Replace SYMBOL_SET_LINKAGE_NAME with a member function
[deliverable/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include "gdbsupport/gdb_vecs.h"
27 #include "gdbtypes.h"
28 #include "gdb_obstack.h"
29 #include "gdb_regex.h"
30 #include "gdbsupport/enum-flags.h"
31 #include "gdbsupport/function-view.h"
32 #include "gdbsupport/gdb_optional.h"
33 #include "gdbsupport/gdb_string_view.h"
34 #include "gdbsupport/next-iterator.h"
35 #include "completer.h"
36 #include "gdb-demangle.h"
37
38 /* Opaque declarations. */
39 struct ui_file;
40 struct frame_info;
41 struct symbol;
42 struct obstack;
43 struct objfile;
44 struct block;
45 struct blockvector;
46 struct axs_value;
47 struct agent_expr;
48 struct program_space;
49 struct language_defn;
50 struct common_block;
51 struct obj_section;
52 struct cmd_list_element;
53 class probe;
54 struct lookup_name_info;
55
56 /* How to match a lookup name against a symbol search name. */
57 enum class symbol_name_match_type
58 {
59 /* Wild matching. Matches unqualified symbol names in all
60 namespace/module/packages, etc. */
61 WILD,
62
63 /* Full matching. The lookup name indicates a fully-qualified name,
64 and only matches symbol search names in the specified
65 namespace/module/package. */
66 FULL,
67
68 /* Search name matching. This is like FULL, but the search name did
69 not come from the user; instead it is already a search name
70 retrieved from a search_name () call.
71 For Ada, this avoids re-encoding an already-encoded search name
72 (which would potentially incorrectly lowercase letters in the
73 linkage/search name that should remain uppercase). For C++, it
74 avoids trying to demangle a name we already know is
75 demangled. */
76 SEARCH_NAME,
77
78 /* Expression matching. The same as FULL matching in most
79 languages. The same as WILD matching in Ada. */
80 EXPRESSION,
81 };
82
83 /* Hash the given symbol search name according to LANGUAGE's
84 rules. */
85 extern unsigned int search_name_hash (enum language language,
86 const char *search_name);
87
88 /* Ada-specific bits of a lookup_name_info object. This is lazily
89 constructed on demand. */
90
91 class ada_lookup_name_info final
92 {
93 public:
94 /* Construct. */
95 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
96
97 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
98 as name match type. Returns true if there's a match, false
99 otherwise. If non-NULL, store the matching results in MATCH. */
100 bool matches (const char *symbol_search_name,
101 symbol_name_match_type match_type,
102 completion_match_result *comp_match_res) const;
103
104 /* The Ada-encoded lookup name. */
105 const std::string &lookup_name () const
106 { return m_encoded_name; }
107
108 /* Return true if we're supposed to be doing a wild match look
109 up. */
110 bool wild_match_p () const
111 { return m_wild_match_p; }
112
113 /* Return true if we're looking up a name inside package
114 Standard. */
115 bool standard_p () const
116 { return m_standard_p; }
117
118 /* Return true if doing a verbatim match. */
119 bool verbatim_p () const
120 { return m_verbatim_p; }
121
122 private:
123 /* The Ada-encoded lookup name. */
124 std::string m_encoded_name;
125
126 /* Whether the user-provided lookup name was Ada encoded. If so,
127 then return encoded names in the 'matches' method's 'completion
128 match result' output. */
129 bool m_encoded_p : 1;
130
131 /* True if really doing wild matching. Even if the user requests
132 wild matching, some cases require full matching. */
133 bool m_wild_match_p : 1;
134
135 /* True if doing a verbatim match. This is true if the decoded
136 version of the symbol name is wrapped in '<'/'>'. This is an
137 escape hatch users can use to look up symbols the Ada encoding
138 does not understand. */
139 bool m_verbatim_p : 1;
140
141 /* True if the user specified a symbol name that is inside package
142 Standard. Symbol names inside package Standard are handled
143 specially. We always do a non-wild match of the symbol name
144 without the "standard__" prefix, and only search static and
145 global symbols. This was primarily introduced in order to allow
146 the user to specifically access the standard exceptions using,
147 for instance, Standard.Constraint_Error when Constraint_Error is
148 ambiguous (due to the user defining its own Constraint_Error
149 entity inside its program). */
150 bool m_standard_p : 1;
151 };
152
153 /* Language-specific bits of a lookup_name_info object, for languages
154 that do name searching using demangled names (C++/D/Go). This is
155 lazily constructed on demand. */
156
157 struct demangle_for_lookup_info final
158 {
159 public:
160 demangle_for_lookup_info (const lookup_name_info &lookup_name,
161 language lang);
162
163 /* The demangled lookup name. */
164 const std::string &lookup_name () const
165 { return m_demangled_name; }
166
167 private:
168 /* The demangled lookup name. */
169 std::string m_demangled_name;
170 };
171
172 /* Object that aggregates all information related to a symbol lookup
173 name. I.e., the name that is matched against the symbol's search
174 name. Caches per-language information so that it doesn't require
175 recomputing it for every symbol comparison, like for example the
176 Ada encoded name and the symbol's name hash for a given language.
177 The object is conceptually immutable once constructed, and thus has
178 no setters. This is to prevent some code path from tweaking some
179 property of the lookup name for some local reason and accidentally
180 altering the results of any continuing search(es).
181 lookup_name_info objects are generally passed around as a const
182 reference to reinforce that. (They're not passed around by value
183 because they're not small.) */
184 class lookup_name_info final
185 {
186 public:
187 /* Create a new object. */
188 lookup_name_info (std::string name,
189 symbol_name_match_type match_type,
190 bool completion_mode = false,
191 bool ignore_parameters = false)
192 : m_match_type (match_type),
193 m_completion_mode (completion_mode),
194 m_ignore_parameters (ignore_parameters),
195 m_name (std::move (name))
196 {}
197
198 /* Getters. See description of each corresponding field. */
199 symbol_name_match_type match_type () const { return m_match_type; }
200 bool completion_mode () const { return m_completion_mode; }
201 const std::string &name () const { return m_name; }
202 const bool ignore_parameters () const { return m_ignore_parameters; }
203
204 /* Return a version of this lookup name that is usable with
205 comparisons against symbols have no parameter info, such as
206 psymbols and GDB index symbols. */
207 lookup_name_info make_ignore_params () const
208 {
209 return lookup_name_info (m_name, m_match_type, m_completion_mode,
210 true /* ignore params */);
211 }
212
213 /* Get the search name hash for searches in language LANG. */
214 unsigned int search_name_hash (language lang) const
215 {
216 /* Only compute each language's hash once. */
217 if (!m_demangled_hashes_p[lang])
218 {
219 m_demangled_hashes[lang]
220 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
221 m_demangled_hashes_p[lang] = true;
222 }
223 return m_demangled_hashes[lang];
224 }
225
226 /* Get the search name for searches in language LANG. */
227 const std::string &language_lookup_name (language lang) const
228 {
229 switch (lang)
230 {
231 case language_ada:
232 return ada ().lookup_name ();
233 case language_cplus:
234 return cplus ().lookup_name ();
235 case language_d:
236 return d ().lookup_name ();
237 case language_go:
238 return go ().lookup_name ();
239 default:
240 return m_name;
241 }
242 }
243
244 /* Get the Ada-specific lookup info. */
245 const ada_lookup_name_info &ada () const
246 {
247 maybe_init (m_ada);
248 return *m_ada;
249 }
250
251 /* Get the C++-specific lookup info. */
252 const demangle_for_lookup_info &cplus () const
253 {
254 maybe_init (m_cplus, language_cplus);
255 return *m_cplus;
256 }
257
258 /* Get the D-specific lookup info. */
259 const demangle_for_lookup_info &d () const
260 {
261 maybe_init (m_d, language_d);
262 return *m_d;
263 }
264
265 /* Get the Go-specific lookup info. */
266 const demangle_for_lookup_info &go () const
267 {
268 maybe_init (m_go, language_go);
269 return *m_go;
270 }
271
272 /* Get a reference to a lookup_name_info object that matches any
273 symbol name. */
274 static const lookup_name_info &match_any ();
275
276 private:
277 /* Initialize FIELD, if not initialized yet. */
278 template<typename Field, typename... Args>
279 void maybe_init (Field &field, Args&&... args) const
280 {
281 if (!field)
282 field.emplace (*this, std::forward<Args> (args)...);
283 }
284
285 /* The lookup info as passed to the ctor. */
286 symbol_name_match_type m_match_type;
287 bool m_completion_mode;
288 bool m_ignore_parameters;
289 std::string m_name;
290
291 /* Language-specific info. These fields are filled lazily the first
292 time a lookup is done in the corresponding language. They're
293 mutable because lookup_name_info objects are typically passed
294 around by const reference (see intro), and they're conceptually
295 "cache" that can always be reconstructed from the non-mutable
296 fields. */
297 mutable gdb::optional<ada_lookup_name_info> m_ada;
298 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
299 mutable gdb::optional<demangle_for_lookup_info> m_d;
300 mutable gdb::optional<demangle_for_lookup_info> m_go;
301
302 /* The demangled hashes. Stored in an array with one entry for each
303 possible language. The second array records whether we've
304 already computed the each language's hash. (These are separate
305 arrays instead of a single array of optional<unsigned> to avoid
306 alignment padding). */
307 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
308 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
309 };
310
311 /* Comparison function for completion symbol lookup.
312
313 Returns true if the symbol name matches against LOOKUP_NAME.
314
315 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
316
317 On success and if non-NULL, COMP_MATCH_RES->match is set to point
318 to the symbol name as should be presented to the user as a
319 completion match list element. In most languages, this is the same
320 as the symbol's search name, but in some, like Ada, the display
321 name is dynamically computed within the comparison routine.
322
323 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
324 points the part of SYMBOL_SEARCH_NAME that was considered to match
325 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
326 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
327 points to "function()" inside SYMBOL_SEARCH_NAME. */
328 typedef bool (symbol_name_matcher_ftype)
329 (const char *symbol_search_name,
330 const lookup_name_info &lookup_name,
331 completion_match_result *comp_match_res);
332
333 /* Some of the structures in this file are space critical.
334 The space-critical structures are:
335
336 struct general_symbol_info
337 struct symbol
338 struct partial_symbol
339
340 These structures are laid out to encourage good packing.
341 They use ENUM_BITFIELD and short int fields, and they order the
342 structure members so that fields less than a word are next
343 to each other so they can be packed together. */
344
345 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
346 all the space critical structures (plus struct minimal_symbol).
347 Memory usage dropped from 99360768 bytes to 90001408 bytes.
348 I measured this with before-and-after tests of
349 "HEAD-old-gdb -readnow HEAD-old-gdb" and
350 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
351 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
352 typing "maint space 1" at the first command prompt.
353
354 Here is another measurement (from andrew c):
355 # no /usr/lib/debug, just plain glibc, like a normal user
356 gdb HEAD-old-gdb
357 (gdb) break internal_error
358 (gdb) run
359 (gdb) maint internal-error
360 (gdb) backtrace
361 (gdb) maint space 1
362
363 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
364 gdb HEAD 2003-08-19 space used: 8904704
365 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
366 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
367
368 The third line shows the savings from the optimizations in symtab.h.
369 The fourth line shows the savings from the optimizations in
370 gdbtypes.h. Both optimizations are in gdb HEAD now.
371
372 --chastain 2003-08-21 */
373
374 /* Define a structure for the information that is common to all symbol types,
375 including minimal symbols, partial symbols, and full symbols. In a
376 multilanguage environment, some language specific information may need to
377 be recorded along with each symbol. */
378
379 /* This structure is space critical. See space comments at the top. */
380
381 struct general_symbol_info
382 {
383 /* Short version as to when to use which name accessor:
384 Use natural_name () to refer to the name of the symbol in the original
385 source code. Use linkage_name () if you want to know what the linker
386 thinks the symbol's name is. Use print_name () for output. Use
387 demangled_name () if you specifically need to know whether natural_name ()
388 and linkage_name () are different. */
389
390 const char *linkage_name () const
391 { return name; }
392
393 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
394 the original source code. In languages like C++ where symbols may
395 be mangled for ease of manipulation by the linker, this is the
396 demangled name. */
397 const char *natural_name () const;
398
399 /* Returns a version of the name of a symbol that is
400 suitable for output. In C++ this is the "demangled" form of the
401 name if demangle is on and the "mangled" form of the name if
402 demangle is off. In other languages this is just the symbol name.
403 The result should never be NULL. Don't use this for internal
404 purposes (e.g. storing in a hashtable): it's only suitable for output. */
405 const char *print_name () const
406 { return demangle ? natural_name () : linkage_name (); }
407
408 /* Return the demangled name for a symbol based on the language for
409 that symbol. If no demangled name exists, return NULL. */
410 const char *demangled_name () const;
411
412 /* Returns the name to be used when sorting and searching symbols.
413 In C++, we search for the demangled form of a name,
414 and so sort symbols accordingly. In Ada, however, we search by mangled
415 name. If there is no distinct demangled name, then this
416 returns the same value (same pointer) as linkage_name (). */
417 const char *search_name () const;
418
419 /* Set just the linkage name of a symbol; do not try to demangle
420 it. Used for constructs which do not have a mangled name,
421 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
422 be terminated and either already on the objfile's obstack or
423 permanently allocated. */
424 void set_linkage_name (const char *linkage_name)
425 { name = linkage_name; }
426
427 /* Name of the symbol. This is a required field. Storage for the
428 name is allocated on the objfile_obstack for the associated
429 objfile. For languages like C++ that make a distinction between
430 the mangled name and demangled name, this is the mangled
431 name. */
432
433 const char *name;
434
435 /* Value of the symbol. Which member of this union to use, and what
436 it means, depends on what kind of symbol this is and its
437 SYMBOL_CLASS. See comments there for more details. All of these
438 are in host byte order (though what they point to might be in
439 target byte order, e.g. LOC_CONST_BYTES). */
440
441 union
442 {
443 LONGEST ivalue;
444
445 const struct block *block;
446
447 const gdb_byte *bytes;
448
449 CORE_ADDR address;
450
451 /* A common block. Used with LOC_COMMON_BLOCK. */
452
453 const struct common_block *common_block;
454
455 /* For opaque typedef struct chain. */
456
457 struct symbol *chain;
458 }
459 value;
460
461 /* Since one and only one language can apply, wrap the language specific
462 information inside a union. */
463
464 union
465 {
466 /* A pointer to an obstack that can be used for storage associated
467 with this symbol. This is only used by Ada, and only when the
468 'ada_mangled' field is zero. */
469 struct obstack *obstack;
470
471 /* This is used by languages which wish to store a demangled name.
472 currently used by Ada, C++, and Objective C. */
473 const char *demangled_name;
474 }
475 language_specific;
476
477 /* Record the source code language that applies to this symbol.
478 This is used to select one of the fields from the language specific
479 union above. */
480
481 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
482
483 /* This is only used by Ada. If set, then the 'demangled_name' field
484 of language_specific is valid. Otherwise, the 'obstack' field is
485 valid. */
486 unsigned int ada_mangled : 1;
487
488 /* Which section is this symbol in? This is an index into
489 section_offsets for this objfile. Negative means that the symbol
490 does not get relocated relative to a section. */
491
492 short section;
493 };
494
495 extern void symbol_set_demangled_name (struct general_symbol_info *,
496 const char *,
497 struct obstack *);
498
499 extern const char *symbol_get_demangled_name
500 (const struct general_symbol_info *);
501
502 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
503
504 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
505 SYM. If SYM appears in the main program's minimal symbols, then
506 that minsym's address is returned; otherwise, SYM's address is
507 returned. This should generally only be used via the
508 SYMBOL_VALUE_ADDRESS macro. */
509
510 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
511
512 /* Note that these macros only work with symbol, not partial_symbol. */
513
514 #define SYMBOL_VALUE(symbol) (symbol)->value.ivalue
515 #define SYMBOL_VALUE_ADDRESS(symbol) \
516 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
517 : ((symbol)->value.address))
518 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
519 ((symbol)->value.address = (new_value))
520 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
521 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->value.common_block
522 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
523 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
524 #define SYMBOL_LANGUAGE(symbol) (symbol)->language
525 #define SYMBOL_SECTION(symbol) (symbol)->section
526 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
527 (((symbol)->section >= 0) \
528 ? (&(((objfile)->sections)[(symbol)->section])) \
529 : NULL)
530
531 /* Initializes the language dependent portion of a symbol
532 depending upon the language for the symbol. */
533 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
534 (symbol_set_language ((symbol), (language), (obstack)))
535 extern void symbol_set_language (struct general_symbol_info *symbol,
536 enum language language,
537 struct obstack *obstack);
538
539 /* Try to determine the demangled name for a symbol, based on the
540 language of that symbol. If the language is set to language_auto,
541 it will attempt to find any demangling algorithm that works and
542 then set the language appropriately. The returned name is allocated
543 by the demangler and should be xfree'd. */
544
545 extern char *symbol_find_demangled_name (struct general_symbol_info *gsymbol,
546 const char *mangled);
547
548 /* Set the linkage and natural names of a symbol, by demangling
549 the linkage name. If linkage_name may not be nullterminated,
550 copy_name must be set to true. */
551 #define SYMBOL_SET_NAMES(symbol,linkage_name,copy_name,objfile) \
552 symbol_set_names ((symbol), linkage_name, copy_name, \
553 (objfile)->per_bfd)
554 extern void symbol_set_names (struct general_symbol_info *symbol,
555 gdb::string_view linkage_name, bool copy_name,
556 struct objfile_per_bfd_storage *per_bfd);
557
558 /* Return true if NAME matches the "search" name of SYMBOL, according
559 to the symbol's language. */
560 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
561 symbol_matches_search_name ((symbol), (name))
562
563 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
564 and psymbols. */
565 extern bool symbol_matches_search_name
566 (const struct general_symbol_info *gsymbol,
567 const lookup_name_info &name);
568
569 /* Compute the hash of the given symbol search name of a symbol of
570 language LANGUAGE. */
571 extern unsigned int search_name_hash (enum language language,
572 const char *search_name);
573
574 /* Classification types for a minimal symbol. These should be taken as
575 "advisory only", since if gdb can't easily figure out a
576 classification it simply selects mst_unknown. It may also have to
577 guess when it can't figure out which is a better match between two
578 types (mst_data versus mst_bss) for example. Since the minimal
579 symbol info is sometimes derived from the BFD library's view of a
580 file, we need to live with what information bfd supplies. */
581
582 enum minimal_symbol_type
583 {
584 mst_unknown = 0, /* Unknown type, the default */
585 mst_text, /* Generally executable instructions */
586
587 /* A GNU ifunc symbol, in the .text section. GDB uses to know
588 whether the user is setting a breakpoint on a GNU ifunc function,
589 and thus GDB needs to actually set the breakpoint on the target
590 function. It is also used to know whether the program stepped
591 into an ifunc resolver -- the resolver may get a separate
592 symbol/alias under a different name, but it'll have the same
593 address as the ifunc symbol. */
594 mst_text_gnu_ifunc, /* Executable code returning address
595 of executable code */
596
597 /* A GNU ifunc function descriptor symbol, in a data section
598 (typically ".opd"). Seen on architectures that use function
599 descriptors, like PPC64/ELFv1. In this case, this symbol's value
600 is the address of the descriptor. There'll be a corresponding
601 mst_text_gnu_ifunc synthetic symbol for the text/entry
602 address. */
603 mst_data_gnu_ifunc, /* Executable code returning address
604 of executable code */
605
606 mst_slot_got_plt, /* GOT entries for .plt sections */
607 mst_data, /* Generally initialized data */
608 mst_bss, /* Generally uninitialized data */
609 mst_abs, /* Generally absolute (nonrelocatable) */
610 /* GDB uses mst_solib_trampoline for the start address of a shared
611 library trampoline entry. Breakpoints for shared library functions
612 are put there if the shared library is not yet loaded.
613 After the shared library is loaded, lookup_minimal_symbol will
614 prefer the minimal symbol from the shared library (usually
615 a mst_text symbol) over the mst_solib_trampoline symbol, and the
616 breakpoints will be moved to their true address in the shared
617 library via breakpoint_re_set. */
618 mst_solib_trampoline, /* Shared library trampoline code */
619 /* For the mst_file* types, the names are only guaranteed to be unique
620 within a given .o file. */
621 mst_file_text, /* Static version of mst_text */
622 mst_file_data, /* Static version of mst_data */
623 mst_file_bss, /* Static version of mst_bss */
624 nr_minsym_types
625 };
626
627 /* The number of enum minimal_symbol_type values, with some padding for
628 reasonable growth. */
629 #define MINSYM_TYPE_BITS 4
630 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
631
632 /* Define a simple structure used to hold some very basic information about
633 all defined global symbols (text, data, bss, abs, etc). The only required
634 information is the general_symbol_info.
635
636 In many cases, even if a file was compiled with no special options for
637 debugging at all, as long as was not stripped it will contain sufficient
638 information to build a useful minimal symbol table using this structure.
639 Even when a file contains enough debugging information to build a full
640 symbol table, these minimal symbols are still useful for quickly mapping
641 between names and addresses, and vice versa. They are also sometimes
642 used to figure out what full symbol table entries need to be read in. */
643
644 struct minimal_symbol : public general_symbol_info
645 {
646 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
647 information to calculate the end of the partial symtab based on the
648 address of the last symbol plus the size of the last symbol. */
649
650 unsigned long size;
651
652 /* Which source file is this symbol in? Only relevant for mst_file_*. */
653 const char *filename;
654
655 /* Classification type for this minimal symbol. */
656
657 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
658
659 /* Non-zero if this symbol was created by gdb.
660 Such symbols do not appear in the output of "info var|fun". */
661 unsigned int created_by_gdb : 1;
662
663 /* Two flag bits provided for the use of the target. */
664 unsigned int target_flag_1 : 1;
665 unsigned int target_flag_2 : 1;
666
667 /* Nonzero iff the size of the minimal symbol has been set.
668 Symbol size information can sometimes not be determined, because
669 the object file format may not carry that piece of information. */
670 unsigned int has_size : 1;
671
672 /* For data symbols only, if this is set, then the symbol might be
673 subject to copy relocation. In this case, a minimal symbol
674 matching the symbol's linkage name is first looked for in the
675 main objfile. If found, then that address is used; otherwise the
676 address in this symbol is used. */
677
678 unsigned maybe_copied : 1;
679
680 /* Non-zero if this symbol ever had its demangled name set (even if
681 it was set to NULL). */
682 unsigned int name_set : 1;
683
684 /* Minimal symbols with the same hash key are kept on a linked
685 list. This is the link. */
686
687 struct minimal_symbol *hash_next;
688
689 /* Minimal symbols are stored in two different hash tables. This is
690 the `next' pointer for the demangled hash table. */
691
692 struct minimal_symbol *demangled_hash_next;
693
694 /* True if this symbol is of some data type. */
695
696 bool data_p () const;
697
698 /* True if MSYMBOL is of some text type. */
699
700 bool text_p () const;
701 };
702
703 /* Return the address of MINSYM, which comes from OBJF. The
704 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
705 main program's minimal symbols, then that minsym's address is
706 returned; otherwise, MINSYM's address is returned. This should
707 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
708
709 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
710 const struct minimal_symbol *minsym);
711
712 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
713 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
714 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
715 #define SET_MSYMBOL_SIZE(msymbol, sz) \
716 do \
717 { \
718 (msymbol)->size = sz; \
719 (msymbol)->has_size = 1; \
720 } while (0)
721 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
722 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
723
724 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
725 /* The unrelocated address of the minimal symbol. */
726 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
727 /* The relocated address of the minimal symbol, using the section
728 offsets from OBJFILE. */
729 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
730 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
731 : ((symbol)->value.address \
732 + ANOFFSET ((objfile)->section_offsets, ((symbol)->section))))
733 /* For a bound minsym, we can easily compute the address directly. */
734 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
735 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
736 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
737 ((symbol)->value.address = (new_value))
738 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
739 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
740 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
741 #define MSYMBOL_LANGUAGE(symbol) (symbol)->language
742 #define MSYMBOL_SECTION(symbol) (symbol)->section
743 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
744 (((symbol)->section >= 0) \
745 ? (&(((objfile)->sections)[(symbol)->section])) \
746 : NULL)
747
748 #include "minsyms.h"
749
750 \f
751
752 /* Represent one symbol name; a variable, constant, function or typedef. */
753
754 /* Different name domains for symbols. Looking up a symbol specifies a
755 domain and ignores symbol definitions in other name domains. */
756
757 typedef enum domain_enum_tag
758 {
759 /* UNDEF_DOMAIN is used when a domain has not been discovered or
760 none of the following apply. This usually indicates an error either
761 in the symbol information or in gdb's handling of symbols. */
762
763 UNDEF_DOMAIN,
764
765 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
766 function names, typedef names and enum type values. */
767
768 VAR_DOMAIN,
769
770 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
771 Thus, if `struct foo' is used in a C program, it produces a symbol named
772 `foo' in the STRUCT_DOMAIN. */
773
774 STRUCT_DOMAIN,
775
776 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
777
778 MODULE_DOMAIN,
779
780 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
781
782 LABEL_DOMAIN,
783
784 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
785 They also always use LOC_COMMON_BLOCK. */
786 COMMON_BLOCK_DOMAIN,
787
788 /* This must remain last. */
789 NR_DOMAINS
790 } domain_enum;
791
792 /* The number of bits in a symbol used to represent the domain. */
793
794 #define SYMBOL_DOMAIN_BITS 3
795 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
796
797 extern const char *domain_name (domain_enum);
798
799 /* Searching domains, used when searching for symbols. Element numbers are
800 hardcoded in GDB, check all enum uses before changing it. */
801
802 enum search_domain
803 {
804 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
805 TYPES_DOMAIN. */
806 VARIABLES_DOMAIN = 0,
807
808 /* All functions -- for some reason not methods, though. */
809 FUNCTIONS_DOMAIN = 1,
810
811 /* All defined types */
812 TYPES_DOMAIN = 2,
813
814 /* All modules. */
815 MODULES_DOMAIN = 3,
816
817 /* Any type. */
818 ALL_DOMAIN = 4
819 };
820
821 extern const char *search_domain_name (enum search_domain);
822
823 /* An address-class says where to find the value of a symbol. */
824
825 enum address_class
826 {
827 /* Not used; catches errors. */
828
829 LOC_UNDEF,
830
831 /* Value is constant int SYMBOL_VALUE, host byteorder. */
832
833 LOC_CONST,
834
835 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
836
837 LOC_STATIC,
838
839 /* Value is in register. SYMBOL_VALUE is the register number
840 in the original debug format. SYMBOL_REGISTER_OPS holds a
841 function that can be called to transform this into the
842 actual register number this represents in a specific target
843 architecture (gdbarch).
844
845 For some symbol formats (stabs, for some compilers at least),
846 the compiler generates two symbols, an argument and a register.
847 In some cases we combine them to a single LOC_REGISTER in symbol
848 reading, but currently not for all cases (e.g. it's passed on the
849 stack and then loaded into a register). */
850
851 LOC_REGISTER,
852
853 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
854
855 LOC_ARG,
856
857 /* Value address is at SYMBOL_VALUE offset in arglist. */
858
859 LOC_REF_ARG,
860
861 /* Value is in specified register. Just like LOC_REGISTER except the
862 register holds the address of the argument instead of the argument
863 itself. This is currently used for the passing of structs and unions
864 on sparc and hppa. It is also used for call by reference where the
865 address is in a register, at least by mipsread.c. */
866
867 LOC_REGPARM_ADDR,
868
869 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
870
871 LOC_LOCAL,
872
873 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
874 STRUCT_DOMAIN all have this class. */
875
876 LOC_TYPEDEF,
877
878 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
879
880 LOC_LABEL,
881
882 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
883 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
884 of the block. Function names have this class. */
885
886 LOC_BLOCK,
887
888 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
889 target byte order. */
890
891 LOC_CONST_BYTES,
892
893 /* Value is at fixed address, but the address of the variable has
894 to be determined from the minimal symbol table whenever the
895 variable is referenced.
896 This happens if debugging information for a global symbol is
897 emitted and the corresponding minimal symbol is defined
898 in another object file or runtime common storage.
899 The linker might even remove the minimal symbol if the global
900 symbol is never referenced, in which case the symbol remains
901 unresolved.
902
903 GDB would normally find the symbol in the minimal symbol table if it will
904 not find it in the full symbol table. But a reference to an external
905 symbol in a local block shadowing other definition requires full symbol
906 without possibly having its address available for LOC_STATIC. Testcase
907 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
908
909 This is also used for thread local storage (TLS) variables. In this case,
910 the address of the TLS variable must be determined when the variable is
911 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
912 of the TLS variable in the thread local storage of the shared
913 library/object. */
914
915 LOC_UNRESOLVED,
916
917 /* The variable does not actually exist in the program.
918 The value is ignored. */
919
920 LOC_OPTIMIZED_OUT,
921
922 /* The variable's address is computed by a set of location
923 functions (see "struct symbol_computed_ops" below). */
924 LOC_COMPUTED,
925
926 /* The variable uses general_symbol_info->value->common_block field.
927 It also always uses COMMON_BLOCK_DOMAIN. */
928 LOC_COMMON_BLOCK,
929
930 /* Not used, just notes the boundary of the enum. */
931 LOC_FINAL_VALUE
932 };
933
934 /* The number of bits needed for values in enum address_class, with some
935 padding for reasonable growth, and room for run-time registered address
936 classes. See symtab.c:MAX_SYMBOL_IMPLS.
937 This is a #define so that we can have a assertion elsewhere to
938 verify that we have reserved enough space for synthetic address
939 classes. */
940 #define SYMBOL_ACLASS_BITS 5
941 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
942
943 /* The methods needed to implement LOC_COMPUTED. These methods can
944 use the symbol's .aux_value for additional per-symbol information.
945
946 At present this is only used to implement location expressions. */
947
948 struct symbol_computed_ops
949 {
950
951 /* Return the value of the variable SYMBOL, relative to the stack
952 frame FRAME. If the variable has been optimized out, return
953 zero.
954
955 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
956 FRAME may be zero. */
957
958 struct value *(*read_variable) (struct symbol * symbol,
959 struct frame_info * frame);
960
961 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
962 entry. SYMBOL should be a function parameter, otherwise
963 NO_ENTRY_VALUE_ERROR will be thrown. */
964 struct value *(*read_variable_at_entry) (struct symbol *symbol,
965 struct frame_info *frame);
966
967 /* Find the "symbol_needs_kind" value for the given symbol. This
968 value determines whether reading the symbol needs memory (e.g., a
969 global variable), just registers (a thread-local), or a frame (a
970 local variable). */
971 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
972
973 /* Write to STREAM a natural-language description of the location of
974 SYMBOL, in the context of ADDR. */
975 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
976 struct ui_file * stream);
977
978 /* Non-zero if this symbol's address computation is dependent on PC. */
979 unsigned char location_has_loclist;
980
981 /* Tracepoint support. Append bytecodes to the tracepoint agent
982 expression AX that push the address of the object SYMBOL. Set
983 VALUE appropriately. Note --- for objects in registers, this
984 needn't emit any code; as long as it sets VALUE properly, then
985 the caller will generate the right code in the process of
986 treating this as an lvalue or rvalue. */
987
988 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
989 struct axs_value *value);
990
991 /* Generate C code to compute the location of SYMBOL. The C code is
992 emitted to STREAM. GDBARCH is the current architecture and PC is
993 the PC at which SYMBOL's location should be evaluated.
994 REGISTERS_USED is a vector indexed by register number; the
995 generator function should set an element in this vector if the
996 corresponding register is needed by the location computation.
997 The generated C code must assign the location to a local
998 variable; this variable's name is RESULT_NAME. */
999
1000 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1001 struct gdbarch *gdbarch,
1002 unsigned char *registers_used,
1003 CORE_ADDR pc, const char *result_name);
1004
1005 };
1006
1007 /* The methods needed to implement LOC_BLOCK for inferior functions.
1008 These methods can use the symbol's .aux_value for additional
1009 per-symbol information. */
1010
1011 struct symbol_block_ops
1012 {
1013 /* Fill in *START and *LENGTH with DWARF block data of function
1014 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1015 zero if such location is not valid for PC; *START is left
1016 uninitialized in such case. */
1017 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1018 const gdb_byte **start, size_t *length);
1019
1020 /* Return the frame base address. FRAME is the frame for which we want to
1021 compute the base address while FRAMEFUNC is the symbol for the
1022 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1023 information we need).
1024
1025 This method is designed to work with static links (nested functions
1026 handling). Static links are function properties whose evaluation returns
1027 the frame base address for the enclosing frame. However, there are
1028 multiple definitions for "frame base": the content of the frame base
1029 register, the CFA as defined by DWARF unwinding information, ...
1030
1031 So this specific method is supposed to compute the frame base address such
1032 as for nested functions, the static link computes the same address. For
1033 instance, considering DWARF debugging information, the static link is
1034 computed with DW_AT_static_link and this method must be used to compute
1035 the corresponding DW_AT_frame_base attribute. */
1036 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1037 struct frame_info *frame);
1038 };
1039
1040 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1041
1042 struct symbol_register_ops
1043 {
1044 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1045 };
1046
1047 /* Objects of this type are used to find the address class and the
1048 various computed ops vectors of a symbol. */
1049
1050 struct symbol_impl
1051 {
1052 enum address_class aclass;
1053
1054 /* Used with LOC_COMPUTED. */
1055 const struct symbol_computed_ops *ops_computed;
1056
1057 /* Used with LOC_BLOCK. */
1058 const struct symbol_block_ops *ops_block;
1059
1060 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1061 const struct symbol_register_ops *ops_register;
1062 };
1063
1064 /* struct symbol has some subclasses. This enum is used to
1065 differentiate between them. */
1066
1067 enum symbol_subclass_kind
1068 {
1069 /* Plain struct symbol. */
1070 SYMBOL_NONE,
1071
1072 /* struct template_symbol. */
1073 SYMBOL_TEMPLATE,
1074
1075 /* struct rust_vtable_symbol. */
1076 SYMBOL_RUST_VTABLE
1077 };
1078
1079 /* This structure is space critical. See space comments at the top. */
1080
1081 struct symbol : public general_symbol_info, public allocate_on_obstack
1082 {
1083 symbol ()
1084 /* Class-initialization of bitfields is only allowed in C++20. */
1085 : domain (UNDEF_DOMAIN),
1086 aclass_index (0),
1087 is_objfile_owned (0),
1088 is_argument (0),
1089 is_inlined (0),
1090 maybe_copied (0),
1091 subclass (SYMBOL_NONE)
1092 {
1093 /* We can't use an initializer list for members of a base class, and
1094 general_symbol_info needs to stay a POD type. */
1095 name = nullptr;
1096 value.ivalue = 0;
1097 language_specific.obstack = nullptr;
1098 language = language_unknown;
1099 ada_mangled = 0;
1100 section = 0;
1101 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1102 initialization of unions, so we initialize it manually here. */
1103 owner.symtab = nullptr;
1104 }
1105
1106 /* Data type of value */
1107
1108 struct type *type = nullptr;
1109
1110 /* The owner of this symbol.
1111 Which one to use is defined by symbol.is_objfile_owned. */
1112
1113 union
1114 {
1115 /* The symbol table containing this symbol. This is the file associated
1116 with LINE. It can be NULL during symbols read-in but it is never NULL
1117 during normal operation. */
1118 struct symtab *symtab;
1119
1120 /* For types defined by the architecture. */
1121 struct gdbarch *arch;
1122 } owner;
1123
1124 /* Domain code. */
1125
1126 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1127
1128 /* Address class. This holds an index into the 'symbol_impls'
1129 table. The actual enum address_class value is stored there,
1130 alongside any per-class ops vectors. */
1131
1132 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1133
1134 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1135 Otherwise symbol is arch-owned, use owner.arch. */
1136
1137 unsigned int is_objfile_owned : 1;
1138
1139 /* Whether this is an argument. */
1140
1141 unsigned is_argument : 1;
1142
1143 /* Whether this is an inlined function (class LOC_BLOCK only). */
1144 unsigned is_inlined : 1;
1145
1146 /* For LOC_STATIC only, if this is set, then the symbol might be
1147 subject to copy relocation. In this case, a minimal symbol
1148 matching the symbol's linkage name is first looked for in the
1149 main objfile. If found, then that address is used; otherwise the
1150 address in this symbol is used. */
1151
1152 unsigned maybe_copied : 1;
1153
1154 /* The concrete type of this symbol. */
1155
1156 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1157
1158 /* Line number of this symbol's definition, except for inlined
1159 functions. For an inlined function (class LOC_BLOCK and
1160 SYMBOL_INLINED set) this is the line number of the function's call
1161 site. Inlined function symbols are not definitions, and they are
1162 never found by symbol table lookup.
1163 If this symbol is arch-owned, LINE shall be zero.
1164
1165 FIXME: Should we really make the assumption that nobody will try
1166 to debug files longer than 64K lines? What about machine
1167 generated programs? */
1168
1169 unsigned short line = 0;
1170
1171 /* An arbitrary data pointer, allowing symbol readers to record
1172 additional information on a per-symbol basis. Note that this data
1173 must be allocated using the same obstack as the symbol itself. */
1174 /* So far it is only used by:
1175 LOC_COMPUTED: to find the location information
1176 LOC_BLOCK (DWARF2 function): information used internally by the
1177 DWARF 2 code --- specifically, the location expression for the frame
1178 base for this function. */
1179 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1180 to add a magic symbol to the block containing this information,
1181 or to have a generic debug info annotation slot for symbols. */
1182
1183 void *aux_value = nullptr;
1184
1185 struct symbol *hash_next = nullptr;
1186 };
1187
1188 /* Several lookup functions return both a symbol and the block in which the
1189 symbol is found. This structure is used in these cases. */
1190
1191 struct block_symbol
1192 {
1193 /* The symbol that was found, or NULL if no symbol was found. */
1194 struct symbol *symbol;
1195
1196 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1197 defined. */
1198 const struct block *block;
1199 };
1200
1201 extern const struct symbol_impl *symbol_impls;
1202
1203 /* Note: There is no accessor macro for symbol.owner because it is
1204 "private". */
1205
1206 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1207 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1208 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1209 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1210 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1211 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1212 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1213 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1214 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1215 #define SYMBOL_TYPE(symbol) (symbol)->type
1216 #define SYMBOL_LINE(symbol) (symbol)->line
1217 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1218 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1219 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1220 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1221
1222 extern int register_symbol_computed_impl (enum address_class,
1223 const struct symbol_computed_ops *);
1224
1225 extern int register_symbol_block_impl (enum address_class aclass,
1226 const struct symbol_block_ops *ops);
1227
1228 extern int register_symbol_register_impl (enum address_class,
1229 const struct symbol_register_ops *);
1230
1231 /* Return the OBJFILE of SYMBOL.
1232 It is an error to call this if symbol.is_objfile_owned is false, which
1233 only happens for architecture-provided types. */
1234
1235 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1236
1237 /* Return the ARCH of SYMBOL. */
1238
1239 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1240
1241 /* Return the SYMTAB of SYMBOL.
1242 It is an error to call this if symbol.is_objfile_owned is false, which
1243 only happens for architecture-provided types. */
1244
1245 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1246
1247 /* Set the symtab of SYMBOL to SYMTAB.
1248 It is an error to call this if symbol.is_objfile_owned is false, which
1249 only happens for architecture-provided types. */
1250
1251 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1252
1253 /* An instance of this type is used to represent a C++ template
1254 function. A symbol is really of this type iff
1255 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1256
1257 struct template_symbol : public symbol
1258 {
1259 /* The number of template arguments. */
1260 int n_template_arguments = 0;
1261
1262 /* The template arguments. This is an array with
1263 N_TEMPLATE_ARGUMENTS elements. */
1264 struct symbol **template_arguments = nullptr;
1265 };
1266
1267 /* A symbol that represents a Rust virtual table object. */
1268
1269 struct rust_vtable_symbol : public symbol
1270 {
1271 /* The concrete type for which this vtable was created; that is, in
1272 "impl Trait for Type", this is "Type". */
1273 struct type *concrete_type = nullptr;
1274 };
1275
1276 \f
1277 /* Each item represents a line-->pc (or the reverse) mapping. This is
1278 somewhat more wasteful of space than one might wish, but since only
1279 the files which are actually debugged are read in to core, we don't
1280 waste much space. */
1281
1282 struct linetable_entry
1283 {
1284 int line;
1285 CORE_ADDR pc;
1286 };
1287
1288 /* The order of entries in the linetable is significant. They should
1289 be sorted by increasing values of the pc field. If there is more than
1290 one entry for a given pc, then I'm not sure what should happen (and
1291 I not sure whether we currently handle it the best way).
1292
1293 Example: a C for statement generally looks like this
1294
1295 10 0x100 - for the init/test part of a for stmt.
1296 20 0x200
1297 30 0x300
1298 10 0x400 - for the increment part of a for stmt.
1299
1300 If an entry has a line number of zero, it marks the start of a PC
1301 range for which no line number information is available. It is
1302 acceptable, though wasteful of table space, for such a range to be
1303 zero length. */
1304
1305 struct linetable
1306 {
1307 int nitems;
1308
1309 /* Actually NITEMS elements. If you don't like this use of the
1310 `struct hack', you can shove it up your ANSI (seriously, if the
1311 committee tells us how to do it, we can probably go along). */
1312 struct linetable_entry item[1];
1313 };
1314
1315 /* How to relocate the symbols from each section in a symbol file.
1316 Each struct contains an array of offsets.
1317 The ordering and meaning of the offsets is file-type-dependent;
1318 typically it is indexed by section numbers or symbol types or
1319 something like that.
1320
1321 To give us flexibility in changing the internal representation
1322 of these offsets, the ANOFFSET macro must be used to insert and
1323 extract offset values in the struct. */
1324
1325 struct section_offsets
1326 {
1327 CORE_ADDR offsets[1]; /* As many as needed. */
1328 };
1329
1330 #define ANOFFSET(secoff, whichone) \
1331 ((whichone == -1) \
1332 ? (internal_error (__FILE__, __LINE__, \
1333 _("Section index is uninitialized")), -1) \
1334 : secoff->offsets[whichone])
1335
1336 /* The size of a section_offsets table for N sections. */
1337 #define SIZEOF_N_SECTION_OFFSETS(n) \
1338 (sizeof (struct section_offsets) \
1339 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1340
1341 /* Each source file or header is represented by a struct symtab.
1342 The name "symtab" is historical, another name for it is "filetab".
1343 These objects are chained through the `next' field. */
1344
1345 struct symtab
1346 {
1347 /* Unordered chain of all filetabs in the compunit, with the exception
1348 that the "main" source file is the first entry in the list. */
1349
1350 struct symtab *next;
1351
1352 /* Backlink to containing compunit symtab. */
1353
1354 struct compunit_symtab *compunit_symtab;
1355
1356 /* Table mapping core addresses to line numbers for this file.
1357 Can be NULL if none. Never shared between different symtabs. */
1358
1359 struct linetable *linetable;
1360
1361 /* Name of this source file. This pointer is never NULL. */
1362
1363 const char *filename;
1364
1365 /* Language of this source file. */
1366
1367 enum language language;
1368
1369 /* Full name of file as found by searching the source path.
1370 NULL if not yet known. */
1371
1372 char *fullname;
1373 };
1374
1375 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1376 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1377 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1378 #define SYMTAB_BLOCKVECTOR(symtab) \
1379 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1380 #define SYMTAB_OBJFILE(symtab) \
1381 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1382 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1383 #define SYMTAB_DIRNAME(symtab) \
1384 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1385
1386 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1387 as the list of all source files (what gdb has historically associated with
1388 the term "symtab").
1389 Additional information is recorded here that is common to all symtabs in a
1390 compilation unit (DWARF or otherwise).
1391
1392 Example:
1393 For the case of a program built out of these files:
1394
1395 foo.c
1396 foo1.h
1397 foo2.h
1398 bar.c
1399 foo1.h
1400 bar.h
1401
1402 This is recorded as:
1403
1404 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1405 | |
1406 v v
1407 foo.c bar.c
1408 | |
1409 v v
1410 foo1.h foo1.h
1411 | |
1412 v v
1413 foo2.h bar.h
1414 | |
1415 v v
1416 NULL NULL
1417
1418 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1419 and the files foo.c, etc. are struct symtab objects. */
1420
1421 struct compunit_symtab
1422 {
1423 /* Unordered chain of all compunit symtabs of this objfile. */
1424 struct compunit_symtab *next;
1425
1426 /* Object file from which this symtab information was read. */
1427 struct objfile *objfile;
1428
1429 /* Name of the symtab.
1430 This is *not* intended to be a usable filename, and is
1431 for debugging purposes only. */
1432 const char *name;
1433
1434 /* Unordered list of file symtabs, except that by convention the "main"
1435 source file (e.g., .c, .cc) is guaranteed to be first.
1436 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1437 or header (e.g., .h). */
1438 struct symtab *filetabs;
1439
1440 /* Last entry in FILETABS list.
1441 Subfiles are added to the end of the list so they accumulate in order,
1442 with the main source subfile living at the front.
1443 The main reason is so that the main source file symtab is at the head
1444 of the list, and the rest appear in order for debugging convenience. */
1445 struct symtab *last_filetab;
1446
1447 /* Non-NULL string that identifies the format of the debugging information,
1448 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1449 for automated testing of gdb but may also be information that is
1450 useful to the user. */
1451 const char *debugformat;
1452
1453 /* String of producer version information, or NULL if we don't know. */
1454 const char *producer;
1455
1456 /* Directory in which it was compiled, or NULL if we don't know. */
1457 const char *dirname;
1458
1459 /* List of all symbol scope blocks for this symtab. It is shared among
1460 all symtabs in a given compilation unit. */
1461 const struct blockvector *blockvector;
1462
1463 /* Section in objfile->section_offsets for the blockvector and
1464 the linetable. Probably always SECT_OFF_TEXT. */
1465 int block_line_section;
1466
1467 /* Symtab has been compiled with both optimizations and debug info so that
1468 GDB may stop skipping prologues as variables locations are valid already
1469 at function entry points. */
1470 unsigned int locations_valid : 1;
1471
1472 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1473 instruction). This is supported by GCC since 4.5.0. */
1474 unsigned int epilogue_unwind_valid : 1;
1475
1476 /* struct call_site entries for this compilation unit or NULL. */
1477 htab_t call_site_htab;
1478
1479 /* The macro table for this symtab. Like the blockvector, this
1480 is shared between different symtabs in a given compilation unit.
1481 It's debatable whether it *should* be shared among all the symtabs in
1482 the given compilation unit, but it currently is. */
1483 struct macro_table *macro_table;
1484
1485 /* If non-NULL, then this points to a NULL-terminated vector of
1486 included compunits. When searching the static or global
1487 block of this compunit, the corresponding block of all
1488 included compunits will also be searched. Note that this
1489 list must be flattened -- the symbol reader is responsible for
1490 ensuring that this vector contains the transitive closure of all
1491 included compunits. */
1492 struct compunit_symtab **includes;
1493
1494 /* If this is an included compunit, this points to one includer
1495 of the table. This user is considered the canonical compunit
1496 containing this one. An included compunit may itself be
1497 included by another. */
1498 struct compunit_symtab *user;
1499 };
1500
1501 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1502 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1503 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1504 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1505 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1506 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1507 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1508 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1509 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1510 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1511 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1512
1513 /* A range adapter to allowing iterating over all the file tables
1514 within a compunit. */
1515
1516 struct compunit_filetabs : public next_adapter<struct symtab>
1517 {
1518 compunit_filetabs (struct compunit_symtab *cu)
1519 : next_adapter<struct symtab> (cu->filetabs)
1520 {
1521 }
1522 };
1523
1524 /* Return the primary symtab of CUST. */
1525
1526 extern struct symtab *
1527 compunit_primary_filetab (const struct compunit_symtab *cust);
1528
1529 /* Return the language of CUST. */
1530
1531 extern enum language compunit_language (const struct compunit_symtab *cust);
1532
1533 \f
1534
1535 /* The virtual function table is now an array of structures which have the
1536 form { int16 offset, delta; void *pfn; }.
1537
1538 In normal virtual function tables, OFFSET is unused.
1539 DELTA is the amount which is added to the apparent object's base
1540 address in order to point to the actual object to which the
1541 virtual function should be applied.
1542 PFN is a pointer to the virtual function.
1543
1544 Note that this macro is g++ specific (FIXME). */
1545
1546 #define VTBL_FNADDR_OFFSET 2
1547
1548 /* External variables and functions for the objects described above. */
1549
1550 /* True if we are nested inside psymtab_to_symtab. */
1551
1552 extern int currently_reading_symtab;
1553
1554 /* symtab.c lookup functions */
1555
1556 extern const char multiple_symbols_ask[];
1557 extern const char multiple_symbols_all[];
1558 extern const char multiple_symbols_cancel[];
1559
1560 const char *multiple_symbols_select_mode (void);
1561
1562 bool symbol_matches_domain (enum language symbol_language,
1563 domain_enum symbol_domain,
1564 domain_enum domain);
1565
1566 /* lookup a symbol table by source file name. */
1567
1568 extern struct symtab *lookup_symtab (const char *);
1569
1570 /* An object of this type is passed as the 'is_a_field_of_this'
1571 argument to lookup_symbol and lookup_symbol_in_language. */
1572
1573 struct field_of_this_result
1574 {
1575 /* The type in which the field was found. If this is NULL then the
1576 symbol was not found in 'this'. If non-NULL, then one of the
1577 other fields will be non-NULL as well. */
1578
1579 struct type *type;
1580
1581 /* If the symbol was found as an ordinary field of 'this', then this
1582 is non-NULL and points to the particular field. */
1583
1584 struct field *field;
1585
1586 /* If the symbol was found as a function field of 'this', then this
1587 is non-NULL and points to the particular field. */
1588
1589 struct fn_fieldlist *fn_field;
1590 };
1591
1592 /* Find the definition for a specified symbol name NAME
1593 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1594 if non-NULL or from global/static blocks if BLOCK is NULL.
1595 Returns the struct symbol pointer, or NULL if no symbol is found.
1596 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1597 NAME is a field of the current implied argument `this'. If so fill in the
1598 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1599 The symbol's section is fixed up if necessary. */
1600
1601 extern struct block_symbol
1602 lookup_symbol_in_language (const char *,
1603 const struct block *,
1604 const domain_enum,
1605 enum language,
1606 struct field_of_this_result *);
1607
1608 /* Same as lookup_symbol_in_language, but using the current language. */
1609
1610 extern struct block_symbol lookup_symbol (const char *,
1611 const struct block *,
1612 const domain_enum,
1613 struct field_of_this_result *);
1614
1615 /* Find the definition for a specified symbol search name in domain
1616 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1617 global/static blocks if BLOCK is NULL. The passed-in search name
1618 should not come from the user; instead it should already be a
1619 search name as retrieved from a search_name () call. See definition of
1620 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1621 pointer, or NULL if no symbol is found. The symbol's section is
1622 fixed up if necessary. */
1623
1624 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1625 const struct block *block,
1626 domain_enum domain);
1627
1628 /* A default version of lookup_symbol_nonlocal for use by languages
1629 that can't think of anything better to do.
1630 This implements the C lookup rules. */
1631
1632 extern struct block_symbol
1633 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1634 const char *,
1635 const struct block *,
1636 const domain_enum);
1637
1638 /* Some helper functions for languages that need to write their own
1639 lookup_symbol_nonlocal functions. */
1640
1641 /* Lookup a symbol in the static block associated to BLOCK, if there
1642 is one; do nothing if BLOCK is NULL or a global block.
1643 Upon success fixes up the symbol's section if necessary. */
1644
1645 extern struct block_symbol
1646 lookup_symbol_in_static_block (const char *name,
1647 const struct block *block,
1648 const domain_enum domain);
1649
1650 /* Search all static file-level symbols for NAME from DOMAIN.
1651 Upon success fixes up the symbol's section if necessary. */
1652
1653 extern struct block_symbol lookup_static_symbol (const char *name,
1654 const domain_enum domain);
1655
1656 /* Lookup a symbol in all files' global blocks.
1657
1658 If BLOCK is non-NULL then it is used for two things:
1659 1) If a target-specific lookup routine for libraries exists, then use the
1660 routine for the objfile of BLOCK, and
1661 2) The objfile of BLOCK is used to assist in determining the search order
1662 if the target requires it.
1663 See gdbarch_iterate_over_objfiles_in_search_order.
1664
1665 Upon success fixes up the symbol's section if necessary. */
1666
1667 extern struct block_symbol
1668 lookup_global_symbol (const char *name,
1669 const struct block *block,
1670 const domain_enum domain);
1671
1672 /* Lookup a symbol in block BLOCK.
1673 Upon success fixes up the symbol's section if necessary. */
1674
1675 extern struct symbol *
1676 lookup_symbol_in_block (const char *name,
1677 symbol_name_match_type match_type,
1678 const struct block *block,
1679 const domain_enum domain);
1680
1681 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1682 found, or NULL if not found. */
1683
1684 extern struct block_symbol
1685 lookup_language_this (const struct language_defn *lang,
1686 const struct block *block);
1687
1688 /* Lookup a [struct, union, enum] by name, within a specified block. */
1689
1690 extern struct type *lookup_struct (const char *, const struct block *);
1691
1692 extern struct type *lookup_union (const char *, const struct block *);
1693
1694 extern struct type *lookup_enum (const char *, const struct block *);
1695
1696 /* from blockframe.c: */
1697
1698 /* lookup the function symbol corresponding to the address. The
1699 return value will not be an inlined function; the containing
1700 function will be returned instead. */
1701
1702 extern struct symbol *find_pc_function (CORE_ADDR);
1703
1704 /* lookup the function corresponding to the address and section. The
1705 return value will not be an inlined function; the containing
1706 function will be returned instead. */
1707
1708 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1709
1710 /* lookup the function symbol corresponding to the address and
1711 section. The return value will be the closest enclosing function,
1712 which might be an inline function. */
1713
1714 extern struct symbol *find_pc_sect_containing_function
1715 (CORE_ADDR pc, struct obj_section *section);
1716
1717 /* Find the symbol at the given address. Returns NULL if no symbol
1718 found. Only exact matches for ADDRESS are considered. */
1719
1720 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1721
1722 /* Finds the "function" (text symbol) that is smaller than PC but
1723 greatest of all of the potential text symbols in SECTION. Sets
1724 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1725 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1726 function (exclusive). If the optional parameter BLOCK is non-null,
1727 then set *BLOCK to the address of the block corresponding to the
1728 function symbol, if such a symbol could be found during the lookup;
1729 nullptr is used as a return value for *BLOCK if no block is found.
1730 This function either succeeds or fails (not halfway succeeds). If
1731 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1732 information and returns true. If it fails, it sets *NAME, *ADDRESS
1733 and *ENDADDR to zero and returns false.
1734
1735 If the function in question occupies non-contiguous ranges,
1736 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1737 to the start and end of the range in which PC is found. Thus
1738 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1739 from other functions might be found).
1740
1741 This property allows find_pc_partial_function to be used (as it had
1742 been prior to the introduction of non-contiguous range support) by
1743 various tdep files for finding a start address and limit address
1744 for prologue analysis. This still isn't ideal, however, because we
1745 probably shouldn't be doing prologue analysis (in which
1746 instructions are scanned to determine frame size and stack layout)
1747 for any range that doesn't contain the entry pc. Moreover, a good
1748 argument can be made that prologue analysis ought to be performed
1749 starting from the entry pc even when PC is within some other range.
1750 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1751 limits of the entry pc range, but that will cause the
1752 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1753 callers of find_pc_partial_function expect this condition to hold.
1754
1755 Callers which require the start and/or end addresses for the range
1756 containing the entry pc should instead call
1757 find_function_entry_range_from_pc. */
1758
1759 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1760 CORE_ADDR *address, CORE_ADDR *endaddr,
1761 const struct block **block = nullptr);
1762
1763 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1764 set to start and end addresses of the range containing the entry pc.
1765
1766 Note that it is not necessarily the case that (for non-NULL ADDRESS
1767 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1768 hold.
1769
1770 See comment for find_pc_partial_function, above, for further
1771 explanation. */
1772
1773 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1774 const char **name,
1775 CORE_ADDR *address,
1776 CORE_ADDR *endaddr);
1777
1778 /* Return the type of a function with its first instruction exactly at
1779 the PC address. Return NULL otherwise. */
1780
1781 extern struct type *find_function_type (CORE_ADDR pc);
1782
1783 /* See if we can figure out the function's actual type from the type
1784 that the resolver returns. RESOLVER_FUNADDR is the address of the
1785 ifunc resolver. */
1786
1787 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1788
1789 /* Find the GNU ifunc minimal symbol that matches SYM. */
1790 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1791
1792 extern void clear_pc_function_cache (void);
1793
1794 /* Expand symtab containing PC, SECTION if not already expanded. */
1795
1796 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1797
1798 /* lookup full symbol table by address. */
1799
1800 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1801
1802 /* lookup full symbol table by address and section. */
1803
1804 extern struct compunit_symtab *
1805 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1806
1807 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1808
1809 extern void reread_symbols (void);
1810
1811 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1812 The type returned must not be opaque -- i.e., must have at least one field
1813 defined. */
1814
1815 extern struct type *lookup_transparent_type (const char *);
1816
1817 extern struct type *basic_lookup_transparent_type (const char *);
1818
1819 /* Macro for name of symbol to indicate a file compiled with gcc. */
1820 #ifndef GCC_COMPILED_FLAG_SYMBOL
1821 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1822 #endif
1823
1824 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1825 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1826 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1827 #endif
1828
1829 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1830
1831 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1832 for ELF symbol files. */
1833
1834 struct gnu_ifunc_fns
1835 {
1836 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1837 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1838
1839 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1840 bool (*gnu_ifunc_resolve_name) (const char *function_name,
1841 CORE_ADDR *function_address_p);
1842
1843 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1844 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1845
1846 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1847 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1848 };
1849
1850 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1851 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1852 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1853 #define gnu_ifunc_resolver_return_stop \
1854 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1855
1856 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1857
1858 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1859
1860 struct symtab_and_line
1861 {
1862 /* The program space of this sal. */
1863 struct program_space *pspace = NULL;
1864
1865 struct symtab *symtab = NULL;
1866 struct symbol *symbol = NULL;
1867 struct obj_section *section = NULL;
1868 struct minimal_symbol *msymbol = NULL;
1869 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1870 0 is never a valid line number; it is used to indicate that line number
1871 information is not available. */
1872 int line = 0;
1873
1874 CORE_ADDR pc = 0;
1875 CORE_ADDR end = 0;
1876 bool explicit_pc = false;
1877 bool explicit_line = false;
1878
1879 /* The probe associated with this symtab_and_line. */
1880 probe *prob = NULL;
1881 /* If PROBE is not NULL, then this is the objfile in which the probe
1882 originated. */
1883 struct objfile *objfile = NULL;
1884 };
1885
1886 \f
1887
1888 /* Given a pc value, return line number it is in. Second arg nonzero means
1889 if pc is on the boundary use the previous statement's line number. */
1890
1891 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1892
1893 /* Same function, but specify a section as well as an address. */
1894
1895 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1896 struct obj_section *, int);
1897
1898 /* Wrapper around find_pc_line to just return the symtab. */
1899
1900 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1901
1902 /* Given a symtab and line number, return the pc there. */
1903
1904 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
1905
1906 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1907 CORE_ADDR *);
1908
1909 extern void resolve_sal_pc (struct symtab_and_line *);
1910
1911 /* solib.c */
1912
1913 extern void clear_solib (void);
1914
1915 /* The reason we're calling into a completion match list collector
1916 function. */
1917 enum class complete_symbol_mode
1918 {
1919 /* Completing an expression. */
1920 EXPRESSION,
1921
1922 /* Completing a linespec. */
1923 LINESPEC,
1924 };
1925
1926 extern void default_collect_symbol_completion_matches_break_on
1927 (completion_tracker &tracker,
1928 complete_symbol_mode mode,
1929 symbol_name_match_type name_match_type,
1930 const char *text, const char *word, const char *break_on,
1931 enum type_code code);
1932 extern void default_collect_symbol_completion_matches
1933 (completion_tracker &tracker,
1934 complete_symbol_mode,
1935 symbol_name_match_type name_match_type,
1936 const char *,
1937 const char *,
1938 enum type_code);
1939 extern void collect_symbol_completion_matches
1940 (completion_tracker &tracker,
1941 complete_symbol_mode mode,
1942 symbol_name_match_type name_match_type,
1943 const char *, const char *);
1944 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1945 const char *, const char *,
1946 enum type_code);
1947
1948 extern void collect_file_symbol_completion_matches
1949 (completion_tracker &tracker,
1950 complete_symbol_mode,
1951 symbol_name_match_type name_match_type,
1952 const char *, const char *, const char *);
1953
1954 extern completion_list
1955 make_source_files_completion_list (const char *, const char *);
1956
1957 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1958
1959 extern bool symbol_is_function_or_method (symbol *sym);
1960
1961 /* Return whether MSYMBOL is a function/method, as opposed to a data
1962 symbol */
1963
1964 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1965
1966 /* Return whether SYM should be skipped in completion mode MODE. In
1967 linespec mode, we're only interested in functions/methods. */
1968
1969 template<typename Symbol>
1970 static bool
1971 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1972 {
1973 return (mode == complete_symbol_mode::LINESPEC
1974 && !symbol_is_function_or_method (sym));
1975 }
1976
1977 /* symtab.c */
1978
1979 bool matching_obj_sections (struct obj_section *, struct obj_section *);
1980
1981 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
1982
1983 /* Given a function symbol SYM, find the symtab and line for the start
1984 of the function. If FUNFIRSTLINE is true, we want the first line
1985 of real code inside the function. */
1986 extern symtab_and_line find_function_start_sal (symbol *sym, bool
1987 funfirstline);
1988
1989 /* Same, but start with a function address/section instead of a
1990 symbol. */
1991 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
1992 obj_section *section,
1993 bool funfirstline);
1994
1995 extern void skip_prologue_sal (struct symtab_and_line *);
1996
1997 /* symtab.c */
1998
1999 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2000 CORE_ADDR func_addr);
2001
2002 extern struct symbol *fixup_symbol_section (struct symbol *,
2003 struct objfile *);
2004
2005 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2006 the same address. Returns NULL if not found. This is necessary in
2007 case a function is an alias to some other function, because debug
2008 information is only emitted for the alias target function's
2009 definition, not for the alias. */
2010 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2011
2012 /* Symbol searching */
2013
2014 /* When using the symbol_searcher struct to search for symbols, a vector of
2015 the following structs is returned. */
2016 struct symbol_search
2017 {
2018 symbol_search (int block_, struct symbol *symbol_)
2019 : block (block_),
2020 symbol (symbol_)
2021 {
2022 msymbol.minsym = nullptr;
2023 msymbol.objfile = nullptr;
2024 }
2025
2026 symbol_search (int block_, struct minimal_symbol *minsym,
2027 struct objfile *objfile)
2028 : block (block_),
2029 symbol (nullptr)
2030 {
2031 msymbol.minsym = minsym;
2032 msymbol.objfile = objfile;
2033 }
2034
2035 bool operator< (const symbol_search &other) const
2036 {
2037 return compare_search_syms (*this, other) < 0;
2038 }
2039
2040 bool operator== (const symbol_search &other) const
2041 {
2042 return compare_search_syms (*this, other) == 0;
2043 }
2044
2045 /* The block in which the match was found. Could be, for example,
2046 STATIC_BLOCK or GLOBAL_BLOCK. */
2047 int block;
2048
2049 /* Information describing what was found.
2050
2051 If symbol is NOT NULL, then information was found for this match. */
2052 struct symbol *symbol;
2053
2054 /* If msymbol is non-null, then a match was made on something for
2055 which only minimal_symbols exist. */
2056 struct bound_minimal_symbol msymbol;
2057
2058 private:
2059
2060 static int compare_search_syms (const symbol_search &sym_a,
2061 const symbol_search &sym_b);
2062 };
2063
2064 /* In order to search for global symbols of a particular kind matching
2065 particular regular expressions, create an instance of this structure and
2066 call the SEARCH member function. */
2067 class global_symbol_searcher
2068 {
2069 public:
2070
2071 /* Constructor. */
2072 global_symbol_searcher (enum search_domain kind,
2073 const char *symbol_name_regexp)
2074 : m_kind (kind),
2075 m_symbol_name_regexp (symbol_name_regexp)
2076 {
2077 /* The symbol searching is designed to only find one kind of thing. */
2078 gdb_assert (m_kind != ALL_DOMAIN);
2079 }
2080
2081 /* Set the optional regexp that matches against the symbol type. */
2082 void set_symbol_type_regexp (const char *regexp)
2083 {
2084 m_symbol_type_regexp = regexp;
2085 }
2086
2087 /* Set the flag to exclude minsyms from the search results. */
2088 void set_exclude_minsyms (bool exclude_minsyms)
2089 {
2090 m_exclude_minsyms = exclude_minsyms;
2091 }
2092
2093 /* Search the symbols from all objfiles in the current program space
2094 looking for matches as defined by the current state of this object.
2095
2096 Within each file the results are sorted locally; each symtab's global
2097 and static blocks are separately alphabetized. Duplicate entries are
2098 removed. */
2099 std::vector<symbol_search> search () const;
2100
2101 /* The set of source files to search in for matching symbols. This is
2102 currently public so that it can be populated after this object has
2103 been constructed. */
2104 std::vector<const char *> filenames;
2105
2106 private:
2107 /* The kind of symbols are we searching for.
2108 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2109 names, and constants (enums).
2110 FUNCTIONS_DOMAIN - Search all functions..
2111 TYPES_DOMAIN - Search all type names.
2112 MODULES_DOMAIN - Search all Fortran modules.
2113 ALL_DOMAIN - Not valid for this function. */
2114 enum search_domain m_kind;
2115
2116 /* Regular expression to match against the symbol name. */
2117 const char *m_symbol_name_regexp = nullptr;
2118
2119 /* Regular expression to match against the symbol type. */
2120 const char *m_symbol_type_regexp = nullptr;
2121
2122 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2123 be included in the results, otherwise they are excluded. */
2124 bool m_exclude_minsyms = false;
2125 };
2126
2127 /* When searching for Fortran symbols within modules (functions/variables)
2128 we return a vector of this type. The first item in the pair is the
2129 module symbol, and the second item is the symbol for the function or
2130 variable we found. */
2131 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2132
2133 /* Searches the symbols to find function and variables symbols (depending
2134 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2135 name of the module, REGEXP matches against the name of the symbol within
2136 the module, and TYPE_REGEXP matches against the type of the symbol
2137 within the module. */
2138 extern std::vector<module_symbol_search> search_module_symbols
2139 (const char *module_regexp, const char *regexp,
2140 const char *type_regexp, search_domain kind);
2141
2142 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2143 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2144 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2145 the type of symbol that was searched for which gave us SYM. */
2146
2147 extern std::string symbol_to_info_string (struct symbol *sym, int block,
2148 enum search_domain kind);
2149
2150 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2151 const struct symbol *sym);
2152
2153 /* The name of the ``main'' function. */
2154 extern const char *main_name ();
2155 extern enum language main_language (void);
2156
2157 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2158 as specified by BLOCK_INDEX.
2159 This searches MAIN_OBJFILE as well as any associated separate debug info
2160 objfiles of MAIN_OBJFILE.
2161 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2162 Upon success fixes up the symbol's section if necessary. */
2163
2164 extern struct block_symbol
2165 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2166 enum block_enum block_index,
2167 const char *name,
2168 const domain_enum domain);
2169
2170 /* Return 1 if the supplied producer string matches the ARM RealView
2171 compiler (armcc). */
2172 bool producer_is_realview (const char *producer);
2173
2174 void fixup_section (struct general_symbol_info *ginfo,
2175 CORE_ADDR addr, struct objfile *objfile);
2176
2177 /* Look up objfile containing BLOCK. */
2178
2179 struct objfile *lookup_objfile_from_block (const struct block *block);
2180
2181 extern unsigned int symtab_create_debug;
2182
2183 extern unsigned int symbol_lookup_debug;
2184
2185 extern bool basenames_may_differ;
2186
2187 bool compare_filenames_for_search (const char *filename,
2188 const char *search_name);
2189
2190 bool compare_glob_filenames_for_search (const char *filename,
2191 const char *search_name);
2192
2193 bool iterate_over_some_symtabs (const char *name,
2194 const char *real_path,
2195 struct compunit_symtab *first,
2196 struct compunit_symtab *after_last,
2197 gdb::function_view<bool (symtab *)> callback);
2198
2199 void iterate_over_symtabs (const char *name,
2200 gdb::function_view<bool (symtab *)> callback);
2201
2202
2203 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2204 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2205
2206 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2207 is called once per matching symbol SYM. The callback should return
2208 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2209 iterating, or false to indicate that the iteration should end. */
2210
2211 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2212
2213 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2214
2215 For each symbol that matches, CALLBACK is called. The symbol is
2216 passed to the callback.
2217
2218 If CALLBACK returns false, the iteration ends and this function
2219 returns false. Otherwise, the search continues, and the function
2220 eventually returns true. */
2221
2222 bool iterate_over_symbols (const struct block *block,
2223 const lookup_name_info &name,
2224 const domain_enum domain,
2225 gdb::function_view<symbol_found_callback_ftype> callback);
2226
2227 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2228 true, then calls CALLBACK one additional time with a block_symbol
2229 that has a valid block but a NULL symbol. */
2230
2231 bool iterate_over_symbols_terminated
2232 (const struct block *block,
2233 const lookup_name_info &name,
2234 const domain_enum domain,
2235 gdb::function_view<symbol_found_callback_ftype> callback);
2236
2237 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2238 either returns a const char * pointer that points to either of the
2239 fields of this type, or a pointer to the input NAME. This is done
2240 this way because the underlying functions that demangle_for_lookup
2241 calls either return a std::string (e.g., cp_canonicalize_string) or
2242 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2243 unnecessary reallocation/string copying. */
2244 class demangle_result_storage
2245 {
2246 public:
2247
2248 /* Swap the std::string storage with STR, and return a pointer to
2249 the beginning of the new string. */
2250 const char *swap_string (std::string &str)
2251 {
2252 std::swap (m_string, str);
2253 return m_string.c_str ();
2254 }
2255
2256 /* Set the malloc storage to now point at PTR. Any previous malloc
2257 storage is released. */
2258 const char *set_malloc_ptr (char *ptr)
2259 {
2260 m_malloc.reset (ptr);
2261 return ptr;
2262 }
2263
2264 private:
2265
2266 /* The storage. */
2267 std::string m_string;
2268 gdb::unique_xmalloc_ptr<char> m_malloc;
2269 };
2270
2271 const char *
2272 demangle_for_lookup (const char *name, enum language lang,
2273 demangle_result_storage &storage);
2274
2275 struct symbol *allocate_symbol (struct objfile *);
2276
2277 void initialize_objfile_symbol (struct symbol *);
2278
2279 struct template_symbol *allocate_template_symbol (struct objfile *);
2280
2281 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2282 SYMNAME (which is already demangled for C++ symbols) matches
2283 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2284 the current completion list. */
2285 void completion_list_add_name (completion_tracker &tracker,
2286 language symbol_language,
2287 const char *symname,
2288 const lookup_name_info &lookup_name,
2289 const char *text, const char *word);
2290
2291 /* A simple symbol searching class. */
2292
2293 class symbol_searcher
2294 {
2295 public:
2296 /* Returns the symbols found for the search. */
2297 const std::vector<block_symbol> &
2298 matching_symbols () const
2299 {
2300 return m_symbols;
2301 }
2302
2303 /* Returns the minimal symbols found for the search. */
2304 const std::vector<bound_minimal_symbol> &
2305 matching_msymbols () const
2306 {
2307 return m_minimal_symbols;
2308 }
2309
2310 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2311 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2312 to search all symtabs and program spaces. */
2313 void find_all_symbols (const std::string &name,
2314 const struct language_defn *language,
2315 enum search_domain search_domain,
2316 std::vector<symtab *> *search_symtabs,
2317 struct program_space *search_pspace);
2318
2319 /* Reset this object to perform another search. */
2320 void reset ()
2321 {
2322 m_symbols.clear ();
2323 m_minimal_symbols.clear ();
2324 }
2325
2326 private:
2327 /* Matching debug symbols. */
2328 std::vector<block_symbol> m_symbols;
2329
2330 /* Matching non-debug symbols. */
2331 std::vector<bound_minimal_symbol> m_minimal_symbols;
2332 };
2333
2334 #endif /* !defined(SYMTAB_H) */
This page took 0.077776 seconds and 5 git commands to generate.