* dwarf2-frame.c (dwarf2_frame_find_quirks): Use producer_is_realview.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "psymtab.h"
66
67 /* Prototypes for local functions */
68
69 static void completion_list_add_name (char *, char *, int, char *, char *);
70
71 static void rbreak_command (char *, int);
72
73 static void types_info (char *, int);
74
75 static void functions_info (char *, int);
76
77 static void variables_info (char *, int);
78
79 static void sources_info (char *, int);
80
81 static void output_source_filename (const char *, int *);
82
83 static int find_line_common (struct linetable *, int, int *);
84
85 /* This one is used by linespec.c */
86
87 char *operator_chars (char *p, char **end);
88
89 static struct symbol *lookup_symbol_aux (const char *name,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language,
93 int *is_a_field_of_this);
94
95 static
96 struct symbol *lookup_symbol_aux_local (const char *name,
97 const struct block *block,
98 const domain_enum domain,
99 enum language language);
100
101 static
102 struct symbol *lookup_symbol_aux_symtabs (int block_index,
103 const char *name,
104 const domain_enum domain);
105
106 static
107 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
108 int block_index,
109 const char *name,
110 const domain_enum domain);
111
112 static void print_symbol_info (domain_enum,
113 struct symtab *, struct symbol *, int, char *);
114
115 static void print_msymbol_info (struct minimal_symbol *);
116
117 static void symtab_symbol_info (char *, domain_enum, int);
118
119 void _initialize_symtab (void);
120
121 /* */
122
123 /* Allow the user to configure the debugger behavior with respect
124 to multiple-choice menus when more than one symbol matches during
125 a symbol lookup. */
126
127 const char multiple_symbols_ask[] = "ask";
128 const char multiple_symbols_all[] = "all";
129 const char multiple_symbols_cancel[] = "cancel";
130 static const char *multiple_symbols_modes[] =
131 {
132 multiple_symbols_ask,
133 multiple_symbols_all,
134 multiple_symbols_cancel,
135 NULL
136 };
137 static const char *multiple_symbols_mode = multiple_symbols_all;
138
139 /* Read-only accessor to AUTO_SELECT_MODE. */
140
141 const char *
142 multiple_symbols_select_mode (void)
143 {
144 return multiple_symbols_mode;
145 }
146
147 /* Block in which the most recently searched-for symbol was found.
148 Might be better to make this a parameter to lookup_symbol and
149 value_of_this. */
150
151 const struct block *block_found;
152
153 /* Check for a symtab of a specific name; first in symtabs, then in
154 psymtabs. *If* there is no '/' in the name, a match after a '/'
155 in the symtab filename will also work. */
156
157 struct symtab *
158 lookup_symtab (const char *name)
159 {
160 int found;
161 struct symtab *s = NULL;
162 struct objfile *objfile;
163 char *real_path = NULL;
164 char *full_path = NULL;
165
166 /* Here we are interested in canonicalizing an absolute path, not
167 absolutizing a relative path. */
168 if (IS_ABSOLUTE_PATH (name))
169 {
170 full_path = xfullpath (name);
171 make_cleanup (xfree, full_path);
172 real_path = gdb_realpath (name);
173 make_cleanup (xfree, real_path);
174 }
175
176 got_symtab:
177
178 /* First, search for an exact match */
179
180 ALL_SYMTABS (objfile, s)
181 {
182 if (FILENAME_CMP (name, s->filename) == 0)
183 {
184 return s;
185 }
186
187 /* If the user gave us an absolute path, try to find the file in
188 this symtab and use its absolute path. */
189
190 if (full_path != NULL)
191 {
192 const char *fp = symtab_to_fullname (s);
193 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
194 {
195 return s;
196 }
197 }
198
199 if (real_path != NULL)
200 {
201 char *fullname = symtab_to_fullname (s);
202 if (fullname != NULL)
203 {
204 char *rp = gdb_realpath (fullname);
205 make_cleanup (xfree, rp);
206 if (FILENAME_CMP (real_path, rp) == 0)
207 {
208 return s;
209 }
210 }
211 }
212 }
213
214 /* Now, search for a matching tail (only if name doesn't have any dirs) */
215
216 if (lbasename (name) == name)
217 ALL_SYMTABS (objfile, s)
218 {
219 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
220 return s;
221 }
222
223 /* Same search rules as above apply here, but now we look thru the
224 psymtabs. */
225
226 found = 0;
227 ALL_OBJFILES (objfile)
228 {
229 if (objfile->sf
230 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
231 &s))
232 {
233 found = 1;
234 break;
235 }
236 }
237
238 if (s != NULL)
239 return s;
240 if (!found)
241 return NULL;
242
243 /* At this point, we have located the psymtab for this file, but
244 the conversion to a symtab has failed. This usually happens
245 when we are looking up an include file. In this case,
246 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
247 been created. So, we need to run through the symtabs again in
248 order to find the file.
249 XXX - This is a crock, and should be fixed inside of the the
250 symbol parsing routines. */
251 goto got_symtab;
252 }
253 \f
254 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
255 full method name, which consist of the class name (from T), the unadorned
256 method name from METHOD_ID, and the signature for the specific overload,
257 specified by SIGNATURE_ID. Note that this function is g++ specific. */
258
259 char *
260 gdb_mangle_name (struct type *type, int method_id, int signature_id)
261 {
262 int mangled_name_len;
263 char *mangled_name;
264 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
265 struct fn_field *method = &f[signature_id];
266 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
267 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
268 char *newname = type_name_no_tag (type);
269
270 /* Does the form of physname indicate that it is the full mangled name
271 of a constructor (not just the args)? */
272 int is_full_physname_constructor;
273
274 int is_constructor;
275 int is_destructor = is_destructor_name (physname);
276 /* Need a new type prefix. */
277 char *const_prefix = method->is_const ? "C" : "";
278 char *volatile_prefix = method->is_volatile ? "V" : "";
279 char buf[20];
280 int len = (newname == NULL ? 0 : strlen (newname));
281
282 /* Nothing to do if physname already contains a fully mangled v3 abi name
283 or an operator name. */
284 if ((physname[0] == '_' && physname[1] == 'Z')
285 || is_operator_name (field_name))
286 return xstrdup (physname);
287
288 is_full_physname_constructor = is_constructor_name (physname);
289
290 is_constructor =
291 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
292
293 if (!is_destructor)
294 is_destructor = (strncmp (physname, "__dt", 4) == 0);
295
296 if (is_destructor || is_full_physname_constructor)
297 {
298 mangled_name = (char *) xmalloc (strlen (physname) + 1);
299 strcpy (mangled_name, physname);
300 return mangled_name;
301 }
302
303 if (len == 0)
304 {
305 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
306 }
307 else if (physname[0] == 't' || physname[0] == 'Q')
308 {
309 /* The physname for template and qualified methods already includes
310 the class name. */
311 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
312 newname = NULL;
313 len = 0;
314 }
315 else
316 {
317 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
318 }
319 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
320 + strlen (buf) + len + strlen (physname) + 1);
321
322 {
323 mangled_name = (char *) xmalloc (mangled_name_len);
324 if (is_constructor)
325 mangled_name[0] = '\0';
326 else
327 strcpy (mangled_name, field_name);
328 }
329 strcat (mangled_name, buf);
330 /* If the class doesn't have a name, i.e. newname NULL, then we just
331 mangle it using 0 for the length of the class. Thus it gets mangled
332 as something starting with `::' rather than `classname::'. */
333 if (newname != NULL)
334 strcat (mangled_name, newname);
335
336 strcat (mangled_name, physname);
337 return (mangled_name);
338 }
339
340 \f
341 /* Initialize the language dependent portion of a symbol
342 depending upon the language for the symbol. */
343 void
344 symbol_init_language_specific (struct general_symbol_info *gsymbol,
345 enum language language)
346 {
347 gsymbol->language = language;
348 if (gsymbol->language == language_cplus
349 || gsymbol->language == language_java
350 || gsymbol->language == language_objc)
351 {
352 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
353 }
354 else
355 {
356 memset (&gsymbol->language_specific, 0,
357 sizeof (gsymbol->language_specific));
358 }
359 }
360
361 /* Functions to initialize a symbol's mangled name. */
362
363 /* Objects of this type are stored in the demangled name hash table. */
364 struct demangled_name_entry
365 {
366 char *mangled;
367 char demangled[1];
368 };
369
370 /* Hash function for the demangled name hash. */
371 static hashval_t
372 hash_demangled_name_entry (const void *data)
373 {
374 const struct demangled_name_entry *e = data;
375 return htab_hash_string (e->mangled);
376 }
377
378 /* Equality function for the demangled name hash. */
379 static int
380 eq_demangled_name_entry (const void *a, const void *b)
381 {
382 const struct demangled_name_entry *da = a;
383 const struct demangled_name_entry *db = b;
384 return strcmp (da->mangled, db->mangled) == 0;
385 }
386
387 /* Create the hash table used for demangled names. Each hash entry is
388 a pair of strings; one for the mangled name and one for the demangled
389 name. The entry is hashed via just the mangled name. */
390
391 static void
392 create_demangled_names_hash (struct objfile *objfile)
393 {
394 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
395 The hash table code will round this up to the next prime number.
396 Choosing a much larger table size wastes memory, and saves only about
397 1% in symbol reading. */
398
399 objfile->demangled_names_hash = htab_create_alloc
400 (256, hash_demangled_name_entry, eq_demangled_name_entry,
401 NULL, xcalloc, xfree);
402 }
403
404 /* Try to determine the demangled name for a symbol, based on the
405 language of that symbol. If the language is set to language_auto,
406 it will attempt to find any demangling algorithm that works and
407 then set the language appropriately. The returned name is allocated
408 by the demangler and should be xfree'd. */
409
410 static char *
411 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
412 const char *mangled)
413 {
414 char *demangled = NULL;
415
416 if (gsymbol->language == language_unknown)
417 gsymbol->language = language_auto;
418
419 if (gsymbol->language == language_objc
420 || gsymbol->language == language_auto)
421 {
422 demangled =
423 objc_demangle (mangled, 0);
424 if (demangled != NULL)
425 {
426 gsymbol->language = language_objc;
427 return demangled;
428 }
429 }
430 if (gsymbol->language == language_cplus
431 || gsymbol->language == language_auto)
432 {
433 demangled =
434 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
435 if (demangled != NULL)
436 {
437 gsymbol->language = language_cplus;
438 return demangled;
439 }
440 }
441 if (gsymbol->language == language_java)
442 {
443 demangled =
444 cplus_demangle (mangled,
445 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
446 if (demangled != NULL)
447 {
448 gsymbol->language = language_java;
449 return demangled;
450 }
451 }
452 return NULL;
453 }
454
455 /* Set both the mangled and demangled (if any) names for GSYMBOL based
456 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
457 objfile's obstack; but if COPY_NAME is 0 and if NAME is
458 NUL-terminated, then this function assumes that NAME is already
459 correctly saved (either permanently or with a lifetime tied to the
460 objfile), and it will not be copied.
461
462 The hash table corresponding to OBJFILE is used, and the memory
463 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
464 so the pointer can be discarded after calling this function. */
465
466 /* We have to be careful when dealing with Java names: when we run
467 into a Java minimal symbol, we don't know it's a Java symbol, so it
468 gets demangled as a C++ name. This is unfortunate, but there's not
469 much we can do about it: but when demangling partial symbols and
470 regular symbols, we'd better not reuse the wrong demangled name.
471 (See PR gdb/1039.) We solve this by putting a distinctive prefix
472 on Java names when storing them in the hash table. */
473
474 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
475 don't mind the Java prefix so much: different languages have
476 different demangling requirements, so it's only natural that we
477 need to keep language data around in our demangling cache. But
478 it's not good that the minimal symbol has the wrong demangled name.
479 Unfortunately, I can't think of any easy solution to that
480 problem. */
481
482 #define JAVA_PREFIX "##JAVA$$"
483 #define JAVA_PREFIX_LEN 8
484
485 void
486 symbol_set_names (struct general_symbol_info *gsymbol,
487 const char *linkage_name, int len, int copy_name,
488 struct objfile *objfile)
489 {
490 struct demangled_name_entry **slot;
491 /* A 0-terminated copy of the linkage name. */
492 const char *linkage_name_copy;
493 /* A copy of the linkage name that might have a special Java prefix
494 added to it, for use when looking names up in the hash table. */
495 const char *lookup_name;
496 /* The length of lookup_name. */
497 int lookup_len;
498 struct demangled_name_entry entry;
499
500 if (gsymbol->language == language_ada)
501 {
502 /* In Ada, we do the symbol lookups using the mangled name, so
503 we can save some space by not storing the demangled name.
504
505 As a side note, we have also observed some overlap between
506 the C++ mangling and Ada mangling, similarly to what has
507 been observed with Java. Because we don't store the demangled
508 name with the symbol, we don't need to use the same trick
509 as Java. */
510 if (!copy_name)
511 gsymbol->name = (char *) linkage_name;
512 else
513 {
514 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
515 memcpy (gsymbol->name, linkage_name, len);
516 gsymbol->name[len] = '\0';
517 }
518 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
519
520 return;
521 }
522
523 if (objfile->demangled_names_hash == NULL)
524 create_demangled_names_hash (objfile);
525
526 /* The stabs reader generally provides names that are not
527 NUL-terminated; most of the other readers don't do this, so we
528 can just use the given copy, unless we're in the Java case. */
529 if (gsymbol->language == language_java)
530 {
531 char *alloc_name;
532 lookup_len = len + JAVA_PREFIX_LEN;
533
534 alloc_name = alloca (lookup_len + 1);
535 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
536 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
537 alloc_name[lookup_len] = '\0';
538
539 lookup_name = alloc_name;
540 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
541 }
542 else if (linkage_name[len] != '\0')
543 {
544 char *alloc_name;
545 lookup_len = len;
546
547 alloc_name = alloca (lookup_len + 1);
548 memcpy (alloc_name, linkage_name, len);
549 alloc_name[lookup_len] = '\0';
550
551 lookup_name = alloc_name;
552 linkage_name_copy = alloc_name;
553 }
554 else
555 {
556 lookup_len = len;
557 lookup_name = linkage_name;
558 linkage_name_copy = linkage_name;
559 }
560
561 entry.mangled = (char *) lookup_name;
562 slot = ((struct demangled_name_entry **)
563 htab_find_slot (objfile->demangled_names_hash,
564 &entry, INSERT));
565
566 /* If this name is not in the hash table, add it. */
567 if (*slot == NULL)
568 {
569 char *demangled_name = symbol_find_demangled_name (gsymbol,
570 linkage_name_copy);
571 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
572
573 /* Suppose we have demangled_name==NULL, copy_name==0, and
574 lookup_name==linkage_name. In this case, we already have the
575 mangled name saved, and we don't have a demangled name. So,
576 you might think we could save a little space by not recording
577 this in the hash table at all.
578
579 It turns out that it is actually important to still save such
580 an entry in the hash table, because storing this name gives
581 us better backache hit rates for partial symbols. */
582 if (!copy_name && lookup_name == linkage_name)
583 {
584 *slot = obstack_alloc (&objfile->objfile_obstack,
585 offsetof (struct demangled_name_entry,
586 demangled)
587 + demangled_len + 1);
588 (*slot)->mangled = (char *) lookup_name;
589 }
590 else
591 {
592 /* If we must copy the mangled name, put it directly after
593 the demangled name so we can have a single
594 allocation. */
595 *slot = obstack_alloc (&objfile->objfile_obstack,
596 offsetof (struct demangled_name_entry,
597 demangled)
598 + lookup_len + demangled_len + 2);
599 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
600 strcpy ((*slot)->mangled, lookup_name);
601 }
602
603 if (demangled_name != NULL)
604 {
605 strcpy ((*slot)->demangled, demangled_name);
606 xfree (demangled_name);
607 }
608 else
609 (*slot)->demangled[0] = '\0';
610 }
611
612 gsymbol->name = (*slot)->mangled + lookup_len - len;
613 if ((*slot)->demangled[0] != '\0')
614 gsymbol->language_specific.cplus_specific.demangled_name
615 = (*slot)->demangled;
616 else
617 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
618 }
619
620 /* Return the source code name of a symbol. In languages where
621 demangling is necessary, this is the demangled name. */
622
623 char *
624 symbol_natural_name (const struct general_symbol_info *gsymbol)
625 {
626 switch (gsymbol->language)
627 {
628 case language_cplus:
629 case language_java:
630 case language_objc:
631 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
632 return gsymbol->language_specific.cplus_specific.demangled_name;
633 break;
634 case language_ada:
635 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
636 return gsymbol->language_specific.cplus_specific.demangled_name;
637 else
638 return ada_decode_symbol (gsymbol);
639 break;
640 default:
641 break;
642 }
643 return gsymbol->name;
644 }
645
646 /* Return the demangled name for a symbol based on the language for
647 that symbol. If no demangled name exists, return NULL. */
648 char *
649 symbol_demangled_name (const struct general_symbol_info *gsymbol)
650 {
651 switch (gsymbol->language)
652 {
653 case language_cplus:
654 case language_java:
655 case language_objc:
656 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
657 return gsymbol->language_specific.cplus_specific.demangled_name;
658 break;
659 case language_ada:
660 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
661 return gsymbol->language_specific.cplus_specific.demangled_name;
662 else
663 return ada_decode_symbol (gsymbol);
664 break;
665 default:
666 break;
667 }
668 return NULL;
669 }
670
671 /* Return the search name of a symbol---generally the demangled or
672 linkage name of the symbol, depending on how it will be searched for.
673 If there is no distinct demangled name, then returns the same value
674 (same pointer) as SYMBOL_LINKAGE_NAME. */
675 char *
676 symbol_search_name (const struct general_symbol_info *gsymbol)
677 {
678 if (gsymbol->language == language_ada)
679 return gsymbol->name;
680 else
681 return symbol_natural_name (gsymbol);
682 }
683
684 /* Initialize the structure fields to zero values. */
685 void
686 init_sal (struct symtab_and_line *sal)
687 {
688 sal->pspace = NULL;
689 sal->symtab = 0;
690 sal->section = 0;
691 sal->line = 0;
692 sal->pc = 0;
693 sal->end = 0;
694 sal->explicit_pc = 0;
695 sal->explicit_line = 0;
696 }
697 \f
698
699 /* Return 1 if the two sections are the same, or if they could
700 plausibly be copies of each other, one in an original object
701 file and another in a separated debug file. */
702
703 int
704 matching_obj_sections (struct obj_section *obj_first,
705 struct obj_section *obj_second)
706 {
707 asection *first = obj_first? obj_first->the_bfd_section : NULL;
708 asection *second = obj_second? obj_second->the_bfd_section : NULL;
709 struct objfile *obj;
710
711 /* If they're the same section, then they match. */
712 if (first == second)
713 return 1;
714
715 /* If either is NULL, give up. */
716 if (first == NULL || second == NULL)
717 return 0;
718
719 /* This doesn't apply to absolute symbols. */
720 if (first->owner == NULL || second->owner == NULL)
721 return 0;
722
723 /* If they're in the same object file, they must be different sections. */
724 if (first->owner == second->owner)
725 return 0;
726
727 /* Check whether the two sections are potentially corresponding. They must
728 have the same size, address, and name. We can't compare section indexes,
729 which would be more reliable, because some sections may have been
730 stripped. */
731 if (bfd_get_section_size (first) != bfd_get_section_size (second))
732 return 0;
733
734 /* In-memory addresses may start at a different offset, relativize them. */
735 if (bfd_get_section_vma (first->owner, first)
736 - bfd_get_start_address (first->owner)
737 != bfd_get_section_vma (second->owner, second)
738 - bfd_get_start_address (second->owner))
739 return 0;
740
741 if (bfd_get_section_name (first->owner, first) == NULL
742 || bfd_get_section_name (second->owner, second) == NULL
743 || strcmp (bfd_get_section_name (first->owner, first),
744 bfd_get_section_name (second->owner, second)) != 0)
745 return 0;
746
747 /* Otherwise check that they are in corresponding objfiles. */
748
749 ALL_OBJFILES (obj)
750 if (obj->obfd == first->owner)
751 break;
752 gdb_assert (obj != NULL);
753
754 if (obj->separate_debug_objfile != NULL
755 && obj->separate_debug_objfile->obfd == second->owner)
756 return 1;
757 if (obj->separate_debug_objfile_backlink != NULL
758 && obj->separate_debug_objfile_backlink->obfd == second->owner)
759 return 1;
760
761 return 0;
762 }
763
764 struct symtab *
765 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
766 {
767 struct objfile *objfile;
768 struct minimal_symbol *msymbol;
769
770 /* If we know that this is not a text address, return failure. This is
771 necessary because we loop based on texthigh and textlow, which do
772 not include the data ranges. */
773 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
774 if (msymbol
775 && (MSYMBOL_TYPE (msymbol) == mst_data
776 || MSYMBOL_TYPE (msymbol) == mst_bss
777 || MSYMBOL_TYPE (msymbol) == mst_abs
778 || MSYMBOL_TYPE (msymbol) == mst_file_data
779 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
780 return NULL;
781
782 ALL_OBJFILES (objfile)
783 {
784 struct symtab *result = NULL;
785 if (objfile->sf)
786 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
787 pc, section, 0);
788 if (result)
789 return result;
790 }
791
792 return NULL;
793 }
794 \f
795 /* Debug symbols usually don't have section information. We need to dig that
796 out of the minimal symbols and stash that in the debug symbol. */
797
798 void
799 fixup_section (struct general_symbol_info *ginfo,
800 CORE_ADDR addr, struct objfile *objfile)
801 {
802 struct minimal_symbol *msym;
803
804 /* First, check whether a minimal symbol with the same name exists
805 and points to the same address. The address check is required
806 e.g. on PowerPC64, where the minimal symbol for a function will
807 point to the function descriptor, while the debug symbol will
808 point to the actual function code. */
809 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
810 if (msym)
811 {
812 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
813 ginfo->section = SYMBOL_SECTION (msym);
814 }
815 else
816 {
817 /* Static, function-local variables do appear in the linker
818 (minimal) symbols, but are frequently given names that won't
819 be found via lookup_minimal_symbol(). E.g., it has been
820 observed in frv-uclinux (ELF) executables that a static,
821 function-local variable named "foo" might appear in the
822 linker symbols as "foo.6" or "foo.3". Thus, there is no
823 point in attempting to extend the lookup-by-name mechanism to
824 handle this case due to the fact that there can be multiple
825 names.
826
827 So, instead, search the section table when lookup by name has
828 failed. The ``addr'' and ``endaddr'' fields may have already
829 been relocated. If so, the relocation offset (i.e. the
830 ANOFFSET value) needs to be subtracted from these values when
831 performing the comparison. We unconditionally subtract it,
832 because, when no relocation has been performed, the ANOFFSET
833 value will simply be zero.
834
835 The address of the symbol whose section we're fixing up HAS
836 NOT BEEN adjusted (relocated) yet. It can't have been since
837 the section isn't yet known and knowing the section is
838 necessary in order to add the correct relocation value. In
839 other words, we wouldn't even be in this function (attempting
840 to compute the section) if it were already known.
841
842 Note that it is possible to search the minimal symbols
843 (subtracting the relocation value if necessary) to find the
844 matching minimal symbol, but this is overkill and much less
845 efficient. It is not necessary to find the matching minimal
846 symbol, only its section.
847
848 Note that this technique (of doing a section table search)
849 can fail when unrelocated section addresses overlap. For
850 this reason, we still attempt a lookup by name prior to doing
851 a search of the section table. */
852
853 struct obj_section *s;
854 ALL_OBJFILE_OSECTIONS (objfile, s)
855 {
856 int idx = s->the_bfd_section->index;
857 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
858
859 if (obj_section_addr (s) - offset <= addr
860 && addr < obj_section_endaddr (s) - offset)
861 {
862 ginfo->obj_section = s;
863 ginfo->section = idx;
864 return;
865 }
866 }
867 }
868 }
869
870 struct symbol *
871 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
872 {
873 CORE_ADDR addr;
874
875 if (!sym)
876 return NULL;
877
878 if (SYMBOL_OBJ_SECTION (sym))
879 return sym;
880
881 /* We either have an OBJFILE, or we can get at it from the sym's
882 symtab. Anything else is a bug. */
883 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
884
885 if (objfile == NULL)
886 objfile = SYMBOL_SYMTAB (sym)->objfile;
887
888 /* We should have an objfile by now. */
889 gdb_assert (objfile);
890
891 switch (SYMBOL_CLASS (sym))
892 {
893 case LOC_STATIC:
894 case LOC_LABEL:
895 addr = SYMBOL_VALUE_ADDRESS (sym);
896 break;
897 case LOC_BLOCK:
898 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
899 break;
900
901 default:
902 /* Nothing else will be listed in the minsyms -- no use looking
903 it up. */
904 return sym;
905 }
906
907 fixup_section (&sym->ginfo, addr, objfile);
908
909 return sym;
910 }
911
912 /* Find the definition for a specified symbol name NAME
913 in domain DOMAIN, visible from lexical block BLOCK.
914 Returns the struct symbol pointer, or zero if no symbol is found.
915 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
916 NAME is a field of the current implied argument `this'. If so set
917 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
918 BLOCK_FOUND is set to the block in which NAME is found (in the case of
919 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
920
921 /* This function has a bunch of loops in it and it would seem to be
922 attractive to put in some QUIT's (though I'm not really sure
923 whether it can run long enough to be really important). But there
924 are a few calls for which it would appear to be bad news to quit
925 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
926 that there is C++ code below which can error(), but that probably
927 doesn't affect these calls since they are looking for a known
928 variable and thus can probably assume it will never hit the C++
929 code). */
930
931 struct symbol *
932 lookup_symbol_in_language (const char *name, const struct block *block,
933 const domain_enum domain, enum language lang,
934 int *is_a_field_of_this)
935 {
936 char *demangled_name = NULL;
937 const char *modified_name = NULL;
938 struct symbol *returnval;
939 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
940
941 modified_name = name;
942
943 /* If we are using C++ or Java, demangle the name before doing a lookup, so
944 we can always binary search. */
945 if (lang == language_cplus)
946 {
947 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
948 if (demangled_name)
949 {
950 modified_name = demangled_name;
951 make_cleanup (xfree, demangled_name);
952 }
953 else
954 {
955 /* If we were given a non-mangled name, canonicalize it
956 according to the language (so far only for C++). */
957 demangled_name = cp_canonicalize_string (name);
958 if (demangled_name)
959 {
960 modified_name = demangled_name;
961 make_cleanup (xfree, demangled_name);
962 }
963 }
964 }
965 else if (lang == language_java)
966 {
967 demangled_name = cplus_demangle (name,
968 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
969 if (demangled_name)
970 {
971 modified_name = demangled_name;
972 make_cleanup (xfree, demangled_name);
973 }
974 }
975
976 if (case_sensitivity == case_sensitive_off)
977 {
978 char *copy;
979 int len, i;
980
981 len = strlen (name);
982 copy = (char *) alloca (len + 1);
983 for (i= 0; i < len; i++)
984 copy[i] = tolower (name[i]);
985 copy[len] = 0;
986 modified_name = copy;
987 }
988
989 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
990 is_a_field_of_this);
991 do_cleanups (cleanup);
992
993 return returnval;
994 }
995
996 /* Behave like lookup_symbol_in_language, but performed with the
997 current language. */
998
999 struct symbol *
1000 lookup_symbol (const char *name, const struct block *block,
1001 domain_enum domain, int *is_a_field_of_this)
1002 {
1003 return lookup_symbol_in_language (name, block, domain,
1004 current_language->la_language,
1005 is_a_field_of_this);
1006 }
1007
1008 /* Behave like lookup_symbol except that NAME is the natural name
1009 of the symbol that we're looking for and, if LINKAGE_NAME is
1010 non-NULL, ensure that the symbol's linkage name matches as
1011 well. */
1012
1013 static struct symbol *
1014 lookup_symbol_aux (const char *name, const struct block *block,
1015 const domain_enum domain, enum language language,
1016 int *is_a_field_of_this)
1017 {
1018 struct symbol *sym;
1019 const struct language_defn *langdef;
1020 struct objfile *objfile;
1021
1022 /* Make sure we do something sensible with is_a_field_of_this, since
1023 the callers that set this parameter to some non-null value will
1024 certainly use it later and expect it to be either 0 or 1.
1025 If we don't set it, the contents of is_a_field_of_this are
1026 undefined. */
1027 if (is_a_field_of_this != NULL)
1028 *is_a_field_of_this = 0;
1029
1030 /* Search specified block and its superiors. Don't search
1031 STATIC_BLOCK or GLOBAL_BLOCK. */
1032
1033 sym = lookup_symbol_aux_local (name, block, domain, language);
1034 if (sym != NULL)
1035 return sym;
1036
1037 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1038 check to see if NAME is a field of `this'. */
1039
1040 langdef = language_def (language);
1041
1042 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1043 && block != NULL)
1044 {
1045 struct symbol *sym = NULL;
1046 const struct block *function_block = block;
1047 /* 'this' is only defined in the function's block, so find the
1048 enclosing function block. */
1049 for (; function_block && !BLOCK_FUNCTION (function_block);
1050 function_block = BLOCK_SUPERBLOCK (function_block));
1051
1052 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1053 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1054 VAR_DOMAIN);
1055 if (sym)
1056 {
1057 struct type *t = sym->type;
1058
1059 /* I'm not really sure that type of this can ever
1060 be typedefed; just be safe. */
1061 CHECK_TYPEDEF (t);
1062 if (TYPE_CODE (t) == TYPE_CODE_PTR
1063 || TYPE_CODE (t) == TYPE_CODE_REF)
1064 t = TYPE_TARGET_TYPE (t);
1065
1066 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1067 && TYPE_CODE (t) != TYPE_CODE_UNION)
1068 error (_("Internal error: `%s' is not an aggregate"),
1069 langdef->la_name_of_this);
1070
1071 if (check_field (t, name))
1072 {
1073 *is_a_field_of_this = 1;
1074 return NULL;
1075 }
1076 }
1077 }
1078
1079 /* Now do whatever is appropriate for LANGUAGE to look
1080 up static and global variables. */
1081
1082 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1083 if (sym != NULL)
1084 return sym;
1085
1086 /* Now search all static file-level symbols. Not strictly correct,
1087 but more useful than an error. Do the symtabs first, then check
1088 the psymtabs. If a psymtab indicates the existence of the
1089 desired name as a file-level static, then do psymtab-to-symtab
1090 conversion on the fly and return the found symbol. */
1091
1092 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1093 if (sym != NULL)
1094 return sym;
1095
1096 ALL_OBJFILES (objfile)
1097 {
1098 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1099 if (sym != NULL)
1100 return sym;
1101 }
1102
1103 return NULL;
1104 }
1105
1106 /* Check to see if the symbol is defined in BLOCK or its superiors.
1107 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1108
1109 static struct symbol *
1110 lookup_symbol_aux_local (const char *name, const struct block *block,
1111 const domain_enum domain,
1112 enum language language)
1113 {
1114 struct symbol *sym;
1115 const struct block *static_block = block_static_block (block);
1116 const char *scope = block_scope (block);
1117
1118 /* Check if either no block is specified or it's a global block. */
1119
1120 if (static_block == NULL)
1121 return NULL;
1122
1123 while (block != static_block)
1124 {
1125 sym = lookup_symbol_aux_block (name, block, domain);
1126 if (sym != NULL)
1127 return sym;
1128
1129 if (language == language_cplus)
1130 {
1131 sym = cp_lookup_symbol_imports (scope,
1132 name,
1133 block,
1134 domain,
1135 1,
1136 1);
1137 if (sym != NULL)
1138 return sym;
1139 }
1140
1141 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1142 break;
1143 block = BLOCK_SUPERBLOCK (block);
1144 }
1145
1146 /* We've reached the edge of the function without finding a result. */
1147
1148 return NULL;
1149 }
1150
1151 /* Look up OBJFILE to BLOCK. */
1152
1153 static struct objfile *
1154 lookup_objfile_from_block (const struct block *block)
1155 {
1156 struct objfile *obj;
1157 struct symtab *s;
1158
1159 if (block == NULL)
1160 return NULL;
1161
1162 block = block_global_block (block);
1163 /* Go through SYMTABS. */
1164 ALL_SYMTABS (obj, s)
1165 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1166 {
1167 if (obj->separate_debug_objfile_backlink)
1168 obj = obj->separate_debug_objfile_backlink;
1169
1170 return obj;
1171 }
1172
1173 return NULL;
1174 }
1175
1176 /* Look up a symbol in a block; if found, fixup the symbol, and set
1177 block_found appropriately. */
1178
1179 struct symbol *
1180 lookup_symbol_aux_block (const char *name, const struct block *block,
1181 const domain_enum domain)
1182 {
1183 struct symbol *sym;
1184
1185 sym = lookup_block_symbol (block, name, domain);
1186 if (sym)
1187 {
1188 block_found = block;
1189 return fixup_symbol_section (sym, NULL);
1190 }
1191
1192 return NULL;
1193 }
1194
1195 /* Check all global symbols in OBJFILE in symtabs and
1196 psymtabs. */
1197
1198 struct symbol *
1199 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1200 const char *name,
1201 const domain_enum domain)
1202 {
1203 const struct objfile *objfile;
1204 struct symbol *sym;
1205 struct blockvector *bv;
1206 const struct block *block;
1207 struct symtab *s;
1208
1209 for (objfile = main_objfile;
1210 objfile;
1211 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1212 {
1213 /* Go through symtabs. */
1214 ALL_OBJFILE_SYMTABS (objfile, s)
1215 {
1216 bv = BLOCKVECTOR (s);
1217 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1218 sym = lookup_block_symbol (block, name, domain);
1219 if (sym)
1220 {
1221 block_found = block;
1222 return fixup_symbol_section (sym, (struct objfile *)objfile);
1223 }
1224 }
1225
1226 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1227 name, domain);
1228 if (sym)
1229 return sym;
1230 }
1231
1232 return NULL;
1233 }
1234
1235 /* Check to see if the symbol is defined in one of the symtabs.
1236 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1237 depending on whether or not we want to search global symbols or
1238 static symbols. */
1239
1240 static struct symbol *
1241 lookup_symbol_aux_symtabs (int block_index, const char *name,
1242 const domain_enum domain)
1243 {
1244 struct symbol *sym;
1245 struct objfile *objfile;
1246 struct blockvector *bv;
1247 const struct block *block;
1248 struct symtab *s;
1249
1250 ALL_PRIMARY_SYMTABS (objfile, s)
1251 {
1252 bv = BLOCKVECTOR (s);
1253 block = BLOCKVECTOR_BLOCK (bv, block_index);
1254 sym = lookup_block_symbol (block, name, domain);
1255 if (sym)
1256 {
1257 block_found = block;
1258 return fixup_symbol_section (sym, objfile);
1259 }
1260 }
1261
1262 return NULL;
1263 }
1264
1265 /* A helper function for lookup_symbol_aux that interfaces with the
1266 "quick" symbol table functions. */
1267
1268 static struct symbol *
1269 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1270 const char *name, const domain_enum domain)
1271 {
1272 struct symtab *symtab;
1273 struct blockvector *bv;
1274 const struct block *block;
1275 struct partial_symtab *ps;
1276 struct symbol *sym;
1277
1278 if (!objfile->sf)
1279 return NULL;
1280 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1281 if (!symtab)
1282 return NULL;
1283
1284 bv = BLOCKVECTOR (symtab);
1285 block = BLOCKVECTOR_BLOCK (bv, kind);
1286 sym = lookup_block_symbol (block, name, domain);
1287 if (!sym)
1288 {
1289 /* This shouldn't be necessary, but as a last resort try
1290 looking in the statics even though the psymtab claimed
1291 the symbol was global, or vice-versa. It's possible
1292 that the psymtab gets it wrong in some cases. */
1293
1294 /* FIXME: carlton/2002-09-30: Should we really do that?
1295 If that happens, isn't it likely to be a GDB error, in
1296 which case we should fix the GDB error rather than
1297 silently dealing with it here? So I'd vote for
1298 removing the check for the symbol in the other
1299 block. */
1300 block = BLOCKVECTOR_BLOCK (bv,
1301 kind == GLOBAL_BLOCK ?
1302 STATIC_BLOCK : GLOBAL_BLOCK);
1303 sym = lookup_block_symbol (block, name, domain);
1304 if (!sym)
1305 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1306 kind == GLOBAL_BLOCK ? "global" : "static",
1307 name, symtab->filename, name, name);
1308 }
1309 return fixup_symbol_section (sym, objfile);
1310 }
1311
1312 /* A default version of lookup_symbol_nonlocal for use by languages
1313 that can't think of anything better to do. This implements the C
1314 lookup rules. */
1315
1316 struct symbol *
1317 basic_lookup_symbol_nonlocal (const char *name,
1318 const struct block *block,
1319 const domain_enum domain)
1320 {
1321 struct symbol *sym;
1322
1323 /* NOTE: carlton/2003-05-19: The comments below were written when
1324 this (or what turned into this) was part of lookup_symbol_aux;
1325 I'm much less worried about these questions now, since these
1326 decisions have turned out well, but I leave these comments here
1327 for posterity. */
1328
1329 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1330 not it would be appropriate to search the current global block
1331 here as well. (That's what this code used to do before the
1332 is_a_field_of_this check was moved up.) On the one hand, it's
1333 redundant with the lookup_symbol_aux_symtabs search that happens
1334 next. On the other hand, if decode_line_1 is passed an argument
1335 like filename:var, then the user presumably wants 'var' to be
1336 searched for in filename. On the third hand, there shouldn't be
1337 multiple global variables all of which are named 'var', and it's
1338 not like decode_line_1 has ever restricted its search to only
1339 global variables in a single filename. All in all, only
1340 searching the static block here seems best: it's correct and it's
1341 cleanest. */
1342
1343 /* NOTE: carlton/2002-12-05: There's also a possible performance
1344 issue here: if you usually search for global symbols in the
1345 current file, then it would be slightly better to search the
1346 current global block before searching all the symtabs. But there
1347 are other factors that have a much greater effect on performance
1348 than that one, so I don't think we should worry about that for
1349 now. */
1350
1351 sym = lookup_symbol_static (name, block, domain);
1352 if (sym != NULL)
1353 return sym;
1354
1355 return lookup_symbol_global (name, block, domain);
1356 }
1357
1358 /* Lookup a symbol in the static block associated to BLOCK, if there
1359 is one; do nothing if BLOCK is NULL or a global block. */
1360
1361 struct symbol *
1362 lookup_symbol_static (const char *name,
1363 const struct block *block,
1364 const domain_enum domain)
1365 {
1366 const struct block *static_block = block_static_block (block);
1367
1368 if (static_block != NULL)
1369 return lookup_symbol_aux_block (name, static_block, domain);
1370 else
1371 return NULL;
1372 }
1373
1374 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1375 necessary). */
1376
1377 struct symbol *
1378 lookup_symbol_global (const char *name,
1379 const struct block *block,
1380 const domain_enum domain)
1381 {
1382 struct symbol *sym = NULL;
1383 struct objfile *objfile = NULL;
1384
1385 /* Call library-specific lookup procedure. */
1386 objfile = lookup_objfile_from_block (block);
1387 if (objfile != NULL)
1388 sym = solib_global_lookup (objfile, name, domain);
1389 if (sym != NULL)
1390 return sym;
1391
1392 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1393 if (sym != NULL)
1394 return sym;
1395
1396 ALL_OBJFILES (objfile)
1397 {
1398 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1399 if (sym)
1400 return sym;
1401 }
1402
1403 return NULL;
1404 }
1405
1406 int
1407 symbol_matches_domain (enum language symbol_language,
1408 domain_enum symbol_domain,
1409 domain_enum domain)
1410 {
1411 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1412 A Java class declaration also defines a typedef for the class.
1413 Similarly, any Ada type declaration implicitly defines a typedef. */
1414 if (symbol_language == language_cplus
1415 || symbol_language == language_java
1416 || symbol_language == language_ada)
1417 {
1418 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1419 && symbol_domain == STRUCT_DOMAIN)
1420 return 1;
1421 }
1422 /* For all other languages, strict match is required. */
1423 return (symbol_domain == domain);
1424 }
1425
1426 /* Look up a type named NAME in the struct_domain. The type returned
1427 must not be opaque -- i.e., must have at least one field
1428 defined. */
1429
1430 struct type *
1431 lookup_transparent_type (const char *name)
1432 {
1433 return current_language->la_lookup_transparent_type (name);
1434 }
1435
1436 /* A helper for basic_lookup_transparent_type that interfaces with the
1437 "quick" symbol table functions. */
1438
1439 static struct type *
1440 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1441 const char *name)
1442 {
1443 struct symtab *symtab;
1444 struct blockvector *bv;
1445 struct block *block;
1446 struct symbol *sym;
1447
1448 if (!objfile->sf)
1449 return NULL;
1450 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1451 if (!symtab)
1452 return NULL;
1453
1454 bv = BLOCKVECTOR (symtab);
1455 block = BLOCKVECTOR_BLOCK (bv, kind);
1456 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1457 if (!sym)
1458 {
1459 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1460
1461 /* This shouldn't be necessary, but as a last resort
1462 * try looking in the 'other kind' even though the psymtab
1463 * claimed the symbol was one thing. It's possible that
1464 * the psymtab gets it wrong in some cases.
1465 */
1466 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1467 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1468 if (!sym)
1469 /* FIXME; error is wrong in one case */
1470 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1471 %s may be an inlined function, or may be a template function\n\
1472 (if a template, try specifying an instantiation: %s<type>)."),
1473 name, symtab->filename, name, name);
1474 }
1475 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1476 return SYMBOL_TYPE (sym);
1477
1478 return NULL;
1479 }
1480
1481 /* The standard implementation of lookup_transparent_type. This code
1482 was modeled on lookup_symbol -- the parts not relevant to looking
1483 up types were just left out. In particular it's assumed here that
1484 types are available in struct_domain and only at file-static or
1485 global blocks. */
1486
1487 struct type *
1488 basic_lookup_transparent_type (const char *name)
1489 {
1490 struct symbol *sym;
1491 struct symtab *s = NULL;
1492 struct blockvector *bv;
1493 struct objfile *objfile;
1494 struct block *block;
1495 struct type *t;
1496
1497 /* Now search all the global symbols. Do the symtab's first, then
1498 check the psymtab's. If a psymtab indicates the existence
1499 of the desired name as a global, then do psymtab-to-symtab
1500 conversion on the fly and return the found symbol. */
1501
1502 ALL_PRIMARY_SYMTABS (objfile, s)
1503 {
1504 bv = BLOCKVECTOR (s);
1505 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1506 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1507 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1508 {
1509 return SYMBOL_TYPE (sym);
1510 }
1511 }
1512
1513 ALL_OBJFILES (objfile)
1514 {
1515 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1516 if (t)
1517 return t;
1518 }
1519
1520 /* Now search the static file-level symbols.
1521 Not strictly correct, but more useful than an error.
1522 Do the symtab's first, then
1523 check the psymtab's. If a psymtab indicates the existence
1524 of the desired name as a file-level static, then do psymtab-to-symtab
1525 conversion on the fly and return the found symbol.
1526 */
1527
1528 ALL_PRIMARY_SYMTABS (objfile, s)
1529 {
1530 bv = BLOCKVECTOR (s);
1531 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1532 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1533 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1534 {
1535 return SYMBOL_TYPE (sym);
1536 }
1537 }
1538
1539 ALL_OBJFILES (objfile)
1540 {
1541 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1542 if (t)
1543 return t;
1544 }
1545
1546 return (struct type *) 0;
1547 }
1548
1549
1550 /* Find the name of the file containing main(). */
1551 /* FIXME: What about languages without main() or specially linked
1552 executables that have no main() ? */
1553
1554 char *
1555 find_main_filename (void)
1556 {
1557 struct objfile *objfile;
1558 char *result, *name = main_name ();
1559
1560 ALL_OBJFILES (objfile)
1561 {
1562 if (!objfile->sf)
1563 continue;
1564 result = objfile->sf->qf->find_symbol_file (objfile, name);
1565 if (result)
1566 return result;
1567 }
1568 return (NULL);
1569 }
1570
1571 /* Search BLOCK for symbol NAME in DOMAIN.
1572
1573 Note that if NAME is the demangled form of a C++ symbol, we will fail
1574 to find a match during the binary search of the non-encoded names, but
1575 for now we don't worry about the slight inefficiency of looking for
1576 a match we'll never find, since it will go pretty quick. Once the
1577 binary search terminates, we drop through and do a straight linear
1578 search on the symbols. Each symbol which is marked as being a ObjC/C++
1579 symbol (language_cplus or language_objc set) has both the encoded and
1580 non-encoded names tested for a match.
1581 */
1582
1583 struct symbol *
1584 lookup_block_symbol (const struct block *block, const char *name,
1585 const domain_enum domain)
1586 {
1587 struct dict_iterator iter;
1588 struct symbol *sym;
1589
1590 if (!BLOCK_FUNCTION (block))
1591 {
1592 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1593 sym != NULL;
1594 sym = dict_iter_name_next (name, &iter))
1595 {
1596 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1597 SYMBOL_DOMAIN (sym), domain))
1598 return sym;
1599 }
1600 return NULL;
1601 }
1602 else
1603 {
1604 /* Note that parameter symbols do not always show up last in the
1605 list; this loop makes sure to take anything else other than
1606 parameter symbols first; it only uses parameter symbols as a
1607 last resort. Note that this only takes up extra computation
1608 time on a match. */
1609
1610 struct symbol *sym_found = NULL;
1611
1612 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1613 sym != NULL;
1614 sym = dict_iter_name_next (name, &iter))
1615 {
1616 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1617 SYMBOL_DOMAIN (sym), domain))
1618 {
1619 sym_found = sym;
1620 if (!SYMBOL_IS_ARGUMENT (sym))
1621 {
1622 break;
1623 }
1624 }
1625 }
1626 return (sym_found); /* Will be NULL if not found. */
1627 }
1628 }
1629
1630 /* Find the symtab associated with PC and SECTION. Look through the
1631 psymtabs and read in another symtab if necessary. */
1632
1633 struct symtab *
1634 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1635 {
1636 struct block *b;
1637 struct blockvector *bv;
1638 struct symtab *s = NULL;
1639 struct symtab *best_s = NULL;
1640 struct partial_symtab *ps;
1641 struct objfile *objfile;
1642 struct program_space *pspace;
1643 CORE_ADDR distance = 0;
1644 struct minimal_symbol *msymbol;
1645
1646 pspace = current_program_space;
1647
1648 /* If we know that this is not a text address, return failure. This is
1649 necessary because we loop based on the block's high and low code
1650 addresses, which do not include the data ranges, and because
1651 we call find_pc_sect_psymtab which has a similar restriction based
1652 on the partial_symtab's texthigh and textlow. */
1653 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1654 if (msymbol
1655 && (MSYMBOL_TYPE (msymbol) == mst_data
1656 || MSYMBOL_TYPE (msymbol) == mst_bss
1657 || MSYMBOL_TYPE (msymbol) == mst_abs
1658 || MSYMBOL_TYPE (msymbol) == mst_file_data
1659 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1660 return NULL;
1661
1662 /* Search all symtabs for the one whose file contains our address, and which
1663 is the smallest of all the ones containing the address. This is designed
1664 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1665 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1666 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1667
1668 This happens for native ecoff format, where code from included files
1669 gets its own symtab. The symtab for the included file should have
1670 been read in already via the dependency mechanism.
1671 It might be swifter to create several symtabs with the same name
1672 like xcoff does (I'm not sure).
1673
1674 It also happens for objfiles that have their functions reordered.
1675 For these, the symtab we are looking for is not necessarily read in. */
1676
1677 ALL_PRIMARY_SYMTABS (objfile, s)
1678 {
1679 bv = BLOCKVECTOR (s);
1680 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1681
1682 if (BLOCK_START (b) <= pc
1683 && BLOCK_END (b) > pc
1684 && (distance == 0
1685 || BLOCK_END (b) - BLOCK_START (b) < distance))
1686 {
1687 /* For an objfile that has its functions reordered,
1688 find_pc_psymtab will find the proper partial symbol table
1689 and we simply return its corresponding symtab. */
1690 /* In order to better support objfiles that contain both
1691 stabs and coff debugging info, we continue on if a psymtab
1692 can't be found. */
1693 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1694 {
1695 struct symtab *result;
1696 result
1697 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1698 msymbol,
1699 pc, section,
1700 0);
1701 if (result)
1702 return result;
1703 }
1704 if (section != 0)
1705 {
1706 struct dict_iterator iter;
1707 struct symbol *sym = NULL;
1708
1709 ALL_BLOCK_SYMBOLS (b, iter, sym)
1710 {
1711 fixup_symbol_section (sym, objfile);
1712 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1713 break;
1714 }
1715 if (sym == NULL)
1716 continue; /* no symbol in this symtab matches section */
1717 }
1718 distance = BLOCK_END (b) - BLOCK_START (b);
1719 best_s = s;
1720 }
1721 }
1722
1723 if (best_s != NULL)
1724 return (best_s);
1725
1726 ALL_OBJFILES (objfile)
1727 {
1728 struct symtab *result;
1729 if (!objfile->sf)
1730 continue;
1731 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1732 msymbol,
1733 pc, section,
1734 1);
1735 if (result)
1736 return result;
1737 }
1738
1739 return NULL;
1740 }
1741
1742 /* Find the symtab associated with PC. Look through the psymtabs and
1743 read in another symtab if necessary. Backward compatibility, no section */
1744
1745 struct symtab *
1746 find_pc_symtab (CORE_ADDR pc)
1747 {
1748 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1749 }
1750 \f
1751
1752 /* Find the source file and line number for a given PC value and SECTION.
1753 Return a structure containing a symtab pointer, a line number,
1754 and a pc range for the entire source line.
1755 The value's .pc field is NOT the specified pc.
1756 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1757 use the line that ends there. Otherwise, in that case, the line
1758 that begins there is used. */
1759
1760 /* The big complication here is that a line may start in one file, and end just
1761 before the start of another file. This usually occurs when you #include
1762 code in the middle of a subroutine. To properly find the end of a line's PC
1763 range, we must search all symtabs associated with this compilation unit, and
1764 find the one whose first PC is closer than that of the next line in this
1765 symtab. */
1766
1767 /* If it's worth the effort, we could be using a binary search. */
1768
1769 struct symtab_and_line
1770 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1771 {
1772 struct symtab *s;
1773 struct linetable *l;
1774 int len;
1775 int i;
1776 struct linetable_entry *item;
1777 struct symtab_and_line val;
1778 struct blockvector *bv;
1779 struct minimal_symbol *msymbol;
1780 struct minimal_symbol *mfunsym;
1781
1782 /* Info on best line seen so far, and where it starts, and its file. */
1783
1784 struct linetable_entry *best = NULL;
1785 CORE_ADDR best_end = 0;
1786 struct symtab *best_symtab = 0;
1787
1788 /* Store here the first line number
1789 of a file which contains the line at the smallest pc after PC.
1790 If we don't find a line whose range contains PC,
1791 we will use a line one less than this,
1792 with a range from the start of that file to the first line's pc. */
1793 struct linetable_entry *alt = NULL;
1794 struct symtab *alt_symtab = 0;
1795
1796 /* Info on best line seen in this file. */
1797
1798 struct linetable_entry *prev;
1799
1800 /* If this pc is not from the current frame,
1801 it is the address of the end of a call instruction.
1802 Quite likely that is the start of the following statement.
1803 But what we want is the statement containing the instruction.
1804 Fudge the pc to make sure we get that. */
1805
1806 init_sal (&val); /* initialize to zeroes */
1807
1808 val.pspace = current_program_space;
1809
1810 /* It's tempting to assume that, if we can't find debugging info for
1811 any function enclosing PC, that we shouldn't search for line
1812 number info, either. However, GAS can emit line number info for
1813 assembly files --- very helpful when debugging hand-written
1814 assembly code. In such a case, we'd have no debug info for the
1815 function, but we would have line info. */
1816
1817 if (notcurrent)
1818 pc -= 1;
1819
1820 /* elz: added this because this function returned the wrong
1821 information if the pc belongs to a stub (import/export)
1822 to call a shlib function. This stub would be anywhere between
1823 two functions in the target, and the line info was erroneously
1824 taken to be the one of the line before the pc.
1825 */
1826 /* RT: Further explanation:
1827
1828 * We have stubs (trampolines) inserted between procedures.
1829 *
1830 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1831 * exists in the main image.
1832 *
1833 * In the minimal symbol table, we have a bunch of symbols
1834 * sorted by start address. The stubs are marked as "trampoline",
1835 * the others appear as text. E.g.:
1836 *
1837 * Minimal symbol table for main image
1838 * main: code for main (text symbol)
1839 * shr1: stub (trampoline symbol)
1840 * foo: code for foo (text symbol)
1841 * ...
1842 * Minimal symbol table for "shr1" image:
1843 * ...
1844 * shr1: code for shr1 (text symbol)
1845 * ...
1846 *
1847 * So the code below is trying to detect if we are in the stub
1848 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1849 * and if found, do the symbolization from the real-code address
1850 * rather than the stub address.
1851 *
1852 * Assumptions being made about the minimal symbol table:
1853 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1854 * if we're really in the trampoline. If we're beyond it (say
1855 * we're in "foo" in the above example), it'll have a closer
1856 * symbol (the "foo" text symbol for example) and will not
1857 * return the trampoline.
1858 * 2. lookup_minimal_symbol_text() will find a real text symbol
1859 * corresponding to the trampoline, and whose address will
1860 * be different than the trampoline address. I put in a sanity
1861 * check for the address being the same, to avoid an
1862 * infinite recursion.
1863 */
1864 msymbol = lookup_minimal_symbol_by_pc (pc);
1865 if (msymbol != NULL)
1866 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1867 {
1868 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1869 NULL);
1870 if (mfunsym == NULL)
1871 /* I eliminated this warning since it is coming out
1872 * in the following situation:
1873 * gdb shmain // test program with shared libraries
1874 * (gdb) break shr1 // function in shared lib
1875 * Warning: In stub for ...
1876 * In the above situation, the shared lib is not loaded yet,
1877 * so of course we can't find the real func/line info,
1878 * but the "break" still works, and the warning is annoying.
1879 * So I commented out the warning. RT */
1880 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1881 /* fall through */
1882 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
1883 /* Avoid infinite recursion */
1884 /* See above comment about why warning is commented out */
1885 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1886 /* fall through */
1887 else
1888 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
1889 }
1890
1891
1892 s = find_pc_sect_symtab (pc, section);
1893 if (!s)
1894 {
1895 /* if no symbol information, return previous pc */
1896 if (notcurrent)
1897 pc++;
1898 val.pc = pc;
1899 return val;
1900 }
1901
1902 bv = BLOCKVECTOR (s);
1903
1904 /* Look at all the symtabs that share this blockvector.
1905 They all have the same apriori range, that we found was right;
1906 but they have different line tables. */
1907
1908 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1909 {
1910 /* Find the best line in this symtab. */
1911 l = LINETABLE (s);
1912 if (!l)
1913 continue;
1914 len = l->nitems;
1915 if (len <= 0)
1916 {
1917 /* I think len can be zero if the symtab lacks line numbers
1918 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1919 I'm not sure which, and maybe it depends on the symbol
1920 reader). */
1921 continue;
1922 }
1923
1924 prev = NULL;
1925 item = l->item; /* Get first line info */
1926
1927 /* Is this file's first line closer than the first lines of other files?
1928 If so, record this file, and its first line, as best alternate. */
1929 if (item->pc > pc && (!alt || item->pc < alt->pc))
1930 {
1931 alt = item;
1932 alt_symtab = s;
1933 }
1934
1935 for (i = 0; i < len; i++, item++)
1936 {
1937 /* Leave prev pointing to the linetable entry for the last line
1938 that started at or before PC. */
1939 if (item->pc > pc)
1940 break;
1941
1942 prev = item;
1943 }
1944
1945 /* At this point, prev points at the line whose start addr is <= pc, and
1946 item points at the next line. If we ran off the end of the linetable
1947 (pc >= start of the last line), then prev == item. If pc < start of
1948 the first line, prev will not be set. */
1949
1950 /* Is this file's best line closer than the best in the other files?
1951 If so, record this file, and its best line, as best so far. Don't
1952 save prev if it represents the end of a function (i.e. line number
1953 0) instead of a real line. */
1954
1955 if (prev && prev->line && (!best || prev->pc > best->pc))
1956 {
1957 best = prev;
1958 best_symtab = s;
1959
1960 /* Discard BEST_END if it's before the PC of the current BEST. */
1961 if (best_end <= best->pc)
1962 best_end = 0;
1963 }
1964
1965 /* If another line (denoted by ITEM) is in the linetable and its
1966 PC is after BEST's PC, but before the current BEST_END, then
1967 use ITEM's PC as the new best_end. */
1968 if (best && i < len && item->pc > best->pc
1969 && (best_end == 0 || best_end > item->pc))
1970 best_end = item->pc;
1971 }
1972
1973 if (!best_symtab)
1974 {
1975 /* If we didn't find any line number info, just return zeros.
1976 We used to return alt->line - 1 here, but that could be
1977 anywhere; if we don't have line number info for this PC,
1978 don't make some up. */
1979 val.pc = pc;
1980 }
1981 else if (best->line == 0)
1982 {
1983 /* If our best fit is in a range of PC's for which no line
1984 number info is available (line number is zero) then we didn't
1985 find any valid line information. */
1986 val.pc = pc;
1987 }
1988 else
1989 {
1990 val.symtab = best_symtab;
1991 val.line = best->line;
1992 val.pc = best->pc;
1993 if (best_end && (!alt || best_end < alt->pc))
1994 val.end = best_end;
1995 else if (alt)
1996 val.end = alt->pc;
1997 else
1998 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
1999 }
2000 val.section = section;
2001 return val;
2002 }
2003
2004 /* Backward compatibility (no section) */
2005
2006 struct symtab_and_line
2007 find_pc_line (CORE_ADDR pc, int notcurrent)
2008 {
2009 struct obj_section *section;
2010
2011 section = find_pc_overlay (pc);
2012 if (pc_in_unmapped_range (pc, section))
2013 pc = overlay_mapped_address (pc, section);
2014 return find_pc_sect_line (pc, section, notcurrent);
2015 }
2016 \f
2017 /* Find line number LINE in any symtab whose name is the same as
2018 SYMTAB.
2019
2020 If found, return the symtab that contains the linetable in which it was
2021 found, set *INDEX to the index in the linetable of the best entry
2022 found, and set *EXACT_MATCH nonzero if the value returned is an
2023 exact match.
2024
2025 If not found, return NULL. */
2026
2027 struct symtab *
2028 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2029 {
2030 int exact = 0; /* Initialized here to avoid a compiler warning. */
2031
2032 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2033 so far seen. */
2034
2035 int best_index;
2036 struct linetable *best_linetable;
2037 struct symtab *best_symtab;
2038
2039 /* First try looking it up in the given symtab. */
2040 best_linetable = LINETABLE (symtab);
2041 best_symtab = symtab;
2042 best_index = find_line_common (best_linetable, line, &exact);
2043 if (best_index < 0 || !exact)
2044 {
2045 /* Didn't find an exact match. So we better keep looking for
2046 another symtab with the same name. In the case of xcoff,
2047 multiple csects for one source file (produced by IBM's FORTRAN
2048 compiler) produce multiple symtabs (this is unavoidable
2049 assuming csects can be at arbitrary places in memory and that
2050 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2051
2052 /* BEST is the smallest linenumber > LINE so far seen,
2053 or 0 if none has been seen so far.
2054 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2055 int best;
2056
2057 struct objfile *objfile;
2058 struct symtab *s;
2059
2060 if (best_index >= 0)
2061 best = best_linetable->item[best_index].line;
2062 else
2063 best = 0;
2064
2065 ALL_OBJFILES (objfile)
2066 {
2067 if (objfile->sf)
2068 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2069 symtab->filename);
2070 }
2071
2072 /* Get symbol full file name if possible. */
2073 symtab_to_fullname (symtab);
2074
2075 ALL_SYMTABS (objfile, s)
2076 {
2077 struct linetable *l;
2078 int ind;
2079
2080 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2081 continue;
2082 if (symtab->fullname != NULL
2083 && symtab_to_fullname (s) != NULL
2084 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2085 continue;
2086 l = LINETABLE (s);
2087 ind = find_line_common (l, line, &exact);
2088 if (ind >= 0)
2089 {
2090 if (exact)
2091 {
2092 best_index = ind;
2093 best_linetable = l;
2094 best_symtab = s;
2095 goto done;
2096 }
2097 if (best == 0 || l->item[ind].line < best)
2098 {
2099 best = l->item[ind].line;
2100 best_index = ind;
2101 best_linetable = l;
2102 best_symtab = s;
2103 }
2104 }
2105 }
2106 }
2107 done:
2108 if (best_index < 0)
2109 return NULL;
2110
2111 if (index)
2112 *index = best_index;
2113 if (exact_match)
2114 *exact_match = exact;
2115
2116 return best_symtab;
2117 }
2118 \f
2119 /* Set the PC value for a given source file and line number and return true.
2120 Returns zero for invalid line number (and sets the PC to 0).
2121 The source file is specified with a struct symtab. */
2122
2123 int
2124 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2125 {
2126 struct linetable *l;
2127 int ind;
2128
2129 *pc = 0;
2130 if (symtab == 0)
2131 return 0;
2132
2133 symtab = find_line_symtab (symtab, line, &ind, NULL);
2134 if (symtab != NULL)
2135 {
2136 l = LINETABLE (symtab);
2137 *pc = l->item[ind].pc;
2138 return 1;
2139 }
2140 else
2141 return 0;
2142 }
2143
2144 /* Find the range of pc values in a line.
2145 Store the starting pc of the line into *STARTPTR
2146 and the ending pc (start of next line) into *ENDPTR.
2147 Returns 1 to indicate success.
2148 Returns 0 if could not find the specified line. */
2149
2150 int
2151 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2152 CORE_ADDR *endptr)
2153 {
2154 CORE_ADDR startaddr;
2155 struct symtab_and_line found_sal;
2156
2157 startaddr = sal.pc;
2158 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2159 return 0;
2160
2161 /* This whole function is based on address. For example, if line 10 has
2162 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2163 "info line *0x123" should say the line goes from 0x100 to 0x200
2164 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2165 This also insures that we never give a range like "starts at 0x134
2166 and ends at 0x12c". */
2167
2168 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2169 if (found_sal.line != sal.line)
2170 {
2171 /* The specified line (sal) has zero bytes. */
2172 *startptr = found_sal.pc;
2173 *endptr = found_sal.pc;
2174 }
2175 else
2176 {
2177 *startptr = found_sal.pc;
2178 *endptr = found_sal.end;
2179 }
2180 return 1;
2181 }
2182
2183 /* Given a line table and a line number, return the index into the line
2184 table for the pc of the nearest line whose number is >= the specified one.
2185 Return -1 if none is found. The value is >= 0 if it is an index.
2186
2187 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2188
2189 static int
2190 find_line_common (struct linetable *l, int lineno,
2191 int *exact_match)
2192 {
2193 int i;
2194 int len;
2195
2196 /* BEST is the smallest linenumber > LINENO so far seen,
2197 or 0 if none has been seen so far.
2198 BEST_INDEX identifies the item for it. */
2199
2200 int best_index = -1;
2201 int best = 0;
2202
2203 *exact_match = 0;
2204
2205 if (lineno <= 0)
2206 return -1;
2207 if (l == 0)
2208 return -1;
2209
2210 len = l->nitems;
2211 for (i = 0; i < len; i++)
2212 {
2213 struct linetable_entry *item = &(l->item[i]);
2214
2215 if (item->line == lineno)
2216 {
2217 /* Return the first (lowest address) entry which matches. */
2218 *exact_match = 1;
2219 return i;
2220 }
2221
2222 if (item->line > lineno && (best == 0 || item->line < best))
2223 {
2224 best = item->line;
2225 best_index = i;
2226 }
2227 }
2228
2229 /* If we got here, we didn't get an exact match. */
2230 return best_index;
2231 }
2232
2233 int
2234 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2235 {
2236 struct symtab_and_line sal;
2237 sal = find_pc_line (pc, 0);
2238 *startptr = sal.pc;
2239 *endptr = sal.end;
2240 return sal.symtab != 0;
2241 }
2242
2243 /* Given a function start address PC and SECTION, find the first
2244 address after the function prologue. */
2245 CORE_ADDR
2246 find_function_start_pc (struct gdbarch *gdbarch,
2247 CORE_ADDR pc, struct obj_section *section)
2248 {
2249 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2250 so that gdbarch_skip_prologue has something unique to work on. */
2251 if (section_is_overlay (section) && !section_is_mapped (section))
2252 pc = overlay_unmapped_address (pc, section);
2253
2254 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2255 pc = gdbarch_skip_prologue (gdbarch, pc);
2256
2257 /* For overlays, map pc back into its mapped VMA range. */
2258 pc = overlay_mapped_address (pc, section);
2259
2260 return pc;
2261 }
2262
2263 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2264 address for that function that has an entry in SYMTAB's line info
2265 table. If such an entry cannot be found, return FUNC_ADDR
2266 unaltered. */
2267 CORE_ADDR
2268 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2269 {
2270 CORE_ADDR func_start, func_end;
2271 struct linetable *l;
2272 int ind, i, len;
2273 int best_lineno = 0;
2274 CORE_ADDR best_pc = func_addr;
2275
2276 /* Give up if this symbol has no lineinfo table. */
2277 l = LINETABLE (symtab);
2278 if (l == NULL)
2279 return func_addr;
2280
2281 /* Get the range for the function's PC values, or give up if we
2282 cannot, for some reason. */
2283 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2284 return func_addr;
2285
2286 /* Linetable entries are ordered by PC values, see the commentary in
2287 symtab.h where `struct linetable' is defined. Thus, the first
2288 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2289 address we are looking for. */
2290 for (i = 0; i < l->nitems; i++)
2291 {
2292 struct linetable_entry *item = &(l->item[i]);
2293
2294 /* Don't use line numbers of zero, they mark special entries in
2295 the table. See the commentary on symtab.h before the
2296 definition of struct linetable. */
2297 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2298 return item->pc;
2299 }
2300
2301 return func_addr;
2302 }
2303
2304 /* Given a function symbol SYM, find the symtab and line for the start
2305 of the function.
2306 If the argument FUNFIRSTLINE is nonzero, we want the first line
2307 of real code inside the function. */
2308
2309 struct symtab_and_line
2310 find_function_start_sal (struct symbol *sym, int funfirstline)
2311 {
2312 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2313 struct objfile *objfile = lookup_objfile_from_block (block);
2314 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2315
2316 CORE_ADDR pc;
2317 struct symtab_and_line sal;
2318 struct block *b, *function_block;
2319
2320 struct cleanup *old_chain;
2321
2322 old_chain = save_current_space_and_thread ();
2323 switch_to_program_space_and_thread (objfile->pspace);
2324
2325 pc = BLOCK_START (block);
2326 fixup_symbol_section (sym, objfile);
2327 if (funfirstline)
2328 {
2329 /* Skip "first line" of function (which is actually its prologue). */
2330 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2331 }
2332 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2333
2334 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2335 line is still part of the same function. */
2336 if (sal.pc != pc
2337 && BLOCK_START (block) <= sal.end
2338 && sal.end < BLOCK_END (block))
2339 {
2340 /* First pc of next line */
2341 pc = sal.end;
2342 /* Recalculate the line number (might not be N+1). */
2343 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2344 }
2345
2346 /* On targets with executable formats that don't have a concept of
2347 constructors (ELF with .init has, PE doesn't), gcc emits a call
2348 to `__main' in `main' between the prologue and before user
2349 code. */
2350 if (funfirstline
2351 && gdbarch_skip_main_prologue_p (gdbarch)
2352 && SYMBOL_LINKAGE_NAME (sym)
2353 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2354 {
2355 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2356 /* Recalculate the line number (might not be N+1). */
2357 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2358 }
2359
2360 /* If we still don't have a valid source line, try to find the first
2361 PC in the lineinfo table that belongs to the same function. This
2362 happens with COFF debug info, which does not seem to have an
2363 entry in lineinfo table for the code after the prologue which has
2364 no direct relation to source. For example, this was found to be
2365 the case with the DJGPP target using "gcc -gcoff" when the
2366 compiler inserted code after the prologue to make sure the stack
2367 is aligned. */
2368 if (funfirstline && sal.symtab == NULL)
2369 {
2370 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2371 /* Recalculate the line number. */
2372 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2373 }
2374
2375 sal.pc = pc;
2376 sal.pspace = objfile->pspace;
2377
2378 /* Check if we are now inside an inlined function. If we can,
2379 use the call site of the function instead. */
2380 b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym));
2381 function_block = NULL;
2382 while (b != NULL)
2383 {
2384 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2385 function_block = b;
2386 else if (BLOCK_FUNCTION (b) != NULL)
2387 break;
2388 b = BLOCK_SUPERBLOCK (b);
2389 }
2390 if (function_block != NULL
2391 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2392 {
2393 sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2394 sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2395 }
2396
2397 do_cleanups (old_chain);
2398 return sal;
2399 }
2400
2401 /* If P is of the form "operator[ \t]+..." where `...' is
2402 some legitimate operator text, return a pointer to the
2403 beginning of the substring of the operator text.
2404 Otherwise, return "". */
2405 char *
2406 operator_chars (char *p, char **end)
2407 {
2408 *end = "";
2409 if (strncmp (p, "operator", 8))
2410 return *end;
2411 p += 8;
2412
2413 /* Don't get faked out by `operator' being part of a longer
2414 identifier. */
2415 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2416 return *end;
2417
2418 /* Allow some whitespace between `operator' and the operator symbol. */
2419 while (*p == ' ' || *p == '\t')
2420 p++;
2421
2422 /* Recognize 'operator TYPENAME'. */
2423
2424 if (isalpha (*p) || *p == '_' || *p == '$')
2425 {
2426 char *q = p + 1;
2427 while (isalnum (*q) || *q == '_' || *q == '$')
2428 q++;
2429 *end = q;
2430 return p;
2431 }
2432
2433 while (*p)
2434 switch (*p)
2435 {
2436 case '\\': /* regexp quoting */
2437 if (p[1] == '*')
2438 {
2439 if (p[2] == '=') /* 'operator\*=' */
2440 *end = p + 3;
2441 else /* 'operator\*' */
2442 *end = p + 2;
2443 return p;
2444 }
2445 else if (p[1] == '[')
2446 {
2447 if (p[2] == ']')
2448 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2449 else if (p[2] == '\\' && p[3] == ']')
2450 {
2451 *end = p + 4; /* 'operator\[\]' */
2452 return p;
2453 }
2454 else
2455 error (_("nothing is allowed between '[' and ']'"));
2456 }
2457 else
2458 {
2459 /* Gratuitous qoute: skip it and move on. */
2460 p++;
2461 continue;
2462 }
2463 break;
2464 case '!':
2465 case '=':
2466 case '*':
2467 case '/':
2468 case '%':
2469 case '^':
2470 if (p[1] == '=')
2471 *end = p + 2;
2472 else
2473 *end = p + 1;
2474 return p;
2475 case '<':
2476 case '>':
2477 case '+':
2478 case '-':
2479 case '&':
2480 case '|':
2481 if (p[0] == '-' && p[1] == '>')
2482 {
2483 /* Struct pointer member operator 'operator->'. */
2484 if (p[2] == '*')
2485 {
2486 *end = p + 3; /* 'operator->*' */
2487 return p;
2488 }
2489 else if (p[2] == '\\')
2490 {
2491 *end = p + 4; /* Hopefully 'operator->\*' */
2492 return p;
2493 }
2494 else
2495 {
2496 *end = p + 2; /* 'operator->' */
2497 return p;
2498 }
2499 }
2500 if (p[1] == '=' || p[1] == p[0])
2501 *end = p + 2;
2502 else
2503 *end = p + 1;
2504 return p;
2505 case '~':
2506 case ',':
2507 *end = p + 1;
2508 return p;
2509 case '(':
2510 if (p[1] != ')')
2511 error (_("`operator ()' must be specified without whitespace in `()'"));
2512 *end = p + 2;
2513 return p;
2514 case '?':
2515 if (p[1] != ':')
2516 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2517 *end = p + 2;
2518 return p;
2519 case '[':
2520 if (p[1] != ']')
2521 error (_("`operator []' must be specified without whitespace in `[]'"));
2522 *end = p + 2;
2523 return p;
2524 default:
2525 error (_("`operator %s' not supported"), p);
2526 break;
2527 }
2528
2529 *end = "";
2530 return *end;
2531 }
2532 \f
2533
2534 /* If FILE is not already in the table of files, return zero;
2535 otherwise return non-zero. Optionally add FILE to the table if ADD
2536 is non-zero. If *FIRST is non-zero, forget the old table
2537 contents. */
2538 static int
2539 filename_seen (const char *file, int add, int *first)
2540 {
2541 /* Table of files seen so far. */
2542 static const char **tab = NULL;
2543 /* Allocated size of tab in elements.
2544 Start with one 256-byte block (when using GNU malloc.c).
2545 24 is the malloc overhead when range checking is in effect. */
2546 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2547 /* Current size of tab in elements. */
2548 static int tab_cur_size;
2549 const char **p;
2550
2551 if (*first)
2552 {
2553 if (tab == NULL)
2554 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2555 tab_cur_size = 0;
2556 }
2557
2558 /* Is FILE in tab? */
2559 for (p = tab; p < tab + tab_cur_size; p++)
2560 if (strcmp (*p, file) == 0)
2561 return 1;
2562
2563 /* No; maybe add it to tab. */
2564 if (add)
2565 {
2566 if (tab_cur_size == tab_alloc_size)
2567 {
2568 tab_alloc_size *= 2;
2569 tab = (const char **) xrealloc ((char *) tab,
2570 tab_alloc_size * sizeof (*tab));
2571 }
2572 tab[tab_cur_size++] = file;
2573 }
2574
2575 return 0;
2576 }
2577
2578 /* Slave routine for sources_info. Force line breaks at ,'s.
2579 NAME is the name to print and *FIRST is nonzero if this is the first
2580 name printed. Set *FIRST to zero. */
2581 static void
2582 output_source_filename (const char *name, int *first)
2583 {
2584 /* Since a single source file can result in several partial symbol
2585 tables, we need to avoid printing it more than once. Note: if
2586 some of the psymtabs are read in and some are not, it gets
2587 printed both under "Source files for which symbols have been
2588 read" and "Source files for which symbols will be read in on
2589 demand". I consider this a reasonable way to deal with the
2590 situation. I'm not sure whether this can also happen for
2591 symtabs; it doesn't hurt to check. */
2592
2593 /* Was NAME already seen? */
2594 if (filename_seen (name, 1, first))
2595 {
2596 /* Yes; don't print it again. */
2597 return;
2598 }
2599 /* No; print it and reset *FIRST. */
2600 if (*first)
2601 {
2602 *first = 0;
2603 }
2604 else
2605 {
2606 printf_filtered (", ");
2607 }
2608
2609 wrap_here ("");
2610 fputs_filtered (name, gdb_stdout);
2611 }
2612
2613 /* A callback for map_partial_symbol_filenames. */
2614 static void
2615 output_partial_symbol_filename (const char *fullname, const char *filename,
2616 void *data)
2617 {
2618 output_source_filename (fullname ? fullname : filename, data);
2619 }
2620
2621 static void
2622 sources_info (char *ignore, int from_tty)
2623 {
2624 struct symtab *s;
2625 struct partial_symtab *ps;
2626 struct objfile *objfile;
2627 int first;
2628
2629 if (!have_full_symbols () && !have_partial_symbols ())
2630 {
2631 error (_("No symbol table is loaded. Use the \"file\" command."));
2632 }
2633
2634 printf_filtered ("Source files for which symbols have been read in:\n\n");
2635
2636 first = 1;
2637 ALL_SYMTABS (objfile, s)
2638 {
2639 const char *fullname = symtab_to_fullname (s);
2640 output_source_filename (fullname ? fullname : s->filename, &first);
2641 }
2642 printf_filtered ("\n\n");
2643
2644 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2645
2646 first = 1;
2647 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2648 printf_filtered ("\n");
2649 }
2650
2651 static int
2652 file_matches (const char *file, char *files[], int nfiles)
2653 {
2654 int i;
2655
2656 if (file != NULL && nfiles != 0)
2657 {
2658 for (i = 0; i < nfiles; i++)
2659 {
2660 if (strcmp (files[i], lbasename (file)) == 0)
2661 return 1;
2662 }
2663 }
2664 else if (nfiles == 0)
2665 return 1;
2666 return 0;
2667 }
2668
2669 /* Free any memory associated with a search. */
2670 void
2671 free_search_symbols (struct symbol_search *symbols)
2672 {
2673 struct symbol_search *p;
2674 struct symbol_search *next;
2675
2676 for (p = symbols; p != NULL; p = next)
2677 {
2678 next = p->next;
2679 xfree (p);
2680 }
2681 }
2682
2683 static void
2684 do_free_search_symbols_cleanup (void *symbols)
2685 {
2686 free_search_symbols (symbols);
2687 }
2688
2689 struct cleanup *
2690 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2691 {
2692 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2693 }
2694
2695 /* Helper function for sort_search_symbols and qsort. Can only
2696 sort symbols, not minimal symbols. */
2697 static int
2698 compare_search_syms (const void *sa, const void *sb)
2699 {
2700 struct symbol_search **sym_a = (struct symbol_search **) sa;
2701 struct symbol_search **sym_b = (struct symbol_search **) sb;
2702
2703 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2704 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2705 }
2706
2707 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2708 prevtail where it is, but update its next pointer to point to
2709 the first of the sorted symbols. */
2710 static struct symbol_search *
2711 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2712 {
2713 struct symbol_search **symbols, *symp, *old_next;
2714 int i;
2715
2716 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2717 * nfound);
2718 symp = prevtail->next;
2719 for (i = 0; i < nfound; i++)
2720 {
2721 symbols[i] = symp;
2722 symp = symp->next;
2723 }
2724 /* Generally NULL. */
2725 old_next = symp;
2726
2727 qsort (symbols, nfound, sizeof (struct symbol_search *),
2728 compare_search_syms);
2729
2730 symp = prevtail;
2731 for (i = 0; i < nfound; i++)
2732 {
2733 symp->next = symbols[i];
2734 symp = symp->next;
2735 }
2736 symp->next = old_next;
2737
2738 xfree (symbols);
2739 return symp;
2740 }
2741
2742 /* An object of this type is passed as the user_data to the
2743 expand_symtabs_matching method. */
2744 struct search_symbols_data
2745 {
2746 int nfiles;
2747 char **files;
2748 char *regexp;
2749 };
2750
2751 /* A callback for expand_symtabs_matching. */
2752 static int
2753 search_symbols_file_matches (const char *filename, void *user_data)
2754 {
2755 struct search_symbols_data *data = user_data;
2756 return file_matches (filename, data->files, data->nfiles);
2757 }
2758
2759 /* A callback for expand_symtabs_matching. */
2760 static int
2761 search_symbols_name_matches (const char *symname, void *user_data)
2762 {
2763 struct search_symbols_data *data = user_data;
2764 return data->regexp == NULL || re_exec (symname);
2765 }
2766
2767 /* Search the symbol table for matches to the regular expression REGEXP,
2768 returning the results in *MATCHES.
2769
2770 Only symbols of KIND are searched:
2771 FUNCTIONS_DOMAIN - search all functions
2772 TYPES_DOMAIN - search all type names
2773 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2774 and constants (enums)
2775
2776 free_search_symbols should be called when *MATCHES is no longer needed.
2777
2778 The results are sorted locally; each symtab's global and static blocks are
2779 separately alphabetized.
2780 */
2781 void
2782 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2783 struct symbol_search **matches)
2784 {
2785 struct symtab *s;
2786 struct blockvector *bv;
2787 struct block *b;
2788 int i = 0;
2789 struct dict_iterator iter;
2790 struct symbol *sym;
2791 struct objfile *objfile;
2792 struct minimal_symbol *msymbol;
2793 char *val;
2794 int found_misc = 0;
2795 static enum minimal_symbol_type types[]
2796 =
2797 {mst_data, mst_text, mst_abs, mst_unknown};
2798 static enum minimal_symbol_type types2[]
2799 =
2800 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2801 static enum minimal_symbol_type types3[]
2802 =
2803 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2804 static enum minimal_symbol_type types4[]
2805 =
2806 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2807 enum minimal_symbol_type ourtype;
2808 enum minimal_symbol_type ourtype2;
2809 enum minimal_symbol_type ourtype3;
2810 enum minimal_symbol_type ourtype4;
2811 struct symbol_search *sr;
2812 struct symbol_search *psr;
2813 struct symbol_search *tail;
2814 struct cleanup *old_chain = NULL;
2815 struct search_symbols_data datum;
2816
2817 if (kind < VARIABLES_DOMAIN)
2818 error (_("must search on specific domain"));
2819
2820 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2821 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2822 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2823 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2824
2825 sr = *matches = NULL;
2826 tail = NULL;
2827
2828 if (regexp != NULL)
2829 {
2830 /* Make sure spacing is right for C++ operators.
2831 This is just a courtesy to make the matching less sensitive
2832 to how many spaces the user leaves between 'operator'
2833 and <TYPENAME> or <OPERATOR>. */
2834 char *opend;
2835 char *opname = operator_chars (regexp, &opend);
2836 if (*opname)
2837 {
2838 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2839 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2840 {
2841 /* There should 1 space between 'operator' and 'TYPENAME'. */
2842 if (opname[-1] != ' ' || opname[-2] == ' ')
2843 fix = 1;
2844 }
2845 else
2846 {
2847 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2848 if (opname[-1] == ' ')
2849 fix = 0;
2850 }
2851 /* If wrong number of spaces, fix it. */
2852 if (fix >= 0)
2853 {
2854 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2855 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2856 regexp = tmp;
2857 }
2858 }
2859
2860 if (0 != (val = re_comp (regexp)))
2861 error (_("Invalid regexp (%s): %s"), val, regexp);
2862 }
2863
2864 /* Search through the partial symtabs *first* for all symbols
2865 matching the regexp. That way we don't have to reproduce all of
2866 the machinery below. */
2867
2868 datum.nfiles = nfiles;
2869 datum.files = files;
2870 datum.regexp = regexp;
2871 ALL_OBJFILES (objfile)
2872 {
2873 if (objfile->sf)
2874 objfile->sf->qf->expand_symtabs_matching (objfile,
2875 search_symbols_file_matches,
2876 search_symbols_name_matches,
2877 kind,
2878 &datum);
2879 }
2880
2881 /* Here, we search through the minimal symbol tables for functions
2882 and variables that match, and force their symbols to be read.
2883 This is in particular necessary for demangled variable names,
2884 which are no longer put into the partial symbol tables.
2885 The symbol will then be found during the scan of symtabs below.
2886
2887 For functions, find_pc_symtab should succeed if we have debug info
2888 for the function, for variables we have to call lookup_symbol
2889 to determine if the variable has debug info.
2890 If the lookup fails, set found_misc so that we will rescan to print
2891 any matching symbols without debug info.
2892 */
2893
2894 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
2895 {
2896 ALL_MSYMBOLS (objfile, msymbol)
2897 {
2898 QUIT;
2899
2900 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2901 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2902 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2903 MSYMBOL_TYPE (msymbol) == ourtype4)
2904 {
2905 if (regexp == NULL
2906 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
2907 {
2908 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
2909 {
2910 /* FIXME: carlton/2003-02-04: Given that the
2911 semantics of lookup_symbol keeps on changing
2912 slightly, it would be a nice idea if we had a
2913 function lookup_symbol_minsym that found the
2914 symbol associated to a given minimal symbol (if
2915 any). */
2916 if (kind == FUNCTIONS_DOMAIN
2917 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
2918 (struct block *) NULL,
2919 VAR_DOMAIN, 0)
2920 == NULL)
2921 found_misc = 1;
2922 }
2923 }
2924 }
2925 }
2926 }
2927
2928 ALL_PRIMARY_SYMTABS (objfile, s)
2929 {
2930 bv = BLOCKVECTOR (s);
2931 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
2932 {
2933 struct symbol_search *prevtail = tail;
2934 int nfound = 0;
2935 b = BLOCKVECTOR_BLOCK (bv, i);
2936 ALL_BLOCK_SYMBOLS (b, iter, sym)
2937 {
2938 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
2939 QUIT;
2940
2941 if (file_matches (real_symtab->filename, files, nfiles)
2942 && ((regexp == NULL
2943 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
2944 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
2945 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
2946 && SYMBOL_CLASS (sym) != LOC_BLOCK
2947 && SYMBOL_CLASS (sym) != LOC_CONST)
2948 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
2949 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
2950 {
2951 /* match */
2952 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
2953 psr->block = i;
2954 psr->symtab = real_symtab;
2955 psr->symbol = sym;
2956 psr->msymbol = NULL;
2957 psr->next = NULL;
2958 if (tail == NULL)
2959 sr = psr;
2960 else
2961 tail->next = psr;
2962 tail = psr;
2963 nfound ++;
2964 }
2965 }
2966 if (nfound > 0)
2967 {
2968 if (prevtail == NULL)
2969 {
2970 struct symbol_search dummy;
2971
2972 dummy.next = sr;
2973 tail = sort_search_symbols (&dummy, nfound);
2974 sr = dummy.next;
2975
2976 old_chain = make_cleanup_free_search_symbols (sr);
2977 }
2978 else
2979 tail = sort_search_symbols (prevtail, nfound);
2980 }
2981 }
2982 }
2983
2984 /* If there are no eyes, avoid all contact. I mean, if there are
2985 no debug symbols, then print directly from the msymbol_vector. */
2986
2987 if (found_misc || kind != FUNCTIONS_DOMAIN)
2988 {
2989 ALL_MSYMBOLS (objfile, msymbol)
2990 {
2991 QUIT;
2992
2993 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2994 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2995 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2996 MSYMBOL_TYPE (msymbol) == ourtype4)
2997 {
2998 if (regexp == NULL
2999 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3000 {
3001 /* Functions: Look up by address. */
3002 if (kind != FUNCTIONS_DOMAIN ||
3003 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3004 {
3005 /* Variables/Absolutes: Look up by name */
3006 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3007 (struct block *) NULL, VAR_DOMAIN, 0)
3008 == NULL)
3009 {
3010 /* match */
3011 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3012 psr->block = i;
3013 psr->msymbol = msymbol;
3014 psr->symtab = NULL;
3015 psr->symbol = NULL;
3016 psr->next = NULL;
3017 if (tail == NULL)
3018 {
3019 sr = psr;
3020 old_chain = make_cleanup_free_search_symbols (sr);
3021 }
3022 else
3023 tail->next = psr;
3024 tail = psr;
3025 }
3026 }
3027 }
3028 }
3029 }
3030 }
3031
3032 *matches = sr;
3033 if (sr != NULL)
3034 discard_cleanups (old_chain);
3035 }
3036
3037 /* Helper function for symtab_symbol_info, this function uses
3038 the data returned from search_symbols() to print information
3039 regarding the match to gdb_stdout.
3040 */
3041 static void
3042 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3043 int block, char *last)
3044 {
3045 if (last == NULL || strcmp (last, s->filename) != 0)
3046 {
3047 fputs_filtered ("\nFile ", gdb_stdout);
3048 fputs_filtered (s->filename, gdb_stdout);
3049 fputs_filtered (":\n", gdb_stdout);
3050 }
3051
3052 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3053 printf_filtered ("static ");
3054
3055 /* Typedef that is not a C++ class */
3056 if (kind == TYPES_DOMAIN
3057 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3058 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3059 /* variable, func, or typedef-that-is-c++-class */
3060 else if (kind < TYPES_DOMAIN ||
3061 (kind == TYPES_DOMAIN &&
3062 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3063 {
3064 type_print (SYMBOL_TYPE (sym),
3065 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3066 ? "" : SYMBOL_PRINT_NAME (sym)),
3067 gdb_stdout, 0);
3068
3069 printf_filtered (";\n");
3070 }
3071 }
3072
3073 /* This help function for symtab_symbol_info() prints information
3074 for non-debugging symbols to gdb_stdout.
3075 */
3076 static void
3077 print_msymbol_info (struct minimal_symbol *msymbol)
3078 {
3079 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3080 char *tmp;
3081
3082 if (gdbarch_addr_bit (gdbarch) <= 32)
3083 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3084 & (CORE_ADDR) 0xffffffff,
3085 8);
3086 else
3087 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3088 16);
3089 printf_filtered ("%s %s\n",
3090 tmp, SYMBOL_PRINT_NAME (msymbol));
3091 }
3092
3093 /* This is the guts of the commands "info functions", "info types", and
3094 "info variables". It calls search_symbols to find all matches and then
3095 print_[m]symbol_info to print out some useful information about the
3096 matches.
3097 */
3098 static void
3099 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3100 {
3101 static char *classnames[]
3102 =
3103 {"variable", "function", "type", "method"};
3104 struct symbol_search *symbols;
3105 struct symbol_search *p;
3106 struct cleanup *old_chain;
3107 char *last_filename = NULL;
3108 int first = 1;
3109
3110 /* must make sure that if we're interrupted, symbols gets freed */
3111 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3112 old_chain = make_cleanup_free_search_symbols (symbols);
3113
3114 printf_filtered (regexp
3115 ? "All %ss matching regular expression \"%s\":\n"
3116 : "All defined %ss:\n",
3117 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3118
3119 for (p = symbols; p != NULL; p = p->next)
3120 {
3121 QUIT;
3122
3123 if (p->msymbol != NULL)
3124 {
3125 if (first)
3126 {
3127 printf_filtered ("\nNon-debugging symbols:\n");
3128 first = 0;
3129 }
3130 print_msymbol_info (p->msymbol);
3131 }
3132 else
3133 {
3134 print_symbol_info (kind,
3135 p->symtab,
3136 p->symbol,
3137 p->block,
3138 last_filename);
3139 last_filename = p->symtab->filename;
3140 }
3141 }
3142
3143 do_cleanups (old_chain);
3144 }
3145
3146 static void
3147 variables_info (char *regexp, int from_tty)
3148 {
3149 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3150 }
3151
3152 static void
3153 functions_info (char *regexp, int from_tty)
3154 {
3155 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3156 }
3157
3158
3159 static void
3160 types_info (char *regexp, int from_tty)
3161 {
3162 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3163 }
3164
3165 /* Breakpoint all functions matching regular expression. */
3166
3167 void
3168 rbreak_command_wrapper (char *regexp, int from_tty)
3169 {
3170 rbreak_command (regexp, from_tty);
3171 }
3172
3173 static void
3174 rbreak_command (char *regexp, int from_tty)
3175 {
3176 struct symbol_search *ss;
3177 struct symbol_search *p;
3178 struct cleanup *old_chain;
3179
3180 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3181 old_chain = make_cleanup_free_search_symbols (ss);
3182
3183 for (p = ss; p != NULL; p = p->next)
3184 {
3185 if (p->msymbol == NULL)
3186 {
3187 char *string = alloca (strlen (p->symtab->filename)
3188 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3189 + 4);
3190 strcpy (string, p->symtab->filename);
3191 strcat (string, ":'");
3192 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3193 strcat (string, "'");
3194 break_command (string, from_tty);
3195 print_symbol_info (FUNCTIONS_DOMAIN,
3196 p->symtab,
3197 p->symbol,
3198 p->block,
3199 p->symtab->filename);
3200 }
3201 else
3202 {
3203 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3204 + 3);
3205 strcpy (string, "'");
3206 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3207 strcat (string, "'");
3208
3209 break_command (string, from_tty);
3210 printf_filtered ("<function, no debug info> %s;\n",
3211 SYMBOL_PRINT_NAME (p->msymbol));
3212 }
3213 }
3214
3215 do_cleanups (old_chain);
3216 }
3217 \f
3218
3219 /* Helper routine for make_symbol_completion_list. */
3220
3221 static int return_val_size;
3222 static int return_val_index;
3223 static char **return_val;
3224
3225 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3226 completion_list_add_name \
3227 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3228
3229 /* Test to see if the symbol specified by SYMNAME (which is already
3230 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3231 characters. If so, add it to the current completion list. */
3232
3233 static void
3234 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3235 char *text, char *word)
3236 {
3237 int newsize;
3238 int i;
3239
3240 /* clip symbols that cannot match */
3241
3242 if (strncmp (symname, sym_text, sym_text_len) != 0)
3243 {
3244 return;
3245 }
3246
3247 /* We have a match for a completion, so add SYMNAME to the current list
3248 of matches. Note that the name is moved to freshly malloc'd space. */
3249
3250 {
3251 char *new;
3252 if (word == sym_text)
3253 {
3254 new = xmalloc (strlen (symname) + 5);
3255 strcpy (new, symname);
3256 }
3257 else if (word > sym_text)
3258 {
3259 /* Return some portion of symname. */
3260 new = xmalloc (strlen (symname) + 5);
3261 strcpy (new, symname + (word - sym_text));
3262 }
3263 else
3264 {
3265 /* Return some of SYM_TEXT plus symname. */
3266 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3267 strncpy (new, word, sym_text - word);
3268 new[sym_text - word] = '\0';
3269 strcat (new, symname);
3270 }
3271
3272 if (return_val_index + 3 > return_val_size)
3273 {
3274 newsize = (return_val_size *= 2) * sizeof (char *);
3275 return_val = (char **) xrealloc ((char *) return_val, newsize);
3276 }
3277 return_val[return_val_index++] = new;
3278 return_val[return_val_index] = NULL;
3279 }
3280 }
3281
3282 /* ObjC: In case we are completing on a selector, look as the msymbol
3283 again and feed all the selectors into the mill. */
3284
3285 static void
3286 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3287 int sym_text_len, char *text, char *word)
3288 {
3289 static char *tmp = NULL;
3290 static unsigned int tmplen = 0;
3291
3292 char *method, *category, *selector;
3293 char *tmp2 = NULL;
3294
3295 method = SYMBOL_NATURAL_NAME (msymbol);
3296
3297 /* Is it a method? */
3298 if ((method[0] != '-') && (method[0] != '+'))
3299 return;
3300
3301 if (sym_text[0] == '[')
3302 /* Complete on shortened method method. */
3303 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3304
3305 while ((strlen (method) + 1) >= tmplen)
3306 {
3307 if (tmplen == 0)
3308 tmplen = 1024;
3309 else
3310 tmplen *= 2;
3311 tmp = xrealloc (tmp, tmplen);
3312 }
3313 selector = strchr (method, ' ');
3314 if (selector != NULL)
3315 selector++;
3316
3317 category = strchr (method, '(');
3318
3319 if ((category != NULL) && (selector != NULL))
3320 {
3321 memcpy (tmp, method, (category - method));
3322 tmp[category - method] = ' ';
3323 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3324 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3325 if (sym_text[0] == '[')
3326 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3327 }
3328
3329 if (selector != NULL)
3330 {
3331 /* Complete on selector only. */
3332 strcpy (tmp, selector);
3333 tmp2 = strchr (tmp, ']');
3334 if (tmp2 != NULL)
3335 *tmp2 = '\0';
3336
3337 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3338 }
3339 }
3340
3341 /* Break the non-quoted text based on the characters which are in
3342 symbols. FIXME: This should probably be language-specific. */
3343
3344 static char *
3345 language_search_unquoted_string (char *text, char *p)
3346 {
3347 for (; p > text; --p)
3348 {
3349 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3350 continue;
3351 else
3352 {
3353 if ((current_language->la_language == language_objc))
3354 {
3355 if (p[-1] == ':') /* might be part of a method name */
3356 continue;
3357 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3358 p -= 2; /* beginning of a method name */
3359 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3360 { /* might be part of a method name */
3361 char *t = p;
3362
3363 /* Seeing a ' ' or a '(' is not conclusive evidence
3364 that we are in the middle of a method name. However,
3365 finding "-[" or "+[" should be pretty un-ambiguous.
3366 Unfortunately we have to find it now to decide. */
3367
3368 while (t > text)
3369 if (isalnum (t[-1]) || t[-1] == '_' ||
3370 t[-1] == ' ' || t[-1] == ':' ||
3371 t[-1] == '(' || t[-1] == ')')
3372 --t;
3373 else
3374 break;
3375
3376 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3377 p = t - 2; /* method name detected */
3378 /* else we leave with p unchanged */
3379 }
3380 }
3381 break;
3382 }
3383 }
3384 return p;
3385 }
3386
3387 static void
3388 completion_list_add_fields (struct symbol *sym, char *sym_text,
3389 int sym_text_len, char *text, char *word)
3390 {
3391 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3392 {
3393 struct type *t = SYMBOL_TYPE (sym);
3394 enum type_code c = TYPE_CODE (t);
3395 int j;
3396
3397 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3398 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3399 if (TYPE_FIELD_NAME (t, j))
3400 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3401 sym_text, sym_text_len, text, word);
3402 }
3403 }
3404
3405 /* Type of the user_data argument passed to add_macro_name or
3406 add_partial_symbol_name. The contents are simply whatever is
3407 needed by completion_list_add_name. */
3408 struct add_name_data
3409 {
3410 char *sym_text;
3411 int sym_text_len;
3412 char *text;
3413 char *word;
3414 };
3415
3416 /* A callback used with macro_for_each and macro_for_each_in_scope.
3417 This adds a macro's name to the current completion list. */
3418 static void
3419 add_macro_name (const char *name, const struct macro_definition *ignore,
3420 void *user_data)
3421 {
3422 struct add_name_data *datum = (struct add_name_data *) user_data;
3423 completion_list_add_name ((char *) name,
3424 datum->sym_text, datum->sym_text_len,
3425 datum->text, datum->word);
3426 }
3427
3428 /* A callback for map_partial_symbol_names. */
3429 static void
3430 add_partial_symbol_name (const char *name, void *user_data)
3431 {
3432 struct add_name_data *datum = (struct add_name_data *) user_data;
3433 completion_list_add_name ((char *) name,
3434 datum->sym_text, datum->sym_text_len,
3435 datum->text, datum->word);
3436 }
3437
3438 char **
3439 default_make_symbol_completion_list (char *text, char *word)
3440 {
3441 /* Problem: All of the symbols have to be copied because readline
3442 frees them. I'm not going to worry about this; hopefully there
3443 won't be that many. */
3444
3445 struct symbol *sym;
3446 struct symtab *s;
3447 struct minimal_symbol *msymbol;
3448 struct objfile *objfile;
3449 struct block *b;
3450 const struct block *surrounding_static_block, *surrounding_global_block;
3451 struct dict_iterator iter;
3452 /* The symbol we are completing on. Points in same buffer as text. */
3453 char *sym_text;
3454 /* Length of sym_text. */
3455 int sym_text_len;
3456 struct add_name_data datum;
3457
3458 /* Now look for the symbol we are supposed to complete on. */
3459 {
3460 char *p;
3461 char quote_found;
3462 char *quote_pos = NULL;
3463
3464 /* First see if this is a quoted string. */
3465 quote_found = '\0';
3466 for (p = text; *p != '\0'; ++p)
3467 {
3468 if (quote_found != '\0')
3469 {
3470 if (*p == quote_found)
3471 /* Found close quote. */
3472 quote_found = '\0';
3473 else if (*p == '\\' && p[1] == quote_found)
3474 /* A backslash followed by the quote character
3475 doesn't end the string. */
3476 ++p;
3477 }
3478 else if (*p == '\'' || *p == '"')
3479 {
3480 quote_found = *p;
3481 quote_pos = p;
3482 }
3483 }
3484 if (quote_found == '\'')
3485 /* A string within single quotes can be a symbol, so complete on it. */
3486 sym_text = quote_pos + 1;
3487 else if (quote_found == '"')
3488 /* A double-quoted string is never a symbol, nor does it make sense
3489 to complete it any other way. */
3490 {
3491 return_val = (char **) xmalloc (sizeof (char *));
3492 return_val[0] = NULL;
3493 return return_val;
3494 }
3495 else
3496 {
3497 /* It is not a quoted string. Break it based on the characters
3498 which are in symbols. */
3499 while (p > text)
3500 {
3501 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3502 || p[-1] == ':')
3503 --p;
3504 else
3505 break;
3506 }
3507 sym_text = p;
3508 }
3509 }
3510
3511 sym_text_len = strlen (sym_text);
3512
3513 return_val_size = 100;
3514 return_val_index = 0;
3515 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3516 return_val[0] = NULL;
3517
3518 datum.sym_text = sym_text;
3519 datum.sym_text_len = sym_text_len;
3520 datum.text = text;
3521 datum.word = word;
3522
3523 /* Look through the partial symtabs for all symbols which begin
3524 by matching SYM_TEXT. Add each one that you find to the list. */
3525 map_partial_symbol_names (add_partial_symbol_name, &datum);
3526
3527 /* At this point scan through the misc symbol vectors and add each
3528 symbol you find to the list. Eventually we want to ignore
3529 anything that isn't a text symbol (everything else will be
3530 handled by the psymtab code above). */
3531
3532 ALL_MSYMBOLS (objfile, msymbol)
3533 {
3534 QUIT;
3535 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3536
3537 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3538 }
3539
3540 /* Search upwards from currently selected frame (so that we can
3541 complete on local vars). Also catch fields of types defined in
3542 this places which match our text string. Only complete on types
3543 visible from current context. */
3544
3545 b = get_selected_block (0);
3546 surrounding_static_block = block_static_block (b);
3547 surrounding_global_block = block_global_block (b);
3548 if (surrounding_static_block != NULL)
3549 while (b != surrounding_static_block)
3550 {
3551 QUIT;
3552
3553 ALL_BLOCK_SYMBOLS (b, iter, sym)
3554 {
3555 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3556 word);
3557 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3558 word);
3559 }
3560
3561 /* Stop when we encounter an enclosing function. Do not stop for
3562 non-inlined functions - the locals of the enclosing function
3563 are in scope for a nested function. */
3564 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3565 break;
3566 b = BLOCK_SUPERBLOCK (b);
3567 }
3568
3569 /* Add fields from the file's types; symbols will be added below. */
3570
3571 if (surrounding_static_block != NULL)
3572 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3573 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3574
3575 if (surrounding_global_block != NULL)
3576 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3577 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3578
3579 /* Go through the symtabs and check the externs and statics for
3580 symbols which match. */
3581
3582 ALL_PRIMARY_SYMTABS (objfile, s)
3583 {
3584 QUIT;
3585 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3586 ALL_BLOCK_SYMBOLS (b, iter, sym)
3587 {
3588 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3589 }
3590 }
3591
3592 ALL_PRIMARY_SYMTABS (objfile, s)
3593 {
3594 QUIT;
3595 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3596 ALL_BLOCK_SYMBOLS (b, iter, sym)
3597 {
3598 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3599 }
3600 }
3601
3602 if (current_language->la_macro_expansion == macro_expansion_c)
3603 {
3604 struct macro_scope *scope;
3605
3606 /* Add any macros visible in the default scope. Note that this
3607 may yield the occasional wrong result, because an expression
3608 might be evaluated in a scope other than the default. For
3609 example, if the user types "break file:line if <TAB>", the
3610 resulting expression will be evaluated at "file:line" -- but
3611 at there does not seem to be a way to detect this at
3612 completion time. */
3613 scope = default_macro_scope ();
3614 if (scope)
3615 {
3616 macro_for_each_in_scope (scope->file, scope->line,
3617 add_macro_name, &datum);
3618 xfree (scope);
3619 }
3620
3621 /* User-defined macros are always visible. */
3622 macro_for_each (macro_user_macros, add_macro_name, &datum);
3623 }
3624
3625 return (return_val);
3626 }
3627
3628 /* Return a NULL terminated array of all symbols (regardless of class)
3629 which begin by matching TEXT. If the answer is no symbols, then
3630 the return value is an array which contains only a NULL pointer. */
3631
3632 char **
3633 make_symbol_completion_list (char *text, char *word)
3634 {
3635 return current_language->la_make_symbol_completion_list (text, word);
3636 }
3637
3638 /* Like make_symbol_completion_list, but suitable for use as a
3639 completion function. */
3640
3641 char **
3642 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3643 char *text, char *word)
3644 {
3645 return make_symbol_completion_list (text, word);
3646 }
3647
3648 /* Like make_symbol_completion_list, but returns a list of symbols
3649 defined in a source file FILE. */
3650
3651 char **
3652 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3653 {
3654 struct symbol *sym;
3655 struct symtab *s;
3656 struct block *b;
3657 struct dict_iterator iter;
3658 /* The symbol we are completing on. Points in same buffer as text. */
3659 char *sym_text;
3660 /* Length of sym_text. */
3661 int sym_text_len;
3662
3663 /* Now look for the symbol we are supposed to complete on.
3664 FIXME: This should be language-specific. */
3665 {
3666 char *p;
3667 char quote_found;
3668 char *quote_pos = NULL;
3669
3670 /* First see if this is a quoted string. */
3671 quote_found = '\0';
3672 for (p = text; *p != '\0'; ++p)
3673 {
3674 if (quote_found != '\0')
3675 {
3676 if (*p == quote_found)
3677 /* Found close quote. */
3678 quote_found = '\0';
3679 else if (*p == '\\' && p[1] == quote_found)
3680 /* A backslash followed by the quote character
3681 doesn't end the string. */
3682 ++p;
3683 }
3684 else if (*p == '\'' || *p == '"')
3685 {
3686 quote_found = *p;
3687 quote_pos = p;
3688 }
3689 }
3690 if (quote_found == '\'')
3691 /* A string within single quotes can be a symbol, so complete on it. */
3692 sym_text = quote_pos + 1;
3693 else if (quote_found == '"')
3694 /* A double-quoted string is never a symbol, nor does it make sense
3695 to complete it any other way. */
3696 {
3697 return_val = (char **) xmalloc (sizeof (char *));
3698 return_val[0] = NULL;
3699 return return_val;
3700 }
3701 else
3702 {
3703 /* Not a quoted string. */
3704 sym_text = language_search_unquoted_string (text, p);
3705 }
3706 }
3707
3708 sym_text_len = strlen (sym_text);
3709
3710 return_val_size = 10;
3711 return_val_index = 0;
3712 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3713 return_val[0] = NULL;
3714
3715 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3716 in). */
3717 s = lookup_symtab (srcfile);
3718 if (s == NULL)
3719 {
3720 /* Maybe they typed the file with leading directories, while the
3721 symbol tables record only its basename. */
3722 const char *tail = lbasename (srcfile);
3723
3724 if (tail > srcfile)
3725 s = lookup_symtab (tail);
3726 }
3727
3728 /* If we have no symtab for that file, return an empty list. */
3729 if (s == NULL)
3730 return (return_val);
3731
3732 /* Go through this symtab and check the externs and statics for
3733 symbols which match. */
3734
3735 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3736 ALL_BLOCK_SYMBOLS (b, iter, sym)
3737 {
3738 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3739 }
3740
3741 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3742 ALL_BLOCK_SYMBOLS (b, iter, sym)
3743 {
3744 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3745 }
3746
3747 return (return_val);
3748 }
3749
3750 /* A helper function for make_source_files_completion_list. It adds
3751 another file name to a list of possible completions, growing the
3752 list as necessary. */
3753
3754 static void
3755 add_filename_to_list (const char *fname, char *text, char *word,
3756 char ***list, int *list_used, int *list_alloced)
3757 {
3758 char *new;
3759 size_t fnlen = strlen (fname);
3760
3761 if (*list_used + 1 >= *list_alloced)
3762 {
3763 *list_alloced *= 2;
3764 *list = (char **) xrealloc ((char *) *list,
3765 *list_alloced * sizeof (char *));
3766 }
3767
3768 if (word == text)
3769 {
3770 /* Return exactly fname. */
3771 new = xmalloc (fnlen + 5);
3772 strcpy (new, fname);
3773 }
3774 else if (word > text)
3775 {
3776 /* Return some portion of fname. */
3777 new = xmalloc (fnlen + 5);
3778 strcpy (new, fname + (word - text));
3779 }
3780 else
3781 {
3782 /* Return some of TEXT plus fname. */
3783 new = xmalloc (fnlen + (text - word) + 5);
3784 strncpy (new, word, text - word);
3785 new[text - word] = '\0';
3786 strcat (new, fname);
3787 }
3788 (*list)[*list_used] = new;
3789 (*list)[++*list_used] = NULL;
3790 }
3791
3792 static int
3793 not_interesting_fname (const char *fname)
3794 {
3795 static const char *illegal_aliens[] = {
3796 "_globals_", /* inserted by coff_symtab_read */
3797 NULL
3798 };
3799 int i;
3800
3801 for (i = 0; illegal_aliens[i]; i++)
3802 {
3803 if (strcmp (fname, illegal_aliens[i]) == 0)
3804 return 1;
3805 }
3806 return 0;
3807 }
3808
3809 /* An object of this type is passed as the user_data argument to
3810 map_partial_symbol_filenames. */
3811 struct add_partial_filename_data
3812 {
3813 int *first;
3814 char *text;
3815 char *word;
3816 int text_len;
3817 char ***list;
3818 int *list_used;
3819 int *list_alloced;
3820 };
3821
3822 /* A callback for map_partial_symbol_filenames. */
3823 static void
3824 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
3825 void *user_data)
3826 {
3827 struct add_partial_filename_data *data = user_data;
3828
3829 if (not_interesting_fname (filename))
3830 return;
3831 if (!filename_seen (filename, 1, data->first)
3832 #if HAVE_DOS_BASED_FILE_SYSTEM
3833 && strncasecmp (filename, data->text, data->text_len) == 0
3834 #else
3835 && strncmp (filename, data->text, data->text_len) == 0
3836 #endif
3837 )
3838 {
3839 /* This file matches for a completion; add it to the
3840 current list of matches. */
3841 add_filename_to_list (filename, data->text, data->word,
3842 data->list, data->list_used, data->list_alloced);
3843 }
3844 else
3845 {
3846 const char *base_name = lbasename (filename);
3847 if (base_name != filename
3848 && !filename_seen (base_name, 1, data->first)
3849 #if HAVE_DOS_BASED_FILE_SYSTEM
3850 && strncasecmp (base_name, data->text, data->text_len) == 0
3851 #else
3852 && strncmp (base_name, data->text, data->text_len) == 0
3853 #endif
3854 )
3855 add_filename_to_list (base_name, data->text, data->word,
3856 data->list, data->list_used, data->list_alloced);
3857 }
3858 }
3859
3860 /* Return a NULL terminated array of all source files whose names
3861 begin with matching TEXT. The file names are looked up in the
3862 symbol tables of this program. If the answer is no matchess, then
3863 the return value is an array which contains only a NULL pointer. */
3864
3865 char **
3866 make_source_files_completion_list (char *text, char *word)
3867 {
3868 struct symtab *s;
3869 struct objfile *objfile;
3870 int first = 1;
3871 int list_alloced = 1;
3872 int list_used = 0;
3873 size_t text_len = strlen (text);
3874 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3875 const char *base_name;
3876 struct add_partial_filename_data datum;
3877
3878 list[0] = NULL;
3879
3880 if (!have_full_symbols () && !have_partial_symbols ())
3881 return list;
3882
3883 ALL_SYMTABS (objfile, s)
3884 {
3885 if (not_interesting_fname (s->filename))
3886 continue;
3887 if (!filename_seen (s->filename, 1, &first)
3888 #if HAVE_DOS_BASED_FILE_SYSTEM
3889 && strncasecmp (s->filename, text, text_len) == 0
3890 #else
3891 && strncmp (s->filename, text, text_len) == 0
3892 #endif
3893 )
3894 {
3895 /* This file matches for a completion; add it to the current
3896 list of matches. */
3897 add_filename_to_list (s->filename, text, word,
3898 &list, &list_used, &list_alloced);
3899 }
3900 else
3901 {
3902 /* NOTE: We allow the user to type a base name when the
3903 debug info records leading directories, but not the other
3904 way around. This is what subroutines of breakpoint
3905 command do when they parse file names. */
3906 base_name = lbasename (s->filename);
3907 if (base_name != s->filename
3908 && !filename_seen (base_name, 1, &first)
3909 #if HAVE_DOS_BASED_FILE_SYSTEM
3910 && strncasecmp (base_name, text, text_len) == 0
3911 #else
3912 && strncmp (base_name, text, text_len) == 0
3913 #endif
3914 )
3915 add_filename_to_list (base_name, text, word,
3916 &list, &list_used, &list_alloced);
3917 }
3918 }
3919
3920 datum.first = &first;
3921 datum.text = text;
3922 datum.word = word;
3923 datum.text_len = text_len;
3924 datum.list = &list;
3925 datum.list_used = &list_used;
3926 datum.list_alloced = &list_alloced;
3927 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
3928
3929 return list;
3930 }
3931
3932 /* Determine if PC is in the prologue of a function. The prologue is the area
3933 between the first instruction of a function, and the first executable line.
3934 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3935
3936 If non-zero, func_start is where we think the prologue starts, possibly
3937 by previous examination of symbol table information.
3938 */
3939
3940 int
3941 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
3942 {
3943 struct symtab_and_line sal;
3944 CORE_ADDR func_addr, func_end;
3945
3946 /* We have several sources of information we can consult to figure
3947 this out.
3948 - Compilers usually emit line number info that marks the prologue
3949 as its own "source line". So the ending address of that "line"
3950 is the end of the prologue. If available, this is the most
3951 reliable method.
3952 - The minimal symbols and partial symbols, which can usually tell
3953 us the starting and ending addresses of a function.
3954 - If we know the function's start address, we can call the
3955 architecture-defined gdbarch_skip_prologue function to analyze the
3956 instruction stream and guess where the prologue ends.
3957 - Our `func_start' argument; if non-zero, this is the caller's
3958 best guess as to the function's entry point. At the time of
3959 this writing, handle_inferior_event doesn't get this right, so
3960 it should be our last resort. */
3961
3962 /* Consult the partial symbol table, to find which function
3963 the PC is in. */
3964 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3965 {
3966 CORE_ADDR prologue_end;
3967
3968 /* We don't even have minsym information, so fall back to using
3969 func_start, if given. */
3970 if (! func_start)
3971 return 1; /* We *might* be in a prologue. */
3972
3973 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
3974
3975 return func_start <= pc && pc < prologue_end;
3976 }
3977
3978 /* If we have line number information for the function, that's
3979 usually pretty reliable. */
3980 sal = find_pc_line (func_addr, 0);
3981
3982 /* Now sal describes the source line at the function's entry point,
3983 which (by convention) is the prologue. The end of that "line",
3984 sal.end, is the end of the prologue.
3985
3986 Note that, for functions whose source code is all on a single
3987 line, the line number information doesn't always end up this way.
3988 So we must verify that our purported end-of-prologue address is
3989 *within* the function, not at its start or end. */
3990 if (sal.line == 0
3991 || sal.end <= func_addr
3992 || func_end <= sal.end)
3993 {
3994 /* We don't have any good line number info, so use the minsym
3995 information, together with the architecture-specific prologue
3996 scanning code. */
3997 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3998
3999 return func_addr <= pc && pc < prologue_end;
4000 }
4001
4002 /* We have line number info, and it looks good. */
4003 return func_addr <= pc && pc < sal.end;
4004 }
4005
4006 /* Given PC at the function's start address, attempt to find the
4007 prologue end using SAL information. Return zero if the skip fails.
4008
4009 A non-optimized prologue traditionally has one SAL for the function
4010 and a second for the function body. A single line function has
4011 them both pointing at the same line.
4012
4013 An optimized prologue is similar but the prologue may contain
4014 instructions (SALs) from the instruction body. Need to skip those
4015 while not getting into the function body.
4016
4017 The functions end point and an increasing SAL line are used as
4018 indicators of the prologue's endpoint.
4019
4020 This code is based on the function refine_prologue_limit (versions
4021 found in both ia64 and ppc). */
4022
4023 CORE_ADDR
4024 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4025 {
4026 struct symtab_and_line prologue_sal;
4027 CORE_ADDR start_pc;
4028 CORE_ADDR end_pc;
4029 struct block *bl;
4030
4031 /* Get an initial range for the function. */
4032 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4033 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4034
4035 prologue_sal = find_pc_line (start_pc, 0);
4036 if (prologue_sal.line != 0)
4037 {
4038 /* For langauges other than assembly, treat two consecutive line
4039 entries at the same address as a zero-instruction prologue.
4040 The GNU assembler emits separate line notes for each instruction
4041 in a multi-instruction macro, but compilers generally will not
4042 do this. */
4043 if (prologue_sal.symtab->language != language_asm)
4044 {
4045 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4046 int exact;
4047 int idx = 0;
4048
4049 /* Skip any earlier lines, and any end-of-sequence marker
4050 from a previous function. */
4051 while (linetable->item[idx].pc != prologue_sal.pc
4052 || linetable->item[idx].line == 0)
4053 idx++;
4054
4055 if (idx+1 < linetable->nitems
4056 && linetable->item[idx+1].line != 0
4057 && linetable->item[idx+1].pc == start_pc)
4058 return start_pc;
4059 }
4060
4061 /* If there is only one sal that covers the entire function,
4062 then it is probably a single line function, like
4063 "foo(){}". */
4064 if (prologue_sal.end >= end_pc)
4065 return 0;
4066
4067 while (prologue_sal.end < end_pc)
4068 {
4069 struct symtab_and_line sal;
4070
4071 sal = find_pc_line (prologue_sal.end, 0);
4072 if (sal.line == 0)
4073 break;
4074 /* Assume that a consecutive SAL for the same (or larger)
4075 line mark the prologue -> body transition. */
4076 if (sal.line >= prologue_sal.line)
4077 break;
4078
4079 /* The line number is smaller. Check that it's from the
4080 same function, not something inlined. If it's inlined,
4081 then there is no point comparing the line numbers. */
4082 bl = block_for_pc (prologue_sal.end);
4083 while (bl)
4084 {
4085 if (block_inlined_p (bl))
4086 break;
4087 if (BLOCK_FUNCTION (bl))
4088 {
4089 bl = NULL;
4090 break;
4091 }
4092 bl = BLOCK_SUPERBLOCK (bl);
4093 }
4094 if (bl != NULL)
4095 break;
4096
4097 /* The case in which compiler's optimizer/scheduler has
4098 moved instructions into the prologue. We look ahead in
4099 the function looking for address ranges whose
4100 corresponding line number is less the first one that we
4101 found for the function. This is more conservative then
4102 refine_prologue_limit which scans a large number of SALs
4103 looking for any in the prologue */
4104 prologue_sal = sal;
4105 }
4106 }
4107
4108 if (prologue_sal.end < end_pc)
4109 /* Return the end of this line, or zero if we could not find a
4110 line. */
4111 return prologue_sal.end;
4112 else
4113 /* Don't return END_PC, which is past the end of the function. */
4114 return prologue_sal.pc;
4115 }
4116 \f
4117 struct symtabs_and_lines
4118 decode_line_spec (char *string, int funfirstline)
4119 {
4120 struct symtabs_and_lines sals;
4121 struct symtab_and_line cursal;
4122
4123 if (string == 0)
4124 error (_("Empty line specification."));
4125
4126 /* We use whatever is set as the current source line. We do not try
4127 and get a default or it will recursively call us! */
4128 cursal = get_current_source_symtab_and_line ();
4129
4130 sals = decode_line_1 (&string, funfirstline,
4131 cursal.symtab, cursal.line,
4132 (char ***) NULL, NULL);
4133
4134 if (*string)
4135 error (_("Junk at end of line specification: %s"), string);
4136 return sals;
4137 }
4138
4139 /* Track MAIN */
4140 static char *name_of_main;
4141
4142 void
4143 set_main_name (const char *name)
4144 {
4145 if (name_of_main != NULL)
4146 {
4147 xfree (name_of_main);
4148 name_of_main = NULL;
4149 }
4150 if (name != NULL)
4151 {
4152 name_of_main = xstrdup (name);
4153 }
4154 }
4155
4156 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4157 accordingly. */
4158
4159 static void
4160 find_main_name (void)
4161 {
4162 const char *new_main_name;
4163
4164 /* Try to see if the main procedure is in Ada. */
4165 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4166 be to add a new method in the language vector, and call this
4167 method for each language until one of them returns a non-empty
4168 name. This would allow us to remove this hard-coded call to
4169 an Ada function. It is not clear that this is a better approach
4170 at this point, because all methods need to be written in a way
4171 such that false positives never be returned. For instance, it is
4172 important that a method does not return a wrong name for the main
4173 procedure if the main procedure is actually written in a different
4174 language. It is easy to guaranty this with Ada, since we use a
4175 special symbol generated only when the main in Ada to find the name
4176 of the main procedure. It is difficult however to see how this can
4177 be guarantied for languages such as C, for instance. This suggests
4178 that order of call for these methods becomes important, which means
4179 a more complicated approach. */
4180 new_main_name = ada_main_name ();
4181 if (new_main_name != NULL)
4182 {
4183 set_main_name (new_main_name);
4184 return;
4185 }
4186
4187 new_main_name = pascal_main_name ();
4188 if (new_main_name != NULL)
4189 {
4190 set_main_name (new_main_name);
4191 return;
4192 }
4193
4194 /* The languages above didn't identify the name of the main procedure.
4195 Fallback to "main". */
4196 set_main_name ("main");
4197 }
4198
4199 char *
4200 main_name (void)
4201 {
4202 if (name_of_main == NULL)
4203 find_main_name ();
4204
4205 return name_of_main;
4206 }
4207
4208 /* Handle ``executable_changed'' events for the symtab module. */
4209
4210 static void
4211 symtab_observer_executable_changed (void)
4212 {
4213 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4214 set_main_name (NULL);
4215 }
4216
4217 /* Helper to expand_line_sal below. Appends new sal to SAL,
4218 initializing it from SYMTAB, LINENO and PC. */
4219 static void
4220 append_expanded_sal (struct symtabs_and_lines *sal,
4221 struct program_space *pspace,
4222 struct symtab *symtab,
4223 int lineno, CORE_ADDR pc)
4224 {
4225 sal->sals = xrealloc (sal->sals,
4226 sizeof (sal->sals[0])
4227 * (sal->nelts + 1));
4228 init_sal (sal->sals + sal->nelts);
4229 sal->sals[sal->nelts].pspace = pspace;
4230 sal->sals[sal->nelts].symtab = symtab;
4231 sal->sals[sal->nelts].section = NULL;
4232 sal->sals[sal->nelts].end = 0;
4233 sal->sals[sal->nelts].line = lineno;
4234 sal->sals[sal->nelts].pc = pc;
4235 ++sal->nelts;
4236 }
4237
4238 /* Helper to expand_line_sal below. Search in the symtabs for any
4239 linetable entry that exactly matches FULLNAME and LINENO and append
4240 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4241 use FILENAME and LINENO instead. If there is at least one match,
4242 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4243 and BEST_SYMTAB. */
4244
4245 static int
4246 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4247 struct symtabs_and_lines *ret,
4248 struct linetable_entry **best_item,
4249 struct symtab **best_symtab)
4250 {
4251 struct program_space *pspace;
4252 struct objfile *objfile;
4253 struct symtab *symtab;
4254 int exact = 0;
4255 int j;
4256 *best_item = 0;
4257 *best_symtab = 0;
4258
4259 ALL_PSPACES (pspace)
4260 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4261 {
4262 if (FILENAME_CMP (filename, symtab->filename) == 0)
4263 {
4264 struct linetable *l;
4265 int len;
4266 if (fullname != NULL
4267 && symtab_to_fullname (symtab) != NULL
4268 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4269 continue;
4270 l = LINETABLE (symtab);
4271 if (!l)
4272 continue;
4273 len = l->nitems;
4274
4275 for (j = 0; j < len; j++)
4276 {
4277 struct linetable_entry *item = &(l->item[j]);
4278
4279 if (item->line == lineno)
4280 {
4281 exact = 1;
4282 append_expanded_sal (ret, objfile->pspace,
4283 symtab, lineno, item->pc);
4284 }
4285 else if (!exact && item->line > lineno
4286 && (*best_item == NULL
4287 || item->line < (*best_item)->line))
4288 {
4289 *best_item = item;
4290 *best_symtab = symtab;
4291 }
4292 }
4293 }
4294 }
4295 return exact;
4296 }
4297
4298 /* Compute a set of all sals in all program spaces that correspond to
4299 same file and line as SAL and return those. If there are several
4300 sals that belong to the same block, only one sal for the block is
4301 included in results. */
4302
4303 struct symtabs_and_lines
4304 expand_line_sal (struct symtab_and_line sal)
4305 {
4306 struct symtabs_and_lines ret, this_line;
4307 int i, j;
4308 struct objfile *objfile;
4309 struct partial_symtab *psymtab;
4310 struct symtab *symtab;
4311 int lineno;
4312 int deleted = 0;
4313 struct block **blocks = NULL;
4314 int *filter;
4315 struct cleanup *old_chain;
4316
4317 ret.nelts = 0;
4318 ret.sals = NULL;
4319
4320 /* Only expand sals that represent file.c:line. */
4321 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4322 {
4323 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4324 ret.sals[0] = sal;
4325 ret.nelts = 1;
4326 return ret;
4327 }
4328 else
4329 {
4330 struct program_space *pspace;
4331 struct linetable_entry *best_item = 0;
4332 struct symtab *best_symtab = 0;
4333 int exact = 0;
4334 char *match_filename;
4335
4336 lineno = sal.line;
4337 match_filename = sal.symtab->filename;
4338
4339 /* We need to find all symtabs for a file which name
4340 is described by sal. We cannot just directly
4341 iterate over symtabs, since a symtab might not be
4342 yet created. We also cannot iterate over psymtabs,
4343 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4344 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4345 corresponding to an included file. Therefore, we do
4346 first pass over psymtabs, reading in those with
4347 the right name. Then, we iterate over symtabs, knowing
4348 that all symtabs we're interested in are loaded. */
4349
4350 old_chain = save_current_program_space ();
4351 ALL_PSPACES (pspace)
4352 {
4353 set_current_program_space (pspace);
4354 ALL_PSPACE_OBJFILES (pspace, objfile)
4355 {
4356 if (objfile->sf)
4357 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4358 sal.symtab->filename);
4359 }
4360 }
4361 do_cleanups (old_chain);
4362
4363 /* Now search the symtab for exact matches and append them. If
4364 none is found, append the best_item and all its exact
4365 matches. */
4366 symtab_to_fullname (sal.symtab);
4367 exact = append_exact_match_to_sals (sal.symtab->filename,
4368 sal.symtab->fullname, lineno,
4369 &ret, &best_item, &best_symtab);
4370 if (!exact && best_item)
4371 append_exact_match_to_sals (best_symtab->filename,
4372 best_symtab->fullname, best_item->line,
4373 &ret, &best_item, &best_symtab);
4374 }
4375
4376 /* For optimized code, compiler can scatter one source line accross
4377 disjoint ranges of PC values, even when no duplicate functions
4378 or inline functions are involved. For example, 'for (;;)' inside
4379 non-template non-inline non-ctor-or-dtor function can result
4380 in two PC ranges. In this case, we don't want to set breakpoint
4381 on first PC of each range. To filter such cases, we use containing
4382 blocks -- for each PC found above we see if there are other PCs
4383 that are in the same block. If yes, the other PCs are filtered out. */
4384
4385 old_chain = save_current_program_space ();
4386 filter = alloca (ret.nelts * sizeof (int));
4387 blocks = alloca (ret.nelts * sizeof (struct block *));
4388 for (i = 0; i < ret.nelts; ++i)
4389 {
4390 struct blockvector *bl;
4391 struct block *b;
4392
4393 set_current_program_space (ret.sals[i].pspace);
4394
4395 filter[i] = 1;
4396 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4397
4398 }
4399 do_cleanups (old_chain);
4400
4401 for (i = 0; i < ret.nelts; ++i)
4402 if (blocks[i] != NULL)
4403 for (j = i+1; j < ret.nelts; ++j)
4404 if (blocks[j] == blocks[i])
4405 {
4406 filter[j] = 0;
4407 ++deleted;
4408 break;
4409 }
4410
4411 {
4412 struct symtab_and_line *final =
4413 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4414
4415 for (i = 0, j = 0; i < ret.nelts; ++i)
4416 if (filter[i])
4417 final[j++] = ret.sals[i];
4418
4419 ret.nelts -= deleted;
4420 xfree (ret.sals);
4421 ret.sals = final;
4422 }
4423
4424 return ret;
4425 }
4426
4427 /* Return 1 if the supplied producer string matches the ARM RealView
4428 compiler (armcc). */
4429
4430 int
4431 producer_is_realview (const char *producer)
4432 {
4433 static const char *const arm_idents[] = {
4434 "ARM C Compiler, ADS",
4435 "Thumb C Compiler, ADS",
4436 "ARM C++ Compiler, ADS",
4437 "Thumb C++ Compiler, ADS",
4438 "ARM/Thumb C/C++ Compiler, RVCT",
4439 "ARM C/C++ Compiler, RVCT"
4440 };
4441 int i;
4442
4443 if (producer == NULL)
4444 return 0;
4445
4446 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4447 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4448 return 1;
4449
4450 return 0;
4451 }
4452
4453 void
4454 _initialize_symtab (void)
4455 {
4456 add_info ("variables", variables_info, _("\
4457 All global and static variable names, or those matching REGEXP."));
4458 if (dbx_commands)
4459 add_com ("whereis", class_info, variables_info, _("\
4460 All global and static variable names, or those matching REGEXP."));
4461
4462 add_info ("functions", functions_info,
4463 _("All function names, or those matching REGEXP."));
4464
4465 /* FIXME: This command has at least the following problems:
4466 1. It prints builtin types (in a very strange and confusing fashion).
4467 2. It doesn't print right, e.g. with
4468 typedef struct foo *FOO
4469 type_print prints "FOO" when we want to make it (in this situation)
4470 print "struct foo *".
4471 I also think "ptype" or "whatis" is more likely to be useful (but if
4472 there is much disagreement "info types" can be fixed). */
4473 add_info ("types", types_info,
4474 _("All type names, or those matching REGEXP."));
4475
4476 add_info ("sources", sources_info,
4477 _("Source files in the program."));
4478
4479 add_com ("rbreak", class_breakpoint, rbreak_command,
4480 _("Set a breakpoint for all functions matching REGEXP."));
4481
4482 if (xdb_commands)
4483 {
4484 add_com ("lf", class_info, sources_info,
4485 _("Source files in the program"));
4486 add_com ("lg", class_info, variables_info, _("\
4487 All global and static variable names, or those matching REGEXP."));
4488 }
4489
4490 add_setshow_enum_cmd ("multiple-symbols", no_class,
4491 multiple_symbols_modes, &multiple_symbols_mode,
4492 _("\
4493 Set the debugger behavior when more than one symbol are possible matches\n\
4494 in an expression."), _("\
4495 Show how the debugger handles ambiguities in expressions."), _("\
4496 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4497 NULL, NULL, &setlist, &showlist);
4498
4499 observer_attach_executable_changed (symtab_observer_executable_changed);
4500 }
This page took 0.119699 seconds and 5 git commands to generate.