Rename cplus_specific mangled_lang.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
208
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
215 }
216 }
217
218 /* Now, search for a matching tail (only if name doesn't have any dirs) */
219
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
222 {
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 return s;
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
241
242 if (s != NULL)
243 return s;
244 if (!found)
245 return NULL;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257 \f
258 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
262
263 char *
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
265 {
266 int mangled_name_len;
267 char *mangled_name;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
273
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
277
278 int is_constructor;
279 int is_destructor = is_destructor_name (physname);
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
283 char buf[20];
284 int len = (newname == NULL ? 0 : strlen (newname));
285
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
290 return xstrdup (physname);
291
292 is_full_physname_constructor = is_constructor_name (physname);
293
294 is_constructor =
295 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
296
297 if (!is_destructor)
298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
299
300 if (is_destructor || is_full_physname_constructor)
301 {
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
304 return mangled_name;
305 }
306
307 if (len == 0)
308 {
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310 }
311 else if (physname[0] == 't' || physname[0] == 'Q')
312 {
313 /* The physname for template and qualified methods already includes
314 the class name. */
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 newname = NULL;
317 len = 0;
318 }
319 else
320 {
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322 }
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 + strlen (buf) + len + strlen (physname) + 1);
325
326 mangled_name = (char *) xmalloc (mangled_name_len);
327 if (is_constructor)
328 mangled_name[0] = '\0';
329 else
330 strcpy (mangled_name, field_name);
331
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
335 as something starting with `::' rather than `classname::'. */
336 if (newname != NULL)
337 strcat (mangled_name, newname);
338
339 strcat (mangled_name, physname);
340 return (mangled_name);
341 }
342
343 \f
344 /* Initialize the language dependent portion of a symbol
345 depending upon the language for the symbol. */
346 void
347 symbol_init_language_specific (struct general_symbol_info *gsymbol,
348 enum language language)
349 {
350 gsymbol->language = language;
351 if (gsymbol->language == language_cplus
352 || gsymbol->language == language_d
353 || gsymbol->language == language_java
354 || gsymbol->language == language_objc
355 || gsymbol->language == language_fortran)
356 {
357 gsymbol->language_specific.mangled_lang.demangled_name = NULL;
358 }
359 else
360 {
361 memset (&gsymbol->language_specific, 0,
362 sizeof (gsymbol->language_specific));
363 }
364 }
365
366 /* Functions to initialize a symbol's mangled name. */
367
368 /* Objects of this type are stored in the demangled name hash table. */
369 struct demangled_name_entry
370 {
371 char *mangled;
372 char demangled[1];
373 };
374
375 /* Hash function for the demangled name hash. */
376 static hashval_t
377 hash_demangled_name_entry (const void *data)
378 {
379 const struct demangled_name_entry *e = data;
380
381 return htab_hash_string (e->mangled);
382 }
383
384 /* Equality function for the demangled name hash. */
385 static int
386 eq_demangled_name_entry (const void *a, const void *b)
387 {
388 const struct demangled_name_entry *da = a;
389 const struct demangled_name_entry *db = b;
390
391 return strcmp (da->mangled, db->mangled) == 0;
392 }
393
394 /* Create the hash table used for demangled names. Each hash entry is
395 a pair of strings; one for the mangled name and one for the demangled
396 name. The entry is hashed via just the mangled name. */
397
398 static void
399 create_demangled_names_hash (struct objfile *objfile)
400 {
401 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
402 The hash table code will round this up to the next prime number.
403 Choosing a much larger table size wastes memory, and saves only about
404 1% in symbol reading. */
405
406 objfile->demangled_names_hash = htab_create_alloc
407 (256, hash_demangled_name_entry, eq_demangled_name_entry,
408 NULL, xcalloc, xfree);
409 }
410
411 /* Try to determine the demangled name for a symbol, based on the
412 language of that symbol. If the language is set to language_auto,
413 it will attempt to find any demangling algorithm that works and
414 then set the language appropriately. The returned name is allocated
415 by the demangler and should be xfree'd. */
416
417 static char *
418 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
419 const char *mangled)
420 {
421 char *demangled = NULL;
422
423 if (gsymbol->language == language_unknown)
424 gsymbol->language = language_auto;
425
426 if (gsymbol->language == language_objc
427 || gsymbol->language == language_auto)
428 {
429 demangled =
430 objc_demangle (mangled, 0);
431 if (demangled != NULL)
432 {
433 gsymbol->language = language_objc;
434 return demangled;
435 }
436 }
437 if (gsymbol->language == language_cplus
438 || gsymbol->language == language_auto)
439 {
440 demangled =
441 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
442 if (demangled != NULL)
443 {
444 gsymbol->language = language_cplus;
445 return demangled;
446 }
447 }
448 if (gsymbol->language == language_java)
449 {
450 demangled =
451 cplus_demangle (mangled,
452 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
453 if (demangled != NULL)
454 {
455 gsymbol->language = language_java;
456 return demangled;
457 }
458 }
459 if (gsymbol->language == language_d
460 || gsymbol->language == language_auto)
461 {
462 demangled = d_demangle(mangled, 0);
463 if (demangled != NULL)
464 {
465 gsymbol->language = language_d;
466 return demangled;
467 }
468 }
469 /* We could support `gsymbol->language == language_fortran' here to provide
470 module namespaces also for inferiors with only minimal symbol table (ELF
471 symbols). Just the mangling standard is not standardized across compilers
472 and there is no DW_AT_producer available for inferiors with only the ELF
473 symbols to check the mangling kind. */
474 return NULL;
475 }
476
477 /* Set both the mangled and demangled (if any) names for GSYMBOL based
478 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
479 objfile's obstack; but if COPY_NAME is 0 and if NAME is
480 NUL-terminated, then this function assumes that NAME is already
481 correctly saved (either permanently or with a lifetime tied to the
482 objfile), and it will not be copied.
483
484 The hash table corresponding to OBJFILE is used, and the memory
485 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
486 so the pointer can be discarded after calling this function. */
487
488 /* We have to be careful when dealing with Java names: when we run
489 into a Java minimal symbol, we don't know it's a Java symbol, so it
490 gets demangled as a C++ name. This is unfortunate, but there's not
491 much we can do about it: but when demangling partial symbols and
492 regular symbols, we'd better not reuse the wrong demangled name.
493 (See PR gdb/1039.) We solve this by putting a distinctive prefix
494 on Java names when storing them in the hash table. */
495
496 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
497 don't mind the Java prefix so much: different languages have
498 different demangling requirements, so it's only natural that we
499 need to keep language data around in our demangling cache. But
500 it's not good that the minimal symbol has the wrong demangled name.
501 Unfortunately, I can't think of any easy solution to that
502 problem. */
503
504 #define JAVA_PREFIX "##JAVA$$"
505 #define JAVA_PREFIX_LEN 8
506
507 void
508 symbol_set_names (struct general_symbol_info *gsymbol,
509 const char *linkage_name, int len, int copy_name,
510 struct objfile *objfile)
511 {
512 struct demangled_name_entry **slot;
513 /* A 0-terminated copy of the linkage name. */
514 const char *linkage_name_copy;
515 /* A copy of the linkage name that might have a special Java prefix
516 added to it, for use when looking names up in the hash table. */
517 const char *lookup_name;
518 /* The length of lookup_name. */
519 int lookup_len;
520 struct demangled_name_entry entry;
521
522 if (gsymbol->language == language_ada)
523 {
524 /* In Ada, we do the symbol lookups using the mangled name, so
525 we can save some space by not storing the demangled name.
526
527 As a side note, we have also observed some overlap between
528 the C++ mangling and Ada mangling, similarly to what has
529 been observed with Java. Because we don't store the demangled
530 name with the symbol, we don't need to use the same trick
531 as Java. */
532 if (!copy_name)
533 gsymbol->name = (char *) linkage_name;
534 else
535 {
536 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
537 memcpy (gsymbol->name, linkage_name, len);
538 gsymbol->name[len] = '\0';
539 }
540 gsymbol->language_specific.mangled_lang.demangled_name = NULL;
541
542 return;
543 }
544
545 if (objfile->demangled_names_hash == NULL)
546 create_demangled_names_hash (objfile);
547
548 /* The stabs reader generally provides names that are not
549 NUL-terminated; most of the other readers don't do this, so we
550 can just use the given copy, unless we're in the Java case. */
551 if (gsymbol->language == language_java)
552 {
553 char *alloc_name;
554
555 lookup_len = len + JAVA_PREFIX_LEN;
556 alloc_name = alloca (lookup_len + 1);
557 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
558 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
559 alloc_name[lookup_len] = '\0';
560
561 lookup_name = alloc_name;
562 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
563 }
564 else if (linkage_name[len] != '\0')
565 {
566 char *alloc_name;
567
568 lookup_len = len;
569 alloc_name = alloca (lookup_len + 1);
570 memcpy (alloc_name, linkage_name, len);
571 alloc_name[lookup_len] = '\0';
572
573 lookup_name = alloc_name;
574 linkage_name_copy = alloc_name;
575 }
576 else
577 {
578 lookup_len = len;
579 lookup_name = linkage_name;
580 linkage_name_copy = linkage_name;
581 }
582
583 entry.mangled = (char *) lookup_name;
584 slot = ((struct demangled_name_entry **)
585 htab_find_slot (objfile->demangled_names_hash,
586 &entry, INSERT));
587
588 /* If this name is not in the hash table, add it. */
589 if (*slot == NULL)
590 {
591 char *demangled_name = symbol_find_demangled_name (gsymbol,
592 linkage_name_copy);
593 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
594
595 /* Suppose we have demangled_name==NULL, copy_name==0, and
596 lookup_name==linkage_name. In this case, we already have the
597 mangled name saved, and we don't have a demangled name. So,
598 you might think we could save a little space by not recording
599 this in the hash table at all.
600
601 It turns out that it is actually important to still save such
602 an entry in the hash table, because storing this name gives
603 us better bcache hit rates for partial symbols. */
604 if (!copy_name && lookup_name == linkage_name)
605 {
606 *slot = obstack_alloc (&objfile->objfile_obstack,
607 offsetof (struct demangled_name_entry,
608 demangled)
609 + demangled_len + 1);
610 (*slot)->mangled = (char *) lookup_name;
611 }
612 else
613 {
614 /* If we must copy the mangled name, put it directly after
615 the demangled name so we can have a single
616 allocation. */
617 *slot = obstack_alloc (&objfile->objfile_obstack,
618 offsetof (struct demangled_name_entry,
619 demangled)
620 + lookup_len + demangled_len + 2);
621 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
622 strcpy ((*slot)->mangled, lookup_name);
623 }
624
625 if (demangled_name != NULL)
626 {
627 strcpy ((*slot)->demangled, demangled_name);
628 xfree (demangled_name);
629 }
630 else
631 (*slot)->demangled[0] = '\0';
632 }
633
634 gsymbol->name = (*slot)->mangled + lookup_len - len;
635 if ((*slot)->demangled[0] != '\0')
636 gsymbol->language_specific.mangled_lang.demangled_name
637 = (*slot)->demangled;
638 else
639 gsymbol->language_specific.mangled_lang.demangled_name = NULL;
640 }
641
642 /* Return the source code name of a symbol. In languages where
643 demangling is necessary, this is the demangled name. */
644
645 char *
646 symbol_natural_name (const struct general_symbol_info *gsymbol)
647 {
648 switch (gsymbol->language)
649 {
650 case language_cplus:
651 case language_d:
652 case language_java:
653 case language_objc:
654 case language_fortran:
655 if (gsymbol->language_specific.mangled_lang.demangled_name != NULL)
656 return gsymbol->language_specific.mangled_lang.demangled_name;
657 break;
658 case language_ada:
659 if (gsymbol->language_specific.mangled_lang.demangled_name != NULL)
660 return gsymbol->language_specific.mangled_lang.demangled_name;
661 else
662 return ada_decode_symbol (gsymbol);
663 break;
664 default:
665 break;
666 }
667 return gsymbol->name;
668 }
669
670 /* Return the demangled name for a symbol based on the language for
671 that symbol. If no demangled name exists, return NULL. */
672 char *
673 symbol_demangled_name (const struct general_symbol_info *gsymbol)
674 {
675 switch (gsymbol->language)
676 {
677 case language_cplus:
678 case language_d:
679 case language_java:
680 case language_objc:
681 case language_fortran:
682 if (gsymbol->language_specific.mangled_lang.demangled_name != NULL)
683 return gsymbol->language_specific.mangled_lang.demangled_name;
684 break;
685 case language_ada:
686 if (gsymbol->language_specific.mangled_lang.demangled_name != NULL)
687 return gsymbol->language_specific.mangled_lang.demangled_name;
688 else
689 return ada_decode_symbol (gsymbol);
690 break;
691 default:
692 break;
693 }
694 return NULL;
695 }
696
697 /* Return the search name of a symbol---generally the demangled or
698 linkage name of the symbol, depending on how it will be searched for.
699 If there is no distinct demangled name, then returns the same value
700 (same pointer) as SYMBOL_LINKAGE_NAME. */
701 char *
702 symbol_search_name (const struct general_symbol_info *gsymbol)
703 {
704 if (gsymbol->language == language_ada)
705 return gsymbol->name;
706 else
707 return symbol_natural_name (gsymbol);
708 }
709
710 /* Initialize the structure fields to zero values. */
711 void
712 init_sal (struct symtab_and_line *sal)
713 {
714 sal->pspace = NULL;
715 sal->symtab = 0;
716 sal->section = 0;
717 sal->line = 0;
718 sal->pc = 0;
719 sal->end = 0;
720 sal->explicit_pc = 0;
721 sal->explicit_line = 0;
722 }
723 \f
724
725 /* Return 1 if the two sections are the same, or if they could
726 plausibly be copies of each other, one in an original object
727 file and another in a separated debug file. */
728
729 int
730 matching_obj_sections (struct obj_section *obj_first,
731 struct obj_section *obj_second)
732 {
733 asection *first = obj_first? obj_first->the_bfd_section : NULL;
734 asection *second = obj_second? obj_second->the_bfd_section : NULL;
735 struct objfile *obj;
736
737 /* If they're the same section, then they match. */
738 if (first == second)
739 return 1;
740
741 /* If either is NULL, give up. */
742 if (first == NULL || second == NULL)
743 return 0;
744
745 /* This doesn't apply to absolute symbols. */
746 if (first->owner == NULL || second->owner == NULL)
747 return 0;
748
749 /* If they're in the same object file, they must be different sections. */
750 if (first->owner == second->owner)
751 return 0;
752
753 /* Check whether the two sections are potentially corresponding. They must
754 have the same size, address, and name. We can't compare section indexes,
755 which would be more reliable, because some sections may have been
756 stripped. */
757 if (bfd_get_section_size (first) != bfd_get_section_size (second))
758 return 0;
759
760 /* In-memory addresses may start at a different offset, relativize them. */
761 if (bfd_get_section_vma (first->owner, first)
762 - bfd_get_start_address (first->owner)
763 != bfd_get_section_vma (second->owner, second)
764 - bfd_get_start_address (second->owner))
765 return 0;
766
767 if (bfd_get_section_name (first->owner, first) == NULL
768 || bfd_get_section_name (second->owner, second) == NULL
769 || strcmp (bfd_get_section_name (first->owner, first),
770 bfd_get_section_name (second->owner, second)) != 0)
771 return 0;
772
773 /* Otherwise check that they are in corresponding objfiles. */
774
775 ALL_OBJFILES (obj)
776 if (obj->obfd == first->owner)
777 break;
778 gdb_assert (obj != NULL);
779
780 if (obj->separate_debug_objfile != NULL
781 && obj->separate_debug_objfile->obfd == second->owner)
782 return 1;
783 if (obj->separate_debug_objfile_backlink != NULL
784 && obj->separate_debug_objfile_backlink->obfd == second->owner)
785 return 1;
786
787 return 0;
788 }
789
790 struct symtab *
791 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
792 {
793 struct objfile *objfile;
794 struct minimal_symbol *msymbol;
795
796 /* If we know that this is not a text address, return failure. This is
797 necessary because we loop based on texthigh and textlow, which do
798 not include the data ranges. */
799 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
800 if (msymbol
801 && (MSYMBOL_TYPE (msymbol) == mst_data
802 || MSYMBOL_TYPE (msymbol) == mst_bss
803 || MSYMBOL_TYPE (msymbol) == mst_abs
804 || MSYMBOL_TYPE (msymbol) == mst_file_data
805 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
806 return NULL;
807
808 ALL_OBJFILES (objfile)
809 {
810 struct symtab *result = NULL;
811
812 if (objfile->sf)
813 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
814 pc, section, 0);
815 if (result)
816 return result;
817 }
818
819 return NULL;
820 }
821 \f
822 /* Debug symbols usually don't have section information. We need to dig that
823 out of the minimal symbols and stash that in the debug symbol. */
824
825 void
826 fixup_section (struct general_symbol_info *ginfo,
827 CORE_ADDR addr, struct objfile *objfile)
828 {
829 struct minimal_symbol *msym;
830
831 /* First, check whether a minimal symbol with the same name exists
832 and points to the same address. The address check is required
833 e.g. on PowerPC64, where the minimal symbol for a function will
834 point to the function descriptor, while the debug symbol will
835 point to the actual function code. */
836 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
837 if (msym)
838 {
839 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
840 ginfo->section = SYMBOL_SECTION (msym);
841 }
842 else
843 {
844 /* Static, function-local variables do appear in the linker
845 (minimal) symbols, but are frequently given names that won't
846 be found via lookup_minimal_symbol(). E.g., it has been
847 observed in frv-uclinux (ELF) executables that a static,
848 function-local variable named "foo" might appear in the
849 linker symbols as "foo.6" or "foo.3". Thus, there is no
850 point in attempting to extend the lookup-by-name mechanism to
851 handle this case due to the fact that there can be multiple
852 names.
853
854 So, instead, search the section table when lookup by name has
855 failed. The ``addr'' and ``endaddr'' fields may have already
856 been relocated. If so, the relocation offset (i.e. the
857 ANOFFSET value) needs to be subtracted from these values when
858 performing the comparison. We unconditionally subtract it,
859 because, when no relocation has been performed, the ANOFFSET
860 value will simply be zero.
861
862 The address of the symbol whose section we're fixing up HAS
863 NOT BEEN adjusted (relocated) yet. It can't have been since
864 the section isn't yet known and knowing the section is
865 necessary in order to add the correct relocation value. In
866 other words, we wouldn't even be in this function (attempting
867 to compute the section) if it were already known.
868
869 Note that it is possible to search the minimal symbols
870 (subtracting the relocation value if necessary) to find the
871 matching minimal symbol, but this is overkill and much less
872 efficient. It is not necessary to find the matching minimal
873 symbol, only its section.
874
875 Note that this technique (of doing a section table search)
876 can fail when unrelocated section addresses overlap. For
877 this reason, we still attempt a lookup by name prior to doing
878 a search of the section table. */
879
880 struct obj_section *s;
881
882 ALL_OBJFILE_OSECTIONS (objfile, s)
883 {
884 int idx = s->the_bfd_section->index;
885 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
886
887 if (obj_section_addr (s) - offset <= addr
888 && addr < obj_section_endaddr (s) - offset)
889 {
890 ginfo->obj_section = s;
891 ginfo->section = idx;
892 return;
893 }
894 }
895 }
896 }
897
898 struct symbol *
899 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
900 {
901 CORE_ADDR addr;
902
903 if (!sym)
904 return NULL;
905
906 if (SYMBOL_OBJ_SECTION (sym))
907 return sym;
908
909 /* We either have an OBJFILE, or we can get at it from the sym's
910 symtab. Anything else is a bug. */
911 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
912
913 if (objfile == NULL)
914 objfile = SYMBOL_SYMTAB (sym)->objfile;
915
916 /* We should have an objfile by now. */
917 gdb_assert (objfile);
918
919 switch (SYMBOL_CLASS (sym))
920 {
921 case LOC_STATIC:
922 case LOC_LABEL:
923 addr = SYMBOL_VALUE_ADDRESS (sym);
924 break;
925 case LOC_BLOCK:
926 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
927 break;
928
929 default:
930 /* Nothing else will be listed in the minsyms -- no use looking
931 it up. */
932 return sym;
933 }
934
935 fixup_section (&sym->ginfo, addr, objfile);
936
937 return sym;
938 }
939
940 /* Find the definition for a specified symbol name NAME
941 in domain DOMAIN, visible from lexical block BLOCK.
942 Returns the struct symbol pointer, or zero if no symbol is found.
943 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
944 NAME is a field of the current implied argument `this'. If so set
945 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
946 BLOCK_FOUND is set to the block in which NAME is found (in the case of
947 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
948
949 /* This function has a bunch of loops in it and it would seem to be
950 attractive to put in some QUIT's (though I'm not really sure
951 whether it can run long enough to be really important). But there
952 are a few calls for which it would appear to be bad news to quit
953 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
954 that there is C++ code below which can error(), but that probably
955 doesn't affect these calls since they are looking for a known
956 variable and thus can probably assume it will never hit the C++
957 code). */
958
959 struct symbol *
960 lookup_symbol_in_language (const char *name, const struct block *block,
961 const domain_enum domain, enum language lang,
962 int *is_a_field_of_this)
963 {
964 char *demangled_name = NULL;
965 const char *modified_name = NULL;
966 struct symbol *returnval;
967 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
968
969 modified_name = name;
970
971 /* If we are using C++, D, or Java, demangle the name before doing a
972 lookup, so we can always binary search. */
973 if (lang == language_cplus)
974 {
975 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
976 if (demangled_name)
977 {
978 modified_name = demangled_name;
979 make_cleanup (xfree, demangled_name);
980 }
981 else
982 {
983 /* If we were given a non-mangled name, canonicalize it
984 according to the language (so far only for C++). */
985 demangled_name = cp_canonicalize_string (name);
986 if (demangled_name)
987 {
988 modified_name = demangled_name;
989 make_cleanup (xfree, demangled_name);
990 }
991 }
992 }
993 else if (lang == language_java)
994 {
995 demangled_name = cplus_demangle (name,
996 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
997 if (demangled_name)
998 {
999 modified_name = demangled_name;
1000 make_cleanup (xfree, demangled_name);
1001 }
1002 }
1003 else if (lang == language_d)
1004 {
1005 demangled_name = d_demangle (name, 0);
1006 if (demangled_name)
1007 {
1008 modified_name = demangled_name;
1009 make_cleanup (xfree, demangled_name);
1010 }
1011 }
1012
1013 if (case_sensitivity == case_sensitive_off)
1014 {
1015 char *copy;
1016 int len, i;
1017
1018 len = strlen (name);
1019 copy = (char *) alloca (len + 1);
1020 for (i= 0; i < len; i++)
1021 copy[i] = tolower (name[i]);
1022 copy[len] = 0;
1023 modified_name = copy;
1024 }
1025
1026 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1027 is_a_field_of_this);
1028 do_cleanups (cleanup);
1029
1030 return returnval;
1031 }
1032
1033 /* Behave like lookup_symbol_in_language, but performed with the
1034 current language. */
1035
1036 struct symbol *
1037 lookup_symbol (const char *name, const struct block *block,
1038 domain_enum domain, int *is_a_field_of_this)
1039 {
1040 return lookup_symbol_in_language (name, block, domain,
1041 current_language->la_language,
1042 is_a_field_of_this);
1043 }
1044
1045 /* Behave like lookup_symbol except that NAME is the natural name
1046 of the symbol that we're looking for and, if LINKAGE_NAME is
1047 non-NULL, ensure that the symbol's linkage name matches as
1048 well. */
1049
1050 static struct symbol *
1051 lookup_symbol_aux (const char *name, const struct block *block,
1052 const domain_enum domain, enum language language,
1053 int *is_a_field_of_this)
1054 {
1055 struct symbol *sym;
1056 const struct language_defn *langdef;
1057
1058 /* Make sure we do something sensible with is_a_field_of_this, since
1059 the callers that set this parameter to some non-null value will
1060 certainly use it later and expect it to be either 0 or 1.
1061 If we don't set it, the contents of is_a_field_of_this are
1062 undefined. */
1063 if (is_a_field_of_this != NULL)
1064 *is_a_field_of_this = 0;
1065
1066 /* Search specified block and its superiors. Don't search
1067 STATIC_BLOCK or GLOBAL_BLOCK. */
1068
1069 sym = lookup_symbol_aux_local (name, block, domain, language);
1070 if (sym != NULL)
1071 return sym;
1072
1073 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1074 check to see if NAME is a field of `this'. */
1075
1076 langdef = language_def (language);
1077
1078 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1079 && block != NULL)
1080 {
1081 struct symbol *sym = NULL;
1082 const struct block *function_block = block;
1083
1084 /* 'this' is only defined in the function's block, so find the
1085 enclosing function block. */
1086 for (; function_block && !BLOCK_FUNCTION (function_block);
1087 function_block = BLOCK_SUPERBLOCK (function_block));
1088
1089 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1090 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1091 VAR_DOMAIN);
1092 if (sym)
1093 {
1094 struct type *t = sym->type;
1095
1096 /* I'm not really sure that type of this can ever
1097 be typedefed; just be safe. */
1098 CHECK_TYPEDEF (t);
1099 if (TYPE_CODE (t) == TYPE_CODE_PTR
1100 || TYPE_CODE (t) == TYPE_CODE_REF)
1101 t = TYPE_TARGET_TYPE (t);
1102
1103 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1104 && TYPE_CODE (t) != TYPE_CODE_UNION)
1105 error (_("Internal error: `%s' is not an aggregate"),
1106 langdef->la_name_of_this);
1107
1108 if (check_field (t, name))
1109 {
1110 *is_a_field_of_this = 1;
1111 return NULL;
1112 }
1113 }
1114 }
1115
1116 /* Now do whatever is appropriate for LANGUAGE to look
1117 up static and global variables. */
1118
1119 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1120 if (sym != NULL)
1121 return sym;
1122
1123 /* Now search all static file-level symbols. Not strictly correct,
1124 but more useful than an error. */
1125
1126 return lookup_static_symbol_aux (name, domain);
1127 }
1128
1129 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1130 first, then check the psymtabs. If a psymtab indicates the existence of the
1131 desired name as a file-level static, then do psymtab-to-symtab conversion on
1132 the fly and return the found symbol. */
1133
1134 struct symbol *
1135 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1136 {
1137 struct objfile *objfile;
1138 struct symbol *sym;
1139
1140 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1141 if (sym != NULL)
1142 return sym;
1143
1144 ALL_OBJFILES (objfile)
1145 {
1146 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1147 if (sym != NULL)
1148 return sym;
1149 }
1150
1151 return NULL;
1152 }
1153
1154 /* Check to see if the symbol is defined in BLOCK or its superiors.
1155 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1156
1157 static struct symbol *
1158 lookup_symbol_aux_local (const char *name, const struct block *block,
1159 const domain_enum domain,
1160 enum language language)
1161 {
1162 struct symbol *sym;
1163 const struct block *static_block = block_static_block (block);
1164 const char *scope = block_scope (block);
1165
1166 /* Check if either no block is specified or it's a global block. */
1167
1168 if (static_block == NULL)
1169 return NULL;
1170
1171 while (block != static_block)
1172 {
1173 sym = lookup_symbol_aux_block (name, block, domain);
1174 if (sym != NULL)
1175 return sym;
1176
1177 if (language == language_cplus || language == language_fortran)
1178 {
1179 sym = cp_lookup_symbol_imports (scope,
1180 name,
1181 block,
1182 domain,
1183 1,
1184 1);
1185 if (sym != NULL)
1186 return sym;
1187 }
1188
1189 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1190 break;
1191 block = BLOCK_SUPERBLOCK (block);
1192 }
1193
1194 /* We've reached the edge of the function without finding a result. */
1195
1196 return NULL;
1197 }
1198
1199 /* Look up OBJFILE to BLOCK. */
1200
1201 struct objfile *
1202 lookup_objfile_from_block (const struct block *block)
1203 {
1204 struct objfile *obj;
1205 struct symtab *s;
1206
1207 if (block == NULL)
1208 return NULL;
1209
1210 block = block_global_block (block);
1211 /* Go through SYMTABS. */
1212 ALL_SYMTABS (obj, s)
1213 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1214 {
1215 if (obj->separate_debug_objfile_backlink)
1216 obj = obj->separate_debug_objfile_backlink;
1217
1218 return obj;
1219 }
1220
1221 return NULL;
1222 }
1223
1224 /* Look up a symbol in a block; if found, fixup the symbol, and set
1225 block_found appropriately. */
1226
1227 struct symbol *
1228 lookup_symbol_aux_block (const char *name, const struct block *block,
1229 const domain_enum domain)
1230 {
1231 struct symbol *sym;
1232
1233 sym = lookup_block_symbol (block, name, domain);
1234 if (sym)
1235 {
1236 block_found = block;
1237 return fixup_symbol_section (sym, NULL);
1238 }
1239
1240 return NULL;
1241 }
1242
1243 /* Check all global symbols in OBJFILE in symtabs and
1244 psymtabs. */
1245
1246 struct symbol *
1247 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1248 const char *name,
1249 const domain_enum domain)
1250 {
1251 const struct objfile *objfile;
1252 struct symbol *sym;
1253 struct blockvector *bv;
1254 const struct block *block;
1255 struct symtab *s;
1256
1257 for (objfile = main_objfile;
1258 objfile;
1259 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1260 {
1261 /* Go through symtabs. */
1262 ALL_OBJFILE_SYMTABS (objfile, s)
1263 {
1264 bv = BLOCKVECTOR (s);
1265 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1266 sym = lookup_block_symbol (block, name, domain);
1267 if (sym)
1268 {
1269 block_found = block;
1270 return fixup_symbol_section (sym, (struct objfile *)objfile);
1271 }
1272 }
1273
1274 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1275 name, domain);
1276 if (sym)
1277 return sym;
1278 }
1279
1280 return NULL;
1281 }
1282
1283 /* Check to see if the symbol is defined in one of the symtabs.
1284 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1285 depending on whether or not we want to search global symbols or
1286 static symbols. */
1287
1288 static struct symbol *
1289 lookup_symbol_aux_symtabs (int block_index, const char *name,
1290 const domain_enum domain)
1291 {
1292 struct symbol *sym;
1293 struct objfile *objfile;
1294 struct blockvector *bv;
1295 const struct block *block;
1296 struct symtab *s;
1297
1298 ALL_OBJFILES (objfile)
1299 {
1300 if (objfile->sf)
1301 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1302 block_index,
1303 name, domain);
1304
1305 ALL_OBJFILE_SYMTABS (objfile, s)
1306 if (s->primary)
1307 {
1308 bv = BLOCKVECTOR (s);
1309 block = BLOCKVECTOR_BLOCK (bv, block_index);
1310 sym = lookup_block_symbol (block, name, domain);
1311 if (sym)
1312 {
1313 block_found = block;
1314 return fixup_symbol_section (sym, objfile);
1315 }
1316 }
1317 }
1318
1319 return NULL;
1320 }
1321
1322 /* A helper function for lookup_symbol_aux that interfaces with the
1323 "quick" symbol table functions. */
1324
1325 static struct symbol *
1326 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1327 const char *name, const domain_enum domain)
1328 {
1329 struct symtab *symtab;
1330 struct blockvector *bv;
1331 const struct block *block;
1332 struct symbol *sym;
1333
1334 if (!objfile->sf)
1335 return NULL;
1336 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1337 if (!symtab)
1338 return NULL;
1339
1340 bv = BLOCKVECTOR (symtab);
1341 block = BLOCKVECTOR_BLOCK (bv, kind);
1342 sym = lookup_block_symbol (block, name, domain);
1343 if (!sym)
1344 {
1345 /* This shouldn't be necessary, but as a last resort try
1346 looking in the statics even though the psymtab claimed
1347 the symbol was global, or vice-versa. It's possible
1348 that the psymtab gets it wrong in some cases. */
1349
1350 /* FIXME: carlton/2002-09-30: Should we really do that?
1351 If that happens, isn't it likely to be a GDB error, in
1352 which case we should fix the GDB error rather than
1353 silently dealing with it here? So I'd vote for
1354 removing the check for the symbol in the other
1355 block. */
1356 block = BLOCKVECTOR_BLOCK (bv,
1357 kind == GLOBAL_BLOCK ?
1358 STATIC_BLOCK : GLOBAL_BLOCK);
1359 sym = lookup_block_symbol (block, name, domain);
1360 if (!sym)
1361 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1362 kind == GLOBAL_BLOCK ? "global" : "static",
1363 name, symtab->filename, name, name);
1364 }
1365 return fixup_symbol_section (sym, objfile);
1366 }
1367
1368 /* A default version of lookup_symbol_nonlocal for use by languages
1369 that can't think of anything better to do. This implements the C
1370 lookup rules. */
1371
1372 struct symbol *
1373 basic_lookup_symbol_nonlocal (const char *name,
1374 const struct block *block,
1375 const domain_enum domain)
1376 {
1377 struct symbol *sym;
1378
1379 /* NOTE: carlton/2003-05-19: The comments below were written when
1380 this (or what turned into this) was part of lookup_symbol_aux;
1381 I'm much less worried about these questions now, since these
1382 decisions have turned out well, but I leave these comments here
1383 for posterity. */
1384
1385 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1386 not it would be appropriate to search the current global block
1387 here as well. (That's what this code used to do before the
1388 is_a_field_of_this check was moved up.) On the one hand, it's
1389 redundant with the lookup_symbol_aux_symtabs search that happens
1390 next. On the other hand, if decode_line_1 is passed an argument
1391 like filename:var, then the user presumably wants 'var' to be
1392 searched for in filename. On the third hand, there shouldn't be
1393 multiple global variables all of which are named 'var', and it's
1394 not like decode_line_1 has ever restricted its search to only
1395 global variables in a single filename. All in all, only
1396 searching the static block here seems best: it's correct and it's
1397 cleanest. */
1398
1399 /* NOTE: carlton/2002-12-05: There's also a possible performance
1400 issue here: if you usually search for global symbols in the
1401 current file, then it would be slightly better to search the
1402 current global block before searching all the symtabs. But there
1403 are other factors that have a much greater effect on performance
1404 than that one, so I don't think we should worry about that for
1405 now. */
1406
1407 sym = lookup_symbol_static (name, block, domain);
1408 if (sym != NULL)
1409 return sym;
1410
1411 return lookup_symbol_global (name, block, domain);
1412 }
1413
1414 /* Lookup a symbol in the static block associated to BLOCK, if there
1415 is one; do nothing if BLOCK is NULL or a global block. */
1416
1417 struct symbol *
1418 lookup_symbol_static (const char *name,
1419 const struct block *block,
1420 const domain_enum domain)
1421 {
1422 const struct block *static_block = block_static_block (block);
1423
1424 if (static_block != NULL)
1425 return lookup_symbol_aux_block (name, static_block, domain);
1426 else
1427 return NULL;
1428 }
1429
1430 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1431 necessary). */
1432
1433 struct symbol *
1434 lookup_symbol_global (const char *name,
1435 const struct block *block,
1436 const domain_enum domain)
1437 {
1438 struct symbol *sym = NULL;
1439 struct objfile *objfile = NULL;
1440
1441 /* Call library-specific lookup procedure. */
1442 objfile = lookup_objfile_from_block (block);
1443 if (objfile != NULL)
1444 sym = solib_global_lookup (objfile, name, domain);
1445 if (sym != NULL)
1446 return sym;
1447
1448 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1449 if (sym != NULL)
1450 return sym;
1451
1452 ALL_OBJFILES (objfile)
1453 {
1454 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1455 if (sym)
1456 return sym;
1457 }
1458
1459 return NULL;
1460 }
1461
1462 int
1463 symbol_matches_domain (enum language symbol_language,
1464 domain_enum symbol_domain,
1465 domain_enum domain)
1466 {
1467 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1468 A Java class declaration also defines a typedef for the class.
1469 Similarly, any Ada type declaration implicitly defines a typedef. */
1470 if (symbol_language == language_cplus
1471 || symbol_language == language_d
1472 || symbol_language == language_java
1473 || symbol_language == language_ada)
1474 {
1475 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1476 && symbol_domain == STRUCT_DOMAIN)
1477 return 1;
1478 }
1479 /* For all other languages, strict match is required. */
1480 return (symbol_domain == domain);
1481 }
1482
1483 /* Look up a type named NAME in the struct_domain. The type returned
1484 must not be opaque -- i.e., must have at least one field
1485 defined. */
1486
1487 struct type *
1488 lookup_transparent_type (const char *name)
1489 {
1490 return current_language->la_lookup_transparent_type (name);
1491 }
1492
1493 /* A helper for basic_lookup_transparent_type that interfaces with the
1494 "quick" symbol table functions. */
1495
1496 static struct type *
1497 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1498 const char *name)
1499 {
1500 struct symtab *symtab;
1501 struct blockvector *bv;
1502 struct block *block;
1503 struct symbol *sym;
1504
1505 if (!objfile->sf)
1506 return NULL;
1507 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1508 if (!symtab)
1509 return NULL;
1510
1511 bv = BLOCKVECTOR (symtab);
1512 block = BLOCKVECTOR_BLOCK (bv, kind);
1513 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1514 if (!sym)
1515 {
1516 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1517
1518 /* This shouldn't be necessary, but as a last resort
1519 * try looking in the 'other kind' even though the psymtab
1520 * claimed the symbol was one thing. It's possible that
1521 * the psymtab gets it wrong in some cases.
1522 */
1523 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1524 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1525 if (!sym)
1526 /* FIXME; error is wrong in one case */
1527 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1528 %s may be an inlined function, or may be a template function\n\
1529 (if a template, try specifying an instantiation: %s<type>)."),
1530 name, symtab->filename, name, name);
1531 }
1532 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1533 return SYMBOL_TYPE (sym);
1534
1535 return NULL;
1536 }
1537
1538 /* The standard implementation of lookup_transparent_type. This code
1539 was modeled on lookup_symbol -- the parts not relevant to looking
1540 up types were just left out. In particular it's assumed here that
1541 types are available in struct_domain and only at file-static or
1542 global blocks. */
1543
1544 struct type *
1545 basic_lookup_transparent_type (const char *name)
1546 {
1547 struct symbol *sym;
1548 struct symtab *s = NULL;
1549 struct blockvector *bv;
1550 struct objfile *objfile;
1551 struct block *block;
1552 struct type *t;
1553
1554 /* Now search all the global symbols. Do the symtab's first, then
1555 check the psymtab's. If a psymtab indicates the existence
1556 of the desired name as a global, then do psymtab-to-symtab
1557 conversion on the fly and return the found symbol. */
1558
1559 ALL_OBJFILES (objfile)
1560 {
1561 if (objfile->sf)
1562 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1563 GLOBAL_BLOCK,
1564 name, STRUCT_DOMAIN);
1565
1566 ALL_OBJFILE_SYMTABS (objfile, s)
1567 if (s->primary)
1568 {
1569 bv = BLOCKVECTOR (s);
1570 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1571 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1572 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1573 {
1574 return SYMBOL_TYPE (sym);
1575 }
1576 }
1577 }
1578
1579 ALL_OBJFILES (objfile)
1580 {
1581 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1582 if (t)
1583 return t;
1584 }
1585
1586 /* Now search the static file-level symbols.
1587 Not strictly correct, but more useful than an error.
1588 Do the symtab's first, then
1589 check the psymtab's. If a psymtab indicates the existence
1590 of the desired name as a file-level static, then do psymtab-to-symtab
1591 conversion on the fly and return the found symbol.
1592 */
1593
1594 ALL_PRIMARY_SYMTABS (objfile, s)
1595 {
1596 bv = BLOCKVECTOR (s);
1597 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1598 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1599 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1600 {
1601 return SYMBOL_TYPE (sym);
1602 }
1603 }
1604
1605 ALL_OBJFILES (objfile)
1606 {
1607 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1608 if (t)
1609 return t;
1610 }
1611
1612 return (struct type *) 0;
1613 }
1614
1615
1616 /* Find the name of the file containing main(). */
1617 /* FIXME: What about languages without main() or specially linked
1618 executables that have no main() ? */
1619
1620 const char *
1621 find_main_filename (void)
1622 {
1623 struct objfile *objfile;
1624 char *name = main_name ();
1625
1626 ALL_OBJFILES (objfile)
1627 {
1628 const char *result;
1629
1630 if (!objfile->sf)
1631 continue;
1632 result = objfile->sf->qf->find_symbol_file (objfile, name);
1633 if (result)
1634 return result;
1635 }
1636 return (NULL);
1637 }
1638
1639 /* Search BLOCK for symbol NAME in DOMAIN.
1640
1641 Note that if NAME is the demangled form of a C++ symbol, we will fail
1642 to find a match during the binary search of the non-encoded names, but
1643 for now we don't worry about the slight inefficiency of looking for
1644 a match we'll never find, since it will go pretty quick. Once the
1645 binary search terminates, we drop through and do a straight linear
1646 search on the symbols. Each symbol which is marked as being a ObjC/C++
1647 symbol (language_cplus or language_objc set) has both the encoded and
1648 non-encoded names tested for a match.
1649 */
1650
1651 struct symbol *
1652 lookup_block_symbol (const struct block *block, const char *name,
1653 const domain_enum domain)
1654 {
1655 struct dict_iterator iter;
1656 struct symbol *sym;
1657
1658 if (!BLOCK_FUNCTION (block))
1659 {
1660 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1661 sym != NULL;
1662 sym = dict_iter_name_next (name, &iter))
1663 {
1664 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1665 SYMBOL_DOMAIN (sym), domain))
1666 return sym;
1667 }
1668 return NULL;
1669 }
1670 else
1671 {
1672 /* Note that parameter symbols do not always show up last in the
1673 list; this loop makes sure to take anything else other than
1674 parameter symbols first; it only uses parameter symbols as a
1675 last resort. Note that this only takes up extra computation
1676 time on a match. */
1677
1678 struct symbol *sym_found = NULL;
1679
1680 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1681 sym != NULL;
1682 sym = dict_iter_name_next (name, &iter))
1683 {
1684 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1685 SYMBOL_DOMAIN (sym), domain))
1686 {
1687 sym_found = sym;
1688 if (!SYMBOL_IS_ARGUMENT (sym))
1689 {
1690 break;
1691 }
1692 }
1693 }
1694 return (sym_found); /* Will be NULL if not found. */
1695 }
1696 }
1697
1698 /* Find the symtab associated with PC and SECTION. Look through the
1699 psymtabs and read in another symtab if necessary. */
1700
1701 struct symtab *
1702 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1703 {
1704 struct block *b;
1705 struct blockvector *bv;
1706 struct symtab *s = NULL;
1707 struct symtab *best_s = NULL;
1708 struct objfile *objfile;
1709 struct program_space *pspace;
1710 CORE_ADDR distance = 0;
1711 struct minimal_symbol *msymbol;
1712
1713 pspace = current_program_space;
1714
1715 /* If we know that this is not a text address, return failure. This is
1716 necessary because we loop based on the block's high and low code
1717 addresses, which do not include the data ranges, and because
1718 we call find_pc_sect_psymtab which has a similar restriction based
1719 on the partial_symtab's texthigh and textlow. */
1720 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1721 if (msymbol
1722 && (MSYMBOL_TYPE (msymbol) == mst_data
1723 || MSYMBOL_TYPE (msymbol) == mst_bss
1724 || MSYMBOL_TYPE (msymbol) == mst_abs
1725 || MSYMBOL_TYPE (msymbol) == mst_file_data
1726 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1727 return NULL;
1728
1729 /* Search all symtabs for the one whose file contains our address, and which
1730 is the smallest of all the ones containing the address. This is designed
1731 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1732 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1733 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1734
1735 This happens for native ecoff format, where code from included files
1736 gets its own symtab. The symtab for the included file should have
1737 been read in already via the dependency mechanism.
1738 It might be swifter to create several symtabs with the same name
1739 like xcoff does (I'm not sure).
1740
1741 It also happens for objfiles that have their functions reordered.
1742 For these, the symtab we are looking for is not necessarily read in. */
1743
1744 ALL_PRIMARY_SYMTABS (objfile, s)
1745 {
1746 bv = BLOCKVECTOR (s);
1747 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1748
1749 if (BLOCK_START (b) <= pc
1750 && BLOCK_END (b) > pc
1751 && (distance == 0
1752 || BLOCK_END (b) - BLOCK_START (b) < distance))
1753 {
1754 /* For an objfile that has its functions reordered,
1755 find_pc_psymtab will find the proper partial symbol table
1756 and we simply return its corresponding symtab. */
1757 /* In order to better support objfiles that contain both
1758 stabs and coff debugging info, we continue on if a psymtab
1759 can't be found. */
1760 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1761 {
1762 struct symtab *result;
1763
1764 result
1765 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1766 msymbol,
1767 pc, section,
1768 0);
1769 if (result)
1770 return result;
1771 }
1772 if (section != 0)
1773 {
1774 struct dict_iterator iter;
1775 struct symbol *sym = NULL;
1776
1777 ALL_BLOCK_SYMBOLS (b, iter, sym)
1778 {
1779 fixup_symbol_section (sym, objfile);
1780 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1781 break;
1782 }
1783 if (sym == NULL)
1784 continue; /* no symbol in this symtab matches section */
1785 }
1786 distance = BLOCK_END (b) - BLOCK_START (b);
1787 best_s = s;
1788 }
1789 }
1790
1791 if (best_s != NULL)
1792 return (best_s);
1793
1794 ALL_OBJFILES (objfile)
1795 {
1796 struct symtab *result;
1797
1798 if (!objfile->sf)
1799 continue;
1800 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1801 msymbol,
1802 pc, section,
1803 1);
1804 if (result)
1805 return result;
1806 }
1807
1808 return NULL;
1809 }
1810
1811 /* Find the symtab associated with PC. Look through the psymtabs and
1812 read in another symtab if necessary. Backward compatibility, no section */
1813
1814 struct symtab *
1815 find_pc_symtab (CORE_ADDR pc)
1816 {
1817 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1818 }
1819 \f
1820
1821 /* Find the source file and line number for a given PC value and SECTION.
1822 Return a structure containing a symtab pointer, a line number,
1823 and a pc range for the entire source line.
1824 The value's .pc field is NOT the specified pc.
1825 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1826 use the line that ends there. Otherwise, in that case, the line
1827 that begins there is used. */
1828
1829 /* The big complication here is that a line may start in one file, and end just
1830 before the start of another file. This usually occurs when you #include
1831 code in the middle of a subroutine. To properly find the end of a line's PC
1832 range, we must search all symtabs associated with this compilation unit, and
1833 find the one whose first PC is closer than that of the next line in this
1834 symtab. */
1835
1836 /* If it's worth the effort, we could be using a binary search. */
1837
1838 struct symtab_and_line
1839 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1840 {
1841 struct symtab *s;
1842 struct linetable *l;
1843 int len;
1844 int i;
1845 struct linetable_entry *item;
1846 struct symtab_and_line val;
1847 struct blockvector *bv;
1848 struct minimal_symbol *msymbol;
1849 struct minimal_symbol *mfunsym;
1850
1851 /* Info on best line seen so far, and where it starts, and its file. */
1852
1853 struct linetable_entry *best = NULL;
1854 CORE_ADDR best_end = 0;
1855 struct symtab *best_symtab = 0;
1856
1857 /* Store here the first line number
1858 of a file which contains the line at the smallest pc after PC.
1859 If we don't find a line whose range contains PC,
1860 we will use a line one less than this,
1861 with a range from the start of that file to the first line's pc. */
1862 struct linetable_entry *alt = NULL;
1863 struct symtab *alt_symtab = 0;
1864
1865 /* Info on best line seen in this file. */
1866
1867 struct linetable_entry *prev;
1868
1869 /* If this pc is not from the current frame,
1870 it is the address of the end of a call instruction.
1871 Quite likely that is the start of the following statement.
1872 But what we want is the statement containing the instruction.
1873 Fudge the pc to make sure we get that. */
1874
1875 init_sal (&val); /* initialize to zeroes */
1876
1877 val.pspace = current_program_space;
1878
1879 /* It's tempting to assume that, if we can't find debugging info for
1880 any function enclosing PC, that we shouldn't search for line
1881 number info, either. However, GAS can emit line number info for
1882 assembly files --- very helpful when debugging hand-written
1883 assembly code. In such a case, we'd have no debug info for the
1884 function, but we would have line info. */
1885
1886 if (notcurrent)
1887 pc -= 1;
1888
1889 /* elz: added this because this function returned the wrong
1890 information if the pc belongs to a stub (import/export)
1891 to call a shlib function. This stub would be anywhere between
1892 two functions in the target, and the line info was erroneously
1893 taken to be the one of the line before the pc.
1894 */
1895 /* RT: Further explanation:
1896
1897 * We have stubs (trampolines) inserted between procedures.
1898 *
1899 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1900 * exists in the main image.
1901 *
1902 * In the minimal symbol table, we have a bunch of symbols
1903 * sorted by start address. The stubs are marked as "trampoline",
1904 * the others appear as text. E.g.:
1905 *
1906 * Minimal symbol table for main image
1907 * main: code for main (text symbol)
1908 * shr1: stub (trampoline symbol)
1909 * foo: code for foo (text symbol)
1910 * ...
1911 * Minimal symbol table for "shr1" image:
1912 * ...
1913 * shr1: code for shr1 (text symbol)
1914 * ...
1915 *
1916 * So the code below is trying to detect if we are in the stub
1917 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1918 * and if found, do the symbolization from the real-code address
1919 * rather than the stub address.
1920 *
1921 * Assumptions being made about the minimal symbol table:
1922 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1923 * if we're really in the trampoline. If we're beyond it (say
1924 * we're in "foo" in the above example), it'll have a closer
1925 * symbol (the "foo" text symbol for example) and will not
1926 * return the trampoline.
1927 * 2. lookup_minimal_symbol_text() will find a real text symbol
1928 * corresponding to the trampoline, and whose address will
1929 * be different than the trampoline address. I put in a sanity
1930 * check for the address being the same, to avoid an
1931 * infinite recursion.
1932 */
1933 msymbol = lookup_minimal_symbol_by_pc (pc);
1934 if (msymbol != NULL)
1935 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1936 {
1937 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1938 NULL);
1939 if (mfunsym == NULL)
1940 /* I eliminated this warning since it is coming out
1941 * in the following situation:
1942 * gdb shmain // test program with shared libraries
1943 * (gdb) break shr1 // function in shared lib
1944 * Warning: In stub for ...
1945 * In the above situation, the shared lib is not loaded yet,
1946 * so of course we can't find the real func/line info,
1947 * but the "break" still works, and the warning is annoying.
1948 * So I commented out the warning. RT */
1949 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1950 /* fall through */
1951 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
1952 /* Avoid infinite recursion */
1953 /* See above comment about why warning is commented out */
1954 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1955 /* fall through */
1956 else
1957 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
1958 }
1959
1960
1961 s = find_pc_sect_symtab (pc, section);
1962 if (!s)
1963 {
1964 /* if no symbol information, return previous pc */
1965 if (notcurrent)
1966 pc++;
1967 val.pc = pc;
1968 return val;
1969 }
1970
1971 bv = BLOCKVECTOR (s);
1972
1973 /* Look at all the symtabs that share this blockvector.
1974 They all have the same apriori range, that we found was right;
1975 but they have different line tables. */
1976
1977 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1978 {
1979 /* Find the best line in this symtab. */
1980 l = LINETABLE (s);
1981 if (!l)
1982 continue;
1983 len = l->nitems;
1984 if (len <= 0)
1985 {
1986 /* I think len can be zero if the symtab lacks line numbers
1987 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1988 I'm not sure which, and maybe it depends on the symbol
1989 reader). */
1990 continue;
1991 }
1992
1993 prev = NULL;
1994 item = l->item; /* Get first line info */
1995
1996 /* Is this file's first line closer than the first lines of other files?
1997 If so, record this file, and its first line, as best alternate. */
1998 if (item->pc > pc && (!alt || item->pc < alt->pc))
1999 {
2000 alt = item;
2001 alt_symtab = s;
2002 }
2003
2004 for (i = 0; i < len; i++, item++)
2005 {
2006 /* Leave prev pointing to the linetable entry for the last line
2007 that started at or before PC. */
2008 if (item->pc > pc)
2009 break;
2010
2011 prev = item;
2012 }
2013
2014 /* At this point, prev points at the line whose start addr is <= pc, and
2015 item points at the next line. If we ran off the end of the linetable
2016 (pc >= start of the last line), then prev == item. If pc < start of
2017 the first line, prev will not be set. */
2018
2019 /* Is this file's best line closer than the best in the other files?
2020 If so, record this file, and its best line, as best so far. Don't
2021 save prev if it represents the end of a function (i.e. line number
2022 0) instead of a real line. */
2023
2024 if (prev && prev->line && (!best || prev->pc > best->pc))
2025 {
2026 best = prev;
2027 best_symtab = s;
2028
2029 /* Discard BEST_END if it's before the PC of the current BEST. */
2030 if (best_end <= best->pc)
2031 best_end = 0;
2032 }
2033
2034 /* If another line (denoted by ITEM) is in the linetable and its
2035 PC is after BEST's PC, but before the current BEST_END, then
2036 use ITEM's PC as the new best_end. */
2037 if (best && i < len && item->pc > best->pc
2038 && (best_end == 0 || best_end > item->pc))
2039 best_end = item->pc;
2040 }
2041
2042 if (!best_symtab)
2043 {
2044 /* If we didn't find any line number info, just return zeros.
2045 We used to return alt->line - 1 here, but that could be
2046 anywhere; if we don't have line number info for this PC,
2047 don't make some up. */
2048 val.pc = pc;
2049 }
2050 else if (best->line == 0)
2051 {
2052 /* If our best fit is in a range of PC's for which no line
2053 number info is available (line number is zero) then we didn't
2054 find any valid line information. */
2055 val.pc = pc;
2056 }
2057 else
2058 {
2059 val.symtab = best_symtab;
2060 val.line = best->line;
2061 val.pc = best->pc;
2062 if (best_end && (!alt || best_end < alt->pc))
2063 val.end = best_end;
2064 else if (alt)
2065 val.end = alt->pc;
2066 else
2067 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2068 }
2069 val.section = section;
2070 return val;
2071 }
2072
2073 /* Backward compatibility (no section) */
2074
2075 struct symtab_and_line
2076 find_pc_line (CORE_ADDR pc, int notcurrent)
2077 {
2078 struct obj_section *section;
2079
2080 section = find_pc_overlay (pc);
2081 if (pc_in_unmapped_range (pc, section))
2082 pc = overlay_mapped_address (pc, section);
2083 return find_pc_sect_line (pc, section, notcurrent);
2084 }
2085 \f
2086 /* Find line number LINE in any symtab whose name is the same as
2087 SYMTAB.
2088
2089 If found, return the symtab that contains the linetable in which it was
2090 found, set *INDEX to the index in the linetable of the best entry
2091 found, and set *EXACT_MATCH nonzero if the value returned is an
2092 exact match.
2093
2094 If not found, return NULL. */
2095
2096 struct symtab *
2097 find_line_symtab (struct symtab *symtab, int line,
2098 int *index, int *exact_match)
2099 {
2100 int exact = 0; /* Initialized here to avoid a compiler warning. */
2101
2102 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2103 so far seen. */
2104
2105 int best_index;
2106 struct linetable *best_linetable;
2107 struct symtab *best_symtab;
2108
2109 /* First try looking it up in the given symtab. */
2110 best_linetable = LINETABLE (symtab);
2111 best_symtab = symtab;
2112 best_index = find_line_common (best_linetable, line, &exact);
2113 if (best_index < 0 || !exact)
2114 {
2115 /* Didn't find an exact match. So we better keep looking for
2116 another symtab with the same name. In the case of xcoff,
2117 multiple csects for one source file (produced by IBM's FORTRAN
2118 compiler) produce multiple symtabs (this is unavoidable
2119 assuming csects can be at arbitrary places in memory and that
2120 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2121
2122 /* BEST is the smallest linenumber > LINE so far seen,
2123 or 0 if none has been seen so far.
2124 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2125 int best;
2126
2127 struct objfile *objfile;
2128 struct symtab *s;
2129
2130 if (best_index >= 0)
2131 best = best_linetable->item[best_index].line;
2132 else
2133 best = 0;
2134
2135 ALL_OBJFILES (objfile)
2136 {
2137 if (objfile->sf)
2138 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2139 symtab->filename);
2140 }
2141
2142 /* Get symbol full file name if possible. */
2143 symtab_to_fullname (symtab);
2144
2145 ALL_SYMTABS (objfile, s)
2146 {
2147 struct linetable *l;
2148 int ind;
2149
2150 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2151 continue;
2152 if (symtab->fullname != NULL
2153 && symtab_to_fullname (s) != NULL
2154 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2155 continue;
2156 l = LINETABLE (s);
2157 ind = find_line_common (l, line, &exact);
2158 if (ind >= 0)
2159 {
2160 if (exact)
2161 {
2162 best_index = ind;
2163 best_linetable = l;
2164 best_symtab = s;
2165 goto done;
2166 }
2167 if (best == 0 || l->item[ind].line < best)
2168 {
2169 best = l->item[ind].line;
2170 best_index = ind;
2171 best_linetable = l;
2172 best_symtab = s;
2173 }
2174 }
2175 }
2176 }
2177 done:
2178 if (best_index < 0)
2179 return NULL;
2180
2181 if (index)
2182 *index = best_index;
2183 if (exact_match)
2184 *exact_match = exact;
2185
2186 return best_symtab;
2187 }
2188 \f
2189 /* Set the PC value for a given source file and line number and return true.
2190 Returns zero for invalid line number (and sets the PC to 0).
2191 The source file is specified with a struct symtab. */
2192
2193 int
2194 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2195 {
2196 struct linetable *l;
2197 int ind;
2198
2199 *pc = 0;
2200 if (symtab == 0)
2201 return 0;
2202
2203 symtab = find_line_symtab (symtab, line, &ind, NULL);
2204 if (symtab != NULL)
2205 {
2206 l = LINETABLE (symtab);
2207 *pc = l->item[ind].pc;
2208 return 1;
2209 }
2210 else
2211 return 0;
2212 }
2213
2214 /* Find the range of pc values in a line.
2215 Store the starting pc of the line into *STARTPTR
2216 and the ending pc (start of next line) into *ENDPTR.
2217 Returns 1 to indicate success.
2218 Returns 0 if could not find the specified line. */
2219
2220 int
2221 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2222 CORE_ADDR *endptr)
2223 {
2224 CORE_ADDR startaddr;
2225 struct symtab_and_line found_sal;
2226
2227 startaddr = sal.pc;
2228 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2229 return 0;
2230
2231 /* This whole function is based on address. For example, if line 10 has
2232 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2233 "info line *0x123" should say the line goes from 0x100 to 0x200
2234 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2235 This also insures that we never give a range like "starts at 0x134
2236 and ends at 0x12c". */
2237
2238 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2239 if (found_sal.line != sal.line)
2240 {
2241 /* The specified line (sal) has zero bytes. */
2242 *startptr = found_sal.pc;
2243 *endptr = found_sal.pc;
2244 }
2245 else
2246 {
2247 *startptr = found_sal.pc;
2248 *endptr = found_sal.end;
2249 }
2250 return 1;
2251 }
2252
2253 /* Given a line table and a line number, return the index into the line
2254 table for the pc of the nearest line whose number is >= the specified one.
2255 Return -1 if none is found. The value is >= 0 if it is an index.
2256
2257 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2258
2259 static int
2260 find_line_common (struct linetable *l, int lineno,
2261 int *exact_match)
2262 {
2263 int i;
2264 int len;
2265
2266 /* BEST is the smallest linenumber > LINENO so far seen,
2267 or 0 if none has been seen so far.
2268 BEST_INDEX identifies the item for it. */
2269
2270 int best_index = -1;
2271 int best = 0;
2272
2273 *exact_match = 0;
2274
2275 if (lineno <= 0)
2276 return -1;
2277 if (l == 0)
2278 return -1;
2279
2280 len = l->nitems;
2281 for (i = 0; i < len; i++)
2282 {
2283 struct linetable_entry *item = &(l->item[i]);
2284
2285 if (item->line == lineno)
2286 {
2287 /* Return the first (lowest address) entry which matches. */
2288 *exact_match = 1;
2289 return i;
2290 }
2291
2292 if (item->line > lineno && (best == 0 || item->line < best))
2293 {
2294 best = item->line;
2295 best_index = i;
2296 }
2297 }
2298
2299 /* If we got here, we didn't get an exact match. */
2300 return best_index;
2301 }
2302
2303 int
2304 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2305 {
2306 struct symtab_and_line sal;
2307
2308 sal = find_pc_line (pc, 0);
2309 *startptr = sal.pc;
2310 *endptr = sal.end;
2311 return sal.symtab != 0;
2312 }
2313
2314 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2315 address for that function that has an entry in SYMTAB's line info
2316 table. If such an entry cannot be found, return FUNC_ADDR
2317 unaltered. */
2318 CORE_ADDR
2319 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2320 {
2321 CORE_ADDR func_start, func_end;
2322 struct linetable *l;
2323 int i;
2324
2325 /* Give up if this symbol has no lineinfo table. */
2326 l = LINETABLE (symtab);
2327 if (l == NULL)
2328 return func_addr;
2329
2330 /* Get the range for the function's PC values, or give up if we
2331 cannot, for some reason. */
2332 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2333 return func_addr;
2334
2335 /* Linetable entries are ordered by PC values, see the commentary in
2336 symtab.h where `struct linetable' is defined. Thus, the first
2337 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2338 address we are looking for. */
2339 for (i = 0; i < l->nitems; i++)
2340 {
2341 struct linetable_entry *item = &(l->item[i]);
2342
2343 /* Don't use line numbers of zero, they mark special entries in
2344 the table. See the commentary on symtab.h before the
2345 definition of struct linetable. */
2346 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2347 return item->pc;
2348 }
2349
2350 return func_addr;
2351 }
2352
2353 /* Given a function symbol SYM, find the symtab and line for the start
2354 of the function.
2355 If the argument FUNFIRSTLINE is nonzero, we want the first line
2356 of real code inside the function. */
2357
2358 struct symtab_and_line
2359 find_function_start_sal (struct symbol *sym, int funfirstline)
2360 {
2361 struct symtab_and_line sal;
2362
2363 fixup_symbol_section (sym, NULL);
2364 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2365 SYMBOL_OBJ_SECTION (sym), 0);
2366
2367 /* We always should have a line for the function start address.
2368 If we don't, something is odd. Create a plain SAL refering
2369 just the PC and hope that skip_prologue_sal (if requested)
2370 can find a line number for after the prologue. */
2371 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2372 {
2373 init_sal (&sal);
2374 sal.pspace = current_program_space;
2375 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2376 sal.section = SYMBOL_OBJ_SECTION (sym);
2377 }
2378
2379 if (funfirstline)
2380 skip_prologue_sal (&sal);
2381
2382 return sal;
2383 }
2384
2385 /* Adjust SAL to the first instruction past the function prologue.
2386 If the PC was explicitly specified, the SAL is not changed.
2387 If the line number was explicitly specified, at most the SAL's PC
2388 is updated. If SAL is already past the prologue, then do nothing. */
2389 void
2390 skip_prologue_sal (struct symtab_and_line *sal)
2391 {
2392 struct symbol *sym;
2393 struct symtab_and_line start_sal;
2394 struct cleanup *old_chain;
2395 CORE_ADDR pc;
2396 struct obj_section *section;
2397 const char *name;
2398 struct objfile *objfile;
2399 struct gdbarch *gdbarch;
2400 struct block *b, *function_block;
2401
2402 /* Do not change the SAL is PC was specified explicitly. */
2403 if (sal->explicit_pc)
2404 return;
2405
2406 old_chain = save_current_space_and_thread ();
2407 switch_to_program_space_and_thread (sal->pspace);
2408
2409 sym = find_pc_sect_function (sal->pc, sal->section);
2410 if (sym != NULL)
2411 {
2412 fixup_symbol_section (sym, NULL);
2413
2414 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2415 section = SYMBOL_OBJ_SECTION (sym);
2416 name = SYMBOL_LINKAGE_NAME (sym);
2417 objfile = SYMBOL_SYMTAB (sym)->objfile;
2418 }
2419 else
2420 {
2421 struct minimal_symbol *msymbol
2422 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2423
2424 if (msymbol == NULL)
2425 {
2426 do_cleanups (old_chain);
2427 return;
2428 }
2429
2430 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2431 section = SYMBOL_OBJ_SECTION (msymbol);
2432 name = SYMBOL_LINKAGE_NAME (msymbol);
2433 objfile = msymbol_objfile (msymbol);
2434 }
2435
2436 gdbarch = get_objfile_arch (objfile);
2437
2438 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2439 so that gdbarch_skip_prologue has something unique to work on. */
2440 if (section_is_overlay (section) && !section_is_mapped (section))
2441 pc = overlay_unmapped_address (pc, section);
2442
2443 /* Skip "first line" of function (which is actually its prologue). */
2444 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2445 pc = gdbarch_skip_prologue (gdbarch, pc);
2446
2447 /* For overlays, map pc back into its mapped VMA range. */
2448 pc = overlay_mapped_address (pc, section);
2449
2450 /* Calculate line number. */
2451 start_sal = find_pc_sect_line (pc, section, 0);
2452
2453 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2454 line is still part of the same function. */
2455 if (start_sal.pc != pc
2456 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2457 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2458 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2459 == lookup_minimal_symbol_by_pc_section (pc, section))))
2460 {
2461 /* First pc of next line */
2462 pc = start_sal.end;
2463 /* Recalculate the line number (might not be N+1). */
2464 start_sal = find_pc_sect_line (pc, section, 0);
2465 }
2466
2467 /* On targets with executable formats that don't have a concept of
2468 constructors (ELF with .init has, PE doesn't), gcc emits a call
2469 to `__main' in `main' between the prologue and before user
2470 code. */
2471 if (gdbarch_skip_main_prologue_p (gdbarch)
2472 && name && strcmp (name, "main") == 0)
2473 {
2474 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2475 /* Recalculate the line number (might not be N+1). */
2476 start_sal = find_pc_sect_line (pc, section, 0);
2477 }
2478
2479 /* If we still don't have a valid source line, try to find the first
2480 PC in the lineinfo table that belongs to the same function. This
2481 happens with COFF debug info, which does not seem to have an
2482 entry in lineinfo table for the code after the prologue which has
2483 no direct relation to source. For example, this was found to be
2484 the case with the DJGPP target using "gcc -gcoff" when the
2485 compiler inserted code after the prologue to make sure the stack
2486 is aligned. */
2487 if (sym && start_sal.symtab == NULL)
2488 {
2489 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2490 /* Recalculate the line number. */
2491 start_sal = find_pc_sect_line (pc, section, 0);
2492 }
2493
2494 do_cleanups (old_chain);
2495
2496 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2497 forward SAL to the end of the prologue. */
2498 if (sal->pc >= pc)
2499 return;
2500
2501 sal->pc = pc;
2502 sal->section = section;
2503
2504 /* Unless the explicit_line flag was set, update the SAL line
2505 and symtab to correspond to the modified PC location. */
2506 if (sal->explicit_line)
2507 return;
2508
2509 sal->symtab = start_sal.symtab;
2510 sal->line = start_sal.line;
2511 sal->end = start_sal.end;
2512
2513 /* Check if we are now inside an inlined function. If we can,
2514 use the call site of the function instead. */
2515 b = block_for_pc_sect (sal->pc, sal->section);
2516 function_block = NULL;
2517 while (b != NULL)
2518 {
2519 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2520 function_block = b;
2521 else if (BLOCK_FUNCTION (b) != NULL)
2522 break;
2523 b = BLOCK_SUPERBLOCK (b);
2524 }
2525 if (function_block != NULL
2526 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2527 {
2528 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2529 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2530 }
2531 }
2532
2533 /* If P is of the form "operator[ \t]+..." where `...' is
2534 some legitimate operator text, return a pointer to the
2535 beginning of the substring of the operator text.
2536 Otherwise, return "". */
2537 char *
2538 operator_chars (char *p, char **end)
2539 {
2540 *end = "";
2541 if (strncmp (p, "operator", 8))
2542 return *end;
2543 p += 8;
2544
2545 /* Don't get faked out by `operator' being part of a longer
2546 identifier. */
2547 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2548 return *end;
2549
2550 /* Allow some whitespace between `operator' and the operator symbol. */
2551 while (*p == ' ' || *p == '\t')
2552 p++;
2553
2554 /* Recognize 'operator TYPENAME'. */
2555
2556 if (isalpha (*p) || *p == '_' || *p == '$')
2557 {
2558 char *q = p + 1;
2559
2560 while (isalnum (*q) || *q == '_' || *q == '$')
2561 q++;
2562 *end = q;
2563 return p;
2564 }
2565
2566 while (*p)
2567 switch (*p)
2568 {
2569 case '\\': /* regexp quoting */
2570 if (p[1] == '*')
2571 {
2572 if (p[2] == '=') /* 'operator\*=' */
2573 *end = p + 3;
2574 else /* 'operator\*' */
2575 *end = p + 2;
2576 return p;
2577 }
2578 else if (p[1] == '[')
2579 {
2580 if (p[2] == ']')
2581 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2582 else if (p[2] == '\\' && p[3] == ']')
2583 {
2584 *end = p + 4; /* 'operator\[\]' */
2585 return p;
2586 }
2587 else
2588 error (_("nothing is allowed between '[' and ']'"));
2589 }
2590 else
2591 {
2592 /* Gratuitous qoute: skip it and move on. */
2593 p++;
2594 continue;
2595 }
2596 break;
2597 case '!':
2598 case '=':
2599 case '*':
2600 case '/':
2601 case '%':
2602 case '^':
2603 if (p[1] == '=')
2604 *end = p + 2;
2605 else
2606 *end = p + 1;
2607 return p;
2608 case '<':
2609 case '>':
2610 case '+':
2611 case '-':
2612 case '&':
2613 case '|':
2614 if (p[0] == '-' && p[1] == '>')
2615 {
2616 /* Struct pointer member operator 'operator->'. */
2617 if (p[2] == '*')
2618 {
2619 *end = p + 3; /* 'operator->*' */
2620 return p;
2621 }
2622 else if (p[2] == '\\')
2623 {
2624 *end = p + 4; /* Hopefully 'operator->\*' */
2625 return p;
2626 }
2627 else
2628 {
2629 *end = p + 2; /* 'operator->' */
2630 return p;
2631 }
2632 }
2633 if (p[1] == '=' || p[1] == p[0])
2634 *end = p + 2;
2635 else
2636 *end = p + 1;
2637 return p;
2638 case '~':
2639 case ',':
2640 *end = p + 1;
2641 return p;
2642 case '(':
2643 if (p[1] != ')')
2644 error (_("`operator ()' must be specified without whitespace in `()'"));
2645 *end = p + 2;
2646 return p;
2647 case '?':
2648 if (p[1] != ':')
2649 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2650 *end = p + 2;
2651 return p;
2652 case '[':
2653 if (p[1] != ']')
2654 error (_("`operator []' must be specified without whitespace in `[]'"));
2655 *end = p + 2;
2656 return p;
2657 default:
2658 error (_("`operator %s' not supported"), p);
2659 break;
2660 }
2661
2662 *end = "";
2663 return *end;
2664 }
2665 \f
2666
2667 /* If FILE is not already in the table of files, return zero;
2668 otherwise return non-zero. Optionally add FILE to the table if ADD
2669 is non-zero. If *FIRST is non-zero, forget the old table
2670 contents. */
2671 static int
2672 filename_seen (const char *file, int add, int *first)
2673 {
2674 /* Table of files seen so far. */
2675 static const char **tab = NULL;
2676 /* Allocated size of tab in elements.
2677 Start with one 256-byte block (when using GNU malloc.c).
2678 24 is the malloc overhead when range checking is in effect. */
2679 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2680 /* Current size of tab in elements. */
2681 static int tab_cur_size;
2682 const char **p;
2683
2684 if (*first)
2685 {
2686 if (tab == NULL)
2687 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2688 tab_cur_size = 0;
2689 }
2690
2691 /* Is FILE in tab? */
2692 for (p = tab; p < tab + tab_cur_size; p++)
2693 if (strcmp (*p, file) == 0)
2694 return 1;
2695
2696 /* No; maybe add it to tab. */
2697 if (add)
2698 {
2699 if (tab_cur_size == tab_alloc_size)
2700 {
2701 tab_alloc_size *= 2;
2702 tab = (const char **) xrealloc ((char *) tab,
2703 tab_alloc_size * sizeof (*tab));
2704 }
2705 tab[tab_cur_size++] = file;
2706 }
2707
2708 return 0;
2709 }
2710
2711 /* Slave routine for sources_info. Force line breaks at ,'s.
2712 NAME is the name to print and *FIRST is nonzero if this is the first
2713 name printed. Set *FIRST to zero. */
2714 static void
2715 output_source_filename (const char *name, int *first)
2716 {
2717 /* Since a single source file can result in several partial symbol
2718 tables, we need to avoid printing it more than once. Note: if
2719 some of the psymtabs are read in and some are not, it gets
2720 printed both under "Source files for which symbols have been
2721 read" and "Source files for which symbols will be read in on
2722 demand". I consider this a reasonable way to deal with the
2723 situation. I'm not sure whether this can also happen for
2724 symtabs; it doesn't hurt to check. */
2725
2726 /* Was NAME already seen? */
2727 if (filename_seen (name, 1, first))
2728 {
2729 /* Yes; don't print it again. */
2730 return;
2731 }
2732 /* No; print it and reset *FIRST. */
2733 if (*first)
2734 {
2735 *first = 0;
2736 }
2737 else
2738 {
2739 printf_filtered (", ");
2740 }
2741
2742 wrap_here ("");
2743 fputs_filtered (name, gdb_stdout);
2744 }
2745
2746 /* A callback for map_partial_symbol_filenames. */
2747 static void
2748 output_partial_symbol_filename (const char *fullname, const char *filename,
2749 void *data)
2750 {
2751 output_source_filename (fullname ? fullname : filename, data);
2752 }
2753
2754 static void
2755 sources_info (char *ignore, int from_tty)
2756 {
2757 struct symtab *s;
2758 struct objfile *objfile;
2759 int first;
2760
2761 if (!have_full_symbols () && !have_partial_symbols ())
2762 {
2763 error (_("No symbol table is loaded. Use the \"file\" command."));
2764 }
2765
2766 printf_filtered ("Source files for which symbols have been read in:\n\n");
2767
2768 first = 1;
2769 ALL_SYMTABS (objfile, s)
2770 {
2771 const char *fullname = symtab_to_fullname (s);
2772
2773 output_source_filename (fullname ? fullname : s->filename, &first);
2774 }
2775 printf_filtered ("\n\n");
2776
2777 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2778
2779 first = 1;
2780 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2781 printf_filtered ("\n");
2782 }
2783
2784 static int
2785 file_matches (const char *file, char *files[], int nfiles)
2786 {
2787 int i;
2788
2789 if (file != NULL && nfiles != 0)
2790 {
2791 for (i = 0; i < nfiles; i++)
2792 {
2793 if (strcmp (files[i], lbasename (file)) == 0)
2794 return 1;
2795 }
2796 }
2797 else if (nfiles == 0)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Free any memory associated with a search. */
2803 void
2804 free_search_symbols (struct symbol_search *symbols)
2805 {
2806 struct symbol_search *p;
2807 struct symbol_search *next;
2808
2809 for (p = symbols; p != NULL; p = next)
2810 {
2811 next = p->next;
2812 xfree (p);
2813 }
2814 }
2815
2816 static void
2817 do_free_search_symbols_cleanup (void *symbols)
2818 {
2819 free_search_symbols (symbols);
2820 }
2821
2822 struct cleanup *
2823 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2824 {
2825 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2826 }
2827
2828 /* Helper function for sort_search_symbols and qsort. Can only
2829 sort symbols, not minimal symbols. */
2830 static int
2831 compare_search_syms (const void *sa, const void *sb)
2832 {
2833 struct symbol_search **sym_a = (struct symbol_search **) sa;
2834 struct symbol_search **sym_b = (struct symbol_search **) sb;
2835
2836 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2837 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2838 }
2839
2840 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2841 prevtail where it is, but update its next pointer to point to
2842 the first of the sorted symbols. */
2843 static struct symbol_search *
2844 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2845 {
2846 struct symbol_search **symbols, *symp, *old_next;
2847 int i;
2848
2849 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2850 * nfound);
2851 symp = prevtail->next;
2852 for (i = 0; i < nfound; i++)
2853 {
2854 symbols[i] = symp;
2855 symp = symp->next;
2856 }
2857 /* Generally NULL. */
2858 old_next = symp;
2859
2860 qsort (symbols, nfound, sizeof (struct symbol_search *),
2861 compare_search_syms);
2862
2863 symp = prevtail;
2864 for (i = 0; i < nfound; i++)
2865 {
2866 symp->next = symbols[i];
2867 symp = symp->next;
2868 }
2869 symp->next = old_next;
2870
2871 xfree (symbols);
2872 return symp;
2873 }
2874
2875 /* An object of this type is passed as the user_data to the
2876 expand_symtabs_matching method. */
2877 struct search_symbols_data
2878 {
2879 int nfiles;
2880 char **files;
2881 char *regexp;
2882 };
2883
2884 /* A callback for expand_symtabs_matching. */
2885 static int
2886 search_symbols_file_matches (const char *filename, void *user_data)
2887 {
2888 struct search_symbols_data *data = user_data;
2889
2890 return file_matches (filename, data->files, data->nfiles);
2891 }
2892
2893 /* A callback for expand_symtabs_matching. */
2894 static int
2895 search_symbols_name_matches (const char *symname, void *user_data)
2896 {
2897 struct search_symbols_data *data = user_data;
2898
2899 return data->regexp == NULL || re_exec (symname);
2900 }
2901
2902 /* Search the symbol table for matches to the regular expression REGEXP,
2903 returning the results in *MATCHES.
2904
2905 Only symbols of KIND are searched:
2906 FUNCTIONS_DOMAIN - search all functions
2907 TYPES_DOMAIN - search all type names
2908 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2909 and constants (enums)
2910
2911 free_search_symbols should be called when *MATCHES is no longer needed.
2912
2913 The results are sorted locally; each symtab's global and static blocks are
2914 separately alphabetized.
2915 */
2916 void
2917 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2918 struct symbol_search **matches)
2919 {
2920 struct symtab *s;
2921 struct blockvector *bv;
2922 struct block *b;
2923 int i = 0;
2924 struct dict_iterator iter;
2925 struct symbol *sym;
2926 struct objfile *objfile;
2927 struct minimal_symbol *msymbol;
2928 char *val;
2929 int found_misc = 0;
2930 static enum minimal_symbol_type types[]
2931 = {mst_data, mst_text, mst_abs, mst_unknown};
2932 static enum minimal_symbol_type types2[]
2933 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
2934 static enum minimal_symbol_type types3[]
2935 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2936 static enum minimal_symbol_type types4[]
2937 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
2938 enum minimal_symbol_type ourtype;
2939 enum minimal_symbol_type ourtype2;
2940 enum minimal_symbol_type ourtype3;
2941 enum minimal_symbol_type ourtype4;
2942 struct symbol_search *sr;
2943 struct symbol_search *psr;
2944 struct symbol_search *tail;
2945 struct cleanup *old_chain = NULL;
2946 struct search_symbols_data datum;
2947
2948 if (kind < VARIABLES_DOMAIN)
2949 error (_("must search on specific domain"));
2950
2951 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2952 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2953 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2954 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2955
2956 sr = *matches = NULL;
2957 tail = NULL;
2958
2959 if (regexp != NULL)
2960 {
2961 /* Make sure spacing is right for C++ operators.
2962 This is just a courtesy to make the matching less sensitive
2963 to how many spaces the user leaves between 'operator'
2964 and <TYPENAME> or <OPERATOR>. */
2965 char *opend;
2966 char *opname = operator_chars (regexp, &opend);
2967
2968 if (*opname)
2969 {
2970 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2971
2972 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2973 {
2974 /* There should 1 space between 'operator' and 'TYPENAME'. */
2975 if (opname[-1] != ' ' || opname[-2] == ' ')
2976 fix = 1;
2977 }
2978 else
2979 {
2980 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2981 if (opname[-1] == ' ')
2982 fix = 0;
2983 }
2984 /* If wrong number of spaces, fix it. */
2985 if (fix >= 0)
2986 {
2987 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2988
2989 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2990 regexp = tmp;
2991 }
2992 }
2993
2994 if (0 != (val = re_comp (regexp)))
2995 error (_("Invalid regexp (%s): %s"), val, regexp);
2996 }
2997
2998 /* Search through the partial symtabs *first* for all symbols
2999 matching the regexp. That way we don't have to reproduce all of
3000 the machinery below. */
3001
3002 datum.nfiles = nfiles;
3003 datum.files = files;
3004 datum.regexp = regexp;
3005 ALL_OBJFILES (objfile)
3006 {
3007 if (objfile->sf)
3008 objfile->sf->qf->expand_symtabs_matching (objfile,
3009 search_symbols_file_matches,
3010 search_symbols_name_matches,
3011 kind,
3012 &datum);
3013 }
3014
3015 /* Here, we search through the minimal symbol tables for functions
3016 and variables that match, and force their symbols to be read.
3017 This is in particular necessary for demangled variable names,
3018 which are no longer put into the partial symbol tables.
3019 The symbol will then be found during the scan of symtabs below.
3020
3021 For functions, find_pc_symtab should succeed if we have debug info
3022 for the function, for variables we have to call lookup_symbol
3023 to determine if the variable has debug info.
3024 If the lookup fails, set found_misc so that we will rescan to print
3025 any matching symbols without debug info.
3026 */
3027
3028 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3029 {
3030 ALL_MSYMBOLS (objfile, msymbol)
3031 {
3032 QUIT;
3033
3034 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3035 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3036 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3037 MSYMBOL_TYPE (msymbol) == ourtype4)
3038 {
3039 if (regexp == NULL
3040 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3041 {
3042 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3043 {
3044 /* FIXME: carlton/2003-02-04: Given that the
3045 semantics of lookup_symbol keeps on changing
3046 slightly, it would be a nice idea if we had a
3047 function lookup_symbol_minsym that found the
3048 symbol associated to a given minimal symbol (if
3049 any). */
3050 if (kind == FUNCTIONS_DOMAIN
3051 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3052 (struct block *) NULL,
3053 VAR_DOMAIN, 0)
3054 == NULL)
3055 found_misc = 1;
3056 }
3057 }
3058 }
3059 }
3060 }
3061
3062 ALL_PRIMARY_SYMTABS (objfile, s)
3063 {
3064 bv = BLOCKVECTOR (s);
3065 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3066 {
3067 struct symbol_search *prevtail = tail;
3068 int nfound = 0;
3069
3070 b = BLOCKVECTOR_BLOCK (bv, i);
3071 ALL_BLOCK_SYMBOLS (b, iter, sym)
3072 {
3073 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3074
3075 QUIT;
3076
3077 if (file_matches (real_symtab->filename, files, nfiles)
3078 && ((regexp == NULL
3079 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3080 && ((kind == VARIABLES_DOMAIN
3081 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3082 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3083 && SYMBOL_CLASS (sym) != LOC_BLOCK
3084 /* LOC_CONST can be used for more than just enums,
3085 e.g., c++ static const members.
3086 We only want to skip enums here. */
3087 && !(SYMBOL_CLASS (sym) == LOC_CONST
3088 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM))
3089 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3090 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3091 {
3092 /* match */
3093 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3094 psr->block = i;
3095 psr->symtab = real_symtab;
3096 psr->symbol = sym;
3097 psr->msymbol = NULL;
3098 psr->next = NULL;
3099 if (tail == NULL)
3100 sr = psr;
3101 else
3102 tail->next = psr;
3103 tail = psr;
3104 nfound ++;
3105 }
3106 }
3107 if (nfound > 0)
3108 {
3109 if (prevtail == NULL)
3110 {
3111 struct symbol_search dummy;
3112
3113 dummy.next = sr;
3114 tail = sort_search_symbols (&dummy, nfound);
3115 sr = dummy.next;
3116
3117 old_chain = make_cleanup_free_search_symbols (sr);
3118 }
3119 else
3120 tail = sort_search_symbols (prevtail, nfound);
3121 }
3122 }
3123 }
3124
3125 /* If there are no eyes, avoid all contact. I mean, if there are
3126 no debug symbols, then print directly from the msymbol_vector. */
3127
3128 if (found_misc || kind != FUNCTIONS_DOMAIN)
3129 {
3130 ALL_MSYMBOLS (objfile, msymbol)
3131 {
3132 QUIT;
3133
3134 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3135 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3136 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3137 MSYMBOL_TYPE (msymbol) == ourtype4)
3138 {
3139 if (regexp == NULL
3140 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3141 {
3142 /* Functions: Look up by address. */
3143 if (kind != FUNCTIONS_DOMAIN ||
3144 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3145 {
3146 /* Variables/Absolutes: Look up by name */
3147 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3148 (struct block *) NULL, VAR_DOMAIN, 0)
3149 == NULL)
3150 {
3151 /* match */
3152 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3153 psr->block = i;
3154 psr->msymbol = msymbol;
3155 psr->symtab = NULL;
3156 psr->symbol = NULL;
3157 psr->next = NULL;
3158 if (tail == NULL)
3159 {
3160 sr = psr;
3161 old_chain = make_cleanup_free_search_symbols (sr);
3162 }
3163 else
3164 tail->next = psr;
3165 tail = psr;
3166 }
3167 }
3168 }
3169 }
3170 }
3171 }
3172
3173 *matches = sr;
3174 if (sr != NULL)
3175 discard_cleanups (old_chain);
3176 }
3177
3178 /* Helper function for symtab_symbol_info, this function uses
3179 the data returned from search_symbols() to print information
3180 regarding the match to gdb_stdout.
3181 */
3182 static void
3183 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3184 int block, char *last)
3185 {
3186 if (last == NULL || strcmp (last, s->filename) != 0)
3187 {
3188 fputs_filtered ("\nFile ", gdb_stdout);
3189 fputs_filtered (s->filename, gdb_stdout);
3190 fputs_filtered (":\n", gdb_stdout);
3191 }
3192
3193 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3194 printf_filtered ("static ");
3195
3196 /* Typedef that is not a C++ class */
3197 if (kind == TYPES_DOMAIN
3198 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3199 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3200 /* variable, func, or typedef-that-is-c++-class */
3201 else if (kind < TYPES_DOMAIN ||
3202 (kind == TYPES_DOMAIN &&
3203 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3204 {
3205 type_print (SYMBOL_TYPE (sym),
3206 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3207 ? "" : SYMBOL_PRINT_NAME (sym)),
3208 gdb_stdout, 0);
3209
3210 printf_filtered (";\n");
3211 }
3212 }
3213
3214 /* This help function for symtab_symbol_info() prints information
3215 for non-debugging symbols to gdb_stdout.
3216 */
3217 static void
3218 print_msymbol_info (struct minimal_symbol *msymbol)
3219 {
3220 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3221 char *tmp;
3222
3223 if (gdbarch_addr_bit (gdbarch) <= 32)
3224 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3225 & (CORE_ADDR) 0xffffffff,
3226 8);
3227 else
3228 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3229 16);
3230 printf_filtered ("%s %s\n",
3231 tmp, SYMBOL_PRINT_NAME (msymbol));
3232 }
3233
3234 /* This is the guts of the commands "info functions", "info types", and
3235 "info variables". It calls search_symbols to find all matches and then
3236 print_[m]symbol_info to print out some useful information about the
3237 matches.
3238 */
3239 static void
3240 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3241 {
3242 static char *classnames[] = {"variable", "function", "type", "method"};
3243 struct symbol_search *symbols;
3244 struct symbol_search *p;
3245 struct cleanup *old_chain;
3246 char *last_filename = NULL;
3247 int first = 1;
3248
3249 /* must make sure that if we're interrupted, symbols gets freed */
3250 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3251 old_chain = make_cleanup_free_search_symbols (symbols);
3252
3253 printf_filtered (regexp
3254 ? "All %ss matching regular expression \"%s\":\n"
3255 : "All defined %ss:\n",
3256 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3257
3258 for (p = symbols; p != NULL; p = p->next)
3259 {
3260 QUIT;
3261
3262 if (p->msymbol != NULL)
3263 {
3264 if (first)
3265 {
3266 printf_filtered ("\nNon-debugging symbols:\n");
3267 first = 0;
3268 }
3269 print_msymbol_info (p->msymbol);
3270 }
3271 else
3272 {
3273 print_symbol_info (kind,
3274 p->symtab,
3275 p->symbol,
3276 p->block,
3277 last_filename);
3278 last_filename = p->symtab->filename;
3279 }
3280 }
3281
3282 do_cleanups (old_chain);
3283 }
3284
3285 static void
3286 variables_info (char *regexp, int from_tty)
3287 {
3288 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3289 }
3290
3291 static void
3292 functions_info (char *regexp, int from_tty)
3293 {
3294 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3295 }
3296
3297
3298 static void
3299 types_info (char *regexp, int from_tty)
3300 {
3301 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3302 }
3303
3304 /* Breakpoint all functions matching regular expression. */
3305
3306 void
3307 rbreak_command_wrapper (char *regexp, int from_tty)
3308 {
3309 rbreak_command (regexp, from_tty);
3310 }
3311
3312 /* A cleanup function that calls end_rbreak_breakpoints. */
3313
3314 static void
3315 do_end_rbreak_breakpoints (void *ignore)
3316 {
3317 end_rbreak_breakpoints ();
3318 }
3319
3320 static void
3321 rbreak_command (char *regexp, int from_tty)
3322 {
3323 struct symbol_search *ss;
3324 struct symbol_search *p;
3325 struct cleanup *old_chain;
3326 char *string = NULL;
3327 int len = 0;
3328 char **files = NULL;
3329 int nfiles = 0;
3330
3331 if (regexp)
3332 {
3333 char *colon = strchr (regexp, ':');
3334
3335 if (colon && *(colon + 1) != ':')
3336 {
3337 int colon_index;
3338 char * file_name;
3339
3340 colon_index = colon - regexp;
3341 file_name = alloca (colon_index + 1);
3342 memcpy (file_name, regexp, colon_index);
3343 file_name[colon_index--] = 0;
3344 while (isspace (file_name[colon_index]))
3345 file_name[colon_index--] = 0;
3346 files = &file_name;
3347 nfiles = 1;
3348 regexp = colon + 1;
3349 while (isspace (*regexp)) regexp++;
3350 }
3351 }
3352
3353 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3354 old_chain = make_cleanup_free_search_symbols (ss);
3355 make_cleanup (free_current_contents, &string);
3356
3357 start_rbreak_breakpoints ();
3358 make_cleanup (do_end_rbreak_breakpoints, NULL);
3359 for (p = ss; p != NULL; p = p->next)
3360 {
3361 if (p->msymbol == NULL)
3362 {
3363 int newlen = (strlen (p->symtab->filename)
3364 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3365 + 4);
3366
3367 if (newlen > len)
3368 {
3369 string = xrealloc (string, newlen);
3370 len = newlen;
3371 }
3372 strcpy (string, p->symtab->filename);
3373 strcat (string, ":'");
3374 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3375 strcat (string, "'");
3376 break_command (string, from_tty);
3377 print_symbol_info (FUNCTIONS_DOMAIN,
3378 p->symtab,
3379 p->symbol,
3380 p->block,
3381 p->symtab->filename);
3382 }
3383 else
3384 {
3385 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3386
3387 if (newlen > len)
3388 {
3389 string = xrealloc (string, newlen);
3390 len = newlen;
3391 }
3392 strcpy (string, "'");
3393 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3394 strcat (string, "'");
3395
3396 break_command (string, from_tty);
3397 printf_filtered ("<function, no debug info> %s;\n",
3398 SYMBOL_PRINT_NAME (p->msymbol));
3399 }
3400 }
3401
3402 do_cleanups (old_chain);
3403 }
3404 \f
3405
3406 /* Helper routine for make_symbol_completion_list. */
3407
3408 static int return_val_size;
3409 static int return_val_index;
3410 static char **return_val;
3411
3412 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3413 completion_list_add_name \
3414 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3415
3416 /* Test to see if the symbol specified by SYMNAME (which is already
3417 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3418 characters. If so, add it to the current completion list. */
3419
3420 static void
3421 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3422 char *text, char *word)
3423 {
3424 int newsize;
3425
3426 /* clip symbols that cannot match */
3427
3428 if (strncmp (symname, sym_text, sym_text_len) != 0)
3429 {
3430 return;
3431 }
3432
3433 /* We have a match for a completion, so add SYMNAME to the current list
3434 of matches. Note that the name is moved to freshly malloc'd space. */
3435
3436 {
3437 char *new;
3438
3439 if (word == sym_text)
3440 {
3441 new = xmalloc (strlen (symname) + 5);
3442 strcpy (new, symname);
3443 }
3444 else if (word > sym_text)
3445 {
3446 /* Return some portion of symname. */
3447 new = xmalloc (strlen (symname) + 5);
3448 strcpy (new, symname + (word - sym_text));
3449 }
3450 else
3451 {
3452 /* Return some of SYM_TEXT plus symname. */
3453 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3454 strncpy (new, word, sym_text - word);
3455 new[sym_text - word] = '\0';
3456 strcat (new, symname);
3457 }
3458
3459 if (return_val_index + 3 > return_val_size)
3460 {
3461 newsize = (return_val_size *= 2) * sizeof (char *);
3462 return_val = (char **) xrealloc ((char *) return_val, newsize);
3463 }
3464 return_val[return_val_index++] = new;
3465 return_val[return_val_index] = NULL;
3466 }
3467 }
3468
3469 /* ObjC: In case we are completing on a selector, look as the msymbol
3470 again and feed all the selectors into the mill. */
3471
3472 static void
3473 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3474 int sym_text_len, char *text, char *word)
3475 {
3476 static char *tmp = NULL;
3477 static unsigned int tmplen = 0;
3478
3479 char *method, *category, *selector;
3480 char *tmp2 = NULL;
3481
3482 method = SYMBOL_NATURAL_NAME (msymbol);
3483
3484 /* Is it a method? */
3485 if ((method[0] != '-') && (method[0] != '+'))
3486 return;
3487
3488 if (sym_text[0] == '[')
3489 /* Complete on shortened method method. */
3490 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3491
3492 while ((strlen (method) + 1) >= tmplen)
3493 {
3494 if (tmplen == 0)
3495 tmplen = 1024;
3496 else
3497 tmplen *= 2;
3498 tmp = xrealloc (tmp, tmplen);
3499 }
3500 selector = strchr (method, ' ');
3501 if (selector != NULL)
3502 selector++;
3503
3504 category = strchr (method, '(');
3505
3506 if ((category != NULL) && (selector != NULL))
3507 {
3508 memcpy (tmp, method, (category - method));
3509 tmp[category - method] = ' ';
3510 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3511 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3512 if (sym_text[0] == '[')
3513 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3514 }
3515
3516 if (selector != NULL)
3517 {
3518 /* Complete on selector only. */
3519 strcpy (tmp, selector);
3520 tmp2 = strchr (tmp, ']');
3521 if (tmp2 != NULL)
3522 *tmp2 = '\0';
3523
3524 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3525 }
3526 }
3527
3528 /* Break the non-quoted text based on the characters which are in
3529 symbols. FIXME: This should probably be language-specific. */
3530
3531 static char *
3532 language_search_unquoted_string (char *text, char *p)
3533 {
3534 for (; p > text; --p)
3535 {
3536 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3537 continue;
3538 else
3539 {
3540 if ((current_language->la_language == language_objc))
3541 {
3542 if (p[-1] == ':') /* might be part of a method name */
3543 continue;
3544 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3545 p -= 2; /* beginning of a method name */
3546 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3547 { /* might be part of a method name */
3548 char *t = p;
3549
3550 /* Seeing a ' ' or a '(' is not conclusive evidence
3551 that we are in the middle of a method name. However,
3552 finding "-[" or "+[" should be pretty un-ambiguous.
3553 Unfortunately we have to find it now to decide. */
3554
3555 while (t > text)
3556 if (isalnum (t[-1]) || t[-1] == '_' ||
3557 t[-1] == ' ' || t[-1] == ':' ||
3558 t[-1] == '(' || t[-1] == ')')
3559 --t;
3560 else
3561 break;
3562
3563 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3564 p = t - 2; /* method name detected */
3565 /* else we leave with p unchanged */
3566 }
3567 }
3568 break;
3569 }
3570 }
3571 return p;
3572 }
3573
3574 static void
3575 completion_list_add_fields (struct symbol *sym, char *sym_text,
3576 int sym_text_len, char *text, char *word)
3577 {
3578 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3579 {
3580 struct type *t = SYMBOL_TYPE (sym);
3581 enum type_code c = TYPE_CODE (t);
3582 int j;
3583
3584 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3585 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3586 if (TYPE_FIELD_NAME (t, j))
3587 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3588 sym_text, sym_text_len, text, word);
3589 }
3590 }
3591
3592 /* Type of the user_data argument passed to add_macro_name or
3593 add_partial_symbol_name. The contents are simply whatever is
3594 needed by completion_list_add_name. */
3595 struct add_name_data
3596 {
3597 char *sym_text;
3598 int sym_text_len;
3599 char *text;
3600 char *word;
3601 };
3602
3603 /* A callback used with macro_for_each and macro_for_each_in_scope.
3604 This adds a macro's name to the current completion list. */
3605 static void
3606 add_macro_name (const char *name, const struct macro_definition *ignore,
3607 void *user_data)
3608 {
3609 struct add_name_data *datum = (struct add_name_data *) user_data;
3610
3611 completion_list_add_name ((char *) name,
3612 datum->sym_text, datum->sym_text_len,
3613 datum->text, datum->word);
3614 }
3615
3616 /* A callback for map_partial_symbol_names. */
3617 static void
3618 add_partial_symbol_name (const char *name, void *user_data)
3619 {
3620 struct add_name_data *datum = (struct add_name_data *) user_data;
3621
3622 completion_list_add_name ((char *) name,
3623 datum->sym_text, datum->sym_text_len,
3624 datum->text, datum->word);
3625 }
3626
3627 char **
3628 default_make_symbol_completion_list_break_on (char *text, char *word,
3629 const char *break_on)
3630 {
3631 /* Problem: All of the symbols have to be copied because readline
3632 frees them. I'm not going to worry about this; hopefully there
3633 won't be that many. */
3634
3635 struct symbol *sym;
3636 struct symtab *s;
3637 struct minimal_symbol *msymbol;
3638 struct objfile *objfile;
3639 struct block *b;
3640 const struct block *surrounding_static_block, *surrounding_global_block;
3641 struct dict_iterator iter;
3642 /* The symbol we are completing on. Points in same buffer as text. */
3643 char *sym_text;
3644 /* Length of sym_text. */
3645 int sym_text_len;
3646 struct add_name_data datum;
3647
3648 /* Now look for the symbol we are supposed to complete on. */
3649 {
3650 char *p;
3651 char quote_found;
3652 char *quote_pos = NULL;
3653
3654 /* First see if this is a quoted string. */
3655 quote_found = '\0';
3656 for (p = text; *p != '\0'; ++p)
3657 {
3658 if (quote_found != '\0')
3659 {
3660 if (*p == quote_found)
3661 /* Found close quote. */
3662 quote_found = '\0';
3663 else if (*p == '\\' && p[1] == quote_found)
3664 /* A backslash followed by the quote character
3665 doesn't end the string. */
3666 ++p;
3667 }
3668 else if (*p == '\'' || *p == '"')
3669 {
3670 quote_found = *p;
3671 quote_pos = p;
3672 }
3673 }
3674 if (quote_found == '\'')
3675 /* A string within single quotes can be a symbol, so complete on it. */
3676 sym_text = quote_pos + 1;
3677 else if (quote_found == '"')
3678 /* A double-quoted string is never a symbol, nor does it make sense
3679 to complete it any other way. */
3680 {
3681 return_val = (char **) xmalloc (sizeof (char *));
3682 return_val[0] = NULL;
3683 return return_val;
3684 }
3685 else
3686 {
3687 /* It is not a quoted string. Break it based on the characters
3688 which are in symbols. */
3689 while (p > text)
3690 {
3691 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3692 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3693 --p;
3694 else
3695 break;
3696 }
3697 sym_text = p;
3698 }
3699 }
3700
3701 sym_text_len = strlen (sym_text);
3702
3703 return_val_size = 100;
3704 return_val_index = 0;
3705 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3706 return_val[0] = NULL;
3707
3708 datum.sym_text = sym_text;
3709 datum.sym_text_len = sym_text_len;
3710 datum.text = text;
3711 datum.word = word;
3712
3713 /* Look through the partial symtabs for all symbols which begin
3714 by matching SYM_TEXT. Add each one that you find to the list. */
3715 map_partial_symbol_names (add_partial_symbol_name, &datum);
3716
3717 /* At this point scan through the misc symbol vectors and add each
3718 symbol you find to the list. Eventually we want to ignore
3719 anything that isn't a text symbol (everything else will be
3720 handled by the psymtab code above). */
3721
3722 ALL_MSYMBOLS (objfile, msymbol)
3723 {
3724 QUIT;
3725 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3726
3727 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3728 }
3729
3730 /* Search upwards from currently selected frame (so that we can
3731 complete on local vars). Also catch fields of types defined in
3732 this places which match our text string. Only complete on types
3733 visible from current context. */
3734
3735 b = get_selected_block (0);
3736 surrounding_static_block = block_static_block (b);
3737 surrounding_global_block = block_global_block (b);
3738 if (surrounding_static_block != NULL)
3739 while (b != surrounding_static_block)
3740 {
3741 QUIT;
3742
3743 ALL_BLOCK_SYMBOLS (b, iter, sym)
3744 {
3745 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3746 word);
3747 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3748 word);
3749 }
3750
3751 /* Stop when we encounter an enclosing function. Do not stop for
3752 non-inlined functions - the locals of the enclosing function
3753 are in scope for a nested function. */
3754 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3755 break;
3756 b = BLOCK_SUPERBLOCK (b);
3757 }
3758
3759 /* Add fields from the file's types; symbols will be added below. */
3760
3761 if (surrounding_static_block != NULL)
3762 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3763 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3764
3765 if (surrounding_global_block != NULL)
3766 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3767 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3768
3769 /* Go through the symtabs and check the externs and statics for
3770 symbols which match. */
3771
3772 ALL_PRIMARY_SYMTABS (objfile, s)
3773 {
3774 QUIT;
3775 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3776 ALL_BLOCK_SYMBOLS (b, iter, sym)
3777 {
3778 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3779 }
3780 }
3781
3782 ALL_PRIMARY_SYMTABS (objfile, s)
3783 {
3784 QUIT;
3785 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3786 ALL_BLOCK_SYMBOLS (b, iter, sym)
3787 {
3788 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3789 }
3790 }
3791
3792 if (current_language->la_macro_expansion == macro_expansion_c)
3793 {
3794 struct macro_scope *scope;
3795
3796 /* Add any macros visible in the default scope. Note that this
3797 may yield the occasional wrong result, because an expression
3798 might be evaluated in a scope other than the default. For
3799 example, if the user types "break file:line if <TAB>", the
3800 resulting expression will be evaluated at "file:line" -- but
3801 at there does not seem to be a way to detect this at
3802 completion time. */
3803 scope = default_macro_scope ();
3804 if (scope)
3805 {
3806 macro_for_each_in_scope (scope->file, scope->line,
3807 add_macro_name, &datum);
3808 xfree (scope);
3809 }
3810
3811 /* User-defined macros are always visible. */
3812 macro_for_each (macro_user_macros, add_macro_name, &datum);
3813 }
3814
3815 return (return_val);
3816 }
3817
3818 char **
3819 default_make_symbol_completion_list (char *text, char *word)
3820 {
3821 return default_make_symbol_completion_list_break_on (text, word, "");
3822 }
3823
3824 /* Return a NULL terminated array of all symbols (regardless of class)
3825 which begin by matching TEXT. If the answer is no symbols, then
3826 the return value is an array which contains only a NULL pointer. */
3827
3828 char **
3829 make_symbol_completion_list (char *text, char *word)
3830 {
3831 return current_language->la_make_symbol_completion_list (text, word);
3832 }
3833
3834 /* Like make_symbol_completion_list, but suitable for use as a
3835 completion function. */
3836
3837 char **
3838 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3839 char *text, char *word)
3840 {
3841 return make_symbol_completion_list (text, word);
3842 }
3843
3844 /* Like make_symbol_completion_list, but returns a list of symbols
3845 defined in a source file FILE. */
3846
3847 char **
3848 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3849 {
3850 struct symbol *sym;
3851 struct symtab *s;
3852 struct block *b;
3853 struct dict_iterator iter;
3854 /* The symbol we are completing on. Points in same buffer as text. */
3855 char *sym_text;
3856 /* Length of sym_text. */
3857 int sym_text_len;
3858
3859 /* Now look for the symbol we are supposed to complete on.
3860 FIXME: This should be language-specific. */
3861 {
3862 char *p;
3863 char quote_found;
3864 char *quote_pos = NULL;
3865
3866 /* First see if this is a quoted string. */
3867 quote_found = '\0';
3868 for (p = text; *p != '\0'; ++p)
3869 {
3870 if (quote_found != '\0')
3871 {
3872 if (*p == quote_found)
3873 /* Found close quote. */
3874 quote_found = '\0';
3875 else if (*p == '\\' && p[1] == quote_found)
3876 /* A backslash followed by the quote character
3877 doesn't end the string. */
3878 ++p;
3879 }
3880 else if (*p == '\'' || *p == '"')
3881 {
3882 quote_found = *p;
3883 quote_pos = p;
3884 }
3885 }
3886 if (quote_found == '\'')
3887 /* A string within single quotes can be a symbol, so complete on it. */
3888 sym_text = quote_pos + 1;
3889 else if (quote_found == '"')
3890 /* A double-quoted string is never a symbol, nor does it make sense
3891 to complete it any other way. */
3892 {
3893 return_val = (char **) xmalloc (sizeof (char *));
3894 return_val[0] = NULL;
3895 return return_val;
3896 }
3897 else
3898 {
3899 /* Not a quoted string. */
3900 sym_text = language_search_unquoted_string (text, p);
3901 }
3902 }
3903
3904 sym_text_len = strlen (sym_text);
3905
3906 return_val_size = 10;
3907 return_val_index = 0;
3908 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3909 return_val[0] = NULL;
3910
3911 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3912 in). */
3913 s = lookup_symtab (srcfile);
3914 if (s == NULL)
3915 {
3916 /* Maybe they typed the file with leading directories, while the
3917 symbol tables record only its basename. */
3918 const char *tail = lbasename (srcfile);
3919
3920 if (tail > srcfile)
3921 s = lookup_symtab (tail);
3922 }
3923
3924 /* If we have no symtab for that file, return an empty list. */
3925 if (s == NULL)
3926 return (return_val);
3927
3928 /* Go through this symtab and check the externs and statics for
3929 symbols which match. */
3930
3931 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3932 ALL_BLOCK_SYMBOLS (b, iter, sym)
3933 {
3934 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3935 }
3936
3937 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3938 ALL_BLOCK_SYMBOLS (b, iter, sym)
3939 {
3940 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3941 }
3942
3943 return (return_val);
3944 }
3945
3946 /* A helper function for make_source_files_completion_list. It adds
3947 another file name to a list of possible completions, growing the
3948 list as necessary. */
3949
3950 static void
3951 add_filename_to_list (const char *fname, char *text, char *word,
3952 char ***list, int *list_used, int *list_alloced)
3953 {
3954 char *new;
3955 size_t fnlen = strlen (fname);
3956
3957 if (*list_used + 1 >= *list_alloced)
3958 {
3959 *list_alloced *= 2;
3960 *list = (char **) xrealloc ((char *) *list,
3961 *list_alloced * sizeof (char *));
3962 }
3963
3964 if (word == text)
3965 {
3966 /* Return exactly fname. */
3967 new = xmalloc (fnlen + 5);
3968 strcpy (new, fname);
3969 }
3970 else if (word > text)
3971 {
3972 /* Return some portion of fname. */
3973 new = xmalloc (fnlen + 5);
3974 strcpy (new, fname + (word - text));
3975 }
3976 else
3977 {
3978 /* Return some of TEXT plus fname. */
3979 new = xmalloc (fnlen + (text - word) + 5);
3980 strncpy (new, word, text - word);
3981 new[text - word] = '\0';
3982 strcat (new, fname);
3983 }
3984 (*list)[*list_used] = new;
3985 (*list)[++*list_used] = NULL;
3986 }
3987
3988 static int
3989 not_interesting_fname (const char *fname)
3990 {
3991 static const char *illegal_aliens[] = {
3992 "_globals_", /* inserted by coff_symtab_read */
3993 NULL
3994 };
3995 int i;
3996
3997 for (i = 0; illegal_aliens[i]; i++)
3998 {
3999 if (strcmp (fname, illegal_aliens[i]) == 0)
4000 return 1;
4001 }
4002 return 0;
4003 }
4004
4005 /* An object of this type is passed as the user_data argument to
4006 map_partial_symbol_filenames. */
4007 struct add_partial_filename_data
4008 {
4009 int *first;
4010 char *text;
4011 char *word;
4012 int text_len;
4013 char ***list;
4014 int *list_used;
4015 int *list_alloced;
4016 };
4017
4018 /* A callback for map_partial_symbol_filenames. */
4019 static void
4020 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
4021 void *user_data)
4022 {
4023 struct add_partial_filename_data *data = user_data;
4024
4025 if (not_interesting_fname (filename))
4026 return;
4027 if (!filename_seen (filename, 1, data->first)
4028 #if HAVE_DOS_BASED_FILE_SYSTEM
4029 && strncasecmp (filename, data->text, data->text_len) == 0
4030 #else
4031 && strncmp (filename, data->text, data->text_len) == 0
4032 #endif
4033 )
4034 {
4035 /* This file matches for a completion; add it to the
4036 current list of matches. */
4037 add_filename_to_list (filename, data->text, data->word,
4038 data->list, data->list_used, data->list_alloced);
4039 }
4040 else
4041 {
4042 const char *base_name = lbasename (filename);
4043
4044 if (base_name != filename
4045 && !filename_seen (base_name, 1, data->first)
4046 #if HAVE_DOS_BASED_FILE_SYSTEM
4047 && strncasecmp (base_name, data->text, data->text_len) == 0
4048 #else
4049 && strncmp (base_name, data->text, data->text_len) == 0
4050 #endif
4051 )
4052 add_filename_to_list (base_name, data->text, data->word,
4053 data->list, data->list_used, data->list_alloced);
4054 }
4055 }
4056
4057 /* Return a NULL terminated array of all source files whose names
4058 begin with matching TEXT. The file names are looked up in the
4059 symbol tables of this program. If the answer is no matchess, then
4060 the return value is an array which contains only a NULL pointer. */
4061
4062 char **
4063 make_source_files_completion_list (char *text, char *word)
4064 {
4065 struct symtab *s;
4066 struct objfile *objfile;
4067 int first = 1;
4068 int list_alloced = 1;
4069 int list_used = 0;
4070 size_t text_len = strlen (text);
4071 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4072 const char *base_name;
4073 struct add_partial_filename_data datum;
4074
4075 list[0] = NULL;
4076
4077 if (!have_full_symbols () && !have_partial_symbols ())
4078 return list;
4079
4080 ALL_SYMTABS (objfile, s)
4081 {
4082 if (not_interesting_fname (s->filename))
4083 continue;
4084 if (!filename_seen (s->filename, 1, &first)
4085 #if HAVE_DOS_BASED_FILE_SYSTEM
4086 && strncasecmp (s->filename, text, text_len) == 0
4087 #else
4088 && strncmp (s->filename, text, text_len) == 0
4089 #endif
4090 )
4091 {
4092 /* This file matches for a completion; add it to the current
4093 list of matches. */
4094 add_filename_to_list (s->filename, text, word,
4095 &list, &list_used, &list_alloced);
4096 }
4097 else
4098 {
4099 /* NOTE: We allow the user to type a base name when the
4100 debug info records leading directories, but not the other
4101 way around. This is what subroutines of breakpoint
4102 command do when they parse file names. */
4103 base_name = lbasename (s->filename);
4104 if (base_name != s->filename
4105 && !filename_seen (base_name, 1, &first)
4106 #if HAVE_DOS_BASED_FILE_SYSTEM
4107 && strncasecmp (base_name, text, text_len) == 0
4108 #else
4109 && strncmp (base_name, text, text_len) == 0
4110 #endif
4111 )
4112 add_filename_to_list (base_name, text, word,
4113 &list, &list_used, &list_alloced);
4114 }
4115 }
4116
4117 datum.first = &first;
4118 datum.text = text;
4119 datum.word = word;
4120 datum.text_len = text_len;
4121 datum.list = &list;
4122 datum.list_used = &list_used;
4123 datum.list_alloced = &list_alloced;
4124 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4125
4126 return list;
4127 }
4128
4129 /* Determine if PC is in the prologue of a function. The prologue is the area
4130 between the first instruction of a function, and the first executable line.
4131 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4132
4133 If non-zero, func_start is where we think the prologue starts, possibly
4134 by previous examination of symbol table information.
4135 */
4136
4137 int
4138 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4139 {
4140 struct symtab_and_line sal;
4141 CORE_ADDR func_addr, func_end;
4142
4143 /* We have several sources of information we can consult to figure
4144 this out.
4145 - Compilers usually emit line number info that marks the prologue
4146 as its own "source line". So the ending address of that "line"
4147 is the end of the prologue. If available, this is the most
4148 reliable method.
4149 - The minimal symbols and partial symbols, which can usually tell
4150 us the starting and ending addresses of a function.
4151 - If we know the function's start address, we can call the
4152 architecture-defined gdbarch_skip_prologue function to analyze the
4153 instruction stream and guess where the prologue ends.
4154 - Our `func_start' argument; if non-zero, this is the caller's
4155 best guess as to the function's entry point. At the time of
4156 this writing, handle_inferior_event doesn't get this right, so
4157 it should be our last resort. */
4158
4159 /* Consult the partial symbol table, to find which function
4160 the PC is in. */
4161 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4162 {
4163 CORE_ADDR prologue_end;
4164
4165 /* We don't even have minsym information, so fall back to using
4166 func_start, if given. */
4167 if (! func_start)
4168 return 1; /* We *might* be in a prologue. */
4169
4170 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4171
4172 return func_start <= pc && pc < prologue_end;
4173 }
4174
4175 /* If we have line number information for the function, that's
4176 usually pretty reliable. */
4177 sal = find_pc_line (func_addr, 0);
4178
4179 /* Now sal describes the source line at the function's entry point,
4180 which (by convention) is the prologue. The end of that "line",
4181 sal.end, is the end of the prologue.
4182
4183 Note that, for functions whose source code is all on a single
4184 line, the line number information doesn't always end up this way.
4185 So we must verify that our purported end-of-prologue address is
4186 *within* the function, not at its start or end. */
4187 if (sal.line == 0
4188 || sal.end <= func_addr
4189 || func_end <= sal.end)
4190 {
4191 /* We don't have any good line number info, so use the minsym
4192 information, together with the architecture-specific prologue
4193 scanning code. */
4194 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4195
4196 return func_addr <= pc && pc < prologue_end;
4197 }
4198
4199 /* We have line number info, and it looks good. */
4200 return func_addr <= pc && pc < sal.end;
4201 }
4202
4203 /* Given PC at the function's start address, attempt to find the
4204 prologue end using SAL information. Return zero if the skip fails.
4205
4206 A non-optimized prologue traditionally has one SAL for the function
4207 and a second for the function body. A single line function has
4208 them both pointing at the same line.
4209
4210 An optimized prologue is similar but the prologue may contain
4211 instructions (SALs) from the instruction body. Need to skip those
4212 while not getting into the function body.
4213
4214 The functions end point and an increasing SAL line are used as
4215 indicators of the prologue's endpoint.
4216
4217 This code is based on the function refine_prologue_limit (versions
4218 found in both ia64 and ppc). */
4219
4220 CORE_ADDR
4221 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4222 {
4223 struct symtab_and_line prologue_sal;
4224 CORE_ADDR start_pc;
4225 CORE_ADDR end_pc;
4226 struct block *bl;
4227
4228 /* Get an initial range for the function. */
4229 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4230 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4231
4232 prologue_sal = find_pc_line (start_pc, 0);
4233 if (prologue_sal.line != 0)
4234 {
4235 /* For langauges other than assembly, treat two consecutive line
4236 entries at the same address as a zero-instruction prologue.
4237 The GNU assembler emits separate line notes for each instruction
4238 in a multi-instruction macro, but compilers generally will not
4239 do this. */
4240 if (prologue_sal.symtab->language != language_asm)
4241 {
4242 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4243 int idx = 0;
4244
4245 /* Skip any earlier lines, and any end-of-sequence marker
4246 from a previous function. */
4247 while (linetable->item[idx].pc != prologue_sal.pc
4248 || linetable->item[idx].line == 0)
4249 idx++;
4250
4251 if (idx+1 < linetable->nitems
4252 && linetable->item[idx+1].line != 0
4253 && linetable->item[idx+1].pc == start_pc)
4254 return start_pc;
4255 }
4256
4257 /* If there is only one sal that covers the entire function,
4258 then it is probably a single line function, like
4259 "foo(){}". */
4260 if (prologue_sal.end >= end_pc)
4261 return 0;
4262
4263 while (prologue_sal.end < end_pc)
4264 {
4265 struct symtab_and_line sal;
4266
4267 sal = find_pc_line (prologue_sal.end, 0);
4268 if (sal.line == 0)
4269 break;
4270 /* Assume that a consecutive SAL for the same (or larger)
4271 line mark the prologue -> body transition. */
4272 if (sal.line >= prologue_sal.line)
4273 break;
4274
4275 /* The line number is smaller. Check that it's from the
4276 same function, not something inlined. If it's inlined,
4277 then there is no point comparing the line numbers. */
4278 bl = block_for_pc (prologue_sal.end);
4279 while (bl)
4280 {
4281 if (block_inlined_p (bl))
4282 break;
4283 if (BLOCK_FUNCTION (bl))
4284 {
4285 bl = NULL;
4286 break;
4287 }
4288 bl = BLOCK_SUPERBLOCK (bl);
4289 }
4290 if (bl != NULL)
4291 break;
4292
4293 /* The case in which compiler's optimizer/scheduler has
4294 moved instructions into the prologue. We look ahead in
4295 the function looking for address ranges whose
4296 corresponding line number is less the first one that we
4297 found for the function. This is more conservative then
4298 refine_prologue_limit which scans a large number of SALs
4299 looking for any in the prologue */
4300 prologue_sal = sal;
4301 }
4302 }
4303
4304 if (prologue_sal.end < end_pc)
4305 /* Return the end of this line, or zero if we could not find a
4306 line. */
4307 return prologue_sal.end;
4308 else
4309 /* Don't return END_PC, which is past the end of the function. */
4310 return prologue_sal.pc;
4311 }
4312 \f
4313 struct symtabs_and_lines
4314 decode_line_spec (char *string, int funfirstline)
4315 {
4316 struct symtabs_and_lines sals;
4317 struct symtab_and_line cursal;
4318
4319 if (string == 0)
4320 error (_("Empty line specification."));
4321
4322 /* We use whatever is set as the current source line. We do not try
4323 and get a default or it will recursively call us! */
4324 cursal = get_current_source_symtab_and_line ();
4325
4326 sals = decode_line_1 (&string, funfirstline,
4327 cursal.symtab, cursal.line,
4328 (char ***) NULL, NULL);
4329
4330 if (*string)
4331 error (_("Junk at end of line specification: %s"), string);
4332 return sals;
4333 }
4334
4335 /* Track MAIN */
4336 static char *name_of_main;
4337
4338 void
4339 set_main_name (const char *name)
4340 {
4341 if (name_of_main != NULL)
4342 {
4343 xfree (name_of_main);
4344 name_of_main = NULL;
4345 }
4346 if (name != NULL)
4347 {
4348 name_of_main = xstrdup (name);
4349 }
4350 }
4351
4352 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4353 accordingly. */
4354
4355 static void
4356 find_main_name (void)
4357 {
4358 const char *new_main_name;
4359
4360 /* Try to see if the main procedure is in Ada. */
4361 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4362 be to add a new method in the language vector, and call this
4363 method for each language until one of them returns a non-empty
4364 name. This would allow us to remove this hard-coded call to
4365 an Ada function. It is not clear that this is a better approach
4366 at this point, because all methods need to be written in a way
4367 such that false positives never be returned. For instance, it is
4368 important that a method does not return a wrong name for the main
4369 procedure if the main procedure is actually written in a different
4370 language. It is easy to guaranty this with Ada, since we use a
4371 special symbol generated only when the main in Ada to find the name
4372 of the main procedure. It is difficult however to see how this can
4373 be guarantied for languages such as C, for instance. This suggests
4374 that order of call for these methods becomes important, which means
4375 a more complicated approach. */
4376 new_main_name = ada_main_name ();
4377 if (new_main_name != NULL)
4378 {
4379 set_main_name (new_main_name);
4380 return;
4381 }
4382
4383 new_main_name = pascal_main_name ();
4384 if (new_main_name != NULL)
4385 {
4386 set_main_name (new_main_name);
4387 return;
4388 }
4389
4390 /* The languages above didn't identify the name of the main procedure.
4391 Fallback to "main". */
4392 set_main_name ("main");
4393 }
4394
4395 char *
4396 main_name (void)
4397 {
4398 if (name_of_main == NULL)
4399 find_main_name ();
4400
4401 return name_of_main;
4402 }
4403
4404 /* Handle ``executable_changed'' events for the symtab module. */
4405
4406 static void
4407 symtab_observer_executable_changed (void)
4408 {
4409 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4410 set_main_name (NULL);
4411 }
4412
4413 /* Helper to expand_line_sal below. Appends new sal to SAL,
4414 initializing it from SYMTAB, LINENO and PC. */
4415 static void
4416 append_expanded_sal (struct symtabs_and_lines *sal,
4417 struct program_space *pspace,
4418 struct symtab *symtab,
4419 int lineno, CORE_ADDR pc)
4420 {
4421 sal->sals = xrealloc (sal->sals,
4422 sizeof (sal->sals[0])
4423 * (sal->nelts + 1));
4424 init_sal (sal->sals + sal->nelts);
4425 sal->sals[sal->nelts].pspace = pspace;
4426 sal->sals[sal->nelts].symtab = symtab;
4427 sal->sals[sal->nelts].section = NULL;
4428 sal->sals[sal->nelts].end = 0;
4429 sal->sals[sal->nelts].line = lineno;
4430 sal->sals[sal->nelts].pc = pc;
4431 ++sal->nelts;
4432 }
4433
4434 /* Helper to expand_line_sal below. Search in the symtabs for any
4435 linetable entry that exactly matches FULLNAME and LINENO and append
4436 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4437 use FILENAME and LINENO instead. If there is at least one match,
4438 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4439 and BEST_SYMTAB. */
4440
4441 static int
4442 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4443 struct symtabs_and_lines *ret,
4444 struct linetable_entry **best_item,
4445 struct symtab **best_symtab)
4446 {
4447 struct program_space *pspace;
4448 struct objfile *objfile;
4449 struct symtab *symtab;
4450 int exact = 0;
4451 int j;
4452 *best_item = 0;
4453 *best_symtab = 0;
4454
4455 ALL_PSPACES (pspace)
4456 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4457 {
4458 if (FILENAME_CMP (filename, symtab->filename) == 0)
4459 {
4460 struct linetable *l;
4461 int len;
4462
4463 if (fullname != NULL
4464 && symtab_to_fullname (symtab) != NULL
4465 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4466 continue;
4467 l = LINETABLE (symtab);
4468 if (!l)
4469 continue;
4470 len = l->nitems;
4471
4472 for (j = 0; j < len; j++)
4473 {
4474 struct linetable_entry *item = &(l->item[j]);
4475
4476 if (item->line == lineno)
4477 {
4478 exact = 1;
4479 append_expanded_sal (ret, objfile->pspace,
4480 symtab, lineno, item->pc);
4481 }
4482 else if (!exact && item->line > lineno
4483 && (*best_item == NULL
4484 || item->line < (*best_item)->line))
4485 {
4486 *best_item = item;
4487 *best_symtab = symtab;
4488 }
4489 }
4490 }
4491 }
4492 return exact;
4493 }
4494
4495 /* Compute a set of all sals in all program spaces that correspond to
4496 same file and line as SAL and return those. If there are several
4497 sals that belong to the same block, only one sal for the block is
4498 included in results. */
4499
4500 struct symtabs_and_lines
4501 expand_line_sal (struct symtab_and_line sal)
4502 {
4503 struct symtabs_and_lines ret;
4504 int i, j;
4505 struct objfile *objfile;
4506 int lineno;
4507 int deleted = 0;
4508 struct block **blocks = NULL;
4509 int *filter;
4510 struct cleanup *old_chain;
4511
4512 ret.nelts = 0;
4513 ret.sals = NULL;
4514
4515 /* Only expand sals that represent file.c:line. */
4516 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4517 {
4518 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4519 ret.sals[0] = sal;
4520 ret.nelts = 1;
4521 return ret;
4522 }
4523 else
4524 {
4525 struct program_space *pspace;
4526 struct linetable_entry *best_item = 0;
4527 struct symtab *best_symtab = 0;
4528 int exact = 0;
4529 char *match_filename;
4530
4531 lineno = sal.line;
4532 match_filename = sal.symtab->filename;
4533
4534 /* We need to find all symtabs for a file which name
4535 is described by sal. We cannot just directly
4536 iterate over symtabs, since a symtab might not be
4537 yet created. We also cannot iterate over psymtabs,
4538 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4539 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4540 corresponding to an included file. Therefore, we do
4541 first pass over psymtabs, reading in those with
4542 the right name. Then, we iterate over symtabs, knowing
4543 that all symtabs we're interested in are loaded. */
4544
4545 old_chain = save_current_program_space ();
4546 ALL_PSPACES (pspace)
4547 {
4548 set_current_program_space (pspace);
4549 ALL_PSPACE_OBJFILES (pspace, objfile)
4550 {
4551 if (objfile->sf)
4552 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4553 sal.symtab->filename);
4554 }
4555 }
4556 do_cleanups (old_chain);
4557
4558 /* Now search the symtab for exact matches and append them. If
4559 none is found, append the best_item and all its exact
4560 matches. */
4561 symtab_to_fullname (sal.symtab);
4562 exact = append_exact_match_to_sals (sal.symtab->filename,
4563 sal.symtab->fullname, lineno,
4564 &ret, &best_item, &best_symtab);
4565 if (!exact && best_item)
4566 append_exact_match_to_sals (best_symtab->filename,
4567 best_symtab->fullname, best_item->line,
4568 &ret, &best_item, &best_symtab);
4569 }
4570
4571 /* For optimized code, compiler can scatter one source line accross
4572 disjoint ranges of PC values, even when no duplicate functions
4573 or inline functions are involved. For example, 'for (;;)' inside
4574 non-template non-inline non-ctor-or-dtor function can result
4575 in two PC ranges. In this case, we don't want to set breakpoint
4576 on first PC of each range. To filter such cases, we use containing
4577 blocks -- for each PC found above we see if there are other PCs
4578 that are in the same block. If yes, the other PCs are filtered out. */
4579
4580 old_chain = save_current_program_space ();
4581 filter = alloca (ret.nelts * sizeof (int));
4582 blocks = alloca (ret.nelts * sizeof (struct block *));
4583 for (i = 0; i < ret.nelts; ++i)
4584 {
4585 set_current_program_space (ret.sals[i].pspace);
4586
4587 filter[i] = 1;
4588 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4589
4590 }
4591 do_cleanups (old_chain);
4592
4593 for (i = 0; i < ret.nelts; ++i)
4594 if (blocks[i] != NULL)
4595 for (j = i+1; j < ret.nelts; ++j)
4596 if (blocks[j] == blocks[i])
4597 {
4598 filter[j] = 0;
4599 ++deleted;
4600 break;
4601 }
4602
4603 {
4604 struct symtab_and_line *final =
4605 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4606
4607 for (i = 0, j = 0; i < ret.nelts; ++i)
4608 if (filter[i])
4609 final[j++] = ret.sals[i];
4610
4611 ret.nelts -= deleted;
4612 xfree (ret.sals);
4613 ret.sals = final;
4614 }
4615
4616 return ret;
4617 }
4618
4619 /* Return 1 if the supplied producer string matches the ARM RealView
4620 compiler (armcc). */
4621
4622 int
4623 producer_is_realview (const char *producer)
4624 {
4625 static const char *const arm_idents[] = {
4626 "ARM C Compiler, ADS",
4627 "Thumb C Compiler, ADS",
4628 "ARM C++ Compiler, ADS",
4629 "Thumb C++ Compiler, ADS",
4630 "ARM/Thumb C/C++ Compiler, RVCT",
4631 "ARM C/C++ Compiler, RVCT"
4632 };
4633 int i;
4634
4635 if (producer == NULL)
4636 return 0;
4637
4638 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4639 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4640 return 1;
4641
4642 return 0;
4643 }
4644
4645 void
4646 _initialize_symtab (void)
4647 {
4648 add_info ("variables", variables_info, _("\
4649 All global and static variable names, or those matching REGEXP."));
4650 if (dbx_commands)
4651 add_com ("whereis", class_info, variables_info, _("\
4652 All global and static variable names, or those matching REGEXP."));
4653
4654 add_info ("functions", functions_info,
4655 _("All function names, or those matching REGEXP."));
4656
4657 /* FIXME: This command has at least the following problems:
4658 1. It prints builtin types (in a very strange and confusing fashion).
4659 2. It doesn't print right, e.g. with
4660 typedef struct foo *FOO
4661 type_print prints "FOO" when we want to make it (in this situation)
4662 print "struct foo *".
4663 I also think "ptype" or "whatis" is more likely to be useful (but if
4664 there is much disagreement "info types" can be fixed). */
4665 add_info ("types", types_info,
4666 _("All type names, or those matching REGEXP."));
4667
4668 add_info ("sources", sources_info,
4669 _("Source files in the program."));
4670
4671 add_com ("rbreak", class_breakpoint, rbreak_command,
4672 _("Set a breakpoint for all functions matching REGEXP."));
4673
4674 if (xdb_commands)
4675 {
4676 add_com ("lf", class_info, sources_info,
4677 _("Source files in the program"));
4678 add_com ("lg", class_info, variables_info, _("\
4679 All global and static variable names, or those matching REGEXP."));
4680 }
4681
4682 add_setshow_enum_cmd ("multiple-symbols", no_class,
4683 multiple_symbols_modes, &multiple_symbols_mode,
4684 _("\
4685 Set the debugger behavior when more than one symbol are possible matches\n\
4686 in an expression."), _("\
4687 Show how the debugger handles ambiguities in expressions."), _("\
4688 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4689 NULL, NULL, &setlist, &showlist);
4690
4691 observer_attach_executable_changed (symtab_observer_executable_changed);
4692 }
This page took 0.124549 seconds and 5 git commands to generate.