07e3c2b1af03535a124e0b7f00b532472b6e2b70
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47 #include "auxv.h"
48
49 static void target_info (char *, int);
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static void tcomplain (void) ATTRIBUTE_NORETURN;
81
82 static int return_zero (struct target_ops *);
83
84 static int return_zero_has_execution (struct target_ops *, ptid_t);
85
86 static void target_command (char *, int);
87
88 static struct target_ops *find_default_run_target (char *);
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static int dummy_find_memory_regions (struct target_ops *self,
94 find_memory_region_ftype ignore1,
95 void *ignore2);
96
97 static char *dummy_make_corefile_notes (struct target_ops *self,
98 bfd *ignore1, int *ignore2);
99
100 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
101
102 static enum exec_direction_kind default_execution_direction
103 (struct target_ops *self);
104
105 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
106 struct gdbarch *gdbarch);
107
108 #include "target-delegates.c"
109
110 static void init_dummy_target (void);
111
112 static struct target_ops debug_target;
113
114 static void debug_to_open (char *, int);
115
116 static void debug_to_prepare_to_store (struct target_ops *self,
117 struct regcache *);
118
119 static void debug_to_files_info (struct target_ops *);
120
121 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
122 struct bp_target_info *);
123
124 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
125 struct bp_target_info *);
126
127 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
128 int, int, int);
129
130 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
131 struct gdbarch *,
132 struct bp_target_info *);
133
134 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
135 struct gdbarch *,
136 struct bp_target_info *);
137
138 static int debug_to_insert_watchpoint (struct target_ops *self,
139 CORE_ADDR, int, int,
140 struct expression *);
141
142 static int debug_to_remove_watchpoint (struct target_ops *self,
143 CORE_ADDR, int, int,
144 struct expression *);
145
146 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
147
148 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
149 CORE_ADDR, CORE_ADDR, int);
150
151 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
152 CORE_ADDR, int);
153
154 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
155 CORE_ADDR, int, int,
156 struct expression *);
157
158 static void debug_to_terminal_init (struct target_ops *self);
159
160 static void debug_to_terminal_inferior (struct target_ops *self);
161
162 static void debug_to_terminal_ours_for_output (struct target_ops *self);
163
164 static void debug_to_terminal_save_ours (struct target_ops *self);
165
166 static void debug_to_terminal_ours (struct target_ops *self);
167
168 static void debug_to_load (struct target_ops *self, char *, int);
169
170 static int debug_to_can_run (struct target_ops *self);
171
172 static void debug_to_stop (struct target_ops *self, ptid_t);
173
174 /* Pointer to array of target architecture structures; the size of the
175 array; the current index into the array; the allocated size of the
176 array. */
177 struct target_ops **target_structs;
178 unsigned target_struct_size;
179 unsigned target_struct_allocsize;
180 #define DEFAULT_ALLOCSIZE 10
181
182 /* The initial current target, so that there is always a semi-valid
183 current target. */
184
185 static struct target_ops dummy_target;
186
187 /* Top of target stack. */
188
189 static struct target_ops *target_stack;
190
191 /* The target structure we are currently using to talk to a process
192 or file or whatever "inferior" we have. */
193
194 struct target_ops current_target;
195
196 /* Command list for target. */
197
198 static struct cmd_list_element *targetlist = NULL;
199
200 /* Nonzero if we should trust readonly sections from the
201 executable when reading memory. */
202
203 static int trust_readonly = 0;
204
205 /* Nonzero if we should show true memory content including
206 memory breakpoint inserted by gdb. */
207
208 static int show_memory_breakpoints = 0;
209
210 /* These globals control whether GDB attempts to perform these
211 operations; they are useful for targets that need to prevent
212 inadvertant disruption, such as in non-stop mode. */
213
214 int may_write_registers = 1;
215
216 int may_write_memory = 1;
217
218 int may_insert_breakpoints = 1;
219
220 int may_insert_tracepoints = 1;
221
222 int may_insert_fast_tracepoints = 1;
223
224 int may_stop = 1;
225
226 /* Non-zero if we want to see trace of target level stuff. */
227
228 static unsigned int targetdebug = 0;
229 static void
230 show_targetdebug (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
234 }
235
236 static void setup_target_debug (void);
237
238 /* The user just typed 'target' without the name of a target. */
239
240 static void
241 target_command (char *arg, int from_tty)
242 {
243 fputs_filtered ("Argument required (target name). Try `help target'\n",
244 gdb_stdout);
245 }
246
247 /* Default target_has_* methods for process_stratum targets. */
248
249 int
250 default_child_has_all_memory (struct target_ops *ops)
251 {
252 /* If no inferior selected, then we can't read memory here. */
253 if (ptid_equal (inferior_ptid, null_ptid))
254 return 0;
255
256 return 1;
257 }
258
259 int
260 default_child_has_memory (struct target_ops *ops)
261 {
262 /* If no inferior selected, then we can't read memory here. */
263 if (ptid_equal (inferior_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269 int
270 default_child_has_stack (struct target_ops *ops)
271 {
272 /* If no inferior selected, there's no stack. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_registers (struct target_ops *ops)
281 {
282 /* Can't read registers from no inferior. */
283 if (ptid_equal (inferior_ptid, null_ptid))
284 return 0;
285
286 return 1;
287 }
288
289 int
290 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
291 {
292 /* If there's no thread selected, then we can't make it run through
293 hoops. */
294 if (ptid_equal (the_ptid, null_ptid))
295 return 0;
296
297 return 1;
298 }
299
300
301 int
302 target_has_all_memory_1 (void)
303 {
304 struct target_ops *t;
305
306 for (t = current_target.beneath; t != NULL; t = t->beneath)
307 if (t->to_has_all_memory (t))
308 return 1;
309
310 return 0;
311 }
312
313 int
314 target_has_memory_1 (void)
315 {
316 struct target_ops *t;
317
318 for (t = current_target.beneath; t != NULL; t = t->beneath)
319 if (t->to_has_memory (t))
320 return 1;
321
322 return 0;
323 }
324
325 int
326 target_has_stack_1 (void)
327 {
328 struct target_ops *t;
329
330 for (t = current_target.beneath; t != NULL; t = t->beneath)
331 if (t->to_has_stack (t))
332 return 1;
333
334 return 0;
335 }
336
337 int
338 target_has_registers_1 (void)
339 {
340 struct target_ops *t;
341
342 for (t = current_target.beneath; t != NULL; t = t->beneath)
343 if (t->to_has_registers (t))
344 return 1;
345
346 return 0;
347 }
348
349 int
350 target_has_execution_1 (ptid_t the_ptid)
351 {
352 struct target_ops *t;
353
354 for (t = current_target.beneath; t != NULL; t = t->beneath)
355 if (t->to_has_execution (t, the_ptid))
356 return 1;
357
358 return 0;
359 }
360
361 int
362 target_has_execution_current (void)
363 {
364 return target_has_execution_1 (inferior_ptid);
365 }
366
367 /* Complete initialization of T. This ensures that various fields in
368 T are set, if needed by the target implementation. */
369
370 void
371 complete_target_initialization (struct target_ops *t)
372 {
373 /* Provide default values for all "must have" methods. */
374
375 if (t->to_has_all_memory == NULL)
376 t->to_has_all_memory = return_zero;
377
378 if (t->to_has_memory == NULL)
379 t->to_has_memory = return_zero;
380
381 if (t->to_has_stack == NULL)
382 t->to_has_stack = return_zero;
383
384 if (t->to_has_registers == NULL)
385 t->to_has_registers = return_zero;
386
387 if (t->to_has_execution == NULL)
388 t->to_has_execution = return_zero_has_execution;
389
390 /* These methods can be called on an unpushed target and so require
391 a default implementation if the target might plausibly be the
392 default run target. */
393 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
394 && t->to_supports_non_stop != NULL));
395
396 install_delegators (t);
397 }
398
399 /* Add possible target architecture T to the list and add a new
400 command 'target T->to_shortname'. Set COMPLETER as the command's
401 completer if not NULL. */
402
403 void
404 add_target_with_completer (struct target_ops *t,
405 completer_ftype *completer)
406 {
407 struct cmd_list_element *c;
408
409 complete_target_initialization (t);
410
411 if (!target_structs)
412 {
413 target_struct_allocsize = DEFAULT_ALLOCSIZE;
414 target_structs = (struct target_ops **) xmalloc
415 (target_struct_allocsize * sizeof (*target_structs));
416 }
417 if (target_struct_size >= target_struct_allocsize)
418 {
419 target_struct_allocsize *= 2;
420 target_structs = (struct target_ops **)
421 xrealloc ((char *) target_structs,
422 target_struct_allocsize * sizeof (*target_structs));
423 }
424 target_structs[target_struct_size++] = t;
425
426 if (targetlist == NULL)
427 add_prefix_cmd ("target", class_run, target_command, _("\
428 Connect to a target machine or process.\n\
429 The first argument is the type or protocol of the target machine.\n\
430 Remaining arguments are interpreted by the target protocol. For more\n\
431 information on the arguments for a particular protocol, type\n\
432 `help target ' followed by the protocol name."),
433 &targetlist, "target ", 0, &cmdlist);
434 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
435 &targetlist);
436 if (completer != NULL)
437 set_cmd_completer (c, completer);
438 }
439
440 /* Add a possible target architecture to the list. */
441
442 void
443 add_target (struct target_ops *t)
444 {
445 add_target_with_completer (t, NULL);
446 }
447
448 /* See target.h. */
449
450 void
451 add_deprecated_target_alias (struct target_ops *t, char *alias)
452 {
453 struct cmd_list_element *c;
454 char *alt;
455
456 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
457 see PR cli/15104. */
458 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
459 alt = xstrprintf ("target %s", t->to_shortname);
460 deprecate_cmd (c, alt);
461 }
462
463 /* Stub functions */
464
465 void
466 target_kill (void)
467 {
468 if (targetdebug)
469 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
470
471 current_target.to_kill (&current_target);
472 }
473
474 void
475 target_load (char *arg, int from_tty)
476 {
477 target_dcache_invalidate ();
478 (*current_target.to_load) (&current_target, arg, from_tty);
479 }
480
481 void
482 target_terminal_inferior (void)
483 {
484 /* A background resume (``run&'') should leave GDB in control of the
485 terminal. Use target_can_async_p, not target_is_async_p, since at
486 this point the target is not async yet. However, if sync_execution
487 is not set, we know it will become async prior to resume. */
488 if (target_can_async_p () && !sync_execution)
489 return;
490
491 /* If GDB is resuming the inferior in the foreground, install
492 inferior's terminal modes. */
493 (*current_target.to_terminal_inferior) (&current_target);
494 }
495
496 static void
497 tcomplain (void)
498 {
499 error (_("You can't do that when your target is `%s'"),
500 current_target.to_shortname);
501 }
502
503 void
504 noprocess (void)
505 {
506 error (_("You can't do that without a process to debug."));
507 }
508
509 static void
510 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
511 {
512 printf_unfiltered (_("No saved terminal information.\n"));
513 }
514
515 /* A default implementation for the to_get_ada_task_ptid target method.
516
517 This function builds the PTID by using both LWP and TID as part of
518 the PTID lwp and tid elements. The pid used is the pid of the
519 inferior_ptid. */
520
521 static ptid_t
522 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
523 {
524 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
525 }
526
527 static enum exec_direction_kind
528 default_execution_direction (struct target_ops *self)
529 {
530 if (!target_can_execute_reverse)
531 return EXEC_FORWARD;
532 else if (!target_can_async_p ())
533 return EXEC_FORWARD;
534 else
535 gdb_assert_not_reached ("\
536 to_execution_direction must be implemented for reverse async");
537 }
538
539 /* Go through the target stack from top to bottom, copying over zero
540 entries in current_target, then filling in still empty entries. In
541 effect, we are doing class inheritance through the pushed target
542 vectors.
543
544 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
545 is currently implemented, is that it discards any knowledge of
546 which target an inherited method originally belonged to.
547 Consequently, new new target methods should instead explicitly and
548 locally search the target stack for the target that can handle the
549 request. */
550
551 static void
552 update_current_target (void)
553 {
554 struct target_ops *t;
555
556 /* First, reset current's contents. */
557 memset (&current_target, 0, sizeof (current_target));
558
559 /* Install the delegators. */
560 install_delegators (&current_target);
561
562 current_target.to_stratum = target_stack->to_stratum;
563
564 #define INHERIT(FIELD, TARGET) \
565 if (!current_target.FIELD) \
566 current_target.FIELD = (TARGET)->FIELD
567
568 /* Do not add any new INHERITs here. Instead, use the delegation
569 mechanism provided by make-target-delegates. */
570 for (t = target_stack; t; t = t->beneath)
571 {
572 INHERIT (to_shortname, t);
573 INHERIT (to_longname, t);
574 INHERIT (to_attach_no_wait, t);
575 INHERIT (to_have_steppable_watchpoint, t);
576 INHERIT (to_have_continuable_watchpoint, t);
577 INHERIT (to_has_thread_control, t);
578 }
579 #undef INHERIT
580
581 /* Finally, position the target-stack beneath the squashed
582 "current_target". That way code looking for a non-inherited
583 target method can quickly and simply find it. */
584 current_target.beneath = target_stack;
585
586 if (targetdebug)
587 setup_target_debug ();
588 }
589
590 /* Push a new target type into the stack of the existing target accessors,
591 possibly superseding some of the existing accessors.
592
593 Rather than allow an empty stack, we always have the dummy target at
594 the bottom stratum, so we can call the function vectors without
595 checking them. */
596
597 void
598 push_target (struct target_ops *t)
599 {
600 struct target_ops **cur;
601
602 /* Check magic number. If wrong, it probably means someone changed
603 the struct definition, but not all the places that initialize one. */
604 if (t->to_magic != OPS_MAGIC)
605 {
606 fprintf_unfiltered (gdb_stderr,
607 "Magic number of %s target struct wrong\n",
608 t->to_shortname);
609 internal_error (__FILE__, __LINE__,
610 _("failed internal consistency check"));
611 }
612
613 /* Find the proper stratum to install this target in. */
614 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
615 {
616 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
617 break;
618 }
619
620 /* If there's already targets at this stratum, remove them. */
621 /* FIXME: cagney/2003-10-15: I think this should be popping all
622 targets to CUR, and not just those at this stratum level. */
623 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
624 {
625 /* There's already something at this stratum level. Close it,
626 and un-hook it from the stack. */
627 struct target_ops *tmp = (*cur);
628
629 (*cur) = (*cur)->beneath;
630 tmp->beneath = NULL;
631 target_close (tmp);
632 }
633
634 /* We have removed all targets in our stratum, now add the new one. */
635 t->beneath = (*cur);
636 (*cur) = t;
637
638 update_current_target ();
639 }
640
641 /* Remove a target_ops vector from the stack, wherever it may be.
642 Return how many times it was removed (0 or 1). */
643
644 int
645 unpush_target (struct target_ops *t)
646 {
647 struct target_ops **cur;
648 struct target_ops *tmp;
649
650 if (t->to_stratum == dummy_stratum)
651 internal_error (__FILE__, __LINE__,
652 _("Attempt to unpush the dummy target"));
653
654 /* Look for the specified target. Note that we assume that a target
655 can only occur once in the target stack. */
656
657 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
658 {
659 if ((*cur) == t)
660 break;
661 }
662
663 /* If we don't find target_ops, quit. Only open targets should be
664 closed. */
665 if ((*cur) == NULL)
666 return 0;
667
668 /* Unchain the target. */
669 tmp = (*cur);
670 (*cur) = (*cur)->beneath;
671 tmp->beneath = NULL;
672
673 update_current_target ();
674
675 /* Finally close the target. Note we do this after unchaining, so
676 any target method calls from within the target_close
677 implementation don't end up in T anymore. */
678 target_close (t);
679
680 return 1;
681 }
682
683 void
684 pop_all_targets_above (enum strata above_stratum)
685 {
686 while ((int) (current_target.to_stratum) > (int) above_stratum)
687 {
688 if (!unpush_target (target_stack))
689 {
690 fprintf_unfiltered (gdb_stderr,
691 "pop_all_targets couldn't find target %s\n",
692 target_stack->to_shortname);
693 internal_error (__FILE__, __LINE__,
694 _("failed internal consistency check"));
695 break;
696 }
697 }
698 }
699
700 void
701 pop_all_targets (void)
702 {
703 pop_all_targets_above (dummy_stratum);
704 }
705
706 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
707
708 int
709 target_is_pushed (struct target_ops *t)
710 {
711 struct target_ops **cur;
712
713 /* Check magic number. If wrong, it probably means someone changed
714 the struct definition, but not all the places that initialize one. */
715 if (t->to_magic != OPS_MAGIC)
716 {
717 fprintf_unfiltered (gdb_stderr,
718 "Magic number of %s target struct wrong\n",
719 t->to_shortname);
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
722 }
723
724 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
725 if (*cur == t)
726 return 1;
727
728 return 0;
729 }
730
731 /* Using the objfile specified in OBJFILE, find the address for the
732 current thread's thread-local storage with offset OFFSET. */
733 CORE_ADDR
734 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
735 {
736 volatile CORE_ADDR addr = 0;
737 struct target_ops *target;
738
739 for (target = current_target.beneath;
740 target != NULL;
741 target = target->beneath)
742 {
743 if (target->to_get_thread_local_address != NULL)
744 break;
745 }
746
747 if (target != NULL
748 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
749 {
750 ptid_t ptid = inferior_ptid;
751 volatile struct gdb_exception ex;
752
753 TRY_CATCH (ex, RETURN_MASK_ALL)
754 {
755 CORE_ADDR lm_addr;
756
757 /* Fetch the load module address for this objfile. */
758 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
759 objfile);
760
761 addr = target->to_get_thread_local_address (target, ptid,
762 lm_addr, offset);
763 }
764 /* If an error occurred, print TLS related messages here. Otherwise,
765 throw the error to some higher catcher. */
766 if (ex.reason < 0)
767 {
768 int objfile_is_library = (objfile->flags & OBJF_SHARED);
769
770 switch (ex.error)
771 {
772 case TLS_NO_LIBRARY_SUPPORT_ERROR:
773 error (_("Cannot find thread-local variables "
774 "in this thread library."));
775 break;
776 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
777 if (objfile_is_library)
778 error (_("Cannot find shared library `%s' in dynamic"
779 " linker's load module list"), objfile_name (objfile));
780 else
781 error (_("Cannot find executable file `%s' in dynamic"
782 " linker's load module list"), objfile_name (objfile));
783 break;
784 case TLS_NOT_ALLOCATED_YET_ERROR:
785 if (objfile_is_library)
786 error (_("The inferior has not yet allocated storage for"
787 " thread-local variables in\n"
788 "the shared library `%s'\n"
789 "for %s"),
790 objfile_name (objfile), target_pid_to_str (ptid));
791 else
792 error (_("The inferior has not yet allocated storage for"
793 " thread-local variables in\n"
794 "the executable `%s'\n"
795 "for %s"),
796 objfile_name (objfile), target_pid_to_str (ptid));
797 break;
798 case TLS_GENERIC_ERROR:
799 if (objfile_is_library)
800 error (_("Cannot find thread-local storage for %s, "
801 "shared library %s:\n%s"),
802 target_pid_to_str (ptid),
803 objfile_name (objfile), ex.message);
804 else
805 error (_("Cannot find thread-local storage for %s, "
806 "executable file %s:\n%s"),
807 target_pid_to_str (ptid),
808 objfile_name (objfile), ex.message);
809 break;
810 default:
811 throw_exception (ex);
812 break;
813 }
814 }
815 }
816 /* It wouldn't be wrong here to try a gdbarch method, too; finding
817 TLS is an ABI-specific thing. But we don't do that yet. */
818 else
819 error (_("Cannot find thread-local variables on this target"));
820
821 return addr;
822 }
823
824 const char *
825 target_xfer_status_to_string (enum target_xfer_status status)
826 {
827 #define CASE(X) case X: return #X
828 switch (status)
829 {
830 CASE(TARGET_XFER_E_IO);
831 CASE(TARGET_XFER_UNAVAILABLE);
832 default:
833 return "<unknown>";
834 }
835 #undef CASE
836 };
837
838
839 #undef MIN
840 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
841
842 /* target_read_string -- read a null terminated string, up to LEN bytes,
843 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
844 Set *STRING to a pointer to malloc'd memory containing the data; the caller
845 is responsible for freeing it. Return the number of bytes successfully
846 read. */
847
848 int
849 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
850 {
851 int tlen, offset, i;
852 gdb_byte buf[4];
853 int errcode = 0;
854 char *buffer;
855 int buffer_allocated;
856 char *bufptr;
857 unsigned int nbytes_read = 0;
858
859 gdb_assert (string);
860
861 /* Small for testing. */
862 buffer_allocated = 4;
863 buffer = xmalloc (buffer_allocated);
864 bufptr = buffer;
865
866 while (len > 0)
867 {
868 tlen = MIN (len, 4 - (memaddr & 3));
869 offset = memaddr & 3;
870
871 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
872 if (errcode != 0)
873 {
874 /* The transfer request might have crossed the boundary to an
875 unallocated region of memory. Retry the transfer, requesting
876 a single byte. */
877 tlen = 1;
878 offset = 0;
879 errcode = target_read_memory (memaddr, buf, 1);
880 if (errcode != 0)
881 goto done;
882 }
883
884 if (bufptr - buffer + tlen > buffer_allocated)
885 {
886 unsigned int bytes;
887
888 bytes = bufptr - buffer;
889 buffer_allocated *= 2;
890 buffer = xrealloc (buffer, buffer_allocated);
891 bufptr = buffer + bytes;
892 }
893
894 for (i = 0; i < tlen; i++)
895 {
896 *bufptr++ = buf[i + offset];
897 if (buf[i + offset] == '\000')
898 {
899 nbytes_read += i + 1;
900 goto done;
901 }
902 }
903
904 memaddr += tlen;
905 len -= tlen;
906 nbytes_read += tlen;
907 }
908 done:
909 *string = buffer;
910 if (errnop != NULL)
911 *errnop = errcode;
912 return nbytes_read;
913 }
914
915 struct target_section_table *
916 target_get_section_table (struct target_ops *target)
917 {
918 if (targetdebug)
919 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
920
921 return (*target->to_get_section_table) (target);
922 }
923
924 /* Find a section containing ADDR. */
925
926 struct target_section *
927 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
928 {
929 struct target_section_table *table = target_get_section_table (target);
930 struct target_section *secp;
931
932 if (table == NULL)
933 return NULL;
934
935 for (secp = table->sections; secp < table->sections_end; secp++)
936 {
937 if (addr >= secp->addr && addr < secp->endaddr)
938 return secp;
939 }
940 return NULL;
941 }
942
943 /* Read memory from more than one valid target. A core file, for
944 instance, could have some of memory but delegate other bits to
945 the target below it. So, we must manually try all targets. */
946
947 static enum target_xfer_status
948 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
949 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
950 ULONGEST *xfered_len)
951 {
952 enum target_xfer_status res;
953
954 do
955 {
956 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
957 readbuf, writebuf, memaddr, len,
958 xfered_len);
959 if (res == TARGET_XFER_OK)
960 break;
961
962 /* Stop if the target reports that the memory is not available. */
963 if (res == TARGET_XFER_UNAVAILABLE)
964 break;
965
966 /* We want to continue past core files to executables, but not
967 past a running target's memory. */
968 if (ops->to_has_all_memory (ops))
969 break;
970
971 ops = ops->beneath;
972 }
973 while (ops != NULL);
974
975 /* The cache works at the raw memory level. Make sure the cache
976 gets updated with raw contents no matter what kind of memory
977 object was originally being written. Note we do write-through
978 first, so that if it fails, we don't write to the cache contents
979 that never made it to the target. */
980 if (writebuf != NULL
981 && !ptid_equal (inferior_ptid, null_ptid)
982 && target_dcache_init_p ()
983 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
984 {
985 DCACHE *dcache = target_dcache_get ();
986
987 /* Note that writing to an area of memory which wasn't present
988 in the cache doesn't cause it to be loaded in. */
989 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
990 }
991
992 return res;
993 }
994
995 /* Perform a partial memory transfer.
996 For docs see target.h, to_xfer_partial. */
997
998 static enum target_xfer_status
999 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1000 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1001 ULONGEST len, ULONGEST *xfered_len)
1002 {
1003 enum target_xfer_status res;
1004 int reg_len;
1005 struct mem_region *region;
1006 struct inferior *inf;
1007
1008 /* For accesses to unmapped overlay sections, read directly from
1009 files. Must do this first, as MEMADDR may need adjustment. */
1010 if (readbuf != NULL && overlay_debugging)
1011 {
1012 struct obj_section *section = find_pc_overlay (memaddr);
1013
1014 if (pc_in_unmapped_range (memaddr, section))
1015 {
1016 struct target_section_table *table
1017 = target_get_section_table (ops);
1018 const char *section_name = section->the_bfd_section->name;
1019
1020 memaddr = overlay_mapped_address (memaddr, section);
1021 return section_table_xfer_memory_partial (readbuf, writebuf,
1022 memaddr, len, xfered_len,
1023 table->sections,
1024 table->sections_end,
1025 section_name);
1026 }
1027 }
1028
1029 /* Try the executable files, if "trust-readonly-sections" is set. */
1030 if (readbuf != NULL && trust_readonly)
1031 {
1032 struct target_section *secp;
1033 struct target_section_table *table;
1034
1035 secp = target_section_by_addr (ops, memaddr);
1036 if (secp != NULL
1037 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1038 secp->the_bfd_section)
1039 & SEC_READONLY))
1040 {
1041 table = target_get_section_table (ops);
1042 return section_table_xfer_memory_partial (readbuf, writebuf,
1043 memaddr, len, xfered_len,
1044 table->sections,
1045 table->sections_end,
1046 NULL);
1047 }
1048 }
1049
1050 /* Try GDB's internal data cache. */
1051 region = lookup_mem_region (memaddr);
1052 /* region->hi == 0 means there's no upper bound. */
1053 if (memaddr + len < region->hi || region->hi == 0)
1054 reg_len = len;
1055 else
1056 reg_len = region->hi - memaddr;
1057
1058 switch (region->attrib.mode)
1059 {
1060 case MEM_RO:
1061 if (writebuf != NULL)
1062 return TARGET_XFER_E_IO;
1063 break;
1064
1065 case MEM_WO:
1066 if (readbuf != NULL)
1067 return TARGET_XFER_E_IO;
1068 break;
1069
1070 case MEM_FLASH:
1071 /* We only support writing to flash during "load" for now. */
1072 if (writebuf != NULL)
1073 error (_("Writing to flash memory forbidden in this context"));
1074 break;
1075
1076 case MEM_NONE:
1077 return TARGET_XFER_E_IO;
1078 }
1079
1080 if (!ptid_equal (inferior_ptid, null_ptid))
1081 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1082 else
1083 inf = NULL;
1084
1085 if (inf != NULL
1086 && readbuf != NULL
1087 /* The dcache reads whole cache lines; that doesn't play well
1088 with reading from a trace buffer, because reading outside of
1089 the collected memory range fails. */
1090 && get_traceframe_number () == -1
1091 && (region->attrib.cache
1092 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1093 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1094 {
1095 DCACHE *dcache = target_dcache_get_or_init ();
1096
1097 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1098 reg_len, xfered_len);
1099 }
1100
1101 /* If none of those methods found the memory we wanted, fall back
1102 to a target partial transfer. Normally a single call to
1103 to_xfer_partial is enough; if it doesn't recognize an object
1104 it will call the to_xfer_partial of the next target down.
1105 But for memory this won't do. Memory is the only target
1106 object which can be read from more than one valid target.
1107 A core file, for instance, could have some of memory but
1108 delegate other bits to the target below it. So, we must
1109 manually try all targets. */
1110
1111 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1112 xfered_len);
1113
1114 /* If we still haven't got anything, return the last error. We
1115 give up. */
1116 return res;
1117 }
1118
1119 /* Perform a partial memory transfer. For docs see target.h,
1120 to_xfer_partial. */
1121
1122 static enum target_xfer_status
1123 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1124 gdb_byte *readbuf, const gdb_byte *writebuf,
1125 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1126 {
1127 enum target_xfer_status res;
1128
1129 /* Zero length requests are ok and require no work. */
1130 if (len == 0)
1131 return TARGET_XFER_EOF;
1132
1133 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1134 breakpoint insns, thus hiding out from higher layers whether
1135 there are software breakpoints inserted in the code stream. */
1136 if (readbuf != NULL)
1137 {
1138 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1139 xfered_len);
1140
1141 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1142 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1143 }
1144 else
1145 {
1146 void *buf;
1147 struct cleanup *old_chain;
1148
1149 /* A large write request is likely to be partially satisfied
1150 by memory_xfer_partial_1. We will continually malloc
1151 and free a copy of the entire write request for breakpoint
1152 shadow handling even though we only end up writing a small
1153 subset of it. Cap writes to 4KB to mitigate this. */
1154 len = min (4096, len);
1155
1156 buf = xmalloc (len);
1157 old_chain = make_cleanup (xfree, buf);
1158 memcpy (buf, writebuf, len);
1159
1160 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1161 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1162 xfered_len);
1163
1164 do_cleanups (old_chain);
1165 }
1166
1167 return res;
1168 }
1169
1170 static void
1171 restore_show_memory_breakpoints (void *arg)
1172 {
1173 show_memory_breakpoints = (uintptr_t) arg;
1174 }
1175
1176 struct cleanup *
1177 make_show_memory_breakpoints_cleanup (int show)
1178 {
1179 int current = show_memory_breakpoints;
1180
1181 show_memory_breakpoints = show;
1182 return make_cleanup (restore_show_memory_breakpoints,
1183 (void *) (uintptr_t) current);
1184 }
1185
1186 /* For docs see target.h, to_xfer_partial. */
1187
1188 enum target_xfer_status
1189 target_xfer_partial (struct target_ops *ops,
1190 enum target_object object, const char *annex,
1191 gdb_byte *readbuf, const gdb_byte *writebuf,
1192 ULONGEST offset, ULONGEST len,
1193 ULONGEST *xfered_len)
1194 {
1195 enum target_xfer_status retval;
1196
1197 gdb_assert (ops->to_xfer_partial != NULL);
1198
1199 /* Transfer is done when LEN is zero. */
1200 if (len == 0)
1201 return TARGET_XFER_EOF;
1202
1203 if (writebuf && !may_write_memory)
1204 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1205 core_addr_to_string_nz (offset), plongest (len));
1206
1207 *xfered_len = 0;
1208
1209 /* If this is a memory transfer, let the memory-specific code
1210 have a look at it instead. Memory transfers are more
1211 complicated. */
1212 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1213 || object == TARGET_OBJECT_CODE_MEMORY)
1214 retval = memory_xfer_partial (ops, object, readbuf,
1215 writebuf, offset, len, xfered_len);
1216 else if (object == TARGET_OBJECT_RAW_MEMORY)
1217 {
1218 /* Request the normal memory object from other layers. */
1219 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1220 xfered_len);
1221 }
1222 else
1223 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1224 writebuf, offset, len, xfered_len);
1225
1226 if (targetdebug)
1227 {
1228 const unsigned char *myaddr = NULL;
1229
1230 fprintf_unfiltered (gdb_stdlog,
1231 "%s:target_xfer_partial "
1232 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1233 ops->to_shortname,
1234 (int) object,
1235 (annex ? annex : "(null)"),
1236 host_address_to_string (readbuf),
1237 host_address_to_string (writebuf),
1238 core_addr_to_string_nz (offset),
1239 pulongest (len), retval,
1240 pulongest (*xfered_len));
1241
1242 if (readbuf)
1243 myaddr = readbuf;
1244 if (writebuf)
1245 myaddr = writebuf;
1246 if (retval == TARGET_XFER_OK && myaddr != NULL)
1247 {
1248 int i;
1249
1250 fputs_unfiltered (", bytes =", gdb_stdlog);
1251 for (i = 0; i < *xfered_len; i++)
1252 {
1253 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1254 {
1255 if (targetdebug < 2 && i > 0)
1256 {
1257 fprintf_unfiltered (gdb_stdlog, " ...");
1258 break;
1259 }
1260 fprintf_unfiltered (gdb_stdlog, "\n");
1261 }
1262
1263 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1264 }
1265 }
1266
1267 fputc_unfiltered ('\n', gdb_stdlog);
1268 }
1269
1270 /* Check implementations of to_xfer_partial update *XFERED_LEN
1271 properly. Do assertion after printing debug messages, so that we
1272 can find more clues on assertion failure from debugging messages. */
1273 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1274 gdb_assert (*xfered_len > 0);
1275
1276 return retval;
1277 }
1278
1279 /* Read LEN bytes of target memory at address MEMADDR, placing the
1280 results in GDB's memory at MYADDR. Returns either 0 for success or
1281 TARGET_XFER_E_IO if any error occurs.
1282
1283 If an error occurs, no guarantee is made about the contents of the data at
1284 MYADDR. In particular, the caller should not depend upon partial reads
1285 filling the buffer with good data. There is no way for the caller to know
1286 how much good data might have been transfered anyway. Callers that can
1287 deal with partial reads should call target_read (which will retry until
1288 it makes no progress, and then return how much was transferred). */
1289
1290 int
1291 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1292 {
1293 /* Dispatch to the topmost target, not the flattened current_target.
1294 Memory accesses check target->to_has_(all_)memory, and the
1295 flattened target doesn't inherit those. */
1296 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1297 myaddr, memaddr, len) == len)
1298 return 0;
1299 else
1300 return TARGET_XFER_E_IO;
1301 }
1302
1303 /* Like target_read_memory, but specify explicitly that this is a read
1304 from the target's raw memory. That is, this read bypasses the
1305 dcache, breakpoint shadowing, etc. */
1306
1307 int
1308 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1309 {
1310 /* See comment in target_read_memory about why the request starts at
1311 current_target.beneath. */
1312 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1313 myaddr, memaddr, len) == len)
1314 return 0;
1315 else
1316 return TARGET_XFER_E_IO;
1317 }
1318
1319 /* Like target_read_memory, but specify explicitly that this is a read from
1320 the target's stack. This may trigger different cache behavior. */
1321
1322 int
1323 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1324 {
1325 /* See comment in target_read_memory about why the request starts at
1326 current_target.beneath. */
1327 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1328 myaddr, memaddr, len) == len)
1329 return 0;
1330 else
1331 return TARGET_XFER_E_IO;
1332 }
1333
1334 /* Like target_read_memory, but specify explicitly that this is a read from
1335 the target's code. This may trigger different cache behavior. */
1336
1337 int
1338 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1339 {
1340 /* See comment in target_read_memory about why the request starts at
1341 current_target.beneath. */
1342 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1343 myaddr, memaddr, len) == len)
1344 return 0;
1345 else
1346 return TARGET_XFER_E_IO;
1347 }
1348
1349 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1350 Returns either 0 for success or TARGET_XFER_E_IO if any
1351 error occurs. If an error occurs, no guarantee is made about how
1352 much data got written. Callers that can deal with partial writes
1353 should call target_write. */
1354
1355 int
1356 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1357 {
1358 /* See comment in target_read_memory about why the request starts at
1359 current_target.beneath. */
1360 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1361 myaddr, memaddr, len) == len)
1362 return 0;
1363 else
1364 return TARGET_XFER_E_IO;
1365 }
1366
1367 /* Write LEN bytes from MYADDR to target raw memory at address
1368 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1369 if any error occurs. If an error occurs, no guarantee is made
1370 about how much data got written. Callers that can deal with
1371 partial writes should call target_write. */
1372
1373 int
1374 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1375 {
1376 /* See comment in target_read_memory about why the request starts at
1377 current_target.beneath. */
1378 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1379 myaddr, memaddr, len) == len)
1380 return 0;
1381 else
1382 return TARGET_XFER_E_IO;
1383 }
1384
1385 /* Fetch the target's memory map. */
1386
1387 VEC(mem_region_s) *
1388 target_memory_map (void)
1389 {
1390 VEC(mem_region_s) *result;
1391 struct mem_region *last_one, *this_one;
1392 int ix;
1393 struct target_ops *t;
1394
1395 if (targetdebug)
1396 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1397
1398 result = current_target.to_memory_map (&current_target);
1399 if (result == NULL)
1400 return NULL;
1401
1402 qsort (VEC_address (mem_region_s, result),
1403 VEC_length (mem_region_s, result),
1404 sizeof (struct mem_region), mem_region_cmp);
1405
1406 /* Check that regions do not overlap. Simultaneously assign
1407 a numbering for the "mem" commands to use to refer to
1408 each region. */
1409 last_one = NULL;
1410 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1411 {
1412 this_one->number = ix;
1413
1414 if (last_one && last_one->hi > this_one->lo)
1415 {
1416 warning (_("Overlapping regions in memory map: ignoring"));
1417 VEC_free (mem_region_s, result);
1418 return NULL;
1419 }
1420 last_one = this_one;
1421 }
1422
1423 return result;
1424 }
1425
1426 void
1427 target_flash_erase (ULONGEST address, LONGEST length)
1428 {
1429 if (targetdebug)
1430 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1431 hex_string (address), phex (length, 0));
1432 current_target.to_flash_erase (&current_target, address, length);
1433 }
1434
1435 void
1436 target_flash_done (void)
1437 {
1438 if (targetdebug)
1439 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1440 current_target.to_flash_done (&current_target);
1441 }
1442
1443 static void
1444 show_trust_readonly (struct ui_file *file, int from_tty,
1445 struct cmd_list_element *c, const char *value)
1446 {
1447 fprintf_filtered (file,
1448 _("Mode for reading from readonly sections is %s.\n"),
1449 value);
1450 }
1451
1452 /* Target vector read/write partial wrapper functions. */
1453
1454 static enum target_xfer_status
1455 target_read_partial (struct target_ops *ops,
1456 enum target_object object,
1457 const char *annex, gdb_byte *buf,
1458 ULONGEST offset, ULONGEST len,
1459 ULONGEST *xfered_len)
1460 {
1461 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1462 xfered_len);
1463 }
1464
1465 static enum target_xfer_status
1466 target_write_partial (struct target_ops *ops,
1467 enum target_object object,
1468 const char *annex, const gdb_byte *buf,
1469 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1470 {
1471 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1472 xfered_len);
1473 }
1474
1475 /* Wrappers to perform the full transfer. */
1476
1477 /* For docs on target_read see target.h. */
1478
1479 LONGEST
1480 target_read (struct target_ops *ops,
1481 enum target_object object,
1482 const char *annex, gdb_byte *buf,
1483 ULONGEST offset, LONGEST len)
1484 {
1485 LONGEST xfered = 0;
1486
1487 while (xfered < len)
1488 {
1489 ULONGEST xfered_len;
1490 enum target_xfer_status status;
1491
1492 status = target_read_partial (ops, object, annex,
1493 (gdb_byte *) buf + xfered,
1494 offset + xfered, len - xfered,
1495 &xfered_len);
1496
1497 /* Call an observer, notifying them of the xfer progress? */
1498 if (status == TARGET_XFER_EOF)
1499 return xfered;
1500 else if (status == TARGET_XFER_OK)
1501 {
1502 xfered += xfered_len;
1503 QUIT;
1504 }
1505 else
1506 return -1;
1507
1508 }
1509 return len;
1510 }
1511
1512 /* Assuming that the entire [begin, end) range of memory cannot be
1513 read, try to read whatever subrange is possible to read.
1514
1515 The function returns, in RESULT, either zero or one memory block.
1516 If there's a readable subrange at the beginning, it is completely
1517 read and returned. Any further readable subrange will not be read.
1518 Otherwise, if there's a readable subrange at the end, it will be
1519 completely read and returned. Any readable subranges before it
1520 (obviously, not starting at the beginning), will be ignored. In
1521 other cases -- either no readable subrange, or readable subrange(s)
1522 that is neither at the beginning, or end, nothing is returned.
1523
1524 The purpose of this function is to handle a read across a boundary
1525 of accessible memory in a case when memory map is not available.
1526 The above restrictions are fine for this case, but will give
1527 incorrect results if the memory is 'patchy'. However, supporting
1528 'patchy' memory would require trying to read every single byte,
1529 and it seems unacceptable solution. Explicit memory map is
1530 recommended for this case -- and target_read_memory_robust will
1531 take care of reading multiple ranges then. */
1532
1533 static void
1534 read_whatever_is_readable (struct target_ops *ops,
1535 ULONGEST begin, ULONGEST end,
1536 VEC(memory_read_result_s) **result)
1537 {
1538 gdb_byte *buf = xmalloc (end - begin);
1539 ULONGEST current_begin = begin;
1540 ULONGEST current_end = end;
1541 int forward;
1542 memory_read_result_s r;
1543 ULONGEST xfered_len;
1544
1545 /* If we previously failed to read 1 byte, nothing can be done here. */
1546 if (end - begin <= 1)
1547 {
1548 xfree (buf);
1549 return;
1550 }
1551
1552 /* Check that either first or the last byte is readable, and give up
1553 if not. This heuristic is meant to permit reading accessible memory
1554 at the boundary of accessible region. */
1555 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1556 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1557 {
1558 forward = 1;
1559 ++current_begin;
1560 }
1561 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1562 buf + (end-begin) - 1, end - 1, 1,
1563 &xfered_len) == TARGET_XFER_OK)
1564 {
1565 forward = 0;
1566 --current_end;
1567 }
1568 else
1569 {
1570 xfree (buf);
1571 return;
1572 }
1573
1574 /* Loop invariant is that the [current_begin, current_end) was previously
1575 found to be not readable as a whole.
1576
1577 Note loop condition -- if the range has 1 byte, we can't divide the range
1578 so there's no point trying further. */
1579 while (current_end - current_begin > 1)
1580 {
1581 ULONGEST first_half_begin, first_half_end;
1582 ULONGEST second_half_begin, second_half_end;
1583 LONGEST xfer;
1584 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1585
1586 if (forward)
1587 {
1588 first_half_begin = current_begin;
1589 first_half_end = middle;
1590 second_half_begin = middle;
1591 second_half_end = current_end;
1592 }
1593 else
1594 {
1595 first_half_begin = middle;
1596 first_half_end = current_end;
1597 second_half_begin = current_begin;
1598 second_half_end = middle;
1599 }
1600
1601 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1602 buf + (first_half_begin - begin),
1603 first_half_begin,
1604 first_half_end - first_half_begin);
1605
1606 if (xfer == first_half_end - first_half_begin)
1607 {
1608 /* This half reads up fine. So, the error must be in the
1609 other half. */
1610 current_begin = second_half_begin;
1611 current_end = second_half_end;
1612 }
1613 else
1614 {
1615 /* This half is not readable. Because we've tried one byte, we
1616 know some part of this half if actually redable. Go to the next
1617 iteration to divide again and try to read.
1618
1619 We don't handle the other half, because this function only tries
1620 to read a single readable subrange. */
1621 current_begin = first_half_begin;
1622 current_end = first_half_end;
1623 }
1624 }
1625
1626 if (forward)
1627 {
1628 /* The [begin, current_begin) range has been read. */
1629 r.begin = begin;
1630 r.end = current_begin;
1631 r.data = buf;
1632 }
1633 else
1634 {
1635 /* The [current_end, end) range has been read. */
1636 LONGEST rlen = end - current_end;
1637
1638 r.data = xmalloc (rlen);
1639 memcpy (r.data, buf + current_end - begin, rlen);
1640 r.begin = current_end;
1641 r.end = end;
1642 xfree (buf);
1643 }
1644 VEC_safe_push(memory_read_result_s, (*result), &r);
1645 }
1646
1647 void
1648 free_memory_read_result_vector (void *x)
1649 {
1650 VEC(memory_read_result_s) *v = x;
1651 memory_read_result_s *current;
1652 int ix;
1653
1654 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1655 {
1656 xfree (current->data);
1657 }
1658 VEC_free (memory_read_result_s, v);
1659 }
1660
1661 VEC(memory_read_result_s) *
1662 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1663 {
1664 VEC(memory_read_result_s) *result = 0;
1665
1666 LONGEST xfered = 0;
1667 while (xfered < len)
1668 {
1669 struct mem_region *region = lookup_mem_region (offset + xfered);
1670 LONGEST rlen;
1671
1672 /* If there is no explicit region, a fake one should be created. */
1673 gdb_assert (region);
1674
1675 if (region->hi == 0)
1676 rlen = len - xfered;
1677 else
1678 rlen = region->hi - offset;
1679
1680 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1681 {
1682 /* Cannot read this region. Note that we can end up here only
1683 if the region is explicitly marked inaccessible, or
1684 'inaccessible-by-default' is in effect. */
1685 xfered += rlen;
1686 }
1687 else
1688 {
1689 LONGEST to_read = min (len - xfered, rlen);
1690 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1691
1692 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1693 (gdb_byte *) buffer,
1694 offset + xfered, to_read);
1695 /* Call an observer, notifying them of the xfer progress? */
1696 if (xfer <= 0)
1697 {
1698 /* Got an error reading full chunk. See if maybe we can read
1699 some subrange. */
1700 xfree (buffer);
1701 read_whatever_is_readable (ops, offset + xfered,
1702 offset + xfered + to_read, &result);
1703 xfered += to_read;
1704 }
1705 else
1706 {
1707 struct memory_read_result r;
1708 r.data = buffer;
1709 r.begin = offset + xfered;
1710 r.end = r.begin + xfer;
1711 VEC_safe_push (memory_read_result_s, result, &r);
1712 xfered += xfer;
1713 }
1714 QUIT;
1715 }
1716 }
1717 return result;
1718 }
1719
1720
1721 /* An alternative to target_write with progress callbacks. */
1722
1723 LONGEST
1724 target_write_with_progress (struct target_ops *ops,
1725 enum target_object object,
1726 const char *annex, const gdb_byte *buf,
1727 ULONGEST offset, LONGEST len,
1728 void (*progress) (ULONGEST, void *), void *baton)
1729 {
1730 LONGEST xfered = 0;
1731
1732 /* Give the progress callback a chance to set up. */
1733 if (progress)
1734 (*progress) (0, baton);
1735
1736 while (xfered < len)
1737 {
1738 ULONGEST xfered_len;
1739 enum target_xfer_status status;
1740
1741 status = target_write_partial (ops, object, annex,
1742 (gdb_byte *) buf + xfered,
1743 offset + xfered, len - xfered,
1744 &xfered_len);
1745
1746 if (status != TARGET_XFER_OK)
1747 return status == TARGET_XFER_EOF ? xfered : -1;
1748
1749 if (progress)
1750 (*progress) (xfered_len, baton);
1751
1752 xfered += xfered_len;
1753 QUIT;
1754 }
1755 return len;
1756 }
1757
1758 /* For docs on target_write see target.h. */
1759
1760 LONGEST
1761 target_write (struct target_ops *ops,
1762 enum target_object object,
1763 const char *annex, const gdb_byte *buf,
1764 ULONGEST offset, LONGEST len)
1765 {
1766 return target_write_with_progress (ops, object, annex, buf, offset, len,
1767 NULL, NULL);
1768 }
1769
1770 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1771 the size of the transferred data. PADDING additional bytes are
1772 available in *BUF_P. This is a helper function for
1773 target_read_alloc; see the declaration of that function for more
1774 information. */
1775
1776 static LONGEST
1777 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1778 const char *annex, gdb_byte **buf_p, int padding)
1779 {
1780 size_t buf_alloc, buf_pos;
1781 gdb_byte *buf;
1782
1783 /* This function does not have a length parameter; it reads the
1784 entire OBJECT). Also, it doesn't support objects fetched partly
1785 from one target and partly from another (in a different stratum,
1786 e.g. a core file and an executable). Both reasons make it
1787 unsuitable for reading memory. */
1788 gdb_assert (object != TARGET_OBJECT_MEMORY);
1789
1790 /* Start by reading up to 4K at a time. The target will throttle
1791 this number down if necessary. */
1792 buf_alloc = 4096;
1793 buf = xmalloc (buf_alloc);
1794 buf_pos = 0;
1795 while (1)
1796 {
1797 ULONGEST xfered_len;
1798 enum target_xfer_status status;
1799
1800 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1801 buf_pos, buf_alloc - buf_pos - padding,
1802 &xfered_len);
1803
1804 if (status == TARGET_XFER_EOF)
1805 {
1806 /* Read all there was. */
1807 if (buf_pos == 0)
1808 xfree (buf);
1809 else
1810 *buf_p = buf;
1811 return buf_pos;
1812 }
1813 else if (status != TARGET_XFER_OK)
1814 {
1815 /* An error occurred. */
1816 xfree (buf);
1817 return TARGET_XFER_E_IO;
1818 }
1819
1820 buf_pos += xfered_len;
1821
1822 /* If the buffer is filling up, expand it. */
1823 if (buf_alloc < buf_pos * 2)
1824 {
1825 buf_alloc *= 2;
1826 buf = xrealloc (buf, buf_alloc);
1827 }
1828
1829 QUIT;
1830 }
1831 }
1832
1833 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1834 the size of the transferred data. See the declaration in "target.h"
1835 function for more information about the return value. */
1836
1837 LONGEST
1838 target_read_alloc (struct target_ops *ops, enum target_object object,
1839 const char *annex, gdb_byte **buf_p)
1840 {
1841 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1842 }
1843
1844 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1845 returned as a string, allocated using xmalloc. If an error occurs
1846 or the transfer is unsupported, NULL is returned. Empty objects
1847 are returned as allocated but empty strings. A warning is issued
1848 if the result contains any embedded NUL bytes. */
1849
1850 char *
1851 target_read_stralloc (struct target_ops *ops, enum target_object object,
1852 const char *annex)
1853 {
1854 gdb_byte *buffer;
1855 char *bufstr;
1856 LONGEST i, transferred;
1857
1858 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1859 bufstr = (char *) buffer;
1860
1861 if (transferred < 0)
1862 return NULL;
1863
1864 if (transferred == 0)
1865 return xstrdup ("");
1866
1867 bufstr[transferred] = 0;
1868
1869 /* Check for embedded NUL bytes; but allow trailing NULs. */
1870 for (i = strlen (bufstr); i < transferred; i++)
1871 if (bufstr[i] != 0)
1872 {
1873 warning (_("target object %d, annex %s, "
1874 "contained unexpected null characters"),
1875 (int) object, annex ? annex : "(none)");
1876 break;
1877 }
1878
1879 return bufstr;
1880 }
1881
1882 /* Memory transfer methods. */
1883
1884 void
1885 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1886 LONGEST len)
1887 {
1888 /* This method is used to read from an alternate, non-current
1889 target. This read must bypass the overlay support (as symbols
1890 don't match this target), and GDB's internal cache (wrong cache
1891 for this target). */
1892 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1893 != len)
1894 memory_error (TARGET_XFER_E_IO, addr);
1895 }
1896
1897 ULONGEST
1898 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1899 int len, enum bfd_endian byte_order)
1900 {
1901 gdb_byte buf[sizeof (ULONGEST)];
1902
1903 gdb_assert (len <= sizeof (buf));
1904 get_target_memory (ops, addr, buf, len);
1905 return extract_unsigned_integer (buf, len, byte_order);
1906 }
1907
1908 /* See target.h. */
1909
1910 int
1911 target_insert_breakpoint (struct gdbarch *gdbarch,
1912 struct bp_target_info *bp_tgt)
1913 {
1914 if (!may_insert_breakpoints)
1915 {
1916 warning (_("May not insert breakpoints"));
1917 return 1;
1918 }
1919
1920 return current_target.to_insert_breakpoint (&current_target,
1921 gdbarch, bp_tgt);
1922 }
1923
1924 /* See target.h. */
1925
1926 int
1927 target_remove_breakpoint (struct gdbarch *gdbarch,
1928 struct bp_target_info *bp_tgt)
1929 {
1930 /* This is kind of a weird case to handle, but the permission might
1931 have been changed after breakpoints were inserted - in which case
1932 we should just take the user literally and assume that any
1933 breakpoints should be left in place. */
1934 if (!may_insert_breakpoints)
1935 {
1936 warning (_("May not remove breakpoints"));
1937 return 1;
1938 }
1939
1940 return current_target.to_remove_breakpoint (&current_target,
1941 gdbarch, bp_tgt);
1942 }
1943
1944 static void
1945 target_info (char *args, int from_tty)
1946 {
1947 struct target_ops *t;
1948 int has_all_mem = 0;
1949
1950 if (symfile_objfile != NULL)
1951 printf_unfiltered (_("Symbols from \"%s\".\n"),
1952 objfile_name (symfile_objfile));
1953
1954 for (t = target_stack; t != NULL; t = t->beneath)
1955 {
1956 if (!(*t->to_has_memory) (t))
1957 continue;
1958
1959 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1960 continue;
1961 if (has_all_mem)
1962 printf_unfiltered (_("\tWhile running this, "
1963 "GDB does not access memory from...\n"));
1964 printf_unfiltered ("%s:\n", t->to_longname);
1965 (t->to_files_info) (t);
1966 has_all_mem = (*t->to_has_all_memory) (t);
1967 }
1968 }
1969
1970 /* This function is called before any new inferior is created, e.g.
1971 by running a program, attaching, or connecting to a target.
1972 It cleans up any state from previous invocations which might
1973 change between runs. This is a subset of what target_preopen
1974 resets (things which might change between targets). */
1975
1976 void
1977 target_pre_inferior (int from_tty)
1978 {
1979 /* Clear out solib state. Otherwise the solib state of the previous
1980 inferior might have survived and is entirely wrong for the new
1981 target. This has been observed on GNU/Linux using glibc 2.3. How
1982 to reproduce:
1983
1984 bash$ ./foo&
1985 [1] 4711
1986 bash$ ./foo&
1987 [1] 4712
1988 bash$ gdb ./foo
1989 [...]
1990 (gdb) attach 4711
1991 (gdb) detach
1992 (gdb) attach 4712
1993 Cannot access memory at address 0xdeadbeef
1994 */
1995
1996 /* In some OSs, the shared library list is the same/global/shared
1997 across inferiors. If code is shared between processes, so are
1998 memory regions and features. */
1999 if (!gdbarch_has_global_solist (target_gdbarch ()))
2000 {
2001 no_shared_libraries (NULL, from_tty);
2002
2003 invalidate_target_mem_regions ();
2004
2005 target_clear_description ();
2006 }
2007
2008 agent_capability_invalidate ();
2009 }
2010
2011 /* Callback for iterate_over_inferiors. Gets rid of the given
2012 inferior. */
2013
2014 static int
2015 dispose_inferior (struct inferior *inf, void *args)
2016 {
2017 struct thread_info *thread;
2018
2019 thread = any_thread_of_process (inf->pid);
2020 if (thread)
2021 {
2022 switch_to_thread (thread->ptid);
2023
2024 /* Core inferiors actually should be detached, not killed. */
2025 if (target_has_execution)
2026 target_kill ();
2027 else
2028 target_detach (NULL, 0);
2029 }
2030
2031 return 0;
2032 }
2033
2034 /* This is to be called by the open routine before it does
2035 anything. */
2036
2037 void
2038 target_preopen (int from_tty)
2039 {
2040 dont_repeat ();
2041
2042 if (have_inferiors ())
2043 {
2044 if (!from_tty
2045 || !have_live_inferiors ()
2046 || query (_("A program is being debugged already. Kill it? ")))
2047 iterate_over_inferiors (dispose_inferior, NULL);
2048 else
2049 error (_("Program not killed."));
2050 }
2051
2052 /* Calling target_kill may remove the target from the stack. But if
2053 it doesn't (which seems like a win for UDI), remove it now. */
2054 /* Leave the exec target, though. The user may be switching from a
2055 live process to a core of the same program. */
2056 pop_all_targets_above (file_stratum);
2057
2058 target_pre_inferior (from_tty);
2059 }
2060
2061 /* Detach a target after doing deferred register stores. */
2062
2063 void
2064 target_detach (const char *args, int from_tty)
2065 {
2066 struct target_ops* t;
2067
2068 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2069 /* Don't remove global breakpoints here. They're removed on
2070 disconnection from the target. */
2071 ;
2072 else
2073 /* If we're in breakpoints-always-inserted mode, have to remove
2074 them before detaching. */
2075 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2076
2077 prepare_for_detach ();
2078
2079 current_target.to_detach (&current_target, args, from_tty);
2080 if (targetdebug)
2081 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2082 args, from_tty);
2083 }
2084
2085 void
2086 target_disconnect (char *args, int from_tty)
2087 {
2088 /* If we're in breakpoints-always-inserted mode or if breakpoints
2089 are global across processes, we have to remove them before
2090 disconnecting. */
2091 remove_breakpoints ();
2092
2093 if (targetdebug)
2094 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2095 args, from_tty);
2096 current_target.to_disconnect (&current_target, args, from_tty);
2097 }
2098
2099 ptid_t
2100 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2101 {
2102 struct target_ops *t;
2103 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2104 status, options);
2105
2106 if (targetdebug)
2107 {
2108 char *status_string;
2109 char *options_string;
2110
2111 status_string = target_waitstatus_to_string (status);
2112 options_string = target_options_to_string (options);
2113 fprintf_unfiltered (gdb_stdlog,
2114 "target_wait (%d, status, options={%s})"
2115 " = %d, %s\n",
2116 ptid_get_pid (ptid), options_string,
2117 ptid_get_pid (retval), status_string);
2118 xfree (status_string);
2119 xfree (options_string);
2120 }
2121
2122 return retval;
2123 }
2124
2125 char *
2126 target_pid_to_str (ptid_t ptid)
2127 {
2128 return (*current_target.to_pid_to_str) (&current_target, ptid);
2129 }
2130
2131 char *
2132 target_thread_name (struct thread_info *info)
2133 {
2134 return current_target.to_thread_name (&current_target, info);
2135 }
2136
2137 void
2138 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2139 {
2140 struct target_ops *t;
2141
2142 target_dcache_invalidate ();
2143
2144 current_target.to_resume (&current_target, ptid, step, signal);
2145 if (targetdebug)
2146 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2147 ptid_get_pid (ptid),
2148 step ? "step" : "continue",
2149 gdb_signal_to_name (signal));
2150
2151 registers_changed_ptid (ptid);
2152 set_executing (ptid, 1);
2153 set_running (ptid, 1);
2154 clear_inline_frame_state (ptid);
2155 }
2156
2157 void
2158 target_pass_signals (int numsigs, unsigned char *pass_signals)
2159 {
2160 if (targetdebug)
2161 {
2162 int i;
2163
2164 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2165 numsigs);
2166
2167 for (i = 0; i < numsigs; i++)
2168 if (pass_signals[i])
2169 fprintf_unfiltered (gdb_stdlog, " %s",
2170 gdb_signal_to_name (i));
2171
2172 fprintf_unfiltered (gdb_stdlog, " })\n");
2173 }
2174
2175 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2176 }
2177
2178 void
2179 target_program_signals (int numsigs, unsigned char *program_signals)
2180 {
2181 if (targetdebug)
2182 {
2183 int i;
2184
2185 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2186 numsigs);
2187
2188 for (i = 0; i < numsigs; i++)
2189 if (program_signals[i])
2190 fprintf_unfiltered (gdb_stdlog, " %s",
2191 gdb_signal_to_name (i));
2192
2193 fprintf_unfiltered (gdb_stdlog, " })\n");
2194 }
2195
2196 (*current_target.to_program_signals) (&current_target,
2197 numsigs, program_signals);
2198 }
2199
2200 static int
2201 default_follow_fork (struct target_ops *self, int follow_child,
2202 int detach_fork)
2203 {
2204 /* Some target returned a fork event, but did not know how to follow it. */
2205 internal_error (__FILE__, __LINE__,
2206 _("could not find a target to follow fork"));
2207 }
2208
2209 /* Look through the list of possible targets for a target that can
2210 follow forks. */
2211
2212 int
2213 target_follow_fork (int follow_child, int detach_fork)
2214 {
2215 int retval = current_target.to_follow_fork (&current_target,
2216 follow_child, detach_fork);
2217
2218 if (targetdebug)
2219 fprintf_unfiltered (gdb_stdlog,
2220 "target_follow_fork (%d, %d) = %d\n",
2221 follow_child, detach_fork, retval);
2222 return retval;
2223 }
2224
2225 static void
2226 default_mourn_inferior (struct target_ops *self)
2227 {
2228 internal_error (__FILE__, __LINE__,
2229 _("could not find a target to follow mourn inferior"));
2230 }
2231
2232 void
2233 target_mourn_inferior (void)
2234 {
2235 current_target.to_mourn_inferior (&current_target);
2236 if (targetdebug)
2237 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2238
2239 /* We no longer need to keep handles on any of the object files.
2240 Make sure to release them to avoid unnecessarily locking any
2241 of them while we're not actually debugging. */
2242 bfd_cache_close_all ();
2243 }
2244
2245 /* Look for a target which can describe architectural features, starting
2246 from TARGET. If we find one, return its description. */
2247
2248 const struct target_desc *
2249 target_read_description (struct target_ops *target)
2250 {
2251 return target->to_read_description (target);
2252 }
2253
2254 /* This implements a basic search of memory, reading target memory and
2255 performing the search here (as opposed to performing the search in on the
2256 target side with, for example, gdbserver). */
2257
2258 int
2259 simple_search_memory (struct target_ops *ops,
2260 CORE_ADDR start_addr, ULONGEST search_space_len,
2261 const gdb_byte *pattern, ULONGEST pattern_len,
2262 CORE_ADDR *found_addrp)
2263 {
2264 /* NOTE: also defined in find.c testcase. */
2265 #define SEARCH_CHUNK_SIZE 16000
2266 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2267 /* Buffer to hold memory contents for searching. */
2268 gdb_byte *search_buf;
2269 unsigned search_buf_size;
2270 struct cleanup *old_cleanups;
2271
2272 search_buf_size = chunk_size + pattern_len - 1;
2273
2274 /* No point in trying to allocate a buffer larger than the search space. */
2275 if (search_space_len < search_buf_size)
2276 search_buf_size = search_space_len;
2277
2278 search_buf = malloc (search_buf_size);
2279 if (search_buf == NULL)
2280 error (_("Unable to allocate memory to perform the search."));
2281 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2282
2283 /* Prime the search buffer. */
2284
2285 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2286 search_buf, start_addr, search_buf_size) != search_buf_size)
2287 {
2288 warning (_("Unable to access %s bytes of target "
2289 "memory at %s, halting search."),
2290 pulongest (search_buf_size), hex_string (start_addr));
2291 do_cleanups (old_cleanups);
2292 return -1;
2293 }
2294
2295 /* Perform the search.
2296
2297 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2298 When we've scanned N bytes we copy the trailing bytes to the start and
2299 read in another N bytes. */
2300
2301 while (search_space_len >= pattern_len)
2302 {
2303 gdb_byte *found_ptr;
2304 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2305
2306 found_ptr = memmem (search_buf, nr_search_bytes,
2307 pattern, pattern_len);
2308
2309 if (found_ptr != NULL)
2310 {
2311 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2312
2313 *found_addrp = found_addr;
2314 do_cleanups (old_cleanups);
2315 return 1;
2316 }
2317
2318 /* Not found in this chunk, skip to next chunk. */
2319
2320 /* Don't let search_space_len wrap here, it's unsigned. */
2321 if (search_space_len >= chunk_size)
2322 search_space_len -= chunk_size;
2323 else
2324 search_space_len = 0;
2325
2326 if (search_space_len >= pattern_len)
2327 {
2328 unsigned keep_len = search_buf_size - chunk_size;
2329 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2330 int nr_to_read;
2331
2332 /* Copy the trailing part of the previous iteration to the front
2333 of the buffer for the next iteration. */
2334 gdb_assert (keep_len == pattern_len - 1);
2335 memcpy (search_buf, search_buf + chunk_size, keep_len);
2336
2337 nr_to_read = min (search_space_len - keep_len, chunk_size);
2338
2339 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2340 search_buf + keep_len, read_addr,
2341 nr_to_read) != nr_to_read)
2342 {
2343 warning (_("Unable to access %s bytes of target "
2344 "memory at %s, halting search."),
2345 plongest (nr_to_read),
2346 hex_string (read_addr));
2347 do_cleanups (old_cleanups);
2348 return -1;
2349 }
2350
2351 start_addr += chunk_size;
2352 }
2353 }
2354
2355 /* Not found. */
2356
2357 do_cleanups (old_cleanups);
2358 return 0;
2359 }
2360
2361 /* Default implementation of memory-searching. */
2362
2363 static int
2364 default_search_memory (struct target_ops *self,
2365 CORE_ADDR start_addr, ULONGEST search_space_len,
2366 const gdb_byte *pattern, ULONGEST pattern_len,
2367 CORE_ADDR *found_addrp)
2368 {
2369 /* Start over from the top of the target stack. */
2370 return simple_search_memory (current_target.beneath,
2371 start_addr, search_space_len,
2372 pattern, pattern_len, found_addrp);
2373 }
2374
2375 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2376 sequence of bytes in PATTERN with length PATTERN_LEN.
2377
2378 The result is 1 if found, 0 if not found, and -1 if there was an error
2379 requiring halting of the search (e.g. memory read error).
2380 If the pattern is found the address is recorded in FOUND_ADDRP. */
2381
2382 int
2383 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2384 const gdb_byte *pattern, ULONGEST pattern_len,
2385 CORE_ADDR *found_addrp)
2386 {
2387 int found;
2388
2389 if (targetdebug)
2390 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2391 hex_string (start_addr));
2392
2393 found = current_target.to_search_memory (&current_target, start_addr,
2394 search_space_len,
2395 pattern, pattern_len, found_addrp);
2396
2397 if (targetdebug)
2398 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2399
2400 return found;
2401 }
2402
2403 /* Look through the currently pushed targets. If none of them will
2404 be able to restart the currently running process, issue an error
2405 message. */
2406
2407 void
2408 target_require_runnable (void)
2409 {
2410 struct target_ops *t;
2411
2412 for (t = target_stack; t != NULL; t = t->beneath)
2413 {
2414 /* If this target knows how to create a new program, then
2415 assume we will still be able to after killing the current
2416 one. Either killing and mourning will not pop T, or else
2417 find_default_run_target will find it again. */
2418 if (t->to_create_inferior != NULL)
2419 return;
2420
2421 /* Do not worry about thread_stratum targets that can not
2422 create inferiors. Assume they will be pushed again if
2423 necessary, and continue to the process_stratum. */
2424 if (t->to_stratum == thread_stratum
2425 || t->to_stratum == arch_stratum)
2426 continue;
2427
2428 error (_("The \"%s\" target does not support \"run\". "
2429 "Try \"help target\" or \"continue\"."),
2430 t->to_shortname);
2431 }
2432
2433 /* This function is only called if the target is running. In that
2434 case there should have been a process_stratum target and it
2435 should either know how to create inferiors, or not... */
2436 internal_error (__FILE__, __LINE__, _("No targets found"));
2437 }
2438
2439 /* Whether GDB is allowed to fall back to the default run target for
2440 "run", "attach", etc. when no target is connected yet. */
2441 static int auto_connect_native_target = 1;
2442
2443 static void
2444 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2445 struct cmd_list_element *c, const char *value)
2446 {
2447 fprintf_filtered (file,
2448 _("Whether GDB may automatically connect to the "
2449 "native target is %s.\n"),
2450 value);
2451 }
2452
2453 /* Look through the list of possible targets for a target that can
2454 execute a run or attach command without any other data. This is
2455 used to locate the default process stratum.
2456
2457 If DO_MESG is not NULL, the result is always valid (error() is
2458 called for errors); else, return NULL on error. */
2459
2460 static struct target_ops *
2461 find_default_run_target (char *do_mesg)
2462 {
2463 struct target_ops *runable = NULL;
2464
2465 if (auto_connect_native_target)
2466 {
2467 struct target_ops **t;
2468 int count = 0;
2469
2470 for (t = target_structs; t < target_structs + target_struct_size;
2471 ++t)
2472 {
2473 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2474 {
2475 runable = *t;
2476 ++count;
2477 }
2478 }
2479
2480 if (count != 1)
2481 runable = NULL;
2482 }
2483
2484 if (runable == NULL)
2485 {
2486 if (do_mesg)
2487 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2488 else
2489 return NULL;
2490 }
2491
2492 return runable;
2493 }
2494
2495 /* See target.h. */
2496
2497 struct target_ops *
2498 find_attach_target (void)
2499 {
2500 struct target_ops *t;
2501
2502 /* If a target on the current stack can attach, use it. */
2503 for (t = current_target.beneath; t != NULL; t = t->beneath)
2504 {
2505 if (t->to_attach != NULL)
2506 break;
2507 }
2508
2509 /* Otherwise, use the default run target for attaching. */
2510 if (t == NULL)
2511 t = find_default_run_target ("attach");
2512
2513 return t;
2514 }
2515
2516 /* See target.h. */
2517
2518 struct target_ops *
2519 find_run_target (void)
2520 {
2521 struct target_ops *t;
2522
2523 /* If a target on the current stack can attach, use it. */
2524 for (t = current_target.beneath; t != NULL; t = t->beneath)
2525 {
2526 if (t->to_create_inferior != NULL)
2527 break;
2528 }
2529
2530 /* Otherwise, use the default run target. */
2531 if (t == NULL)
2532 t = find_default_run_target ("run");
2533
2534 return t;
2535 }
2536
2537 /* Implement the "info proc" command. */
2538
2539 int
2540 target_info_proc (char *args, enum info_proc_what what)
2541 {
2542 struct target_ops *t;
2543
2544 /* If we're already connected to something that can get us OS
2545 related data, use it. Otherwise, try using the native
2546 target. */
2547 if (current_target.to_stratum >= process_stratum)
2548 t = current_target.beneath;
2549 else
2550 t = find_default_run_target (NULL);
2551
2552 for (; t != NULL; t = t->beneath)
2553 {
2554 if (t->to_info_proc != NULL)
2555 {
2556 t->to_info_proc (t, args, what);
2557
2558 if (targetdebug)
2559 fprintf_unfiltered (gdb_stdlog,
2560 "target_info_proc (\"%s\", %d)\n", args, what);
2561
2562 return 1;
2563 }
2564 }
2565
2566 return 0;
2567 }
2568
2569 static int
2570 find_default_supports_disable_randomization (struct target_ops *self)
2571 {
2572 struct target_ops *t;
2573
2574 t = find_default_run_target (NULL);
2575 if (t && t->to_supports_disable_randomization)
2576 return (t->to_supports_disable_randomization) (t);
2577 return 0;
2578 }
2579
2580 int
2581 target_supports_disable_randomization (void)
2582 {
2583 struct target_ops *t;
2584
2585 for (t = &current_target; t != NULL; t = t->beneath)
2586 if (t->to_supports_disable_randomization)
2587 return t->to_supports_disable_randomization (t);
2588
2589 return 0;
2590 }
2591
2592 char *
2593 target_get_osdata (const char *type)
2594 {
2595 struct target_ops *t;
2596
2597 /* If we're already connected to something that can get us OS
2598 related data, use it. Otherwise, try using the native
2599 target. */
2600 if (current_target.to_stratum >= process_stratum)
2601 t = current_target.beneath;
2602 else
2603 t = find_default_run_target ("get OS data");
2604
2605 if (!t)
2606 return NULL;
2607
2608 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2609 }
2610
2611 /* Determine the current address space of thread PTID. */
2612
2613 struct address_space *
2614 target_thread_address_space (ptid_t ptid)
2615 {
2616 struct address_space *aspace;
2617 struct inferior *inf;
2618 struct target_ops *t;
2619
2620 for (t = current_target.beneath; t != NULL; t = t->beneath)
2621 {
2622 if (t->to_thread_address_space != NULL)
2623 {
2624 aspace = t->to_thread_address_space (t, ptid);
2625 gdb_assert (aspace);
2626
2627 if (targetdebug)
2628 fprintf_unfiltered (gdb_stdlog,
2629 "target_thread_address_space (%s) = %d\n",
2630 target_pid_to_str (ptid),
2631 address_space_num (aspace));
2632 return aspace;
2633 }
2634 }
2635
2636 /* Fall-back to the "main" address space of the inferior. */
2637 inf = find_inferior_pid (ptid_get_pid (ptid));
2638
2639 if (inf == NULL || inf->aspace == NULL)
2640 internal_error (__FILE__, __LINE__,
2641 _("Can't determine the current "
2642 "address space of thread %s\n"),
2643 target_pid_to_str (ptid));
2644
2645 return inf->aspace;
2646 }
2647
2648
2649 /* Target file operations. */
2650
2651 static struct target_ops *
2652 default_fileio_target (void)
2653 {
2654 /* If we're already connected to something that can perform
2655 file I/O, use it. Otherwise, try using the native target. */
2656 if (current_target.to_stratum >= process_stratum)
2657 return current_target.beneath;
2658 else
2659 return find_default_run_target ("file I/O");
2660 }
2661
2662 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2663 target file descriptor, or -1 if an error occurs (and set
2664 *TARGET_ERRNO). */
2665 int
2666 target_fileio_open (const char *filename, int flags, int mode,
2667 int *target_errno)
2668 {
2669 struct target_ops *t;
2670
2671 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2672 {
2673 if (t->to_fileio_open != NULL)
2674 {
2675 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2676
2677 if (targetdebug)
2678 fprintf_unfiltered (gdb_stdlog,
2679 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2680 filename, flags, mode,
2681 fd, fd != -1 ? 0 : *target_errno);
2682 return fd;
2683 }
2684 }
2685
2686 *target_errno = FILEIO_ENOSYS;
2687 return -1;
2688 }
2689
2690 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2691 Return the number of bytes written, or -1 if an error occurs
2692 (and set *TARGET_ERRNO). */
2693 int
2694 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2695 ULONGEST offset, int *target_errno)
2696 {
2697 struct target_ops *t;
2698
2699 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2700 {
2701 if (t->to_fileio_pwrite != NULL)
2702 {
2703 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2704 target_errno);
2705
2706 if (targetdebug)
2707 fprintf_unfiltered (gdb_stdlog,
2708 "target_fileio_pwrite (%d,...,%d,%s) "
2709 "= %d (%d)\n",
2710 fd, len, pulongest (offset),
2711 ret, ret != -1 ? 0 : *target_errno);
2712 return ret;
2713 }
2714 }
2715
2716 *target_errno = FILEIO_ENOSYS;
2717 return -1;
2718 }
2719
2720 /* Read up to LEN bytes FD on the target into READ_BUF.
2721 Return the number of bytes read, or -1 if an error occurs
2722 (and set *TARGET_ERRNO). */
2723 int
2724 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2725 ULONGEST offset, int *target_errno)
2726 {
2727 struct target_ops *t;
2728
2729 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2730 {
2731 if (t->to_fileio_pread != NULL)
2732 {
2733 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2734 target_errno);
2735
2736 if (targetdebug)
2737 fprintf_unfiltered (gdb_stdlog,
2738 "target_fileio_pread (%d,...,%d,%s) "
2739 "= %d (%d)\n",
2740 fd, len, pulongest (offset),
2741 ret, ret != -1 ? 0 : *target_errno);
2742 return ret;
2743 }
2744 }
2745
2746 *target_errno = FILEIO_ENOSYS;
2747 return -1;
2748 }
2749
2750 /* Close FD on the target. Return 0, or -1 if an error occurs
2751 (and set *TARGET_ERRNO). */
2752 int
2753 target_fileio_close (int fd, int *target_errno)
2754 {
2755 struct target_ops *t;
2756
2757 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2758 {
2759 if (t->to_fileio_close != NULL)
2760 {
2761 int ret = t->to_fileio_close (t, fd, target_errno);
2762
2763 if (targetdebug)
2764 fprintf_unfiltered (gdb_stdlog,
2765 "target_fileio_close (%d) = %d (%d)\n",
2766 fd, ret, ret != -1 ? 0 : *target_errno);
2767 return ret;
2768 }
2769 }
2770
2771 *target_errno = FILEIO_ENOSYS;
2772 return -1;
2773 }
2774
2775 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2776 occurs (and set *TARGET_ERRNO). */
2777 int
2778 target_fileio_unlink (const char *filename, int *target_errno)
2779 {
2780 struct target_ops *t;
2781
2782 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2783 {
2784 if (t->to_fileio_unlink != NULL)
2785 {
2786 int ret = t->to_fileio_unlink (t, filename, target_errno);
2787
2788 if (targetdebug)
2789 fprintf_unfiltered (gdb_stdlog,
2790 "target_fileio_unlink (%s) = %d (%d)\n",
2791 filename, ret, ret != -1 ? 0 : *target_errno);
2792 return ret;
2793 }
2794 }
2795
2796 *target_errno = FILEIO_ENOSYS;
2797 return -1;
2798 }
2799
2800 /* Read value of symbolic link FILENAME on the target. Return a
2801 null-terminated string allocated via xmalloc, or NULL if an error
2802 occurs (and set *TARGET_ERRNO). */
2803 char *
2804 target_fileio_readlink (const char *filename, int *target_errno)
2805 {
2806 struct target_ops *t;
2807
2808 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2809 {
2810 if (t->to_fileio_readlink != NULL)
2811 {
2812 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2813
2814 if (targetdebug)
2815 fprintf_unfiltered (gdb_stdlog,
2816 "target_fileio_readlink (%s) = %s (%d)\n",
2817 filename, ret? ret : "(nil)",
2818 ret? 0 : *target_errno);
2819 return ret;
2820 }
2821 }
2822
2823 *target_errno = FILEIO_ENOSYS;
2824 return NULL;
2825 }
2826
2827 static void
2828 target_fileio_close_cleanup (void *opaque)
2829 {
2830 int fd = *(int *) opaque;
2831 int target_errno;
2832
2833 target_fileio_close (fd, &target_errno);
2834 }
2835
2836 /* Read target file FILENAME. Store the result in *BUF_P and
2837 return the size of the transferred data. PADDING additional bytes are
2838 available in *BUF_P. This is a helper function for
2839 target_fileio_read_alloc; see the declaration of that function for more
2840 information. */
2841
2842 static LONGEST
2843 target_fileio_read_alloc_1 (const char *filename,
2844 gdb_byte **buf_p, int padding)
2845 {
2846 struct cleanup *close_cleanup;
2847 size_t buf_alloc, buf_pos;
2848 gdb_byte *buf;
2849 LONGEST n;
2850 int fd;
2851 int target_errno;
2852
2853 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2854 if (fd == -1)
2855 return -1;
2856
2857 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2858
2859 /* Start by reading up to 4K at a time. The target will throttle
2860 this number down if necessary. */
2861 buf_alloc = 4096;
2862 buf = xmalloc (buf_alloc);
2863 buf_pos = 0;
2864 while (1)
2865 {
2866 n = target_fileio_pread (fd, &buf[buf_pos],
2867 buf_alloc - buf_pos - padding, buf_pos,
2868 &target_errno);
2869 if (n < 0)
2870 {
2871 /* An error occurred. */
2872 do_cleanups (close_cleanup);
2873 xfree (buf);
2874 return -1;
2875 }
2876 else if (n == 0)
2877 {
2878 /* Read all there was. */
2879 do_cleanups (close_cleanup);
2880 if (buf_pos == 0)
2881 xfree (buf);
2882 else
2883 *buf_p = buf;
2884 return buf_pos;
2885 }
2886
2887 buf_pos += n;
2888
2889 /* If the buffer is filling up, expand it. */
2890 if (buf_alloc < buf_pos * 2)
2891 {
2892 buf_alloc *= 2;
2893 buf = xrealloc (buf, buf_alloc);
2894 }
2895
2896 QUIT;
2897 }
2898 }
2899
2900 /* Read target file FILENAME. Store the result in *BUF_P and return
2901 the size of the transferred data. See the declaration in "target.h"
2902 function for more information about the return value. */
2903
2904 LONGEST
2905 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2906 {
2907 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2908 }
2909
2910 /* Read target file FILENAME. The result is NUL-terminated and
2911 returned as a string, allocated using xmalloc. If an error occurs
2912 or the transfer is unsupported, NULL is returned. Empty objects
2913 are returned as allocated but empty strings. A warning is issued
2914 if the result contains any embedded NUL bytes. */
2915
2916 char *
2917 target_fileio_read_stralloc (const char *filename)
2918 {
2919 gdb_byte *buffer;
2920 char *bufstr;
2921 LONGEST i, transferred;
2922
2923 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2924 bufstr = (char *) buffer;
2925
2926 if (transferred < 0)
2927 return NULL;
2928
2929 if (transferred == 0)
2930 return xstrdup ("");
2931
2932 bufstr[transferred] = 0;
2933
2934 /* Check for embedded NUL bytes; but allow trailing NULs. */
2935 for (i = strlen (bufstr); i < transferred; i++)
2936 if (bufstr[i] != 0)
2937 {
2938 warning (_("target file %s "
2939 "contained unexpected null characters"),
2940 filename);
2941 break;
2942 }
2943
2944 return bufstr;
2945 }
2946
2947
2948 static int
2949 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2950 CORE_ADDR addr, int len)
2951 {
2952 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2953 }
2954
2955 static int
2956 default_watchpoint_addr_within_range (struct target_ops *target,
2957 CORE_ADDR addr,
2958 CORE_ADDR start, int length)
2959 {
2960 return addr >= start && addr < start + length;
2961 }
2962
2963 static struct gdbarch *
2964 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2965 {
2966 return target_gdbarch ();
2967 }
2968
2969 static int
2970 return_zero (struct target_ops *ignore)
2971 {
2972 return 0;
2973 }
2974
2975 static int
2976 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2977 {
2978 return 0;
2979 }
2980
2981 /*
2982 * Find the next target down the stack from the specified target.
2983 */
2984
2985 struct target_ops *
2986 find_target_beneath (struct target_ops *t)
2987 {
2988 return t->beneath;
2989 }
2990
2991 /* See target.h. */
2992
2993 struct target_ops *
2994 find_target_at (enum strata stratum)
2995 {
2996 struct target_ops *t;
2997
2998 for (t = current_target.beneath; t != NULL; t = t->beneath)
2999 if (t->to_stratum == stratum)
3000 return t;
3001
3002 return NULL;
3003 }
3004
3005 \f
3006 /* The inferior process has died. Long live the inferior! */
3007
3008 void
3009 generic_mourn_inferior (void)
3010 {
3011 ptid_t ptid;
3012
3013 ptid = inferior_ptid;
3014 inferior_ptid = null_ptid;
3015
3016 /* Mark breakpoints uninserted in case something tries to delete a
3017 breakpoint while we delete the inferior's threads (which would
3018 fail, since the inferior is long gone). */
3019 mark_breakpoints_out ();
3020
3021 if (!ptid_equal (ptid, null_ptid))
3022 {
3023 int pid = ptid_get_pid (ptid);
3024 exit_inferior (pid);
3025 }
3026
3027 /* Note this wipes step-resume breakpoints, so needs to be done
3028 after exit_inferior, which ends up referencing the step-resume
3029 breakpoints through clear_thread_inferior_resources. */
3030 breakpoint_init_inferior (inf_exited);
3031
3032 registers_changed ();
3033
3034 reopen_exec_file ();
3035 reinit_frame_cache ();
3036
3037 if (deprecated_detach_hook)
3038 deprecated_detach_hook ();
3039 }
3040 \f
3041 /* Convert a normal process ID to a string. Returns the string in a
3042 static buffer. */
3043
3044 char *
3045 normal_pid_to_str (ptid_t ptid)
3046 {
3047 static char buf[32];
3048
3049 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3050 return buf;
3051 }
3052
3053 static char *
3054 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3055 {
3056 return normal_pid_to_str (ptid);
3057 }
3058
3059 /* Error-catcher for target_find_memory_regions. */
3060 static int
3061 dummy_find_memory_regions (struct target_ops *self,
3062 find_memory_region_ftype ignore1, void *ignore2)
3063 {
3064 error (_("Command not implemented for this target."));
3065 return 0;
3066 }
3067
3068 /* Error-catcher for target_make_corefile_notes. */
3069 static char *
3070 dummy_make_corefile_notes (struct target_ops *self,
3071 bfd *ignore1, int *ignore2)
3072 {
3073 error (_("Command not implemented for this target."));
3074 return NULL;
3075 }
3076
3077 /* Set up the handful of non-empty slots needed by the dummy target
3078 vector. */
3079
3080 static void
3081 init_dummy_target (void)
3082 {
3083 dummy_target.to_shortname = "None";
3084 dummy_target.to_longname = "None";
3085 dummy_target.to_doc = "";
3086 dummy_target.to_supports_disable_randomization
3087 = find_default_supports_disable_randomization;
3088 dummy_target.to_stratum = dummy_stratum;
3089 dummy_target.to_has_all_memory = return_zero;
3090 dummy_target.to_has_memory = return_zero;
3091 dummy_target.to_has_stack = return_zero;
3092 dummy_target.to_has_registers = return_zero;
3093 dummy_target.to_has_execution = return_zero_has_execution;
3094 dummy_target.to_magic = OPS_MAGIC;
3095
3096 install_dummy_methods (&dummy_target);
3097 }
3098 \f
3099 static void
3100 debug_to_open (char *args, int from_tty)
3101 {
3102 debug_target.to_open (args, from_tty);
3103
3104 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3105 }
3106
3107 void
3108 target_close (struct target_ops *targ)
3109 {
3110 gdb_assert (!target_is_pushed (targ));
3111
3112 if (targ->to_xclose != NULL)
3113 targ->to_xclose (targ);
3114 else if (targ->to_close != NULL)
3115 targ->to_close (targ);
3116
3117 if (targetdebug)
3118 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3119 }
3120
3121 int
3122 target_thread_alive (ptid_t ptid)
3123 {
3124 int retval;
3125
3126 retval = current_target.to_thread_alive (&current_target, ptid);
3127 if (targetdebug)
3128 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3129 ptid_get_pid (ptid), retval);
3130
3131 return retval;
3132 }
3133
3134 void
3135 target_find_new_threads (void)
3136 {
3137 current_target.to_find_new_threads (&current_target);
3138 if (targetdebug)
3139 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3140 }
3141
3142 void
3143 target_stop (ptid_t ptid)
3144 {
3145 if (!may_stop)
3146 {
3147 warning (_("May not interrupt or stop the target, ignoring attempt"));
3148 return;
3149 }
3150
3151 (*current_target.to_stop) (&current_target, ptid);
3152 }
3153
3154 static void
3155 debug_to_post_attach (struct target_ops *self, int pid)
3156 {
3157 debug_target.to_post_attach (&debug_target, pid);
3158
3159 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3160 }
3161
3162 /* Concatenate ELEM to LIST, a comma separate list, and return the
3163 result. The LIST incoming argument is released. */
3164
3165 static char *
3166 str_comma_list_concat_elem (char *list, const char *elem)
3167 {
3168 if (list == NULL)
3169 return xstrdup (elem);
3170 else
3171 return reconcat (list, list, ", ", elem, (char *) NULL);
3172 }
3173
3174 /* Helper for target_options_to_string. If OPT is present in
3175 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3176 Returns the new resulting string. OPT is removed from
3177 TARGET_OPTIONS. */
3178
3179 static char *
3180 do_option (int *target_options, char *ret,
3181 int opt, char *opt_str)
3182 {
3183 if ((*target_options & opt) != 0)
3184 {
3185 ret = str_comma_list_concat_elem (ret, opt_str);
3186 *target_options &= ~opt;
3187 }
3188
3189 return ret;
3190 }
3191
3192 char *
3193 target_options_to_string (int target_options)
3194 {
3195 char *ret = NULL;
3196
3197 #define DO_TARG_OPTION(OPT) \
3198 ret = do_option (&target_options, ret, OPT, #OPT)
3199
3200 DO_TARG_OPTION (TARGET_WNOHANG);
3201
3202 if (target_options != 0)
3203 ret = str_comma_list_concat_elem (ret, "unknown???");
3204
3205 if (ret == NULL)
3206 ret = xstrdup ("");
3207 return ret;
3208 }
3209
3210 static void
3211 debug_print_register (const char * func,
3212 struct regcache *regcache, int regno)
3213 {
3214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3215
3216 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3217 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3218 && gdbarch_register_name (gdbarch, regno) != NULL
3219 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3220 fprintf_unfiltered (gdb_stdlog, "(%s)",
3221 gdbarch_register_name (gdbarch, regno));
3222 else
3223 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3224 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3225 {
3226 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3227 int i, size = register_size (gdbarch, regno);
3228 gdb_byte buf[MAX_REGISTER_SIZE];
3229
3230 regcache_raw_collect (regcache, regno, buf);
3231 fprintf_unfiltered (gdb_stdlog, " = ");
3232 for (i = 0; i < size; i++)
3233 {
3234 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3235 }
3236 if (size <= sizeof (LONGEST))
3237 {
3238 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3239
3240 fprintf_unfiltered (gdb_stdlog, " %s %s",
3241 core_addr_to_string_nz (val), plongest (val));
3242 }
3243 }
3244 fprintf_unfiltered (gdb_stdlog, "\n");
3245 }
3246
3247 void
3248 target_fetch_registers (struct regcache *regcache, int regno)
3249 {
3250 current_target.to_fetch_registers (&current_target, regcache, regno);
3251 if (targetdebug)
3252 debug_print_register ("target_fetch_registers", regcache, regno);
3253 }
3254
3255 void
3256 target_store_registers (struct regcache *regcache, int regno)
3257 {
3258 struct target_ops *t;
3259
3260 if (!may_write_registers)
3261 error (_("Writing to registers is not allowed (regno %d)"), regno);
3262
3263 current_target.to_store_registers (&current_target, regcache, regno);
3264 if (targetdebug)
3265 {
3266 debug_print_register ("target_store_registers", regcache, regno);
3267 }
3268 }
3269
3270 int
3271 target_core_of_thread (ptid_t ptid)
3272 {
3273 int retval = current_target.to_core_of_thread (&current_target, ptid);
3274
3275 if (targetdebug)
3276 fprintf_unfiltered (gdb_stdlog,
3277 "target_core_of_thread (%d) = %d\n",
3278 ptid_get_pid (ptid), retval);
3279 return retval;
3280 }
3281
3282 int
3283 simple_verify_memory (struct target_ops *ops,
3284 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3285 {
3286 LONGEST total_xfered = 0;
3287
3288 while (total_xfered < size)
3289 {
3290 ULONGEST xfered_len;
3291 enum target_xfer_status status;
3292 gdb_byte buf[1024];
3293 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3294
3295 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3296 buf, NULL, lma + total_xfered, howmuch,
3297 &xfered_len);
3298 if (status == TARGET_XFER_OK
3299 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3300 {
3301 total_xfered += xfered_len;
3302 QUIT;
3303 }
3304 else
3305 return 0;
3306 }
3307 return 1;
3308 }
3309
3310 /* Default implementation of memory verification. */
3311
3312 static int
3313 default_verify_memory (struct target_ops *self,
3314 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3315 {
3316 /* Start over from the top of the target stack. */
3317 return simple_verify_memory (current_target.beneath,
3318 data, memaddr, size);
3319 }
3320
3321 int
3322 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3323 {
3324 int retval = current_target.to_verify_memory (&current_target,
3325 data, memaddr, size);
3326
3327 if (targetdebug)
3328 fprintf_unfiltered (gdb_stdlog,
3329 "target_verify_memory (%s, %s) = %d\n",
3330 paddress (target_gdbarch (), memaddr),
3331 pulongest (size),
3332 retval);
3333 return retval;
3334 }
3335
3336 /* The documentation for this function is in its prototype declaration in
3337 target.h. */
3338
3339 int
3340 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3341 {
3342 int ret;
3343
3344 ret = current_target.to_insert_mask_watchpoint (&current_target,
3345 addr, mask, rw);
3346
3347 if (targetdebug)
3348 fprintf_unfiltered (gdb_stdlog, "\
3349 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3350 core_addr_to_string (addr),
3351 core_addr_to_string (mask), rw, ret);
3352
3353 return ret;
3354 }
3355
3356 /* The documentation for this function is in its prototype declaration in
3357 target.h. */
3358
3359 int
3360 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3361 {
3362 int ret;
3363
3364 ret = current_target.to_remove_mask_watchpoint (&current_target,
3365 addr, mask, rw);
3366
3367 if (targetdebug)
3368 fprintf_unfiltered (gdb_stdlog, "\
3369 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3370 core_addr_to_string (addr),
3371 core_addr_to_string (mask), rw, ret);
3372
3373 return ret;
3374 }
3375
3376 /* The documentation for this function is in its prototype declaration
3377 in target.h. */
3378
3379 int
3380 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3381 {
3382 return current_target.to_masked_watch_num_registers (&current_target,
3383 addr, mask);
3384 }
3385
3386 /* The documentation for this function is in its prototype declaration
3387 in target.h. */
3388
3389 int
3390 target_ranged_break_num_registers (void)
3391 {
3392 return current_target.to_ranged_break_num_registers (&current_target);
3393 }
3394
3395 /* See target.h. */
3396
3397 struct btrace_target_info *
3398 target_enable_btrace (ptid_t ptid)
3399 {
3400 return current_target.to_enable_btrace (&current_target, ptid);
3401 }
3402
3403 /* See target.h. */
3404
3405 void
3406 target_disable_btrace (struct btrace_target_info *btinfo)
3407 {
3408 current_target.to_disable_btrace (&current_target, btinfo);
3409 }
3410
3411 /* See target.h. */
3412
3413 void
3414 target_teardown_btrace (struct btrace_target_info *btinfo)
3415 {
3416 current_target.to_teardown_btrace (&current_target, btinfo);
3417 }
3418
3419 /* See target.h. */
3420
3421 enum btrace_error
3422 target_read_btrace (VEC (btrace_block_s) **btrace,
3423 struct btrace_target_info *btinfo,
3424 enum btrace_read_type type)
3425 {
3426 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3427 }
3428
3429 /* See target.h. */
3430
3431 void
3432 target_stop_recording (void)
3433 {
3434 current_target.to_stop_recording (&current_target);
3435 }
3436
3437 /* See target.h. */
3438
3439 void
3440 target_info_record (void)
3441 {
3442 struct target_ops *t;
3443
3444 for (t = current_target.beneath; t != NULL; t = t->beneath)
3445 if (t->to_info_record != NULL)
3446 {
3447 t->to_info_record (t);
3448 return;
3449 }
3450
3451 tcomplain ();
3452 }
3453
3454 /* See target.h. */
3455
3456 void
3457 target_save_record (const char *filename)
3458 {
3459 current_target.to_save_record (&current_target, filename);
3460 }
3461
3462 /* See target.h. */
3463
3464 int
3465 target_supports_delete_record (void)
3466 {
3467 struct target_ops *t;
3468
3469 for (t = current_target.beneath; t != NULL; t = t->beneath)
3470 if (t->to_delete_record != NULL)
3471 return 1;
3472
3473 return 0;
3474 }
3475
3476 /* See target.h. */
3477
3478 void
3479 target_delete_record (void)
3480 {
3481 current_target.to_delete_record (&current_target);
3482 }
3483
3484 /* See target.h. */
3485
3486 int
3487 target_record_is_replaying (void)
3488 {
3489 return current_target.to_record_is_replaying (&current_target);
3490 }
3491
3492 /* See target.h. */
3493
3494 void
3495 target_goto_record_begin (void)
3496 {
3497 current_target.to_goto_record_begin (&current_target);
3498 }
3499
3500 /* See target.h. */
3501
3502 void
3503 target_goto_record_end (void)
3504 {
3505 current_target.to_goto_record_end (&current_target);
3506 }
3507
3508 /* See target.h. */
3509
3510 void
3511 target_goto_record (ULONGEST insn)
3512 {
3513 current_target.to_goto_record (&current_target, insn);
3514 }
3515
3516 /* See target.h. */
3517
3518 void
3519 target_insn_history (int size, int flags)
3520 {
3521 current_target.to_insn_history (&current_target, size, flags);
3522 }
3523
3524 /* See target.h. */
3525
3526 void
3527 target_insn_history_from (ULONGEST from, int size, int flags)
3528 {
3529 current_target.to_insn_history_from (&current_target, from, size, flags);
3530 }
3531
3532 /* See target.h. */
3533
3534 void
3535 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3536 {
3537 current_target.to_insn_history_range (&current_target, begin, end, flags);
3538 }
3539
3540 /* See target.h. */
3541
3542 void
3543 target_call_history (int size, int flags)
3544 {
3545 current_target.to_call_history (&current_target, size, flags);
3546 }
3547
3548 /* See target.h. */
3549
3550 void
3551 target_call_history_from (ULONGEST begin, int size, int flags)
3552 {
3553 current_target.to_call_history_from (&current_target, begin, size, flags);
3554 }
3555
3556 /* See target.h. */
3557
3558 void
3559 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3560 {
3561 current_target.to_call_history_range (&current_target, begin, end, flags);
3562 }
3563
3564 static void
3565 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
3566 {
3567 debug_target.to_prepare_to_store (&debug_target, regcache);
3568
3569 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3570 }
3571
3572 /* See target.h. */
3573
3574 const struct frame_unwind *
3575 target_get_unwinder (void)
3576 {
3577 return current_target.to_get_unwinder (&current_target);
3578 }
3579
3580 /* See target.h. */
3581
3582 const struct frame_unwind *
3583 target_get_tailcall_unwinder (void)
3584 {
3585 return current_target.to_get_tailcall_unwinder (&current_target);
3586 }
3587
3588 /* Default implementation of to_decr_pc_after_break. */
3589
3590 static CORE_ADDR
3591 default_target_decr_pc_after_break (struct target_ops *ops,
3592 struct gdbarch *gdbarch)
3593 {
3594 return gdbarch_decr_pc_after_break (gdbarch);
3595 }
3596
3597 /* See target.h. */
3598
3599 CORE_ADDR
3600 target_decr_pc_after_break (struct gdbarch *gdbarch)
3601 {
3602 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3603 }
3604
3605 static void
3606 debug_to_files_info (struct target_ops *target)
3607 {
3608 debug_target.to_files_info (target);
3609
3610 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3611 }
3612
3613 static int
3614 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3615 struct bp_target_info *bp_tgt)
3616 {
3617 int retval;
3618
3619 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
3620
3621 fprintf_unfiltered (gdb_stdlog,
3622 "target_insert_breakpoint (%s, xxx) = %ld\n",
3623 core_addr_to_string (bp_tgt->placed_address),
3624 (unsigned long) retval);
3625 return retval;
3626 }
3627
3628 static int
3629 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3630 struct bp_target_info *bp_tgt)
3631 {
3632 int retval;
3633
3634 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
3635
3636 fprintf_unfiltered (gdb_stdlog,
3637 "target_remove_breakpoint (%s, xxx) = %ld\n",
3638 core_addr_to_string (bp_tgt->placed_address),
3639 (unsigned long) retval);
3640 return retval;
3641 }
3642
3643 static int
3644 debug_to_can_use_hw_breakpoint (struct target_ops *self,
3645 int type, int cnt, int from_tty)
3646 {
3647 int retval;
3648
3649 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
3650 type, cnt, from_tty);
3651
3652 fprintf_unfiltered (gdb_stdlog,
3653 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3654 (unsigned long) type,
3655 (unsigned long) cnt,
3656 (unsigned long) from_tty,
3657 (unsigned long) retval);
3658 return retval;
3659 }
3660
3661 static int
3662 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
3663 CORE_ADDR addr, int len)
3664 {
3665 CORE_ADDR retval;
3666
3667 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
3668 addr, len);
3669
3670 fprintf_unfiltered (gdb_stdlog,
3671 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3672 core_addr_to_string (addr), (unsigned long) len,
3673 core_addr_to_string (retval));
3674 return retval;
3675 }
3676
3677 static int
3678 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
3679 CORE_ADDR addr, int len, int rw,
3680 struct expression *cond)
3681 {
3682 int retval;
3683
3684 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
3685 addr, len,
3686 rw, cond);
3687
3688 fprintf_unfiltered (gdb_stdlog,
3689 "target_can_accel_watchpoint_condition "
3690 "(%s, %d, %d, %s) = %ld\n",
3691 core_addr_to_string (addr), len, rw,
3692 host_address_to_string (cond), (unsigned long) retval);
3693 return retval;
3694 }
3695
3696 static int
3697 debug_to_stopped_by_watchpoint (struct target_ops *ops)
3698 {
3699 int retval;
3700
3701 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
3702
3703 fprintf_unfiltered (gdb_stdlog,
3704 "target_stopped_by_watchpoint () = %ld\n",
3705 (unsigned long) retval);
3706 return retval;
3707 }
3708
3709 static int
3710 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3711 {
3712 int retval;
3713
3714 retval = debug_target.to_stopped_data_address (target, addr);
3715
3716 fprintf_unfiltered (gdb_stdlog,
3717 "target_stopped_data_address ([%s]) = %ld\n",
3718 core_addr_to_string (*addr),
3719 (unsigned long)retval);
3720 return retval;
3721 }
3722
3723 static int
3724 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3725 CORE_ADDR addr,
3726 CORE_ADDR start, int length)
3727 {
3728 int retval;
3729
3730 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3731 start, length);
3732
3733 fprintf_filtered (gdb_stdlog,
3734 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3735 core_addr_to_string (addr), core_addr_to_string (start),
3736 length, retval);
3737 return retval;
3738 }
3739
3740 static int
3741 debug_to_insert_hw_breakpoint (struct target_ops *self,
3742 struct gdbarch *gdbarch,
3743 struct bp_target_info *bp_tgt)
3744 {
3745 int retval;
3746
3747 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
3748 gdbarch, bp_tgt);
3749
3750 fprintf_unfiltered (gdb_stdlog,
3751 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3752 core_addr_to_string (bp_tgt->placed_address),
3753 (unsigned long) retval);
3754 return retval;
3755 }
3756
3757 static int
3758 debug_to_remove_hw_breakpoint (struct target_ops *self,
3759 struct gdbarch *gdbarch,
3760 struct bp_target_info *bp_tgt)
3761 {
3762 int retval;
3763
3764 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
3765 gdbarch, bp_tgt);
3766
3767 fprintf_unfiltered (gdb_stdlog,
3768 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3769 core_addr_to_string (bp_tgt->placed_address),
3770 (unsigned long) retval);
3771 return retval;
3772 }
3773
3774 static int
3775 debug_to_insert_watchpoint (struct target_ops *self,
3776 CORE_ADDR addr, int len, int type,
3777 struct expression *cond)
3778 {
3779 int retval;
3780
3781 retval = debug_target.to_insert_watchpoint (&debug_target,
3782 addr, len, type, cond);
3783
3784 fprintf_unfiltered (gdb_stdlog,
3785 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3786 core_addr_to_string (addr), len, type,
3787 host_address_to_string (cond), (unsigned long) retval);
3788 return retval;
3789 }
3790
3791 static int
3792 debug_to_remove_watchpoint (struct target_ops *self,
3793 CORE_ADDR addr, int len, int type,
3794 struct expression *cond)
3795 {
3796 int retval;
3797
3798 retval = debug_target.to_remove_watchpoint (&debug_target,
3799 addr, len, type, cond);
3800
3801 fprintf_unfiltered (gdb_stdlog,
3802 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3803 core_addr_to_string (addr), len, type,
3804 host_address_to_string (cond), (unsigned long) retval);
3805 return retval;
3806 }
3807
3808 static void
3809 debug_to_terminal_init (struct target_ops *self)
3810 {
3811 debug_target.to_terminal_init (&debug_target);
3812
3813 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3814 }
3815
3816 static void
3817 debug_to_terminal_inferior (struct target_ops *self)
3818 {
3819 debug_target.to_terminal_inferior (&debug_target);
3820
3821 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3822 }
3823
3824 static void
3825 debug_to_terminal_ours_for_output (struct target_ops *self)
3826 {
3827 debug_target.to_terminal_ours_for_output (&debug_target);
3828
3829 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3830 }
3831
3832 static void
3833 debug_to_terminal_ours (struct target_ops *self)
3834 {
3835 debug_target.to_terminal_ours (&debug_target);
3836
3837 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3838 }
3839
3840 static void
3841 debug_to_terminal_save_ours (struct target_ops *self)
3842 {
3843 debug_target.to_terminal_save_ours (&debug_target);
3844
3845 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3846 }
3847
3848 static void
3849 debug_to_terminal_info (struct target_ops *self,
3850 const char *arg, int from_tty)
3851 {
3852 debug_target.to_terminal_info (&debug_target, arg, from_tty);
3853
3854 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3855 from_tty);
3856 }
3857
3858 static void
3859 debug_to_load (struct target_ops *self, char *args, int from_tty)
3860 {
3861 debug_target.to_load (&debug_target, args, from_tty);
3862
3863 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3864 }
3865
3866 static void
3867 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
3868 {
3869 debug_target.to_post_startup_inferior (&debug_target, ptid);
3870
3871 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3872 ptid_get_pid (ptid));
3873 }
3874
3875 static int
3876 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
3877 {
3878 int retval;
3879
3880 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
3881
3882 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3883 pid, retval);
3884
3885 return retval;
3886 }
3887
3888 static int
3889 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
3890 {
3891 int retval;
3892
3893 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
3894
3895 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3896 pid, retval);
3897
3898 return retval;
3899 }
3900
3901 static int
3902 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
3903 {
3904 int retval;
3905
3906 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
3907
3908 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3909 pid, retval);
3910
3911 return retval;
3912 }
3913
3914 static int
3915 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
3916 {
3917 int retval;
3918
3919 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
3920
3921 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3922 pid, retval);
3923
3924 return retval;
3925 }
3926
3927 static int
3928 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
3929 {
3930 int retval;
3931
3932 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
3933
3934 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
3935 pid, retval);
3936
3937 return retval;
3938 }
3939
3940 static int
3941 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
3942 {
3943 int retval;
3944
3945 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
3946
3947 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3948 pid, retval);
3949
3950 return retval;
3951 }
3952
3953 static int
3954 debug_to_has_exited (struct target_ops *self,
3955 int pid, int wait_status, int *exit_status)
3956 {
3957 int has_exited;
3958
3959 has_exited = debug_target.to_has_exited (&debug_target,
3960 pid, wait_status, exit_status);
3961
3962 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3963 pid, wait_status, *exit_status, has_exited);
3964
3965 return has_exited;
3966 }
3967
3968 static int
3969 debug_to_can_run (struct target_ops *self)
3970 {
3971 int retval;
3972
3973 retval = debug_target.to_can_run (&debug_target);
3974
3975 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3976
3977 return retval;
3978 }
3979
3980 static struct gdbarch *
3981 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3982 {
3983 struct gdbarch *retval;
3984
3985 retval = debug_target.to_thread_architecture (ops, ptid);
3986
3987 fprintf_unfiltered (gdb_stdlog,
3988 "target_thread_architecture (%s) = %s [%s]\n",
3989 target_pid_to_str (ptid),
3990 host_address_to_string (retval),
3991 gdbarch_bfd_arch_info (retval)->printable_name);
3992 return retval;
3993 }
3994
3995 static void
3996 debug_to_stop (struct target_ops *self, ptid_t ptid)
3997 {
3998 debug_target.to_stop (&debug_target, ptid);
3999
4000 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4001 target_pid_to_str (ptid));
4002 }
4003
4004 static void
4005 debug_to_rcmd (struct target_ops *self, char *command,
4006 struct ui_file *outbuf)
4007 {
4008 debug_target.to_rcmd (&debug_target, command, outbuf);
4009 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4010 }
4011
4012 static char *
4013 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4014 {
4015 char *exec_file;
4016
4017 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4018
4019 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4020 pid, exec_file);
4021
4022 return exec_file;
4023 }
4024
4025 static void
4026 setup_target_debug (void)
4027 {
4028 memcpy (&debug_target, &current_target, sizeof debug_target);
4029
4030 current_target.to_open = debug_to_open;
4031 current_target.to_post_attach = debug_to_post_attach;
4032 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4033 current_target.to_files_info = debug_to_files_info;
4034 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4035 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4036 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4037 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4038 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4039 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4040 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4041 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4042 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4043 current_target.to_watchpoint_addr_within_range
4044 = debug_to_watchpoint_addr_within_range;
4045 current_target.to_region_ok_for_hw_watchpoint
4046 = debug_to_region_ok_for_hw_watchpoint;
4047 current_target.to_can_accel_watchpoint_condition
4048 = debug_to_can_accel_watchpoint_condition;
4049 current_target.to_terminal_init = debug_to_terminal_init;
4050 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4051 current_target.to_terminal_ours_for_output
4052 = debug_to_terminal_ours_for_output;
4053 current_target.to_terminal_ours = debug_to_terminal_ours;
4054 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4055 current_target.to_terminal_info = debug_to_terminal_info;
4056 current_target.to_load = debug_to_load;
4057 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4058 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4059 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4060 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4061 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4062 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4063 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4064 current_target.to_has_exited = debug_to_has_exited;
4065 current_target.to_can_run = debug_to_can_run;
4066 current_target.to_stop = debug_to_stop;
4067 current_target.to_rcmd = debug_to_rcmd;
4068 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4069 current_target.to_thread_architecture = debug_to_thread_architecture;
4070 }
4071 \f
4072
4073 static char targ_desc[] =
4074 "Names of targets and files being debugged.\nShows the entire \
4075 stack of targets currently in use (including the exec-file,\n\
4076 core-file, and process, if any), as well as the symbol file name.";
4077
4078 static void
4079 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4080 {
4081 error (_("\"monitor\" command not supported by this target."));
4082 }
4083
4084 static void
4085 do_monitor_command (char *cmd,
4086 int from_tty)
4087 {
4088 target_rcmd (cmd, gdb_stdtarg);
4089 }
4090
4091 /* Print the name of each layers of our target stack. */
4092
4093 static void
4094 maintenance_print_target_stack (char *cmd, int from_tty)
4095 {
4096 struct target_ops *t;
4097
4098 printf_filtered (_("The current target stack is:\n"));
4099
4100 for (t = target_stack; t != NULL; t = t->beneath)
4101 {
4102 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4103 }
4104 }
4105
4106 /* Controls if async mode is permitted. */
4107 int target_async_permitted = 0;
4108
4109 /* The set command writes to this variable. If the inferior is
4110 executing, target_async_permitted is *not* updated. */
4111 static int target_async_permitted_1 = 0;
4112
4113 static void
4114 set_target_async_command (char *args, int from_tty,
4115 struct cmd_list_element *c)
4116 {
4117 if (have_live_inferiors ())
4118 {
4119 target_async_permitted_1 = target_async_permitted;
4120 error (_("Cannot change this setting while the inferior is running."));
4121 }
4122
4123 target_async_permitted = target_async_permitted_1;
4124 }
4125
4126 static void
4127 show_target_async_command (struct ui_file *file, int from_tty,
4128 struct cmd_list_element *c,
4129 const char *value)
4130 {
4131 fprintf_filtered (file,
4132 _("Controlling the inferior in "
4133 "asynchronous mode is %s.\n"), value);
4134 }
4135
4136 /* Temporary copies of permission settings. */
4137
4138 static int may_write_registers_1 = 1;
4139 static int may_write_memory_1 = 1;
4140 static int may_insert_breakpoints_1 = 1;
4141 static int may_insert_tracepoints_1 = 1;
4142 static int may_insert_fast_tracepoints_1 = 1;
4143 static int may_stop_1 = 1;
4144
4145 /* Make the user-set values match the real values again. */
4146
4147 void
4148 update_target_permissions (void)
4149 {
4150 may_write_registers_1 = may_write_registers;
4151 may_write_memory_1 = may_write_memory;
4152 may_insert_breakpoints_1 = may_insert_breakpoints;
4153 may_insert_tracepoints_1 = may_insert_tracepoints;
4154 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4155 may_stop_1 = may_stop;
4156 }
4157
4158 /* The one function handles (most of) the permission flags in the same
4159 way. */
4160
4161 static void
4162 set_target_permissions (char *args, int from_tty,
4163 struct cmd_list_element *c)
4164 {
4165 if (target_has_execution)
4166 {
4167 update_target_permissions ();
4168 error (_("Cannot change this setting while the inferior is running."));
4169 }
4170
4171 /* Make the real values match the user-changed values. */
4172 may_write_registers = may_write_registers_1;
4173 may_insert_breakpoints = may_insert_breakpoints_1;
4174 may_insert_tracepoints = may_insert_tracepoints_1;
4175 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4176 may_stop = may_stop_1;
4177 update_observer_mode ();
4178 }
4179
4180 /* Set memory write permission independently of observer mode. */
4181
4182 static void
4183 set_write_memory_permission (char *args, int from_tty,
4184 struct cmd_list_element *c)
4185 {
4186 /* Make the real values match the user-changed values. */
4187 may_write_memory = may_write_memory_1;
4188 update_observer_mode ();
4189 }
4190
4191
4192 void
4193 initialize_targets (void)
4194 {
4195 init_dummy_target ();
4196 push_target (&dummy_target);
4197
4198 add_info ("target", target_info, targ_desc);
4199 add_info ("files", target_info, targ_desc);
4200
4201 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4202 Set target debugging."), _("\
4203 Show target debugging."), _("\
4204 When non-zero, target debugging is enabled. Higher numbers are more\n\
4205 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4206 command."),
4207 NULL,
4208 show_targetdebug,
4209 &setdebuglist, &showdebuglist);
4210
4211 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4212 &trust_readonly, _("\
4213 Set mode for reading from readonly sections."), _("\
4214 Show mode for reading from readonly sections."), _("\
4215 When this mode is on, memory reads from readonly sections (such as .text)\n\
4216 will be read from the object file instead of from the target. This will\n\
4217 result in significant performance improvement for remote targets."),
4218 NULL,
4219 show_trust_readonly,
4220 &setlist, &showlist);
4221
4222 add_com ("monitor", class_obscure, do_monitor_command,
4223 _("Send a command to the remote monitor (remote targets only)."));
4224
4225 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4226 _("Print the name of each layer of the internal target stack."),
4227 &maintenanceprintlist);
4228
4229 add_setshow_boolean_cmd ("target-async", no_class,
4230 &target_async_permitted_1, _("\
4231 Set whether gdb controls the inferior in asynchronous mode."), _("\
4232 Show whether gdb controls the inferior in asynchronous mode."), _("\
4233 Tells gdb whether to control the inferior in asynchronous mode."),
4234 set_target_async_command,
4235 show_target_async_command,
4236 &setlist,
4237 &showlist);
4238
4239 add_setshow_boolean_cmd ("may-write-registers", class_support,
4240 &may_write_registers_1, _("\
4241 Set permission to write into registers."), _("\
4242 Show permission to write into registers."), _("\
4243 When this permission is on, GDB may write into the target's registers.\n\
4244 Otherwise, any sort of write attempt will result in an error."),
4245 set_target_permissions, NULL,
4246 &setlist, &showlist);
4247
4248 add_setshow_boolean_cmd ("may-write-memory", class_support,
4249 &may_write_memory_1, _("\
4250 Set permission to write into target memory."), _("\
4251 Show permission to write into target memory."), _("\
4252 When this permission is on, GDB may write into the target's memory.\n\
4253 Otherwise, any sort of write attempt will result in an error."),
4254 set_write_memory_permission, NULL,
4255 &setlist, &showlist);
4256
4257 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4258 &may_insert_breakpoints_1, _("\
4259 Set permission to insert breakpoints in the target."), _("\
4260 Show permission to insert breakpoints in the target."), _("\
4261 When this permission is on, GDB may insert breakpoints in the program.\n\
4262 Otherwise, any sort of insertion attempt will result in an error."),
4263 set_target_permissions, NULL,
4264 &setlist, &showlist);
4265
4266 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4267 &may_insert_tracepoints_1, _("\
4268 Set permission to insert tracepoints in the target."), _("\
4269 Show permission to insert tracepoints in the target."), _("\
4270 When this permission is on, GDB may insert tracepoints in the program.\n\
4271 Otherwise, any sort of insertion attempt will result in an error."),
4272 set_target_permissions, NULL,
4273 &setlist, &showlist);
4274
4275 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4276 &may_insert_fast_tracepoints_1, _("\
4277 Set permission to insert fast tracepoints in the target."), _("\
4278 Show permission to insert fast tracepoints in the target."), _("\
4279 When this permission is on, GDB may insert fast tracepoints.\n\
4280 Otherwise, any sort of insertion attempt will result in an error."),
4281 set_target_permissions, NULL,
4282 &setlist, &showlist);
4283
4284 add_setshow_boolean_cmd ("may-interrupt", class_support,
4285 &may_stop_1, _("\
4286 Set permission to interrupt or signal the target."), _("\
4287 Show permission to interrupt or signal the target."), _("\
4288 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4289 Otherwise, any attempt to interrupt or stop will be ignored."),
4290 set_target_permissions, NULL,
4291 &setlist, &showlist);
4292
4293 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4294 &auto_connect_native_target, _("\
4295 Set whether GDB may automatically connect to the native target."), _("\
4296 Show whether GDB may automatically connect to the native target."), _("\
4297 When on, and GDB is not connected to a target yet, GDB\n\
4298 attempts \"run\" and other commands with the native target."),
4299 NULL, show_auto_connect_native_target,
4300 &setlist, &showlist);
4301 }
This page took 0.121495 seconds and 4 git commands to generate.