return_val[0] = NULL;
4133
4134 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4135 in). */
4136 s = lookup_symtab (srcfile);
4137 if (s == NULL)
4138 {
4139 /* Maybe they typed the file with leading directories, while the
4140 symbol tables record only its basename. */
4141 const char *tail = lbasename (srcfile);
4142
4143 if (tail > srcfile)
4144 s = lookup_symtab (tail);
4145 }
4146
4147 /* If we have no symtab for that file, return an empty list. */
4148 if (s == NULL)
4149 return (return_val);
4150
4151 /* Go through this symtab and check the externs and statics for
4152 symbols which match. */
4153
4154 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4155 ALL_BLOCK_SYMBOLS (b, iter, sym)
4156 {
4157 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4158 }
4159
4160 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4161 ALL_BLOCK_SYMBOLS (b, iter, sym)
4162 {
4163 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4164 }
4165
4166 return (return_val);
4167 }
4168
4169 /* A helper function for make_source_files_completion_list. It adds
4170 another file name to a list of possible completions, growing the
4171 list as necessary. */
4172
4173 static void
4174 add_filename_to_list (const char *fname, char *text, char *word,
4175 char ***list, int *list_used, int *list_alloced)
4176 {
4177 char *new;
4178 size_t fnlen = strlen (fname);
4179
4180 if (*list_used + 1 >= *list_alloced)
4181 {
4182 *list_alloced *= 2;
4183 *list = (char **) xrealloc ((char *) *list,
4184 *list_alloced * sizeof (char *));
4185 }
4186
4187 if (word == text)
4188 {
4189 /* Return exactly fname. */
4190 new = xmalloc (fnlen + 5);
4191 strcpy (new, fname);
4192 }
4193 else if (word > text)
4194 {
4195 /* Return some portion of fname. */
4196 new = xmalloc (fnlen + 5);
4197 strcpy (new, fname + (word - text));
4198 }
4199 else
4200 {
4201 /* Return some of TEXT plus fname. */
4202 new = xmalloc (fnlen + (text - word) + 5);
4203 strncpy (new, word, text - word);
4204 new[text - word] = '\0';
4205 strcat (new, fname);
4206 }
4207 (*list)[*list_used] = new;
4208 (*list)[++*list_used] = NULL;
4209 }
4210
4211 static int
4212 not_interesting_fname (const char *fname)
4213 {
4214 static const char *illegal_aliens[] = {
4215 "_globals_", /* inserted by coff_symtab_read */
4216 NULL
4217 };
4218 int i;
4219
4220 for (i = 0; illegal_aliens[i]; i++)
4221 {
4222 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4223 return 1;
4224 }
4225 return 0;
4226 }
4227
4228 /* An object of this type is passed as the user_data argument to
4229 map_partial_symbol_filenames. */
4230 struct add_partial_filename_data
4231 {
4232 int *first;
4233 char *text;
4234 char *word;
4235 int text_len;
4236 char ***list;
4237 int *list_used;
4238 int *list_alloced;
4239 };
4240
4241 /* A callback for map_partial_symbol_filenames. */
4242 static void
4243 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4244 void *user_data)
4245 {
4246 struct add_partial_filename_data *data = user_data;
4247
4248 if (not_interesting_fname (filename))
4249 return;
4250 if (!filename_seen (filename, 1, data->first)
4251 && filename_ncmp (filename, data->text, data->text_len) == 0)
4252 {
4253 /* This file matches for a completion; add it to the
4254 current list of matches. */
4255 add_filename_to_list (filename, data->text, data->word,
4256 data->list, data->list_used, data->list_alloced);
4257 }
4258 else
4259 {
4260 const char *base_name = lbasename (filename);
4261
4262 if (base_name != filename
4263 && !filename_seen (base_name, 1, data->first)
4264 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4265 add_filename_to_list (base_name, data->text, data->word,
4266 data->list, data->list_used, data->list_alloced);
4267 }
4268 }
4269
4270 /* Return a NULL terminated array of all source files whose names
4271 begin with matching TEXT. The file names are looked up in the
4272 symbol tables of this program. If the answer is no matchess, then
4273 the return value is an array which contains only a NULL pointer. */
4274
4275 char **
4276 make_source_files_completion_list (char *text, char *word)
4277 {
4278 struct symtab *s;
4279 struct objfile *objfile;
4280 int first = 1;
4281 int list_alloced = 1;
4282 int list_used = 0;
4283 size_t text_len = strlen (text);
4284 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4285 const char *base_name;
4286 struct add_partial_filename_data datum;
4287 struct cleanup *back_to;
4288
4289 list[0] = NULL;
4290
4291 if (!have_full_symbols () && !have_partial_symbols ())
4292 return list;
4293
4294 back_to = make_cleanup (do_free_completion_list, &list);
4295
4296 ALL_SYMTABS (objfile, s)
4297 {
4298 if (not_interesting_fname (s->filename))
4299 continue;
4300 if (!filename_seen (s->filename, 1, &first)
4301 && filename_ncmp (s->filename, text, text_len) == 0)
4302 {
4303 /* This file matches for a completion; add it to the current
4304 list of matches. */
4305 add_filename_to_list (s->filename, text, word,
4306 &list, &list_used, &list_alloced);
4307 }
4308 else
4309 {
4310 /* NOTE: We allow the user to type a base name when the
4311 debug info records leading directories, but not the other
4312 way around. This is what subroutines of breakpoint
4313 command do when they parse file names. */
4314 base_name = lbasename (s->filename);
4315 if (base_name != s->filename
4316 && !filename_seen (base_name, 1, &first)
4317 && filename_ncmp (base_name, text, text_len) == 0)
4318 add_filename_to_list (base_name, text, word,
4319 &list, &list_used, &list_alloced);
4320 }
4321 }
4322
4323 datum.first = &first;
4324 datum.text = text;
4325 datum.word = word;
4326 datum.text_len = text_len;
4327 datum.list = &list;
4328 datum.list_used = &list_used;
4329 datum.list_alloced = &list_alloced;
4330 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4331 0 /*need_fullname*/);
4332 discard_cleanups (back_to);
4333
4334 return list;
4335 }
4336
4337 /* Determine if PC is in the prologue of a function. The prologue is the area
4338 between the first instruction of a function, and the first executable line.
4339 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4340
4341 If non-zero, func_start is where we think the prologue starts, possibly
4342 by previous examination of symbol table information. */
4343
4344 int
4345 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4346 {
4347 struct symtab_and_line sal;
4348 CORE_ADDR func_addr, func_end;
4349
4350 /* We have several sources of information we can consult to figure
4351 this out.
4352 - Compilers usually emit line number info that marks the prologue
4353 as its own "source line". So the ending address of that "line"
4354 is the end of the prologue. If available, this is the most
4355 reliable method.
4356 - The minimal symbols and partial symbols, which can usually tell
4357 us the starting and ending addresses of a function.
4358 - If we know the function's start address, we can call the
4359 architecture-defined gdbarch_skip_prologue function to analyze the
4360 instruction stream and guess where the prologue ends.
4361 - Our `func_start' argument; if non-zero, this is the caller's
4362 best guess as to the function's entry point. At the time of
4363 this writing, handle_inferior_event doesn't get this right, so
4364 it should be our last resort. */
4365
4366 /* Consult the partial symbol table, to find which function
4367 the PC is in. */
4368 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4369 {
4370 CORE_ADDR prologue_end;
4371
4372 /* We don't even have minsym information, so fall back to using
4373 func_start, if given. */
4374 if (! func_start)
4375 return 1; /* We *might* be in a prologue. */
4376
4377 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4378
4379 return func_start <= pc && pc < prologue_end;
4380 }
4381
4382 /* If we have line number information for the function, that's
4383 usually pretty reliable. */
4384 sal = find_pc_line (func_addr, 0);
4385
4386 /* Now sal describes the source line at the function's entry point,
4387 which (by convention) is the prologue. The end of that "line",
4388 sal.end, is the end of the prologue.
4389
4390 Note that, for functions whose source code is all on a single
4391 line, the line number information doesn't always end up this way.
4392 So we must verify that our purported end-of-prologue address is
4393 *within* the function, not at its start or end. */
4394 if (sal.line == 0
4395 || sal.end <= func_addr
4396 || func_end <= sal.end)
4397 {
4398 /* We don't have any good line number info, so use the minsym
4399 information, together with the architecture-specific prologue
4400 scanning code. */
4401 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4402
4403 return func_addr <= pc && pc < prologue_end;
4404 }
4405
4406 /* We have line number info, and it looks good. */
4407 return func_addr <= pc && pc < sal.end;
4408 }
4409
4410 /* Given PC at the function's start address, attempt to find the
4411 prologue end using SAL information. Return zero if the skip fails.
4412
4413 A non-optimized prologue traditionally has one SAL for the function
4414 and a second for the function body. A single line function has
4415 them both pointing at the same line.
4416
4417 An optimized prologue is similar but the prologue may contain
4418 instructions (SALs) from the instruction body. Need to skip those
4419 while not getting into the function body.
4420
4421 The functions end point and an increasing SAL line are used as
4422 indicators of the prologue's endpoint.
4423
4424 This code is based on the function refine_prologue_limit
4425 (found in ia64). */
4426
4427 CORE_ADDR
4428 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4429 {
4430 struct symtab_and_line prologue_sal;
4431 CORE_ADDR start_pc;
4432 CORE_ADDR end_pc;
4433 struct block *bl;
4434
4435 /* Get an initial range for the function. */
4436 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4437 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4438
4439 prologue_sal = find_pc_line (start_pc, 0);
4440 if (prologue_sal.line != 0)
4441 {
4442 /* For languages other than assembly, treat two consecutive line
4443 entries at the same address as a zero-instruction prologue.
4444 The GNU assembler emits separate line notes for each instruction
4445 in a multi-instruction macro, but compilers generally will not
4446 do this. */
4447 if (prologue_sal.symtab->language != language_asm)
4448 {
4449 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4450 int idx = 0;
4451
4452 /* Skip any earlier lines, and any end-of-sequence marker
4453 from a previous function. */
4454 while (linetable->item[idx].pc != prologue_sal.pc
4455 || linetable->item[idx].line == 0)
4456 idx++;
4457
4458 if (idx+1 < linetable->nitems
4459 && linetable->item[idx+1].line != 0
4460 && linetable->item[idx+1].pc == start_pc)
4461 return start_pc;
4462 }
4463
4464 /* If there is only one sal that covers the entire function,
4465 then it is probably a single line function, like
4466 "foo(){}". */
4467 if (prologue_sal.end >= end_pc)
4468 return 0;
4469
4470 while (prologue_sal.end < end_pc)
4471 {
4472 struct symtab_and_line sal;
4473
4474 sal = find_pc_line (prologue_sal.end, 0);
4475 if (sal.line == 0)
4476 break;
4477 /* Assume that a consecutive SAL for the same (or larger)
4478 line mark the prologue -> body transition. */
4479 if (sal.line >= prologue_sal.line)
4480 break;
4481
4482 /* The line number is smaller. Check that it's from the
4483 same function, not something inlined. If it's inlined,
4484 then there is no point comparing the line numbers. */
4485 bl = block_for_pc (prologue_sal.end);
4486 while (bl)
4487 {
4488 if (block_inlined_p (bl))
4489 break;
4490 if (BLOCK_FUNCTION (bl))
4491 {
4492 bl = NULL;
4493 break;
4494 }
4495 bl = BLOCK_SUPERBLOCK (bl);
4496 }
4497 if (bl != NULL)
4498 break;
4499
4500 /* The case in which compiler's optimizer/scheduler has
4501 moved instructions into the prologue. We look ahead in
4502 the function looking for address ranges whose
4503 corresponding line number is less the first one that we
4504 found for the function. This is more conservative then
4505 refine_prologue_limit which scans a large number of SALs
4506 looking for any in the prologue. */
4507 prologue_sal = sal;
4508 }
4509 }
4510
4511 if (prologue_sal.end < end_pc)
4512 /* Return the end of this line, or zero if we could not find a
4513 line. */
4514 return prologue_sal.end;
4515 else
4516 /* Don't return END_PC, which is past the end of the function. */
4517 return prologue_sal.pc;
4518 }
4519 \f
4520 struct symtabs_and_lines
4521 decode_line_spec (char *string, int funfirstline)
4522 {
4523 struct symtabs_and_lines sals;
4524 struct symtab_and_line cursal;
4525
4526 if (string == 0)
4527 error (_("Empty line specification."));
4528
4529 /* We use whatever is set as the current source line. We do not try
4530 and get a default or it will recursively call us! */
4531 cursal = get_current_source_symtab_and_line ();
4532
4533 sals = decode_line_1 (&string, funfirstline,
4534 cursal.symtab, cursal.line,
4535 NULL);
4536
4537 if (*string)
4538 error (_("Junk at end of line specification: %s"), string);
4539 return sals;
4540 }
4541
4542 /* Track MAIN */
4543 static char *name_of_main;
4544 enum language language_of_main = language_unknown;
4545
4546 void
4547 set_main_name (const char *name)
4548 {
4549 if (name_of_main != NULL)
4550 {
4551 xfree (name_of_main);
4552 name_of_main = NULL;
4553 language_of_main = language_unknown;
4554 }
4555 if (name != NULL)
4556 {
4557 name_of_main = xstrdup (name);
4558 language_of_main = language_unknown;
4559 }
4560 }
4561
4562 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4563 accordingly. */
4564
4565 static void
4566 find_main_name (void)
4567 {
4568 const char *new_main_name;
4569
4570 /* Try to see if the main procedure is in Ada. */
4571 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4572 be to add a new method in the language vector, and call this
4573 method for each language until one of them returns a non-empty
4574 name. This would allow us to remove this hard-coded call to
4575 an Ada function. It is not clear that this is a better approach
4576 at this point, because all methods need to be written in a way
4577 such that false positives never be returned. For instance, it is
4578 important that a method does not return a wrong name for the main
4579 procedure if the main procedure is actually written in a different
4580 language. It is easy to guaranty this with Ada, since we use a
4581 special symbol generated only when the main in Ada to find the name
4582 of the main procedure. It is difficult however to see how this can
4583 be guarantied for languages such as C, for instance. This suggests
4584 that order of call for these methods becomes important, which means
4585 a more complicated approach. */
4586 new_main_name = ada_main_name ();
4587 if (new_main_name != NULL)
4588 {
4589 set_main_name (new_main_name);
4590 return;
4591 }
4592
4593 new_main_name = pascal_main_name ();
4594 if (new_main_name != NULL)
4595 {
4596 set_main_name (new_main_name);
4597 return;
4598 }
4599
4600 /* The languages above didn't identify the name of the main procedure.
4601 Fallback to "main". */
4602 set_main_name ("main");
4603 }
4604
4605 char *
4606 main_name (void)
4607 {
4608 if (name_of_main == NULL)
4609 find_main_name ();
4610
4611 return name_of_main;
4612 }
4613
4614 /* Handle ``executable_changed'' events for the symtab module. */
4615
4616 static void
4617 symtab_observer_executable_changed (void)
4618 {
4619 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4620 set_main_name (NULL);
4621 }
4622
4623 /* Helper to expand_line_sal below. Appends new sal to SAL,
4624 initializing it from SYMTAB, LINENO and PC. */
4625 static void
4626 append_expanded_sal (struct symtabs_and_lines *sal,
4627 struct program_space *pspace,
4628 struct symtab *symtab,
4629 int lineno, CORE_ADDR pc)
4630 {
4631 sal->sals = xrealloc (sal->sals,
4632 sizeof (sal->sals[0])
4633 * (sal->nelts + 1));
4634 init_sal (sal->sals + sal->nelts);
4635 sal->sals[sal->nelts].pspace = pspace;
4636 sal->sals[sal->nelts].symtab = symtab;
4637 sal->sals[sal->nelts].section = NULL;
4638 sal->sals[sal->nelts].end = 0;
4639 sal->sals[sal->nelts].line = lineno;
4640 sal->sals[sal->nelts].pc = pc;
4641 ++sal->nelts;
4642 }
4643
4644 /* Helper to expand_line_sal below. Search in the symtabs for any
4645 linetable entry that exactly matches FULLNAME and LINENO and append
4646 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4647 use FILENAME and LINENO instead. If there is at least one match,
4648 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4649 and BEST_SYMTAB. */
4650
4651 static int
4652 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4653 struct symtabs_and_lines *ret,
4654 struct linetable_entry **best_item,
4655 struct symtab **best_symtab)
4656 {
4657 struct program_space *pspace;
4658 struct objfile *objfile;
4659 struct symtab *symtab;
4660 int exact = 0;
4661 int j;
4662 *best_item = 0;
4663 *best_symtab = 0;
4664
4665 ALL_PSPACES (pspace)
4666 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4667 {
4668 if (FILENAME_CMP (filename, symtab->filename) == 0)
4669 {
4670 struct linetable *l;
4671 int len;
4672
4673 if (fullname != NULL
4674 && symtab_to_fullname (symtab) != NULL
4675 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4676 continue;
4677 l = LINETABLE (symtab);
4678 if (!l)
4679 continue;
4680 len = l->nitems;
4681
4682 for (j = 0; j < len; j++)
4683 {
4684 struct linetable_entry *item = &(l->item[j]);
4685
4686 if (item->line == lineno)
4687 {
4688 exact = 1;
4689 append_expanded_sal (ret, objfile->pspace,
4690 symtab, lineno, item->pc);
4691 }
4692 else if (!exact && item->line > lineno
4693 && (*best_item == NULL
4694 || item->line < (*best_item)->line))
4695 {
4696 *best_item = item;
4697 *best_symtab = symtab;
4698 }
4699 }
4700 }
4701 }
4702 return exact;
4703 }
4704
4705 /* Compute a set of all sals in all program spaces that correspond to
4706 same file and line as SAL and return those. If there are several
4707 sals that belong to the same block, only one sal for the block is
4708 included in results. */
4709
4710 struct symtabs_and_lines
4711 expand_line_sal (struct symtab_and_line sal)
4712 {
4713 struct symtabs_and_lines ret;
4714 int i, j;
4715 struct objfile *objfile;
4716 int lineno;
4717 int deleted = 0;
4718 struct block **blocks = NULL;
4719 int *filter;
4720 struct cleanup *old_chain;
4721
4722 ret.nelts = 0;
4723 ret.sals = NULL;
4724
4725 /* Only expand sals that represent file.c:line. */
4726 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4727 {
4728 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4729 ret.sals[0] = sal;
4730 ret.nelts = 1;
4731 return ret;
4732 }
4733 else
4734 {
4735 struct program_space *pspace;
4736 struct linetable_entry *best_item = 0;
4737 struct symtab *best_symtab = 0;
4738 int exact = 0;
4739 char *match_filename;
4740
4741 lineno = sal.line;
4742 match_filename = sal.symtab->filename;
4743
4744 /* We need to find all symtabs for a file which name
4745 is described by sal. We cannot just directly
4746 iterate over symtabs, since a symtab might not be
4747 yet created. We also cannot iterate over psymtabs,
4748 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4749 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4750 corresponding to an included file. Therefore, we do
4751 first pass over psymtabs, reading in those with
4752 the right name. Then, we iterate over symtabs, knowing
4753 that all symtabs we're interested in are loaded. */
4754
4755 old_chain = save_current_program_space ();
4756 ALL_PSPACES (pspace)
4757 {
4758 set_current_program_space (pspace);
4759 ALL_PSPACE_OBJFILES (pspace, objfile)
4760 {
4761 if (objfile->sf)
4762 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4763 sal.symtab->filename);
4764 }
4765 }
4766 do_cleanups (old_chain);
4767
4768 /* Now search the symtab for exact matches and append them. If
4769 none is found, append the best_item and all its exact
4770 matches. */
4771 symtab_to_fullname (sal.symtab);
4772 exact = append_exact_match_to_sals (sal.symtab->filename,
4773 sal.symtab->fullname, lineno,
4774 &ret, &best_item, &best_symtab);
4775 if (!exact && best_item)
4776 append_exact_match_to_sals (best_symtab->filename,
4777 best_symtab->fullname, best_item->line,
4778 &ret, &best_item, &best_symtab);
4779 }
4780
4781 /* For optimized code, compiler can scatter one source line accross
4782 disjoint ranges of PC values, even when no duplicate functions
4783 or inline functions are involved. For example, 'for (;;)' inside
4784 non-template non-inline non-ctor-or-dtor function can result
4785 in two PC ranges. In this case, we don't want to set breakpoint
4786 on first PC of each range. To filter such cases, we use containing
4787 blocks -- for each PC found above we see if there are other PCs
4788 that are in the same block. If yes, the other PCs are filtered out. */
4789
4790 old_chain = save_current_program_space ();
4791 filter = alloca (ret.nelts * sizeof (int));
4792 blocks = alloca (ret.nelts * sizeof (struct block *));
4793 for (i = 0; i < ret.nelts; ++i)
4794 {
4795 set_current_program_space (ret.sals[i].pspace);
4796
4797 filter[i] = 1;
4798 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4799 }
4800 do_cleanups (old_chain);
4801
4802 for (i = 0; i < ret.nelts; ++i)
4803 if (blocks[i] != NULL)
4804 for (j = i+1; j < ret.nelts; ++j)
4805 if (blocks[j] == blocks[i])
4806 {
4807 filter[j] = 0;
4808 ++deleted;
4809 break;
4810 }
4811
4812 {
4813 struct symtab_and_line *final =
4814 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4815
4816 for (i = 0, j = 0; i < ret.nelts; ++i)
4817 if (filter[i])
4818 final[j++] = ret.sals[i];
4819
4820 ret.nelts -= deleted;
4821 xfree (ret.sals);
4822 ret.sals = final;
4823 }
4824
4825 return ret;
4826 }
4827
4828 /* Return 1 if the supplied producer string matches the ARM RealView
4829 compiler (armcc). */
4830
4831 int
4832 producer_is_realview (const char *producer)
4833 {
4834 static const char *const arm_idents[] = {
4835 "ARM C Compiler, ADS",
4836 "Thumb C Compiler, ADS",
4837 "ARM C++ Compiler, ADS",
4838 "Thumb C++ Compiler, ADS",
4839 "ARM/Thumb C/C++ Compiler, RVCT",
4840 "ARM C/C++ Compiler, RVCT"
4841 };
4842 int i;
4843
4844 if (producer == NULL)
4845 return 0;
4846
4847 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4848 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4849 return 1;
4850
4851 return 0;
4852 }
4853
4854 void
4855 _initialize_symtab (void)
4856 {
4857 add_info ("variables", variables_info, _("\
4858 All global and static variable names, or those matching REGEXP."));
4859 if (dbx_commands)
4860 add_com ("whereis", class_info, variables_info, _("\
4861 All global and static variable names, or those matching REGEXP."));
4862
4863 add_info ("functions", functions_info,
4864 _("All function names, or those matching REGEXP."));
4865
4866 /* FIXME: This command has at least the following problems:
4867 1. It prints builtin types (in a very strange and confusing fashion).
4868 2. It doesn't print right, e.g. with
4869 typedef struct foo *FOO
4870 type_print prints "FOO" when we want to make it (in this situation)
4871 print "struct foo *".
4872 I also think "ptype" or "whatis" is more likely to be useful (but if
4873 there is much disagreement "info types" can be fixed). */
4874 add_info ("types", types_info,
4875 _("All type names, or those matching REGEXP."));
4876
4877 add_info ("sources", sources_info,
4878 _("Source files in the program."));
4879
4880 add_com ("rbreak", class_breakpoint, rbreak_command,
4881 _("Set a breakpoint for all functions matching REGEXP."));
4882
4883 if (xdb_commands)
4884 {
4885 add_com ("lf", class_info, sources_info,
4886 _("Source files in the program"));
4887 add_com ("lg", class_info, variables_info, _("\
4888 All global and static variable names, or those matching REGEXP."));
4889 }
4890
4891 add_setshow_enum_cmd ("multiple-symbols", no_class,
4892 multiple_symbols_modes, &multiple_symbols_mode,
4893 _("\
4894 Set the debugger behavior when more than one symbol are possible matches\n\
4895 in an expression."), _("\
4896 Show how the debugger handles ambiguities in expressions."), _("\
4897 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4898 NULL, NULL, &setlist, &showlist);
4899
4900 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4901 &basenames_may_differ, _("\
4902 Set whether a source file may have multiple base names."), _("\
4903 Show whether a source file may have multiple base names."), _("\
4904 (A \"base name\" is the name of a file with the directory part removed.\n\
4905 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4906 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4907 before comparing them. Canonicalization is an expensive operation,\n\
4908 but it allows the same file be known by more than one base name.\n\
4909 If not set (the default), all source files are assumed to have just\n\
4910 one base name, and gdb will do file name comparisons more efficiently."),
4911 NULL, NULL,
4912 &setlist, &showlist);
4913
4914 observer_attach_executable_changed (symtab_observer_executable_changed);
4915 }
This page took 0.131458 seconds and 5 git commands to generate.