1 /* Symbol table definitions for GDB.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #if !defined (SYMTAB_H)
27 #include "gdbsupport/gdb_vecs.h"
29 #include "gdb_obstack.h"
30 #include "gdb_regex.h"
31 #include "gdbsupport/enum-flags.h"
32 #include "gdbsupport/function-view.h"
33 #include "gdbsupport/gdb_optional.h"
34 #include "gdbsupport/gdb_string_view.h"
35 #include "gdbsupport/next-iterator.h"
36 #include "completer.h"
37 #include "gdb-demangle.h"
39 /* Opaque declarations. */
53 struct cmd_list_element
;
55 struct lookup_name_info
;
57 /* How to match a lookup name against a symbol search name. */
58 enum class symbol_name_match_type
60 /* Wild matching. Matches unqualified symbol names in all
61 namespace/module/packages, etc. */
64 /* Full matching. The lookup name indicates a fully-qualified name,
65 and only matches symbol search names in the specified
66 namespace/module/package. */
69 /* Search name matching. This is like FULL, but the search name did
70 not come from the user; instead it is already a search name
71 retrieved from a search_name () call.
72 For Ada, this avoids re-encoding an already-encoded search name
73 (which would potentially incorrectly lowercase letters in the
74 linkage/search name that should remain uppercase). For C++, it
75 avoids trying to demangle a name we already know is
79 /* Expression matching. The same as FULL matching in most
80 languages. The same as WILD matching in Ada. */
84 /* Hash the given symbol search name according to LANGUAGE's
86 extern unsigned int search_name_hash (enum language language
,
87 const char *search_name
);
89 /* Ada-specific bits of a lookup_name_info object. This is lazily
90 constructed on demand. */
92 class ada_lookup_name_info final
96 explicit ada_lookup_name_info (const lookup_name_info
&lookup_name
);
98 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
99 as name match type. Returns true if there's a match, false
100 otherwise. If non-NULL, store the matching results in MATCH. */
101 bool matches (const char *symbol_search_name
,
102 symbol_name_match_type match_type
,
103 completion_match_result
*comp_match_res
) const;
105 /* The Ada-encoded lookup name. */
106 const std::string
&lookup_name () const
107 { return m_encoded_name
; }
109 /* Return true if we're supposed to be doing a wild match look
111 bool wild_match_p () const
112 { return m_wild_match_p
; }
114 /* Return true if we're looking up a name inside package
116 bool standard_p () const
117 { return m_standard_p
; }
119 /* Return true if doing a verbatim match. */
120 bool verbatim_p () const
121 { return m_verbatim_p
; }
124 /* The Ada-encoded lookup name. */
125 std::string m_encoded_name
;
127 /* Whether the user-provided lookup name was Ada encoded. If so,
128 then return encoded names in the 'matches' method's 'completion
129 match result' output. */
130 bool m_encoded_p
: 1;
132 /* True if really doing wild matching. Even if the user requests
133 wild matching, some cases require full matching. */
134 bool m_wild_match_p
: 1;
136 /* True if doing a verbatim match. This is true if the decoded
137 version of the symbol name is wrapped in '<'/'>'. This is an
138 escape hatch users can use to look up symbols the Ada encoding
139 does not understand. */
140 bool m_verbatim_p
: 1;
142 /* True if the user specified a symbol name that is inside package
143 Standard. Symbol names inside package Standard are handled
144 specially. We always do a non-wild match of the symbol name
145 without the "standard__" prefix, and only search static and
146 global symbols. This was primarily introduced in order to allow
147 the user to specifically access the standard exceptions using,
148 for instance, Standard.Constraint_Error when Constraint_Error is
149 ambiguous (due to the user defining its own Constraint_Error
150 entity inside its program). */
151 bool m_standard_p
: 1;
154 /* Language-specific bits of a lookup_name_info object, for languages
155 that do name searching using demangled names (C++/D/Go). This is
156 lazily constructed on demand. */
158 struct demangle_for_lookup_info final
161 demangle_for_lookup_info (const lookup_name_info
&lookup_name
,
164 /* The demangled lookup name. */
165 const std::string
&lookup_name () const
166 { return m_demangled_name
; }
169 /* The demangled lookup name. */
170 std::string m_demangled_name
;
173 /* Object that aggregates all information related to a symbol lookup
174 name. I.e., the name that is matched against the symbol's search
175 name. Caches per-language information so that it doesn't require
176 recomputing it for every symbol comparison, like for example the
177 Ada encoded name and the symbol's name hash for a given language.
178 The object is conceptually immutable once constructed, and thus has
179 no setters. This is to prevent some code path from tweaking some
180 property of the lookup name for some local reason and accidentally
181 altering the results of any continuing search(es).
182 lookup_name_info objects are generally passed around as a const
183 reference to reinforce that. (They're not passed around by value
184 because they're not small.) */
185 class lookup_name_info final
188 /* Create a new object. */
189 lookup_name_info (std::string name
,
190 symbol_name_match_type match_type
,
191 bool completion_mode
= false,
192 bool ignore_parameters
= false)
193 : m_match_type (match_type
),
194 m_completion_mode (completion_mode
),
195 m_ignore_parameters (ignore_parameters
),
196 m_name (std::move (name
))
199 /* Getters. See description of each corresponding field. */
200 symbol_name_match_type
match_type () const { return m_match_type
; }
201 bool completion_mode () const { return m_completion_mode
; }
202 const std::string
&name () const { return m_name
; }
203 const bool ignore_parameters () const { return m_ignore_parameters
; }
205 /* Return a version of this lookup name that is usable with
206 comparisons against symbols have no parameter info, such as
207 psymbols and GDB index symbols. */
208 lookup_name_info
make_ignore_params () const
210 return lookup_name_info (m_name
, m_match_type
, m_completion_mode
,
211 true /* ignore params */);
214 /* Get the search name hash for searches in language LANG. */
215 unsigned int search_name_hash (language lang
) const
217 /* Only compute each language's hash once. */
218 if (!m_demangled_hashes_p
[lang
])
220 m_demangled_hashes
[lang
]
221 = ::search_name_hash (lang
, language_lookup_name (lang
).c_str ());
222 m_demangled_hashes_p
[lang
] = true;
224 return m_demangled_hashes
[lang
];
227 /* Get the search name for searches in language LANG. */
228 const std::string
&language_lookup_name (language lang
) const
233 return ada ().lookup_name ();
235 return cplus ().lookup_name ();
237 return d ().lookup_name ();
239 return go ().lookup_name ();
245 /* Get the Ada-specific lookup info. */
246 const ada_lookup_name_info
&ada () const
252 /* Get the C++-specific lookup info. */
253 const demangle_for_lookup_info
&cplus () const
255 maybe_init (m_cplus
, language_cplus
);
259 /* Get the D-specific lookup info. */
260 const demangle_for_lookup_info
&d () const
262 maybe_init (m_d
, language_d
);
266 /* Get the Go-specific lookup info. */
267 const demangle_for_lookup_info
&go () const
269 maybe_init (m_go
, language_go
);
273 /* Get a reference to a lookup_name_info object that matches any
275 static const lookup_name_info
&match_any ();
278 /* Initialize FIELD, if not initialized yet. */
279 template<typename Field
, typename
... Args
>
280 void maybe_init (Field
&field
, Args
&&... args
) const
283 field
.emplace (*this, std::forward
<Args
> (args
)...);
286 /* The lookup info as passed to the ctor. */
287 symbol_name_match_type m_match_type
;
288 bool m_completion_mode
;
289 bool m_ignore_parameters
;
292 /* Language-specific info. These fields are filled lazily the first
293 time a lookup is done in the corresponding language. They're
294 mutable because lookup_name_info objects are typically passed
295 around by const reference (see intro), and they're conceptually
296 "cache" that can always be reconstructed from the non-mutable
298 mutable gdb::optional
<ada_lookup_name_info
> m_ada
;
299 mutable gdb::optional
<demangle_for_lookup_info
> m_cplus
;
300 mutable gdb::optional
<demangle_for_lookup_info
> m_d
;
301 mutable gdb::optional
<demangle_for_lookup_info
> m_go
;
303 /* The demangled hashes. Stored in an array with one entry for each
304 possible language. The second array records whether we've
305 already computed the each language's hash. (These are separate
306 arrays instead of a single array of optional<unsigned> to avoid
307 alignment padding). */
308 mutable std::array
<unsigned int, nr_languages
> m_demangled_hashes
;
309 mutable std::array
<bool, nr_languages
> m_demangled_hashes_p
{};
312 /* Comparison function for completion symbol lookup.
314 Returns true if the symbol name matches against LOOKUP_NAME.
316 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
318 On success and if non-NULL, COMP_MATCH_RES->match is set to point
319 to the symbol name as should be presented to the user as a
320 completion match list element. In most languages, this is the same
321 as the symbol's search name, but in some, like Ada, the display
322 name is dynamically computed within the comparison routine.
324 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
325 points the part of SYMBOL_SEARCH_NAME that was considered to match
326 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
327 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
328 points to "function()" inside SYMBOL_SEARCH_NAME. */
329 typedef bool (symbol_name_matcher_ftype
)
330 (const char *symbol_search_name
,
331 const lookup_name_info
&lookup_name
,
332 completion_match_result
*comp_match_res
);
334 /* Some of the structures in this file are space critical.
335 The space-critical structures are:
337 struct general_symbol_info
339 struct partial_symbol
341 These structures are laid out to encourage good packing.
342 They use ENUM_BITFIELD and short int fields, and they order the
343 structure members so that fields less than a word are next
344 to each other so they can be packed together. */
346 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
347 all the space critical structures (plus struct minimal_symbol).
348 Memory usage dropped from 99360768 bytes to 90001408 bytes.
349 I measured this with before-and-after tests of
350 "HEAD-old-gdb -readnow HEAD-old-gdb" and
351 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
352 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
353 typing "maint space 1" at the first command prompt.
355 Here is another measurement (from andrew c):
356 # no /usr/lib/debug, just plain glibc, like a normal user
358 (gdb) break internal_error
360 (gdb) maint internal-error
364 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
365 gdb HEAD 2003-08-19 space used: 8904704
366 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
367 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
369 The third line shows the savings from the optimizations in symtab.h.
370 The fourth line shows the savings from the optimizations in
371 gdbtypes.h. Both optimizations are in gdb HEAD now.
373 --chastain 2003-08-21 */
375 /* Define a structure for the information that is common to all symbol types,
376 including minimal symbols, partial symbols, and full symbols. In a
377 multilanguage environment, some language specific information may need to
378 be recorded along with each symbol. */
380 /* This structure is space critical. See space comments at the top. */
382 struct general_symbol_info
384 /* Short version as to when to use which name accessor:
385 Use natural_name () to refer to the name of the symbol in the original
386 source code. Use linkage_name () if you want to know what the linker
387 thinks the symbol's name is. Use print_name () for output. Use
388 demangled_name () if you specifically need to know whether natural_name ()
389 and linkage_name () are different. */
391 const char *linkage_name () const
394 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
395 the original source code. In languages like C++ where symbols may
396 be mangled for ease of manipulation by the linker, this is the
398 const char *natural_name () const;
400 /* Returns a version of the name of a symbol that is
401 suitable for output. In C++ this is the "demangled" form of the
402 name if demangle is on and the "mangled" form of the name if
403 demangle is off. In other languages this is just the symbol name.
404 The result should never be NULL. Don't use this for internal
405 purposes (e.g. storing in a hashtable): it's only suitable for output. */
406 const char *print_name () const
407 { return demangle
? natural_name () : linkage_name (); }
409 /* Return the demangled name for a symbol based on the language for
410 that symbol. If no demangled name exists, return NULL. */
411 const char *demangled_name () const;
413 /* Returns the name to be used when sorting and searching symbols.
414 In C++, we search for the demangled form of a name,
415 and so sort symbols accordingly. In Ada, however, we search by mangled
416 name. If there is no distinct demangled name, then this
417 returns the same value (same pointer) as linkage_name (). */
418 const char *search_name () const;
420 /* Set just the linkage name of a symbol; do not try to demangle
421 it. Used for constructs which do not have a mangled name,
422 e.g. struct tags. Unlike compute_and_set_names, linkage_name must
423 be terminated and either already on the objfile's obstack or
424 permanently allocated. */
425 void set_linkage_name (const char *linkage_name
)
426 { m_name
= linkage_name
; }
428 enum language
language () const
429 { return m_language
; }
431 /* Initializes the language dependent portion of a symbol
432 depending upon the language for the symbol. */
433 void set_language (enum language language
, struct obstack
*obstack
);
435 /* Set the linkage and natural names of a symbol, by demangling
436 the linkage name. If linkage_name may not be nullterminated,
437 copy_name must be set to true. */
438 void compute_and_set_names (gdb::string_view linkage_name
, bool copy_name
,
439 struct objfile_per_bfd_storage
*per_bfd
,
440 gdb::optional
<hashval_t
> hash
441 = gdb::optional
<hashval_t
> ());
443 /* Name of the symbol. This is a required field. Storage for the
444 name is allocated on the objfile_obstack for the associated
445 objfile. For languages like C++ that make a distinction between
446 the mangled name and demangled name, this is the mangled
451 /* Value of the symbol. Which member of this union to use, and what
452 it means, depends on what kind of symbol this is and its
453 SYMBOL_CLASS. See comments there for more details. All of these
454 are in host byte order (though what they point to might be in
455 target byte order, e.g. LOC_CONST_BYTES). */
461 const struct block
*block
;
463 const gdb_byte
*bytes
;
467 /* A common block. Used with LOC_COMMON_BLOCK. */
469 const struct common_block
*common_block
;
471 /* For opaque typedef struct chain. */
473 struct symbol
*chain
;
477 /* Since one and only one language can apply, wrap the language specific
478 information inside a union. */
482 /* A pointer to an obstack that can be used for storage associated
483 with this symbol. This is only used by Ada, and only when the
484 'ada_mangled' field is zero. */
485 struct obstack
*obstack
;
487 /* This is used by languages which wish to store a demangled name.
488 currently used by Ada, C++, and Objective C. */
489 const char *demangled_name
;
493 /* Record the source code language that applies to this symbol.
494 This is used to select one of the fields from the language specific
497 ENUM_BITFIELD(language
) m_language
: LANGUAGE_BITS
;
499 /* This is only used by Ada. If set, then the 'demangled_name' field
500 of language_specific is valid. Otherwise, the 'obstack' field is
502 unsigned int ada_mangled
: 1;
504 /* Which section is this symbol in? This is an index into
505 section_offsets for this objfile. Negative means that the symbol
506 does not get relocated relative to a section. */
511 extern void symbol_set_demangled_name (struct general_symbol_info
*,
515 extern const char *symbol_get_demangled_name
516 (const struct general_symbol_info
*);
518 extern CORE_ADDR
symbol_overlayed_address (CORE_ADDR
, struct obj_section
*);
520 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
521 SYM. If SYM appears in the main program's minimal symbols, then
522 that minsym's address is returned; otherwise, SYM's address is
523 returned. This should generally only be used via the
524 SYMBOL_VALUE_ADDRESS macro. */
526 extern CORE_ADDR
get_symbol_address (const struct symbol
*sym
);
528 /* Note that these macros only work with symbol, not partial_symbol. */
530 #define SYMBOL_VALUE(symbol) (symbol)->value.ivalue
531 #define SYMBOL_VALUE_ADDRESS(symbol) \
532 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
533 : ((symbol)->value.address))
534 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
535 ((symbol)->value.address = (new_value))
536 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
537 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->value.common_block
538 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
539 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
540 #define SYMBOL_SECTION(symbol) (symbol)->section
541 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
542 (((symbol)->section >= 0) \
543 ? (&(((objfile)->sections)[(symbol)->section])) \
546 /* Try to determine the demangled name for a symbol, based on the
547 language of that symbol. If the language is set to language_auto,
548 it will attempt to find any demangling algorithm that works and
549 then set the language appropriately. The returned name is allocated
550 by the demangler and should be xfree'd. */
552 extern char *symbol_find_demangled_name (struct general_symbol_info
*gsymbol
,
553 const char *mangled
);
555 /* Return true if NAME matches the "search" name of SYMBOL, according
556 to the symbol's language. */
557 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
558 symbol_matches_search_name ((symbol), (name))
560 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
562 extern bool symbol_matches_search_name
563 (const struct general_symbol_info
*gsymbol
,
564 const lookup_name_info
&name
);
566 /* Compute the hash of the given symbol search name of a symbol of
567 language LANGUAGE. */
568 extern unsigned int search_name_hash (enum language language
,
569 const char *search_name
);
571 /* Classification types for a minimal symbol. These should be taken as
572 "advisory only", since if gdb can't easily figure out a
573 classification it simply selects mst_unknown. It may also have to
574 guess when it can't figure out which is a better match between two
575 types (mst_data versus mst_bss) for example. Since the minimal
576 symbol info is sometimes derived from the BFD library's view of a
577 file, we need to live with what information bfd supplies. */
579 enum minimal_symbol_type
581 mst_unknown
= 0, /* Unknown type, the default */
582 mst_text
, /* Generally executable instructions */
584 /* A GNU ifunc symbol, in the .text section. GDB uses to know
585 whether the user is setting a breakpoint on a GNU ifunc function,
586 and thus GDB needs to actually set the breakpoint on the target
587 function. It is also used to know whether the program stepped
588 into an ifunc resolver -- the resolver may get a separate
589 symbol/alias under a different name, but it'll have the same
590 address as the ifunc symbol. */
591 mst_text_gnu_ifunc
, /* Executable code returning address
592 of executable code */
594 /* A GNU ifunc function descriptor symbol, in a data section
595 (typically ".opd"). Seen on architectures that use function
596 descriptors, like PPC64/ELFv1. In this case, this symbol's value
597 is the address of the descriptor. There'll be a corresponding
598 mst_text_gnu_ifunc synthetic symbol for the text/entry
600 mst_data_gnu_ifunc
, /* Executable code returning address
601 of executable code */
603 mst_slot_got_plt
, /* GOT entries for .plt sections */
604 mst_data
, /* Generally initialized data */
605 mst_bss
, /* Generally uninitialized data */
606 mst_abs
, /* Generally absolute (nonrelocatable) */
607 /* GDB uses mst_solib_trampoline for the start address of a shared
608 library trampoline entry. Breakpoints for shared library functions
609 are put there if the shared library is not yet loaded.
610 After the shared library is loaded, lookup_minimal_symbol will
611 prefer the minimal symbol from the shared library (usually
612 a mst_text symbol) over the mst_solib_trampoline symbol, and the
613 breakpoints will be moved to their true address in the shared
614 library via breakpoint_re_set. */
615 mst_solib_trampoline
, /* Shared library trampoline code */
616 /* For the mst_file* types, the names are only guaranteed to be unique
617 within a given .o file. */
618 mst_file_text
, /* Static version of mst_text */
619 mst_file_data
, /* Static version of mst_data */
620 mst_file_bss
, /* Static version of mst_bss */
624 /* The number of enum minimal_symbol_type values, with some padding for
625 reasonable growth. */
626 #define MINSYM_TYPE_BITS 4
627 gdb_static_assert (nr_minsym_types
<= (1 << MINSYM_TYPE_BITS
));
629 /* Define a simple structure used to hold some very basic information about
630 all defined global symbols (text, data, bss, abs, etc). The only required
631 information is the general_symbol_info.
633 In many cases, even if a file was compiled with no special options for
634 debugging at all, as long as was not stripped it will contain sufficient
635 information to build a useful minimal symbol table using this structure.
636 Even when a file contains enough debugging information to build a full
637 symbol table, these minimal symbols are still useful for quickly mapping
638 between names and addresses, and vice versa. They are also sometimes
639 used to figure out what full symbol table entries need to be read in. */
641 struct minimal_symbol
: public general_symbol_info
643 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
644 information to calculate the end of the partial symtab based on the
645 address of the last symbol plus the size of the last symbol. */
649 /* Which source file is this symbol in? Only relevant for mst_file_*. */
650 const char *filename
;
652 /* Classification type for this minimal symbol. */
654 ENUM_BITFIELD(minimal_symbol_type
) type
: MINSYM_TYPE_BITS
;
656 /* Non-zero if this symbol was created by gdb.
657 Such symbols do not appear in the output of "info var|fun". */
658 unsigned int created_by_gdb
: 1;
660 /* Two flag bits provided for the use of the target. */
661 unsigned int target_flag_1
: 1;
662 unsigned int target_flag_2
: 1;
664 /* Nonzero iff the size of the minimal symbol has been set.
665 Symbol size information can sometimes not be determined, because
666 the object file format may not carry that piece of information. */
667 unsigned int has_size
: 1;
669 /* For data symbols only, if this is set, then the symbol might be
670 subject to copy relocation. In this case, a minimal symbol
671 matching the symbol's linkage name is first looked for in the
672 main objfile. If found, then that address is used; otherwise the
673 address in this symbol is used. */
675 unsigned maybe_copied
: 1;
677 /* Non-zero if this symbol ever had its demangled name set (even if
678 it was set to NULL). */
679 unsigned int name_set
: 1;
681 /* Minimal symbols with the same hash key are kept on a linked
682 list. This is the link. */
684 struct minimal_symbol
*hash_next
;
686 /* Minimal symbols are stored in two different hash tables. This is
687 the `next' pointer for the demangled hash table. */
689 struct minimal_symbol
*demangled_hash_next
;
691 /* True if this symbol is of some data type. */
693 bool data_p () const;
695 /* True if MSYMBOL is of some text type. */
697 bool text_p () const;
700 /* Return the address of MINSYM, which comes from OBJF. The
701 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
702 main program's minimal symbols, then that minsym's address is
703 returned; otherwise, MINSYM's address is returned. This should
704 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
706 extern CORE_ADDR
get_msymbol_address (struct objfile
*objf
,
707 const struct minimal_symbol
*minsym
);
709 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
710 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
711 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
712 #define SET_MSYMBOL_SIZE(msymbol, sz) \
715 (msymbol)->size = sz; \
716 (msymbol)->has_size = 1; \
718 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
719 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
721 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
722 /* The unrelocated address of the minimal symbol. */
723 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
724 /* The relocated address of the minimal symbol, using the section
725 offsets from OBJFILE. */
726 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
727 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
728 : ((symbol)->value.address \
729 + ANOFFSET ((objfile)->section_offsets, ((symbol)->section))))
730 /* For a bound minsym, we can easily compute the address directly. */
731 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
732 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
733 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
734 ((symbol)->value.address = (new_value))
735 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
736 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
737 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
738 #define MSYMBOL_SECTION(symbol) (symbol)->section
739 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
740 (((symbol)->section >= 0) \
741 ? (&(((objfile)->sections)[(symbol)->section])) \
748 /* Represent one symbol name; a variable, constant, function or typedef. */
750 /* Different name domains for symbols. Looking up a symbol specifies a
751 domain and ignores symbol definitions in other name domains. */
753 typedef enum domain_enum_tag
755 /* UNDEF_DOMAIN is used when a domain has not been discovered or
756 none of the following apply. This usually indicates an error either
757 in the symbol information or in gdb's handling of symbols. */
761 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
762 function names, typedef names and enum type values. */
766 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
767 Thus, if `struct foo' is used in a C program, it produces a symbol named
768 `foo' in the STRUCT_DOMAIN. */
772 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
776 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
780 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
781 They also always use LOC_COMMON_BLOCK. */
784 /* This must remain last. */
788 /* The number of bits in a symbol used to represent the domain. */
790 #define SYMBOL_DOMAIN_BITS 3
791 gdb_static_assert (NR_DOMAINS
<= (1 << SYMBOL_DOMAIN_BITS
));
793 extern const char *domain_name (domain_enum
);
795 /* Searching domains, used when searching for symbols. Element numbers are
796 hardcoded in GDB, check all enum uses before changing it. */
800 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
802 VARIABLES_DOMAIN
= 0,
804 /* All functions -- for some reason not methods, though. */
805 FUNCTIONS_DOMAIN
= 1,
807 /* All defined types */
817 extern const char *search_domain_name (enum search_domain
);
819 /* An address-class says where to find the value of a symbol. */
823 /* Not used; catches errors. */
827 /* Value is constant int SYMBOL_VALUE, host byteorder. */
831 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
835 /* Value is in register. SYMBOL_VALUE is the register number
836 in the original debug format. SYMBOL_REGISTER_OPS holds a
837 function that can be called to transform this into the
838 actual register number this represents in a specific target
839 architecture (gdbarch).
841 For some symbol formats (stabs, for some compilers at least),
842 the compiler generates two symbols, an argument and a register.
843 In some cases we combine them to a single LOC_REGISTER in symbol
844 reading, but currently not for all cases (e.g. it's passed on the
845 stack and then loaded into a register). */
849 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
853 /* Value address is at SYMBOL_VALUE offset in arglist. */
857 /* Value is in specified register. Just like LOC_REGISTER except the
858 register holds the address of the argument instead of the argument
859 itself. This is currently used for the passing of structs and unions
860 on sparc and hppa. It is also used for call by reference where the
861 address is in a register, at least by mipsread.c. */
865 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
869 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
870 STRUCT_DOMAIN all have this class. */
874 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
878 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
879 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
880 of the block. Function names have this class. */
884 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
885 target byte order. */
889 /* Value is at fixed address, but the address of the variable has
890 to be determined from the minimal symbol table whenever the
891 variable is referenced.
892 This happens if debugging information for a global symbol is
893 emitted and the corresponding minimal symbol is defined
894 in another object file or runtime common storage.
895 The linker might even remove the minimal symbol if the global
896 symbol is never referenced, in which case the symbol remains
899 GDB would normally find the symbol in the minimal symbol table if it will
900 not find it in the full symbol table. But a reference to an external
901 symbol in a local block shadowing other definition requires full symbol
902 without possibly having its address available for LOC_STATIC. Testcase
903 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
905 This is also used for thread local storage (TLS) variables. In this case,
906 the address of the TLS variable must be determined when the variable is
907 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
908 of the TLS variable in the thread local storage of the shared
913 /* The variable does not actually exist in the program.
914 The value is ignored. */
918 /* The variable's address is computed by a set of location
919 functions (see "struct symbol_computed_ops" below). */
922 /* The variable uses general_symbol_info->value->common_block field.
923 It also always uses COMMON_BLOCK_DOMAIN. */
926 /* Not used, just notes the boundary of the enum. */
930 /* The number of bits needed for values in enum address_class, with some
931 padding for reasonable growth, and room for run-time registered address
932 classes. See symtab.c:MAX_SYMBOL_IMPLS.
933 This is a #define so that we can have a assertion elsewhere to
934 verify that we have reserved enough space for synthetic address
936 #define SYMBOL_ACLASS_BITS 5
937 gdb_static_assert (LOC_FINAL_VALUE
<= (1 << SYMBOL_ACLASS_BITS
));
939 /* The methods needed to implement LOC_COMPUTED. These methods can
940 use the symbol's .aux_value for additional per-symbol information.
942 At present this is only used to implement location expressions. */
944 struct symbol_computed_ops
947 /* Return the value of the variable SYMBOL, relative to the stack
948 frame FRAME. If the variable has been optimized out, return
951 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
952 FRAME may be zero. */
954 struct value
*(*read_variable
) (struct symbol
* symbol
,
955 struct frame_info
* frame
);
957 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
958 entry. SYMBOL should be a function parameter, otherwise
959 NO_ENTRY_VALUE_ERROR will be thrown. */
960 struct value
*(*read_variable_at_entry
) (struct symbol
*symbol
,
961 struct frame_info
*frame
);
963 /* Find the "symbol_needs_kind" value for the given symbol. This
964 value determines whether reading the symbol needs memory (e.g., a
965 global variable), just registers (a thread-local), or a frame (a
967 enum symbol_needs_kind (*get_symbol_read_needs
) (struct symbol
* symbol
);
969 /* Write to STREAM a natural-language description of the location of
970 SYMBOL, in the context of ADDR. */
971 void (*describe_location
) (struct symbol
* symbol
, CORE_ADDR addr
,
972 struct ui_file
* stream
);
974 /* Non-zero if this symbol's address computation is dependent on PC. */
975 unsigned char location_has_loclist
;
977 /* Tracepoint support. Append bytecodes to the tracepoint agent
978 expression AX that push the address of the object SYMBOL. Set
979 VALUE appropriately. Note --- for objects in registers, this
980 needn't emit any code; as long as it sets VALUE properly, then
981 the caller will generate the right code in the process of
982 treating this as an lvalue or rvalue. */
984 void (*tracepoint_var_ref
) (struct symbol
*symbol
, struct agent_expr
*ax
,
985 struct axs_value
*value
);
987 /* Generate C code to compute the location of SYMBOL. The C code is
988 emitted to STREAM. GDBARCH is the current architecture and PC is
989 the PC at which SYMBOL's location should be evaluated.
990 REGISTERS_USED is a vector indexed by register number; the
991 generator function should set an element in this vector if the
992 corresponding register is needed by the location computation.
993 The generated C code must assign the location to a local
994 variable; this variable's name is RESULT_NAME. */
996 void (*generate_c_location
) (struct symbol
*symbol
, string_file
*stream
,
997 struct gdbarch
*gdbarch
,
998 unsigned char *registers_used
,
999 CORE_ADDR pc
, const char *result_name
);
1003 /* The methods needed to implement LOC_BLOCK for inferior functions.
1004 These methods can use the symbol's .aux_value for additional
1005 per-symbol information. */
1007 struct symbol_block_ops
1009 /* Fill in *START and *LENGTH with DWARF block data of function
1010 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1011 zero if such location is not valid for PC; *START is left
1012 uninitialized in such case. */
1013 void (*find_frame_base_location
) (struct symbol
*framefunc
, CORE_ADDR pc
,
1014 const gdb_byte
**start
, size_t *length
);
1016 /* Return the frame base address. FRAME is the frame for which we want to
1017 compute the base address while FRAMEFUNC is the symbol for the
1018 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1019 information we need).
1021 This method is designed to work with static links (nested functions
1022 handling). Static links are function properties whose evaluation returns
1023 the frame base address for the enclosing frame. However, there are
1024 multiple definitions for "frame base": the content of the frame base
1025 register, the CFA as defined by DWARF unwinding information, ...
1027 So this specific method is supposed to compute the frame base address such
1028 as for nested functions, the static link computes the same address. For
1029 instance, considering DWARF debugging information, the static link is
1030 computed with DW_AT_static_link and this method must be used to compute
1031 the corresponding DW_AT_frame_base attribute. */
1032 CORE_ADDR (*get_frame_base
) (struct symbol
*framefunc
,
1033 struct frame_info
*frame
);
1036 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1038 struct symbol_register_ops
1040 int (*register_number
) (struct symbol
*symbol
, struct gdbarch
*gdbarch
);
1043 /* Objects of this type are used to find the address class and the
1044 various computed ops vectors of a symbol. */
1048 enum address_class aclass
;
1050 /* Used with LOC_COMPUTED. */
1051 const struct symbol_computed_ops
*ops_computed
;
1053 /* Used with LOC_BLOCK. */
1054 const struct symbol_block_ops
*ops_block
;
1056 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1057 const struct symbol_register_ops
*ops_register
;
1060 /* struct symbol has some subclasses. This enum is used to
1061 differentiate between them. */
1063 enum symbol_subclass_kind
1065 /* Plain struct symbol. */
1068 /* struct template_symbol. */
1071 /* struct rust_vtable_symbol. */
1075 /* This structure is space critical. See space comments at the top. */
1077 struct symbol
: public general_symbol_info
, public allocate_on_obstack
1080 /* Class-initialization of bitfields is only allowed in C++20. */
1081 : domain (UNDEF_DOMAIN
),
1083 is_objfile_owned (0),
1087 subclass (SYMBOL_NONE
)
1089 /* We can't use an initializer list for members of a base class, and
1090 general_symbol_info needs to stay a POD type. */
1093 language_specific
.obstack
= nullptr;
1094 m_language
= language_unknown
;
1097 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1098 initialization of unions, so we initialize it manually here. */
1099 owner
.symtab
= nullptr;
1102 /* Data type of value */
1104 struct type
*type
= nullptr;
1106 /* The owner of this symbol.
1107 Which one to use is defined by symbol.is_objfile_owned. */
1111 /* The symbol table containing this symbol. This is the file associated
1112 with LINE. It can be NULL during symbols read-in but it is never NULL
1113 during normal operation. */
1114 struct symtab
*symtab
;
1116 /* For types defined by the architecture. */
1117 struct gdbarch
*arch
;
1122 ENUM_BITFIELD(domain_enum_tag
) domain
: SYMBOL_DOMAIN_BITS
;
1124 /* Address class. This holds an index into the 'symbol_impls'
1125 table. The actual enum address_class value is stored there,
1126 alongside any per-class ops vectors. */
1128 unsigned int aclass_index
: SYMBOL_ACLASS_BITS
;
1130 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1131 Otherwise symbol is arch-owned, use owner.arch. */
1133 unsigned int is_objfile_owned
: 1;
1135 /* Whether this is an argument. */
1137 unsigned is_argument
: 1;
1139 /* Whether this is an inlined function (class LOC_BLOCK only). */
1140 unsigned is_inlined
: 1;
1142 /* For LOC_STATIC only, if this is set, then the symbol might be
1143 subject to copy relocation. In this case, a minimal symbol
1144 matching the symbol's linkage name is first looked for in the
1145 main objfile. If found, then that address is used; otherwise the
1146 address in this symbol is used. */
1148 unsigned maybe_copied
: 1;
1150 /* The concrete type of this symbol. */
1152 ENUM_BITFIELD (symbol_subclass_kind
) subclass
: 2;
1154 /* Line number of this symbol's definition, except for inlined
1155 functions. For an inlined function (class LOC_BLOCK and
1156 SYMBOL_INLINED set) this is the line number of the function's call
1157 site. Inlined function symbols are not definitions, and they are
1158 never found by symbol table lookup.
1159 If this symbol is arch-owned, LINE shall be zero.
1161 FIXME: Should we really make the assumption that nobody will try
1162 to debug files longer than 64K lines? What about machine
1163 generated programs? */
1165 unsigned short line
= 0;
1167 /* An arbitrary data pointer, allowing symbol readers to record
1168 additional information on a per-symbol basis. Note that this data
1169 must be allocated using the same obstack as the symbol itself. */
1170 /* So far it is only used by:
1171 LOC_COMPUTED: to find the location information
1172 LOC_BLOCK (DWARF2 function): information used internally by the
1173 DWARF 2 code --- specifically, the location expression for the frame
1174 base for this function. */
1175 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1176 to add a magic symbol to the block containing this information,
1177 or to have a generic debug info annotation slot for symbols. */
1179 void *aux_value
= nullptr;
1181 struct symbol
*hash_next
= nullptr;
1184 /* Several lookup functions return both a symbol and the block in which the
1185 symbol is found. This structure is used in these cases. */
1189 /* The symbol that was found, or NULL if no symbol was found. */
1190 struct symbol
*symbol
;
1192 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1194 const struct block
*block
;
1197 extern const struct symbol_impl
*symbol_impls
;
1199 /* Note: There is no accessor macro for symbol.owner because it is
1202 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1203 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1204 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1205 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1206 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1207 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1208 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1209 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1210 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1211 #define SYMBOL_TYPE(symbol) (symbol)->type
1212 #define SYMBOL_LINE(symbol) (symbol)->line
1213 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1214 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1215 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1216 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1218 extern int register_symbol_computed_impl (enum address_class
,
1219 const struct symbol_computed_ops
*);
1221 extern int register_symbol_block_impl (enum address_class aclass
,
1222 const struct symbol_block_ops
*ops
);
1224 extern int register_symbol_register_impl (enum address_class
,
1225 const struct symbol_register_ops
*);
1227 /* Return the OBJFILE of SYMBOL.
1228 It is an error to call this if symbol.is_objfile_owned is false, which
1229 only happens for architecture-provided types. */
1231 extern struct objfile
*symbol_objfile (const struct symbol
*symbol
);
1233 /* Return the ARCH of SYMBOL. */
1235 extern struct gdbarch
*symbol_arch (const struct symbol
*symbol
);
1237 /* Return the SYMTAB of SYMBOL.
1238 It is an error to call this if symbol.is_objfile_owned is false, which
1239 only happens for architecture-provided types. */
1241 extern struct symtab
*symbol_symtab (const struct symbol
*symbol
);
1243 /* Set the symtab of SYMBOL to SYMTAB.
1244 It is an error to call this if symbol.is_objfile_owned is false, which
1245 only happens for architecture-provided types. */
1247 extern void symbol_set_symtab (struct symbol
*symbol
, struct symtab
*symtab
);
1249 /* An instance of this type is used to represent a C++ template
1250 function. A symbol is really of this type iff
1251 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1253 struct template_symbol
: public symbol
1255 /* The number of template arguments. */
1256 int n_template_arguments
= 0;
1258 /* The template arguments. This is an array with
1259 N_TEMPLATE_ARGUMENTS elements. */
1260 struct symbol
**template_arguments
= nullptr;
1263 /* A symbol that represents a Rust virtual table object. */
1265 struct rust_vtable_symbol
: public symbol
1267 /* The concrete type for which this vtable was created; that is, in
1268 "impl Trait for Type", this is "Type". */
1269 struct type
*concrete_type
= nullptr;
1273 /* Each item represents a line-->pc (or the reverse) mapping. This is
1274 somewhat more wasteful of space than one might wish, but since only
1275 the files which are actually debugged are read in to core, we don't
1276 waste much space. */
1278 struct linetable_entry
1284 /* The order of entries in the linetable is significant. They should
1285 be sorted by increasing values of the pc field. If there is more than
1286 one entry for a given pc, then I'm not sure what should happen (and
1287 I not sure whether we currently handle it the best way).
1289 Example: a C for statement generally looks like this
1291 10 0x100 - for the init/test part of a for stmt.
1294 10 0x400 - for the increment part of a for stmt.
1296 If an entry has a line number of zero, it marks the start of a PC
1297 range for which no line number information is available. It is
1298 acceptable, though wasteful of table space, for such a range to be
1305 /* Actually NITEMS elements. If you don't like this use of the
1306 `struct hack', you can shove it up your ANSI (seriously, if the
1307 committee tells us how to do it, we can probably go along). */
1308 struct linetable_entry item
[1];
1311 /* How to relocate the symbols from each section in a symbol file.
1312 Each struct contains an array of offsets.
1313 The ordering and meaning of the offsets is file-type-dependent;
1314 typically it is indexed by section numbers or symbol types or
1315 something like that.
1317 To give us flexibility in changing the internal representation
1318 of these offsets, the ANOFFSET macro must be used to insert and
1319 extract offset values in the struct. */
1321 struct section_offsets
1323 CORE_ADDR offsets
[1]; /* As many as needed. */
1326 #define ANOFFSET(secoff, whichone) \
1328 ? (internal_error (__FILE__, __LINE__, \
1329 _("Section index is uninitialized")), -1) \
1330 : secoff->offsets[whichone])
1332 /* The size of a section_offsets table for N sections. */
1333 #define SIZEOF_N_SECTION_OFFSETS(n) \
1334 (sizeof (struct section_offsets) \
1335 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1337 /* Each source file or header is represented by a struct symtab.
1338 The name "symtab" is historical, another name for it is "filetab".
1339 These objects are chained through the `next' field. */
1343 /* Unordered chain of all filetabs in the compunit, with the exception
1344 that the "main" source file is the first entry in the list. */
1346 struct symtab
*next
;
1348 /* Backlink to containing compunit symtab. */
1350 struct compunit_symtab
*compunit_symtab
;
1352 /* Table mapping core addresses to line numbers for this file.
1353 Can be NULL if none. Never shared between different symtabs. */
1355 struct linetable
*linetable
;
1357 /* Name of this source file. This pointer is never NULL. */
1359 const char *filename
;
1361 /* Language of this source file. */
1363 enum language language
;
1365 /* Full name of file as found by searching the source path.
1366 NULL if not yet known. */
1371 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1372 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1373 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1374 #define SYMTAB_BLOCKVECTOR(symtab) \
1375 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1376 #define SYMTAB_OBJFILE(symtab) \
1377 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1378 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1379 #define SYMTAB_DIRNAME(symtab) \
1380 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1382 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1383 as the list of all source files (what gdb has historically associated with
1385 Additional information is recorded here that is common to all symtabs in a
1386 compilation unit (DWARF or otherwise).
1389 For the case of a program built out of these files:
1398 This is recorded as:
1400 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1414 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1415 and the files foo.c, etc. are struct symtab objects. */
1417 struct compunit_symtab
1419 /* Unordered chain of all compunit symtabs of this objfile. */
1420 struct compunit_symtab
*next
;
1422 /* Object file from which this symtab information was read. */
1423 struct objfile
*objfile
;
1425 /* Name of the symtab.
1426 This is *not* intended to be a usable filename, and is
1427 for debugging purposes only. */
1430 /* Unordered list of file symtabs, except that by convention the "main"
1431 source file (e.g., .c, .cc) is guaranteed to be first.
1432 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1433 or header (e.g., .h). */
1434 struct symtab
*filetabs
;
1436 /* Last entry in FILETABS list.
1437 Subfiles are added to the end of the list so they accumulate in order,
1438 with the main source subfile living at the front.
1439 The main reason is so that the main source file symtab is at the head
1440 of the list, and the rest appear in order for debugging convenience. */
1441 struct symtab
*last_filetab
;
1443 /* Non-NULL string that identifies the format of the debugging information,
1444 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1445 for automated testing of gdb but may also be information that is
1446 useful to the user. */
1447 const char *debugformat
;
1449 /* String of producer version information, or NULL if we don't know. */
1450 const char *producer
;
1452 /* Directory in which it was compiled, or NULL if we don't know. */
1453 const char *dirname
;
1455 /* List of all symbol scope blocks for this symtab. It is shared among
1456 all symtabs in a given compilation unit. */
1457 const struct blockvector
*blockvector
;
1459 /* Section in objfile->section_offsets for the blockvector and
1460 the linetable. Probably always SECT_OFF_TEXT. */
1461 int block_line_section
;
1463 /* Symtab has been compiled with both optimizations and debug info so that
1464 GDB may stop skipping prologues as variables locations are valid already
1465 at function entry points. */
1466 unsigned int locations_valid
: 1;
1468 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1469 instruction). This is supported by GCC since 4.5.0. */
1470 unsigned int epilogue_unwind_valid
: 1;
1472 /* struct call_site entries for this compilation unit or NULL. */
1473 htab_t call_site_htab
;
1475 /* The macro table for this symtab. Like the blockvector, this
1476 is shared between different symtabs in a given compilation unit.
1477 It's debatable whether it *should* be shared among all the symtabs in
1478 the given compilation unit, but it currently is. */
1479 struct macro_table
*macro_table
;
1481 /* If non-NULL, then this points to a NULL-terminated vector of
1482 included compunits. When searching the static or global
1483 block of this compunit, the corresponding block of all
1484 included compunits will also be searched. Note that this
1485 list must be flattened -- the symbol reader is responsible for
1486 ensuring that this vector contains the transitive closure of all
1487 included compunits. */
1488 struct compunit_symtab
**includes
;
1490 /* If this is an included compunit, this points to one includer
1491 of the table. This user is considered the canonical compunit
1492 containing this one. An included compunit may itself be
1493 included by another. */
1494 struct compunit_symtab
*user
;
1497 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1498 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1499 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1500 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1501 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1502 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1503 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1504 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1505 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1506 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1507 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1509 /* A range adapter to allowing iterating over all the file tables
1510 within a compunit. */
1512 struct compunit_filetabs
: public next_adapter
<struct symtab
>
1514 compunit_filetabs (struct compunit_symtab
*cu
)
1515 : next_adapter
<struct symtab
> (cu
->filetabs
)
1520 /* Return the primary symtab of CUST. */
1522 extern struct symtab
*
1523 compunit_primary_filetab (const struct compunit_symtab
*cust
);
1525 /* Return the language of CUST. */
1527 extern enum language
compunit_language (const struct compunit_symtab
*cust
);
1531 /* The virtual function table is now an array of structures which have the
1532 form { int16 offset, delta; void *pfn; }.
1534 In normal virtual function tables, OFFSET is unused.
1535 DELTA is the amount which is added to the apparent object's base
1536 address in order to point to the actual object to which the
1537 virtual function should be applied.
1538 PFN is a pointer to the virtual function.
1540 Note that this macro is g++ specific (FIXME). */
1542 #define VTBL_FNADDR_OFFSET 2
1544 /* External variables and functions for the objects described above. */
1546 /* True if we are nested inside psymtab_to_symtab. */
1548 extern int currently_reading_symtab
;
1550 /* symtab.c lookup functions */
1552 extern const char multiple_symbols_ask
[];
1553 extern const char multiple_symbols_all
[];
1554 extern const char multiple_symbols_cancel
[];
1556 const char *multiple_symbols_select_mode (void);
1558 bool symbol_matches_domain (enum language symbol_language
,
1559 domain_enum symbol_domain
,
1560 domain_enum domain
);
1562 /* lookup a symbol table by source file name. */
1564 extern struct symtab
*lookup_symtab (const char *);
1566 /* An object of this type is passed as the 'is_a_field_of_this'
1567 argument to lookup_symbol and lookup_symbol_in_language. */
1569 struct field_of_this_result
1571 /* The type in which the field was found. If this is NULL then the
1572 symbol was not found in 'this'. If non-NULL, then one of the
1573 other fields will be non-NULL as well. */
1577 /* If the symbol was found as an ordinary field of 'this', then this
1578 is non-NULL and points to the particular field. */
1580 struct field
*field
;
1582 /* If the symbol was found as a function field of 'this', then this
1583 is non-NULL and points to the particular field. */
1585 struct fn_fieldlist
*fn_field
;
1588 /* Find the definition for a specified symbol name NAME
1589 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1590 if non-NULL or from global/static blocks if BLOCK is NULL.
1591 Returns the struct symbol pointer, or NULL if no symbol is found.
1592 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1593 NAME is a field of the current implied argument `this'. If so fill in the
1594 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1595 The symbol's section is fixed up if necessary. */
1597 extern struct block_symbol
1598 lookup_symbol_in_language (const char *,
1599 const struct block
*,
1602 struct field_of_this_result
*);
1604 /* Same as lookup_symbol_in_language, but using the current language. */
1606 extern struct block_symbol
lookup_symbol (const char *,
1607 const struct block
*,
1609 struct field_of_this_result
*);
1611 /* Find the definition for a specified symbol search name in domain
1612 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1613 global/static blocks if BLOCK is NULL. The passed-in search name
1614 should not come from the user; instead it should already be a
1615 search name as retrieved from a search_name () call. See definition of
1616 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1617 pointer, or NULL if no symbol is found. The symbol's section is
1618 fixed up if necessary. */
1620 extern struct block_symbol
lookup_symbol_search_name (const char *search_name
,
1621 const struct block
*block
,
1622 domain_enum domain
);
1624 /* A default version of lookup_symbol_nonlocal for use by languages
1625 that can't think of anything better to do.
1626 This implements the C lookup rules. */
1628 extern struct block_symbol
1629 basic_lookup_symbol_nonlocal (const struct language_defn
*langdef
,
1631 const struct block
*,
1634 /* Some helper functions for languages that need to write their own
1635 lookup_symbol_nonlocal functions. */
1637 /* Lookup a symbol in the static block associated to BLOCK, if there
1638 is one; do nothing if BLOCK is NULL or a global block.
1639 Upon success fixes up the symbol's section if necessary. */
1641 extern struct block_symbol
1642 lookup_symbol_in_static_block (const char *name
,
1643 const struct block
*block
,
1644 const domain_enum domain
);
1646 /* Search all static file-level symbols for NAME from DOMAIN.
1647 Upon success fixes up the symbol's section if necessary. */
1649 extern struct block_symbol
lookup_static_symbol (const char *name
,
1650 const domain_enum domain
);
1652 /* Lookup a symbol in all files' global blocks.
1654 If BLOCK is non-NULL then it is used for two things:
1655 1) If a target-specific lookup routine for libraries exists, then use the
1656 routine for the objfile of BLOCK, and
1657 2) The objfile of BLOCK is used to assist in determining the search order
1658 if the target requires it.
1659 See gdbarch_iterate_over_objfiles_in_search_order.
1661 Upon success fixes up the symbol's section if necessary. */
1663 extern struct block_symbol
1664 lookup_global_symbol (const char *name
,
1665 const struct block
*block
,
1666 const domain_enum domain
);
1668 /* Lookup a symbol in block BLOCK.
1669 Upon success fixes up the symbol's section if necessary. */
1671 extern struct symbol
*
1672 lookup_symbol_in_block (const char *name
,
1673 symbol_name_match_type match_type
,
1674 const struct block
*block
,
1675 const domain_enum domain
);
1677 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1678 found, or NULL if not found. */
1680 extern struct block_symbol
1681 lookup_language_this (const struct language_defn
*lang
,
1682 const struct block
*block
);
1684 /* Lookup a [struct, union, enum] by name, within a specified block. */
1686 extern struct type
*lookup_struct (const char *, const struct block
*);
1688 extern struct type
*lookup_union (const char *, const struct block
*);
1690 extern struct type
*lookup_enum (const char *, const struct block
*);
1692 /* from blockframe.c: */
1694 /* lookup the function symbol corresponding to the address. The
1695 return value will not be an inlined function; the containing
1696 function will be returned instead. */
1698 extern struct symbol
*find_pc_function (CORE_ADDR
);
1700 /* lookup the function corresponding to the address and section. The
1701 return value will not be an inlined function; the containing
1702 function will be returned instead. */
1704 extern struct symbol
*find_pc_sect_function (CORE_ADDR
, struct obj_section
*);
1706 /* lookup the function symbol corresponding to the address and
1707 section. The return value will be the closest enclosing function,
1708 which might be an inline function. */
1710 extern struct symbol
*find_pc_sect_containing_function
1711 (CORE_ADDR pc
, struct obj_section
*section
);
1713 /* Find the symbol at the given address. Returns NULL if no symbol
1714 found. Only exact matches for ADDRESS are considered. */
1716 extern struct symbol
*find_symbol_at_address (CORE_ADDR
);
1718 /* Finds the "function" (text symbol) that is smaller than PC but
1719 greatest of all of the potential text symbols in SECTION. Sets
1720 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1721 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1722 function (exclusive). If the optional parameter BLOCK is non-null,
1723 then set *BLOCK to the address of the block corresponding to the
1724 function symbol, if such a symbol could be found during the lookup;
1725 nullptr is used as a return value for *BLOCK if no block is found.
1726 This function either succeeds or fails (not halfway succeeds). If
1727 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1728 information and returns true. If it fails, it sets *NAME, *ADDRESS
1729 and *ENDADDR to zero and returns false.
1731 If the function in question occupies non-contiguous ranges,
1732 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1733 to the start and end of the range in which PC is found. Thus
1734 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1735 from other functions might be found).
1737 This property allows find_pc_partial_function to be used (as it had
1738 been prior to the introduction of non-contiguous range support) by
1739 various tdep files for finding a start address and limit address
1740 for prologue analysis. This still isn't ideal, however, because we
1741 probably shouldn't be doing prologue analysis (in which
1742 instructions are scanned to determine frame size and stack layout)
1743 for any range that doesn't contain the entry pc. Moreover, a good
1744 argument can be made that prologue analysis ought to be performed
1745 starting from the entry pc even when PC is within some other range.
1746 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1747 limits of the entry pc range, but that will cause the
1748 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1749 callers of find_pc_partial_function expect this condition to hold.
1751 Callers which require the start and/or end addresses for the range
1752 containing the entry pc should instead call
1753 find_function_entry_range_from_pc. */
1755 extern bool find_pc_partial_function (CORE_ADDR pc
, const char **name
,
1756 CORE_ADDR
*address
, CORE_ADDR
*endaddr
,
1757 const struct block
**block
= nullptr);
1759 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1760 set to start and end addresses of the range containing the entry pc.
1762 Note that it is not necessarily the case that (for non-NULL ADDRESS
1763 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1766 See comment for find_pc_partial_function, above, for further
1769 extern bool find_function_entry_range_from_pc (CORE_ADDR pc
,
1772 CORE_ADDR
*endaddr
);
1774 /* Return the type of a function with its first instruction exactly at
1775 the PC address. Return NULL otherwise. */
1777 extern struct type
*find_function_type (CORE_ADDR pc
);
1779 /* See if we can figure out the function's actual type from the type
1780 that the resolver returns. RESOLVER_FUNADDR is the address of the
1783 extern struct type
*find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr
);
1785 /* Find the GNU ifunc minimal symbol that matches SYM. */
1786 extern bound_minimal_symbol
find_gnu_ifunc (const symbol
*sym
);
1788 extern void clear_pc_function_cache (void);
1790 /* Expand symtab containing PC, SECTION if not already expanded. */
1792 extern void expand_symtab_containing_pc (CORE_ADDR
, struct obj_section
*);
1794 /* lookup full symbol table by address. */
1796 extern struct compunit_symtab
*find_pc_compunit_symtab (CORE_ADDR
);
1798 /* lookup full symbol table by address and section. */
1800 extern struct compunit_symtab
*
1801 find_pc_sect_compunit_symtab (CORE_ADDR
, struct obj_section
*);
1803 extern bool find_pc_line_pc_range (CORE_ADDR
, CORE_ADDR
*, CORE_ADDR
*);
1805 extern void reread_symbols (void);
1807 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1808 The type returned must not be opaque -- i.e., must have at least one field
1811 extern struct type
*lookup_transparent_type (const char *);
1813 extern struct type
*basic_lookup_transparent_type (const char *);
1815 /* Macro for name of symbol to indicate a file compiled with gcc. */
1816 #ifndef GCC_COMPILED_FLAG_SYMBOL
1817 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1820 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1821 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1822 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1825 extern bool in_gnu_ifunc_stub (CORE_ADDR pc
);
1827 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1828 for ELF symbol files. */
1830 struct gnu_ifunc_fns
1832 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1833 CORE_ADDR (*gnu_ifunc_resolve_addr
) (struct gdbarch
*gdbarch
, CORE_ADDR pc
);
1835 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1836 bool (*gnu_ifunc_resolve_name
) (const char *function_name
,
1837 CORE_ADDR
*function_address_p
);
1839 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1840 void (*gnu_ifunc_resolver_stop
) (struct breakpoint
*b
);
1842 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1843 void (*gnu_ifunc_resolver_return_stop
) (struct breakpoint
*b
);
1846 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1847 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1848 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1849 #define gnu_ifunc_resolver_return_stop \
1850 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1852 extern const struct gnu_ifunc_fns
*gnu_ifunc_fns_p
;
1854 extern CORE_ADDR
find_solib_trampoline_target (struct frame_info
*, CORE_ADDR
);
1856 struct symtab_and_line
1858 /* The program space of this sal. */
1859 struct program_space
*pspace
= NULL
;
1861 struct symtab
*symtab
= NULL
;
1862 struct symbol
*symbol
= NULL
;
1863 struct obj_section
*section
= NULL
;
1864 struct minimal_symbol
*msymbol
= NULL
;
1865 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1866 0 is never a valid line number; it is used to indicate that line number
1867 information is not available. */
1872 bool explicit_pc
= false;
1873 bool explicit_line
= false;
1875 /* The probe associated with this symtab_and_line. */
1877 /* If PROBE is not NULL, then this is the objfile in which the probe
1879 struct objfile
*objfile
= NULL
;
1884 /* Given a pc value, return line number it is in. Second arg nonzero means
1885 if pc is on the boundary use the previous statement's line number. */
1887 extern struct symtab_and_line
find_pc_line (CORE_ADDR
, int);
1889 /* Same function, but specify a section as well as an address. */
1891 extern struct symtab_and_line
find_pc_sect_line (CORE_ADDR
,
1892 struct obj_section
*, int);
1894 /* Wrapper around find_pc_line to just return the symtab. */
1896 extern struct symtab
*find_pc_line_symtab (CORE_ADDR
);
1898 /* Given a symtab and line number, return the pc there. */
1900 extern bool find_line_pc (struct symtab
*, int, CORE_ADDR
*);
1902 extern bool find_line_pc_range (struct symtab_and_line
, CORE_ADDR
*,
1905 extern void resolve_sal_pc (struct symtab_and_line
*);
1909 extern void clear_solib (void);
1911 /* The reason we're calling into a completion match list collector
1913 enum class complete_symbol_mode
1915 /* Completing an expression. */
1918 /* Completing a linespec. */
1922 extern void default_collect_symbol_completion_matches_break_on
1923 (completion_tracker
&tracker
,
1924 complete_symbol_mode mode
,
1925 symbol_name_match_type name_match_type
,
1926 const char *text
, const char *word
, const char *break_on
,
1927 enum type_code code
);
1928 extern void default_collect_symbol_completion_matches
1929 (completion_tracker
&tracker
,
1930 complete_symbol_mode
,
1931 symbol_name_match_type name_match_type
,
1935 extern void collect_symbol_completion_matches
1936 (completion_tracker
&tracker
,
1937 complete_symbol_mode mode
,
1938 symbol_name_match_type name_match_type
,
1939 const char *, const char *);
1940 extern void collect_symbol_completion_matches_type (completion_tracker
&tracker
,
1941 const char *, const char *,
1944 extern void collect_file_symbol_completion_matches
1945 (completion_tracker
&tracker
,
1946 complete_symbol_mode
,
1947 symbol_name_match_type name_match_type
,
1948 const char *, const char *, const char *);
1950 extern completion_list
1951 make_source_files_completion_list (const char *, const char *);
1953 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1955 extern bool symbol_is_function_or_method (symbol
*sym
);
1957 /* Return whether MSYMBOL is a function/method, as opposed to a data
1960 extern bool symbol_is_function_or_method (minimal_symbol
*msymbol
);
1962 /* Return whether SYM should be skipped in completion mode MODE. In
1963 linespec mode, we're only interested in functions/methods. */
1965 template<typename Symbol
>
1967 completion_skip_symbol (complete_symbol_mode mode
, Symbol
*sym
)
1969 return (mode
== complete_symbol_mode::LINESPEC
1970 && !symbol_is_function_or_method (sym
));
1975 bool matching_obj_sections (struct obj_section
*, struct obj_section
*);
1977 extern struct symtab
*find_line_symtab (struct symtab
*, int, int *, bool *);
1979 /* Given a function symbol SYM, find the symtab and line for the start
1980 of the function. If FUNFIRSTLINE is true, we want the first line
1981 of real code inside the function. */
1982 extern symtab_and_line
find_function_start_sal (symbol
*sym
, bool
1985 /* Same, but start with a function address/section instead of a
1987 extern symtab_and_line
find_function_start_sal (CORE_ADDR func_addr
,
1988 obj_section
*section
,
1991 extern void skip_prologue_sal (struct symtab_and_line
*);
1995 extern CORE_ADDR
skip_prologue_using_sal (struct gdbarch
*gdbarch
,
1996 CORE_ADDR func_addr
);
1998 extern struct symbol
*fixup_symbol_section (struct symbol
*,
2001 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2002 the same address. Returns NULL if not found. This is necessary in
2003 case a function is an alias to some other function, because debug
2004 information is only emitted for the alias target function's
2005 definition, not for the alias. */
2006 extern symbol
*find_function_alias_target (bound_minimal_symbol msymbol
);
2008 /* Symbol searching */
2010 /* When using the symbol_searcher struct to search for symbols, a vector of
2011 the following structs is returned. */
2012 struct symbol_search
2014 symbol_search (int block_
, struct symbol
*symbol_
)
2018 msymbol
.minsym
= nullptr;
2019 msymbol
.objfile
= nullptr;
2022 symbol_search (int block_
, struct minimal_symbol
*minsym
,
2023 struct objfile
*objfile
)
2027 msymbol
.minsym
= minsym
;
2028 msymbol
.objfile
= objfile
;
2031 bool operator< (const symbol_search
&other
) const
2033 return compare_search_syms (*this, other
) < 0;
2036 bool operator== (const symbol_search
&other
) const
2038 return compare_search_syms (*this, other
) == 0;
2041 /* The block in which the match was found. Could be, for example,
2042 STATIC_BLOCK or GLOBAL_BLOCK. */
2045 /* Information describing what was found.
2047 If symbol is NOT NULL, then information was found for this match. */
2048 struct symbol
*symbol
;
2050 /* If msymbol is non-null, then a match was made on something for
2051 which only minimal_symbols exist. */
2052 struct bound_minimal_symbol msymbol
;
2056 static int compare_search_syms (const symbol_search
&sym_a
,
2057 const symbol_search
&sym_b
);
2060 /* In order to search for global symbols of a particular kind matching
2061 particular regular expressions, create an instance of this structure and
2062 call the SEARCH member function. */
2063 class global_symbol_searcher
2068 global_symbol_searcher (enum search_domain kind
,
2069 const char *symbol_name_regexp
)
2071 m_symbol_name_regexp (symbol_name_regexp
)
2073 /* The symbol searching is designed to only find one kind of thing. */
2074 gdb_assert (m_kind
!= ALL_DOMAIN
);
2077 /* Set the optional regexp that matches against the symbol type. */
2078 void set_symbol_type_regexp (const char *regexp
)
2080 m_symbol_type_regexp
= regexp
;
2083 /* Set the flag to exclude minsyms from the search results. */
2084 void set_exclude_minsyms (bool exclude_minsyms
)
2086 m_exclude_minsyms
= exclude_minsyms
;
2089 /* Set the maximum number of search results to be returned. */
2090 void set_max_search_results (size_t max_search_results
)
2092 m_max_search_results
= max_search_results
;
2095 /* Search the symbols from all objfiles in the current program space
2096 looking for matches as defined by the current state of this object.
2098 Within each file the results are sorted locally; each symtab's global
2099 and static blocks are separately alphabetized. Duplicate entries are
2101 std::vector
<symbol_search
> search () const;
2103 /* The set of source files to search in for matching symbols. This is
2104 currently public so that it can be populated after this object has
2105 been constructed. */
2106 std::vector
<const char *> filenames
;
2109 /* The kind of symbols are we searching for.
2110 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2111 names, and constants (enums).
2112 FUNCTIONS_DOMAIN - Search all functions..
2113 TYPES_DOMAIN - Search all type names.
2114 MODULES_DOMAIN - Search all Fortran modules.
2115 ALL_DOMAIN - Not valid for this function. */
2116 enum search_domain m_kind
;
2118 /* Regular expression to match against the symbol name. */
2119 const char *m_symbol_name_regexp
= nullptr;
2121 /* Regular expression to match against the symbol type. */
2122 const char *m_symbol_type_regexp
= nullptr;
2124 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2125 be included in the results, otherwise they are excluded. */
2126 bool m_exclude_minsyms
= false;
2128 /* Maximum number of search results. We currently impose a hard limit
2129 of SIZE_MAX, there is no "unlimited". */
2130 size_t m_max_search_results
= SIZE_MAX
;
2132 /* Expand symtabs in OBJFILE that match PREG, are of type M_KIND. Return
2133 true if any msymbols were seen that we should later consider adding to
2134 the results list. */
2135 bool expand_symtabs (objfile
*objfile
,
2136 const gdb::optional
<compiled_regex
> &preg
) const;
2138 /* Add symbols from symtabs in OBJFILE that match PREG, and TREG, and are
2139 of type M_KIND, to the results set RESULTS_SET. Return false if we
2140 stop adding results early due to having already found too many results
2141 (based on M_MAX_SEARCH_RESULTS limit), otherwise return true.
2142 Returning true does not indicate that any results were added, just
2143 that we didn't _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2144 bool add_matching_symbols (objfile
*objfile
,
2145 const gdb::optional
<compiled_regex
> &preg
,
2146 const gdb::optional
<compiled_regex
> &treg
,
2147 std::set
<symbol_search
> *result_set
) const;
2149 /* Add msymbols from OBJFILE that match PREG and M_KIND, to the results
2150 vector RESULTS. Return false if we stop adding results early due to
2151 having already found too many results (based on max search results
2152 limit M_MAX_SEARCH_RESULTS), otherwise return true. Returning true
2153 does not indicate that any results were added, just that we didn't
2154 _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2155 bool add_matching_msymbols (objfile
*objfile
,
2156 const gdb::optional
<compiled_regex
> &preg
,
2157 std::vector
<symbol_search
> *results
) const;
2159 /* Return true if MSYMBOL is of type KIND. */
2160 static bool is_suitable_msymbol (const enum search_domain kind
,
2161 const minimal_symbol
*msymbol
);
2164 /* When searching for Fortran symbols within modules (functions/variables)
2165 we return a vector of this type. The first item in the pair is the
2166 module symbol, and the second item is the symbol for the function or
2167 variable we found. */
2168 typedef std::pair
<symbol_search
, symbol_search
> module_symbol_search
;
2170 /* Searches the symbols to find function and variables symbols (depending
2171 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2172 name of the module, REGEXP matches against the name of the symbol within
2173 the module, and TYPE_REGEXP matches against the type of the symbol
2174 within the module. */
2175 extern std::vector
<module_symbol_search
> search_module_symbols
2176 (const char *module_regexp
, const char *regexp
,
2177 const char *type_regexp
, search_domain kind
);
2179 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2180 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2181 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2182 the type of symbol that was searched for which gave us SYM. */
2184 extern std::string
symbol_to_info_string (struct symbol
*sym
, int block
,
2185 enum search_domain kind
);
2187 extern bool treg_matches_sym_type_name (const compiled_regex
&treg
,
2188 const struct symbol
*sym
);
2190 /* The name of the ``main'' function. */
2191 extern const char *main_name ();
2192 extern enum language
main_language (void);
2194 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2195 as specified by BLOCK_INDEX.
2196 This searches MAIN_OBJFILE as well as any associated separate debug info
2197 objfiles of MAIN_OBJFILE.
2198 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2199 Upon success fixes up the symbol's section if necessary. */
2201 extern struct block_symbol
2202 lookup_global_symbol_from_objfile (struct objfile
*main_objfile
,
2203 enum block_enum block_index
,
2205 const domain_enum domain
);
2207 /* Return 1 if the supplied producer string matches the ARM RealView
2208 compiler (armcc). */
2209 bool producer_is_realview (const char *producer
);
2211 void fixup_section (struct general_symbol_info
*ginfo
,
2212 CORE_ADDR addr
, struct objfile
*objfile
);
2214 /* Look up objfile containing BLOCK. */
2216 struct objfile
*lookup_objfile_from_block (const struct block
*block
);
2218 extern unsigned int symtab_create_debug
;
2220 extern unsigned int symbol_lookup_debug
;
2222 extern bool basenames_may_differ
;
2224 bool compare_filenames_for_search (const char *filename
,
2225 const char *search_name
);
2227 bool compare_glob_filenames_for_search (const char *filename
,
2228 const char *search_name
);
2230 bool iterate_over_some_symtabs (const char *name
,
2231 const char *real_path
,
2232 struct compunit_symtab
*first
,
2233 struct compunit_symtab
*after_last
,
2234 gdb::function_view
<bool (symtab
*)> callback
);
2236 void iterate_over_symtabs (const char *name
,
2237 gdb::function_view
<bool (symtab
*)> callback
);
2240 std::vector
<CORE_ADDR
> find_pcs_for_symtab_line
2241 (struct symtab
*symtab
, int line
, struct linetable_entry
**best_entry
);
2243 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2244 is called once per matching symbol SYM. The callback should return
2245 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2246 iterating, or false to indicate that the iteration should end. */
2248 typedef bool (symbol_found_callback_ftype
) (struct block_symbol
*bsym
);
2250 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2252 For each symbol that matches, CALLBACK is called. The symbol is
2253 passed to the callback.
2255 If CALLBACK returns false, the iteration ends and this function
2256 returns false. Otherwise, the search continues, and the function
2257 eventually returns true. */
2259 bool iterate_over_symbols (const struct block
*block
,
2260 const lookup_name_info
&name
,
2261 const domain_enum domain
,
2262 gdb::function_view
<symbol_found_callback_ftype
> callback
);
2264 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2265 true, then calls CALLBACK one additional time with a block_symbol
2266 that has a valid block but a NULL symbol. */
2268 bool iterate_over_symbols_terminated
2269 (const struct block
*block
,
2270 const lookup_name_info
&name
,
2271 const domain_enum domain
,
2272 gdb::function_view
<symbol_found_callback_ftype
> callback
);
2274 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2275 either returns a const char * pointer that points to either of the
2276 fields of this type, or a pointer to the input NAME. This is done
2277 this way because the underlying functions that demangle_for_lookup
2278 calls either return a std::string (e.g., cp_canonicalize_string) or
2279 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2280 unnecessary reallocation/string copying. */
2281 class demangle_result_storage
2285 /* Swap the std::string storage with STR, and return a pointer to
2286 the beginning of the new string. */
2287 const char *swap_string (std::string
&str
)
2289 std::swap (m_string
, str
);
2290 return m_string
.c_str ();
2293 /* Set the malloc storage to now point at PTR. Any previous malloc
2294 storage is released. */
2295 const char *set_malloc_ptr (char *ptr
)
2297 m_malloc
.reset (ptr
);
2304 std::string m_string
;
2305 gdb::unique_xmalloc_ptr
<char> m_malloc
;
2309 demangle_for_lookup (const char *name
, enum language lang
,
2310 demangle_result_storage
&storage
);
2312 struct symbol
*allocate_symbol (struct objfile
*);
2314 void initialize_objfile_symbol (struct symbol
*);
2316 struct template_symbol
*allocate_template_symbol (struct objfile
*);
2318 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2319 SYMNAME (which is already demangled for C++ symbols) matches
2320 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2321 the current completion list. */
2322 void completion_list_add_name (completion_tracker
&tracker
,
2323 language symbol_language
,
2324 const char *symname
,
2325 const lookup_name_info
&lookup_name
,
2326 const char *text
, const char *word
);
2328 /* A simple symbol searching class. */
2330 class symbol_searcher
2333 /* Returns the symbols found for the search. */
2334 const std::vector
<block_symbol
> &
2335 matching_symbols () const
2340 /* Returns the minimal symbols found for the search. */
2341 const std::vector
<bound_minimal_symbol
> &
2342 matching_msymbols () const
2344 return m_minimal_symbols
;
2347 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2348 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2349 to search all symtabs and program spaces. */
2350 void find_all_symbols (const std::string
&name
,
2351 const struct language_defn
*language
,
2352 enum search_domain search_domain
,
2353 std::vector
<symtab
*> *search_symtabs
,
2354 struct program_space
*search_pspace
);
2356 /* Reset this object to perform another search. */
2360 m_minimal_symbols
.clear ();
2364 /* Matching debug symbols. */
2365 std::vector
<block_symbol
> m_symbols
;
2367 /* Matching non-debug symbols. */
2368 std::vector
<bound_minimal_symbol
> m_minimal_symbols
;
2371 #endif /* !defined(SYMTAB_H) */