symtab.c (basic_lookup_symbol_nonlocal): Add comment.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_in_all_objfiles (int block_index,
84 const char *name,
85 const domain_enum domain);
86
87 static
88 struct symbol *lookup_symbol_via_quick_fns (struct objfile *objfile,
89 int block_index,
90 const char *name,
91 const domain_enum domain);
92
93 extern initialize_file_ftype _initialize_symtab;
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* When non-zero, print debugging messages related to symtab creation. */
113 unsigned int symtab_create_debug = 0;
114
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
119
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *const multiple_symbols_modes[] =
128 {
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133 };
134 static const char *multiple_symbols_mode = multiple_symbols_all;
135
136 /* Read-only accessor to AUTO_SELECT_MODE. */
137
138 const char *
139 multiple_symbols_select_mode (void)
140 {
141 return multiple_symbols_mode;
142 }
143
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148 const struct block *block_found;
149
150 /* Return the name of a domain_enum. */
151
152 const char *
153 domain_name (domain_enum e)
154 {
155 switch (e)
156 {
157 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
158 case VAR_DOMAIN: return "VAR_DOMAIN";
159 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
160 case LABEL_DOMAIN: return "LABEL_DOMAIN";
161 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
162 default: gdb_assert_not_reached ("bad domain_enum");
163 }
164 }
165
166 /* Return the name of a search_domain . */
167
168 const char *
169 search_domain_name (enum search_domain e)
170 {
171 switch (e)
172 {
173 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
174 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
175 case TYPES_DOMAIN: return "TYPES_DOMAIN";
176 case ALL_DOMAIN: return "ALL_DOMAIN";
177 default: gdb_assert_not_reached ("bad search_domain");
178 }
179 }
180
181 /* Set the primary field in SYMTAB. */
182
183 void
184 set_symtab_primary (struct symtab *symtab, int primary)
185 {
186 symtab->primary = primary;
187
188 if (symtab_create_debug && primary)
189 {
190 fprintf_unfiltered (gdb_stdlog,
191 "Created primary symtab %s for %s.\n",
192 host_address_to_string (symtab),
193 symtab_to_filename_for_display (symtab));
194 }
195 }
196
197 /* See whether FILENAME matches SEARCH_NAME using the rule that we
198 advertise to the user. (The manual's description of linespecs
199 describes what we advertise). Returns true if they match, false
200 otherwise. */
201
202 int
203 compare_filenames_for_search (const char *filename, const char *search_name)
204 {
205 int len = strlen (filename);
206 size_t search_len = strlen (search_name);
207
208 if (len < search_len)
209 return 0;
210
211 /* The tail of FILENAME must match. */
212 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
213 return 0;
214
215 /* Either the names must completely match, or the character
216 preceding the trailing SEARCH_NAME segment of FILENAME must be a
217 directory separator.
218
219 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
220 cannot match FILENAME "/path//dir/file.c" - as user has requested
221 absolute path. The sama applies for "c:\file.c" possibly
222 incorrectly hypothetically matching "d:\dir\c:\file.c".
223
224 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
225 compatible with SEARCH_NAME "file.c". In such case a compiler had
226 to put the "c:file.c" name into debug info. Such compatibility
227 works only on GDB built for DOS host. */
228 return (len == search_len
229 || (!IS_ABSOLUTE_PATH (search_name)
230 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
231 || (HAS_DRIVE_SPEC (filename)
232 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
233 }
234
235 /* Check for a symtab of a specific name by searching some symtabs.
236 This is a helper function for callbacks of iterate_over_symtabs.
237
238 If NAME is not absolute, then REAL_PATH is NULL
239 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
240
241 The return value, NAME, REAL_PATH, CALLBACK, and DATA
242 are identical to the `map_symtabs_matching_filename' method of
243 quick_symbol_functions.
244
245 FIRST and AFTER_LAST indicate the range of symtabs to search.
246 AFTER_LAST is one past the last symtab to search; NULL means to
247 search until the end of the list. */
248
249 int
250 iterate_over_some_symtabs (const char *name,
251 const char *real_path,
252 int (*callback) (struct symtab *symtab,
253 void *data),
254 void *data,
255 struct symtab *first,
256 struct symtab *after_last)
257 {
258 struct symtab *s = NULL;
259 const char* base_name = lbasename (name);
260
261 for (s = first; s != NULL && s != after_last; s = s->next)
262 {
263 if (compare_filenames_for_search (s->filename, name))
264 {
265 if (callback (s, data))
266 return 1;
267 continue;
268 }
269
270 /* Before we invoke realpath, which can get expensive when many
271 files are involved, do a quick comparison of the basenames. */
272 if (! basenames_may_differ
273 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
274 continue;
275
276 if (compare_filenames_for_search (symtab_to_fullname (s), name))
277 {
278 if (callback (s, data))
279 return 1;
280 continue;
281 }
282
283 /* If the user gave us an absolute path, try to find the file in
284 this symtab and use its absolute path. */
285 if (real_path != NULL)
286 {
287 const char *fullname = symtab_to_fullname (s);
288
289 gdb_assert (IS_ABSOLUTE_PATH (real_path));
290 gdb_assert (IS_ABSOLUTE_PATH (name));
291 if (FILENAME_CMP (real_path, fullname) == 0)
292 {
293 if (callback (s, data))
294 return 1;
295 continue;
296 }
297 }
298 }
299
300 return 0;
301 }
302
303 /* Check for a symtab of a specific name; first in symtabs, then in
304 psymtabs. *If* there is no '/' in the name, a match after a '/'
305 in the symtab filename will also work.
306
307 Calls CALLBACK with each symtab that is found and with the supplied
308 DATA. If CALLBACK returns true, the search stops. */
309
310 void
311 iterate_over_symtabs (const char *name,
312 int (*callback) (struct symtab *symtab,
313 void *data),
314 void *data)
315 {
316 struct objfile *objfile;
317 char *real_path = NULL;
318 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
319
320 /* Here we are interested in canonicalizing an absolute path, not
321 absolutizing a relative path. */
322 if (IS_ABSOLUTE_PATH (name))
323 {
324 real_path = gdb_realpath (name);
325 make_cleanup (xfree, real_path);
326 gdb_assert (IS_ABSOLUTE_PATH (real_path));
327 }
328
329 ALL_OBJFILES (objfile)
330 {
331 if (iterate_over_some_symtabs (name, real_path, callback, data,
332 objfile->symtabs, NULL))
333 {
334 do_cleanups (cleanups);
335 return;
336 }
337 }
338
339 /* Same search rules as above apply here, but now we look thru the
340 psymtabs. */
341
342 ALL_OBJFILES (objfile)
343 {
344 if (objfile->sf
345 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
346 name,
347 real_path,
348 callback,
349 data))
350 {
351 do_cleanups (cleanups);
352 return;
353 }
354 }
355
356 do_cleanups (cleanups);
357 }
358
359 /* The callback function used by lookup_symtab. */
360
361 static int
362 lookup_symtab_callback (struct symtab *symtab, void *data)
363 {
364 struct symtab **result_ptr = data;
365
366 *result_ptr = symtab;
367 return 1;
368 }
369
370 /* A wrapper for iterate_over_symtabs that returns the first matching
371 symtab, or NULL. */
372
373 struct symtab *
374 lookup_symtab (const char *name)
375 {
376 struct symtab *result = NULL;
377
378 iterate_over_symtabs (name, lookup_symtab_callback, &result);
379 return result;
380 }
381
382 \f
383 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
384 full method name, which consist of the class name (from T), the unadorned
385 method name from METHOD_ID, and the signature for the specific overload,
386 specified by SIGNATURE_ID. Note that this function is g++ specific. */
387
388 char *
389 gdb_mangle_name (struct type *type, int method_id, int signature_id)
390 {
391 int mangled_name_len;
392 char *mangled_name;
393 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
394 struct fn_field *method = &f[signature_id];
395 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
396 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
397 const char *newname = type_name_no_tag (type);
398
399 /* Does the form of physname indicate that it is the full mangled name
400 of a constructor (not just the args)? */
401 int is_full_physname_constructor;
402
403 int is_constructor;
404 int is_destructor = is_destructor_name (physname);
405 /* Need a new type prefix. */
406 char *const_prefix = method->is_const ? "C" : "";
407 char *volatile_prefix = method->is_volatile ? "V" : "";
408 char buf[20];
409 int len = (newname == NULL ? 0 : strlen (newname));
410
411 /* Nothing to do if physname already contains a fully mangled v3 abi name
412 or an operator name. */
413 if ((physname[0] == '_' && physname[1] == 'Z')
414 || is_operator_name (field_name))
415 return xstrdup (physname);
416
417 is_full_physname_constructor = is_constructor_name (physname);
418
419 is_constructor = is_full_physname_constructor
420 || (newname && strcmp (field_name, newname) == 0);
421
422 if (!is_destructor)
423 is_destructor = (strncmp (physname, "__dt", 4) == 0);
424
425 if (is_destructor || is_full_physname_constructor)
426 {
427 mangled_name = (char *) xmalloc (strlen (physname) + 1);
428 strcpy (mangled_name, physname);
429 return mangled_name;
430 }
431
432 if (len == 0)
433 {
434 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
435 }
436 else if (physname[0] == 't' || physname[0] == 'Q')
437 {
438 /* The physname for template and qualified methods already includes
439 the class name. */
440 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
441 newname = NULL;
442 len = 0;
443 }
444 else
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
447 volatile_prefix, len);
448 }
449 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
450 + strlen (buf) + len + strlen (physname) + 1);
451
452 mangled_name = (char *) xmalloc (mangled_name_len);
453 if (is_constructor)
454 mangled_name[0] = '\0';
455 else
456 strcpy (mangled_name, field_name);
457
458 strcat (mangled_name, buf);
459 /* If the class doesn't have a name, i.e. newname NULL, then we just
460 mangle it using 0 for the length of the class. Thus it gets mangled
461 as something starting with `::' rather than `classname::'. */
462 if (newname != NULL)
463 strcat (mangled_name, newname);
464
465 strcat (mangled_name, physname);
466 return (mangled_name);
467 }
468
469 /* Initialize the cplus_specific structure. 'cplus_specific' should
470 only be allocated for use with cplus symbols. */
471
472 static void
473 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
474 struct obstack *obstack)
475 {
476 /* A language_specific structure should not have been previously
477 initialized. */
478 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
479 gdb_assert (obstack != NULL);
480
481 gsymbol->language_specific.cplus_specific =
482 OBSTACK_ZALLOC (obstack, struct cplus_specific);
483 }
484
485 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
486 correctly allocated. For C++ symbols a cplus_specific struct is
487 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
488 OBJFILE can be NULL. */
489
490 void
491 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
492 const char *name,
493 struct obstack *obstack)
494 {
495 if (gsymbol->language == language_cplus)
496 {
497 if (gsymbol->language_specific.cplus_specific == NULL)
498 symbol_init_cplus_specific (gsymbol, obstack);
499
500 gsymbol->language_specific.cplus_specific->demangled_name = name;
501 }
502 else if (gsymbol->language == language_ada)
503 {
504 if (name == NULL)
505 {
506 gsymbol->ada_mangled = 0;
507 gsymbol->language_specific.obstack = obstack;
508 }
509 else
510 {
511 gsymbol->ada_mangled = 1;
512 gsymbol->language_specific.mangled_lang.demangled_name = name;
513 }
514 }
515 else
516 gsymbol->language_specific.mangled_lang.demangled_name = name;
517 }
518
519 /* Return the demangled name of GSYMBOL. */
520
521 const char *
522 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
523 {
524 if (gsymbol->language == language_cplus)
525 {
526 if (gsymbol->language_specific.cplus_specific != NULL)
527 return gsymbol->language_specific.cplus_specific->demangled_name;
528 else
529 return NULL;
530 }
531 else if (gsymbol->language == language_ada)
532 {
533 if (!gsymbol->ada_mangled)
534 return NULL;
535 /* Fall through. */
536 }
537
538 return gsymbol->language_specific.mangled_lang.demangled_name;
539 }
540
541 \f
542 /* Initialize the language dependent portion of a symbol
543 depending upon the language for the symbol. */
544
545 void
546 symbol_set_language (struct general_symbol_info *gsymbol,
547 enum language language,
548 struct obstack *obstack)
549 {
550 gsymbol->language = language;
551 if (gsymbol->language == language_d
552 || gsymbol->language == language_go
553 || gsymbol->language == language_java
554 || gsymbol->language == language_objc
555 || gsymbol->language == language_fortran)
556 {
557 symbol_set_demangled_name (gsymbol, NULL, obstack);
558 }
559 else if (gsymbol->language == language_ada)
560 {
561 gdb_assert (gsymbol->ada_mangled == 0);
562 gsymbol->language_specific.obstack = obstack;
563 }
564 else if (gsymbol->language == language_cplus)
565 gsymbol->language_specific.cplus_specific = NULL;
566 else
567 {
568 memset (&gsymbol->language_specific, 0,
569 sizeof (gsymbol->language_specific));
570 }
571 }
572
573 /* Functions to initialize a symbol's mangled name. */
574
575 /* Objects of this type are stored in the demangled name hash table. */
576 struct demangled_name_entry
577 {
578 const char *mangled;
579 char demangled[1];
580 };
581
582 /* Hash function for the demangled name hash. */
583
584 static hashval_t
585 hash_demangled_name_entry (const void *data)
586 {
587 const struct demangled_name_entry *e = data;
588
589 return htab_hash_string (e->mangled);
590 }
591
592 /* Equality function for the demangled name hash. */
593
594 static int
595 eq_demangled_name_entry (const void *a, const void *b)
596 {
597 const struct demangled_name_entry *da = a;
598 const struct demangled_name_entry *db = b;
599
600 return strcmp (da->mangled, db->mangled) == 0;
601 }
602
603 /* Create the hash table used for demangled names. Each hash entry is
604 a pair of strings; one for the mangled name and one for the demangled
605 name. The entry is hashed via just the mangled name. */
606
607 static void
608 create_demangled_names_hash (struct objfile *objfile)
609 {
610 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
611 The hash table code will round this up to the next prime number.
612 Choosing a much larger table size wastes memory, and saves only about
613 1% in symbol reading. */
614
615 objfile->per_bfd->demangled_names_hash = htab_create_alloc
616 (256, hash_demangled_name_entry, eq_demangled_name_entry,
617 NULL, xcalloc, xfree);
618 }
619
620 /* Try to determine the demangled name for a symbol, based on the
621 language of that symbol. If the language is set to language_auto,
622 it will attempt to find any demangling algorithm that works and
623 then set the language appropriately. The returned name is allocated
624 by the demangler and should be xfree'd. */
625
626 static char *
627 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
628 const char *mangled)
629 {
630 char *demangled = NULL;
631
632 if (gsymbol->language == language_unknown)
633 gsymbol->language = language_auto;
634
635 if (gsymbol->language == language_objc
636 || gsymbol->language == language_auto)
637 {
638 demangled =
639 objc_demangle (mangled, 0);
640 if (demangled != NULL)
641 {
642 gsymbol->language = language_objc;
643 return demangled;
644 }
645 }
646 if (gsymbol->language == language_cplus
647 || gsymbol->language == language_auto)
648 {
649 demangled =
650 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
651 if (demangled != NULL)
652 {
653 gsymbol->language = language_cplus;
654 return demangled;
655 }
656 }
657 if (gsymbol->language == language_java)
658 {
659 demangled =
660 gdb_demangle (mangled,
661 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
662 if (demangled != NULL)
663 {
664 gsymbol->language = language_java;
665 return demangled;
666 }
667 }
668 if (gsymbol->language == language_d
669 || gsymbol->language == language_auto)
670 {
671 demangled = d_demangle(mangled, 0);
672 if (demangled != NULL)
673 {
674 gsymbol->language = language_d;
675 return demangled;
676 }
677 }
678 /* FIXME(dje): Continually adding languages here is clumsy.
679 Better to just call la_demangle if !auto, and if auto then call
680 a utility routine that tries successive languages in turn and reports
681 which one it finds. I realize the la_demangle options may be different
682 for different languages but there's already a FIXME for that. */
683 if (gsymbol->language == language_go
684 || gsymbol->language == language_auto)
685 {
686 demangled = go_demangle (mangled, 0);
687 if (demangled != NULL)
688 {
689 gsymbol->language = language_go;
690 return demangled;
691 }
692 }
693
694 /* We could support `gsymbol->language == language_fortran' here to provide
695 module namespaces also for inferiors with only minimal symbol table (ELF
696 symbols). Just the mangling standard is not standardized across compilers
697 and there is no DW_AT_producer available for inferiors with only the ELF
698 symbols to check the mangling kind. */
699
700 /* Check for Ada symbols last. See comment below explaining why. */
701
702 if (gsymbol->language == language_auto)
703 {
704 const char *demangled = ada_decode (mangled);
705
706 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
707 {
708 /* Set the gsymbol language to Ada, but still return NULL.
709 Two reasons for that:
710
711 1. For Ada, we prefer computing the symbol's decoded name
712 on the fly rather than pre-compute it, in order to save
713 memory (Ada projects are typically very large).
714
715 2. There are some areas in the definition of the GNAT
716 encoding where, with a bit of bad luck, we might be able
717 to decode a non-Ada symbol, generating an incorrect
718 demangled name (Eg: names ending with "TB" for instance
719 are identified as task bodies and so stripped from
720 the decoded name returned).
721
722 Returning NULL, here, helps us get a little bit of
723 the best of both worlds. Because we're last, we should
724 not affect any of the other languages that were able to
725 demangle the symbol before us; we get to correctly tag
726 Ada symbols as such; and even if we incorrectly tagged
727 a non-Ada symbol, which should be rare, any routing
728 through the Ada language should be transparent (Ada
729 tries to behave much like C/C++ with non-Ada symbols). */
730 gsymbol->language = language_ada;
731 return NULL;
732 }
733 }
734
735 return NULL;
736 }
737
738 /* Set both the mangled and demangled (if any) names for GSYMBOL based
739 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
740 objfile's obstack; but if COPY_NAME is 0 and if NAME is
741 NUL-terminated, then this function assumes that NAME is already
742 correctly saved (either permanently or with a lifetime tied to the
743 objfile), and it will not be copied.
744
745 The hash table corresponding to OBJFILE is used, and the memory
746 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
747 so the pointer can be discarded after calling this function. */
748
749 /* We have to be careful when dealing with Java names: when we run
750 into a Java minimal symbol, we don't know it's a Java symbol, so it
751 gets demangled as a C++ name. This is unfortunate, but there's not
752 much we can do about it: but when demangling partial symbols and
753 regular symbols, we'd better not reuse the wrong demangled name.
754 (See PR gdb/1039.) We solve this by putting a distinctive prefix
755 on Java names when storing them in the hash table. */
756
757 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
758 don't mind the Java prefix so much: different languages have
759 different demangling requirements, so it's only natural that we
760 need to keep language data around in our demangling cache. But
761 it's not good that the minimal symbol has the wrong demangled name.
762 Unfortunately, I can't think of any easy solution to that
763 problem. */
764
765 #define JAVA_PREFIX "##JAVA$$"
766 #define JAVA_PREFIX_LEN 8
767
768 void
769 symbol_set_names (struct general_symbol_info *gsymbol,
770 const char *linkage_name, int len, int copy_name,
771 struct objfile *objfile)
772 {
773 struct demangled_name_entry **slot;
774 /* A 0-terminated copy of the linkage name. */
775 const char *linkage_name_copy;
776 /* A copy of the linkage name that might have a special Java prefix
777 added to it, for use when looking names up in the hash table. */
778 const char *lookup_name;
779 /* The length of lookup_name. */
780 int lookup_len;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name.
788
789 As a side note, we have also observed some overlap between
790 the C++ mangling and Ada mangling, similarly to what has
791 been observed with Java. Because we don't store the demangled
792 name with the symbol, we don't need to use the same trick
793 as Java. */
794 if (!copy_name)
795 gsymbol->name = linkage_name;
796 else
797 {
798 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
799
800 memcpy (name, linkage_name, len);
801 name[len] = '\0';
802 gsymbol->name = name;
803 }
804 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
805
806 return;
807 }
808
809 if (per_bfd->demangled_names_hash == NULL)
810 create_demangled_names_hash (objfile);
811
812 /* The stabs reader generally provides names that are not
813 NUL-terminated; most of the other readers don't do this, so we
814 can just use the given copy, unless we're in the Java case. */
815 if (gsymbol->language == language_java)
816 {
817 char *alloc_name;
818
819 lookup_len = len + JAVA_PREFIX_LEN;
820 alloc_name = alloca (lookup_len + 1);
821 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
822 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
823 alloc_name[lookup_len] = '\0';
824
825 lookup_name = alloc_name;
826 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
827 }
828 else if (linkage_name[len] != '\0')
829 {
830 char *alloc_name;
831
832 lookup_len = len;
833 alloc_name = alloca (lookup_len + 1);
834 memcpy (alloc_name, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
836
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name;
839 }
840 else
841 {
842 lookup_len = len;
843 lookup_name = linkage_name;
844 linkage_name_copy = linkage_name;
845 }
846
847 entry.mangled = lookup_name;
848 slot = ((struct demangled_name_entry **)
849 htab_find_slot (per_bfd->demangled_names_hash,
850 &entry, INSERT));
851
852 /* If this name is not in the hash table, add it. */
853 if (*slot == NULL
854 /* A C version of the symbol may have already snuck into the table.
855 This happens to, e.g., main.init (__go_init_main). Cope. */
856 || (gsymbol->language == language_go
857 && (*slot)->demangled[0] == '\0'))
858 {
859 char *demangled_name = symbol_find_demangled_name (gsymbol,
860 linkage_name_copy);
861 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
862
863 /* Suppose we have demangled_name==NULL, copy_name==0, and
864 lookup_name==linkage_name. In this case, we already have the
865 mangled name saved, and we don't have a demangled name. So,
866 you might think we could save a little space by not recording
867 this in the hash table at all.
868
869 It turns out that it is actually important to still save such
870 an entry in the hash table, because storing this name gives
871 us better bcache hit rates for partial symbols. */
872 if (!copy_name && lookup_name == linkage_name)
873 {
874 *slot = obstack_alloc (&per_bfd->storage_obstack,
875 offsetof (struct demangled_name_entry,
876 demangled)
877 + demangled_len + 1);
878 (*slot)->mangled = lookup_name;
879 }
880 else
881 {
882 char *mangled_ptr;
883
884 /* If we must copy the mangled name, put it directly after
885 the demangled name so we can have a single
886 allocation. */
887 *slot = obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry,
889 demangled)
890 + lookup_len + demangled_len + 2);
891 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
892 strcpy (mangled_ptr, lookup_name);
893 (*slot)->mangled = mangled_ptr;
894 }
895
896 if (demangled_name != NULL)
897 {
898 strcpy ((*slot)->demangled, demangled_name);
899 xfree (demangled_name);
900 }
901 else
902 (*slot)->demangled[0] = '\0';
903 }
904
905 gsymbol->name = (*slot)->mangled + lookup_len - len;
906 if ((*slot)->demangled[0] != '\0')
907 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
908 &per_bfd->storage_obstack);
909 else
910 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
911 }
912
913 /* Return the source code name of a symbol. In languages where
914 demangling is necessary, this is the demangled name. */
915
916 const char *
917 symbol_natural_name (const struct general_symbol_info *gsymbol)
918 {
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_java:
925 case language_objc:
926 case language_fortran:
927 if (symbol_get_demangled_name (gsymbol) != NULL)
928 return symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 return ada_decode_symbol (gsymbol);
932 default:
933 break;
934 }
935 return gsymbol->name;
936 }
937
938 /* Return the demangled name for a symbol based on the language for
939 that symbol. If no demangled name exists, return NULL. */
940
941 const char *
942 symbol_demangled_name (const struct general_symbol_info *gsymbol)
943 {
944 const char *dem_name = NULL;
945
946 switch (gsymbol->language)
947 {
948 case language_cplus:
949 case language_d:
950 case language_go:
951 case language_java:
952 case language_objc:
953 case language_fortran:
954 dem_name = symbol_get_demangled_name (gsymbol);
955 break;
956 case language_ada:
957 dem_name = ada_decode_symbol (gsymbol);
958 break;
959 default:
960 break;
961 }
962 return dem_name;
963 }
964
965 /* Return the search name of a symbol---generally the demangled or
966 linkage name of the symbol, depending on how it will be searched for.
967 If there is no distinct demangled name, then returns the same value
968 (same pointer) as SYMBOL_LINKAGE_NAME. */
969
970 const char *
971 symbol_search_name (const struct general_symbol_info *gsymbol)
972 {
973 if (gsymbol->language == language_ada)
974 return gsymbol->name;
975 else
976 return symbol_natural_name (gsymbol);
977 }
978
979 /* Initialize the structure fields to zero values. */
980
981 void
982 init_sal (struct symtab_and_line *sal)
983 {
984 memset (sal, 0, sizeof (*sal));
985 }
986 \f
987
988 /* Return 1 if the two sections are the same, or if they could
989 plausibly be copies of each other, one in an original object
990 file and another in a separated debug file. */
991
992 int
993 matching_obj_sections (struct obj_section *obj_first,
994 struct obj_section *obj_second)
995 {
996 asection *first = obj_first? obj_first->the_bfd_section : NULL;
997 asection *second = obj_second? obj_second->the_bfd_section : NULL;
998 struct objfile *obj;
999
1000 /* If they're the same section, then they match. */
1001 if (first == second)
1002 return 1;
1003
1004 /* If either is NULL, give up. */
1005 if (first == NULL || second == NULL)
1006 return 0;
1007
1008 /* This doesn't apply to absolute symbols. */
1009 if (first->owner == NULL || second->owner == NULL)
1010 return 0;
1011
1012 /* If they're in the same object file, they must be different sections. */
1013 if (first->owner == second->owner)
1014 return 0;
1015
1016 /* Check whether the two sections are potentially corresponding. They must
1017 have the same size, address, and name. We can't compare section indexes,
1018 which would be more reliable, because some sections may have been
1019 stripped. */
1020 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1021 return 0;
1022
1023 /* In-memory addresses may start at a different offset, relativize them. */
1024 if (bfd_get_section_vma (first->owner, first)
1025 - bfd_get_start_address (first->owner)
1026 != bfd_get_section_vma (second->owner, second)
1027 - bfd_get_start_address (second->owner))
1028 return 0;
1029
1030 if (bfd_get_section_name (first->owner, first) == NULL
1031 || bfd_get_section_name (second->owner, second) == NULL
1032 || strcmp (bfd_get_section_name (first->owner, first),
1033 bfd_get_section_name (second->owner, second)) != 0)
1034 return 0;
1035
1036 /* Otherwise check that they are in corresponding objfiles. */
1037
1038 ALL_OBJFILES (obj)
1039 if (obj->obfd == first->owner)
1040 break;
1041 gdb_assert (obj != NULL);
1042
1043 if (obj->separate_debug_objfile != NULL
1044 && obj->separate_debug_objfile->obfd == second->owner)
1045 return 1;
1046 if (obj->separate_debug_objfile_backlink != NULL
1047 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1048 return 1;
1049
1050 return 0;
1051 }
1052
1053 struct symtab *
1054 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1055 {
1056 struct objfile *objfile;
1057 struct bound_minimal_symbol msymbol;
1058
1059 /* If we know that this is not a text address, return failure. This is
1060 necessary because we loop based on texthigh and textlow, which do
1061 not include the data ranges. */
1062 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1063 if (msymbol.minsym
1064 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1065 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1066 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1067 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1068 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1069 return NULL;
1070
1071 ALL_OBJFILES (objfile)
1072 {
1073 struct symtab *result = NULL;
1074
1075 if (objfile->sf)
1076 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1077 pc, section, 0);
1078 if (result)
1079 return result;
1080 }
1081
1082 return NULL;
1083 }
1084 \f
1085 /* Debug symbols usually don't have section information. We need to dig that
1086 out of the minimal symbols and stash that in the debug symbol. */
1087
1088 void
1089 fixup_section (struct general_symbol_info *ginfo,
1090 CORE_ADDR addr, struct objfile *objfile)
1091 {
1092 struct minimal_symbol *msym;
1093
1094 /* First, check whether a minimal symbol with the same name exists
1095 and points to the same address. The address check is required
1096 e.g. on PowerPC64, where the minimal symbol for a function will
1097 point to the function descriptor, while the debug symbol will
1098 point to the actual function code. */
1099 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1100 if (msym)
1101 ginfo->section = MSYMBOL_SECTION (msym);
1102 else
1103 {
1104 /* Static, function-local variables do appear in the linker
1105 (minimal) symbols, but are frequently given names that won't
1106 be found via lookup_minimal_symbol(). E.g., it has been
1107 observed in frv-uclinux (ELF) executables that a static,
1108 function-local variable named "foo" might appear in the
1109 linker symbols as "foo.6" or "foo.3". Thus, there is no
1110 point in attempting to extend the lookup-by-name mechanism to
1111 handle this case due to the fact that there can be multiple
1112 names.
1113
1114 So, instead, search the section table when lookup by name has
1115 failed. The ``addr'' and ``endaddr'' fields may have already
1116 been relocated. If so, the relocation offset (i.e. the
1117 ANOFFSET value) needs to be subtracted from these values when
1118 performing the comparison. We unconditionally subtract it,
1119 because, when no relocation has been performed, the ANOFFSET
1120 value will simply be zero.
1121
1122 The address of the symbol whose section we're fixing up HAS
1123 NOT BEEN adjusted (relocated) yet. It can't have been since
1124 the section isn't yet known and knowing the section is
1125 necessary in order to add the correct relocation value. In
1126 other words, we wouldn't even be in this function (attempting
1127 to compute the section) if it were already known.
1128
1129 Note that it is possible to search the minimal symbols
1130 (subtracting the relocation value if necessary) to find the
1131 matching minimal symbol, but this is overkill and much less
1132 efficient. It is not necessary to find the matching minimal
1133 symbol, only its section.
1134
1135 Note that this technique (of doing a section table search)
1136 can fail when unrelocated section addresses overlap. For
1137 this reason, we still attempt a lookup by name prior to doing
1138 a search of the section table. */
1139
1140 struct obj_section *s;
1141 int fallback = -1;
1142
1143 ALL_OBJFILE_OSECTIONS (objfile, s)
1144 {
1145 int idx = s - objfile->sections;
1146 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1147
1148 if (fallback == -1)
1149 fallback = idx;
1150
1151 if (obj_section_addr (s) - offset <= addr
1152 && addr < obj_section_endaddr (s) - offset)
1153 {
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158
1159 /* If we didn't find the section, assume it is in the first
1160 section. If there is no allocated section, then it hardly
1161 matters what we pick, so just pick zero. */
1162 if (fallback == -1)
1163 ginfo->section = 0;
1164 else
1165 ginfo->section = fallback;
1166 }
1167 }
1168
1169 struct symbol *
1170 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1171 {
1172 CORE_ADDR addr;
1173
1174 if (!sym)
1175 return NULL;
1176
1177 /* We either have an OBJFILE, or we can get at it from the sym's
1178 symtab. Anything else is a bug. */
1179 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1180
1181 if (objfile == NULL)
1182 objfile = SYMBOL_SYMTAB (sym)->objfile;
1183
1184 if (SYMBOL_OBJ_SECTION (objfile, sym))
1185 return sym;
1186
1187 /* We should have an objfile by now. */
1188 gdb_assert (objfile);
1189
1190 switch (SYMBOL_CLASS (sym))
1191 {
1192 case LOC_STATIC:
1193 case LOC_LABEL:
1194 addr = SYMBOL_VALUE_ADDRESS (sym);
1195 break;
1196 case LOC_BLOCK:
1197 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1198 break;
1199
1200 default:
1201 /* Nothing else will be listed in the minsyms -- no use looking
1202 it up. */
1203 return sym;
1204 }
1205
1206 fixup_section (&sym->ginfo, addr, objfile);
1207
1208 return sym;
1209 }
1210
1211 /* Compute the demangled form of NAME as used by the various symbol
1212 lookup functions. The result is stored in *RESULT_NAME. Returns a
1213 cleanup which can be used to clean up the result.
1214
1215 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1216 Normally, Ada symbol lookups are performed using the encoded name
1217 rather than the demangled name, and so it might seem to make sense
1218 for this function to return an encoded version of NAME.
1219 Unfortunately, we cannot do this, because this function is used in
1220 circumstances where it is not appropriate to try to encode NAME.
1221 For instance, when displaying the frame info, we demangle the name
1222 of each parameter, and then perform a symbol lookup inside our
1223 function using that demangled name. In Ada, certain functions
1224 have internally-generated parameters whose name contain uppercase
1225 characters. Encoding those name would result in those uppercase
1226 characters to become lowercase, and thus cause the symbol lookup
1227 to fail. */
1228
1229 struct cleanup *
1230 demangle_for_lookup (const char *name, enum language lang,
1231 const char **result_name)
1232 {
1233 char *demangled_name = NULL;
1234 const char *modified_name = NULL;
1235 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1236
1237 modified_name = name;
1238
1239 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1240 lookup, so we can always binary search. */
1241 if (lang == language_cplus)
1242 {
1243 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1244 if (demangled_name)
1245 {
1246 modified_name = demangled_name;
1247 make_cleanup (xfree, demangled_name);
1248 }
1249 else
1250 {
1251 /* If we were given a non-mangled name, canonicalize it
1252 according to the language (so far only for C++). */
1253 demangled_name = cp_canonicalize_string (name);
1254 if (demangled_name)
1255 {
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1258 }
1259 }
1260 }
1261 else if (lang == language_java)
1262 {
1263 demangled_name = gdb_demangle (name,
1264 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1265 if (demangled_name)
1266 {
1267 modified_name = demangled_name;
1268 make_cleanup (xfree, demangled_name);
1269 }
1270 }
1271 else if (lang == language_d)
1272 {
1273 demangled_name = d_demangle (name, 0);
1274 if (demangled_name)
1275 {
1276 modified_name = demangled_name;
1277 make_cleanup (xfree, demangled_name);
1278 }
1279 }
1280 else if (lang == language_go)
1281 {
1282 demangled_name = go_demangle (name, 0);
1283 if (demangled_name)
1284 {
1285 modified_name = demangled_name;
1286 make_cleanup (xfree, demangled_name);
1287 }
1288 }
1289
1290 *result_name = modified_name;
1291 return cleanup;
1292 }
1293
1294 /* See symtab.h.
1295
1296 This function (or rather its subordinates) have a bunch of loops and
1297 it would seem to be attractive to put in some QUIT's (though I'm not really
1298 sure whether it can run long enough to be really important). But there
1299 are a few calls for which it would appear to be bad news to quit
1300 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1301 that there is C++ code below which can error(), but that probably
1302 doesn't affect these calls since they are looking for a known
1303 variable and thus can probably assume it will never hit the C++
1304 code). */
1305
1306 struct symbol *
1307 lookup_symbol_in_language (const char *name, const struct block *block,
1308 const domain_enum domain, enum language lang,
1309 struct field_of_this_result *is_a_field_of_this)
1310 {
1311 const char *modified_name;
1312 struct symbol *returnval;
1313 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1314
1315 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1316 is_a_field_of_this);
1317 do_cleanups (cleanup);
1318
1319 return returnval;
1320 }
1321
1322 /* See symtab.h. */
1323
1324 struct symbol *
1325 lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain,
1327 struct field_of_this_result *is_a_field_of_this)
1328 {
1329 return lookup_symbol_in_language (name, block, domain,
1330 current_language->la_language,
1331 is_a_field_of_this);
1332 }
1333
1334 /* See symtab.h. */
1335
1336 struct symbol *
1337 lookup_language_this (const struct language_defn *lang,
1338 const struct block *block)
1339 {
1340 if (lang->la_name_of_this == NULL || block == NULL)
1341 return NULL;
1342
1343 while (block)
1344 {
1345 struct symbol *sym;
1346
1347 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1348 if (sym != NULL)
1349 {
1350 block_found = block;
1351 return sym;
1352 }
1353 if (BLOCK_FUNCTION (block))
1354 break;
1355 block = BLOCK_SUPERBLOCK (block);
1356 }
1357
1358 return NULL;
1359 }
1360
1361 /* Given TYPE, a structure/union,
1362 return 1 if the component named NAME from the ultimate target
1363 structure/union is defined, otherwise, return 0. */
1364
1365 static int
1366 check_field (struct type *type, const char *name,
1367 struct field_of_this_result *is_a_field_of_this)
1368 {
1369 int i;
1370
1371 /* The type may be a stub. */
1372 CHECK_TYPEDEF (type);
1373
1374 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1375 {
1376 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1377
1378 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1379 {
1380 is_a_field_of_this->type = type;
1381 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1382 return 1;
1383 }
1384 }
1385
1386 /* C++: If it was not found as a data field, then try to return it
1387 as a pointer to a method. */
1388
1389 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1390 {
1391 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1392 {
1393 is_a_field_of_this->type = type;
1394 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1395 return 1;
1396 }
1397 }
1398
1399 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1400 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1401 return 1;
1402
1403 return 0;
1404 }
1405
1406 /* Behave like lookup_symbol except that NAME is the natural name
1407 (e.g., demangled name) of the symbol that we're looking for. */
1408
1409 static struct symbol *
1410 lookup_symbol_aux (const char *name, const struct block *block,
1411 const domain_enum domain, enum language language,
1412 struct field_of_this_result *is_a_field_of_this)
1413 {
1414 struct symbol *sym;
1415 const struct language_defn *langdef;
1416
1417 /* Make sure we do something sensible with is_a_field_of_this, since
1418 the callers that set this parameter to some non-null value will
1419 certainly use it later. If we don't set it, the contents of
1420 is_a_field_of_this are undefined. */
1421 if (is_a_field_of_this != NULL)
1422 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1423
1424 /* Search specified block and its superiors. Don't search
1425 STATIC_BLOCK or GLOBAL_BLOCK. */
1426
1427 sym = lookup_local_symbol (name, block, domain, language);
1428 if (sym != NULL)
1429 return sym;
1430
1431 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1432 check to see if NAME is a field of `this'. */
1433
1434 langdef = language_def (language);
1435
1436 /* Don't do this check if we are searching for a struct. It will
1437 not be found by check_field, but will be found by other
1438 means. */
1439 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1440 {
1441 struct symbol *sym = lookup_language_this (langdef, block);
1442
1443 if (sym)
1444 {
1445 struct type *t = sym->type;
1446
1447 /* I'm not really sure that type of this can ever
1448 be typedefed; just be safe. */
1449 CHECK_TYPEDEF (t);
1450 if (TYPE_CODE (t) == TYPE_CODE_PTR
1451 || TYPE_CODE (t) == TYPE_CODE_REF)
1452 t = TYPE_TARGET_TYPE (t);
1453
1454 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1455 && TYPE_CODE (t) != TYPE_CODE_UNION)
1456 error (_("Internal error: `%s' is not an aggregate"),
1457 langdef->la_name_of_this);
1458
1459 if (check_field (t, name, is_a_field_of_this))
1460 return NULL;
1461 }
1462 }
1463
1464 /* Now do whatever is appropriate for LANGUAGE to look
1465 up static and global variables. */
1466
1467 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1468 if (sym != NULL)
1469 return sym;
1470
1471 /* Now search all static file-level symbols. Not strictly correct,
1472 but more useful than an error. */
1473
1474 return lookup_static_symbol (name, domain);
1475 }
1476
1477 /* See symtab.h. */
1478
1479 struct symbol *
1480 lookup_static_symbol (const char *name, const domain_enum domain)
1481 {
1482 struct objfile *objfile;
1483 struct symbol *sym;
1484
1485 sym = lookup_symbol_in_all_objfiles (STATIC_BLOCK, name, domain);
1486 if (sym != NULL)
1487 return sym;
1488
1489 ALL_OBJFILES (objfile)
1490 {
1491 sym = lookup_symbol_via_quick_fns (objfile, STATIC_BLOCK, name, domain);
1492 if (sym != NULL)
1493 return sym;
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check to see if the symbol is defined in BLOCK or its superiors.
1500 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1501
1502 static struct symbol *
1503 lookup_local_symbol (const char *name, const struct block *block,
1504 const domain_enum domain,
1505 enum language language)
1506 {
1507 struct symbol *sym;
1508 const struct block *static_block = block_static_block (block);
1509 const char *scope = block_scope (block);
1510
1511 /* Check if either no block is specified or it's a global block. */
1512
1513 if (static_block == NULL)
1514 return NULL;
1515
1516 while (block != static_block)
1517 {
1518 sym = lookup_symbol_in_block (name, block, domain);
1519 if (sym != NULL)
1520 return sym;
1521
1522 if (language == language_cplus || language == language_fortran)
1523 {
1524 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1525 domain);
1526 if (sym != NULL)
1527 return sym;
1528 }
1529
1530 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1531 break;
1532 block = BLOCK_SUPERBLOCK (block);
1533 }
1534
1535 /* We've reached the end of the function without finding a result. */
1536
1537 return NULL;
1538 }
1539
1540 /* See symtab.h. */
1541
1542 struct objfile *
1543 lookup_objfile_from_block (const struct block *block)
1544 {
1545 struct objfile *obj;
1546 struct symtab *s;
1547
1548 if (block == NULL)
1549 return NULL;
1550
1551 block = block_global_block (block);
1552 /* Go through SYMTABS.
1553 Non-primary symtabs share the block vector with their primary symtabs
1554 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
1555 ALL_PRIMARY_SYMTABS (obj, s)
1556 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1557 {
1558 if (obj->separate_debug_objfile_backlink)
1559 obj = obj->separate_debug_objfile_backlink;
1560
1561 return obj;
1562 }
1563
1564 return NULL;
1565 }
1566
1567 /* See symtab.h. */
1568
1569 struct symbol *
1570 lookup_symbol_in_block (const char *name, const struct block *block,
1571 const domain_enum domain)
1572 {
1573 struct symbol *sym;
1574
1575 sym = block_lookup_symbol (block, name, domain);
1576 if (sym)
1577 {
1578 block_found = block;
1579 return fixup_symbol_section (sym, NULL);
1580 }
1581
1582 return NULL;
1583 }
1584
1585 /* See symtab.h. */
1586
1587 struct symbol *
1588 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1589 const char *name,
1590 const domain_enum domain)
1591 {
1592 const struct objfile *objfile;
1593 struct symbol *sym;
1594 const struct blockvector *bv;
1595 const struct block *block;
1596 struct symtab *s;
1597
1598 for (objfile = main_objfile;
1599 objfile;
1600 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1601 {
1602 /* Go through symtabs. */
1603 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1604 {
1605 bv = BLOCKVECTOR (s);
1606 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1607 sym = block_lookup_symbol (block, name, domain);
1608 if (sym)
1609 {
1610 block_found = block;
1611 return fixup_symbol_section (sym, (struct objfile *)objfile);
1612 }
1613 }
1614
1615 sym = lookup_symbol_via_quick_fns ((struct objfile *) objfile,
1616 GLOBAL_BLOCK, name, domain);
1617 if (sym)
1618 return sym;
1619 }
1620
1621 return NULL;
1622 }
1623
1624 /* Check to see if the symbol is defined in one of the OBJFILE's
1625 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1626 depending on whether or not we want to search global symbols or
1627 static symbols. */
1628
1629 static struct symbol *
1630 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1631 const char *name, const domain_enum domain)
1632 {
1633 struct symbol *sym = NULL;
1634 const struct blockvector *bv;
1635 const struct block *block;
1636 struct symtab *s;
1637
1638 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1639 {
1640 bv = BLOCKVECTOR (s);
1641 block = BLOCKVECTOR_BLOCK (bv, block_index);
1642 sym = block_lookup_symbol (block, name, domain);
1643 if (sym)
1644 {
1645 block_found = block;
1646 return fixup_symbol_section (sym, objfile);
1647 }
1648 }
1649
1650 return NULL;
1651 }
1652
1653 /* Wrapper around lookup_symbol_in_objfile_symtabs to search all objfiles.
1654 Returns the first match found. */
1655
1656 static struct symbol *
1657 lookup_symbol_in_all_objfiles (int block_index, const char *name,
1658 const domain_enum domain)
1659 {
1660 struct symbol *sym;
1661 struct objfile *objfile;
1662
1663 ALL_OBJFILES (objfile)
1664 {
1665 sym = lookup_symbol_in_objfile_symtabs (objfile, block_index, name,
1666 domain);
1667 if (sym)
1668 return sym;
1669 }
1670
1671 return NULL;
1672 }
1673
1674 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1675 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1676 and all related objfiles. */
1677
1678 static struct symbol *
1679 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1680 const char *linkage_name,
1681 domain_enum domain)
1682 {
1683 enum language lang = current_language->la_language;
1684 const char *modified_name;
1685 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1686 &modified_name);
1687 struct objfile *main_objfile, *cur_objfile;
1688
1689 if (objfile->separate_debug_objfile_backlink)
1690 main_objfile = objfile->separate_debug_objfile_backlink;
1691 else
1692 main_objfile = objfile;
1693
1694 for (cur_objfile = main_objfile;
1695 cur_objfile;
1696 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1697 {
1698 struct symbol *sym;
1699
1700 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1701 modified_name, domain);
1702 if (sym == NULL)
1703 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1704 modified_name, domain);
1705 if (sym != NULL)
1706 {
1707 do_cleanups (cleanup);
1708 return sym;
1709 }
1710 }
1711
1712 do_cleanups (cleanup);
1713 return NULL;
1714 }
1715
1716 /* A helper function that throws an exception when a symbol was found
1717 in a psymtab but not in a symtab. */
1718
1719 static void ATTRIBUTE_NORETURN
1720 error_in_psymtab_expansion (int block_index, const char *name,
1721 struct symtab *symtab)
1722 {
1723 error (_("\
1724 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1725 %s may be an inlined function, or may be a template function\n \
1726 (if a template, try specifying an instantiation: %s<type>)."),
1727 block_index == GLOBAL_BLOCK ? "global" : "static",
1728 name, symtab_to_filename_for_display (symtab), name, name);
1729 }
1730
1731 /* A helper function for various lookup routines that interfaces with
1732 the "quick" symbol table functions. */
1733
1734 static struct symbol *
1735 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1736 const char *name, const domain_enum domain)
1737 {
1738 struct symtab *symtab;
1739 const struct blockvector *bv;
1740 const struct block *block;
1741 struct symbol *sym;
1742
1743 if (!objfile->sf)
1744 return NULL;
1745 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1746 if (!symtab)
1747 return NULL;
1748
1749 bv = BLOCKVECTOR (symtab);
1750 block = BLOCKVECTOR_BLOCK (bv, block_index);
1751 sym = block_lookup_symbol (block, name, domain);
1752 if (!sym)
1753 error_in_psymtab_expansion (block_index, name, symtab);
1754 block_found = block;
1755 return fixup_symbol_section (sym, objfile);
1756 }
1757
1758 /* See symtab.h. */
1759
1760 struct symbol *
1761 basic_lookup_symbol_nonlocal (const char *name,
1762 const struct block *block,
1763 const domain_enum domain)
1764 {
1765 struct symbol *sym;
1766
1767 /* NOTE: carlton/2003-05-19: The comments below were written when
1768 this (or what turned into this) was part of lookup_symbol_aux;
1769 I'm much less worried about these questions now, since these
1770 decisions have turned out well, but I leave these comments here
1771 for posterity. */
1772
1773 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1774 not it would be appropriate to search the current global block
1775 here as well. (That's what this code used to do before the
1776 is_a_field_of_this check was moved up.) On the one hand, it's
1777 redundant with the lookup_symbol_in_all_objfiles search that happens
1778 next. On the other hand, if decode_line_1 is passed an argument
1779 like filename:var, then the user presumably wants 'var' to be
1780 searched for in filename. On the third hand, there shouldn't be
1781 multiple global variables all of which are named 'var', and it's
1782 not like decode_line_1 has ever restricted its search to only
1783 global variables in a single filename. All in all, only
1784 searching the static block here seems best: it's correct and it's
1785 cleanest. */
1786
1787 /* NOTE: carlton/2002-12-05: There's also a possible performance
1788 issue here: if you usually search for global symbols in the
1789 current file, then it would be slightly better to search the
1790 current global block before searching all the symtabs. But there
1791 are other factors that have a much greater effect on performance
1792 than that one, so I don't think we should worry about that for
1793 now. */
1794
1795 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
1796 the current objfile. Searching the current objfile first is useful
1797 for both matching user expectations as well as performance. */
1798
1799 sym = lookup_symbol_in_static_block (name, block, domain);
1800 if (sym != NULL)
1801 return sym;
1802
1803 return lookup_symbol_global (name, block, domain);
1804 }
1805
1806 /* See symtab.h. */
1807
1808 struct symbol *
1809 lookup_symbol_in_static_block (const char *name,
1810 const struct block *block,
1811 const domain_enum domain)
1812 {
1813 const struct block *static_block = block_static_block (block);
1814
1815 if (static_block != NULL)
1816 return lookup_symbol_in_block (name, static_block, domain);
1817 else
1818 return NULL;
1819 }
1820
1821 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1822
1823 struct global_sym_lookup_data
1824 {
1825 /* The name of the symbol we are searching for. */
1826 const char *name;
1827
1828 /* The domain to use for our search. */
1829 domain_enum domain;
1830
1831 /* The field where the callback should store the symbol if found.
1832 It should be initialized to NULL before the search is started. */
1833 struct symbol *result;
1834 };
1835
1836 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1837 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1838 OBJFILE. The arguments for the search are passed via CB_DATA,
1839 which in reality is a pointer to struct global_sym_lookup_data. */
1840
1841 static int
1842 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1843 void *cb_data)
1844 {
1845 struct global_sym_lookup_data *data =
1846 (struct global_sym_lookup_data *) cb_data;
1847
1848 gdb_assert (data->result == NULL);
1849
1850 data->result = lookup_symbol_in_objfile_symtabs (objfile, GLOBAL_BLOCK,
1851 data->name, data->domain);
1852 if (data->result == NULL)
1853 data->result = lookup_symbol_via_quick_fns (objfile, GLOBAL_BLOCK,
1854 data->name, data->domain);
1855
1856 /* If we found a match, tell the iterator to stop. Otherwise,
1857 keep going. */
1858 return (data->result != NULL);
1859 }
1860
1861 /* See symtab.h. */
1862
1863 struct symbol *
1864 lookup_symbol_global (const char *name,
1865 const struct block *block,
1866 const domain_enum domain)
1867 {
1868 struct symbol *sym = NULL;
1869 struct objfile *objfile = NULL;
1870 struct global_sym_lookup_data lookup_data;
1871
1872 /* Call library-specific lookup procedure. */
1873 objfile = lookup_objfile_from_block (block);
1874 if (objfile != NULL)
1875 sym = solib_global_lookup (objfile, name, domain);
1876 if (sym != NULL)
1877 return sym;
1878
1879 memset (&lookup_data, 0, sizeof (lookup_data));
1880 lookup_data.name = name;
1881 lookup_data.domain = domain;
1882 gdbarch_iterate_over_objfiles_in_search_order
1883 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1884 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1885
1886 return lookup_data.result;
1887 }
1888
1889 int
1890 symbol_matches_domain (enum language symbol_language,
1891 domain_enum symbol_domain,
1892 domain_enum domain)
1893 {
1894 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1895 A Java class declaration also defines a typedef for the class.
1896 Similarly, any Ada type declaration implicitly defines a typedef. */
1897 if (symbol_language == language_cplus
1898 || symbol_language == language_d
1899 || symbol_language == language_java
1900 || symbol_language == language_ada)
1901 {
1902 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1903 && symbol_domain == STRUCT_DOMAIN)
1904 return 1;
1905 }
1906 /* For all other languages, strict match is required. */
1907 return (symbol_domain == domain);
1908 }
1909
1910 /* See symtab.h. */
1911
1912 struct type *
1913 lookup_transparent_type (const char *name)
1914 {
1915 return current_language->la_lookup_transparent_type (name);
1916 }
1917
1918 /* A helper for basic_lookup_transparent_type that interfaces with the
1919 "quick" symbol table functions. */
1920
1921 static struct type *
1922 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1923 const char *name)
1924 {
1925 struct symtab *symtab;
1926 const struct blockvector *bv;
1927 struct block *block;
1928 struct symbol *sym;
1929
1930 if (!objfile->sf)
1931 return NULL;
1932 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1933 STRUCT_DOMAIN);
1934 if (!symtab)
1935 return NULL;
1936
1937 bv = BLOCKVECTOR (symtab);
1938 block = BLOCKVECTOR_BLOCK (bv, block_index);
1939 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1940 if (!sym)
1941 error_in_psymtab_expansion (block_index, name, symtab);
1942
1943 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1944 return SYMBOL_TYPE (sym);
1945
1946 return NULL;
1947 }
1948
1949 /* The standard implementation of lookup_transparent_type. This code
1950 was modeled on lookup_symbol -- the parts not relevant to looking
1951 up types were just left out. In particular it's assumed here that
1952 types are available in STRUCT_DOMAIN and only in file-static or
1953 global blocks. */
1954
1955 struct type *
1956 basic_lookup_transparent_type (const char *name)
1957 {
1958 struct symbol *sym;
1959 struct symtab *s = NULL;
1960 const struct blockvector *bv;
1961 struct objfile *objfile;
1962 struct block *block;
1963 struct type *t;
1964
1965 /* Now search all the global symbols. Do the symtab's first, then
1966 check the psymtab's. If a psymtab indicates the existence
1967 of the desired name as a global, then do psymtab-to-symtab
1968 conversion on the fly and return the found symbol. */
1969
1970 ALL_OBJFILES (objfile)
1971 {
1972 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1973 {
1974 bv = BLOCKVECTOR (s);
1975 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1976 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1977 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1978 {
1979 return SYMBOL_TYPE (sym);
1980 }
1981 }
1982 }
1983
1984 ALL_OBJFILES (objfile)
1985 {
1986 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1987 if (t)
1988 return t;
1989 }
1990
1991 /* Now search the static file-level symbols.
1992 Not strictly correct, but more useful than an error.
1993 Do the symtab's first, then
1994 check the psymtab's. If a psymtab indicates the existence
1995 of the desired name as a file-level static, then do psymtab-to-symtab
1996 conversion on the fly and return the found symbol. */
1997
1998 ALL_OBJFILES (objfile)
1999 {
2000 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2001 {
2002 bv = BLOCKVECTOR (s);
2003 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2004 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2005 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2006 {
2007 return SYMBOL_TYPE (sym);
2008 }
2009 }
2010 }
2011
2012 ALL_OBJFILES (objfile)
2013 {
2014 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2015 if (t)
2016 return t;
2017 }
2018
2019 return (struct type *) 0;
2020 }
2021
2022 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2023
2024 For each symbol that matches, CALLBACK is called. The symbol and
2025 DATA are passed to the callback.
2026
2027 If CALLBACK returns zero, the iteration ends. Otherwise, the
2028 search continues. */
2029
2030 void
2031 iterate_over_symbols (const struct block *block, const char *name,
2032 const domain_enum domain,
2033 symbol_found_callback_ftype *callback,
2034 void *data)
2035 {
2036 struct block_iterator iter;
2037 struct symbol *sym;
2038
2039 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2040 {
2041 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2042 SYMBOL_DOMAIN (sym), domain))
2043 {
2044 if (!callback (sym, data))
2045 return;
2046 }
2047 }
2048 }
2049
2050 /* Find the symtab associated with PC and SECTION. Look through the
2051 psymtabs and read in another symtab if necessary. */
2052
2053 struct symtab *
2054 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2055 {
2056 struct block *b;
2057 const struct blockvector *bv;
2058 struct symtab *s = NULL;
2059 struct symtab *best_s = NULL;
2060 struct objfile *objfile;
2061 CORE_ADDR distance = 0;
2062 struct bound_minimal_symbol msymbol;
2063
2064 /* If we know that this is not a text address, return failure. This is
2065 necessary because we loop based on the block's high and low code
2066 addresses, which do not include the data ranges, and because
2067 we call find_pc_sect_psymtab which has a similar restriction based
2068 on the partial_symtab's texthigh and textlow. */
2069 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2070 if (msymbol.minsym
2071 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2072 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2073 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2074 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2075 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2076 return NULL;
2077
2078 /* Search all symtabs for the one whose file contains our address, and which
2079 is the smallest of all the ones containing the address. This is designed
2080 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2081 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2082 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2083
2084 This happens for native ecoff format, where code from included files
2085 gets its own symtab. The symtab for the included file should have
2086 been read in already via the dependency mechanism.
2087 It might be swifter to create several symtabs with the same name
2088 like xcoff does (I'm not sure).
2089
2090 It also happens for objfiles that have their functions reordered.
2091 For these, the symtab we are looking for is not necessarily read in. */
2092
2093 ALL_PRIMARY_SYMTABS (objfile, s)
2094 {
2095 bv = BLOCKVECTOR (s);
2096 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2097
2098 if (BLOCK_START (b) <= pc
2099 && BLOCK_END (b) > pc
2100 && (distance == 0
2101 || BLOCK_END (b) - BLOCK_START (b) < distance))
2102 {
2103 /* For an objfile that has its functions reordered,
2104 find_pc_psymtab will find the proper partial symbol table
2105 and we simply return its corresponding symtab. */
2106 /* In order to better support objfiles that contain both
2107 stabs and coff debugging info, we continue on if a psymtab
2108 can't be found. */
2109 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2110 {
2111 struct symtab *result;
2112
2113 result
2114 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2115 msymbol,
2116 pc, section,
2117 0);
2118 if (result)
2119 return result;
2120 }
2121 if (section != 0)
2122 {
2123 struct block_iterator iter;
2124 struct symbol *sym = NULL;
2125
2126 ALL_BLOCK_SYMBOLS (b, iter, sym)
2127 {
2128 fixup_symbol_section (sym, objfile);
2129 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2130 section))
2131 break;
2132 }
2133 if (sym == NULL)
2134 continue; /* No symbol in this symtab matches
2135 section. */
2136 }
2137 distance = BLOCK_END (b) - BLOCK_START (b);
2138 best_s = s;
2139 }
2140 }
2141
2142 if (best_s != NULL)
2143 return (best_s);
2144
2145 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2146
2147 ALL_OBJFILES (objfile)
2148 {
2149 struct symtab *result;
2150
2151 if (!objfile->sf)
2152 continue;
2153 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2154 msymbol,
2155 pc, section,
2156 1);
2157 if (result)
2158 return result;
2159 }
2160
2161 return NULL;
2162 }
2163
2164 /* Find the symtab associated with PC. Look through the psymtabs and read
2165 in another symtab if necessary. Backward compatibility, no section. */
2166
2167 struct symtab *
2168 find_pc_symtab (CORE_ADDR pc)
2169 {
2170 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2171 }
2172 \f
2173
2174 /* Find the source file and line number for a given PC value and SECTION.
2175 Return a structure containing a symtab pointer, a line number,
2176 and a pc range for the entire source line.
2177 The value's .pc field is NOT the specified pc.
2178 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2179 use the line that ends there. Otherwise, in that case, the line
2180 that begins there is used. */
2181
2182 /* The big complication here is that a line may start in one file, and end just
2183 before the start of another file. This usually occurs when you #include
2184 code in the middle of a subroutine. To properly find the end of a line's PC
2185 range, we must search all symtabs associated with this compilation unit, and
2186 find the one whose first PC is closer than that of the next line in this
2187 symtab. */
2188
2189 /* If it's worth the effort, we could be using a binary search. */
2190
2191 struct symtab_and_line
2192 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2193 {
2194 struct symtab *s;
2195 struct linetable *l;
2196 int len;
2197 int i;
2198 struct linetable_entry *item;
2199 struct symtab_and_line val;
2200 const struct blockvector *bv;
2201 struct bound_minimal_symbol msymbol;
2202 struct objfile *objfile;
2203
2204 /* Info on best line seen so far, and where it starts, and its file. */
2205
2206 struct linetable_entry *best = NULL;
2207 CORE_ADDR best_end = 0;
2208 struct symtab *best_symtab = 0;
2209
2210 /* Store here the first line number
2211 of a file which contains the line at the smallest pc after PC.
2212 If we don't find a line whose range contains PC,
2213 we will use a line one less than this,
2214 with a range from the start of that file to the first line's pc. */
2215 struct linetable_entry *alt = NULL;
2216
2217 /* Info on best line seen in this file. */
2218
2219 struct linetable_entry *prev;
2220
2221 /* If this pc is not from the current frame,
2222 it is the address of the end of a call instruction.
2223 Quite likely that is the start of the following statement.
2224 But what we want is the statement containing the instruction.
2225 Fudge the pc to make sure we get that. */
2226
2227 init_sal (&val); /* initialize to zeroes */
2228
2229 val.pspace = current_program_space;
2230
2231 /* It's tempting to assume that, if we can't find debugging info for
2232 any function enclosing PC, that we shouldn't search for line
2233 number info, either. However, GAS can emit line number info for
2234 assembly files --- very helpful when debugging hand-written
2235 assembly code. In such a case, we'd have no debug info for the
2236 function, but we would have line info. */
2237
2238 if (notcurrent)
2239 pc -= 1;
2240
2241 /* elz: added this because this function returned the wrong
2242 information if the pc belongs to a stub (import/export)
2243 to call a shlib function. This stub would be anywhere between
2244 two functions in the target, and the line info was erroneously
2245 taken to be the one of the line before the pc. */
2246
2247 /* RT: Further explanation:
2248
2249 * We have stubs (trampolines) inserted between procedures.
2250 *
2251 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2252 * exists in the main image.
2253 *
2254 * In the minimal symbol table, we have a bunch of symbols
2255 * sorted by start address. The stubs are marked as "trampoline",
2256 * the others appear as text. E.g.:
2257 *
2258 * Minimal symbol table for main image
2259 * main: code for main (text symbol)
2260 * shr1: stub (trampoline symbol)
2261 * foo: code for foo (text symbol)
2262 * ...
2263 * Minimal symbol table for "shr1" image:
2264 * ...
2265 * shr1: code for shr1 (text symbol)
2266 * ...
2267 *
2268 * So the code below is trying to detect if we are in the stub
2269 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2270 * and if found, do the symbolization from the real-code address
2271 * rather than the stub address.
2272 *
2273 * Assumptions being made about the minimal symbol table:
2274 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2275 * if we're really in the trampoline.s If we're beyond it (say
2276 * we're in "foo" in the above example), it'll have a closer
2277 * symbol (the "foo" text symbol for example) and will not
2278 * return the trampoline.
2279 * 2. lookup_minimal_symbol_text() will find a real text symbol
2280 * corresponding to the trampoline, and whose address will
2281 * be different than the trampoline address. I put in a sanity
2282 * check for the address being the same, to avoid an
2283 * infinite recursion.
2284 */
2285 msymbol = lookup_minimal_symbol_by_pc (pc);
2286 if (msymbol.minsym != NULL)
2287 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2288 {
2289 struct bound_minimal_symbol mfunsym
2290 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2291 NULL);
2292
2293 if (mfunsym.minsym == NULL)
2294 /* I eliminated this warning since it is coming out
2295 * in the following situation:
2296 * gdb shmain // test program with shared libraries
2297 * (gdb) break shr1 // function in shared lib
2298 * Warning: In stub for ...
2299 * In the above situation, the shared lib is not loaded yet,
2300 * so of course we can't find the real func/line info,
2301 * but the "break" still works, and the warning is annoying.
2302 * So I commented out the warning. RT */
2303 /* warning ("In stub for %s; unable to find real function/line info",
2304 SYMBOL_LINKAGE_NAME (msymbol)); */
2305 ;
2306 /* fall through */
2307 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2308 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2309 /* Avoid infinite recursion */
2310 /* See above comment about why warning is commented out. */
2311 /* warning ("In stub for %s; unable to find real function/line info",
2312 SYMBOL_LINKAGE_NAME (msymbol)); */
2313 ;
2314 /* fall through */
2315 else
2316 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2317 }
2318
2319
2320 s = find_pc_sect_symtab (pc, section);
2321 if (!s)
2322 {
2323 /* If no symbol information, return previous pc. */
2324 if (notcurrent)
2325 pc++;
2326 val.pc = pc;
2327 return val;
2328 }
2329
2330 bv = BLOCKVECTOR (s);
2331 objfile = s->objfile;
2332
2333 /* Look at all the symtabs that share this blockvector.
2334 They all have the same apriori range, that we found was right;
2335 but they have different line tables. */
2336
2337 ALL_OBJFILE_SYMTABS (objfile, s)
2338 {
2339 if (BLOCKVECTOR (s) != bv)
2340 continue;
2341
2342 /* Find the best line in this symtab. */
2343 l = LINETABLE (s);
2344 if (!l)
2345 continue;
2346 len = l->nitems;
2347 if (len <= 0)
2348 {
2349 /* I think len can be zero if the symtab lacks line numbers
2350 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2351 I'm not sure which, and maybe it depends on the symbol
2352 reader). */
2353 continue;
2354 }
2355
2356 prev = NULL;
2357 item = l->item; /* Get first line info. */
2358
2359 /* Is this file's first line closer than the first lines of other files?
2360 If so, record this file, and its first line, as best alternate. */
2361 if (item->pc > pc && (!alt || item->pc < alt->pc))
2362 alt = item;
2363
2364 for (i = 0; i < len; i++, item++)
2365 {
2366 /* Leave prev pointing to the linetable entry for the last line
2367 that started at or before PC. */
2368 if (item->pc > pc)
2369 break;
2370
2371 prev = item;
2372 }
2373
2374 /* At this point, prev points at the line whose start addr is <= pc, and
2375 item points at the next line. If we ran off the end of the linetable
2376 (pc >= start of the last line), then prev == item. If pc < start of
2377 the first line, prev will not be set. */
2378
2379 /* Is this file's best line closer than the best in the other files?
2380 If so, record this file, and its best line, as best so far. Don't
2381 save prev if it represents the end of a function (i.e. line number
2382 0) instead of a real line. */
2383
2384 if (prev && prev->line && (!best || prev->pc > best->pc))
2385 {
2386 best = prev;
2387 best_symtab = s;
2388
2389 /* Discard BEST_END if it's before the PC of the current BEST. */
2390 if (best_end <= best->pc)
2391 best_end = 0;
2392 }
2393
2394 /* If another line (denoted by ITEM) is in the linetable and its
2395 PC is after BEST's PC, but before the current BEST_END, then
2396 use ITEM's PC as the new best_end. */
2397 if (best && i < len && item->pc > best->pc
2398 && (best_end == 0 || best_end > item->pc))
2399 best_end = item->pc;
2400 }
2401
2402 if (!best_symtab)
2403 {
2404 /* If we didn't find any line number info, just return zeros.
2405 We used to return alt->line - 1 here, but that could be
2406 anywhere; if we don't have line number info for this PC,
2407 don't make some up. */
2408 val.pc = pc;
2409 }
2410 else if (best->line == 0)
2411 {
2412 /* If our best fit is in a range of PC's for which no line
2413 number info is available (line number is zero) then we didn't
2414 find any valid line information. */
2415 val.pc = pc;
2416 }
2417 else
2418 {
2419 val.symtab = best_symtab;
2420 val.line = best->line;
2421 val.pc = best->pc;
2422 if (best_end && (!alt || best_end < alt->pc))
2423 val.end = best_end;
2424 else if (alt)
2425 val.end = alt->pc;
2426 else
2427 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2428 }
2429 val.section = section;
2430 return val;
2431 }
2432
2433 /* Backward compatibility (no section). */
2434
2435 struct symtab_and_line
2436 find_pc_line (CORE_ADDR pc, int notcurrent)
2437 {
2438 struct obj_section *section;
2439
2440 section = find_pc_overlay (pc);
2441 if (pc_in_unmapped_range (pc, section))
2442 pc = overlay_mapped_address (pc, section);
2443 return find_pc_sect_line (pc, section, notcurrent);
2444 }
2445 \f
2446 /* Find line number LINE in any symtab whose name is the same as
2447 SYMTAB.
2448
2449 If found, return the symtab that contains the linetable in which it was
2450 found, set *INDEX to the index in the linetable of the best entry
2451 found, and set *EXACT_MATCH nonzero if the value returned is an
2452 exact match.
2453
2454 If not found, return NULL. */
2455
2456 struct symtab *
2457 find_line_symtab (struct symtab *symtab, int line,
2458 int *index, int *exact_match)
2459 {
2460 int exact = 0; /* Initialized here to avoid a compiler warning. */
2461
2462 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2463 so far seen. */
2464
2465 int best_index;
2466 struct linetable *best_linetable;
2467 struct symtab *best_symtab;
2468
2469 /* First try looking it up in the given symtab. */
2470 best_linetable = LINETABLE (symtab);
2471 best_symtab = symtab;
2472 best_index = find_line_common (best_linetable, line, &exact, 0);
2473 if (best_index < 0 || !exact)
2474 {
2475 /* Didn't find an exact match. So we better keep looking for
2476 another symtab with the same name. In the case of xcoff,
2477 multiple csects for one source file (produced by IBM's FORTRAN
2478 compiler) produce multiple symtabs (this is unavoidable
2479 assuming csects can be at arbitrary places in memory and that
2480 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2481
2482 /* BEST is the smallest linenumber > LINE so far seen,
2483 or 0 if none has been seen so far.
2484 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2485 int best;
2486
2487 struct objfile *objfile;
2488 struct symtab *s;
2489
2490 if (best_index >= 0)
2491 best = best_linetable->item[best_index].line;
2492 else
2493 best = 0;
2494
2495 ALL_OBJFILES (objfile)
2496 {
2497 if (objfile->sf)
2498 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2499 symtab_to_fullname (symtab));
2500 }
2501
2502 ALL_SYMTABS (objfile, s)
2503 {
2504 struct linetable *l;
2505 int ind;
2506
2507 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2508 continue;
2509 if (FILENAME_CMP (symtab_to_fullname (symtab),
2510 symtab_to_fullname (s)) != 0)
2511 continue;
2512 l = LINETABLE (s);
2513 ind = find_line_common (l, line, &exact, 0);
2514 if (ind >= 0)
2515 {
2516 if (exact)
2517 {
2518 best_index = ind;
2519 best_linetable = l;
2520 best_symtab = s;
2521 goto done;
2522 }
2523 if (best == 0 || l->item[ind].line < best)
2524 {
2525 best = l->item[ind].line;
2526 best_index = ind;
2527 best_linetable = l;
2528 best_symtab = s;
2529 }
2530 }
2531 }
2532 }
2533 done:
2534 if (best_index < 0)
2535 return NULL;
2536
2537 if (index)
2538 *index = best_index;
2539 if (exact_match)
2540 *exact_match = exact;
2541
2542 return best_symtab;
2543 }
2544
2545 /* Given SYMTAB, returns all the PCs function in the symtab that
2546 exactly match LINE. Returns NULL if there are no exact matches,
2547 but updates BEST_ITEM in this case. */
2548
2549 VEC (CORE_ADDR) *
2550 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2551 struct linetable_entry **best_item)
2552 {
2553 int start = 0;
2554 VEC (CORE_ADDR) *result = NULL;
2555
2556 /* First, collect all the PCs that are at this line. */
2557 while (1)
2558 {
2559 int was_exact;
2560 int idx;
2561
2562 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2563 if (idx < 0)
2564 break;
2565
2566 if (!was_exact)
2567 {
2568 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2569
2570 if (*best_item == NULL || item->line < (*best_item)->line)
2571 *best_item = item;
2572
2573 break;
2574 }
2575
2576 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2577 start = idx + 1;
2578 }
2579
2580 return result;
2581 }
2582
2583 \f
2584 /* Set the PC value for a given source file and line number and return true.
2585 Returns zero for invalid line number (and sets the PC to 0).
2586 The source file is specified with a struct symtab. */
2587
2588 int
2589 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2590 {
2591 struct linetable *l;
2592 int ind;
2593
2594 *pc = 0;
2595 if (symtab == 0)
2596 return 0;
2597
2598 symtab = find_line_symtab (symtab, line, &ind, NULL);
2599 if (symtab != NULL)
2600 {
2601 l = LINETABLE (symtab);
2602 *pc = l->item[ind].pc;
2603 return 1;
2604 }
2605 else
2606 return 0;
2607 }
2608
2609 /* Find the range of pc values in a line.
2610 Store the starting pc of the line into *STARTPTR
2611 and the ending pc (start of next line) into *ENDPTR.
2612 Returns 1 to indicate success.
2613 Returns 0 if could not find the specified line. */
2614
2615 int
2616 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2617 CORE_ADDR *endptr)
2618 {
2619 CORE_ADDR startaddr;
2620 struct symtab_and_line found_sal;
2621
2622 startaddr = sal.pc;
2623 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2624 return 0;
2625
2626 /* This whole function is based on address. For example, if line 10 has
2627 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2628 "info line *0x123" should say the line goes from 0x100 to 0x200
2629 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2630 This also insures that we never give a range like "starts at 0x134
2631 and ends at 0x12c". */
2632
2633 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2634 if (found_sal.line != sal.line)
2635 {
2636 /* The specified line (sal) has zero bytes. */
2637 *startptr = found_sal.pc;
2638 *endptr = found_sal.pc;
2639 }
2640 else
2641 {
2642 *startptr = found_sal.pc;
2643 *endptr = found_sal.end;
2644 }
2645 return 1;
2646 }
2647
2648 /* Given a line table and a line number, return the index into the line
2649 table for the pc of the nearest line whose number is >= the specified one.
2650 Return -1 if none is found. The value is >= 0 if it is an index.
2651 START is the index at which to start searching the line table.
2652
2653 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2654
2655 static int
2656 find_line_common (struct linetable *l, int lineno,
2657 int *exact_match, int start)
2658 {
2659 int i;
2660 int len;
2661
2662 /* BEST is the smallest linenumber > LINENO so far seen,
2663 or 0 if none has been seen so far.
2664 BEST_INDEX identifies the item for it. */
2665
2666 int best_index = -1;
2667 int best = 0;
2668
2669 *exact_match = 0;
2670
2671 if (lineno <= 0)
2672 return -1;
2673 if (l == 0)
2674 return -1;
2675
2676 len = l->nitems;
2677 for (i = start; i < len; i++)
2678 {
2679 struct linetable_entry *item = &(l->item[i]);
2680
2681 if (item->line == lineno)
2682 {
2683 /* Return the first (lowest address) entry which matches. */
2684 *exact_match = 1;
2685 return i;
2686 }
2687
2688 if (item->line > lineno && (best == 0 || item->line < best))
2689 {
2690 best = item->line;
2691 best_index = i;
2692 }
2693 }
2694
2695 /* If we got here, we didn't get an exact match. */
2696 return best_index;
2697 }
2698
2699 int
2700 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2701 {
2702 struct symtab_and_line sal;
2703
2704 sal = find_pc_line (pc, 0);
2705 *startptr = sal.pc;
2706 *endptr = sal.end;
2707 return sal.symtab != 0;
2708 }
2709
2710 /* Given a function symbol SYM, find the symtab and line for the start
2711 of the function.
2712 If the argument FUNFIRSTLINE is nonzero, we want the first line
2713 of real code inside the function. */
2714
2715 struct symtab_and_line
2716 find_function_start_sal (struct symbol *sym, int funfirstline)
2717 {
2718 struct symtab_and_line sal;
2719
2720 fixup_symbol_section (sym, NULL);
2721 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2722 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2723
2724 /* We always should have a line for the function start address.
2725 If we don't, something is odd. Create a plain SAL refering
2726 just the PC and hope that skip_prologue_sal (if requested)
2727 can find a line number for after the prologue. */
2728 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2729 {
2730 init_sal (&sal);
2731 sal.pspace = current_program_space;
2732 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2733 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2734 }
2735
2736 if (funfirstline)
2737 skip_prologue_sal (&sal);
2738
2739 return sal;
2740 }
2741
2742 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2743 address for that function that has an entry in SYMTAB's line info
2744 table. If such an entry cannot be found, return FUNC_ADDR
2745 unaltered. */
2746
2747 static CORE_ADDR
2748 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2749 {
2750 CORE_ADDR func_start, func_end;
2751 struct linetable *l;
2752 int i;
2753
2754 /* Give up if this symbol has no lineinfo table. */
2755 l = LINETABLE (symtab);
2756 if (l == NULL)
2757 return func_addr;
2758
2759 /* Get the range for the function's PC values, or give up if we
2760 cannot, for some reason. */
2761 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2762 return func_addr;
2763
2764 /* Linetable entries are ordered by PC values, see the commentary in
2765 symtab.h where `struct linetable' is defined. Thus, the first
2766 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2767 address we are looking for. */
2768 for (i = 0; i < l->nitems; i++)
2769 {
2770 struct linetable_entry *item = &(l->item[i]);
2771
2772 /* Don't use line numbers of zero, they mark special entries in
2773 the table. See the commentary on symtab.h before the
2774 definition of struct linetable. */
2775 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2776 return item->pc;
2777 }
2778
2779 return func_addr;
2780 }
2781
2782 /* Adjust SAL to the first instruction past the function prologue.
2783 If the PC was explicitly specified, the SAL is not changed.
2784 If the line number was explicitly specified, at most the SAL's PC
2785 is updated. If SAL is already past the prologue, then do nothing. */
2786
2787 void
2788 skip_prologue_sal (struct symtab_and_line *sal)
2789 {
2790 struct symbol *sym;
2791 struct symtab_and_line start_sal;
2792 struct cleanup *old_chain;
2793 CORE_ADDR pc, saved_pc;
2794 struct obj_section *section;
2795 const char *name;
2796 struct objfile *objfile;
2797 struct gdbarch *gdbarch;
2798 const struct block *b, *function_block;
2799 int force_skip, skip;
2800
2801 /* Do not change the SAL if PC was specified explicitly. */
2802 if (sal->explicit_pc)
2803 return;
2804
2805 old_chain = save_current_space_and_thread ();
2806 switch_to_program_space_and_thread (sal->pspace);
2807
2808 sym = find_pc_sect_function (sal->pc, sal->section);
2809 if (sym != NULL)
2810 {
2811 fixup_symbol_section (sym, NULL);
2812
2813 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2814 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2815 name = SYMBOL_LINKAGE_NAME (sym);
2816 objfile = SYMBOL_SYMTAB (sym)->objfile;
2817 }
2818 else
2819 {
2820 struct bound_minimal_symbol msymbol
2821 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2822
2823 if (msymbol.minsym == NULL)
2824 {
2825 do_cleanups (old_chain);
2826 return;
2827 }
2828
2829 objfile = msymbol.objfile;
2830 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2831 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2832 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2833 }
2834
2835 gdbarch = get_objfile_arch (objfile);
2836
2837 /* Process the prologue in two passes. In the first pass try to skip the
2838 prologue (SKIP is true) and verify there is a real need for it (indicated
2839 by FORCE_SKIP). If no such reason was found run a second pass where the
2840 prologue is not skipped (SKIP is false). */
2841
2842 skip = 1;
2843 force_skip = 1;
2844
2845 /* Be conservative - allow direct PC (without skipping prologue) only if we
2846 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2847 have to be set by the caller so we use SYM instead. */
2848 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2849 force_skip = 0;
2850
2851 saved_pc = pc;
2852 do
2853 {
2854 pc = saved_pc;
2855
2856 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2857 so that gdbarch_skip_prologue has something unique to work on. */
2858 if (section_is_overlay (section) && !section_is_mapped (section))
2859 pc = overlay_unmapped_address (pc, section);
2860
2861 /* Skip "first line" of function (which is actually its prologue). */
2862 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2863 if (gdbarch_skip_entrypoint_p (gdbarch))
2864 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2865 if (skip)
2866 pc = gdbarch_skip_prologue (gdbarch, pc);
2867
2868 /* For overlays, map pc back into its mapped VMA range. */
2869 pc = overlay_mapped_address (pc, section);
2870
2871 /* Calculate line number. */
2872 start_sal = find_pc_sect_line (pc, section, 0);
2873
2874 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2875 line is still part of the same function. */
2876 if (skip && start_sal.pc != pc
2877 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2878 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2879 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2880 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2881 {
2882 /* First pc of next line */
2883 pc = start_sal.end;
2884 /* Recalculate the line number (might not be N+1). */
2885 start_sal = find_pc_sect_line (pc, section, 0);
2886 }
2887
2888 /* On targets with executable formats that don't have a concept of
2889 constructors (ELF with .init has, PE doesn't), gcc emits a call
2890 to `__main' in `main' between the prologue and before user
2891 code. */
2892 if (gdbarch_skip_main_prologue_p (gdbarch)
2893 && name && strcmp_iw (name, "main") == 0)
2894 {
2895 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2896 /* Recalculate the line number (might not be N+1). */
2897 start_sal = find_pc_sect_line (pc, section, 0);
2898 force_skip = 1;
2899 }
2900 }
2901 while (!force_skip && skip--);
2902
2903 /* If we still don't have a valid source line, try to find the first
2904 PC in the lineinfo table that belongs to the same function. This
2905 happens with COFF debug info, which does not seem to have an
2906 entry in lineinfo table for the code after the prologue which has
2907 no direct relation to source. For example, this was found to be
2908 the case with the DJGPP target using "gcc -gcoff" when the
2909 compiler inserted code after the prologue to make sure the stack
2910 is aligned. */
2911 if (!force_skip && sym && start_sal.symtab == NULL)
2912 {
2913 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2914 /* Recalculate the line number. */
2915 start_sal = find_pc_sect_line (pc, section, 0);
2916 }
2917
2918 do_cleanups (old_chain);
2919
2920 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2921 forward SAL to the end of the prologue. */
2922 if (sal->pc >= pc)
2923 return;
2924
2925 sal->pc = pc;
2926 sal->section = section;
2927
2928 /* Unless the explicit_line flag was set, update the SAL line
2929 and symtab to correspond to the modified PC location. */
2930 if (sal->explicit_line)
2931 return;
2932
2933 sal->symtab = start_sal.symtab;
2934 sal->line = start_sal.line;
2935 sal->end = start_sal.end;
2936
2937 /* Check if we are now inside an inlined function. If we can,
2938 use the call site of the function instead. */
2939 b = block_for_pc_sect (sal->pc, sal->section);
2940 function_block = NULL;
2941 while (b != NULL)
2942 {
2943 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2944 function_block = b;
2945 else if (BLOCK_FUNCTION (b) != NULL)
2946 break;
2947 b = BLOCK_SUPERBLOCK (b);
2948 }
2949 if (function_block != NULL
2950 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2951 {
2952 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2953 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2954 }
2955 }
2956
2957 /* Determine if PC is in the prologue of a function. The prologue is the area
2958 between the first instruction of a function, and the first executable line.
2959 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
2960
2961 If non-zero, func_start is where we think the prologue starts, possibly
2962 by previous examination of symbol table information. */
2963
2964 int
2965 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
2966 {
2967 struct symtab_and_line sal;
2968 CORE_ADDR func_addr, func_end;
2969
2970 /* We have several sources of information we can consult to figure
2971 this out.
2972 - Compilers usually emit line number info that marks the prologue
2973 as its own "source line". So the ending address of that "line"
2974 is the end of the prologue. If available, this is the most
2975 reliable method.
2976 - The minimal symbols and partial symbols, which can usually tell
2977 us the starting and ending addresses of a function.
2978 - If we know the function's start address, we can call the
2979 architecture-defined gdbarch_skip_prologue function to analyze the
2980 instruction stream and guess where the prologue ends.
2981 - Our `func_start' argument; if non-zero, this is the caller's
2982 best guess as to the function's entry point. At the time of
2983 this writing, handle_inferior_event doesn't get this right, so
2984 it should be our last resort. */
2985
2986 /* Consult the partial symbol table, to find which function
2987 the PC is in. */
2988 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2989 {
2990 CORE_ADDR prologue_end;
2991
2992 /* We don't even have minsym information, so fall back to using
2993 func_start, if given. */
2994 if (! func_start)
2995 return 1; /* We *might* be in a prologue. */
2996
2997 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
2998
2999 return func_start <= pc && pc < prologue_end;
3000 }
3001
3002 /* If we have line number information for the function, that's
3003 usually pretty reliable. */
3004 sal = find_pc_line (func_addr, 0);
3005
3006 /* Now sal describes the source line at the function's entry point,
3007 which (by convention) is the prologue. The end of that "line",
3008 sal.end, is the end of the prologue.
3009
3010 Note that, for functions whose source code is all on a single
3011 line, the line number information doesn't always end up this way.
3012 So we must verify that our purported end-of-prologue address is
3013 *within* the function, not at its start or end. */
3014 if (sal.line == 0
3015 || sal.end <= func_addr
3016 || func_end <= sal.end)
3017 {
3018 /* We don't have any good line number info, so use the minsym
3019 information, together with the architecture-specific prologue
3020 scanning code. */
3021 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3022
3023 return func_addr <= pc && pc < prologue_end;
3024 }
3025
3026 /* We have line number info, and it looks good. */
3027 return func_addr <= pc && pc < sal.end;
3028 }
3029
3030 /* Given PC at the function's start address, attempt to find the
3031 prologue end using SAL information. Return zero if the skip fails.
3032
3033 A non-optimized prologue traditionally has one SAL for the function
3034 and a second for the function body. A single line function has
3035 them both pointing at the same line.
3036
3037 An optimized prologue is similar but the prologue may contain
3038 instructions (SALs) from the instruction body. Need to skip those
3039 while not getting into the function body.
3040
3041 The functions end point and an increasing SAL line are used as
3042 indicators of the prologue's endpoint.
3043
3044 This code is based on the function refine_prologue_limit
3045 (found in ia64). */
3046
3047 CORE_ADDR
3048 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3049 {
3050 struct symtab_and_line prologue_sal;
3051 CORE_ADDR start_pc;
3052 CORE_ADDR end_pc;
3053 const struct block *bl;
3054
3055 /* Get an initial range for the function. */
3056 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3057 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3058
3059 prologue_sal = find_pc_line (start_pc, 0);
3060 if (prologue_sal.line != 0)
3061 {
3062 /* For languages other than assembly, treat two consecutive line
3063 entries at the same address as a zero-instruction prologue.
3064 The GNU assembler emits separate line notes for each instruction
3065 in a multi-instruction macro, but compilers generally will not
3066 do this. */
3067 if (prologue_sal.symtab->language != language_asm)
3068 {
3069 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
3070 int idx = 0;
3071
3072 /* Skip any earlier lines, and any end-of-sequence marker
3073 from a previous function. */
3074 while (linetable->item[idx].pc != prologue_sal.pc
3075 || linetable->item[idx].line == 0)
3076 idx++;
3077
3078 if (idx+1 < linetable->nitems
3079 && linetable->item[idx+1].line != 0
3080 && linetable->item[idx+1].pc == start_pc)
3081 return start_pc;
3082 }
3083
3084 /* If there is only one sal that covers the entire function,
3085 then it is probably a single line function, like
3086 "foo(){}". */
3087 if (prologue_sal.end >= end_pc)
3088 return 0;
3089
3090 while (prologue_sal.end < end_pc)
3091 {
3092 struct symtab_and_line sal;
3093
3094 sal = find_pc_line (prologue_sal.end, 0);
3095 if (sal.line == 0)
3096 break;
3097 /* Assume that a consecutive SAL for the same (or larger)
3098 line mark the prologue -> body transition. */
3099 if (sal.line >= prologue_sal.line)
3100 break;
3101 /* Likewise if we are in a different symtab altogether
3102 (e.g. within a file included via #include).  */
3103 if (sal.symtab != prologue_sal.symtab)
3104 break;
3105
3106 /* The line number is smaller. Check that it's from the
3107 same function, not something inlined. If it's inlined,
3108 then there is no point comparing the line numbers. */
3109 bl = block_for_pc (prologue_sal.end);
3110 while (bl)
3111 {
3112 if (block_inlined_p (bl))
3113 break;
3114 if (BLOCK_FUNCTION (bl))
3115 {
3116 bl = NULL;
3117 break;
3118 }
3119 bl = BLOCK_SUPERBLOCK (bl);
3120 }
3121 if (bl != NULL)
3122 break;
3123
3124 /* The case in which compiler's optimizer/scheduler has
3125 moved instructions into the prologue. We look ahead in
3126 the function looking for address ranges whose
3127 corresponding line number is less the first one that we
3128 found for the function. This is more conservative then
3129 refine_prologue_limit which scans a large number of SALs
3130 looking for any in the prologue. */
3131 prologue_sal = sal;
3132 }
3133 }
3134
3135 if (prologue_sal.end < end_pc)
3136 /* Return the end of this line, or zero if we could not find a
3137 line. */
3138 return prologue_sal.end;
3139 else
3140 /* Don't return END_PC, which is past the end of the function. */
3141 return prologue_sal.pc;
3142 }
3143 \f
3144 /* If P is of the form "operator[ \t]+..." where `...' is
3145 some legitimate operator text, return a pointer to the
3146 beginning of the substring of the operator text.
3147 Otherwise, return "". */
3148
3149 static const char *
3150 operator_chars (const char *p, const char **end)
3151 {
3152 *end = "";
3153 if (strncmp (p, "operator", 8))
3154 return *end;
3155 p += 8;
3156
3157 /* Don't get faked out by `operator' being part of a longer
3158 identifier. */
3159 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3160 return *end;
3161
3162 /* Allow some whitespace between `operator' and the operator symbol. */
3163 while (*p == ' ' || *p == '\t')
3164 p++;
3165
3166 /* Recognize 'operator TYPENAME'. */
3167
3168 if (isalpha (*p) || *p == '_' || *p == '$')
3169 {
3170 const char *q = p + 1;
3171
3172 while (isalnum (*q) || *q == '_' || *q == '$')
3173 q++;
3174 *end = q;
3175 return p;
3176 }
3177
3178 while (*p)
3179 switch (*p)
3180 {
3181 case '\\': /* regexp quoting */
3182 if (p[1] == '*')
3183 {
3184 if (p[2] == '=') /* 'operator\*=' */
3185 *end = p + 3;
3186 else /* 'operator\*' */
3187 *end = p + 2;
3188 return p;
3189 }
3190 else if (p[1] == '[')
3191 {
3192 if (p[2] == ']')
3193 error (_("mismatched quoting on brackets, "
3194 "try 'operator\\[\\]'"));
3195 else if (p[2] == '\\' && p[3] == ']')
3196 {
3197 *end = p + 4; /* 'operator\[\]' */
3198 return p;
3199 }
3200 else
3201 error (_("nothing is allowed between '[' and ']'"));
3202 }
3203 else
3204 {
3205 /* Gratuitous qoute: skip it and move on. */
3206 p++;
3207 continue;
3208 }
3209 break;
3210 case '!':
3211 case '=':
3212 case '*':
3213 case '/':
3214 case '%':
3215 case '^':
3216 if (p[1] == '=')
3217 *end = p + 2;
3218 else
3219 *end = p + 1;
3220 return p;
3221 case '<':
3222 case '>':
3223 case '+':
3224 case '-':
3225 case '&':
3226 case '|':
3227 if (p[0] == '-' && p[1] == '>')
3228 {
3229 /* Struct pointer member operator 'operator->'. */
3230 if (p[2] == '*')
3231 {
3232 *end = p + 3; /* 'operator->*' */
3233 return p;
3234 }
3235 else if (p[2] == '\\')
3236 {
3237 *end = p + 4; /* Hopefully 'operator->\*' */
3238 return p;
3239 }
3240 else
3241 {
3242 *end = p + 2; /* 'operator->' */
3243 return p;
3244 }
3245 }
3246 if (p[1] == '=' || p[1] == p[0])
3247 *end = p + 2;
3248 else
3249 *end = p + 1;
3250 return p;
3251 case '~':
3252 case ',':
3253 *end = p + 1;
3254 return p;
3255 case '(':
3256 if (p[1] != ')')
3257 error (_("`operator ()' must be specified "
3258 "without whitespace in `()'"));
3259 *end = p + 2;
3260 return p;
3261 case '?':
3262 if (p[1] != ':')
3263 error (_("`operator ?:' must be specified "
3264 "without whitespace in `?:'"));
3265 *end = p + 2;
3266 return p;
3267 case '[':
3268 if (p[1] != ']')
3269 error (_("`operator []' must be specified "
3270 "without whitespace in `[]'"));
3271 *end = p + 2;
3272 return p;
3273 default:
3274 error (_("`operator %s' not supported"), p);
3275 break;
3276 }
3277
3278 *end = "";
3279 return *end;
3280 }
3281 \f
3282
3283 /* Cache to watch for file names already seen by filename_seen. */
3284
3285 struct filename_seen_cache
3286 {
3287 /* Table of files seen so far. */
3288 htab_t tab;
3289 /* Initial size of the table. It automagically grows from here. */
3290 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3291 };
3292
3293 /* filename_seen_cache constructor. */
3294
3295 static struct filename_seen_cache *
3296 create_filename_seen_cache (void)
3297 {
3298 struct filename_seen_cache *cache;
3299
3300 cache = XNEW (struct filename_seen_cache);
3301 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3302 filename_hash, filename_eq,
3303 NULL, xcalloc, xfree);
3304
3305 return cache;
3306 }
3307
3308 /* Empty the cache, but do not delete it. */
3309
3310 static void
3311 clear_filename_seen_cache (struct filename_seen_cache *cache)
3312 {
3313 htab_empty (cache->tab);
3314 }
3315
3316 /* filename_seen_cache destructor.
3317 This takes a void * argument as it is generally used as a cleanup. */
3318
3319 static void
3320 delete_filename_seen_cache (void *ptr)
3321 {
3322 struct filename_seen_cache *cache = ptr;
3323
3324 htab_delete (cache->tab);
3325 xfree (cache);
3326 }
3327
3328 /* If FILE is not already in the table of files in CACHE, return zero;
3329 otherwise return non-zero. Optionally add FILE to the table if ADD
3330 is non-zero.
3331
3332 NOTE: We don't manage space for FILE, we assume FILE lives as long
3333 as the caller needs. */
3334
3335 static int
3336 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3337 {
3338 void **slot;
3339
3340 /* Is FILE in tab? */
3341 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3342 if (*slot != NULL)
3343 return 1;
3344
3345 /* No; maybe add it to tab. */
3346 if (add)
3347 *slot = (char *) file;
3348
3349 return 0;
3350 }
3351
3352 /* Data structure to maintain printing state for output_source_filename. */
3353
3354 struct output_source_filename_data
3355 {
3356 /* Cache of what we've seen so far. */
3357 struct filename_seen_cache *filename_seen_cache;
3358
3359 /* Flag of whether we're printing the first one. */
3360 int first;
3361 };
3362
3363 /* Slave routine for sources_info. Force line breaks at ,'s.
3364 NAME is the name to print.
3365 DATA contains the state for printing and watching for duplicates. */
3366
3367 static void
3368 output_source_filename (const char *name,
3369 struct output_source_filename_data *data)
3370 {
3371 /* Since a single source file can result in several partial symbol
3372 tables, we need to avoid printing it more than once. Note: if
3373 some of the psymtabs are read in and some are not, it gets
3374 printed both under "Source files for which symbols have been
3375 read" and "Source files for which symbols will be read in on
3376 demand". I consider this a reasonable way to deal with the
3377 situation. I'm not sure whether this can also happen for
3378 symtabs; it doesn't hurt to check. */
3379
3380 /* Was NAME already seen? */
3381 if (filename_seen (data->filename_seen_cache, name, 1))
3382 {
3383 /* Yes; don't print it again. */
3384 return;
3385 }
3386
3387 /* No; print it and reset *FIRST. */
3388 if (! data->first)
3389 printf_filtered (", ");
3390 data->first = 0;
3391
3392 wrap_here ("");
3393 fputs_filtered (name, gdb_stdout);
3394 }
3395
3396 /* A callback for map_partial_symbol_filenames. */
3397
3398 static void
3399 output_partial_symbol_filename (const char *filename, const char *fullname,
3400 void *data)
3401 {
3402 output_source_filename (fullname ? fullname : filename, data);
3403 }
3404
3405 static void
3406 sources_info (char *ignore, int from_tty)
3407 {
3408 struct symtab *s;
3409 struct objfile *objfile;
3410 struct output_source_filename_data data;
3411 struct cleanup *cleanups;
3412
3413 if (!have_full_symbols () && !have_partial_symbols ())
3414 {
3415 error (_("No symbol table is loaded. Use the \"file\" command."));
3416 }
3417
3418 data.filename_seen_cache = create_filename_seen_cache ();
3419 cleanups = make_cleanup (delete_filename_seen_cache,
3420 data.filename_seen_cache);
3421
3422 printf_filtered ("Source files for which symbols have been read in:\n\n");
3423
3424 data.first = 1;
3425 ALL_SYMTABS (objfile, s)
3426 {
3427 const char *fullname = symtab_to_fullname (s);
3428
3429 output_source_filename (fullname, &data);
3430 }
3431 printf_filtered ("\n\n");
3432
3433 printf_filtered ("Source files for which symbols "
3434 "will be read in on demand:\n\n");
3435
3436 clear_filename_seen_cache (data.filename_seen_cache);
3437 data.first = 1;
3438 map_symbol_filenames (output_partial_symbol_filename, &data,
3439 1 /*need_fullname*/);
3440 printf_filtered ("\n");
3441
3442 do_cleanups (cleanups);
3443 }
3444
3445 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3446 non-zero compare only lbasename of FILES. */
3447
3448 static int
3449 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3450 {
3451 int i;
3452
3453 if (file != NULL && nfiles != 0)
3454 {
3455 for (i = 0; i < nfiles; i++)
3456 {
3457 if (compare_filenames_for_search (file, (basenames
3458 ? lbasename (files[i])
3459 : files[i])))
3460 return 1;
3461 }
3462 }
3463 else if (nfiles == 0)
3464 return 1;
3465 return 0;
3466 }
3467
3468 /* Free any memory associated with a search. */
3469
3470 void
3471 free_search_symbols (struct symbol_search *symbols)
3472 {
3473 struct symbol_search *p;
3474 struct symbol_search *next;
3475
3476 for (p = symbols; p != NULL; p = next)
3477 {
3478 next = p->next;
3479 xfree (p);
3480 }
3481 }
3482
3483 static void
3484 do_free_search_symbols_cleanup (void *symbolsp)
3485 {
3486 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3487
3488 free_search_symbols (symbols);
3489 }
3490
3491 struct cleanup *
3492 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3493 {
3494 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3495 }
3496
3497 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3498 sort symbols, not minimal symbols. */
3499
3500 static int
3501 compare_search_syms (const void *sa, const void *sb)
3502 {
3503 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3504 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3505 int c;
3506
3507 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3508 if (c != 0)
3509 return c;
3510
3511 if (sym_a->block != sym_b->block)
3512 return sym_a->block - sym_b->block;
3513
3514 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3515 SYMBOL_PRINT_NAME (sym_b->symbol));
3516 }
3517
3518 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3519 The duplicates are freed, and the new list is returned in
3520 *NEW_HEAD, *NEW_TAIL. */
3521
3522 static void
3523 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3524 struct symbol_search **new_head,
3525 struct symbol_search **new_tail)
3526 {
3527 struct symbol_search **symbols, *symp, *old_next;
3528 int i, j, nunique;
3529
3530 gdb_assert (found != NULL && nfound > 0);
3531
3532 /* Build an array out of the list so we can easily sort them. */
3533 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3534 * nfound);
3535 symp = found;
3536 for (i = 0; i < nfound; i++)
3537 {
3538 gdb_assert (symp != NULL);
3539 gdb_assert (symp->block >= 0 && symp->block <= 1);
3540 symbols[i] = symp;
3541 symp = symp->next;
3542 }
3543 gdb_assert (symp == NULL);
3544
3545 qsort (symbols, nfound, sizeof (struct symbol_search *),
3546 compare_search_syms);
3547
3548 /* Collapse out the dups. */
3549 for (i = 1, j = 1; i < nfound; ++i)
3550 {
3551 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3552 symbols[j++] = symbols[i];
3553 else
3554 xfree (symbols[i]);
3555 }
3556 nunique = j;
3557 symbols[j - 1]->next = NULL;
3558
3559 /* Rebuild the linked list. */
3560 for (i = 0; i < nunique - 1; i++)
3561 symbols[i]->next = symbols[i + 1];
3562 symbols[nunique - 1]->next = NULL;
3563
3564 *new_head = symbols[0];
3565 *new_tail = symbols[nunique - 1];
3566 xfree (symbols);
3567 }
3568
3569 /* An object of this type is passed as the user_data to the
3570 expand_symtabs_matching method. */
3571 struct search_symbols_data
3572 {
3573 int nfiles;
3574 const char **files;
3575
3576 /* It is true if PREG contains valid data, false otherwise. */
3577 unsigned preg_p : 1;
3578 regex_t preg;
3579 };
3580
3581 /* A callback for expand_symtabs_matching. */
3582
3583 static int
3584 search_symbols_file_matches (const char *filename, void *user_data,
3585 int basenames)
3586 {
3587 struct search_symbols_data *data = user_data;
3588
3589 return file_matches (filename, data->files, data->nfiles, basenames);
3590 }
3591
3592 /* A callback for expand_symtabs_matching. */
3593
3594 static int
3595 search_symbols_name_matches (const char *symname, void *user_data)
3596 {
3597 struct search_symbols_data *data = user_data;
3598
3599 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3600 }
3601
3602 /* Search the symbol table for matches to the regular expression REGEXP,
3603 returning the results in *MATCHES.
3604
3605 Only symbols of KIND are searched:
3606 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3607 and constants (enums)
3608 FUNCTIONS_DOMAIN - search all functions
3609 TYPES_DOMAIN - search all type names
3610 ALL_DOMAIN - an internal error for this function
3611
3612 free_search_symbols should be called when *MATCHES is no longer needed.
3613
3614 Within each file the results are sorted locally; each symtab's global and
3615 static blocks are separately alphabetized.
3616 Duplicate entries are removed. */
3617
3618 void
3619 search_symbols (const char *regexp, enum search_domain kind,
3620 int nfiles, const char *files[],
3621 struct symbol_search **matches)
3622 {
3623 struct symtab *s;
3624 const struct blockvector *bv;
3625 struct block *b;
3626 int i = 0;
3627 struct block_iterator iter;
3628 struct symbol *sym;
3629 struct objfile *objfile;
3630 struct minimal_symbol *msymbol;
3631 int found_misc = 0;
3632 static const enum minimal_symbol_type types[]
3633 = {mst_data, mst_text, mst_abs};
3634 static const enum minimal_symbol_type types2[]
3635 = {mst_bss, mst_file_text, mst_abs};
3636 static const enum minimal_symbol_type types3[]
3637 = {mst_file_data, mst_solib_trampoline, mst_abs};
3638 static const enum minimal_symbol_type types4[]
3639 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3640 enum minimal_symbol_type ourtype;
3641 enum minimal_symbol_type ourtype2;
3642 enum minimal_symbol_type ourtype3;
3643 enum minimal_symbol_type ourtype4;
3644 struct symbol_search *found;
3645 struct symbol_search *tail;
3646 struct search_symbols_data datum;
3647 int nfound;
3648
3649 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3650 CLEANUP_CHAIN is freed only in the case of an error. */
3651 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3652 struct cleanup *retval_chain;
3653
3654 gdb_assert (kind <= TYPES_DOMAIN);
3655
3656 ourtype = types[kind];
3657 ourtype2 = types2[kind];
3658 ourtype3 = types3[kind];
3659 ourtype4 = types4[kind];
3660
3661 *matches = NULL;
3662 datum.preg_p = 0;
3663
3664 if (regexp != NULL)
3665 {
3666 /* Make sure spacing is right for C++ operators.
3667 This is just a courtesy to make the matching less sensitive
3668 to how many spaces the user leaves between 'operator'
3669 and <TYPENAME> or <OPERATOR>. */
3670 const char *opend;
3671 const char *opname = operator_chars (regexp, &opend);
3672 int errcode;
3673
3674 if (*opname)
3675 {
3676 int fix = -1; /* -1 means ok; otherwise number of
3677 spaces needed. */
3678
3679 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3680 {
3681 /* There should 1 space between 'operator' and 'TYPENAME'. */
3682 if (opname[-1] != ' ' || opname[-2] == ' ')
3683 fix = 1;
3684 }
3685 else
3686 {
3687 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3688 if (opname[-1] == ' ')
3689 fix = 0;
3690 }
3691 /* If wrong number of spaces, fix it. */
3692 if (fix >= 0)
3693 {
3694 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3695
3696 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3697 regexp = tmp;
3698 }
3699 }
3700
3701 errcode = regcomp (&datum.preg, regexp,
3702 REG_NOSUB | (case_sensitivity == case_sensitive_off
3703 ? REG_ICASE : 0));
3704 if (errcode != 0)
3705 {
3706 char *err = get_regcomp_error (errcode, &datum.preg);
3707
3708 make_cleanup (xfree, err);
3709 error (_("Invalid regexp (%s): %s"), err, regexp);
3710 }
3711 datum.preg_p = 1;
3712 make_regfree_cleanup (&datum.preg);
3713 }
3714
3715 /* Search through the partial symtabs *first* for all symbols
3716 matching the regexp. That way we don't have to reproduce all of
3717 the machinery below. */
3718
3719 datum.nfiles = nfiles;
3720 datum.files = files;
3721 expand_symtabs_matching ((nfiles == 0
3722 ? NULL
3723 : search_symbols_file_matches),
3724 search_symbols_name_matches,
3725 kind, &datum);
3726
3727 /* Here, we search through the minimal symbol tables for functions
3728 and variables that match, and force their symbols to be read.
3729 This is in particular necessary for demangled variable names,
3730 which are no longer put into the partial symbol tables.
3731 The symbol will then be found during the scan of symtabs below.
3732
3733 For functions, find_pc_symtab should succeed if we have debug info
3734 for the function, for variables we have to call
3735 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3736 has debug info.
3737 If the lookup fails, set found_misc so that we will rescan to print
3738 any matching symbols without debug info.
3739 We only search the objfile the msymbol came from, we no longer search
3740 all objfiles. In large programs (1000s of shared libs) searching all
3741 objfiles is not worth the pain. */
3742
3743 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3744 {
3745 ALL_MSYMBOLS (objfile, msymbol)
3746 {
3747 QUIT;
3748
3749 if (msymbol->created_by_gdb)
3750 continue;
3751
3752 if (MSYMBOL_TYPE (msymbol) == ourtype
3753 || MSYMBOL_TYPE (msymbol) == ourtype2
3754 || MSYMBOL_TYPE (msymbol) == ourtype3
3755 || MSYMBOL_TYPE (msymbol) == ourtype4)
3756 {
3757 if (!datum.preg_p
3758 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3759 NULL, 0) == 0)
3760 {
3761 /* Note: An important side-effect of these lookup functions
3762 is to expand the symbol table if msymbol is found, for the
3763 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3764 if (kind == FUNCTIONS_DOMAIN
3765 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3766 msymbol)) == NULL
3767 : (lookup_symbol_in_objfile_from_linkage_name
3768 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3769 == NULL))
3770 found_misc = 1;
3771 }
3772 }
3773 }
3774 }
3775
3776 found = NULL;
3777 tail = NULL;
3778 nfound = 0;
3779 retval_chain = make_cleanup_free_search_symbols (&found);
3780
3781 ALL_PRIMARY_SYMTABS (objfile, s)
3782 {
3783 bv = BLOCKVECTOR (s);
3784 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3785 {
3786 b = BLOCKVECTOR_BLOCK (bv, i);
3787 ALL_BLOCK_SYMBOLS (b, iter, sym)
3788 {
3789 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3790
3791 QUIT;
3792
3793 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3794 a substring of symtab_to_fullname as it may contain "./" etc. */
3795 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3796 || ((basenames_may_differ
3797 || file_matches (lbasename (real_symtab->filename),
3798 files, nfiles, 1))
3799 && file_matches (symtab_to_fullname (real_symtab),
3800 files, nfiles, 0)))
3801 && ((!datum.preg_p
3802 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3803 NULL, 0) == 0)
3804 && ((kind == VARIABLES_DOMAIN
3805 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3806 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3807 && SYMBOL_CLASS (sym) != LOC_BLOCK
3808 /* LOC_CONST can be used for more than just enums,
3809 e.g., c++ static const members.
3810 We only want to skip enums here. */
3811 && !(SYMBOL_CLASS (sym) == LOC_CONST
3812 && TYPE_CODE (SYMBOL_TYPE (sym))
3813 == TYPE_CODE_ENUM))
3814 || (kind == FUNCTIONS_DOMAIN
3815 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3816 || (kind == TYPES_DOMAIN
3817 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3818 {
3819 /* match */
3820 struct symbol_search *psr = (struct symbol_search *)
3821 xmalloc (sizeof (struct symbol_search));
3822 psr->block = i;
3823 psr->symtab = real_symtab;
3824 psr->symbol = sym;
3825 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3826 psr->next = NULL;
3827 if (tail == NULL)
3828 found = psr;
3829 else
3830 tail->next = psr;
3831 tail = psr;
3832 nfound ++;
3833 }
3834 }
3835 }
3836 }
3837
3838 if (found != NULL)
3839 {
3840 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3841 /* Note: nfound is no longer useful beyond this point. */
3842 }
3843
3844 /* If there are no eyes, avoid all contact. I mean, if there are
3845 no debug symbols, then print directly from the msymbol_vector. */
3846
3847 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3848 {
3849 ALL_MSYMBOLS (objfile, msymbol)
3850 {
3851 QUIT;
3852
3853 if (msymbol->created_by_gdb)
3854 continue;
3855
3856 if (MSYMBOL_TYPE (msymbol) == ourtype
3857 || MSYMBOL_TYPE (msymbol) == ourtype2
3858 || MSYMBOL_TYPE (msymbol) == ourtype3
3859 || MSYMBOL_TYPE (msymbol) == ourtype4)
3860 {
3861 if (!datum.preg_p
3862 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3863 NULL, 0) == 0)
3864 {
3865 /* For functions we can do a quick check of whether the
3866 symbol might be found via find_pc_symtab. */
3867 if (kind != FUNCTIONS_DOMAIN
3868 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3869 msymbol)) == NULL)
3870 {
3871 if (lookup_symbol_in_objfile_from_linkage_name
3872 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3873 == NULL)
3874 {
3875 /* match */
3876 struct symbol_search *psr = (struct symbol_search *)
3877 xmalloc (sizeof (struct symbol_search));
3878 psr->block = i;
3879 psr->msymbol.minsym = msymbol;
3880 psr->msymbol.objfile = objfile;
3881 psr->symtab = NULL;
3882 psr->symbol = NULL;
3883 psr->next = NULL;
3884 if (tail == NULL)
3885 found = psr;
3886 else
3887 tail->next = psr;
3888 tail = psr;
3889 }
3890 }
3891 }
3892 }
3893 }
3894 }
3895
3896 discard_cleanups (retval_chain);
3897 do_cleanups (old_chain);
3898 *matches = found;
3899 }
3900
3901 /* Helper function for symtab_symbol_info, this function uses
3902 the data returned from search_symbols() to print information
3903 regarding the match to gdb_stdout. */
3904
3905 static void
3906 print_symbol_info (enum search_domain kind,
3907 struct symtab *s, struct symbol *sym,
3908 int block, const char *last)
3909 {
3910 const char *s_filename = symtab_to_filename_for_display (s);
3911
3912 if (last == NULL || filename_cmp (last, s_filename) != 0)
3913 {
3914 fputs_filtered ("\nFile ", gdb_stdout);
3915 fputs_filtered (s_filename, gdb_stdout);
3916 fputs_filtered (":\n", gdb_stdout);
3917 }
3918
3919 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3920 printf_filtered ("static ");
3921
3922 /* Typedef that is not a C++ class. */
3923 if (kind == TYPES_DOMAIN
3924 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3925 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3926 /* variable, func, or typedef-that-is-c++-class. */
3927 else if (kind < TYPES_DOMAIN
3928 || (kind == TYPES_DOMAIN
3929 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3930 {
3931 type_print (SYMBOL_TYPE (sym),
3932 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3933 ? "" : SYMBOL_PRINT_NAME (sym)),
3934 gdb_stdout, 0);
3935
3936 printf_filtered (";\n");
3937 }
3938 }
3939
3940 /* This help function for symtab_symbol_info() prints information
3941 for non-debugging symbols to gdb_stdout. */
3942
3943 static void
3944 print_msymbol_info (struct bound_minimal_symbol msymbol)
3945 {
3946 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3947 char *tmp;
3948
3949 if (gdbarch_addr_bit (gdbarch) <= 32)
3950 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3951 & (CORE_ADDR) 0xffffffff,
3952 8);
3953 else
3954 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3955 16);
3956 printf_filtered ("%s %s\n",
3957 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3958 }
3959
3960 /* This is the guts of the commands "info functions", "info types", and
3961 "info variables". It calls search_symbols to find all matches and then
3962 print_[m]symbol_info to print out some useful information about the
3963 matches. */
3964
3965 static void
3966 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3967 {
3968 static const char * const classnames[] =
3969 {"variable", "function", "type"};
3970 struct symbol_search *symbols;
3971 struct symbol_search *p;
3972 struct cleanup *old_chain;
3973 const char *last_filename = NULL;
3974 int first = 1;
3975
3976 gdb_assert (kind <= TYPES_DOMAIN);
3977
3978 /* Must make sure that if we're interrupted, symbols gets freed. */
3979 search_symbols (regexp, kind, 0, NULL, &symbols);
3980 old_chain = make_cleanup_free_search_symbols (&symbols);
3981
3982 if (regexp != NULL)
3983 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3984 classnames[kind], regexp);
3985 else
3986 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3987
3988 for (p = symbols; p != NULL; p = p->next)
3989 {
3990 QUIT;
3991
3992 if (p->msymbol.minsym != NULL)
3993 {
3994 if (first)
3995 {
3996 printf_filtered (_("\nNon-debugging symbols:\n"));
3997 first = 0;
3998 }
3999 print_msymbol_info (p->msymbol);
4000 }
4001 else
4002 {
4003 print_symbol_info (kind,
4004 p->symtab,
4005 p->symbol,
4006 p->block,
4007 last_filename);
4008 last_filename = symtab_to_filename_for_display (p->symtab);
4009 }
4010 }
4011
4012 do_cleanups (old_chain);
4013 }
4014
4015 static void
4016 variables_info (char *regexp, int from_tty)
4017 {
4018 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4019 }
4020
4021 static void
4022 functions_info (char *regexp, int from_tty)
4023 {
4024 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4025 }
4026
4027
4028 static void
4029 types_info (char *regexp, int from_tty)
4030 {
4031 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4032 }
4033
4034 /* Breakpoint all functions matching regular expression. */
4035
4036 void
4037 rbreak_command_wrapper (char *regexp, int from_tty)
4038 {
4039 rbreak_command (regexp, from_tty);
4040 }
4041
4042 /* A cleanup function that calls end_rbreak_breakpoints. */
4043
4044 static void
4045 do_end_rbreak_breakpoints (void *ignore)
4046 {
4047 end_rbreak_breakpoints ();
4048 }
4049
4050 static void
4051 rbreak_command (char *regexp, int from_tty)
4052 {
4053 struct symbol_search *ss;
4054 struct symbol_search *p;
4055 struct cleanup *old_chain;
4056 char *string = NULL;
4057 int len = 0;
4058 const char **files = NULL;
4059 const char *file_name;
4060 int nfiles = 0;
4061
4062 if (regexp)
4063 {
4064 char *colon = strchr (regexp, ':');
4065
4066 if (colon && *(colon + 1) != ':')
4067 {
4068 int colon_index;
4069 char *local_name;
4070
4071 colon_index = colon - regexp;
4072 local_name = alloca (colon_index + 1);
4073 memcpy (local_name, regexp, colon_index);
4074 local_name[colon_index--] = 0;
4075 while (isspace (local_name[colon_index]))
4076 local_name[colon_index--] = 0;
4077 file_name = local_name;
4078 files = &file_name;
4079 nfiles = 1;
4080 regexp = skip_spaces (colon + 1);
4081 }
4082 }
4083
4084 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4085 old_chain = make_cleanup_free_search_symbols (&ss);
4086 make_cleanup (free_current_contents, &string);
4087
4088 start_rbreak_breakpoints ();
4089 make_cleanup (do_end_rbreak_breakpoints, NULL);
4090 for (p = ss; p != NULL; p = p->next)
4091 {
4092 if (p->msymbol.minsym == NULL)
4093 {
4094 const char *fullname = symtab_to_fullname (p->symtab);
4095
4096 int newlen = (strlen (fullname)
4097 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4098 + 4);
4099
4100 if (newlen > len)
4101 {
4102 string = xrealloc (string, newlen);
4103 len = newlen;
4104 }
4105 strcpy (string, fullname);
4106 strcat (string, ":'");
4107 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4108 strcat (string, "'");
4109 break_command (string, from_tty);
4110 print_symbol_info (FUNCTIONS_DOMAIN,
4111 p->symtab,
4112 p->symbol,
4113 p->block,
4114 symtab_to_filename_for_display (p->symtab));
4115 }
4116 else
4117 {
4118 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4119
4120 if (newlen > len)
4121 {
4122 string = xrealloc (string, newlen);
4123 len = newlen;
4124 }
4125 strcpy (string, "'");
4126 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4127 strcat (string, "'");
4128
4129 break_command (string, from_tty);
4130 printf_filtered ("<function, no debug info> %s;\n",
4131 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4132 }
4133 }
4134
4135 do_cleanups (old_chain);
4136 }
4137 \f
4138
4139 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4140
4141 Either sym_text[sym_text_len] != '(' and then we search for any
4142 symbol starting with SYM_TEXT text.
4143
4144 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4145 be terminated at that point. Partial symbol tables do not have parameters
4146 information. */
4147
4148 static int
4149 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4150 {
4151 int (*ncmp) (const char *, const char *, size_t);
4152
4153 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4154
4155 if (ncmp (name, sym_text, sym_text_len) != 0)
4156 return 0;
4157
4158 if (sym_text[sym_text_len] == '(')
4159 {
4160 /* User searches for `name(someth...'. Require NAME to be terminated.
4161 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4162 present but accept even parameters presence. In this case this
4163 function is in fact strcmp_iw but whitespace skipping is not supported
4164 for tab completion. */
4165
4166 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4167 return 0;
4168 }
4169
4170 return 1;
4171 }
4172
4173 /* Free any memory associated with a completion list. */
4174
4175 static void
4176 free_completion_list (VEC (char_ptr) **list_ptr)
4177 {
4178 int i;
4179 char *p;
4180
4181 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4182 xfree (p);
4183 VEC_free (char_ptr, *list_ptr);
4184 }
4185
4186 /* Callback for make_cleanup. */
4187
4188 static void
4189 do_free_completion_list (void *list)
4190 {
4191 free_completion_list (list);
4192 }
4193
4194 /* Helper routine for make_symbol_completion_list. */
4195
4196 static VEC (char_ptr) *return_val;
4197
4198 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4199 completion_list_add_name \
4200 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4201
4202 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4203 completion_list_add_name \
4204 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4205
4206 /* Test to see if the symbol specified by SYMNAME (which is already
4207 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4208 characters. If so, add it to the current completion list. */
4209
4210 static void
4211 completion_list_add_name (const char *symname,
4212 const char *sym_text, int sym_text_len,
4213 const char *text, const char *word)
4214 {
4215 /* Clip symbols that cannot match. */
4216 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4217 return;
4218
4219 /* We have a match for a completion, so add SYMNAME to the current list
4220 of matches. Note that the name is moved to freshly malloc'd space. */
4221
4222 {
4223 char *new;
4224
4225 if (word == sym_text)
4226 {
4227 new = xmalloc (strlen (symname) + 5);
4228 strcpy (new, symname);
4229 }
4230 else if (word > sym_text)
4231 {
4232 /* Return some portion of symname. */
4233 new = xmalloc (strlen (symname) + 5);
4234 strcpy (new, symname + (word - sym_text));
4235 }
4236 else
4237 {
4238 /* Return some of SYM_TEXT plus symname. */
4239 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4240 strncpy (new, word, sym_text - word);
4241 new[sym_text - word] = '\0';
4242 strcat (new, symname);
4243 }
4244
4245 VEC_safe_push (char_ptr, return_val, new);
4246 }
4247 }
4248
4249 /* ObjC: In case we are completing on a selector, look as the msymbol
4250 again and feed all the selectors into the mill. */
4251
4252 static void
4253 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4254 const char *sym_text, int sym_text_len,
4255 const char *text, const char *word)
4256 {
4257 static char *tmp = NULL;
4258 static unsigned int tmplen = 0;
4259
4260 const char *method, *category, *selector;
4261 char *tmp2 = NULL;
4262
4263 method = MSYMBOL_NATURAL_NAME (msymbol);
4264
4265 /* Is it a method? */
4266 if ((method[0] != '-') && (method[0] != '+'))
4267 return;
4268
4269 if (sym_text[0] == '[')
4270 /* Complete on shortened method method. */
4271 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4272
4273 while ((strlen (method) + 1) >= tmplen)
4274 {
4275 if (tmplen == 0)
4276 tmplen = 1024;
4277 else
4278 tmplen *= 2;
4279 tmp = xrealloc (tmp, tmplen);
4280 }
4281 selector = strchr (method, ' ');
4282 if (selector != NULL)
4283 selector++;
4284
4285 category = strchr (method, '(');
4286
4287 if ((category != NULL) && (selector != NULL))
4288 {
4289 memcpy (tmp, method, (category - method));
4290 tmp[category - method] = ' ';
4291 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4292 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4293 if (sym_text[0] == '[')
4294 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4295 }
4296
4297 if (selector != NULL)
4298 {
4299 /* Complete on selector only. */
4300 strcpy (tmp, selector);
4301 tmp2 = strchr (tmp, ']');
4302 if (tmp2 != NULL)
4303 *tmp2 = '\0';
4304
4305 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4306 }
4307 }
4308
4309 /* Break the non-quoted text based on the characters which are in
4310 symbols. FIXME: This should probably be language-specific. */
4311
4312 static const char *
4313 language_search_unquoted_string (const char *text, const char *p)
4314 {
4315 for (; p > text; --p)
4316 {
4317 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4318 continue;
4319 else
4320 {
4321 if ((current_language->la_language == language_objc))
4322 {
4323 if (p[-1] == ':') /* Might be part of a method name. */
4324 continue;
4325 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4326 p -= 2; /* Beginning of a method name. */
4327 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4328 { /* Might be part of a method name. */
4329 const char *t = p;
4330
4331 /* Seeing a ' ' or a '(' is not conclusive evidence
4332 that we are in the middle of a method name. However,
4333 finding "-[" or "+[" should be pretty un-ambiguous.
4334 Unfortunately we have to find it now to decide. */
4335
4336 while (t > text)
4337 if (isalnum (t[-1]) || t[-1] == '_' ||
4338 t[-1] == ' ' || t[-1] == ':' ||
4339 t[-1] == '(' || t[-1] == ')')
4340 --t;
4341 else
4342 break;
4343
4344 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4345 p = t - 2; /* Method name detected. */
4346 /* Else we leave with p unchanged. */
4347 }
4348 }
4349 break;
4350 }
4351 }
4352 return p;
4353 }
4354
4355 static void
4356 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4357 int sym_text_len, const char *text,
4358 const char *word)
4359 {
4360 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4361 {
4362 struct type *t = SYMBOL_TYPE (sym);
4363 enum type_code c = TYPE_CODE (t);
4364 int j;
4365
4366 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4367 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4368 if (TYPE_FIELD_NAME (t, j))
4369 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4370 sym_text, sym_text_len, text, word);
4371 }
4372 }
4373
4374 /* Type of the user_data argument passed to add_macro_name or
4375 symbol_completion_matcher. The contents are simply whatever is
4376 needed by completion_list_add_name. */
4377 struct add_name_data
4378 {
4379 const char *sym_text;
4380 int sym_text_len;
4381 const char *text;
4382 const char *word;
4383 };
4384
4385 /* A callback used with macro_for_each and macro_for_each_in_scope.
4386 This adds a macro's name to the current completion list. */
4387
4388 static void
4389 add_macro_name (const char *name, const struct macro_definition *ignore,
4390 struct macro_source_file *ignore2, int ignore3,
4391 void *user_data)
4392 {
4393 struct add_name_data *datum = (struct add_name_data *) user_data;
4394
4395 completion_list_add_name (name,
4396 datum->sym_text, datum->sym_text_len,
4397 datum->text, datum->word);
4398 }
4399
4400 /* A callback for expand_symtabs_matching. */
4401
4402 static int
4403 symbol_completion_matcher (const char *name, void *user_data)
4404 {
4405 struct add_name_data *datum = (struct add_name_data *) user_data;
4406
4407 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4408 }
4409
4410 VEC (char_ptr) *
4411 default_make_symbol_completion_list_break_on (const char *text,
4412 const char *word,
4413 const char *break_on,
4414 enum type_code code)
4415 {
4416 /* Problem: All of the symbols have to be copied because readline
4417 frees them. I'm not going to worry about this; hopefully there
4418 won't be that many. */
4419
4420 struct symbol *sym;
4421 struct symtab *s;
4422 struct minimal_symbol *msymbol;
4423 struct objfile *objfile;
4424 const struct block *b;
4425 const struct block *surrounding_static_block, *surrounding_global_block;
4426 struct block_iterator iter;
4427 /* The symbol we are completing on. Points in same buffer as text. */
4428 const char *sym_text;
4429 /* Length of sym_text. */
4430 int sym_text_len;
4431 struct add_name_data datum;
4432 struct cleanup *back_to;
4433
4434 /* Now look for the symbol we are supposed to complete on. */
4435 {
4436 const char *p;
4437 char quote_found;
4438 const char *quote_pos = NULL;
4439
4440 /* First see if this is a quoted string. */
4441 quote_found = '\0';
4442 for (p = text; *p != '\0'; ++p)
4443 {
4444 if (quote_found != '\0')
4445 {
4446 if (*p == quote_found)
4447 /* Found close quote. */
4448 quote_found = '\0';
4449 else if (*p == '\\' && p[1] == quote_found)
4450 /* A backslash followed by the quote character
4451 doesn't end the string. */
4452 ++p;
4453 }
4454 else if (*p == '\'' || *p == '"')
4455 {
4456 quote_found = *p;
4457 quote_pos = p;
4458 }
4459 }
4460 if (quote_found == '\'')
4461 /* A string within single quotes can be a symbol, so complete on it. */
4462 sym_text = quote_pos + 1;
4463 else if (quote_found == '"')
4464 /* A double-quoted string is never a symbol, nor does it make sense
4465 to complete it any other way. */
4466 {
4467 return NULL;
4468 }
4469 else
4470 {
4471 /* It is not a quoted string. Break it based on the characters
4472 which are in symbols. */
4473 while (p > text)
4474 {
4475 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4476 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4477 --p;
4478 else
4479 break;
4480 }
4481 sym_text = p;
4482 }
4483 }
4484
4485 sym_text_len = strlen (sym_text);
4486
4487 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4488
4489 if (current_language->la_language == language_cplus
4490 || current_language->la_language == language_java
4491 || current_language->la_language == language_fortran)
4492 {
4493 /* These languages may have parameters entered by user but they are never
4494 present in the partial symbol tables. */
4495
4496 const char *cs = memchr (sym_text, '(', sym_text_len);
4497
4498 if (cs)
4499 sym_text_len = cs - sym_text;
4500 }
4501 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4502
4503 return_val = NULL;
4504 back_to = make_cleanup (do_free_completion_list, &return_val);
4505
4506 datum.sym_text = sym_text;
4507 datum.sym_text_len = sym_text_len;
4508 datum.text = text;
4509 datum.word = word;
4510
4511 /* Look through the partial symtabs for all symbols which begin
4512 by matching SYM_TEXT. Expand all CUs that you find to the list.
4513 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4514 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4515 &datum);
4516
4517 /* At this point scan through the misc symbol vectors and add each
4518 symbol you find to the list. Eventually we want to ignore
4519 anything that isn't a text symbol (everything else will be
4520 handled by the psymtab code above). */
4521
4522 if (code == TYPE_CODE_UNDEF)
4523 {
4524 ALL_MSYMBOLS (objfile, msymbol)
4525 {
4526 QUIT;
4527 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4528 word);
4529
4530 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4531 word);
4532 }
4533 }
4534
4535 /* Search upwards from currently selected frame (so that we can
4536 complete on local vars). Also catch fields of types defined in
4537 this places which match our text string. Only complete on types
4538 visible from current context. */
4539
4540 b = get_selected_block (0);
4541 surrounding_static_block = block_static_block (b);
4542 surrounding_global_block = block_global_block (b);
4543 if (surrounding_static_block != NULL)
4544 while (b != surrounding_static_block)
4545 {
4546 QUIT;
4547
4548 ALL_BLOCK_SYMBOLS (b, iter, sym)
4549 {
4550 if (code == TYPE_CODE_UNDEF)
4551 {
4552 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4553 word);
4554 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4555 word);
4556 }
4557 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4558 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4559 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4560 word);
4561 }
4562
4563 /* Stop when we encounter an enclosing function. Do not stop for
4564 non-inlined functions - the locals of the enclosing function
4565 are in scope for a nested function. */
4566 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4567 break;
4568 b = BLOCK_SUPERBLOCK (b);
4569 }
4570
4571 /* Add fields from the file's types; symbols will be added below. */
4572
4573 if (code == TYPE_CODE_UNDEF)
4574 {
4575 if (surrounding_static_block != NULL)
4576 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4577 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4578
4579 if (surrounding_global_block != NULL)
4580 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4581 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4582 }
4583
4584 /* Go through the symtabs and check the externs and statics for
4585 symbols which match. */
4586
4587 ALL_PRIMARY_SYMTABS (objfile, s)
4588 {
4589 QUIT;
4590 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4591 ALL_BLOCK_SYMBOLS (b, iter, sym)
4592 {
4593 if (code == TYPE_CODE_UNDEF
4594 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4595 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4596 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4597 }
4598 }
4599
4600 ALL_PRIMARY_SYMTABS (objfile, s)
4601 {
4602 QUIT;
4603 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4604 ALL_BLOCK_SYMBOLS (b, iter, sym)
4605 {
4606 if (code == TYPE_CODE_UNDEF
4607 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4608 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4609 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4610 }
4611 }
4612
4613 /* Skip macros if we are completing a struct tag -- arguable but
4614 usually what is expected. */
4615 if (current_language->la_macro_expansion == macro_expansion_c
4616 && code == TYPE_CODE_UNDEF)
4617 {
4618 struct macro_scope *scope;
4619
4620 /* Add any macros visible in the default scope. Note that this
4621 may yield the occasional wrong result, because an expression
4622 might be evaluated in a scope other than the default. For
4623 example, if the user types "break file:line if <TAB>", the
4624 resulting expression will be evaluated at "file:line" -- but
4625 at there does not seem to be a way to detect this at
4626 completion time. */
4627 scope = default_macro_scope ();
4628 if (scope)
4629 {
4630 macro_for_each_in_scope (scope->file, scope->line,
4631 add_macro_name, &datum);
4632 xfree (scope);
4633 }
4634
4635 /* User-defined macros are always visible. */
4636 macro_for_each (macro_user_macros, add_macro_name, &datum);
4637 }
4638
4639 discard_cleanups (back_to);
4640 return (return_val);
4641 }
4642
4643 VEC (char_ptr) *
4644 default_make_symbol_completion_list (const char *text, const char *word,
4645 enum type_code code)
4646 {
4647 return default_make_symbol_completion_list_break_on (text, word, "", code);
4648 }
4649
4650 /* Return a vector of all symbols (regardless of class) which begin by
4651 matching TEXT. If the answer is no symbols, then the return value
4652 is NULL. */
4653
4654 VEC (char_ptr) *
4655 make_symbol_completion_list (const char *text, const char *word)
4656 {
4657 return current_language->la_make_symbol_completion_list (text, word,
4658 TYPE_CODE_UNDEF);
4659 }
4660
4661 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4662 symbols whose type code is CODE. */
4663
4664 VEC (char_ptr) *
4665 make_symbol_completion_type (const char *text, const char *word,
4666 enum type_code code)
4667 {
4668 gdb_assert (code == TYPE_CODE_UNION
4669 || code == TYPE_CODE_STRUCT
4670 || code == TYPE_CODE_ENUM);
4671 return current_language->la_make_symbol_completion_list (text, word, code);
4672 }
4673
4674 /* Like make_symbol_completion_list, but suitable for use as a
4675 completion function. */
4676
4677 VEC (char_ptr) *
4678 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4679 const char *text, const char *word)
4680 {
4681 return make_symbol_completion_list (text, word);
4682 }
4683
4684 /* Like make_symbol_completion_list, but returns a list of symbols
4685 defined in a source file FILE. */
4686
4687 VEC (char_ptr) *
4688 make_file_symbol_completion_list (const char *text, const char *word,
4689 const char *srcfile)
4690 {
4691 struct symbol *sym;
4692 struct symtab *s;
4693 struct block *b;
4694 struct block_iterator iter;
4695 /* The symbol we are completing on. Points in same buffer as text. */
4696 const char *sym_text;
4697 /* Length of sym_text. */
4698 int sym_text_len;
4699
4700 /* Now look for the symbol we are supposed to complete on.
4701 FIXME: This should be language-specific. */
4702 {
4703 const char *p;
4704 char quote_found;
4705 const char *quote_pos = NULL;
4706
4707 /* First see if this is a quoted string. */
4708 quote_found = '\0';
4709 for (p = text; *p != '\0'; ++p)
4710 {
4711 if (quote_found != '\0')
4712 {
4713 if (*p == quote_found)
4714 /* Found close quote. */
4715 quote_found = '\0';
4716 else if (*p == '\\' && p[1] == quote_found)
4717 /* A backslash followed by the quote character
4718 doesn't end the string. */
4719 ++p;
4720 }
4721 else if (*p == '\'' || *p == '"')
4722 {
4723 quote_found = *p;
4724 quote_pos = p;
4725 }
4726 }
4727 if (quote_found == '\'')
4728 /* A string within single quotes can be a symbol, so complete on it. */
4729 sym_text = quote_pos + 1;
4730 else if (quote_found == '"')
4731 /* A double-quoted string is never a symbol, nor does it make sense
4732 to complete it any other way. */
4733 {
4734 return NULL;
4735 }
4736 else
4737 {
4738 /* Not a quoted string. */
4739 sym_text = language_search_unquoted_string (text, p);
4740 }
4741 }
4742
4743 sym_text_len = strlen (sym_text);
4744
4745 return_val = NULL;
4746
4747 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4748 in). */
4749 s = lookup_symtab (srcfile);
4750 if (s == NULL)
4751 {
4752 /* Maybe they typed the file with leading directories, while the
4753 symbol tables record only its basename. */
4754 const char *tail = lbasename (srcfile);
4755
4756 if (tail > srcfile)
4757 s = lookup_symtab (tail);
4758 }
4759
4760 /* If we have no symtab for that file, return an empty list. */
4761 if (s == NULL)
4762 return (return_val);
4763
4764 /* Go through this symtab and check the externs and statics for
4765 symbols which match. */
4766
4767 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4768 ALL_BLOCK_SYMBOLS (b, iter, sym)
4769 {
4770 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4771 }
4772
4773 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4774 ALL_BLOCK_SYMBOLS (b, iter, sym)
4775 {
4776 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4777 }
4778
4779 return (return_val);
4780 }
4781
4782 /* A helper function for make_source_files_completion_list. It adds
4783 another file name to a list of possible completions, growing the
4784 list as necessary. */
4785
4786 static void
4787 add_filename_to_list (const char *fname, const char *text, const char *word,
4788 VEC (char_ptr) **list)
4789 {
4790 char *new;
4791 size_t fnlen = strlen (fname);
4792
4793 if (word == text)
4794 {
4795 /* Return exactly fname. */
4796 new = xmalloc (fnlen + 5);
4797 strcpy (new, fname);
4798 }
4799 else if (word > text)
4800 {
4801 /* Return some portion of fname. */
4802 new = xmalloc (fnlen + 5);
4803 strcpy (new, fname + (word - text));
4804 }
4805 else
4806 {
4807 /* Return some of TEXT plus fname. */
4808 new = xmalloc (fnlen + (text - word) + 5);
4809 strncpy (new, word, text - word);
4810 new[text - word] = '\0';
4811 strcat (new, fname);
4812 }
4813 VEC_safe_push (char_ptr, *list, new);
4814 }
4815
4816 static int
4817 not_interesting_fname (const char *fname)
4818 {
4819 static const char *illegal_aliens[] = {
4820 "_globals_", /* inserted by coff_symtab_read */
4821 NULL
4822 };
4823 int i;
4824
4825 for (i = 0; illegal_aliens[i]; i++)
4826 {
4827 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4828 return 1;
4829 }
4830 return 0;
4831 }
4832
4833 /* An object of this type is passed as the user_data argument to
4834 map_partial_symbol_filenames. */
4835 struct add_partial_filename_data
4836 {
4837 struct filename_seen_cache *filename_seen_cache;
4838 const char *text;
4839 const char *word;
4840 int text_len;
4841 VEC (char_ptr) **list;
4842 };
4843
4844 /* A callback for map_partial_symbol_filenames. */
4845
4846 static void
4847 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4848 void *user_data)
4849 {
4850 struct add_partial_filename_data *data = user_data;
4851
4852 if (not_interesting_fname (filename))
4853 return;
4854 if (!filename_seen (data->filename_seen_cache, filename, 1)
4855 && filename_ncmp (filename, data->text, data->text_len) == 0)
4856 {
4857 /* This file matches for a completion; add it to the
4858 current list of matches. */
4859 add_filename_to_list (filename, data->text, data->word, data->list);
4860 }
4861 else
4862 {
4863 const char *base_name = lbasename (filename);
4864
4865 if (base_name != filename
4866 && !filename_seen (data->filename_seen_cache, base_name, 1)
4867 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4868 add_filename_to_list (base_name, data->text, data->word, data->list);
4869 }
4870 }
4871
4872 /* Return a vector of all source files whose names begin with matching
4873 TEXT. The file names are looked up in the symbol tables of this
4874 program. If the answer is no matchess, then the return value is
4875 NULL. */
4876
4877 VEC (char_ptr) *
4878 make_source_files_completion_list (const char *text, const char *word)
4879 {
4880 struct symtab *s;
4881 struct objfile *objfile;
4882 size_t text_len = strlen (text);
4883 VEC (char_ptr) *list = NULL;
4884 const char *base_name;
4885 struct add_partial_filename_data datum;
4886 struct filename_seen_cache *filename_seen_cache;
4887 struct cleanup *back_to, *cache_cleanup;
4888
4889 if (!have_full_symbols () && !have_partial_symbols ())
4890 return list;
4891
4892 back_to = make_cleanup (do_free_completion_list, &list);
4893
4894 filename_seen_cache = create_filename_seen_cache ();
4895 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4896 filename_seen_cache);
4897
4898 ALL_SYMTABS (objfile, s)
4899 {
4900 if (not_interesting_fname (s->filename))
4901 continue;
4902 if (!filename_seen (filename_seen_cache, s->filename, 1)
4903 && filename_ncmp (s->filename, text, text_len) == 0)
4904 {
4905 /* This file matches for a completion; add it to the current
4906 list of matches. */
4907 add_filename_to_list (s->filename, text, word, &list);
4908 }
4909 else
4910 {
4911 /* NOTE: We allow the user to type a base name when the
4912 debug info records leading directories, but not the other
4913 way around. This is what subroutines of breakpoint
4914 command do when they parse file names. */
4915 base_name = lbasename (s->filename);
4916 if (base_name != s->filename
4917 && !filename_seen (filename_seen_cache, base_name, 1)
4918 && filename_ncmp (base_name, text, text_len) == 0)
4919 add_filename_to_list (base_name, text, word, &list);
4920 }
4921 }
4922
4923 datum.filename_seen_cache = filename_seen_cache;
4924 datum.text = text;
4925 datum.word = word;
4926 datum.text_len = text_len;
4927 datum.list = &list;
4928 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4929 0 /*need_fullname*/);
4930
4931 do_cleanups (cache_cleanup);
4932 discard_cleanups (back_to);
4933
4934 return list;
4935 }
4936 \f
4937 /* Track MAIN */
4938
4939 /* Return the "main_info" object for the current program space. If
4940 the object has not yet been created, create it and fill in some
4941 default values. */
4942
4943 static struct main_info *
4944 get_main_info (void)
4945 {
4946 struct main_info *info = program_space_data (current_program_space,
4947 main_progspace_key);
4948
4949 if (info == NULL)
4950 {
4951 /* It may seem strange to store the main name in the progspace
4952 and also in whatever objfile happens to see a main name in
4953 its debug info. The reason for this is mainly historical:
4954 gdb returned "main" as the name even if no function named
4955 "main" was defined the program; and this approach lets us
4956 keep compatibility. */
4957 info = XCNEW (struct main_info);
4958 info->language_of_main = language_unknown;
4959 set_program_space_data (current_program_space, main_progspace_key,
4960 info);
4961 }
4962
4963 return info;
4964 }
4965
4966 /* A cleanup to destroy a struct main_info when a progspace is
4967 destroyed. */
4968
4969 static void
4970 main_info_cleanup (struct program_space *pspace, void *data)
4971 {
4972 struct main_info *info = data;
4973
4974 if (info != NULL)
4975 xfree (info->name_of_main);
4976 xfree (info);
4977 }
4978
4979 static void
4980 set_main_name (const char *name, enum language lang)
4981 {
4982 struct main_info *info = get_main_info ();
4983
4984 if (info->name_of_main != NULL)
4985 {
4986 xfree (info->name_of_main);
4987 info->name_of_main = NULL;
4988 info->language_of_main = language_unknown;
4989 }
4990 if (name != NULL)
4991 {
4992 info->name_of_main = xstrdup (name);
4993 info->language_of_main = lang;
4994 }
4995 }
4996
4997 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4998 accordingly. */
4999
5000 static void
5001 find_main_name (void)
5002 {
5003 const char *new_main_name;
5004 struct objfile *objfile;
5005
5006 /* First check the objfiles to see whether a debuginfo reader has
5007 picked up the appropriate main name. Historically the main name
5008 was found in a more or less random way; this approach instead
5009 relies on the order of objfile creation -- which still isn't
5010 guaranteed to get the correct answer, but is just probably more
5011 accurate. */
5012 ALL_OBJFILES (objfile)
5013 {
5014 if (objfile->per_bfd->name_of_main != NULL)
5015 {
5016 set_main_name (objfile->per_bfd->name_of_main,
5017 objfile->per_bfd->language_of_main);
5018 return;
5019 }
5020 }
5021
5022 /* Try to see if the main procedure is in Ada. */
5023 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5024 be to add a new method in the language vector, and call this
5025 method for each language until one of them returns a non-empty
5026 name. This would allow us to remove this hard-coded call to
5027 an Ada function. It is not clear that this is a better approach
5028 at this point, because all methods need to be written in a way
5029 such that false positives never be returned. For instance, it is
5030 important that a method does not return a wrong name for the main
5031 procedure if the main procedure is actually written in a different
5032 language. It is easy to guaranty this with Ada, since we use a
5033 special symbol generated only when the main in Ada to find the name
5034 of the main procedure. It is difficult however to see how this can
5035 be guarantied for languages such as C, for instance. This suggests
5036 that order of call for these methods becomes important, which means
5037 a more complicated approach. */
5038 new_main_name = ada_main_name ();
5039 if (new_main_name != NULL)
5040 {
5041 set_main_name (new_main_name, language_ada);
5042 return;
5043 }
5044
5045 new_main_name = d_main_name ();
5046 if (new_main_name != NULL)
5047 {
5048 set_main_name (new_main_name, language_d);
5049 return;
5050 }
5051
5052 new_main_name = go_main_name ();
5053 if (new_main_name != NULL)
5054 {
5055 set_main_name (new_main_name, language_go);
5056 return;
5057 }
5058
5059 new_main_name = pascal_main_name ();
5060 if (new_main_name != NULL)
5061 {
5062 set_main_name (new_main_name, language_pascal);
5063 return;
5064 }
5065
5066 /* The languages above didn't identify the name of the main procedure.
5067 Fallback to "main". */
5068 set_main_name ("main", language_unknown);
5069 }
5070
5071 char *
5072 main_name (void)
5073 {
5074 struct main_info *info = get_main_info ();
5075
5076 if (info->name_of_main == NULL)
5077 find_main_name ();
5078
5079 return info->name_of_main;
5080 }
5081
5082 /* Return the language of the main function. If it is not known,
5083 return language_unknown. */
5084
5085 enum language
5086 main_language (void)
5087 {
5088 struct main_info *info = get_main_info ();
5089
5090 if (info->name_of_main == NULL)
5091 find_main_name ();
5092
5093 return info->language_of_main;
5094 }
5095
5096 /* Handle ``executable_changed'' events for the symtab module. */
5097
5098 static void
5099 symtab_observer_executable_changed (void)
5100 {
5101 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5102 set_main_name (NULL, language_unknown);
5103 }
5104
5105 /* Return 1 if the supplied producer string matches the ARM RealView
5106 compiler (armcc). */
5107
5108 int
5109 producer_is_realview (const char *producer)
5110 {
5111 static const char *const arm_idents[] = {
5112 "ARM C Compiler, ADS",
5113 "Thumb C Compiler, ADS",
5114 "ARM C++ Compiler, ADS",
5115 "Thumb C++ Compiler, ADS",
5116 "ARM/Thumb C/C++ Compiler, RVCT",
5117 "ARM C/C++ Compiler, RVCT"
5118 };
5119 int i;
5120
5121 if (producer == NULL)
5122 return 0;
5123
5124 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5125 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5126 return 1;
5127
5128 return 0;
5129 }
5130
5131 \f
5132
5133 /* The next index to hand out in response to a registration request. */
5134
5135 static int next_aclass_value = LOC_FINAL_VALUE;
5136
5137 /* The maximum number of "aclass" registrations we support. This is
5138 constant for convenience. */
5139 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5140
5141 /* The objects representing the various "aclass" values. The elements
5142 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5143 elements are those registered at gdb initialization time. */
5144
5145 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5146
5147 /* The globally visible pointer. This is separate from 'symbol_impl'
5148 so that it can be const. */
5149
5150 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5151
5152 /* Make sure we saved enough room in struct symbol. */
5153
5154 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5155
5156 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5157 is the ops vector associated with this index. This returns the new
5158 index, which should be used as the aclass_index field for symbols
5159 of this type. */
5160
5161 int
5162 register_symbol_computed_impl (enum address_class aclass,
5163 const struct symbol_computed_ops *ops)
5164 {
5165 int result = next_aclass_value++;
5166
5167 gdb_assert (aclass == LOC_COMPUTED);
5168 gdb_assert (result < MAX_SYMBOL_IMPLS);
5169 symbol_impl[result].aclass = aclass;
5170 symbol_impl[result].ops_computed = ops;
5171
5172 /* Sanity check OPS. */
5173 gdb_assert (ops != NULL);
5174 gdb_assert (ops->tracepoint_var_ref != NULL);
5175 gdb_assert (ops->describe_location != NULL);
5176 gdb_assert (ops->read_needs_frame != NULL);
5177 gdb_assert (ops->read_variable != NULL);
5178
5179 return result;
5180 }
5181
5182 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5183 OPS is the ops vector associated with this index. This returns the
5184 new index, which should be used as the aclass_index field for symbols
5185 of this type. */
5186
5187 int
5188 register_symbol_block_impl (enum address_class aclass,
5189 const struct symbol_block_ops *ops)
5190 {
5191 int result = next_aclass_value++;
5192
5193 gdb_assert (aclass == LOC_BLOCK);
5194 gdb_assert (result < MAX_SYMBOL_IMPLS);
5195 symbol_impl[result].aclass = aclass;
5196 symbol_impl[result].ops_block = ops;
5197
5198 /* Sanity check OPS. */
5199 gdb_assert (ops != NULL);
5200 gdb_assert (ops->find_frame_base_location != NULL);
5201
5202 return result;
5203 }
5204
5205 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5206 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5207 this index. This returns the new index, which should be used as
5208 the aclass_index field for symbols of this type. */
5209
5210 int
5211 register_symbol_register_impl (enum address_class aclass,
5212 const struct symbol_register_ops *ops)
5213 {
5214 int result = next_aclass_value++;
5215
5216 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5217 gdb_assert (result < MAX_SYMBOL_IMPLS);
5218 symbol_impl[result].aclass = aclass;
5219 symbol_impl[result].ops_register = ops;
5220
5221 return result;
5222 }
5223
5224 /* Initialize elements of 'symbol_impl' for the constants in enum
5225 address_class. */
5226
5227 static void
5228 initialize_ordinary_address_classes (void)
5229 {
5230 int i;
5231
5232 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5233 symbol_impl[i].aclass = i;
5234 }
5235
5236 \f
5237
5238 /* Initialize the symbol SYM. */
5239
5240 void
5241 initialize_symbol (struct symbol *sym)
5242 {
5243 memset (sym, 0, sizeof (*sym));
5244 SYMBOL_SECTION (sym) = -1;
5245 }
5246
5247 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5248 obstack. */
5249
5250 struct symbol *
5251 allocate_symbol (struct objfile *objfile)
5252 {
5253 struct symbol *result;
5254
5255 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5256 SYMBOL_SECTION (result) = -1;
5257
5258 return result;
5259 }
5260
5261 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5262 obstack. */
5263
5264 struct template_symbol *
5265 allocate_template_symbol (struct objfile *objfile)
5266 {
5267 struct template_symbol *result;
5268
5269 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5270 SYMBOL_SECTION (&result->base) = -1;
5271
5272 return result;
5273 }
5274
5275 \f
5276
5277 void
5278 _initialize_symtab (void)
5279 {
5280 initialize_ordinary_address_classes ();
5281
5282 main_progspace_key
5283 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5284
5285 add_info ("variables", variables_info, _("\
5286 All global and static variable names, or those matching REGEXP."));
5287 if (dbx_commands)
5288 add_com ("whereis", class_info, variables_info, _("\
5289 All global and static variable names, or those matching REGEXP."));
5290
5291 add_info ("functions", functions_info,
5292 _("All function names, or those matching REGEXP."));
5293
5294 /* FIXME: This command has at least the following problems:
5295 1. It prints builtin types (in a very strange and confusing fashion).
5296 2. It doesn't print right, e.g. with
5297 typedef struct foo *FOO
5298 type_print prints "FOO" when we want to make it (in this situation)
5299 print "struct foo *".
5300 I also think "ptype" or "whatis" is more likely to be useful (but if
5301 there is much disagreement "info types" can be fixed). */
5302 add_info ("types", types_info,
5303 _("All type names, or those matching REGEXP."));
5304
5305 add_info ("sources", sources_info,
5306 _("Source files in the program."));
5307
5308 add_com ("rbreak", class_breakpoint, rbreak_command,
5309 _("Set a breakpoint for all functions matching REGEXP."));
5310
5311 if (xdb_commands)
5312 {
5313 add_com ("lf", class_info, sources_info,
5314 _("Source files in the program"));
5315 add_com ("lg", class_info, variables_info, _("\
5316 All global and static variable names, or those matching REGEXP."));
5317 }
5318
5319 add_setshow_enum_cmd ("multiple-symbols", no_class,
5320 multiple_symbols_modes, &multiple_symbols_mode,
5321 _("\
5322 Set the debugger behavior when more than one symbol are possible matches\n\
5323 in an expression."), _("\
5324 Show how the debugger handles ambiguities in expressions."), _("\
5325 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5326 NULL, NULL, &setlist, &showlist);
5327
5328 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5329 &basenames_may_differ, _("\
5330 Set whether a source file may have multiple base names."), _("\
5331 Show whether a source file may have multiple base names."), _("\
5332 (A \"base name\" is the name of a file with the directory part removed.\n\
5333 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5334 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5335 before comparing them. Canonicalization is an expensive operation,\n\
5336 but it allows the same file be known by more than one base name.\n\
5337 If not set (the default), all source files are assumed to have just\n\
5338 one base name, and gdb will do file name comparisons more efficiently."),
5339 NULL, NULL,
5340 &setlist, &showlist);
5341
5342 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5343 _("Set debugging of symbol table creation."),
5344 _("Show debugging of symbol table creation."), _("\
5345 When enabled (non-zero), debugging messages are printed when building\n\
5346 symbol tables. A value of 1 (one) normally provides enough information.\n\
5347 A value greater than 1 provides more verbose information."),
5348 NULL,
5349 NULL,
5350 &setdebuglist, &showdebuglist);
5351
5352 observer_attach_executable_changed (symtab_observer_executable_changed);
5353 }
This page took 0.215557 seconds and 5 git commands to generate.