gdb/
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
208
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
215 }
216 }
217
218 /* Now, search for a matching tail (only if name doesn't have any dirs) */
219
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
222 {
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 return s;
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
241
242 if (s != NULL)
243 return s;
244 if (!found)
245 return NULL;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257 \f
258 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
262
263 char *
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
265 {
266 int mangled_name_len;
267 char *mangled_name;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
273
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
277
278 int is_constructor;
279 int is_destructor = is_destructor_name (physname);
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
283 char buf[20];
284 int len = (newname == NULL ? 0 : strlen (newname));
285
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
290 return xstrdup (physname);
291
292 is_full_physname_constructor = is_constructor_name (physname);
293
294 is_constructor =
295 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
296
297 if (!is_destructor)
298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
299
300 if (is_destructor || is_full_physname_constructor)
301 {
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
304 return mangled_name;
305 }
306
307 if (len == 0)
308 {
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310 }
311 else if (physname[0] == 't' || physname[0] == 'Q')
312 {
313 /* The physname for template and qualified methods already includes
314 the class name. */
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 newname = NULL;
317 len = 0;
318 }
319 else
320 {
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322 }
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 + strlen (buf) + len + strlen (physname) + 1);
325
326 mangled_name = (char *) xmalloc (mangled_name_len);
327 if (is_constructor)
328 mangled_name[0] = '\0';
329 else
330 strcpy (mangled_name, field_name);
331
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
335 as something starting with `::' rather than `classname::'. */
336 if (newname != NULL)
337 strcat (mangled_name, newname);
338
339 strcat (mangled_name, physname);
340 return (mangled_name);
341 }
342
343 \f
344 /* Initialize the language dependent portion of a symbol
345 depending upon the language for the symbol. */
346 void
347 symbol_init_language_specific (struct general_symbol_info *gsymbol,
348 enum language language)
349 {
350 gsymbol->language = language;
351 if (gsymbol->language == language_cplus
352 || gsymbol->language == language_d
353 || gsymbol->language == language_java
354 || gsymbol->language == language_objc
355 || gsymbol->language == language_fortran)
356 {
357 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
358 }
359 else
360 {
361 memset (&gsymbol->language_specific, 0,
362 sizeof (gsymbol->language_specific));
363 }
364 }
365
366 /* Functions to initialize a symbol's mangled name. */
367
368 /* Objects of this type are stored in the demangled name hash table. */
369 struct demangled_name_entry
370 {
371 char *mangled;
372 char demangled[1];
373 };
374
375 /* Hash function for the demangled name hash. */
376 static hashval_t
377 hash_demangled_name_entry (const void *data)
378 {
379 const struct demangled_name_entry *e = data;
380
381 return htab_hash_string (e->mangled);
382 }
383
384 /* Equality function for the demangled name hash. */
385 static int
386 eq_demangled_name_entry (const void *a, const void *b)
387 {
388 const struct demangled_name_entry *da = a;
389 const struct demangled_name_entry *db = b;
390
391 return strcmp (da->mangled, db->mangled) == 0;
392 }
393
394 /* Create the hash table used for demangled names. Each hash entry is
395 a pair of strings; one for the mangled name and one for the demangled
396 name. The entry is hashed via just the mangled name. */
397
398 static void
399 create_demangled_names_hash (struct objfile *objfile)
400 {
401 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
402 The hash table code will round this up to the next prime number.
403 Choosing a much larger table size wastes memory, and saves only about
404 1% in symbol reading. */
405
406 objfile->demangled_names_hash = htab_create_alloc
407 (256, hash_demangled_name_entry, eq_demangled_name_entry,
408 NULL, xcalloc, xfree);
409 }
410
411 /* Try to determine the demangled name for a symbol, based on the
412 language of that symbol. If the language is set to language_auto,
413 it will attempt to find any demangling algorithm that works and
414 then set the language appropriately. The returned name is allocated
415 by the demangler and should be xfree'd. */
416
417 static char *
418 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
419 const char *mangled)
420 {
421 char *demangled = NULL;
422
423 if (gsymbol->language == language_unknown)
424 gsymbol->language = language_auto;
425
426 if (gsymbol->language == language_objc
427 || gsymbol->language == language_auto)
428 {
429 demangled =
430 objc_demangle (mangled, 0);
431 if (demangled != NULL)
432 {
433 gsymbol->language = language_objc;
434 return demangled;
435 }
436 }
437 if (gsymbol->language == language_cplus
438 || gsymbol->language == language_auto)
439 {
440 demangled =
441 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
442 if (demangled != NULL)
443 {
444 gsymbol->language = language_cplus;
445 return demangled;
446 }
447 }
448 if (gsymbol->language == language_java)
449 {
450 demangled =
451 cplus_demangle (mangled,
452 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
453 if (demangled != NULL)
454 {
455 gsymbol->language = language_java;
456 return demangled;
457 }
458 }
459 if (gsymbol->language == language_d
460 || gsymbol->language == language_auto)
461 {
462 demangled = d_demangle(mangled, 0);
463 if (demangled != NULL)
464 {
465 gsymbol->language = language_d;
466 return demangled;
467 }
468 }
469 /* We could support `gsymbol->language == language_fortran' here to provide
470 module namespaces also for inferiors with only minimal symbol table (ELF
471 symbols). Just the mangling standard is not standardized across compilers
472 and there is no DW_AT_producer available for inferiors with only the ELF
473 symbols to check the mangling kind. */
474 return NULL;
475 }
476
477 /* Set both the mangled and demangled (if any) names for GSYMBOL based
478 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
479 objfile's obstack; but if COPY_NAME is 0 and if NAME is
480 NUL-terminated, then this function assumes that NAME is already
481 correctly saved (either permanently or with a lifetime tied to the
482 objfile), and it will not be copied.
483
484 The hash table corresponding to OBJFILE is used, and the memory
485 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
486 so the pointer can be discarded after calling this function. */
487
488 /* We have to be careful when dealing with Java names: when we run
489 into a Java minimal symbol, we don't know it's a Java symbol, so it
490 gets demangled as a C++ name. This is unfortunate, but there's not
491 much we can do about it: but when demangling partial symbols and
492 regular symbols, we'd better not reuse the wrong demangled name.
493 (See PR gdb/1039.) We solve this by putting a distinctive prefix
494 on Java names when storing them in the hash table. */
495
496 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
497 don't mind the Java prefix so much: different languages have
498 different demangling requirements, so it's only natural that we
499 need to keep language data around in our demangling cache. But
500 it's not good that the minimal symbol has the wrong demangled name.
501 Unfortunately, I can't think of any easy solution to that
502 problem. */
503
504 #define JAVA_PREFIX "##JAVA$$"
505 #define JAVA_PREFIX_LEN 8
506
507 void
508 symbol_set_names (struct general_symbol_info *gsymbol,
509 const char *linkage_name, int len, int copy_name,
510 struct objfile *objfile)
511 {
512 struct demangled_name_entry **slot;
513 /* A 0-terminated copy of the linkage name. */
514 const char *linkage_name_copy;
515 /* A copy of the linkage name that might have a special Java prefix
516 added to it, for use when looking names up in the hash table. */
517 const char *lookup_name;
518 /* The length of lookup_name. */
519 int lookup_len;
520 struct demangled_name_entry entry;
521
522 if (gsymbol->language == language_ada)
523 {
524 /* In Ada, we do the symbol lookups using the mangled name, so
525 we can save some space by not storing the demangled name.
526
527 As a side note, we have also observed some overlap between
528 the C++ mangling and Ada mangling, similarly to what has
529 been observed with Java. Because we don't store the demangled
530 name with the symbol, we don't need to use the same trick
531 as Java. */
532 if (!copy_name)
533 gsymbol->name = (char *) linkage_name;
534 else
535 {
536 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
537 memcpy (gsymbol->name, linkage_name, len);
538 gsymbol->name[len] = '\0';
539 }
540 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
541
542 return;
543 }
544
545 if (objfile->demangled_names_hash == NULL)
546 create_demangled_names_hash (objfile);
547
548 /* The stabs reader generally provides names that are not
549 NUL-terminated; most of the other readers don't do this, so we
550 can just use the given copy, unless we're in the Java case. */
551 if (gsymbol->language == language_java)
552 {
553 char *alloc_name;
554
555 lookup_len = len + JAVA_PREFIX_LEN;
556 alloc_name = alloca (lookup_len + 1);
557 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
558 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
559 alloc_name[lookup_len] = '\0';
560
561 lookup_name = alloc_name;
562 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
563 }
564 else if (linkage_name[len] != '\0')
565 {
566 char *alloc_name;
567
568 lookup_len = len;
569 alloc_name = alloca (lookup_len + 1);
570 memcpy (alloc_name, linkage_name, len);
571 alloc_name[lookup_len] = '\0';
572
573 lookup_name = alloc_name;
574 linkage_name_copy = alloc_name;
575 }
576 else
577 {
578 lookup_len = len;
579 lookup_name = linkage_name;
580 linkage_name_copy = linkage_name;
581 }
582
583 entry.mangled = (char *) lookup_name;
584 slot = ((struct demangled_name_entry **)
585 htab_find_slot (objfile->demangled_names_hash,
586 &entry, INSERT));
587
588 /* If this name is not in the hash table, add it. */
589 if (*slot == NULL)
590 {
591 char *demangled_name = symbol_find_demangled_name (gsymbol,
592 linkage_name_copy);
593 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
594
595 /* Suppose we have demangled_name==NULL, copy_name==0, and
596 lookup_name==linkage_name. In this case, we already have the
597 mangled name saved, and we don't have a demangled name. So,
598 you might think we could save a little space by not recording
599 this in the hash table at all.
600
601 It turns out that it is actually important to still save such
602 an entry in the hash table, because storing this name gives
603 us better bcache hit rates for partial symbols. */
604 if (!copy_name && lookup_name == linkage_name)
605 {
606 *slot = obstack_alloc (&objfile->objfile_obstack,
607 offsetof (struct demangled_name_entry,
608 demangled)
609 + demangled_len + 1);
610 (*slot)->mangled = (char *) lookup_name;
611 }
612 else
613 {
614 /* If we must copy the mangled name, put it directly after
615 the demangled name so we can have a single
616 allocation. */
617 *slot = obstack_alloc (&objfile->objfile_obstack,
618 offsetof (struct demangled_name_entry,
619 demangled)
620 + lookup_len + demangled_len + 2);
621 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
622 strcpy ((*slot)->mangled, lookup_name);
623 }
624
625 if (demangled_name != NULL)
626 {
627 strcpy ((*slot)->demangled, demangled_name);
628 xfree (demangled_name);
629 }
630 else
631 (*slot)->demangled[0] = '\0';
632 }
633
634 gsymbol->name = (*slot)->mangled + lookup_len - len;
635 if ((*slot)->demangled[0] != '\0')
636 gsymbol->language_specific.cplus_specific.demangled_name
637 = (*slot)->demangled;
638 else
639 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
640 }
641
642 /* Return the source code name of a symbol. In languages where
643 demangling is necessary, this is the demangled name. */
644
645 char *
646 symbol_natural_name (const struct general_symbol_info *gsymbol)
647 {
648 switch (gsymbol->language)
649 {
650 case language_cplus:
651 case language_d:
652 case language_java:
653 case language_objc:
654 case language_fortran:
655 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
656 return gsymbol->language_specific.cplus_specific.demangled_name;
657 break;
658 case language_ada:
659 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
660 return gsymbol->language_specific.cplus_specific.demangled_name;
661 else
662 return ada_decode_symbol (gsymbol);
663 break;
664 default:
665 break;
666 }
667 return gsymbol->name;
668 }
669
670 /* Return the demangled name for a symbol based on the language for
671 that symbol. If no demangled name exists, return NULL. */
672 char *
673 symbol_demangled_name (const struct general_symbol_info *gsymbol)
674 {
675 switch (gsymbol->language)
676 {
677 case language_cplus:
678 case language_d:
679 case language_java:
680 case language_objc:
681 case language_fortran:
682 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
683 return gsymbol->language_specific.cplus_specific.demangled_name;
684 break;
685 case language_ada:
686 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
687 return gsymbol->language_specific.cplus_specific.demangled_name;
688 else
689 return ada_decode_symbol (gsymbol);
690 break;
691 default:
692 break;
693 }
694 return NULL;
695 }
696
697 /* Return the search name of a symbol---generally the demangled or
698 linkage name of the symbol, depending on how it will be searched for.
699 If there is no distinct demangled name, then returns the same value
700 (same pointer) as SYMBOL_LINKAGE_NAME. */
701 char *
702 symbol_search_name (const struct general_symbol_info *gsymbol)
703 {
704 if (gsymbol->language == language_ada)
705 return gsymbol->name;
706 else
707 return symbol_natural_name (gsymbol);
708 }
709
710 /* Initialize the structure fields to zero values. */
711 void
712 init_sal (struct symtab_and_line *sal)
713 {
714 sal->pspace = NULL;
715 sal->symtab = 0;
716 sal->section = 0;
717 sal->line = 0;
718 sal->pc = 0;
719 sal->end = 0;
720 sal->explicit_pc = 0;
721 sal->explicit_line = 0;
722 }
723 \f
724
725 /* Return 1 if the two sections are the same, or if they could
726 plausibly be copies of each other, one in an original object
727 file and another in a separated debug file. */
728
729 int
730 matching_obj_sections (struct obj_section *obj_first,
731 struct obj_section *obj_second)
732 {
733 asection *first = obj_first? obj_first->the_bfd_section : NULL;
734 asection *second = obj_second? obj_second->the_bfd_section : NULL;
735 struct objfile *obj;
736
737 /* If they're the same section, then they match. */
738 if (first == second)
739 return 1;
740
741 /* If either is NULL, give up. */
742 if (first == NULL || second == NULL)
743 return 0;
744
745 /* This doesn't apply to absolute symbols. */
746 if (first->owner == NULL || second->owner == NULL)
747 return 0;
748
749 /* If they're in the same object file, they must be different sections. */
750 if (first->owner == second->owner)
751 return 0;
752
753 /* Check whether the two sections are potentially corresponding. They must
754 have the same size, address, and name. We can't compare section indexes,
755 which would be more reliable, because some sections may have been
756 stripped. */
757 if (bfd_get_section_size (first) != bfd_get_section_size (second))
758 return 0;
759
760 /* In-memory addresses may start at a different offset, relativize them. */
761 if (bfd_get_section_vma (first->owner, first)
762 - bfd_get_start_address (first->owner)
763 != bfd_get_section_vma (second->owner, second)
764 - bfd_get_start_address (second->owner))
765 return 0;
766
767 if (bfd_get_section_name (first->owner, first) == NULL
768 || bfd_get_section_name (second->owner, second) == NULL
769 || strcmp (bfd_get_section_name (first->owner, first),
770 bfd_get_section_name (second->owner, second)) != 0)
771 return 0;
772
773 /* Otherwise check that they are in corresponding objfiles. */
774
775 ALL_OBJFILES (obj)
776 if (obj->obfd == first->owner)
777 break;
778 gdb_assert (obj != NULL);
779
780 if (obj->separate_debug_objfile != NULL
781 && obj->separate_debug_objfile->obfd == second->owner)
782 return 1;
783 if (obj->separate_debug_objfile_backlink != NULL
784 && obj->separate_debug_objfile_backlink->obfd == second->owner)
785 return 1;
786
787 return 0;
788 }
789
790 struct symtab *
791 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
792 {
793 struct objfile *objfile;
794 struct minimal_symbol *msymbol;
795
796 /* If we know that this is not a text address, return failure. This is
797 necessary because we loop based on texthigh and textlow, which do
798 not include the data ranges. */
799 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
800 if (msymbol
801 && (MSYMBOL_TYPE (msymbol) == mst_data
802 || MSYMBOL_TYPE (msymbol) == mst_bss
803 || MSYMBOL_TYPE (msymbol) == mst_abs
804 || MSYMBOL_TYPE (msymbol) == mst_file_data
805 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
806 return NULL;
807
808 ALL_OBJFILES (objfile)
809 {
810 struct symtab *result = NULL;
811
812 if (objfile->sf)
813 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
814 pc, section, 0);
815 if (result)
816 return result;
817 }
818
819 return NULL;
820 }
821 \f
822 /* Debug symbols usually don't have section information. We need to dig that
823 out of the minimal symbols and stash that in the debug symbol. */
824
825 void
826 fixup_section (struct general_symbol_info *ginfo,
827 CORE_ADDR addr, struct objfile *objfile)
828 {
829 struct minimal_symbol *msym;
830
831 /* First, check whether a minimal symbol with the same name exists
832 and points to the same address. The address check is required
833 e.g. on PowerPC64, where the minimal symbol for a function will
834 point to the function descriptor, while the debug symbol will
835 point to the actual function code. */
836 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
837 if (msym)
838 {
839 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
840 ginfo->section = SYMBOL_SECTION (msym);
841 }
842 else
843 {
844 /* Static, function-local variables do appear in the linker
845 (minimal) symbols, but are frequently given names that won't
846 be found via lookup_minimal_symbol(). E.g., it has been
847 observed in frv-uclinux (ELF) executables that a static,
848 function-local variable named "foo" might appear in the
849 linker symbols as "foo.6" or "foo.3". Thus, there is no
850 point in attempting to extend the lookup-by-name mechanism to
851 handle this case due to the fact that there can be multiple
852 names.
853
854 So, instead, search the section table when lookup by name has
855 failed. The ``addr'' and ``endaddr'' fields may have already
856 been relocated. If so, the relocation offset (i.e. the
857 ANOFFSET value) needs to be subtracted from these values when
858 performing the comparison. We unconditionally subtract it,
859 because, when no relocation has been performed, the ANOFFSET
860 value will simply be zero.
861
862 The address of the symbol whose section we're fixing up HAS
863 NOT BEEN adjusted (relocated) yet. It can't have been since
864 the section isn't yet known and knowing the section is
865 necessary in order to add the correct relocation value. In
866 other words, we wouldn't even be in this function (attempting
867 to compute the section) if it were already known.
868
869 Note that it is possible to search the minimal symbols
870 (subtracting the relocation value if necessary) to find the
871 matching minimal symbol, but this is overkill and much less
872 efficient. It is not necessary to find the matching minimal
873 symbol, only its section.
874
875 Note that this technique (of doing a section table search)
876 can fail when unrelocated section addresses overlap. For
877 this reason, we still attempt a lookup by name prior to doing
878 a search of the section table. */
879
880 struct obj_section *s;
881
882 ALL_OBJFILE_OSECTIONS (objfile, s)
883 {
884 int idx = s->the_bfd_section->index;
885 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
886
887 if (obj_section_addr (s) - offset <= addr
888 && addr < obj_section_endaddr (s) - offset)
889 {
890 ginfo->obj_section = s;
891 ginfo->section = idx;
892 return;
893 }
894 }
895 }
896 }
897
898 struct symbol *
899 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
900 {
901 CORE_ADDR addr;
902
903 if (!sym)
904 return NULL;
905
906 if (SYMBOL_OBJ_SECTION (sym))
907 return sym;
908
909 /* We either have an OBJFILE, or we can get at it from the sym's
910 symtab. Anything else is a bug. */
911 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
912
913 if (objfile == NULL)
914 objfile = SYMBOL_SYMTAB (sym)->objfile;
915
916 /* We should have an objfile by now. */
917 gdb_assert (objfile);
918
919 switch (SYMBOL_CLASS (sym))
920 {
921 case LOC_STATIC:
922 case LOC_LABEL:
923 addr = SYMBOL_VALUE_ADDRESS (sym);
924 break;
925 case LOC_BLOCK:
926 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
927 break;
928
929 default:
930 /* Nothing else will be listed in the minsyms -- no use looking
931 it up. */
932 return sym;
933 }
934
935 fixup_section (&sym->ginfo, addr, objfile);
936
937 return sym;
938 }
939
940 /* Find the definition for a specified symbol name NAME
941 in domain DOMAIN, visible from lexical block BLOCK.
942 Returns the struct symbol pointer, or zero if no symbol is found.
943 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
944 NAME is a field of the current implied argument `this'. If so set
945 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
946 BLOCK_FOUND is set to the block in which NAME is found (in the case of
947 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
948
949 /* This function has a bunch of loops in it and it would seem to be
950 attractive to put in some QUIT's (though I'm not really sure
951 whether it can run long enough to be really important). But there
952 are a few calls for which it would appear to be bad news to quit
953 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
954 that there is C++ code below which can error(), but that probably
955 doesn't affect these calls since they are looking for a known
956 variable and thus can probably assume it will never hit the C++
957 code). */
958
959 struct symbol *
960 lookup_symbol_in_language (const char *name, const struct block *block,
961 const domain_enum domain, enum language lang,
962 int *is_a_field_of_this)
963 {
964 char *demangled_name = NULL;
965 const char *modified_name = NULL;
966 struct symbol *returnval;
967 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
968
969 modified_name = name;
970
971 /* If we are using C++, D, or Java, demangle the name before doing a
972 lookup, so we can always binary search. */
973 if (lang == language_cplus)
974 {
975 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
976 if (demangled_name)
977 {
978 modified_name = demangled_name;
979 make_cleanup (xfree, demangled_name);
980 }
981 else
982 {
983 /* If we were given a non-mangled name, canonicalize it
984 according to the language (so far only for C++). */
985 demangled_name = cp_canonicalize_string (name);
986 if (demangled_name)
987 {
988 modified_name = demangled_name;
989 make_cleanup (xfree, demangled_name);
990 }
991 }
992 }
993 else if (lang == language_java)
994 {
995 demangled_name = cplus_demangle (name,
996 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
997 if (demangled_name)
998 {
999 modified_name = demangled_name;
1000 make_cleanup (xfree, demangled_name);
1001 }
1002 }
1003 else if (lang == language_d)
1004 {
1005 demangled_name = d_demangle (name, 0);
1006 if (demangled_name)
1007 {
1008 modified_name = demangled_name;
1009 make_cleanup (xfree, demangled_name);
1010 }
1011 }
1012
1013 if (case_sensitivity == case_sensitive_off)
1014 {
1015 char *copy;
1016 int len, i;
1017
1018 len = strlen (name);
1019 copy = (char *) alloca (len + 1);
1020 for (i= 0; i < len; i++)
1021 copy[i] = tolower (name[i]);
1022 copy[len] = 0;
1023 modified_name = copy;
1024 }
1025
1026 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1027 is_a_field_of_this);
1028 do_cleanups (cleanup);
1029
1030 return returnval;
1031 }
1032
1033 /* Behave like lookup_symbol_in_language, but performed with the
1034 current language. */
1035
1036 struct symbol *
1037 lookup_symbol (const char *name, const struct block *block,
1038 domain_enum domain, int *is_a_field_of_this)
1039 {
1040 return lookup_symbol_in_language (name, block, domain,
1041 current_language->la_language,
1042 is_a_field_of_this);
1043 }
1044
1045 /* Behave like lookup_symbol except that NAME is the natural name
1046 of the symbol that we're looking for and, if LINKAGE_NAME is
1047 non-NULL, ensure that the symbol's linkage name matches as
1048 well. */
1049
1050 static struct symbol *
1051 lookup_symbol_aux (const char *name, const struct block *block,
1052 const domain_enum domain, enum language language,
1053 int *is_a_field_of_this)
1054 {
1055 struct symbol *sym;
1056 const struct language_defn *langdef;
1057 struct objfile *objfile;
1058
1059 /* Make sure we do something sensible with is_a_field_of_this, since
1060 the callers that set this parameter to some non-null value will
1061 certainly use it later and expect it to be either 0 or 1.
1062 If we don't set it, the contents of is_a_field_of_this are
1063 undefined. */
1064 if (is_a_field_of_this != NULL)
1065 *is_a_field_of_this = 0;
1066
1067 /* Search specified block and its superiors. Don't search
1068 STATIC_BLOCK or GLOBAL_BLOCK. */
1069
1070 sym = lookup_symbol_aux_local (name, block, domain, language);
1071 if (sym != NULL)
1072 return sym;
1073
1074 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1075 check to see if NAME is a field of `this'. */
1076
1077 langdef = language_def (language);
1078
1079 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1080 && block != NULL)
1081 {
1082 struct symbol *sym = NULL;
1083 const struct block *function_block = block;
1084
1085 /* 'this' is only defined in the function's block, so find the
1086 enclosing function block. */
1087 for (; function_block && !BLOCK_FUNCTION (function_block);
1088 function_block = BLOCK_SUPERBLOCK (function_block));
1089
1090 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1091 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1092 VAR_DOMAIN);
1093 if (sym)
1094 {
1095 struct type *t = sym->type;
1096
1097 /* I'm not really sure that type of this can ever
1098 be typedefed; just be safe. */
1099 CHECK_TYPEDEF (t);
1100 if (TYPE_CODE (t) == TYPE_CODE_PTR
1101 || TYPE_CODE (t) == TYPE_CODE_REF)
1102 t = TYPE_TARGET_TYPE (t);
1103
1104 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1105 && TYPE_CODE (t) != TYPE_CODE_UNION)
1106 error (_("Internal error: `%s' is not an aggregate"),
1107 langdef->la_name_of_this);
1108
1109 if (check_field (t, name))
1110 {
1111 *is_a_field_of_this = 1;
1112 return NULL;
1113 }
1114 }
1115 }
1116
1117 /* Now do whatever is appropriate for LANGUAGE to look
1118 up static and global variables. */
1119
1120 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1121 if (sym != NULL)
1122 return sym;
1123
1124 /* Now search all static file-level symbols. Not strictly correct,
1125 but more useful than an error. Do the symtabs first, then check
1126 the psymtabs. If a psymtab indicates the existence of the
1127 desired name as a file-level static, then do psymtab-to-symtab
1128 conversion on the fly and return the found symbol. */
1129
1130 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1131 if (sym != NULL)
1132 return sym;
1133
1134 ALL_OBJFILES (objfile)
1135 {
1136 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1137 if (sym != NULL)
1138 return sym;
1139 }
1140
1141 return NULL;
1142 }
1143
1144 /* Check to see if the symbol is defined in BLOCK or its superiors.
1145 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1146
1147 static struct symbol *
1148 lookup_symbol_aux_local (const char *name, const struct block *block,
1149 const domain_enum domain,
1150 enum language language)
1151 {
1152 struct symbol *sym;
1153 const struct block *static_block = block_static_block (block);
1154 const char *scope = block_scope (block);
1155
1156 /* Check if either no block is specified or it's a global block. */
1157
1158 if (static_block == NULL)
1159 return NULL;
1160
1161 while (block != static_block)
1162 {
1163 sym = lookup_symbol_aux_block (name, block, domain);
1164 if (sym != NULL)
1165 return sym;
1166
1167 if (language == language_cplus || language == language_fortran)
1168 {
1169 sym = cp_lookup_symbol_imports (scope,
1170 name,
1171 block,
1172 domain,
1173 1,
1174 1);
1175 if (sym != NULL)
1176 return sym;
1177 }
1178
1179 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1180 break;
1181 block = BLOCK_SUPERBLOCK (block);
1182 }
1183
1184 /* We've reached the edge of the function without finding a result. */
1185
1186 return NULL;
1187 }
1188
1189 /* Look up OBJFILE to BLOCK. */
1190
1191 struct objfile *
1192 lookup_objfile_from_block (const struct block *block)
1193 {
1194 struct objfile *obj;
1195 struct symtab *s;
1196
1197 if (block == NULL)
1198 return NULL;
1199
1200 block = block_global_block (block);
1201 /* Go through SYMTABS. */
1202 ALL_SYMTABS (obj, s)
1203 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1204 {
1205 if (obj->separate_debug_objfile_backlink)
1206 obj = obj->separate_debug_objfile_backlink;
1207
1208 return obj;
1209 }
1210
1211 return NULL;
1212 }
1213
1214 /* Look up a symbol in a block; if found, fixup the symbol, and set
1215 block_found appropriately. */
1216
1217 struct symbol *
1218 lookup_symbol_aux_block (const char *name, const struct block *block,
1219 const domain_enum domain)
1220 {
1221 struct symbol *sym;
1222
1223 sym = lookup_block_symbol (block, name, domain);
1224 if (sym)
1225 {
1226 block_found = block;
1227 return fixup_symbol_section (sym, NULL);
1228 }
1229
1230 return NULL;
1231 }
1232
1233 /* Check all global symbols in OBJFILE in symtabs and
1234 psymtabs. */
1235
1236 struct symbol *
1237 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1238 const char *name,
1239 const domain_enum domain)
1240 {
1241 const struct objfile *objfile;
1242 struct symbol *sym;
1243 struct blockvector *bv;
1244 const struct block *block;
1245 struct symtab *s;
1246
1247 for (objfile = main_objfile;
1248 objfile;
1249 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1250 {
1251 /* Go through symtabs. */
1252 ALL_OBJFILE_SYMTABS (objfile, s)
1253 {
1254 bv = BLOCKVECTOR (s);
1255 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1256 sym = lookup_block_symbol (block, name, domain);
1257 if (sym)
1258 {
1259 block_found = block;
1260 return fixup_symbol_section (sym, (struct objfile *)objfile);
1261 }
1262 }
1263
1264 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1265 name, domain);
1266 if (sym)
1267 return sym;
1268 }
1269
1270 return NULL;
1271 }
1272
1273 /* Check to see if the symbol is defined in one of the symtabs.
1274 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1275 depending on whether or not we want to search global symbols or
1276 static symbols. */
1277
1278 static struct symbol *
1279 lookup_symbol_aux_symtabs (int block_index, const char *name,
1280 const domain_enum domain)
1281 {
1282 struct symbol *sym;
1283 struct objfile *objfile;
1284 struct blockvector *bv;
1285 const struct block *block;
1286 struct symtab *s;
1287
1288 ALL_PRIMARY_SYMTABS (objfile, s)
1289 {
1290 bv = BLOCKVECTOR (s);
1291 block = BLOCKVECTOR_BLOCK (bv, block_index);
1292 sym = lookup_block_symbol (block, name, domain);
1293 if (sym)
1294 {
1295 block_found = block;
1296 return fixup_symbol_section (sym, objfile);
1297 }
1298 }
1299
1300 return NULL;
1301 }
1302
1303 /* A helper function for lookup_symbol_aux that interfaces with the
1304 "quick" symbol table functions. */
1305
1306 static struct symbol *
1307 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1308 const char *name, const domain_enum domain)
1309 {
1310 struct symtab *symtab;
1311 struct blockvector *bv;
1312 const struct block *block;
1313 struct symbol *sym;
1314
1315 if (!objfile->sf)
1316 return NULL;
1317 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1318 if (!symtab)
1319 return NULL;
1320
1321 bv = BLOCKVECTOR (symtab);
1322 block = BLOCKVECTOR_BLOCK (bv, kind);
1323 sym = lookup_block_symbol (block, name, domain);
1324 if (!sym)
1325 {
1326 /* This shouldn't be necessary, but as a last resort try
1327 looking in the statics even though the psymtab claimed
1328 the symbol was global, or vice-versa. It's possible
1329 that the psymtab gets it wrong in some cases. */
1330
1331 /* FIXME: carlton/2002-09-30: Should we really do that?
1332 If that happens, isn't it likely to be a GDB error, in
1333 which case we should fix the GDB error rather than
1334 silently dealing with it here? So I'd vote for
1335 removing the check for the symbol in the other
1336 block. */
1337 block = BLOCKVECTOR_BLOCK (bv,
1338 kind == GLOBAL_BLOCK ?
1339 STATIC_BLOCK : GLOBAL_BLOCK);
1340 sym = lookup_block_symbol (block, name, domain);
1341 if (!sym)
1342 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1343 kind == GLOBAL_BLOCK ? "global" : "static",
1344 name, symtab->filename, name, name);
1345 }
1346 return fixup_symbol_section (sym, objfile);
1347 }
1348
1349 /* A default version of lookup_symbol_nonlocal for use by languages
1350 that can't think of anything better to do. This implements the C
1351 lookup rules. */
1352
1353 struct symbol *
1354 basic_lookup_symbol_nonlocal (const char *name,
1355 const struct block *block,
1356 const domain_enum domain)
1357 {
1358 struct symbol *sym;
1359
1360 /* NOTE: carlton/2003-05-19: The comments below were written when
1361 this (or what turned into this) was part of lookup_symbol_aux;
1362 I'm much less worried about these questions now, since these
1363 decisions have turned out well, but I leave these comments here
1364 for posterity. */
1365
1366 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1367 not it would be appropriate to search the current global block
1368 here as well. (That's what this code used to do before the
1369 is_a_field_of_this check was moved up.) On the one hand, it's
1370 redundant with the lookup_symbol_aux_symtabs search that happens
1371 next. On the other hand, if decode_line_1 is passed an argument
1372 like filename:var, then the user presumably wants 'var' to be
1373 searched for in filename. On the third hand, there shouldn't be
1374 multiple global variables all of which are named 'var', and it's
1375 not like decode_line_1 has ever restricted its search to only
1376 global variables in a single filename. All in all, only
1377 searching the static block here seems best: it's correct and it's
1378 cleanest. */
1379
1380 /* NOTE: carlton/2002-12-05: There's also a possible performance
1381 issue here: if you usually search for global symbols in the
1382 current file, then it would be slightly better to search the
1383 current global block before searching all the symtabs. But there
1384 are other factors that have a much greater effect on performance
1385 than that one, so I don't think we should worry about that for
1386 now. */
1387
1388 sym = lookup_symbol_static (name, block, domain);
1389 if (sym != NULL)
1390 return sym;
1391
1392 return lookup_symbol_global (name, block, domain);
1393 }
1394
1395 /* Lookup a symbol in the static block associated to BLOCK, if there
1396 is one; do nothing if BLOCK is NULL or a global block. */
1397
1398 struct symbol *
1399 lookup_symbol_static (const char *name,
1400 const struct block *block,
1401 const domain_enum domain)
1402 {
1403 const struct block *static_block = block_static_block (block);
1404
1405 if (static_block != NULL)
1406 return lookup_symbol_aux_block (name, static_block, domain);
1407 else
1408 return NULL;
1409 }
1410
1411 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1412 necessary). */
1413
1414 struct symbol *
1415 lookup_symbol_global (const char *name,
1416 const struct block *block,
1417 const domain_enum domain)
1418 {
1419 struct symbol *sym = NULL;
1420 struct objfile *objfile = NULL;
1421
1422 /* Call library-specific lookup procedure. */
1423 objfile = lookup_objfile_from_block (block);
1424 if (objfile != NULL)
1425 sym = solib_global_lookup (objfile, name, domain);
1426 if (sym != NULL)
1427 return sym;
1428
1429 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1430 if (sym != NULL)
1431 return sym;
1432
1433 ALL_OBJFILES (objfile)
1434 {
1435 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1436 if (sym)
1437 return sym;
1438 }
1439
1440 return NULL;
1441 }
1442
1443 int
1444 symbol_matches_domain (enum language symbol_language,
1445 domain_enum symbol_domain,
1446 domain_enum domain)
1447 {
1448 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1449 A Java class declaration also defines a typedef for the class.
1450 Similarly, any Ada type declaration implicitly defines a typedef. */
1451 if (symbol_language == language_cplus
1452 || symbol_language == language_d
1453 || symbol_language == language_java
1454 || symbol_language == language_ada)
1455 {
1456 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1457 && symbol_domain == STRUCT_DOMAIN)
1458 return 1;
1459 }
1460 /* For all other languages, strict match is required. */
1461 return (symbol_domain == domain);
1462 }
1463
1464 /* Look up a type named NAME in the struct_domain. The type returned
1465 must not be opaque -- i.e., must have at least one field
1466 defined. */
1467
1468 struct type *
1469 lookup_transparent_type (const char *name)
1470 {
1471 return current_language->la_lookup_transparent_type (name);
1472 }
1473
1474 /* A helper for basic_lookup_transparent_type that interfaces with the
1475 "quick" symbol table functions. */
1476
1477 static struct type *
1478 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1479 const char *name)
1480 {
1481 struct symtab *symtab;
1482 struct blockvector *bv;
1483 struct block *block;
1484 struct symbol *sym;
1485
1486 if (!objfile->sf)
1487 return NULL;
1488 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1489 if (!symtab)
1490 return NULL;
1491
1492 bv = BLOCKVECTOR (symtab);
1493 block = BLOCKVECTOR_BLOCK (bv, kind);
1494 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1495 if (!sym)
1496 {
1497 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1498
1499 /* This shouldn't be necessary, but as a last resort
1500 * try looking in the 'other kind' even though the psymtab
1501 * claimed the symbol was one thing. It's possible that
1502 * the psymtab gets it wrong in some cases.
1503 */
1504 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1505 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1506 if (!sym)
1507 /* FIXME; error is wrong in one case */
1508 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1509 %s may be an inlined function, or may be a template function\n\
1510 (if a template, try specifying an instantiation: %s<type>)."),
1511 name, symtab->filename, name, name);
1512 }
1513 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1514 return SYMBOL_TYPE (sym);
1515
1516 return NULL;
1517 }
1518
1519 /* The standard implementation of lookup_transparent_type. This code
1520 was modeled on lookup_symbol -- the parts not relevant to looking
1521 up types were just left out. In particular it's assumed here that
1522 types are available in struct_domain and only at file-static or
1523 global blocks. */
1524
1525 struct type *
1526 basic_lookup_transparent_type (const char *name)
1527 {
1528 struct symbol *sym;
1529 struct symtab *s = NULL;
1530 struct blockvector *bv;
1531 struct objfile *objfile;
1532 struct block *block;
1533 struct type *t;
1534
1535 /* Now search all the global symbols. Do the symtab's first, then
1536 check the psymtab's. If a psymtab indicates the existence
1537 of the desired name as a global, then do psymtab-to-symtab
1538 conversion on the fly and return the found symbol. */
1539
1540 ALL_PRIMARY_SYMTABS (objfile, s)
1541 {
1542 bv = BLOCKVECTOR (s);
1543 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1544 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1545 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1546 {
1547 return SYMBOL_TYPE (sym);
1548 }
1549 }
1550
1551 ALL_OBJFILES (objfile)
1552 {
1553 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1554 if (t)
1555 return t;
1556 }
1557
1558 /* Now search the static file-level symbols.
1559 Not strictly correct, but more useful than an error.
1560 Do the symtab's first, then
1561 check the psymtab's. If a psymtab indicates the existence
1562 of the desired name as a file-level static, then do psymtab-to-symtab
1563 conversion on the fly and return the found symbol.
1564 */
1565
1566 ALL_PRIMARY_SYMTABS (objfile, s)
1567 {
1568 bv = BLOCKVECTOR (s);
1569 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1570 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1571 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1572 {
1573 return SYMBOL_TYPE (sym);
1574 }
1575 }
1576
1577 ALL_OBJFILES (objfile)
1578 {
1579 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1580 if (t)
1581 return t;
1582 }
1583
1584 return (struct type *) 0;
1585 }
1586
1587
1588 /* Find the name of the file containing main(). */
1589 /* FIXME: What about languages without main() or specially linked
1590 executables that have no main() ? */
1591
1592 char *
1593 find_main_filename (void)
1594 {
1595 struct objfile *objfile;
1596 char *result, *name = main_name ();
1597
1598 ALL_OBJFILES (objfile)
1599 {
1600 if (!objfile->sf)
1601 continue;
1602 result = objfile->sf->qf->find_symbol_file (objfile, name);
1603 if (result)
1604 return result;
1605 }
1606 return (NULL);
1607 }
1608
1609 /* Search BLOCK for symbol NAME in DOMAIN.
1610
1611 Note that if NAME is the demangled form of a C++ symbol, we will fail
1612 to find a match during the binary search of the non-encoded names, but
1613 for now we don't worry about the slight inefficiency of looking for
1614 a match we'll never find, since it will go pretty quick. Once the
1615 binary search terminates, we drop through and do a straight linear
1616 search on the symbols. Each symbol which is marked as being a ObjC/C++
1617 symbol (language_cplus or language_objc set) has both the encoded and
1618 non-encoded names tested for a match.
1619 */
1620
1621 struct symbol *
1622 lookup_block_symbol (const struct block *block, const char *name,
1623 const domain_enum domain)
1624 {
1625 struct dict_iterator iter;
1626 struct symbol *sym;
1627
1628 if (!BLOCK_FUNCTION (block))
1629 {
1630 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1631 sym != NULL;
1632 sym = dict_iter_name_next (name, &iter))
1633 {
1634 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1635 SYMBOL_DOMAIN (sym), domain))
1636 return sym;
1637 }
1638 return NULL;
1639 }
1640 else
1641 {
1642 /* Note that parameter symbols do not always show up last in the
1643 list; this loop makes sure to take anything else other than
1644 parameter symbols first; it only uses parameter symbols as a
1645 last resort. Note that this only takes up extra computation
1646 time on a match. */
1647
1648 struct symbol *sym_found = NULL;
1649
1650 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1651 sym != NULL;
1652 sym = dict_iter_name_next (name, &iter))
1653 {
1654 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1655 SYMBOL_DOMAIN (sym), domain))
1656 {
1657 sym_found = sym;
1658 if (!SYMBOL_IS_ARGUMENT (sym))
1659 {
1660 break;
1661 }
1662 }
1663 }
1664 return (sym_found); /* Will be NULL if not found. */
1665 }
1666 }
1667
1668 /* Find the symtab associated with PC and SECTION. Look through the
1669 psymtabs and read in another symtab if necessary. */
1670
1671 struct symtab *
1672 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1673 {
1674 struct block *b;
1675 struct blockvector *bv;
1676 struct symtab *s = NULL;
1677 struct symtab *best_s = NULL;
1678 struct objfile *objfile;
1679 struct program_space *pspace;
1680 CORE_ADDR distance = 0;
1681 struct minimal_symbol *msymbol;
1682
1683 pspace = current_program_space;
1684
1685 /* If we know that this is not a text address, return failure. This is
1686 necessary because we loop based on the block's high and low code
1687 addresses, which do not include the data ranges, and because
1688 we call find_pc_sect_psymtab which has a similar restriction based
1689 on the partial_symtab's texthigh and textlow. */
1690 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1691 if (msymbol
1692 && (MSYMBOL_TYPE (msymbol) == mst_data
1693 || MSYMBOL_TYPE (msymbol) == mst_bss
1694 || MSYMBOL_TYPE (msymbol) == mst_abs
1695 || MSYMBOL_TYPE (msymbol) == mst_file_data
1696 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1697 return NULL;
1698
1699 /* Search all symtabs for the one whose file contains our address, and which
1700 is the smallest of all the ones containing the address. This is designed
1701 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1702 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1703 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1704
1705 This happens for native ecoff format, where code from included files
1706 gets its own symtab. The symtab for the included file should have
1707 been read in already via the dependency mechanism.
1708 It might be swifter to create several symtabs with the same name
1709 like xcoff does (I'm not sure).
1710
1711 It also happens for objfiles that have their functions reordered.
1712 For these, the symtab we are looking for is not necessarily read in. */
1713
1714 ALL_PRIMARY_SYMTABS (objfile, s)
1715 {
1716 bv = BLOCKVECTOR (s);
1717 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1718
1719 if (BLOCK_START (b) <= pc
1720 && BLOCK_END (b) > pc
1721 && (distance == 0
1722 || BLOCK_END (b) - BLOCK_START (b) < distance))
1723 {
1724 /* For an objfile that has its functions reordered,
1725 find_pc_psymtab will find the proper partial symbol table
1726 and we simply return its corresponding symtab. */
1727 /* In order to better support objfiles that contain both
1728 stabs and coff debugging info, we continue on if a psymtab
1729 can't be found. */
1730 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1731 {
1732 struct symtab *result;
1733
1734 result
1735 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1736 msymbol,
1737 pc, section,
1738 0);
1739 if (result)
1740 return result;
1741 }
1742 if (section != 0)
1743 {
1744 struct dict_iterator iter;
1745 struct symbol *sym = NULL;
1746
1747 ALL_BLOCK_SYMBOLS (b, iter, sym)
1748 {
1749 fixup_symbol_section (sym, objfile);
1750 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1751 break;
1752 }
1753 if (sym == NULL)
1754 continue; /* no symbol in this symtab matches section */
1755 }
1756 distance = BLOCK_END (b) - BLOCK_START (b);
1757 best_s = s;
1758 }
1759 }
1760
1761 if (best_s != NULL)
1762 return (best_s);
1763
1764 ALL_OBJFILES (objfile)
1765 {
1766 struct symtab *result;
1767
1768 if (!objfile->sf)
1769 continue;
1770 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1771 msymbol,
1772 pc, section,
1773 1);
1774 if (result)
1775 return result;
1776 }
1777
1778 return NULL;
1779 }
1780
1781 /* Find the symtab associated with PC. Look through the psymtabs and
1782 read in another symtab if necessary. Backward compatibility, no section */
1783
1784 struct symtab *
1785 find_pc_symtab (CORE_ADDR pc)
1786 {
1787 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1788 }
1789 \f
1790
1791 /* Find the source file and line number for a given PC value and SECTION.
1792 Return a structure containing a symtab pointer, a line number,
1793 and a pc range for the entire source line.
1794 The value's .pc field is NOT the specified pc.
1795 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1796 use the line that ends there. Otherwise, in that case, the line
1797 that begins there is used. */
1798
1799 /* The big complication here is that a line may start in one file, and end just
1800 before the start of another file. This usually occurs when you #include
1801 code in the middle of a subroutine. To properly find the end of a line's PC
1802 range, we must search all symtabs associated with this compilation unit, and
1803 find the one whose first PC is closer than that of the next line in this
1804 symtab. */
1805
1806 /* If it's worth the effort, we could be using a binary search. */
1807
1808 struct symtab_and_line
1809 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1810 {
1811 struct symtab *s;
1812 struct linetable *l;
1813 int len;
1814 int i;
1815 struct linetable_entry *item;
1816 struct symtab_and_line val;
1817 struct blockvector *bv;
1818 struct minimal_symbol *msymbol;
1819 struct minimal_symbol *mfunsym;
1820
1821 /* Info on best line seen so far, and where it starts, and its file. */
1822
1823 struct linetable_entry *best = NULL;
1824 CORE_ADDR best_end = 0;
1825 struct symtab *best_symtab = 0;
1826
1827 /* Store here the first line number
1828 of a file which contains the line at the smallest pc after PC.
1829 If we don't find a line whose range contains PC,
1830 we will use a line one less than this,
1831 with a range from the start of that file to the first line's pc. */
1832 struct linetable_entry *alt = NULL;
1833 struct symtab *alt_symtab = 0;
1834
1835 /* Info on best line seen in this file. */
1836
1837 struct linetable_entry *prev;
1838
1839 /* If this pc is not from the current frame,
1840 it is the address of the end of a call instruction.
1841 Quite likely that is the start of the following statement.
1842 But what we want is the statement containing the instruction.
1843 Fudge the pc to make sure we get that. */
1844
1845 init_sal (&val); /* initialize to zeroes */
1846
1847 val.pspace = current_program_space;
1848
1849 /* It's tempting to assume that, if we can't find debugging info for
1850 any function enclosing PC, that we shouldn't search for line
1851 number info, either. However, GAS can emit line number info for
1852 assembly files --- very helpful when debugging hand-written
1853 assembly code. In such a case, we'd have no debug info for the
1854 function, but we would have line info. */
1855
1856 if (notcurrent)
1857 pc -= 1;
1858
1859 /* elz: added this because this function returned the wrong
1860 information if the pc belongs to a stub (import/export)
1861 to call a shlib function. This stub would be anywhere between
1862 two functions in the target, and the line info was erroneously
1863 taken to be the one of the line before the pc.
1864 */
1865 /* RT: Further explanation:
1866
1867 * We have stubs (trampolines) inserted between procedures.
1868 *
1869 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1870 * exists in the main image.
1871 *
1872 * In the minimal symbol table, we have a bunch of symbols
1873 * sorted by start address. The stubs are marked as "trampoline",
1874 * the others appear as text. E.g.:
1875 *
1876 * Minimal symbol table for main image
1877 * main: code for main (text symbol)
1878 * shr1: stub (trampoline symbol)
1879 * foo: code for foo (text symbol)
1880 * ...
1881 * Minimal symbol table for "shr1" image:
1882 * ...
1883 * shr1: code for shr1 (text symbol)
1884 * ...
1885 *
1886 * So the code below is trying to detect if we are in the stub
1887 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1888 * and if found, do the symbolization from the real-code address
1889 * rather than the stub address.
1890 *
1891 * Assumptions being made about the minimal symbol table:
1892 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1893 * if we're really in the trampoline. If we're beyond it (say
1894 * we're in "foo" in the above example), it'll have a closer
1895 * symbol (the "foo" text symbol for example) and will not
1896 * return the trampoline.
1897 * 2. lookup_minimal_symbol_text() will find a real text symbol
1898 * corresponding to the trampoline, and whose address will
1899 * be different than the trampoline address. I put in a sanity
1900 * check for the address being the same, to avoid an
1901 * infinite recursion.
1902 */
1903 msymbol = lookup_minimal_symbol_by_pc (pc);
1904 if (msymbol != NULL)
1905 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1906 {
1907 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1908 NULL);
1909 if (mfunsym == NULL)
1910 /* I eliminated this warning since it is coming out
1911 * in the following situation:
1912 * gdb shmain // test program with shared libraries
1913 * (gdb) break shr1 // function in shared lib
1914 * Warning: In stub for ...
1915 * In the above situation, the shared lib is not loaded yet,
1916 * so of course we can't find the real func/line info,
1917 * but the "break" still works, and the warning is annoying.
1918 * So I commented out the warning. RT */
1919 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1920 /* fall through */
1921 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
1922 /* Avoid infinite recursion */
1923 /* See above comment about why warning is commented out */
1924 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1925 /* fall through */
1926 else
1927 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
1928 }
1929
1930
1931 s = find_pc_sect_symtab (pc, section);
1932 if (!s)
1933 {
1934 /* if no symbol information, return previous pc */
1935 if (notcurrent)
1936 pc++;
1937 val.pc = pc;
1938 return val;
1939 }
1940
1941 bv = BLOCKVECTOR (s);
1942
1943 /* Look at all the symtabs that share this blockvector.
1944 They all have the same apriori range, that we found was right;
1945 but they have different line tables. */
1946
1947 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1948 {
1949 /* Find the best line in this symtab. */
1950 l = LINETABLE (s);
1951 if (!l)
1952 continue;
1953 len = l->nitems;
1954 if (len <= 0)
1955 {
1956 /* I think len can be zero if the symtab lacks line numbers
1957 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1958 I'm not sure which, and maybe it depends on the symbol
1959 reader). */
1960 continue;
1961 }
1962
1963 prev = NULL;
1964 item = l->item; /* Get first line info */
1965
1966 /* Is this file's first line closer than the first lines of other files?
1967 If so, record this file, and its first line, as best alternate. */
1968 if (item->pc > pc && (!alt || item->pc < alt->pc))
1969 {
1970 alt = item;
1971 alt_symtab = s;
1972 }
1973
1974 for (i = 0; i < len; i++, item++)
1975 {
1976 /* Leave prev pointing to the linetable entry for the last line
1977 that started at or before PC. */
1978 if (item->pc > pc)
1979 break;
1980
1981 prev = item;
1982 }
1983
1984 /* At this point, prev points at the line whose start addr is <= pc, and
1985 item points at the next line. If we ran off the end of the linetable
1986 (pc >= start of the last line), then prev == item. If pc < start of
1987 the first line, prev will not be set. */
1988
1989 /* Is this file's best line closer than the best in the other files?
1990 If so, record this file, and its best line, as best so far. Don't
1991 save prev if it represents the end of a function (i.e. line number
1992 0) instead of a real line. */
1993
1994 if (prev && prev->line && (!best || prev->pc > best->pc))
1995 {
1996 best = prev;
1997 best_symtab = s;
1998
1999 /* Discard BEST_END if it's before the PC of the current BEST. */
2000 if (best_end <= best->pc)
2001 best_end = 0;
2002 }
2003
2004 /* If another line (denoted by ITEM) is in the linetable and its
2005 PC is after BEST's PC, but before the current BEST_END, then
2006 use ITEM's PC as the new best_end. */
2007 if (best && i < len && item->pc > best->pc
2008 && (best_end == 0 || best_end > item->pc))
2009 best_end = item->pc;
2010 }
2011
2012 if (!best_symtab)
2013 {
2014 /* If we didn't find any line number info, just return zeros.
2015 We used to return alt->line - 1 here, but that could be
2016 anywhere; if we don't have line number info for this PC,
2017 don't make some up. */
2018 val.pc = pc;
2019 }
2020 else if (best->line == 0)
2021 {
2022 /* If our best fit is in a range of PC's for which no line
2023 number info is available (line number is zero) then we didn't
2024 find any valid line information. */
2025 val.pc = pc;
2026 }
2027 else
2028 {
2029 val.symtab = best_symtab;
2030 val.line = best->line;
2031 val.pc = best->pc;
2032 if (best_end && (!alt || best_end < alt->pc))
2033 val.end = best_end;
2034 else if (alt)
2035 val.end = alt->pc;
2036 else
2037 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2038 }
2039 val.section = section;
2040 return val;
2041 }
2042
2043 /* Backward compatibility (no section) */
2044
2045 struct symtab_and_line
2046 find_pc_line (CORE_ADDR pc, int notcurrent)
2047 {
2048 struct obj_section *section;
2049
2050 section = find_pc_overlay (pc);
2051 if (pc_in_unmapped_range (pc, section))
2052 pc = overlay_mapped_address (pc, section);
2053 return find_pc_sect_line (pc, section, notcurrent);
2054 }
2055 \f
2056 /* Find line number LINE in any symtab whose name is the same as
2057 SYMTAB.
2058
2059 If found, return the symtab that contains the linetable in which it was
2060 found, set *INDEX to the index in the linetable of the best entry
2061 found, and set *EXACT_MATCH nonzero if the value returned is an
2062 exact match.
2063
2064 If not found, return NULL. */
2065
2066 struct symtab *
2067 find_line_symtab (struct symtab *symtab, int line,
2068 int *index, int *exact_match)
2069 {
2070 int exact = 0; /* Initialized here to avoid a compiler warning. */
2071
2072 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2073 so far seen. */
2074
2075 int best_index;
2076 struct linetable *best_linetable;
2077 struct symtab *best_symtab;
2078
2079 /* First try looking it up in the given symtab. */
2080 best_linetable = LINETABLE (symtab);
2081 best_symtab = symtab;
2082 best_index = find_line_common (best_linetable, line, &exact);
2083 if (best_index < 0 || !exact)
2084 {
2085 /* Didn't find an exact match. So we better keep looking for
2086 another symtab with the same name. In the case of xcoff,
2087 multiple csects for one source file (produced by IBM's FORTRAN
2088 compiler) produce multiple symtabs (this is unavoidable
2089 assuming csects can be at arbitrary places in memory and that
2090 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2091
2092 /* BEST is the smallest linenumber > LINE so far seen,
2093 or 0 if none has been seen so far.
2094 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2095 int best;
2096
2097 struct objfile *objfile;
2098 struct symtab *s;
2099
2100 if (best_index >= 0)
2101 best = best_linetable->item[best_index].line;
2102 else
2103 best = 0;
2104
2105 ALL_OBJFILES (objfile)
2106 {
2107 if (objfile->sf)
2108 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2109 symtab->filename);
2110 }
2111
2112 /* Get symbol full file name if possible. */
2113 symtab_to_fullname (symtab);
2114
2115 ALL_SYMTABS (objfile, s)
2116 {
2117 struct linetable *l;
2118 int ind;
2119
2120 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2121 continue;
2122 if (symtab->fullname != NULL
2123 && symtab_to_fullname (s) != NULL
2124 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2125 continue;
2126 l = LINETABLE (s);
2127 ind = find_line_common (l, line, &exact);
2128 if (ind >= 0)
2129 {
2130 if (exact)
2131 {
2132 best_index = ind;
2133 best_linetable = l;
2134 best_symtab = s;
2135 goto done;
2136 }
2137 if (best == 0 || l->item[ind].line < best)
2138 {
2139 best = l->item[ind].line;
2140 best_index = ind;
2141 best_linetable = l;
2142 best_symtab = s;
2143 }
2144 }
2145 }
2146 }
2147 done:
2148 if (best_index < 0)
2149 return NULL;
2150
2151 if (index)
2152 *index = best_index;
2153 if (exact_match)
2154 *exact_match = exact;
2155
2156 return best_symtab;
2157 }
2158 \f
2159 /* Set the PC value for a given source file and line number and return true.
2160 Returns zero for invalid line number (and sets the PC to 0).
2161 The source file is specified with a struct symtab. */
2162
2163 int
2164 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2165 {
2166 struct linetable *l;
2167 int ind;
2168
2169 *pc = 0;
2170 if (symtab == 0)
2171 return 0;
2172
2173 symtab = find_line_symtab (symtab, line, &ind, NULL);
2174 if (symtab != NULL)
2175 {
2176 l = LINETABLE (symtab);
2177 *pc = l->item[ind].pc;
2178 return 1;
2179 }
2180 else
2181 return 0;
2182 }
2183
2184 /* Find the range of pc values in a line.
2185 Store the starting pc of the line into *STARTPTR
2186 and the ending pc (start of next line) into *ENDPTR.
2187 Returns 1 to indicate success.
2188 Returns 0 if could not find the specified line. */
2189
2190 int
2191 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2192 CORE_ADDR *endptr)
2193 {
2194 CORE_ADDR startaddr;
2195 struct symtab_and_line found_sal;
2196
2197 startaddr = sal.pc;
2198 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2199 return 0;
2200
2201 /* This whole function is based on address. For example, if line 10 has
2202 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2203 "info line *0x123" should say the line goes from 0x100 to 0x200
2204 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2205 This also insures that we never give a range like "starts at 0x134
2206 and ends at 0x12c". */
2207
2208 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2209 if (found_sal.line != sal.line)
2210 {
2211 /* The specified line (sal) has zero bytes. */
2212 *startptr = found_sal.pc;
2213 *endptr = found_sal.pc;
2214 }
2215 else
2216 {
2217 *startptr = found_sal.pc;
2218 *endptr = found_sal.end;
2219 }
2220 return 1;
2221 }
2222
2223 /* Given a line table and a line number, return the index into the line
2224 table for the pc of the nearest line whose number is >= the specified one.
2225 Return -1 if none is found. The value is >= 0 if it is an index.
2226
2227 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2228
2229 static int
2230 find_line_common (struct linetable *l, int lineno,
2231 int *exact_match)
2232 {
2233 int i;
2234 int len;
2235
2236 /* BEST is the smallest linenumber > LINENO so far seen,
2237 or 0 if none has been seen so far.
2238 BEST_INDEX identifies the item for it. */
2239
2240 int best_index = -1;
2241 int best = 0;
2242
2243 *exact_match = 0;
2244
2245 if (lineno <= 0)
2246 return -1;
2247 if (l == 0)
2248 return -1;
2249
2250 len = l->nitems;
2251 for (i = 0; i < len; i++)
2252 {
2253 struct linetable_entry *item = &(l->item[i]);
2254
2255 if (item->line == lineno)
2256 {
2257 /* Return the first (lowest address) entry which matches. */
2258 *exact_match = 1;
2259 return i;
2260 }
2261
2262 if (item->line > lineno && (best == 0 || item->line < best))
2263 {
2264 best = item->line;
2265 best_index = i;
2266 }
2267 }
2268
2269 /* If we got here, we didn't get an exact match. */
2270 return best_index;
2271 }
2272
2273 int
2274 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2275 {
2276 struct symtab_and_line sal;
2277
2278 sal = find_pc_line (pc, 0);
2279 *startptr = sal.pc;
2280 *endptr = sal.end;
2281 return sal.symtab != 0;
2282 }
2283
2284 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2285 address for that function that has an entry in SYMTAB's line info
2286 table. If such an entry cannot be found, return FUNC_ADDR
2287 unaltered. */
2288 CORE_ADDR
2289 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2290 {
2291 CORE_ADDR func_start, func_end;
2292 struct linetable *l;
2293 int i;
2294
2295 /* Give up if this symbol has no lineinfo table. */
2296 l = LINETABLE (symtab);
2297 if (l == NULL)
2298 return func_addr;
2299
2300 /* Get the range for the function's PC values, or give up if we
2301 cannot, for some reason. */
2302 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2303 return func_addr;
2304
2305 /* Linetable entries are ordered by PC values, see the commentary in
2306 symtab.h where `struct linetable' is defined. Thus, the first
2307 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2308 address we are looking for. */
2309 for (i = 0; i < l->nitems; i++)
2310 {
2311 struct linetable_entry *item = &(l->item[i]);
2312
2313 /* Don't use line numbers of zero, they mark special entries in
2314 the table. See the commentary on symtab.h before the
2315 definition of struct linetable. */
2316 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2317 return item->pc;
2318 }
2319
2320 return func_addr;
2321 }
2322
2323 /* Given a function symbol SYM, find the symtab and line for the start
2324 of the function.
2325 If the argument FUNFIRSTLINE is nonzero, we want the first line
2326 of real code inside the function. */
2327
2328 struct symtab_and_line
2329 find_function_start_sal (struct symbol *sym, int funfirstline)
2330 {
2331 struct symtab_and_line sal;
2332
2333 fixup_symbol_section (sym, NULL);
2334 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2335 SYMBOL_OBJ_SECTION (sym), 0);
2336
2337 /* We always should have a line for the function start address.
2338 If we don't, something is odd. Create a plain SAL refering
2339 just the PC and hope that skip_prologue_sal (if requested)
2340 can find a line number for after the prologue. */
2341 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2342 {
2343 init_sal (&sal);
2344 sal.pspace = current_program_space;
2345 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2346 sal.section = SYMBOL_OBJ_SECTION (sym);
2347 }
2348
2349 if (funfirstline)
2350 skip_prologue_sal (&sal);
2351
2352 return sal;
2353 }
2354
2355 /* Adjust SAL to the first instruction past the function prologue.
2356 If the PC was explicitly specified, the SAL is not changed.
2357 If the line number was explicitly specified, at most the SAL's PC
2358 is updated. If SAL is already past the prologue, then do nothing. */
2359 void
2360 skip_prologue_sal (struct symtab_and_line *sal)
2361 {
2362 struct symbol *sym;
2363 struct symtab_and_line start_sal;
2364 struct cleanup *old_chain;
2365 CORE_ADDR pc;
2366 struct obj_section *section;
2367 const char *name;
2368 struct objfile *objfile;
2369 struct gdbarch *gdbarch;
2370 struct block *b, *function_block;
2371
2372 /* Do not change the SAL is PC was specified explicitly. */
2373 if (sal->explicit_pc)
2374 return;
2375
2376 old_chain = save_current_space_and_thread ();
2377 switch_to_program_space_and_thread (sal->pspace);
2378
2379 sym = find_pc_sect_function (sal->pc, sal->section);
2380 if (sym != NULL)
2381 {
2382 fixup_symbol_section (sym, NULL);
2383
2384 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2385 section = SYMBOL_OBJ_SECTION (sym);
2386 name = SYMBOL_LINKAGE_NAME (sym);
2387 objfile = SYMBOL_SYMTAB (sym)->objfile;
2388 }
2389 else
2390 {
2391 struct minimal_symbol *msymbol
2392 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2393
2394 if (msymbol == NULL)
2395 {
2396 do_cleanups (old_chain);
2397 return;
2398 }
2399
2400 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2401 section = SYMBOL_OBJ_SECTION (msymbol);
2402 name = SYMBOL_LINKAGE_NAME (msymbol);
2403 objfile = msymbol_objfile (msymbol);
2404 }
2405
2406 gdbarch = get_objfile_arch (objfile);
2407
2408 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2409 so that gdbarch_skip_prologue has something unique to work on. */
2410 if (section_is_overlay (section) && !section_is_mapped (section))
2411 pc = overlay_unmapped_address (pc, section);
2412
2413 /* Skip "first line" of function (which is actually its prologue). */
2414 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2415 pc = gdbarch_skip_prologue (gdbarch, pc);
2416
2417 /* For overlays, map pc back into its mapped VMA range. */
2418 pc = overlay_mapped_address (pc, section);
2419
2420 /* Calculate line number. */
2421 start_sal = find_pc_sect_line (pc, section, 0);
2422
2423 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2424 line is still part of the same function. */
2425 if (start_sal.pc != pc
2426 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2427 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2428 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2429 == lookup_minimal_symbol_by_pc_section (pc, section))))
2430 {
2431 /* First pc of next line */
2432 pc = start_sal.end;
2433 /* Recalculate the line number (might not be N+1). */
2434 start_sal = find_pc_sect_line (pc, section, 0);
2435 }
2436
2437 /* On targets with executable formats that don't have a concept of
2438 constructors (ELF with .init has, PE doesn't), gcc emits a call
2439 to `__main' in `main' between the prologue and before user
2440 code. */
2441 if (gdbarch_skip_main_prologue_p (gdbarch)
2442 && name && strcmp (name, "main") == 0)
2443 {
2444 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2445 /* Recalculate the line number (might not be N+1). */
2446 start_sal = find_pc_sect_line (pc, section, 0);
2447 }
2448
2449 /* If we still don't have a valid source line, try to find the first
2450 PC in the lineinfo table that belongs to the same function. This
2451 happens with COFF debug info, which does not seem to have an
2452 entry in lineinfo table for the code after the prologue which has
2453 no direct relation to source. For example, this was found to be
2454 the case with the DJGPP target using "gcc -gcoff" when the
2455 compiler inserted code after the prologue to make sure the stack
2456 is aligned. */
2457 if (sym && start_sal.symtab == NULL)
2458 {
2459 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2460 /* Recalculate the line number. */
2461 start_sal = find_pc_sect_line (pc, section, 0);
2462 }
2463
2464 do_cleanups (old_chain);
2465
2466 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2467 forward SAL to the end of the prologue. */
2468 if (sal->pc >= pc)
2469 return;
2470
2471 sal->pc = pc;
2472 sal->section = section;
2473
2474 /* Unless the explicit_line flag was set, update the SAL line
2475 and symtab to correspond to the modified PC location. */
2476 if (sal->explicit_line)
2477 return;
2478
2479 sal->symtab = start_sal.symtab;
2480 sal->line = start_sal.line;
2481 sal->end = start_sal.end;
2482
2483 /* Check if we are now inside an inlined function. If we can,
2484 use the call site of the function instead. */
2485 b = block_for_pc_sect (sal->pc, sal->section);
2486 function_block = NULL;
2487 while (b != NULL)
2488 {
2489 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2490 function_block = b;
2491 else if (BLOCK_FUNCTION (b) != NULL)
2492 break;
2493 b = BLOCK_SUPERBLOCK (b);
2494 }
2495 if (function_block != NULL
2496 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2497 {
2498 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2499 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2500 }
2501 }
2502
2503 /* If P is of the form "operator[ \t]+..." where `...' is
2504 some legitimate operator text, return a pointer to the
2505 beginning of the substring of the operator text.
2506 Otherwise, return "". */
2507 char *
2508 operator_chars (char *p, char **end)
2509 {
2510 *end = "";
2511 if (strncmp (p, "operator", 8))
2512 return *end;
2513 p += 8;
2514
2515 /* Don't get faked out by `operator' being part of a longer
2516 identifier. */
2517 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2518 return *end;
2519
2520 /* Allow some whitespace between `operator' and the operator symbol. */
2521 while (*p == ' ' || *p == '\t')
2522 p++;
2523
2524 /* Recognize 'operator TYPENAME'. */
2525
2526 if (isalpha (*p) || *p == '_' || *p == '$')
2527 {
2528 char *q = p + 1;
2529
2530 while (isalnum (*q) || *q == '_' || *q == '$')
2531 q++;
2532 *end = q;
2533 return p;
2534 }
2535
2536 while (*p)
2537 switch (*p)
2538 {
2539 case '\\': /* regexp quoting */
2540 if (p[1] == '*')
2541 {
2542 if (p[2] == '=') /* 'operator\*=' */
2543 *end = p + 3;
2544 else /* 'operator\*' */
2545 *end = p + 2;
2546 return p;
2547 }
2548 else if (p[1] == '[')
2549 {
2550 if (p[2] == ']')
2551 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2552 else if (p[2] == '\\' && p[3] == ']')
2553 {
2554 *end = p + 4; /* 'operator\[\]' */
2555 return p;
2556 }
2557 else
2558 error (_("nothing is allowed between '[' and ']'"));
2559 }
2560 else
2561 {
2562 /* Gratuitous qoute: skip it and move on. */
2563 p++;
2564 continue;
2565 }
2566 break;
2567 case '!':
2568 case '=':
2569 case '*':
2570 case '/':
2571 case '%':
2572 case '^':
2573 if (p[1] == '=')
2574 *end = p + 2;
2575 else
2576 *end = p + 1;
2577 return p;
2578 case '<':
2579 case '>':
2580 case '+':
2581 case '-':
2582 case '&':
2583 case '|':
2584 if (p[0] == '-' && p[1] == '>')
2585 {
2586 /* Struct pointer member operator 'operator->'. */
2587 if (p[2] == '*')
2588 {
2589 *end = p + 3; /* 'operator->*' */
2590 return p;
2591 }
2592 else if (p[2] == '\\')
2593 {
2594 *end = p + 4; /* Hopefully 'operator->\*' */
2595 return p;
2596 }
2597 else
2598 {
2599 *end = p + 2; /* 'operator->' */
2600 return p;
2601 }
2602 }
2603 if (p[1] == '=' || p[1] == p[0])
2604 *end = p + 2;
2605 else
2606 *end = p + 1;
2607 return p;
2608 case '~':
2609 case ',':
2610 *end = p + 1;
2611 return p;
2612 case '(':
2613 if (p[1] != ')')
2614 error (_("`operator ()' must be specified without whitespace in `()'"));
2615 *end = p + 2;
2616 return p;
2617 case '?':
2618 if (p[1] != ':')
2619 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2620 *end = p + 2;
2621 return p;
2622 case '[':
2623 if (p[1] != ']')
2624 error (_("`operator []' must be specified without whitespace in `[]'"));
2625 *end = p + 2;
2626 return p;
2627 default:
2628 error (_("`operator %s' not supported"), p);
2629 break;
2630 }
2631
2632 *end = "";
2633 return *end;
2634 }
2635 \f
2636
2637 /* If FILE is not already in the table of files, return zero;
2638 otherwise return non-zero. Optionally add FILE to the table if ADD
2639 is non-zero. If *FIRST is non-zero, forget the old table
2640 contents. */
2641 static int
2642 filename_seen (const char *file, int add, int *first)
2643 {
2644 /* Table of files seen so far. */
2645 static const char **tab = NULL;
2646 /* Allocated size of tab in elements.
2647 Start with one 256-byte block (when using GNU malloc.c).
2648 24 is the malloc overhead when range checking is in effect. */
2649 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2650 /* Current size of tab in elements. */
2651 static int tab_cur_size;
2652 const char **p;
2653
2654 if (*first)
2655 {
2656 if (tab == NULL)
2657 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2658 tab_cur_size = 0;
2659 }
2660
2661 /* Is FILE in tab? */
2662 for (p = tab; p < tab + tab_cur_size; p++)
2663 if (strcmp (*p, file) == 0)
2664 return 1;
2665
2666 /* No; maybe add it to tab. */
2667 if (add)
2668 {
2669 if (tab_cur_size == tab_alloc_size)
2670 {
2671 tab_alloc_size *= 2;
2672 tab = (const char **) xrealloc ((char *) tab,
2673 tab_alloc_size * sizeof (*tab));
2674 }
2675 tab[tab_cur_size++] = file;
2676 }
2677
2678 return 0;
2679 }
2680
2681 /* Slave routine for sources_info. Force line breaks at ,'s.
2682 NAME is the name to print and *FIRST is nonzero if this is the first
2683 name printed. Set *FIRST to zero. */
2684 static void
2685 output_source_filename (const char *name, int *first)
2686 {
2687 /* Since a single source file can result in several partial symbol
2688 tables, we need to avoid printing it more than once. Note: if
2689 some of the psymtabs are read in and some are not, it gets
2690 printed both under "Source files for which symbols have been
2691 read" and "Source files for which symbols will be read in on
2692 demand". I consider this a reasonable way to deal with the
2693 situation. I'm not sure whether this can also happen for
2694 symtabs; it doesn't hurt to check. */
2695
2696 /* Was NAME already seen? */
2697 if (filename_seen (name, 1, first))
2698 {
2699 /* Yes; don't print it again. */
2700 return;
2701 }
2702 /* No; print it and reset *FIRST. */
2703 if (*first)
2704 {
2705 *first = 0;
2706 }
2707 else
2708 {
2709 printf_filtered (", ");
2710 }
2711
2712 wrap_here ("");
2713 fputs_filtered (name, gdb_stdout);
2714 }
2715
2716 /* A callback for map_partial_symbol_filenames. */
2717 static void
2718 output_partial_symbol_filename (const char *fullname, const char *filename,
2719 void *data)
2720 {
2721 output_source_filename (fullname ? fullname : filename, data);
2722 }
2723
2724 static void
2725 sources_info (char *ignore, int from_tty)
2726 {
2727 struct symtab *s;
2728 struct objfile *objfile;
2729 int first;
2730
2731 if (!have_full_symbols () && !have_partial_symbols ())
2732 {
2733 error (_("No symbol table is loaded. Use the \"file\" command."));
2734 }
2735
2736 printf_filtered ("Source files for which symbols have been read in:\n\n");
2737
2738 first = 1;
2739 ALL_SYMTABS (objfile, s)
2740 {
2741 const char *fullname = symtab_to_fullname (s);
2742
2743 output_source_filename (fullname ? fullname : s->filename, &first);
2744 }
2745 printf_filtered ("\n\n");
2746
2747 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2748
2749 first = 1;
2750 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2751 printf_filtered ("\n");
2752 }
2753
2754 static int
2755 file_matches (const char *file, char *files[], int nfiles)
2756 {
2757 int i;
2758
2759 if (file != NULL && nfiles != 0)
2760 {
2761 for (i = 0; i < nfiles; i++)
2762 {
2763 if (strcmp (files[i], lbasename (file)) == 0)
2764 return 1;
2765 }
2766 }
2767 else if (nfiles == 0)
2768 return 1;
2769 return 0;
2770 }
2771
2772 /* Free any memory associated with a search. */
2773 void
2774 free_search_symbols (struct symbol_search *symbols)
2775 {
2776 struct symbol_search *p;
2777 struct symbol_search *next;
2778
2779 for (p = symbols; p != NULL; p = next)
2780 {
2781 next = p->next;
2782 xfree (p);
2783 }
2784 }
2785
2786 static void
2787 do_free_search_symbols_cleanup (void *symbols)
2788 {
2789 free_search_symbols (symbols);
2790 }
2791
2792 struct cleanup *
2793 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2794 {
2795 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2796 }
2797
2798 /* Helper function for sort_search_symbols and qsort. Can only
2799 sort symbols, not minimal symbols. */
2800 static int
2801 compare_search_syms (const void *sa, const void *sb)
2802 {
2803 struct symbol_search **sym_a = (struct symbol_search **) sa;
2804 struct symbol_search **sym_b = (struct symbol_search **) sb;
2805
2806 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2807 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2808 }
2809
2810 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2811 prevtail where it is, but update its next pointer to point to
2812 the first of the sorted symbols. */
2813 static struct symbol_search *
2814 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2815 {
2816 struct symbol_search **symbols, *symp, *old_next;
2817 int i;
2818
2819 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2820 * nfound);
2821 symp = prevtail->next;
2822 for (i = 0; i < nfound; i++)
2823 {
2824 symbols[i] = symp;
2825 symp = symp->next;
2826 }
2827 /* Generally NULL. */
2828 old_next = symp;
2829
2830 qsort (symbols, nfound, sizeof (struct symbol_search *),
2831 compare_search_syms);
2832
2833 symp = prevtail;
2834 for (i = 0; i < nfound; i++)
2835 {
2836 symp->next = symbols[i];
2837 symp = symp->next;
2838 }
2839 symp->next = old_next;
2840
2841 xfree (symbols);
2842 return symp;
2843 }
2844
2845 /* An object of this type is passed as the user_data to the
2846 expand_symtabs_matching method. */
2847 struct search_symbols_data
2848 {
2849 int nfiles;
2850 char **files;
2851 char *regexp;
2852 };
2853
2854 /* A callback for expand_symtabs_matching. */
2855 static int
2856 search_symbols_file_matches (const char *filename, void *user_data)
2857 {
2858 struct search_symbols_data *data = user_data;
2859
2860 return file_matches (filename, data->files, data->nfiles);
2861 }
2862
2863 /* A callback for expand_symtabs_matching. */
2864 static int
2865 search_symbols_name_matches (const char *symname, void *user_data)
2866 {
2867 struct search_symbols_data *data = user_data;
2868
2869 return data->regexp == NULL || re_exec (symname);
2870 }
2871
2872 /* Search the symbol table for matches to the regular expression REGEXP,
2873 returning the results in *MATCHES.
2874
2875 Only symbols of KIND are searched:
2876 FUNCTIONS_DOMAIN - search all functions
2877 TYPES_DOMAIN - search all type names
2878 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2879 and constants (enums)
2880
2881 free_search_symbols should be called when *MATCHES is no longer needed.
2882
2883 The results are sorted locally; each symtab's global and static blocks are
2884 separately alphabetized.
2885 */
2886 void
2887 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2888 struct symbol_search **matches)
2889 {
2890 struct symtab *s;
2891 struct blockvector *bv;
2892 struct block *b;
2893 int i = 0;
2894 struct dict_iterator iter;
2895 struct symbol *sym;
2896 struct objfile *objfile;
2897 struct minimal_symbol *msymbol;
2898 char *val;
2899 int found_misc = 0;
2900 static enum minimal_symbol_type types[]
2901 = {mst_data, mst_text, mst_abs, mst_unknown};
2902 static enum minimal_symbol_type types2[]
2903 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
2904 static enum minimal_symbol_type types3[]
2905 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2906 static enum minimal_symbol_type types4[]
2907 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
2908 enum minimal_symbol_type ourtype;
2909 enum minimal_symbol_type ourtype2;
2910 enum minimal_symbol_type ourtype3;
2911 enum minimal_symbol_type ourtype4;
2912 struct symbol_search *sr;
2913 struct symbol_search *psr;
2914 struct symbol_search *tail;
2915 struct cleanup *old_chain = NULL;
2916 struct search_symbols_data datum;
2917
2918 if (kind < VARIABLES_DOMAIN)
2919 error (_("must search on specific domain"));
2920
2921 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2922 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2923 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2924 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2925
2926 sr = *matches = NULL;
2927 tail = NULL;
2928
2929 if (regexp != NULL)
2930 {
2931 /* Make sure spacing is right for C++ operators.
2932 This is just a courtesy to make the matching less sensitive
2933 to how many spaces the user leaves between 'operator'
2934 and <TYPENAME> or <OPERATOR>. */
2935 char *opend;
2936 char *opname = operator_chars (regexp, &opend);
2937
2938 if (*opname)
2939 {
2940 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2941
2942 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2943 {
2944 /* There should 1 space between 'operator' and 'TYPENAME'. */
2945 if (opname[-1] != ' ' || opname[-2] == ' ')
2946 fix = 1;
2947 }
2948 else
2949 {
2950 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2951 if (opname[-1] == ' ')
2952 fix = 0;
2953 }
2954 /* If wrong number of spaces, fix it. */
2955 if (fix >= 0)
2956 {
2957 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2958
2959 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2960 regexp = tmp;
2961 }
2962 }
2963
2964 if (0 != (val = re_comp (regexp)))
2965 error (_("Invalid regexp (%s): %s"), val, regexp);
2966 }
2967
2968 /* Search through the partial symtabs *first* for all symbols
2969 matching the regexp. That way we don't have to reproduce all of
2970 the machinery below. */
2971
2972 datum.nfiles = nfiles;
2973 datum.files = files;
2974 datum.regexp = regexp;
2975 ALL_OBJFILES (objfile)
2976 {
2977 if (objfile->sf)
2978 objfile->sf->qf->expand_symtabs_matching (objfile,
2979 search_symbols_file_matches,
2980 search_symbols_name_matches,
2981 kind,
2982 &datum);
2983 }
2984
2985 /* Here, we search through the minimal symbol tables for functions
2986 and variables that match, and force their symbols to be read.
2987 This is in particular necessary for demangled variable names,
2988 which are no longer put into the partial symbol tables.
2989 The symbol will then be found during the scan of symtabs below.
2990
2991 For functions, find_pc_symtab should succeed if we have debug info
2992 for the function, for variables we have to call lookup_symbol
2993 to determine if the variable has debug info.
2994 If the lookup fails, set found_misc so that we will rescan to print
2995 any matching symbols without debug info.
2996 */
2997
2998 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
2999 {
3000 ALL_MSYMBOLS (objfile, msymbol)
3001 {
3002 QUIT;
3003
3004 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3005 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3006 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3007 MSYMBOL_TYPE (msymbol) == ourtype4)
3008 {
3009 if (regexp == NULL
3010 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3011 {
3012 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3013 {
3014 /* FIXME: carlton/2003-02-04: Given that the
3015 semantics of lookup_symbol keeps on changing
3016 slightly, it would be a nice idea if we had a
3017 function lookup_symbol_minsym that found the
3018 symbol associated to a given minimal symbol (if
3019 any). */
3020 if (kind == FUNCTIONS_DOMAIN
3021 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3022 (struct block *) NULL,
3023 VAR_DOMAIN, 0)
3024 == NULL)
3025 found_misc = 1;
3026 }
3027 }
3028 }
3029 }
3030 }
3031
3032 ALL_PRIMARY_SYMTABS (objfile, s)
3033 {
3034 bv = BLOCKVECTOR (s);
3035 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3036 {
3037 struct symbol_search *prevtail = tail;
3038 int nfound = 0;
3039
3040 b = BLOCKVECTOR_BLOCK (bv, i);
3041 ALL_BLOCK_SYMBOLS (b, iter, sym)
3042 {
3043 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3044
3045 QUIT;
3046
3047 if (file_matches (real_symtab->filename, files, nfiles)
3048 && ((regexp == NULL
3049 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3050 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3051 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3052 && SYMBOL_CLASS (sym) != LOC_BLOCK
3053 && SYMBOL_CLASS (sym) != LOC_CONST)
3054 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3055 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3056 {
3057 /* match */
3058 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3059 psr->block = i;
3060 psr->symtab = real_symtab;
3061 psr->symbol = sym;
3062 psr->msymbol = NULL;
3063 psr->next = NULL;
3064 if (tail == NULL)
3065 sr = psr;
3066 else
3067 tail->next = psr;
3068 tail = psr;
3069 nfound ++;
3070 }
3071 }
3072 if (nfound > 0)
3073 {
3074 if (prevtail == NULL)
3075 {
3076 struct symbol_search dummy;
3077
3078 dummy.next = sr;
3079 tail = sort_search_symbols (&dummy, nfound);
3080 sr = dummy.next;
3081
3082 old_chain = make_cleanup_free_search_symbols (sr);
3083 }
3084 else
3085 tail = sort_search_symbols (prevtail, nfound);
3086 }
3087 }
3088 }
3089
3090 /* If there are no eyes, avoid all contact. I mean, if there are
3091 no debug symbols, then print directly from the msymbol_vector. */
3092
3093 if (found_misc || kind != FUNCTIONS_DOMAIN)
3094 {
3095 ALL_MSYMBOLS (objfile, msymbol)
3096 {
3097 QUIT;
3098
3099 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3100 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3101 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3102 MSYMBOL_TYPE (msymbol) == ourtype4)
3103 {
3104 if (regexp == NULL
3105 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3106 {
3107 /* Functions: Look up by address. */
3108 if (kind != FUNCTIONS_DOMAIN ||
3109 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3110 {
3111 /* Variables/Absolutes: Look up by name */
3112 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3113 (struct block *) NULL, VAR_DOMAIN, 0)
3114 == NULL)
3115 {
3116 /* match */
3117 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3118 psr->block = i;
3119 psr->msymbol = msymbol;
3120 psr->symtab = NULL;
3121 psr->symbol = NULL;
3122 psr->next = NULL;
3123 if (tail == NULL)
3124 {
3125 sr = psr;
3126 old_chain = make_cleanup_free_search_symbols (sr);
3127 }
3128 else
3129 tail->next = psr;
3130 tail = psr;
3131 }
3132 }
3133 }
3134 }
3135 }
3136 }
3137
3138 *matches = sr;
3139 if (sr != NULL)
3140 discard_cleanups (old_chain);
3141 }
3142
3143 /* Helper function for symtab_symbol_info, this function uses
3144 the data returned from search_symbols() to print information
3145 regarding the match to gdb_stdout.
3146 */
3147 static void
3148 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3149 int block, char *last)
3150 {
3151 if (last == NULL || strcmp (last, s->filename) != 0)
3152 {
3153 fputs_filtered ("\nFile ", gdb_stdout);
3154 fputs_filtered (s->filename, gdb_stdout);
3155 fputs_filtered (":\n", gdb_stdout);
3156 }
3157
3158 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3159 printf_filtered ("static ");
3160
3161 /* Typedef that is not a C++ class */
3162 if (kind == TYPES_DOMAIN
3163 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3164 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3165 /* variable, func, or typedef-that-is-c++-class */
3166 else if (kind < TYPES_DOMAIN ||
3167 (kind == TYPES_DOMAIN &&
3168 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3169 {
3170 type_print (SYMBOL_TYPE (sym),
3171 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3172 ? "" : SYMBOL_PRINT_NAME (sym)),
3173 gdb_stdout, 0);
3174
3175 printf_filtered (";\n");
3176 }
3177 }
3178
3179 /* This help function for symtab_symbol_info() prints information
3180 for non-debugging symbols to gdb_stdout.
3181 */
3182 static void
3183 print_msymbol_info (struct minimal_symbol *msymbol)
3184 {
3185 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3186 char *tmp;
3187
3188 if (gdbarch_addr_bit (gdbarch) <= 32)
3189 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3190 & (CORE_ADDR) 0xffffffff,
3191 8);
3192 else
3193 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3194 16);
3195 printf_filtered ("%s %s\n",
3196 tmp, SYMBOL_PRINT_NAME (msymbol));
3197 }
3198
3199 /* This is the guts of the commands "info functions", "info types", and
3200 "info variables". It calls search_symbols to find all matches and then
3201 print_[m]symbol_info to print out some useful information about the
3202 matches.
3203 */
3204 static void
3205 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3206 {
3207 static char *classnames[] = {"variable", "function", "type", "method"};
3208 struct symbol_search *symbols;
3209 struct symbol_search *p;
3210 struct cleanup *old_chain;
3211 char *last_filename = NULL;
3212 int first = 1;
3213
3214 /* must make sure that if we're interrupted, symbols gets freed */
3215 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3216 old_chain = make_cleanup_free_search_symbols (symbols);
3217
3218 printf_filtered (regexp
3219 ? "All %ss matching regular expression \"%s\":\n"
3220 : "All defined %ss:\n",
3221 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3222
3223 for (p = symbols; p != NULL; p = p->next)
3224 {
3225 QUIT;
3226
3227 if (p->msymbol != NULL)
3228 {
3229 if (first)
3230 {
3231 printf_filtered ("\nNon-debugging symbols:\n");
3232 first = 0;
3233 }
3234 print_msymbol_info (p->msymbol);
3235 }
3236 else
3237 {
3238 print_symbol_info (kind,
3239 p->symtab,
3240 p->symbol,
3241 p->block,
3242 last_filename);
3243 last_filename = p->symtab->filename;
3244 }
3245 }
3246
3247 do_cleanups (old_chain);
3248 }
3249
3250 static void
3251 variables_info (char *regexp, int from_tty)
3252 {
3253 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3254 }
3255
3256 static void
3257 functions_info (char *regexp, int from_tty)
3258 {
3259 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3260 }
3261
3262
3263 static void
3264 types_info (char *regexp, int from_tty)
3265 {
3266 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3267 }
3268
3269 /* Breakpoint all functions matching regular expression. */
3270
3271 void
3272 rbreak_command_wrapper (char *regexp, int from_tty)
3273 {
3274 rbreak_command (regexp, from_tty);
3275 }
3276
3277 /* A cleanup function that calls end_rbreak_breakpoints. */
3278
3279 static void
3280 do_end_rbreak_breakpoints (void *ignore)
3281 {
3282 end_rbreak_breakpoints ();
3283 }
3284
3285 static void
3286 rbreak_command (char *regexp, int from_tty)
3287 {
3288 struct symbol_search *ss;
3289 struct symbol_search *p;
3290 struct cleanup *old_chain;
3291 char *string = NULL;
3292 int len = 0;
3293 char **files = NULL;
3294 int nfiles = 0;
3295
3296 if (regexp)
3297 {
3298 char *colon = strchr (regexp, ':');
3299
3300 if (colon && *(colon + 1) != ':')
3301 {
3302 int colon_index;
3303 char * file_name;
3304
3305 colon_index = colon - regexp;
3306 file_name = alloca (colon_index + 1);
3307 memcpy (file_name, regexp, colon_index);
3308 file_name[colon_index--] = 0;
3309 while (isspace (file_name[colon_index]))
3310 file_name[colon_index--] = 0;
3311 files = &file_name;
3312 nfiles = 1;
3313 regexp = colon + 1;
3314 while (isspace (*regexp)) regexp++;
3315 }
3316 }
3317
3318 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3319 old_chain = make_cleanup_free_search_symbols (ss);
3320 make_cleanup (free_current_contents, &string);
3321
3322 start_rbreak_breakpoints ();
3323 make_cleanup (do_end_rbreak_breakpoints, NULL);
3324 for (p = ss; p != NULL; p = p->next)
3325 {
3326 if (p->msymbol == NULL)
3327 {
3328 int newlen = (strlen (p->symtab->filename)
3329 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3330 + 4);
3331
3332 if (newlen > len)
3333 {
3334 string = xrealloc (string, newlen);
3335 len = newlen;
3336 }
3337 strcpy (string, p->symtab->filename);
3338 strcat (string, ":'");
3339 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3340 strcat (string, "'");
3341 break_command (string, from_tty);
3342 print_symbol_info (FUNCTIONS_DOMAIN,
3343 p->symtab,
3344 p->symbol,
3345 p->block,
3346 p->symtab->filename);
3347 }
3348 else
3349 {
3350 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3351
3352 if (newlen > len)
3353 {
3354 string = xrealloc (string, newlen);
3355 len = newlen;
3356 }
3357 strcpy (string, "'");
3358 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3359 strcat (string, "'");
3360
3361 break_command (string, from_tty);
3362 printf_filtered ("<function, no debug info> %s;\n",
3363 SYMBOL_PRINT_NAME (p->msymbol));
3364 }
3365 }
3366
3367 do_cleanups (old_chain);
3368 }
3369 \f
3370
3371 /* Helper routine for make_symbol_completion_list. */
3372
3373 static int return_val_size;
3374 static int return_val_index;
3375 static char **return_val;
3376
3377 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3378 completion_list_add_name \
3379 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3380
3381 /* Test to see if the symbol specified by SYMNAME (which is already
3382 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3383 characters. If so, add it to the current completion list. */
3384
3385 static void
3386 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3387 char *text, char *word)
3388 {
3389 int newsize;
3390
3391 /* clip symbols that cannot match */
3392
3393 if (strncmp (symname, sym_text, sym_text_len) != 0)
3394 {
3395 return;
3396 }
3397
3398 /* We have a match for a completion, so add SYMNAME to the current list
3399 of matches. Note that the name is moved to freshly malloc'd space. */
3400
3401 {
3402 char *new;
3403
3404 if (word == sym_text)
3405 {
3406 new = xmalloc (strlen (symname) + 5);
3407 strcpy (new, symname);
3408 }
3409 else if (word > sym_text)
3410 {
3411 /* Return some portion of symname. */
3412 new = xmalloc (strlen (symname) + 5);
3413 strcpy (new, symname + (word - sym_text));
3414 }
3415 else
3416 {
3417 /* Return some of SYM_TEXT plus symname. */
3418 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3419 strncpy (new, word, sym_text - word);
3420 new[sym_text - word] = '\0';
3421 strcat (new, symname);
3422 }
3423
3424 if (return_val_index + 3 > return_val_size)
3425 {
3426 newsize = (return_val_size *= 2) * sizeof (char *);
3427 return_val = (char **) xrealloc ((char *) return_val, newsize);
3428 }
3429 return_val[return_val_index++] = new;
3430 return_val[return_val_index] = NULL;
3431 }
3432 }
3433
3434 /* ObjC: In case we are completing on a selector, look as the msymbol
3435 again and feed all the selectors into the mill. */
3436
3437 static void
3438 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3439 int sym_text_len, char *text, char *word)
3440 {
3441 static char *tmp = NULL;
3442 static unsigned int tmplen = 0;
3443
3444 char *method, *category, *selector;
3445 char *tmp2 = NULL;
3446
3447 method = SYMBOL_NATURAL_NAME (msymbol);
3448
3449 /* Is it a method? */
3450 if ((method[0] != '-') && (method[0] != '+'))
3451 return;
3452
3453 if (sym_text[0] == '[')
3454 /* Complete on shortened method method. */
3455 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3456
3457 while ((strlen (method) + 1) >= tmplen)
3458 {
3459 if (tmplen == 0)
3460 tmplen = 1024;
3461 else
3462 tmplen *= 2;
3463 tmp = xrealloc (tmp, tmplen);
3464 }
3465 selector = strchr (method, ' ');
3466 if (selector != NULL)
3467 selector++;
3468
3469 category = strchr (method, '(');
3470
3471 if ((category != NULL) && (selector != NULL))
3472 {
3473 memcpy (tmp, method, (category - method));
3474 tmp[category - method] = ' ';
3475 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3476 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3477 if (sym_text[0] == '[')
3478 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3479 }
3480
3481 if (selector != NULL)
3482 {
3483 /* Complete on selector only. */
3484 strcpy (tmp, selector);
3485 tmp2 = strchr (tmp, ']');
3486 if (tmp2 != NULL)
3487 *tmp2 = '\0';
3488
3489 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3490 }
3491 }
3492
3493 /* Break the non-quoted text based on the characters which are in
3494 symbols. FIXME: This should probably be language-specific. */
3495
3496 static char *
3497 language_search_unquoted_string (char *text, char *p)
3498 {
3499 for (; p > text; --p)
3500 {
3501 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3502 continue;
3503 else
3504 {
3505 if ((current_language->la_language == language_objc))
3506 {
3507 if (p[-1] == ':') /* might be part of a method name */
3508 continue;
3509 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3510 p -= 2; /* beginning of a method name */
3511 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3512 { /* might be part of a method name */
3513 char *t = p;
3514
3515 /* Seeing a ' ' or a '(' is not conclusive evidence
3516 that we are in the middle of a method name. However,
3517 finding "-[" or "+[" should be pretty un-ambiguous.
3518 Unfortunately we have to find it now to decide. */
3519
3520 while (t > text)
3521 if (isalnum (t[-1]) || t[-1] == '_' ||
3522 t[-1] == ' ' || t[-1] == ':' ||
3523 t[-1] == '(' || t[-1] == ')')
3524 --t;
3525 else
3526 break;
3527
3528 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3529 p = t - 2; /* method name detected */
3530 /* else we leave with p unchanged */
3531 }
3532 }
3533 break;
3534 }
3535 }
3536 return p;
3537 }
3538
3539 static void
3540 completion_list_add_fields (struct symbol *sym, char *sym_text,
3541 int sym_text_len, char *text, char *word)
3542 {
3543 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3544 {
3545 struct type *t = SYMBOL_TYPE (sym);
3546 enum type_code c = TYPE_CODE (t);
3547 int j;
3548
3549 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3550 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3551 if (TYPE_FIELD_NAME (t, j))
3552 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3553 sym_text, sym_text_len, text, word);
3554 }
3555 }
3556
3557 /* Type of the user_data argument passed to add_macro_name or
3558 add_partial_symbol_name. The contents are simply whatever is
3559 needed by completion_list_add_name. */
3560 struct add_name_data
3561 {
3562 char *sym_text;
3563 int sym_text_len;
3564 char *text;
3565 char *word;
3566 };
3567
3568 /* A callback used with macro_for_each and macro_for_each_in_scope.
3569 This adds a macro's name to the current completion list. */
3570 static void
3571 add_macro_name (const char *name, const struct macro_definition *ignore,
3572 void *user_data)
3573 {
3574 struct add_name_data *datum = (struct add_name_data *) user_data;
3575
3576 completion_list_add_name ((char *) name,
3577 datum->sym_text, datum->sym_text_len,
3578 datum->text, datum->word);
3579 }
3580
3581 /* A callback for map_partial_symbol_names. */
3582 static void
3583 add_partial_symbol_name (const char *name, void *user_data)
3584 {
3585 struct add_name_data *datum = (struct add_name_data *) user_data;
3586
3587 completion_list_add_name ((char *) name,
3588 datum->sym_text, datum->sym_text_len,
3589 datum->text, datum->word);
3590 }
3591
3592 char **
3593 default_make_symbol_completion_list_break_on (char *text, char *word,
3594 const char *break_on)
3595 {
3596 /* Problem: All of the symbols have to be copied because readline
3597 frees them. I'm not going to worry about this; hopefully there
3598 won't be that many. */
3599
3600 struct symbol *sym;
3601 struct symtab *s;
3602 struct minimal_symbol *msymbol;
3603 struct objfile *objfile;
3604 struct block *b;
3605 const struct block *surrounding_static_block, *surrounding_global_block;
3606 struct dict_iterator iter;
3607 /* The symbol we are completing on. Points in same buffer as text. */
3608 char *sym_text;
3609 /* Length of sym_text. */
3610 int sym_text_len;
3611 struct add_name_data datum;
3612
3613 /* Now look for the symbol we are supposed to complete on. */
3614 {
3615 char *p;
3616 char quote_found;
3617 char *quote_pos = NULL;
3618
3619 /* First see if this is a quoted string. */
3620 quote_found = '\0';
3621 for (p = text; *p != '\0'; ++p)
3622 {
3623 if (quote_found != '\0')
3624 {
3625 if (*p == quote_found)
3626 /* Found close quote. */
3627 quote_found = '\0';
3628 else if (*p == '\\' && p[1] == quote_found)
3629 /* A backslash followed by the quote character
3630 doesn't end the string. */
3631 ++p;
3632 }
3633 else if (*p == '\'' || *p == '"')
3634 {
3635 quote_found = *p;
3636 quote_pos = p;
3637 }
3638 }
3639 if (quote_found == '\'')
3640 /* A string within single quotes can be a symbol, so complete on it. */
3641 sym_text = quote_pos + 1;
3642 else if (quote_found == '"')
3643 /* A double-quoted string is never a symbol, nor does it make sense
3644 to complete it any other way. */
3645 {
3646 return_val = (char **) xmalloc (sizeof (char *));
3647 return_val[0] = NULL;
3648 return return_val;
3649 }
3650 else
3651 {
3652 /* It is not a quoted string. Break it based on the characters
3653 which are in symbols. */
3654 while (p > text)
3655 {
3656 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3657 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3658 --p;
3659 else
3660 break;
3661 }
3662 sym_text = p;
3663 }
3664 }
3665
3666 sym_text_len = strlen (sym_text);
3667
3668 return_val_size = 100;
3669 return_val_index = 0;
3670 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3671 return_val[0] = NULL;
3672
3673 datum.sym_text = sym_text;
3674 datum.sym_text_len = sym_text_len;
3675 datum.text = text;
3676 datum.word = word;
3677
3678 /* Look through the partial symtabs for all symbols which begin
3679 by matching SYM_TEXT. Add each one that you find to the list. */
3680 map_partial_symbol_names (add_partial_symbol_name, &datum);
3681
3682 /* At this point scan through the misc symbol vectors and add each
3683 symbol you find to the list. Eventually we want to ignore
3684 anything that isn't a text symbol (everything else will be
3685 handled by the psymtab code above). */
3686
3687 ALL_MSYMBOLS (objfile, msymbol)
3688 {
3689 QUIT;
3690 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3691
3692 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3693 }
3694
3695 /* Search upwards from currently selected frame (so that we can
3696 complete on local vars). Also catch fields of types defined in
3697 this places which match our text string. Only complete on types
3698 visible from current context. */
3699
3700 b = get_selected_block (0);
3701 surrounding_static_block = block_static_block (b);
3702 surrounding_global_block = block_global_block (b);
3703 if (surrounding_static_block != NULL)
3704 while (b != surrounding_static_block)
3705 {
3706 QUIT;
3707
3708 ALL_BLOCK_SYMBOLS (b, iter, sym)
3709 {
3710 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3711 word);
3712 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3713 word);
3714 }
3715
3716 /* Stop when we encounter an enclosing function. Do not stop for
3717 non-inlined functions - the locals of the enclosing function
3718 are in scope for a nested function. */
3719 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3720 break;
3721 b = BLOCK_SUPERBLOCK (b);
3722 }
3723
3724 /* Add fields from the file's types; symbols will be added below. */
3725
3726 if (surrounding_static_block != NULL)
3727 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3728 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3729
3730 if (surrounding_global_block != NULL)
3731 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3732 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3733
3734 /* Go through the symtabs and check the externs and statics for
3735 symbols which match. */
3736
3737 ALL_PRIMARY_SYMTABS (objfile, s)
3738 {
3739 QUIT;
3740 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3741 ALL_BLOCK_SYMBOLS (b, iter, sym)
3742 {
3743 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3744 }
3745 }
3746
3747 ALL_PRIMARY_SYMTABS (objfile, s)
3748 {
3749 QUIT;
3750 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3751 ALL_BLOCK_SYMBOLS (b, iter, sym)
3752 {
3753 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3754 }
3755 }
3756
3757 if (current_language->la_macro_expansion == macro_expansion_c)
3758 {
3759 struct macro_scope *scope;
3760
3761 /* Add any macros visible in the default scope. Note that this
3762 may yield the occasional wrong result, because an expression
3763 might be evaluated in a scope other than the default. For
3764 example, if the user types "break file:line if <TAB>", the
3765 resulting expression will be evaluated at "file:line" -- but
3766 at there does not seem to be a way to detect this at
3767 completion time. */
3768 scope = default_macro_scope ();
3769 if (scope)
3770 {
3771 macro_for_each_in_scope (scope->file, scope->line,
3772 add_macro_name, &datum);
3773 xfree (scope);
3774 }
3775
3776 /* User-defined macros are always visible. */
3777 macro_for_each (macro_user_macros, add_macro_name, &datum);
3778 }
3779
3780 return (return_val);
3781 }
3782
3783 char **
3784 default_make_symbol_completion_list (char *text, char *word)
3785 {
3786 return default_make_symbol_completion_list_break_on (text, word, "");
3787 }
3788
3789 /* Return a NULL terminated array of all symbols (regardless of class)
3790 which begin by matching TEXT. If the answer is no symbols, then
3791 the return value is an array which contains only a NULL pointer. */
3792
3793 char **
3794 make_symbol_completion_list (char *text, char *word)
3795 {
3796 return current_language->la_make_symbol_completion_list (text, word);
3797 }
3798
3799 /* Like make_symbol_completion_list, but suitable for use as a
3800 completion function. */
3801
3802 char **
3803 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3804 char *text, char *word)
3805 {
3806 return make_symbol_completion_list (text, word);
3807 }
3808
3809 /* Like make_symbol_completion_list, but returns a list of symbols
3810 defined in a source file FILE. */
3811
3812 char **
3813 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3814 {
3815 struct symbol *sym;
3816 struct symtab *s;
3817 struct block *b;
3818 struct dict_iterator iter;
3819 /* The symbol we are completing on. Points in same buffer as text. */
3820 char *sym_text;
3821 /* Length of sym_text. */
3822 int sym_text_len;
3823
3824 /* Now look for the symbol we are supposed to complete on.
3825 FIXME: This should be language-specific. */
3826 {
3827 char *p;
3828 char quote_found;
3829 char *quote_pos = NULL;
3830
3831 /* First see if this is a quoted string. */
3832 quote_found = '\0';
3833 for (p = text; *p != '\0'; ++p)
3834 {
3835 if (quote_found != '\0')
3836 {
3837 if (*p == quote_found)
3838 /* Found close quote. */
3839 quote_found = '\0';
3840 else if (*p == '\\' && p[1] == quote_found)
3841 /* A backslash followed by the quote character
3842 doesn't end the string. */
3843 ++p;
3844 }
3845 else if (*p == '\'' || *p == '"')
3846 {
3847 quote_found = *p;
3848 quote_pos = p;
3849 }
3850 }
3851 if (quote_found == '\'')
3852 /* A string within single quotes can be a symbol, so complete on it. */
3853 sym_text = quote_pos + 1;
3854 else if (quote_found == '"')
3855 /* A double-quoted string is never a symbol, nor does it make sense
3856 to complete it any other way. */
3857 {
3858 return_val = (char **) xmalloc (sizeof (char *));
3859 return_val[0] = NULL;
3860 return return_val;
3861 }
3862 else
3863 {
3864 /* Not a quoted string. */
3865 sym_text = language_search_unquoted_string (text, p);
3866 }
3867 }
3868
3869 sym_text_len = strlen (sym_text);
3870
3871 return_val_size = 10;
3872 return_val_index = 0;
3873 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3874 return_val[0] = NULL;
3875
3876 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3877 in). */
3878 s = lookup_symtab (srcfile);
3879 if (s == NULL)
3880 {
3881 /* Maybe they typed the file with leading directories, while the
3882 symbol tables record only its basename. */
3883 const char *tail = lbasename (srcfile);
3884
3885 if (tail > srcfile)
3886 s = lookup_symtab (tail);
3887 }
3888
3889 /* If we have no symtab for that file, return an empty list. */
3890 if (s == NULL)
3891 return (return_val);
3892
3893 /* Go through this symtab and check the externs and statics for
3894 symbols which match. */
3895
3896 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3897 ALL_BLOCK_SYMBOLS (b, iter, sym)
3898 {
3899 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3900 }
3901
3902 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3903 ALL_BLOCK_SYMBOLS (b, iter, sym)
3904 {
3905 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3906 }
3907
3908 return (return_val);
3909 }
3910
3911 /* A helper function for make_source_files_completion_list. It adds
3912 another file name to a list of possible completions, growing the
3913 list as necessary. */
3914
3915 static void
3916 add_filename_to_list (const char *fname, char *text, char *word,
3917 char ***list, int *list_used, int *list_alloced)
3918 {
3919 char *new;
3920 size_t fnlen = strlen (fname);
3921
3922 if (*list_used + 1 >= *list_alloced)
3923 {
3924 *list_alloced *= 2;
3925 *list = (char **) xrealloc ((char *) *list,
3926 *list_alloced * sizeof (char *));
3927 }
3928
3929 if (word == text)
3930 {
3931 /* Return exactly fname. */
3932 new = xmalloc (fnlen + 5);
3933 strcpy (new, fname);
3934 }
3935 else if (word > text)
3936 {
3937 /* Return some portion of fname. */
3938 new = xmalloc (fnlen + 5);
3939 strcpy (new, fname + (word - text));
3940 }
3941 else
3942 {
3943 /* Return some of TEXT plus fname. */
3944 new = xmalloc (fnlen + (text - word) + 5);
3945 strncpy (new, word, text - word);
3946 new[text - word] = '\0';
3947 strcat (new, fname);
3948 }
3949 (*list)[*list_used] = new;
3950 (*list)[++*list_used] = NULL;
3951 }
3952
3953 static int
3954 not_interesting_fname (const char *fname)
3955 {
3956 static const char *illegal_aliens[] = {
3957 "_globals_", /* inserted by coff_symtab_read */
3958 NULL
3959 };
3960 int i;
3961
3962 for (i = 0; illegal_aliens[i]; i++)
3963 {
3964 if (strcmp (fname, illegal_aliens[i]) == 0)
3965 return 1;
3966 }
3967 return 0;
3968 }
3969
3970 /* An object of this type is passed as the user_data argument to
3971 map_partial_symbol_filenames. */
3972 struct add_partial_filename_data
3973 {
3974 int *first;
3975 char *text;
3976 char *word;
3977 int text_len;
3978 char ***list;
3979 int *list_used;
3980 int *list_alloced;
3981 };
3982
3983 /* A callback for map_partial_symbol_filenames. */
3984 static void
3985 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
3986 void *user_data)
3987 {
3988 struct add_partial_filename_data *data = user_data;
3989
3990 if (not_interesting_fname (filename))
3991 return;
3992 if (!filename_seen (filename, 1, data->first)
3993 #if HAVE_DOS_BASED_FILE_SYSTEM
3994 && strncasecmp (filename, data->text, data->text_len) == 0
3995 #else
3996 && strncmp (filename, data->text, data->text_len) == 0
3997 #endif
3998 )
3999 {
4000 /* This file matches for a completion; add it to the
4001 current list of matches. */
4002 add_filename_to_list (filename, data->text, data->word,
4003 data->list, data->list_used, data->list_alloced);
4004 }
4005 else
4006 {
4007 const char *base_name = lbasename (filename);
4008
4009 if (base_name != filename
4010 && !filename_seen (base_name, 1, data->first)
4011 #if HAVE_DOS_BASED_FILE_SYSTEM
4012 && strncasecmp (base_name, data->text, data->text_len) == 0
4013 #else
4014 && strncmp (base_name, data->text, data->text_len) == 0
4015 #endif
4016 )
4017 add_filename_to_list (base_name, data->text, data->word,
4018 data->list, data->list_used, data->list_alloced);
4019 }
4020 }
4021
4022 /* Return a NULL terminated array of all source files whose names
4023 begin with matching TEXT. The file names are looked up in the
4024 symbol tables of this program. If the answer is no matchess, then
4025 the return value is an array which contains only a NULL pointer. */
4026
4027 char **
4028 make_source_files_completion_list (char *text, char *word)
4029 {
4030 struct symtab *s;
4031 struct objfile *objfile;
4032 int first = 1;
4033 int list_alloced = 1;
4034 int list_used = 0;
4035 size_t text_len = strlen (text);
4036 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4037 const char *base_name;
4038 struct add_partial_filename_data datum;
4039
4040 list[0] = NULL;
4041
4042 if (!have_full_symbols () && !have_partial_symbols ())
4043 return list;
4044
4045 ALL_SYMTABS (objfile, s)
4046 {
4047 if (not_interesting_fname (s->filename))
4048 continue;
4049 if (!filename_seen (s->filename, 1, &first)
4050 #if HAVE_DOS_BASED_FILE_SYSTEM
4051 && strncasecmp (s->filename, text, text_len) == 0
4052 #else
4053 && strncmp (s->filename, text, text_len) == 0
4054 #endif
4055 )
4056 {
4057 /* This file matches for a completion; add it to the current
4058 list of matches. */
4059 add_filename_to_list (s->filename, text, word,
4060 &list, &list_used, &list_alloced);
4061 }
4062 else
4063 {
4064 /* NOTE: We allow the user to type a base name when the
4065 debug info records leading directories, but not the other
4066 way around. This is what subroutines of breakpoint
4067 command do when they parse file names. */
4068 base_name = lbasename (s->filename);
4069 if (base_name != s->filename
4070 && !filename_seen (base_name, 1, &first)
4071 #if HAVE_DOS_BASED_FILE_SYSTEM
4072 && strncasecmp (base_name, text, text_len) == 0
4073 #else
4074 && strncmp (base_name, text, text_len) == 0
4075 #endif
4076 )
4077 add_filename_to_list (base_name, text, word,
4078 &list, &list_used, &list_alloced);
4079 }
4080 }
4081
4082 datum.first = &first;
4083 datum.text = text;
4084 datum.word = word;
4085 datum.text_len = text_len;
4086 datum.list = &list;
4087 datum.list_used = &list_used;
4088 datum.list_alloced = &list_alloced;
4089 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4090
4091 return list;
4092 }
4093
4094 /* Determine if PC is in the prologue of a function. The prologue is the area
4095 between the first instruction of a function, and the first executable line.
4096 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4097
4098 If non-zero, func_start is where we think the prologue starts, possibly
4099 by previous examination of symbol table information.
4100 */
4101
4102 int
4103 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4104 {
4105 struct symtab_and_line sal;
4106 CORE_ADDR func_addr, func_end;
4107
4108 /* We have several sources of information we can consult to figure
4109 this out.
4110 - Compilers usually emit line number info that marks the prologue
4111 as its own "source line". So the ending address of that "line"
4112 is the end of the prologue. If available, this is the most
4113 reliable method.
4114 - The minimal symbols and partial symbols, which can usually tell
4115 us the starting and ending addresses of a function.
4116 - If we know the function's start address, we can call the
4117 architecture-defined gdbarch_skip_prologue function to analyze the
4118 instruction stream and guess where the prologue ends.
4119 - Our `func_start' argument; if non-zero, this is the caller's
4120 best guess as to the function's entry point. At the time of
4121 this writing, handle_inferior_event doesn't get this right, so
4122 it should be our last resort. */
4123
4124 /* Consult the partial symbol table, to find which function
4125 the PC is in. */
4126 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4127 {
4128 CORE_ADDR prologue_end;
4129
4130 /* We don't even have minsym information, so fall back to using
4131 func_start, if given. */
4132 if (! func_start)
4133 return 1; /* We *might* be in a prologue. */
4134
4135 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4136
4137 return func_start <= pc && pc < prologue_end;
4138 }
4139
4140 /* If we have line number information for the function, that's
4141 usually pretty reliable. */
4142 sal = find_pc_line (func_addr, 0);
4143
4144 /* Now sal describes the source line at the function's entry point,
4145 which (by convention) is the prologue. The end of that "line",
4146 sal.end, is the end of the prologue.
4147
4148 Note that, for functions whose source code is all on a single
4149 line, the line number information doesn't always end up this way.
4150 So we must verify that our purported end-of-prologue address is
4151 *within* the function, not at its start or end. */
4152 if (sal.line == 0
4153 || sal.end <= func_addr
4154 || func_end <= sal.end)
4155 {
4156 /* We don't have any good line number info, so use the minsym
4157 information, together with the architecture-specific prologue
4158 scanning code. */
4159 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4160
4161 return func_addr <= pc && pc < prologue_end;
4162 }
4163
4164 /* We have line number info, and it looks good. */
4165 return func_addr <= pc && pc < sal.end;
4166 }
4167
4168 /* Given PC at the function's start address, attempt to find the
4169 prologue end using SAL information. Return zero if the skip fails.
4170
4171 A non-optimized prologue traditionally has one SAL for the function
4172 and a second for the function body. A single line function has
4173 them both pointing at the same line.
4174
4175 An optimized prologue is similar but the prologue may contain
4176 instructions (SALs) from the instruction body. Need to skip those
4177 while not getting into the function body.
4178
4179 The functions end point and an increasing SAL line are used as
4180 indicators of the prologue's endpoint.
4181
4182 This code is based on the function refine_prologue_limit (versions
4183 found in both ia64 and ppc). */
4184
4185 CORE_ADDR
4186 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4187 {
4188 struct symtab_and_line prologue_sal;
4189 CORE_ADDR start_pc;
4190 CORE_ADDR end_pc;
4191 struct block *bl;
4192
4193 /* Get an initial range for the function. */
4194 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4195 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4196
4197 prologue_sal = find_pc_line (start_pc, 0);
4198 if (prologue_sal.line != 0)
4199 {
4200 /* For langauges other than assembly, treat two consecutive line
4201 entries at the same address as a zero-instruction prologue.
4202 The GNU assembler emits separate line notes for each instruction
4203 in a multi-instruction macro, but compilers generally will not
4204 do this. */
4205 if (prologue_sal.symtab->language != language_asm)
4206 {
4207 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4208 int idx = 0;
4209
4210 /* Skip any earlier lines, and any end-of-sequence marker
4211 from a previous function. */
4212 while (linetable->item[idx].pc != prologue_sal.pc
4213 || linetable->item[idx].line == 0)
4214 idx++;
4215
4216 if (idx+1 < linetable->nitems
4217 && linetable->item[idx+1].line != 0
4218 && linetable->item[idx+1].pc == start_pc)
4219 return start_pc;
4220 }
4221
4222 /* If there is only one sal that covers the entire function,
4223 then it is probably a single line function, like
4224 "foo(){}". */
4225 if (prologue_sal.end >= end_pc)
4226 return 0;
4227
4228 while (prologue_sal.end < end_pc)
4229 {
4230 struct symtab_and_line sal;
4231
4232 sal = find_pc_line (prologue_sal.end, 0);
4233 if (sal.line == 0)
4234 break;
4235 /* Assume that a consecutive SAL for the same (or larger)
4236 line mark the prologue -> body transition. */
4237 if (sal.line >= prologue_sal.line)
4238 break;
4239
4240 /* The line number is smaller. Check that it's from the
4241 same function, not something inlined. If it's inlined,
4242 then there is no point comparing the line numbers. */
4243 bl = block_for_pc (prologue_sal.end);
4244 while (bl)
4245 {
4246 if (block_inlined_p (bl))
4247 break;
4248 if (BLOCK_FUNCTION (bl))
4249 {
4250 bl = NULL;
4251 break;
4252 }
4253 bl = BLOCK_SUPERBLOCK (bl);
4254 }
4255 if (bl != NULL)
4256 break;
4257
4258 /* The case in which compiler's optimizer/scheduler has
4259 moved instructions into the prologue. We look ahead in
4260 the function looking for address ranges whose
4261 corresponding line number is less the first one that we
4262 found for the function. This is more conservative then
4263 refine_prologue_limit which scans a large number of SALs
4264 looking for any in the prologue */
4265 prologue_sal = sal;
4266 }
4267 }
4268
4269 if (prologue_sal.end < end_pc)
4270 /* Return the end of this line, or zero if we could not find a
4271 line. */
4272 return prologue_sal.end;
4273 else
4274 /* Don't return END_PC, which is past the end of the function. */
4275 return prologue_sal.pc;
4276 }
4277 \f
4278 struct symtabs_and_lines
4279 decode_line_spec (char *string, int funfirstline)
4280 {
4281 struct symtabs_and_lines sals;
4282 struct symtab_and_line cursal;
4283
4284 if (string == 0)
4285 error (_("Empty line specification."));
4286
4287 /* We use whatever is set as the current source line. We do not try
4288 and get a default or it will recursively call us! */
4289 cursal = get_current_source_symtab_and_line ();
4290
4291 sals = decode_line_1 (&string, funfirstline,
4292 cursal.symtab, cursal.line,
4293 (char ***) NULL, NULL);
4294
4295 if (*string)
4296 error (_("Junk at end of line specification: %s"), string);
4297 return sals;
4298 }
4299
4300 /* Track MAIN */
4301 static char *name_of_main;
4302
4303 void
4304 set_main_name (const char *name)
4305 {
4306 if (name_of_main != NULL)
4307 {
4308 xfree (name_of_main);
4309 name_of_main = NULL;
4310 }
4311 if (name != NULL)
4312 {
4313 name_of_main = xstrdup (name);
4314 }
4315 }
4316
4317 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4318 accordingly. */
4319
4320 static void
4321 find_main_name (void)
4322 {
4323 const char *new_main_name;
4324
4325 /* Try to see if the main procedure is in Ada. */
4326 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4327 be to add a new method in the language vector, and call this
4328 method for each language until one of them returns a non-empty
4329 name. This would allow us to remove this hard-coded call to
4330 an Ada function. It is not clear that this is a better approach
4331 at this point, because all methods need to be written in a way
4332 such that false positives never be returned. For instance, it is
4333 important that a method does not return a wrong name for the main
4334 procedure if the main procedure is actually written in a different
4335 language. It is easy to guaranty this with Ada, since we use a
4336 special symbol generated only when the main in Ada to find the name
4337 of the main procedure. It is difficult however to see how this can
4338 be guarantied for languages such as C, for instance. This suggests
4339 that order of call for these methods becomes important, which means
4340 a more complicated approach. */
4341 new_main_name = ada_main_name ();
4342 if (new_main_name != NULL)
4343 {
4344 set_main_name (new_main_name);
4345 return;
4346 }
4347
4348 new_main_name = pascal_main_name ();
4349 if (new_main_name != NULL)
4350 {
4351 set_main_name (new_main_name);
4352 return;
4353 }
4354
4355 /* The languages above didn't identify the name of the main procedure.
4356 Fallback to "main". */
4357 set_main_name ("main");
4358 }
4359
4360 char *
4361 main_name (void)
4362 {
4363 if (name_of_main == NULL)
4364 find_main_name ();
4365
4366 return name_of_main;
4367 }
4368
4369 /* Handle ``executable_changed'' events for the symtab module. */
4370
4371 static void
4372 symtab_observer_executable_changed (void)
4373 {
4374 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4375 set_main_name (NULL);
4376 }
4377
4378 /* Helper to expand_line_sal below. Appends new sal to SAL,
4379 initializing it from SYMTAB, LINENO and PC. */
4380 static void
4381 append_expanded_sal (struct symtabs_and_lines *sal,
4382 struct program_space *pspace,
4383 struct symtab *symtab,
4384 int lineno, CORE_ADDR pc)
4385 {
4386 sal->sals = xrealloc (sal->sals,
4387 sizeof (sal->sals[0])
4388 * (sal->nelts + 1));
4389 init_sal (sal->sals + sal->nelts);
4390 sal->sals[sal->nelts].pspace = pspace;
4391 sal->sals[sal->nelts].symtab = symtab;
4392 sal->sals[sal->nelts].section = NULL;
4393 sal->sals[sal->nelts].end = 0;
4394 sal->sals[sal->nelts].line = lineno;
4395 sal->sals[sal->nelts].pc = pc;
4396 ++sal->nelts;
4397 }
4398
4399 /* Helper to expand_line_sal below. Search in the symtabs for any
4400 linetable entry that exactly matches FULLNAME and LINENO and append
4401 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4402 use FILENAME and LINENO instead. If there is at least one match,
4403 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4404 and BEST_SYMTAB. */
4405
4406 static int
4407 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4408 struct symtabs_and_lines *ret,
4409 struct linetable_entry **best_item,
4410 struct symtab **best_symtab)
4411 {
4412 struct program_space *pspace;
4413 struct objfile *objfile;
4414 struct symtab *symtab;
4415 int exact = 0;
4416 int j;
4417 *best_item = 0;
4418 *best_symtab = 0;
4419
4420 ALL_PSPACES (pspace)
4421 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4422 {
4423 if (FILENAME_CMP (filename, symtab->filename) == 0)
4424 {
4425 struct linetable *l;
4426 int len;
4427
4428 if (fullname != NULL
4429 && symtab_to_fullname (symtab) != NULL
4430 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4431 continue;
4432 l = LINETABLE (symtab);
4433 if (!l)
4434 continue;
4435 len = l->nitems;
4436
4437 for (j = 0; j < len; j++)
4438 {
4439 struct linetable_entry *item = &(l->item[j]);
4440
4441 if (item->line == lineno)
4442 {
4443 exact = 1;
4444 append_expanded_sal (ret, objfile->pspace,
4445 symtab, lineno, item->pc);
4446 }
4447 else if (!exact && item->line > lineno
4448 && (*best_item == NULL
4449 || item->line < (*best_item)->line))
4450 {
4451 *best_item = item;
4452 *best_symtab = symtab;
4453 }
4454 }
4455 }
4456 }
4457 return exact;
4458 }
4459
4460 /* Compute a set of all sals in all program spaces that correspond to
4461 same file and line as SAL and return those. If there are several
4462 sals that belong to the same block, only one sal for the block is
4463 included in results. */
4464
4465 struct symtabs_and_lines
4466 expand_line_sal (struct symtab_and_line sal)
4467 {
4468 struct symtabs_and_lines ret;
4469 int i, j;
4470 struct objfile *objfile;
4471 int lineno;
4472 int deleted = 0;
4473 struct block **blocks = NULL;
4474 int *filter;
4475 struct cleanup *old_chain;
4476
4477 ret.nelts = 0;
4478 ret.sals = NULL;
4479
4480 /* Only expand sals that represent file.c:line. */
4481 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4482 {
4483 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4484 ret.sals[0] = sal;
4485 ret.nelts = 1;
4486 return ret;
4487 }
4488 else
4489 {
4490 struct program_space *pspace;
4491 struct linetable_entry *best_item = 0;
4492 struct symtab *best_symtab = 0;
4493 int exact = 0;
4494 char *match_filename;
4495
4496 lineno = sal.line;
4497 match_filename = sal.symtab->filename;
4498
4499 /* We need to find all symtabs for a file which name
4500 is described by sal. We cannot just directly
4501 iterate over symtabs, since a symtab might not be
4502 yet created. We also cannot iterate over psymtabs,
4503 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4504 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4505 corresponding to an included file. Therefore, we do
4506 first pass over psymtabs, reading in those with
4507 the right name. Then, we iterate over symtabs, knowing
4508 that all symtabs we're interested in are loaded. */
4509
4510 old_chain = save_current_program_space ();
4511 ALL_PSPACES (pspace)
4512 {
4513 set_current_program_space (pspace);
4514 ALL_PSPACE_OBJFILES (pspace, objfile)
4515 {
4516 if (objfile->sf)
4517 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4518 sal.symtab->filename);
4519 }
4520 }
4521 do_cleanups (old_chain);
4522
4523 /* Now search the symtab for exact matches and append them. If
4524 none is found, append the best_item and all its exact
4525 matches. */
4526 symtab_to_fullname (sal.symtab);
4527 exact = append_exact_match_to_sals (sal.symtab->filename,
4528 sal.symtab->fullname, lineno,
4529 &ret, &best_item, &best_symtab);
4530 if (!exact && best_item)
4531 append_exact_match_to_sals (best_symtab->filename,
4532 best_symtab->fullname, best_item->line,
4533 &ret, &best_item, &best_symtab);
4534 }
4535
4536 /* For optimized code, compiler can scatter one source line accross
4537 disjoint ranges of PC values, even when no duplicate functions
4538 or inline functions are involved. For example, 'for (;;)' inside
4539 non-template non-inline non-ctor-or-dtor function can result
4540 in two PC ranges. In this case, we don't want to set breakpoint
4541 on first PC of each range. To filter such cases, we use containing
4542 blocks -- for each PC found above we see if there are other PCs
4543 that are in the same block. If yes, the other PCs are filtered out. */
4544
4545 old_chain = save_current_program_space ();
4546 filter = alloca (ret.nelts * sizeof (int));
4547 blocks = alloca (ret.nelts * sizeof (struct block *));
4548 for (i = 0; i < ret.nelts; ++i)
4549 {
4550 set_current_program_space (ret.sals[i].pspace);
4551
4552 filter[i] = 1;
4553 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4554
4555 }
4556 do_cleanups (old_chain);
4557
4558 for (i = 0; i < ret.nelts; ++i)
4559 if (blocks[i] != NULL)
4560 for (j = i+1; j < ret.nelts; ++j)
4561 if (blocks[j] == blocks[i])
4562 {
4563 filter[j] = 0;
4564 ++deleted;
4565 break;
4566 }
4567
4568 {
4569 struct symtab_and_line *final =
4570 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4571
4572 for (i = 0, j = 0; i < ret.nelts; ++i)
4573 if (filter[i])
4574 final[j++] = ret.sals[i];
4575
4576 ret.nelts -= deleted;
4577 xfree (ret.sals);
4578 ret.sals = final;
4579 }
4580
4581 return ret;
4582 }
4583
4584 /* Return 1 if the supplied producer string matches the ARM RealView
4585 compiler (armcc). */
4586
4587 int
4588 producer_is_realview (const char *producer)
4589 {
4590 static const char *const arm_idents[] = {
4591 "ARM C Compiler, ADS",
4592 "Thumb C Compiler, ADS",
4593 "ARM C++ Compiler, ADS",
4594 "Thumb C++ Compiler, ADS",
4595 "ARM/Thumb C/C++ Compiler, RVCT",
4596 "ARM C/C++ Compiler, RVCT"
4597 };
4598 int i;
4599
4600 if (producer == NULL)
4601 return 0;
4602
4603 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4604 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4605 return 1;
4606
4607 return 0;
4608 }
4609
4610 void
4611 _initialize_symtab (void)
4612 {
4613 add_info ("variables", variables_info, _("\
4614 All global and static variable names, or those matching REGEXP."));
4615 if (dbx_commands)
4616 add_com ("whereis", class_info, variables_info, _("\
4617 All global and static variable names, or those matching REGEXP."));
4618
4619 add_info ("functions", functions_info,
4620 _("All function names, or those matching REGEXP."));
4621
4622 /* FIXME: This command has at least the following problems:
4623 1. It prints builtin types (in a very strange and confusing fashion).
4624 2. It doesn't print right, e.g. with
4625 typedef struct foo *FOO
4626 type_print prints "FOO" when we want to make it (in this situation)
4627 print "struct foo *".
4628 I also think "ptype" or "whatis" is more likely to be useful (but if
4629 there is much disagreement "info types" can be fixed). */
4630 add_info ("types", types_info,
4631 _("All type names, or those matching REGEXP."));
4632
4633 add_info ("sources", sources_info,
4634 _("Source files in the program."));
4635
4636 add_com ("rbreak", class_breakpoint, rbreak_command,
4637 _("Set a breakpoint for all functions matching REGEXP."));
4638
4639 if (xdb_commands)
4640 {
4641 add_com ("lf", class_info, sources_info,
4642 _("Source files in the program"));
4643 add_com ("lg", class_info, variables_info, _("\
4644 All global and static variable names, or those matching REGEXP."));
4645 }
4646
4647 add_setshow_enum_cmd ("multiple-symbols", no_class,
4648 multiple_symbols_modes, &multiple_symbols_mode,
4649 _("\
4650 Set the debugger behavior when more than one symbol are possible matches\n\
4651 in an expression."), _("\
4652 Show how the debugger handles ambiguities in expressions."), _("\
4653 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4654 NULL, NULL, &setlist, &showlist);
4655
4656 observer_attach_executable_changed (symtab_observer_executable_changed);
4657 }
This page took 0.155498 seconds and 5 git commands to generate.