0ae6708f81ff9b43aea8f73f0eee6fe743f07166
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46
47 static void target_info (char *, int);
48
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static int return_zero (struct target_ops *);
86
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89 static void target_command (char *, int);
90
91 static struct target_ops *find_default_run_target (char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Possible terminal states. */
433
434 enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
447 static enum terminal_state terminal_state = terminal_is_ours;
448
449 /* See target.h. */
450
451 void
452 target_terminal_init (void)
453 {
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457 }
458
459 /* See target.h. */
460
461 int
462 target_terminal_is_inferior (void)
463 {
464 return (terminal_state == terminal_is_inferior);
465 }
466
467 /* See target.h. */
468
469 void
470 target_terminal_inferior (void)
471 {
472 /* A background resume (``run&'') should leave GDB in control of the
473 terminal. Use target_can_async_p, not target_is_async_p, since at
474 this point the target is not async yet. However, if sync_execution
475 is not set, we know it will become async prior to resume. */
476 if (target_can_async_p () && !sync_execution)
477 return;
478
479 if (terminal_state == terminal_is_inferior)
480 return;
481
482 /* If GDB is resuming the inferior in the foreground, install
483 inferior's terminal modes. */
484 (*current_target.to_terminal_inferior) (&current_target);
485 terminal_state = terminal_is_inferior;
486 }
487
488 /* See target.h. */
489
490 void
491 target_terminal_ours (void)
492 {
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498 }
499
500 /* See target.h. */
501
502 void
503 target_terminal_ours_for_output (void)
504 {
505 if (terminal_state != terminal_is_inferior)
506 return;
507 (*current_target.to_terminal_ours_for_output) (&current_target);
508 terminal_state = terminal_is_ours_for_output;
509 }
510
511 /* See target.h. */
512
513 int
514 target_supports_terminal_ours (void)
515 {
516 struct target_ops *t;
517
518 for (t = current_target.beneath; t != NULL; t = t->beneath)
519 {
520 if (t->to_terminal_ours != delegate_terminal_ours
521 && t->to_terminal_ours != tdefault_terminal_ours)
522 return 1;
523 }
524
525 return 0;
526 }
527
528 /* Restore the terminal to its previous state (helper for
529 make_cleanup_restore_target_terminal). */
530
531 static void
532 cleanup_restore_target_terminal (void *arg)
533 {
534 enum terminal_state *previous_state = (enum terminal_state *) arg;
535
536 switch (*previous_state)
537 {
538 case terminal_is_ours:
539 target_terminal_ours ();
540 break;
541 case terminal_is_ours_for_output:
542 target_terminal_ours_for_output ();
543 break;
544 case terminal_is_inferior:
545 target_terminal_inferior ();
546 break;
547 }
548 }
549
550 /* See target.h. */
551
552 struct cleanup *
553 make_cleanup_restore_target_terminal (void)
554 {
555 enum terminal_state *ts = XNEW (enum terminal_state);
556
557 *ts = terminal_state;
558
559 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
560 }
561
562 static void
563 tcomplain (void)
564 {
565 error (_("You can't do that when your target is `%s'"),
566 current_target.to_shortname);
567 }
568
569 void
570 noprocess (void)
571 {
572 error (_("You can't do that without a process to debug."));
573 }
574
575 static void
576 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
577 {
578 printf_unfiltered (_("No saved terminal information.\n"));
579 }
580
581 /* A default implementation for the to_get_ada_task_ptid target method.
582
583 This function builds the PTID by using both LWP and TID as part of
584 the PTID lwp and tid elements. The pid used is the pid of the
585 inferior_ptid. */
586
587 static ptid_t
588 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
589 {
590 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
591 }
592
593 static enum exec_direction_kind
594 default_execution_direction (struct target_ops *self)
595 {
596 if (!target_can_execute_reverse)
597 return EXEC_FORWARD;
598 else if (!target_can_async_p ())
599 return EXEC_FORWARD;
600 else
601 gdb_assert_not_reached ("\
602 to_execution_direction must be implemented for reverse async");
603 }
604
605 /* Go through the target stack from top to bottom, copying over zero
606 entries in current_target, then filling in still empty entries. In
607 effect, we are doing class inheritance through the pushed target
608 vectors.
609
610 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
611 is currently implemented, is that it discards any knowledge of
612 which target an inherited method originally belonged to.
613 Consequently, new new target methods should instead explicitly and
614 locally search the target stack for the target that can handle the
615 request. */
616
617 static void
618 update_current_target (void)
619 {
620 struct target_ops *t;
621
622 /* First, reset current's contents. */
623 memset (&current_target, 0, sizeof (current_target));
624
625 /* Install the delegators. */
626 install_delegators (&current_target);
627
628 current_target.to_stratum = target_stack->to_stratum;
629
630 #define INHERIT(FIELD, TARGET) \
631 if (!current_target.FIELD) \
632 current_target.FIELD = (TARGET)->FIELD
633
634 /* Do not add any new INHERITs here. Instead, use the delegation
635 mechanism provided by make-target-delegates. */
636 for (t = target_stack; t; t = t->beneath)
637 {
638 INHERIT (to_shortname, t);
639 INHERIT (to_longname, t);
640 INHERIT (to_attach_no_wait, t);
641 INHERIT (to_have_steppable_watchpoint, t);
642 INHERIT (to_have_continuable_watchpoint, t);
643 INHERIT (to_has_thread_control, t);
644 }
645 #undef INHERIT
646
647 /* Finally, position the target-stack beneath the squashed
648 "current_target". That way code looking for a non-inherited
649 target method can quickly and simply find it. */
650 current_target.beneath = target_stack;
651
652 if (targetdebug)
653 setup_target_debug ();
654 }
655
656 /* Push a new target type into the stack of the existing target accessors,
657 possibly superseding some of the existing accessors.
658
659 Rather than allow an empty stack, we always have the dummy target at
660 the bottom stratum, so we can call the function vectors without
661 checking them. */
662
663 void
664 push_target (struct target_ops *t)
665 {
666 struct target_ops **cur;
667
668 /* Check magic number. If wrong, it probably means someone changed
669 the struct definition, but not all the places that initialize one. */
670 if (t->to_magic != OPS_MAGIC)
671 {
672 fprintf_unfiltered (gdb_stderr,
673 "Magic number of %s target struct wrong\n",
674 t->to_shortname);
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
677 }
678
679 /* Find the proper stratum to install this target in. */
680 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
681 {
682 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
683 break;
684 }
685
686 /* If there's already targets at this stratum, remove them. */
687 /* FIXME: cagney/2003-10-15: I think this should be popping all
688 targets to CUR, and not just those at this stratum level. */
689 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
690 {
691 /* There's already something at this stratum level. Close it,
692 and un-hook it from the stack. */
693 struct target_ops *tmp = (*cur);
694
695 (*cur) = (*cur)->beneath;
696 tmp->beneath = NULL;
697 target_close (tmp);
698 }
699
700 /* We have removed all targets in our stratum, now add the new one. */
701 t->beneath = (*cur);
702 (*cur) = t;
703
704 update_current_target ();
705 }
706
707 /* Remove a target_ops vector from the stack, wherever it may be.
708 Return how many times it was removed (0 or 1). */
709
710 int
711 unpush_target (struct target_ops *t)
712 {
713 struct target_ops **cur;
714 struct target_ops *tmp;
715
716 if (t->to_stratum == dummy_stratum)
717 internal_error (__FILE__, __LINE__,
718 _("Attempt to unpush the dummy target"));
719
720 /* Look for the specified target. Note that we assume that a target
721 can only occur once in the target stack. */
722
723 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
724 {
725 if ((*cur) == t)
726 break;
727 }
728
729 /* If we don't find target_ops, quit. Only open targets should be
730 closed. */
731 if ((*cur) == NULL)
732 return 0;
733
734 /* Unchain the target. */
735 tmp = (*cur);
736 (*cur) = (*cur)->beneath;
737 tmp->beneath = NULL;
738
739 update_current_target ();
740
741 /* Finally close the target. Note we do this after unchaining, so
742 any target method calls from within the target_close
743 implementation don't end up in T anymore. */
744 target_close (t);
745
746 return 1;
747 }
748
749 /* Unpush TARGET and assert that it worked. */
750
751 static void
752 unpush_target_and_assert (struct target_ops *target)
753 {
754 if (!unpush_target (target))
755 {
756 fprintf_unfiltered (gdb_stderr,
757 "pop_all_targets couldn't find target %s\n",
758 target->to_shortname);
759 internal_error (__FILE__, __LINE__,
760 _("failed internal consistency check"));
761 }
762 }
763
764 void
765 pop_all_targets_above (enum strata above_stratum)
766 {
767 while ((int) (current_target.to_stratum) > (int) above_stratum)
768 unpush_target_and_assert (target_stack);
769 }
770
771 /* See target.h. */
772
773 void
774 pop_all_targets_at_and_above (enum strata stratum)
775 {
776 while ((int) (current_target.to_stratum) >= (int) stratum)
777 unpush_target_and_assert (target_stack);
778 }
779
780 void
781 pop_all_targets (void)
782 {
783 pop_all_targets_above (dummy_stratum);
784 }
785
786 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
787
788 int
789 target_is_pushed (struct target_ops *t)
790 {
791 struct target_ops *cur;
792
793 /* Check magic number. If wrong, it probably means someone changed
794 the struct definition, but not all the places that initialize one. */
795 if (t->to_magic != OPS_MAGIC)
796 {
797 fprintf_unfiltered (gdb_stderr,
798 "Magic number of %s target struct wrong\n",
799 t->to_shortname);
800 internal_error (__FILE__, __LINE__,
801 _("failed internal consistency check"));
802 }
803
804 for (cur = target_stack; cur != NULL; cur = cur->beneath)
805 if (cur == t)
806 return 1;
807
808 return 0;
809 }
810
811 /* Default implementation of to_get_thread_local_address. */
812
813 static void
814 generic_tls_error (void)
815 {
816 throw_error (TLS_GENERIC_ERROR,
817 _("Cannot find thread-local variables on this target"));
818 }
819
820 /* Using the objfile specified in OBJFILE, find the address for the
821 current thread's thread-local storage with offset OFFSET. */
822 CORE_ADDR
823 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
824 {
825 volatile CORE_ADDR addr = 0;
826 struct target_ops *target = &current_target;
827
828 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
829 {
830 ptid_t ptid = inferior_ptid;
831
832 TRY
833 {
834 CORE_ADDR lm_addr;
835
836 /* Fetch the load module address for this objfile. */
837 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
838 objfile);
839
840 addr = target->to_get_thread_local_address (target, ptid,
841 lm_addr, offset);
842 }
843 /* If an error occurred, print TLS related messages here. Otherwise,
844 throw the error to some higher catcher. */
845 CATCH (ex, RETURN_MASK_ALL)
846 {
847 int objfile_is_library = (objfile->flags & OBJF_SHARED);
848
849 switch (ex.error)
850 {
851 case TLS_NO_LIBRARY_SUPPORT_ERROR:
852 error (_("Cannot find thread-local variables "
853 "in this thread library."));
854 break;
855 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
856 if (objfile_is_library)
857 error (_("Cannot find shared library `%s' in dynamic"
858 " linker's load module list"), objfile_name (objfile));
859 else
860 error (_("Cannot find executable file `%s' in dynamic"
861 " linker's load module list"), objfile_name (objfile));
862 break;
863 case TLS_NOT_ALLOCATED_YET_ERROR:
864 if (objfile_is_library)
865 error (_("The inferior has not yet allocated storage for"
866 " thread-local variables in\n"
867 "the shared library `%s'\n"
868 "for %s"),
869 objfile_name (objfile), target_pid_to_str (ptid));
870 else
871 error (_("The inferior has not yet allocated storage for"
872 " thread-local variables in\n"
873 "the executable `%s'\n"
874 "for %s"),
875 objfile_name (objfile), target_pid_to_str (ptid));
876 break;
877 case TLS_GENERIC_ERROR:
878 if (objfile_is_library)
879 error (_("Cannot find thread-local storage for %s, "
880 "shared library %s:\n%s"),
881 target_pid_to_str (ptid),
882 objfile_name (objfile), ex.message);
883 else
884 error (_("Cannot find thread-local storage for %s, "
885 "executable file %s:\n%s"),
886 target_pid_to_str (ptid),
887 objfile_name (objfile), ex.message);
888 break;
889 default:
890 throw_exception (ex);
891 break;
892 }
893 }
894 END_CATCH
895 }
896 /* It wouldn't be wrong here to try a gdbarch method, too; finding
897 TLS is an ABI-specific thing. But we don't do that yet. */
898 else
899 error (_("Cannot find thread-local variables on this target"));
900
901 return addr;
902 }
903
904 const char *
905 target_xfer_status_to_string (enum target_xfer_status status)
906 {
907 #define CASE(X) case X: return #X
908 switch (status)
909 {
910 CASE(TARGET_XFER_E_IO);
911 CASE(TARGET_XFER_UNAVAILABLE);
912 default:
913 return "<unknown>";
914 }
915 #undef CASE
916 };
917
918
919 #undef MIN
920 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
921
922 /* target_read_string -- read a null terminated string, up to LEN bytes,
923 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
924 Set *STRING to a pointer to malloc'd memory containing the data; the caller
925 is responsible for freeing it. Return the number of bytes successfully
926 read. */
927
928 int
929 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
930 {
931 int tlen, offset, i;
932 gdb_byte buf[4];
933 int errcode = 0;
934 char *buffer;
935 int buffer_allocated;
936 char *bufptr;
937 unsigned int nbytes_read = 0;
938
939 gdb_assert (string);
940
941 /* Small for testing. */
942 buffer_allocated = 4;
943 buffer = (char *) xmalloc (buffer_allocated);
944 bufptr = buffer;
945
946 while (len > 0)
947 {
948 tlen = MIN (len, 4 - (memaddr & 3));
949 offset = memaddr & 3;
950
951 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
952 if (errcode != 0)
953 {
954 /* The transfer request might have crossed the boundary to an
955 unallocated region of memory. Retry the transfer, requesting
956 a single byte. */
957 tlen = 1;
958 offset = 0;
959 errcode = target_read_memory (memaddr, buf, 1);
960 if (errcode != 0)
961 goto done;
962 }
963
964 if (bufptr - buffer + tlen > buffer_allocated)
965 {
966 unsigned int bytes;
967
968 bytes = bufptr - buffer;
969 buffer_allocated *= 2;
970 buffer = (char *) xrealloc (buffer, buffer_allocated);
971 bufptr = buffer + bytes;
972 }
973
974 for (i = 0; i < tlen; i++)
975 {
976 *bufptr++ = buf[i + offset];
977 if (buf[i + offset] == '\000')
978 {
979 nbytes_read += i + 1;
980 goto done;
981 }
982 }
983
984 memaddr += tlen;
985 len -= tlen;
986 nbytes_read += tlen;
987 }
988 done:
989 *string = buffer;
990 if (errnop != NULL)
991 *errnop = errcode;
992 return nbytes_read;
993 }
994
995 struct target_section_table *
996 target_get_section_table (struct target_ops *target)
997 {
998 return (*target->to_get_section_table) (target);
999 }
1000
1001 /* Find a section containing ADDR. */
1002
1003 struct target_section *
1004 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1005 {
1006 struct target_section_table *table = target_get_section_table (target);
1007 struct target_section *secp;
1008
1009 if (table == NULL)
1010 return NULL;
1011
1012 for (secp = table->sections; secp < table->sections_end; secp++)
1013 {
1014 if (addr >= secp->addr && addr < secp->endaddr)
1015 return secp;
1016 }
1017 return NULL;
1018 }
1019
1020
1021 /* Helper for the memory xfer routines. Checks the attributes of the
1022 memory region of MEMADDR against the read or write being attempted.
1023 If the access is permitted returns true, otherwise returns false.
1024 REGION_P is an optional output parameter. If not-NULL, it is
1025 filled with a pointer to the memory region of MEMADDR. REG_LEN
1026 returns LEN trimmed to the end of the region. This is how much the
1027 caller can continue requesting, if the access is permitted. A
1028 single xfer request must not straddle memory region boundaries. */
1029
1030 static int
1031 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1032 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1033 struct mem_region **region_p)
1034 {
1035 struct mem_region *region;
1036
1037 region = lookup_mem_region (memaddr);
1038
1039 if (region_p != NULL)
1040 *region_p = region;
1041
1042 switch (region->attrib.mode)
1043 {
1044 case MEM_RO:
1045 if (writebuf != NULL)
1046 return 0;
1047 break;
1048
1049 case MEM_WO:
1050 if (readbuf != NULL)
1051 return 0;
1052 break;
1053
1054 case MEM_FLASH:
1055 /* We only support writing to flash during "load" for now. */
1056 if (writebuf != NULL)
1057 error (_("Writing to flash memory forbidden in this context"));
1058 break;
1059
1060 case MEM_NONE:
1061 return 0;
1062 }
1063
1064 /* region->hi == 0 means there's no upper bound. */
1065 if (memaddr + len < region->hi || region->hi == 0)
1066 *reg_len = len;
1067 else
1068 *reg_len = region->hi - memaddr;
1069
1070 return 1;
1071 }
1072
1073 /* Read memory from more than one valid target. A core file, for
1074 instance, could have some of memory but delegate other bits to
1075 the target below it. So, we must manually try all targets. */
1076
1077 enum target_xfer_status
1078 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1079 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1080 ULONGEST *xfered_len)
1081 {
1082 enum target_xfer_status res;
1083
1084 do
1085 {
1086 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1087 readbuf, writebuf, memaddr, len,
1088 xfered_len);
1089 if (res == TARGET_XFER_OK)
1090 break;
1091
1092 /* Stop if the target reports that the memory is not available. */
1093 if (res == TARGET_XFER_UNAVAILABLE)
1094 break;
1095
1096 /* We want to continue past core files to executables, but not
1097 past a running target's memory. */
1098 if (ops->to_has_all_memory (ops))
1099 break;
1100
1101 ops = ops->beneath;
1102 }
1103 while (ops != NULL);
1104
1105 /* The cache works at the raw memory level. Make sure the cache
1106 gets updated with raw contents no matter what kind of memory
1107 object was originally being written. Note we do write-through
1108 first, so that if it fails, we don't write to the cache contents
1109 that never made it to the target. */
1110 if (writebuf != NULL
1111 && !ptid_equal (inferior_ptid, null_ptid)
1112 && target_dcache_init_p ()
1113 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1114 {
1115 DCACHE *dcache = target_dcache_get ();
1116
1117 /* Note that writing to an area of memory which wasn't present
1118 in the cache doesn't cause it to be loaded in. */
1119 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1120 }
1121
1122 return res;
1123 }
1124
1125 /* Perform a partial memory transfer.
1126 For docs see target.h, to_xfer_partial. */
1127
1128 static enum target_xfer_status
1129 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1130 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1131 ULONGEST len, ULONGEST *xfered_len)
1132 {
1133 enum target_xfer_status res;
1134 ULONGEST reg_len;
1135 struct mem_region *region;
1136 struct inferior *inf;
1137
1138 /* For accesses to unmapped overlay sections, read directly from
1139 files. Must do this first, as MEMADDR may need adjustment. */
1140 if (readbuf != NULL && overlay_debugging)
1141 {
1142 struct obj_section *section = find_pc_overlay (memaddr);
1143
1144 if (pc_in_unmapped_range (memaddr, section))
1145 {
1146 struct target_section_table *table
1147 = target_get_section_table (ops);
1148 const char *section_name = section->the_bfd_section->name;
1149
1150 memaddr = overlay_mapped_address (memaddr, section);
1151 return section_table_xfer_memory_partial (readbuf, writebuf,
1152 memaddr, len, xfered_len,
1153 table->sections,
1154 table->sections_end,
1155 section_name);
1156 }
1157 }
1158
1159 /* Try the executable files, if "trust-readonly-sections" is set. */
1160 if (readbuf != NULL && trust_readonly)
1161 {
1162 struct target_section *secp;
1163 struct target_section_table *table;
1164
1165 secp = target_section_by_addr (ops, memaddr);
1166 if (secp != NULL
1167 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1168 secp->the_bfd_section)
1169 & SEC_READONLY))
1170 {
1171 table = target_get_section_table (ops);
1172 return section_table_xfer_memory_partial (readbuf, writebuf,
1173 memaddr, len, xfered_len,
1174 table->sections,
1175 table->sections_end,
1176 NULL);
1177 }
1178 }
1179
1180 /* Try GDB's internal data cache. */
1181
1182 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1183 &region))
1184 return TARGET_XFER_E_IO;
1185
1186 if (!ptid_equal (inferior_ptid, null_ptid))
1187 inf = find_inferior_ptid (inferior_ptid);
1188 else
1189 inf = NULL;
1190
1191 if (inf != NULL
1192 && readbuf != NULL
1193 /* The dcache reads whole cache lines; that doesn't play well
1194 with reading from a trace buffer, because reading outside of
1195 the collected memory range fails. */
1196 && get_traceframe_number () == -1
1197 && (region->attrib.cache
1198 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1199 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1200 {
1201 DCACHE *dcache = target_dcache_get_or_init ();
1202
1203 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1204 reg_len, xfered_len);
1205 }
1206
1207 /* If none of those methods found the memory we wanted, fall back
1208 to a target partial transfer. Normally a single call to
1209 to_xfer_partial is enough; if it doesn't recognize an object
1210 it will call the to_xfer_partial of the next target down.
1211 But for memory this won't do. Memory is the only target
1212 object which can be read from more than one valid target.
1213 A core file, for instance, could have some of memory but
1214 delegate other bits to the target below it. So, we must
1215 manually try all targets. */
1216
1217 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1218 xfered_len);
1219
1220 /* If we still haven't got anything, return the last error. We
1221 give up. */
1222 return res;
1223 }
1224
1225 /* Perform a partial memory transfer. For docs see target.h,
1226 to_xfer_partial. */
1227
1228 static enum target_xfer_status
1229 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1230 gdb_byte *readbuf, const gdb_byte *writebuf,
1231 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1232 {
1233 enum target_xfer_status res;
1234
1235 /* Zero length requests are ok and require no work. */
1236 if (len == 0)
1237 return TARGET_XFER_EOF;
1238
1239 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1240 breakpoint insns, thus hiding out from higher layers whether
1241 there are software breakpoints inserted in the code stream. */
1242 if (readbuf != NULL)
1243 {
1244 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1245 xfered_len);
1246
1247 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1248 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1249 }
1250 else
1251 {
1252 gdb_byte *buf;
1253 struct cleanup *old_chain;
1254
1255 /* A large write request is likely to be partially satisfied
1256 by memory_xfer_partial_1. We will continually malloc
1257 and free a copy of the entire write request for breakpoint
1258 shadow handling even though we only end up writing a small
1259 subset of it. Cap writes to 4KB to mitigate this. */
1260 len = min (4096, len);
1261
1262 buf = (gdb_byte *) xmalloc (len);
1263 old_chain = make_cleanup (xfree, buf);
1264 memcpy (buf, writebuf, len);
1265
1266 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1267 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1268 xfered_len);
1269
1270 do_cleanups (old_chain);
1271 }
1272
1273 return res;
1274 }
1275
1276 static void
1277 restore_show_memory_breakpoints (void *arg)
1278 {
1279 show_memory_breakpoints = (uintptr_t) arg;
1280 }
1281
1282 struct cleanup *
1283 make_show_memory_breakpoints_cleanup (int show)
1284 {
1285 int current = show_memory_breakpoints;
1286
1287 show_memory_breakpoints = show;
1288 return make_cleanup (restore_show_memory_breakpoints,
1289 (void *) (uintptr_t) current);
1290 }
1291
1292 /* For docs see target.h, to_xfer_partial. */
1293
1294 enum target_xfer_status
1295 target_xfer_partial (struct target_ops *ops,
1296 enum target_object object, const char *annex,
1297 gdb_byte *readbuf, const gdb_byte *writebuf,
1298 ULONGEST offset, ULONGEST len,
1299 ULONGEST *xfered_len)
1300 {
1301 enum target_xfer_status retval;
1302
1303 gdb_assert (ops->to_xfer_partial != NULL);
1304
1305 /* Transfer is done when LEN is zero. */
1306 if (len == 0)
1307 return TARGET_XFER_EOF;
1308
1309 if (writebuf && !may_write_memory)
1310 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1311 core_addr_to_string_nz (offset), plongest (len));
1312
1313 *xfered_len = 0;
1314
1315 /* If this is a memory transfer, let the memory-specific code
1316 have a look at it instead. Memory transfers are more
1317 complicated. */
1318 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1319 || object == TARGET_OBJECT_CODE_MEMORY)
1320 retval = memory_xfer_partial (ops, object, readbuf,
1321 writebuf, offset, len, xfered_len);
1322 else if (object == TARGET_OBJECT_RAW_MEMORY)
1323 {
1324 /* Skip/avoid accessing the target if the memory region
1325 attributes block the access. Check this here instead of in
1326 raw_memory_xfer_partial as otherwise we'd end up checking
1327 this twice in the case of the memory_xfer_partial path is
1328 taken; once before checking the dcache, and another in the
1329 tail call to raw_memory_xfer_partial. */
1330 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1331 NULL))
1332 return TARGET_XFER_E_IO;
1333
1334 /* Request the normal memory object from other layers. */
1335 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1336 xfered_len);
1337 }
1338 else
1339 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1340 writebuf, offset, len, xfered_len);
1341
1342 if (targetdebug)
1343 {
1344 const unsigned char *myaddr = NULL;
1345
1346 fprintf_unfiltered (gdb_stdlog,
1347 "%s:target_xfer_partial "
1348 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1349 ops->to_shortname,
1350 (int) object,
1351 (annex ? annex : "(null)"),
1352 host_address_to_string (readbuf),
1353 host_address_to_string (writebuf),
1354 core_addr_to_string_nz (offset),
1355 pulongest (len), retval,
1356 pulongest (*xfered_len));
1357
1358 if (readbuf)
1359 myaddr = readbuf;
1360 if (writebuf)
1361 myaddr = writebuf;
1362 if (retval == TARGET_XFER_OK && myaddr != NULL)
1363 {
1364 int i;
1365
1366 fputs_unfiltered (", bytes =", gdb_stdlog);
1367 for (i = 0; i < *xfered_len; i++)
1368 {
1369 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1370 {
1371 if (targetdebug < 2 && i > 0)
1372 {
1373 fprintf_unfiltered (gdb_stdlog, " ...");
1374 break;
1375 }
1376 fprintf_unfiltered (gdb_stdlog, "\n");
1377 }
1378
1379 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1380 }
1381 }
1382
1383 fputc_unfiltered ('\n', gdb_stdlog);
1384 }
1385
1386 /* Check implementations of to_xfer_partial update *XFERED_LEN
1387 properly. Do assertion after printing debug messages, so that we
1388 can find more clues on assertion failure from debugging messages. */
1389 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1390 gdb_assert (*xfered_len > 0);
1391
1392 return retval;
1393 }
1394
1395 /* Read LEN bytes of target memory at address MEMADDR, placing the
1396 results in GDB's memory at MYADDR. Returns either 0 for success or
1397 -1 if any error occurs.
1398
1399 If an error occurs, no guarantee is made about the contents of the data at
1400 MYADDR. In particular, the caller should not depend upon partial reads
1401 filling the buffer with good data. There is no way for the caller to know
1402 how much good data might have been transfered anyway. Callers that can
1403 deal with partial reads should call target_read (which will retry until
1404 it makes no progress, and then return how much was transferred). */
1405
1406 int
1407 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1408 {
1409 /* Dispatch to the topmost target, not the flattened current_target.
1410 Memory accesses check target->to_has_(all_)memory, and the
1411 flattened target doesn't inherit those. */
1412 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1413 myaddr, memaddr, len) == len)
1414 return 0;
1415 else
1416 return -1;
1417 }
1418
1419 /* See target/target.h. */
1420
1421 int
1422 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1423 {
1424 gdb_byte buf[4];
1425 int r;
1426
1427 r = target_read_memory (memaddr, buf, sizeof buf);
1428 if (r != 0)
1429 return r;
1430 *result = extract_unsigned_integer (buf, sizeof buf,
1431 gdbarch_byte_order (target_gdbarch ()));
1432 return 0;
1433 }
1434
1435 /* Like target_read_memory, but specify explicitly that this is a read
1436 from the target's raw memory. That is, this read bypasses the
1437 dcache, breakpoint shadowing, etc. */
1438
1439 int
1440 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1441 {
1442 /* See comment in target_read_memory about why the request starts at
1443 current_target.beneath. */
1444 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1445 myaddr, memaddr, len) == len)
1446 return 0;
1447 else
1448 return -1;
1449 }
1450
1451 /* Like target_read_memory, but specify explicitly that this is a read from
1452 the target's stack. This may trigger different cache behavior. */
1453
1454 int
1455 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1456 {
1457 /* See comment in target_read_memory about why the request starts at
1458 current_target.beneath. */
1459 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1460 myaddr, memaddr, len) == len)
1461 return 0;
1462 else
1463 return -1;
1464 }
1465
1466 /* Like target_read_memory, but specify explicitly that this is a read from
1467 the target's code. This may trigger different cache behavior. */
1468
1469 int
1470 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1471 {
1472 /* See comment in target_read_memory about why the request starts at
1473 current_target.beneath. */
1474 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1475 myaddr, memaddr, len) == len)
1476 return 0;
1477 else
1478 return -1;
1479 }
1480
1481 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1482 Returns either 0 for success or -1 if any error occurs. If an
1483 error occurs, no guarantee is made about how much data got written.
1484 Callers that can deal with partial writes should call
1485 target_write. */
1486
1487 int
1488 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1489 {
1490 /* See comment in target_read_memory about why the request starts at
1491 current_target.beneath. */
1492 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1493 myaddr, memaddr, len) == len)
1494 return 0;
1495 else
1496 return -1;
1497 }
1498
1499 /* Write LEN bytes from MYADDR to target raw memory at address
1500 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1501 If an error occurs, no guarantee is made about how much data got
1502 written. Callers that can deal with partial writes should call
1503 target_write. */
1504
1505 int
1506 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1507 {
1508 /* See comment in target_read_memory about why the request starts at
1509 current_target.beneath. */
1510 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1511 myaddr, memaddr, len) == len)
1512 return 0;
1513 else
1514 return -1;
1515 }
1516
1517 /* Fetch the target's memory map. */
1518
1519 VEC(mem_region_s) *
1520 target_memory_map (void)
1521 {
1522 VEC(mem_region_s) *result;
1523 struct mem_region *last_one, *this_one;
1524 int ix;
1525 struct target_ops *t;
1526
1527 result = current_target.to_memory_map (&current_target);
1528 if (result == NULL)
1529 return NULL;
1530
1531 qsort (VEC_address (mem_region_s, result),
1532 VEC_length (mem_region_s, result),
1533 sizeof (struct mem_region), mem_region_cmp);
1534
1535 /* Check that regions do not overlap. Simultaneously assign
1536 a numbering for the "mem" commands to use to refer to
1537 each region. */
1538 last_one = NULL;
1539 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1540 {
1541 this_one->number = ix;
1542
1543 if (last_one && last_one->hi > this_one->lo)
1544 {
1545 warning (_("Overlapping regions in memory map: ignoring"));
1546 VEC_free (mem_region_s, result);
1547 return NULL;
1548 }
1549 last_one = this_one;
1550 }
1551
1552 return result;
1553 }
1554
1555 void
1556 target_flash_erase (ULONGEST address, LONGEST length)
1557 {
1558 current_target.to_flash_erase (&current_target, address, length);
1559 }
1560
1561 void
1562 target_flash_done (void)
1563 {
1564 current_target.to_flash_done (&current_target);
1565 }
1566
1567 static void
1568 show_trust_readonly (struct ui_file *file, int from_tty,
1569 struct cmd_list_element *c, const char *value)
1570 {
1571 fprintf_filtered (file,
1572 _("Mode for reading from readonly sections is %s.\n"),
1573 value);
1574 }
1575
1576 /* Target vector read/write partial wrapper functions. */
1577
1578 static enum target_xfer_status
1579 target_read_partial (struct target_ops *ops,
1580 enum target_object object,
1581 const char *annex, gdb_byte *buf,
1582 ULONGEST offset, ULONGEST len,
1583 ULONGEST *xfered_len)
1584 {
1585 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1586 xfered_len);
1587 }
1588
1589 static enum target_xfer_status
1590 target_write_partial (struct target_ops *ops,
1591 enum target_object object,
1592 const char *annex, const gdb_byte *buf,
1593 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1594 {
1595 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1596 xfered_len);
1597 }
1598
1599 /* Wrappers to perform the full transfer. */
1600
1601 /* For docs on target_read see target.h. */
1602
1603 LONGEST
1604 target_read (struct target_ops *ops,
1605 enum target_object object,
1606 const char *annex, gdb_byte *buf,
1607 ULONGEST offset, LONGEST len)
1608 {
1609 LONGEST xfered_total = 0;
1610 int unit_size = 1;
1611
1612 /* If we are reading from a memory object, find the length of an addressable
1613 unit for that architecture. */
1614 if (object == TARGET_OBJECT_MEMORY
1615 || object == TARGET_OBJECT_STACK_MEMORY
1616 || object == TARGET_OBJECT_CODE_MEMORY
1617 || object == TARGET_OBJECT_RAW_MEMORY)
1618 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1619
1620 while (xfered_total < len)
1621 {
1622 ULONGEST xfered_partial;
1623 enum target_xfer_status status;
1624
1625 status = target_read_partial (ops, object, annex,
1626 buf + xfered_total * unit_size,
1627 offset + xfered_total, len - xfered_total,
1628 &xfered_partial);
1629
1630 /* Call an observer, notifying them of the xfer progress? */
1631 if (status == TARGET_XFER_EOF)
1632 return xfered_total;
1633 else if (status == TARGET_XFER_OK)
1634 {
1635 xfered_total += xfered_partial;
1636 QUIT;
1637 }
1638 else
1639 return TARGET_XFER_E_IO;
1640
1641 }
1642 return len;
1643 }
1644
1645 /* Assuming that the entire [begin, end) range of memory cannot be
1646 read, try to read whatever subrange is possible to read.
1647
1648 The function returns, in RESULT, either zero or one memory block.
1649 If there's a readable subrange at the beginning, it is completely
1650 read and returned. Any further readable subrange will not be read.
1651 Otherwise, if there's a readable subrange at the end, it will be
1652 completely read and returned. Any readable subranges before it
1653 (obviously, not starting at the beginning), will be ignored. In
1654 other cases -- either no readable subrange, or readable subrange(s)
1655 that is neither at the beginning, or end, nothing is returned.
1656
1657 The purpose of this function is to handle a read across a boundary
1658 of accessible memory in a case when memory map is not available.
1659 The above restrictions are fine for this case, but will give
1660 incorrect results if the memory is 'patchy'. However, supporting
1661 'patchy' memory would require trying to read every single byte,
1662 and it seems unacceptable solution. Explicit memory map is
1663 recommended for this case -- and target_read_memory_robust will
1664 take care of reading multiple ranges then. */
1665
1666 static void
1667 read_whatever_is_readable (struct target_ops *ops,
1668 const ULONGEST begin, const ULONGEST end,
1669 int unit_size,
1670 VEC(memory_read_result_s) **result)
1671 {
1672 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1673 ULONGEST current_begin = begin;
1674 ULONGEST current_end = end;
1675 int forward;
1676 memory_read_result_s r;
1677 ULONGEST xfered_len;
1678
1679 /* If we previously failed to read 1 byte, nothing can be done here. */
1680 if (end - begin <= 1)
1681 {
1682 xfree (buf);
1683 return;
1684 }
1685
1686 /* Check that either first or the last byte is readable, and give up
1687 if not. This heuristic is meant to permit reading accessible memory
1688 at the boundary of accessible region. */
1689 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1690 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1691 {
1692 forward = 1;
1693 ++current_begin;
1694 }
1695 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1696 buf + (end - begin) - 1, end - 1, 1,
1697 &xfered_len) == TARGET_XFER_OK)
1698 {
1699 forward = 0;
1700 --current_end;
1701 }
1702 else
1703 {
1704 xfree (buf);
1705 return;
1706 }
1707
1708 /* Loop invariant is that the [current_begin, current_end) was previously
1709 found to be not readable as a whole.
1710
1711 Note loop condition -- if the range has 1 byte, we can't divide the range
1712 so there's no point trying further. */
1713 while (current_end - current_begin > 1)
1714 {
1715 ULONGEST first_half_begin, first_half_end;
1716 ULONGEST second_half_begin, second_half_end;
1717 LONGEST xfer;
1718 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1719
1720 if (forward)
1721 {
1722 first_half_begin = current_begin;
1723 first_half_end = middle;
1724 second_half_begin = middle;
1725 second_half_end = current_end;
1726 }
1727 else
1728 {
1729 first_half_begin = middle;
1730 first_half_end = current_end;
1731 second_half_begin = current_begin;
1732 second_half_end = middle;
1733 }
1734
1735 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1736 buf + (first_half_begin - begin) * unit_size,
1737 first_half_begin,
1738 first_half_end - first_half_begin);
1739
1740 if (xfer == first_half_end - first_half_begin)
1741 {
1742 /* This half reads up fine. So, the error must be in the
1743 other half. */
1744 current_begin = second_half_begin;
1745 current_end = second_half_end;
1746 }
1747 else
1748 {
1749 /* This half is not readable. Because we've tried one byte, we
1750 know some part of this half if actually readable. Go to the next
1751 iteration to divide again and try to read.
1752
1753 We don't handle the other half, because this function only tries
1754 to read a single readable subrange. */
1755 current_begin = first_half_begin;
1756 current_end = first_half_end;
1757 }
1758 }
1759
1760 if (forward)
1761 {
1762 /* The [begin, current_begin) range has been read. */
1763 r.begin = begin;
1764 r.end = current_begin;
1765 r.data = buf;
1766 }
1767 else
1768 {
1769 /* The [current_end, end) range has been read. */
1770 LONGEST region_len = end - current_end;
1771
1772 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1773 memcpy (r.data, buf + (current_end - begin) * unit_size,
1774 region_len * unit_size);
1775 r.begin = current_end;
1776 r.end = end;
1777 xfree (buf);
1778 }
1779 VEC_safe_push(memory_read_result_s, (*result), &r);
1780 }
1781
1782 void
1783 free_memory_read_result_vector (void *x)
1784 {
1785 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
1786 memory_read_result_s *current;
1787 int ix;
1788
1789 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1790 {
1791 xfree (current->data);
1792 }
1793 VEC_free (memory_read_result_s, v);
1794 }
1795
1796 VEC(memory_read_result_s) *
1797 read_memory_robust (struct target_ops *ops,
1798 const ULONGEST offset, const LONGEST len)
1799 {
1800 VEC(memory_read_result_s) *result = 0;
1801 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1802
1803 LONGEST xfered_total = 0;
1804 while (xfered_total < len)
1805 {
1806 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1807 LONGEST region_len;
1808
1809 /* If there is no explicit region, a fake one should be created. */
1810 gdb_assert (region);
1811
1812 if (region->hi == 0)
1813 region_len = len - xfered_total;
1814 else
1815 region_len = region->hi - offset;
1816
1817 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1818 {
1819 /* Cannot read this region. Note that we can end up here only
1820 if the region is explicitly marked inaccessible, or
1821 'inaccessible-by-default' is in effect. */
1822 xfered_total += region_len;
1823 }
1824 else
1825 {
1826 LONGEST to_read = min (len - xfered_total, region_len);
1827 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1828
1829 LONGEST xfered_partial =
1830 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1831 (gdb_byte *) buffer,
1832 offset + xfered_total, to_read);
1833 /* Call an observer, notifying them of the xfer progress? */
1834 if (xfered_partial <= 0)
1835 {
1836 /* Got an error reading full chunk. See if maybe we can read
1837 some subrange. */
1838 xfree (buffer);
1839 read_whatever_is_readable (ops, offset + xfered_total, unit_size,
1840 offset + xfered_total + to_read, &result);
1841 xfered_total += to_read;
1842 }
1843 else
1844 {
1845 struct memory_read_result r;
1846 r.data = buffer;
1847 r.begin = offset + xfered_total;
1848 r.end = r.begin + xfered_partial;
1849 VEC_safe_push (memory_read_result_s, result, &r);
1850 xfered_total += xfered_partial;
1851 }
1852 QUIT;
1853 }
1854 }
1855 return result;
1856 }
1857
1858
1859 /* An alternative to target_write with progress callbacks. */
1860
1861 LONGEST
1862 target_write_with_progress (struct target_ops *ops,
1863 enum target_object object,
1864 const char *annex, const gdb_byte *buf,
1865 ULONGEST offset, LONGEST len,
1866 void (*progress) (ULONGEST, void *), void *baton)
1867 {
1868 LONGEST xfered_total = 0;
1869 int unit_size = 1;
1870
1871 /* If we are writing to a memory object, find the length of an addressable
1872 unit for that architecture. */
1873 if (object == TARGET_OBJECT_MEMORY
1874 || object == TARGET_OBJECT_STACK_MEMORY
1875 || object == TARGET_OBJECT_CODE_MEMORY
1876 || object == TARGET_OBJECT_RAW_MEMORY)
1877 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1878
1879 /* Give the progress callback a chance to set up. */
1880 if (progress)
1881 (*progress) (0, baton);
1882
1883 while (xfered_total < len)
1884 {
1885 ULONGEST xfered_partial;
1886 enum target_xfer_status status;
1887
1888 status = target_write_partial (ops, object, annex,
1889 buf + xfered_total * unit_size,
1890 offset + xfered_total, len - xfered_total,
1891 &xfered_partial);
1892
1893 if (status != TARGET_XFER_OK)
1894 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1895
1896 if (progress)
1897 (*progress) (xfered_partial, baton);
1898
1899 xfered_total += xfered_partial;
1900 QUIT;
1901 }
1902 return len;
1903 }
1904
1905 /* For docs on target_write see target.h. */
1906
1907 LONGEST
1908 target_write (struct target_ops *ops,
1909 enum target_object object,
1910 const char *annex, const gdb_byte *buf,
1911 ULONGEST offset, LONGEST len)
1912 {
1913 return target_write_with_progress (ops, object, annex, buf, offset, len,
1914 NULL, NULL);
1915 }
1916
1917 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1918 the size of the transferred data. PADDING additional bytes are
1919 available in *BUF_P. This is a helper function for
1920 target_read_alloc; see the declaration of that function for more
1921 information. */
1922
1923 static LONGEST
1924 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1925 const char *annex, gdb_byte **buf_p, int padding)
1926 {
1927 size_t buf_alloc, buf_pos;
1928 gdb_byte *buf;
1929
1930 /* This function does not have a length parameter; it reads the
1931 entire OBJECT). Also, it doesn't support objects fetched partly
1932 from one target and partly from another (in a different stratum,
1933 e.g. a core file and an executable). Both reasons make it
1934 unsuitable for reading memory. */
1935 gdb_assert (object != TARGET_OBJECT_MEMORY);
1936
1937 /* Start by reading up to 4K at a time. The target will throttle
1938 this number down if necessary. */
1939 buf_alloc = 4096;
1940 buf = (gdb_byte *) xmalloc (buf_alloc);
1941 buf_pos = 0;
1942 while (1)
1943 {
1944 ULONGEST xfered_len;
1945 enum target_xfer_status status;
1946
1947 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1948 buf_pos, buf_alloc - buf_pos - padding,
1949 &xfered_len);
1950
1951 if (status == TARGET_XFER_EOF)
1952 {
1953 /* Read all there was. */
1954 if (buf_pos == 0)
1955 xfree (buf);
1956 else
1957 *buf_p = buf;
1958 return buf_pos;
1959 }
1960 else if (status != TARGET_XFER_OK)
1961 {
1962 /* An error occurred. */
1963 xfree (buf);
1964 return TARGET_XFER_E_IO;
1965 }
1966
1967 buf_pos += xfered_len;
1968
1969 /* If the buffer is filling up, expand it. */
1970 if (buf_alloc < buf_pos * 2)
1971 {
1972 buf_alloc *= 2;
1973 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1974 }
1975
1976 QUIT;
1977 }
1978 }
1979
1980 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1981 the size of the transferred data. See the declaration in "target.h"
1982 function for more information about the return value. */
1983
1984 LONGEST
1985 target_read_alloc (struct target_ops *ops, enum target_object object,
1986 const char *annex, gdb_byte **buf_p)
1987 {
1988 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1989 }
1990
1991 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1992 returned as a string, allocated using xmalloc. If an error occurs
1993 or the transfer is unsupported, NULL is returned. Empty objects
1994 are returned as allocated but empty strings. A warning is issued
1995 if the result contains any embedded NUL bytes. */
1996
1997 char *
1998 target_read_stralloc (struct target_ops *ops, enum target_object object,
1999 const char *annex)
2000 {
2001 gdb_byte *buffer;
2002 char *bufstr;
2003 LONGEST i, transferred;
2004
2005 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2006 bufstr = (char *) buffer;
2007
2008 if (transferred < 0)
2009 return NULL;
2010
2011 if (transferred == 0)
2012 return xstrdup ("");
2013
2014 bufstr[transferred] = 0;
2015
2016 /* Check for embedded NUL bytes; but allow trailing NULs. */
2017 for (i = strlen (bufstr); i < transferred; i++)
2018 if (bufstr[i] != 0)
2019 {
2020 warning (_("target object %d, annex %s, "
2021 "contained unexpected null characters"),
2022 (int) object, annex ? annex : "(none)");
2023 break;
2024 }
2025
2026 return bufstr;
2027 }
2028
2029 /* Memory transfer methods. */
2030
2031 void
2032 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2033 LONGEST len)
2034 {
2035 /* This method is used to read from an alternate, non-current
2036 target. This read must bypass the overlay support (as symbols
2037 don't match this target), and GDB's internal cache (wrong cache
2038 for this target). */
2039 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2040 != len)
2041 memory_error (TARGET_XFER_E_IO, addr);
2042 }
2043
2044 ULONGEST
2045 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2046 int len, enum bfd_endian byte_order)
2047 {
2048 gdb_byte buf[sizeof (ULONGEST)];
2049
2050 gdb_assert (len <= sizeof (buf));
2051 get_target_memory (ops, addr, buf, len);
2052 return extract_unsigned_integer (buf, len, byte_order);
2053 }
2054
2055 /* See target.h. */
2056
2057 int
2058 target_insert_breakpoint (struct gdbarch *gdbarch,
2059 struct bp_target_info *bp_tgt)
2060 {
2061 if (!may_insert_breakpoints)
2062 {
2063 warning (_("May not insert breakpoints"));
2064 return 1;
2065 }
2066
2067 return current_target.to_insert_breakpoint (&current_target,
2068 gdbarch, bp_tgt);
2069 }
2070
2071 /* See target.h. */
2072
2073 int
2074 target_remove_breakpoint (struct gdbarch *gdbarch,
2075 struct bp_target_info *bp_tgt)
2076 {
2077 /* This is kind of a weird case to handle, but the permission might
2078 have been changed after breakpoints were inserted - in which case
2079 we should just take the user literally and assume that any
2080 breakpoints should be left in place. */
2081 if (!may_insert_breakpoints)
2082 {
2083 warning (_("May not remove breakpoints"));
2084 return 1;
2085 }
2086
2087 return current_target.to_remove_breakpoint (&current_target,
2088 gdbarch, bp_tgt);
2089 }
2090
2091 static void
2092 target_info (char *args, int from_tty)
2093 {
2094 struct target_ops *t;
2095 int has_all_mem = 0;
2096
2097 if (symfile_objfile != NULL)
2098 printf_unfiltered (_("Symbols from \"%s\".\n"),
2099 objfile_name (symfile_objfile));
2100
2101 for (t = target_stack; t != NULL; t = t->beneath)
2102 {
2103 if (!(*t->to_has_memory) (t))
2104 continue;
2105
2106 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2107 continue;
2108 if (has_all_mem)
2109 printf_unfiltered (_("\tWhile running this, "
2110 "GDB does not access memory from...\n"));
2111 printf_unfiltered ("%s:\n", t->to_longname);
2112 (t->to_files_info) (t);
2113 has_all_mem = (*t->to_has_all_memory) (t);
2114 }
2115 }
2116
2117 /* This function is called before any new inferior is created, e.g.
2118 by running a program, attaching, or connecting to a target.
2119 It cleans up any state from previous invocations which might
2120 change between runs. This is a subset of what target_preopen
2121 resets (things which might change between targets). */
2122
2123 void
2124 target_pre_inferior (int from_tty)
2125 {
2126 /* Clear out solib state. Otherwise the solib state of the previous
2127 inferior might have survived and is entirely wrong for the new
2128 target. This has been observed on GNU/Linux using glibc 2.3. How
2129 to reproduce:
2130
2131 bash$ ./foo&
2132 [1] 4711
2133 bash$ ./foo&
2134 [1] 4712
2135 bash$ gdb ./foo
2136 [...]
2137 (gdb) attach 4711
2138 (gdb) detach
2139 (gdb) attach 4712
2140 Cannot access memory at address 0xdeadbeef
2141 */
2142
2143 /* In some OSs, the shared library list is the same/global/shared
2144 across inferiors. If code is shared between processes, so are
2145 memory regions and features. */
2146 if (!gdbarch_has_global_solist (target_gdbarch ()))
2147 {
2148 no_shared_libraries (NULL, from_tty);
2149
2150 invalidate_target_mem_regions ();
2151
2152 target_clear_description ();
2153 }
2154
2155 /* attach_flag may be set if the previous process associated with
2156 the inferior was attached to. */
2157 current_inferior ()->attach_flag = 0;
2158
2159 agent_capability_invalidate ();
2160 }
2161
2162 /* Callback for iterate_over_inferiors. Gets rid of the given
2163 inferior. */
2164
2165 static int
2166 dispose_inferior (struct inferior *inf, void *args)
2167 {
2168 struct thread_info *thread;
2169
2170 thread = any_thread_of_process (inf->pid);
2171 if (thread)
2172 {
2173 switch_to_thread (thread->ptid);
2174
2175 /* Core inferiors actually should be detached, not killed. */
2176 if (target_has_execution)
2177 target_kill ();
2178 else
2179 target_detach (NULL, 0);
2180 }
2181
2182 return 0;
2183 }
2184
2185 /* This is to be called by the open routine before it does
2186 anything. */
2187
2188 void
2189 target_preopen (int from_tty)
2190 {
2191 dont_repeat ();
2192
2193 if (have_inferiors ())
2194 {
2195 if (!from_tty
2196 || !have_live_inferiors ()
2197 || query (_("A program is being debugged already. Kill it? ")))
2198 iterate_over_inferiors (dispose_inferior, NULL);
2199 else
2200 error (_("Program not killed."));
2201 }
2202
2203 /* Calling target_kill may remove the target from the stack. But if
2204 it doesn't (which seems like a win for UDI), remove it now. */
2205 /* Leave the exec target, though. The user may be switching from a
2206 live process to a core of the same program. */
2207 pop_all_targets_above (file_stratum);
2208
2209 target_pre_inferior (from_tty);
2210 }
2211
2212 /* Detach a target after doing deferred register stores. */
2213
2214 void
2215 target_detach (const char *args, int from_tty)
2216 {
2217 struct target_ops* t;
2218
2219 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2220 /* Don't remove global breakpoints here. They're removed on
2221 disconnection from the target. */
2222 ;
2223 else
2224 /* If we're in breakpoints-always-inserted mode, have to remove
2225 them before detaching. */
2226 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2227
2228 prepare_for_detach ();
2229
2230 current_target.to_detach (&current_target, args, from_tty);
2231 }
2232
2233 void
2234 target_disconnect (const char *args, int from_tty)
2235 {
2236 /* If we're in breakpoints-always-inserted mode or if breakpoints
2237 are global across processes, we have to remove them before
2238 disconnecting. */
2239 remove_breakpoints ();
2240
2241 current_target.to_disconnect (&current_target, args, from_tty);
2242 }
2243
2244 ptid_t
2245 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2246 {
2247 return (current_target.to_wait) (&current_target, ptid, status, options);
2248 }
2249
2250 /* See target.h. */
2251
2252 ptid_t
2253 default_target_wait (struct target_ops *ops,
2254 ptid_t ptid, struct target_waitstatus *status,
2255 int options)
2256 {
2257 status->kind = TARGET_WAITKIND_IGNORE;
2258 return minus_one_ptid;
2259 }
2260
2261 char *
2262 target_pid_to_str (ptid_t ptid)
2263 {
2264 return (*current_target.to_pid_to_str) (&current_target, ptid);
2265 }
2266
2267 char *
2268 target_thread_name (struct thread_info *info)
2269 {
2270 return current_target.to_thread_name (&current_target, info);
2271 }
2272
2273 void
2274 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2275 {
2276 struct target_ops *t;
2277
2278 target_dcache_invalidate ();
2279
2280 current_target.to_resume (&current_target, ptid, step, signal);
2281
2282 registers_changed_ptid (ptid);
2283 /* We only set the internal executing state here. The user/frontend
2284 running state is set at a higher level. */
2285 set_executing (ptid, 1);
2286 clear_inline_frame_state (ptid);
2287 }
2288
2289 void
2290 target_pass_signals (int numsigs, unsigned char *pass_signals)
2291 {
2292 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2293 }
2294
2295 void
2296 target_program_signals (int numsigs, unsigned char *program_signals)
2297 {
2298 (*current_target.to_program_signals) (&current_target,
2299 numsigs, program_signals);
2300 }
2301
2302 static int
2303 default_follow_fork (struct target_ops *self, int follow_child,
2304 int detach_fork)
2305 {
2306 /* Some target returned a fork event, but did not know how to follow it. */
2307 internal_error (__FILE__, __LINE__,
2308 _("could not find a target to follow fork"));
2309 }
2310
2311 /* Look through the list of possible targets for a target that can
2312 follow forks. */
2313
2314 int
2315 target_follow_fork (int follow_child, int detach_fork)
2316 {
2317 return current_target.to_follow_fork (&current_target,
2318 follow_child, detach_fork);
2319 }
2320
2321 /* Target wrapper for follow exec hook. */
2322
2323 void
2324 target_follow_exec (struct inferior *inf, char *execd_pathname)
2325 {
2326 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2327 }
2328
2329 static void
2330 default_mourn_inferior (struct target_ops *self)
2331 {
2332 internal_error (__FILE__, __LINE__,
2333 _("could not find a target to follow mourn inferior"));
2334 }
2335
2336 void
2337 target_mourn_inferior (void)
2338 {
2339 current_target.to_mourn_inferior (&current_target);
2340
2341 /* We no longer need to keep handles on any of the object files.
2342 Make sure to release them to avoid unnecessarily locking any
2343 of them while we're not actually debugging. */
2344 bfd_cache_close_all ();
2345 }
2346
2347 /* Look for a target which can describe architectural features, starting
2348 from TARGET. If we find one, return its description. */
2349
2350 const struct target_desc *
2351 target_read_description (struct target_ops *target)
2352 {
2353 return target->to_read_description (target);
2354 }
2355
2356 /* This implements a basic search of memory, reading target memory and
2357 performing the search here (as opposed to performing the search in on the
2358 target side with, for example, gdbserver). */
2359
2360 int
2361 simple_search_memory (struct target_ops *ops,
2362 CORE_ADDR start_addr, ULONGEST search_space_len,
2363 const gdb_byte *pattern, ULONGEST pattern_len,
2364 CORE_ADDR *found_addrp)
2365 {
2366 /* NOTE: also defined in find.c testcase. */
2367 #define SEARCH_CHUNK_SIZE 16000
2368 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2369 /* Buffer to hold memory contents for searching. */
2370 gdb_byte *search_buf;
2371 unsigned search_buf_size;
2372 struct cleanup *old_cleanups;
2373
2374 search_buf_size = chunk_size + pattern_len - 1;
2375
2376 /* No point in trying to allocate a buffer larger than the search space. */
2377 if (search_space_len < search_buf_size)
2378 search_buf_size = search_space_len;
2379
2380 search_buf = (gdb_byte *) malloc (search_buf_size);
2381 if (search_buf == NULL)
2382 error (_("Unable to allocate memory to perform the search."));
2383 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2384
2385 /* Prime the search buffer. */
2386
2387 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2388 search_buf, start_addr, search_buf_size) != search_buf_size)
2389 {
2390 warning (_("Unable to access %s bytes of target "
2391 "memory at %s, halting search."),
2392 pulongest (search_buf_size), hex_string (start_addr));
2393 do_cleanups (old_cleanups);
2394 return -1;
2395 }
2396
2397 /* Perform the search.
2398
2399 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2400 When we've scanned N bytes we copy the trailing bytes to the start and
2401 read in another N bytes. */
2402
2403 while (search_space_len >= pattern_len)
2404 {
2405 gdb_byte *found_ptr;
2406 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2407
2408 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2409 pattern, pattern_len);
2410
2411 if (found_ptr != NULL)
2412 {
2413 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2414
2415 *found_addrp = found_addr;
2416 do_cleanups (old_cleanups);
2417 return 1;
2418 }
2419
2420 /* Not found in this chunk, skip to next chunk. */
2421
2422 /* Don't let search_space_len wrap here, it's unsigned. */
2423 if (search_space_len >= chunk_size)
2424 search_space_len -= chunk_size;
2425 else
2426 search_space_len = 0;
2427
2428 if (search_space_len >= pattern_len)
2429 {
2430 unsigned keep_len = search_buf_size - chunk_size;
2431 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2432 int nr_to_read;
2433
2434 /* Copy the trailing part of the previous iteration to the front
2435 of the buffer for the next iteration. */
2436 gdb_assert (keep_len == pattern_len - 1);
2437 memcpy (search_buf, search_buf + chunk_size, keep_len);
2438
2439 nr_to_read = min (search_space_len - keep_len, chunk_size);
2440
2441 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2442 search_buf + keep_len, read_addr,
2443 nr_to_read) != nr_to_read)
2444 {
2445 warning (_("Unable to access %s bytes of target "
2446 "memory at %s, halting search."),
2447 plongest (nr_to_read),
2448 hex_string (read_addr));
2449 do_cleanups (old_cleanups);
2450 return -1;
2451 }
2452
2453 start_addr += chunk_size;
2454 }
2455 }
2456
2457 /* Not found. */
2458
2459 do_cleanups (old_cleanups);
2460 return 0;
2461 }
2462
2463 /* Default implementation of memory-searching. */
2464
2465 static int
2466 default_search_memory (struct target_ops *self,
2467 CORE_ADDR start_addr, ULONGEST search_space_len,
2468 const gdb_byte *pattern, ULONGEST pattern_len,
2469 CORE_ADDR *found_addrp)
2470 {
2471 /* Start over from the top of the target stack. */
2472 return simple_search_memory (current_target.beneath,
2473 start_addr, search_space_len,
2474 pattern, pattern_len, found_addrp);
2475 }
2476
2477 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2478 sequence of bytes in PATTERN with length PATTERN_LEN.
2479
2480 The result is 1 if found, 0 if not found, and -1 if there was an error
2481 requiring halting of the search (e.g. memory read error).
2482 If the pattern is found the address is recorded in FOUND_ADDRP. */
2483
2484 int
2485 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2486 const gdb_byte *pattern, ULONGEST pattern_len,
2487 CORE_ADDR *found_addrp)
2488 {
2489 return current_target.to_search_memory (&current_target, start_addr,
2490 search_space_len,
2491 pattern, pattern_len, found_addrp);
2492 }
2493
2494 /* Look through the currently pushed targets. If none of them will
2495 be able to restart the currently running process, issue an error
2496 message. */
2497
2498 void
2499 target_require_runnable (void)
2500 {
2501 struct target_ops *t;
2502
2503 for (t = target_stack; t != NULL; t = t->beneath)
2504 {
2505 /* If this target knows how to create a new program, then
2506 assume we will still be able to after killing the current
2507 one. Either killing and mourning will not pop T, or else
2508 find_default_run_target will find it again. */
2509 if (t->to_create_inferior != NULL)
2510 return;
2511
2512 /* Do not worry about targets at certain strata that can not
2513 create inferiors. Assume they will be pushed again if
2514 necessary, and continue to the process_stratum. */
2515 if (t->to_stratum == thread_stratum
2516 || t->to_stratum == record_stratum
2517 || t->to_stratum == arch_stratum)
2518 continue;
2519
2520 error (_("The \"%s\" target does not support \"run\". "
2521 "Try \"help target\" or \"continue\"."),
2522 t->to_shortname);
2523 }
2524
2525 /* This function is only called if the target is running. In that
2526 case there should have been a process_stratum target and it
2527 should either know how to create inferiors, or not... */
2528 internal_error (__FILE__, __LINE__, _("No targets found"));
2529 }
2530
2531 /* Whether GDB is allowed to fall back to the default run target for
2532 "run", "attach", etc. when no target is connected yet. */
2533 static int auto_connect_native_target = 1;
2534
2535 static void
2536 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2537 struct cmd_list_element *c, const char *value)
2538 {
2539 fprintf_filtered (file,
2540 _("Whether GDB may automatically connect to the "
2541 "native target is %s.\n"),
2542 value);
2543 }
2544
2545 /* Look through the list of possible targets for a target that can
2546 execute a run or attach command without any other data. This is
2547 used to locate the default process stratum.
2548
2549 If DO_MESG is not NULL, the result is always valid (error() is
2550 called for errors); else, return NULL on error. */
2551
2552 static struct target_ops *
2553 find_default_run_target (char *do_mesg)
2554 {
2555 struct target_ops *runable = NULL;
2556
2557 if (auto_connect_native_target)
2558 {
2559 struct target_ops *t;
2560 int count = 0;
2561 int i;
2562
2563 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2564 {
2565 if (t->to_can_run != delegate_can_run && target_can_run (t))
2566 {
2567 runable = t;
2568 ++count;
2569 }
2570 }
2571
2572 if (count != 1)
2573 runable = NULL;
2574 }
2575
2576 if (runable == NULL)
2577 {
2578 if (do_mesg)
2579 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2580 else
2581 return NULL;
2582 }
2583
2584 return runable;
2585 }
2586
2587 /* See target.h. */
2588
2589 struct target_ops *
2590 find_attach_target (void)
2591 {
2592 struct target_ops *t;
2593
2594 /* If a target on the current stack can attach, use it. */
2595 for (t = current_target.beneath; t != NULL; t = t->beneath)
2596 {
2597 if (t->to_attach != NULL)
2598 break;
2599 }
2600
2601 /* Otherwise, use the default run target for attaching. */
2602 if (t == NULL)
2603 t = find_default_run_target ("attach");
2604
2605 return t;
2606 }
2607
2608 /* See target.h. */
2609
2610 struct target_ops *
2611 find_run_target (void)
2612 {
2613 struct target_ops *t;
2614
2615 /* If a target on the current stack can attach, use it. */
2616 for (t = current_target.beneath; t != NULL; t = t->beneath)
2617 {
2618 if (t->to_create_inferior != NULL)
2619 break;
2620 }
2621
2622 /* Otherwise, use the default run target. */
2623 if (t == NULL)
2624 t = find_default_run_target ("run");
2625
2626 return t;
2627 }
2628
2629 /* Implement the "info proc" command. */
2630
2631 int
2632 target_info_proc (const char *args, enum info_proc_what what)
2633 {
2634 struct target_ops *t;
2635
2636 /* If we're already connected to something that can get us OS
2637 related data, use it. Otherwise, try using the native
2638 target. */
2639 if (current_target.to_stratum >= process_stratum)
2640 t = current_target.beneath;
2641 else
2642 t = find_default_run_target (NULL);
2643
2644 for (; t != NULL; t = t->beneath)
2645 {
2646 if (t->to_info_proc != NULL)
2647 {
2648 t->to_info_proc (t, args, what);
2649
2650 if (targetdebug)
2651 fprintf_unfiltered (gdb_stdlog,
2652 "target_info_proc (\"%s\", %d)\n", args, what);
2653
2654 return 1;
2655 }
2656 }
2657
2658 return 0;
2659 }
2660
2661 static int
2662 find_default_supports_disable_randomization (struct target_ops *self)
2663 {
2664 struct target_ops *t;
2665
2666 t = find_default_run_target (NULL);
2667 if (t && t->to_supports_disable_randomization)
2668 return (t->to_supports_disable_randomization) (t);
2669 return 0;
2670 }
2671
2672 int
2673 target_supports_disable_randomization (void)
2674 {
2675 struct target_ops *t;
2676
2677 for (t = &current_target; t != NULL; t = t->beneath)
2678 if (t->to_supports_disable_randomization)
2679 return t->to_supports_disable_randomization (t);
2680
2681 return 0;
2682 }
2683
2684 char *
2685 target_get_osdata (const char *type)
2686 {
2687 struct target_ops *t;
2688
2689 /* If we're already connected to something that can get us OS
2690 related data, use it. Otherwise, try using the native
2691 target. */
2692 if (current_target.to_stratum >= process_stratum)
2693 t = current_target.beneath;
2694 else
2695 t = find_default_run_target ("get OS data");
2696
2697 if (!t)
2698 return NULL;
2699
2700 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2701 }
2702
2703 static struct address_space *
2704 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2705 {
2706 struct inferior *inf;
2707
2708 /* Fall-back to the "main" address space of the inferior. */
2709 inf = find_inferior_ptid (ptid);
2710
2711 if (inf == NULL || inf->aspace == NULL)
2712 internal_error (__FILE__, __LINE__,
2713 _("Can't determine the current "
2714 "address space of thread %s\n"),
2715 target_pid_to_str (ptid));
2716
2717 return inf->aspace;
2718 }
2719
2720 /* Determine the current address space of thread PTID. */
2721
2722 struct address_space *
2723 target_thread_address_space (ptid_t ptid)
2724 {
2725 struct address_space *aspace;
2726
2727 aspace = current_target.to_thread_address_space (&current_target, ptid);
2728 gdb_assert (aspace != NULL);
2729
2730 return aspace;
2731 }
2732
2733
2734 /* Target file operations. */
2735
2736 static struct target_ops *
2737 default_fileio_target (void)
2738 {
2739 /* If we're already connected to something that can perform
2740 file I/O, use it. Otherwise, try using the native target. */
2741 if (current_target.to_stratum >= process_stratum)
2742 return current_target.beneath;
2743 else
2744 return find_default_run_target ("file I/O");
2745 }
2746
2747 /* File handle for target file operations. */
2748
2749 typedef struct
2750 {
2751 /* The target on which this file is open. */
2752 struct target_ops *t;
2753
2754 /* The file descriptor on the target. */
2755 int fd;
2756 } fileio_fh_t;
2757
2758 DEF_VEC_O (fileio_fh_t);
2759
2760 /* Vector of currently open file handles. The value returned by
2761 target_fileio_open and passed as the FD argument to other
2762 target_fileio_* functions is an index into this vector. This
2763 vector's entries are never freed; instead, files are marked as
2764 closed, and the handle becomes available for reuse. */
2765 static VEC (fileio_fh_t) *fileio_fhandles;
2766
2767 /* Macro to check whether a fileio_fh_t represents a closed file. */
2768 #define is_closed_fileio_fh(fd) ((fd) < 0)
2769
2770 /* Index into fileio_fhandles of the lowest handle that might be
2771 closed. This permits handle reuse without searching the whole
2772 list each time a new file is opened. */
2773 static int lowest_closed_fd;
2774
2775 /* Acquire a target fileio file descriptor. */
2776
2777 static int
2778 acquire_fileio_fd (struct target_ops *t, int fd)
2779 {
2780 fileio_fh_t *fh, buf;
2781
2782 gdb_assert (!is_closed_fileio_fh (fd));
2783
2784 /* Search for closed handles to reuse. */
2785 for (;
2786 VEC_iterate (fileio_fh_t, fileio_fhandles,
2787 lowest_closed_fd, fh);
2788 lowest_closed_fd++)
2789 if (is_closed_fileio_fh (fh->fd))
2790 break;
2791
2792 /* Push a new handle if no closed handles were found. */
2793 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2794 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2795
2796 /* Fill in the handle. */
2797 fh->t = t;
2798 fh->fd = fd;
2799
2800 /* Return its index, and start the next lookup at
2801 the next index. */
2802 return lowest_closed_fd++;
2803 }
2804
2805 /* Release a target fileio file descriptor. */
2806
2807 static void
2808 release_fileio_fd (int fd, fileio_fh_t *fh)
2809 {
2810 fh->fd = -1;
2811 lowest_closed_fd = min (lowest_closed_fd, fd);
2812 }
2813
2814 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2815
2816 #define fileio_fd_to_fh(fd) \
2817 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2818
2819 /* Helper for target_fileio_open and
2820 target_fileio_open_warn_if_slow. */
2821
2822 static int
2823 target_fileio_open_1 (struct inferior *inf, const char *filename,
2824 int flags, int mode, int warn_if_slow,
2825 int *target_errno)
2826 {
2827 struct target_ops *t;
2828
2829 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2830 {
2831 if (t->to_fileio_open != NULL)
2832 {
2833 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2834 warn_if_slow, target_errno);
2835
2836 if (fd < 0)
2837 fd = -1;
2838 else
2839 fd = acquire_fileio_fd (t, fd);
2840
2841 if (targetdebug)
2842 fprintf_unfiltered (gdb_stdlog,
2843 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2844 " = %d (%d)\n",
2845 inf == NULL ? 0 : inf->num,
2846 filename, flags, mode,
2847 warn_if_slow, fd,
2848 fd != -1 ? 0 : *target_errno);
2849 return fd;
2850 }
2851 }
2852
2853 *target_errno = FILEIO_ENOSYS;
2854 return -1;
2855 }
2856
2857 /* See target.h. */
2858
2859 int
2860 target_fileio_open (struct inferior *inf, const char *filename,
2861 int flags, int mode, int *target_errno)
2862 {
2863 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2864 target_errno);
2865 }
2866
2867 /* See target.h. */
2868
2869 int
2870 target_fileio_open_warn_if_slow (struct inferior *inf,
2871 const char *filename,
2872 int flags, int mode, int *target_errno)
2873 {
2874 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2875 target_errno);
2876 }
2877
2878 /* See target.h. */
2879
2880 int
2881 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2882 ULONGEST offset, int *target_errno)
2883 {
2884 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2885 int ret = -1;
2886
2887 if (is_closed_fileio_fh (fh->fd))
2888 *target_errno = EBADF;
2889 else
2890 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2891 len, offset, target_errno);
2892
2893 if (targetdebug)
2894 fprintf_unfiltered (gdb_stdlog,
2895 "target_fileio_pwrite (%d,...,%d,%s) "
2896 "= %d (%d)\n",
2897 fd, len, pulongest (offset),
2898 ret, ret != -1 ? 0 : *target_errno);
2899 return ret;
2900 }
2901
2902 /* See target.h. */
2903
2904 int
2905 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2906 ULONGEST offset, int *target_errno)
2907 {
2908 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2909 int ret = -1;
2910
2911 if (is_closed_fileio_fh (fh->fd))
2912 *target_errno = EBADF;
2913 else
2914 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2915 len, offset, target_errno);
2916
2917 if (targetdebug)
2918 fprintf_unfiltered (gdb_stdlog,
2919 "target_fileio_pread (%d,...,%d,%s) "
2920 "= %d (%d)\n",
2921 fd, len, pulongest (offset),
2922 ret, ret != -1 ? 0 : *target_errno);
2923 return ret;
2924 }
2925
2926 /* See target.h. */
2927
2928 int
2929 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2930 {
2931 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2932 int ret = -1;
2933
2934 if (is_closed_fileio_fh (fh->fd))
2935 *target_errno = EBADF;
2936 else
2937 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2938
2939 if (targetdebug)
2940 fprintf_unfiltered (gdb_stdlog,
2941 "target_fileio_fstat (%d) = %d (%d)\n",
2942 fd, ret, ret != -1 ? 0 : *target_errno);
2943 return ret;
2944 }
2945
2946 /* See target.h. */
2947
2948 int
2949 target_fileio_close (int fd, int *target_errno)
2950 {
2951 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2952 int ret = -1;
2953
2954 if (is_closed_fileio_fh (fh->fd))
2955 *target_errno = EBADF;
2956 else
2957 {
2958 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2959 release_fileio_fd (fd, fh);
2960 }
2961
2962 if (targetdebug)
2963 fprintf_unfiltered (gdb_stdlog,
2964 "target_fileio_close (%d) = %d (%d)\n",
2965 fd, ret, ret != -1 ? 0 : *target_errno);
2966 return ret;
2967 }
2968
2969 /* See target.h. */
2970
2971 int
2972 target_fileio_unlink (struct inferior *inf, const char *filename,
2973 int *target_errno)
2974 {
2975 struct target_ops *t;
2976
2977 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2978 {
2979 if (t->to_fileio_unlink != NULL)
2980 {
2981 int ret = t->to_fileio_unlink (t, inf, filename,
2982 target_errno);
2983
2984 if (targetdebug)
2985 fprintf_unfiltered (gdb_stdlog,
2986 "target_fileio_unlink (%d,%s)"
2987 " = %d (%d)\n",
2988 inf == NULL ? 0 : inf->num, filename,
2989 ret, ret != -1 ? 0 : *target_errno);
2990 return ret;
2991 }
2992 }
2993
2994 *target_errno = FILEIO_ENOSYS;
2995 return -1;
2996 }
2997
2998 /* See target.h. */
2999
3000 char *
3001 target_fileio_readlink (struct inferior *inf, const char *filename,
3002 int *target_errno)
3003 {
3004 struct target_ops *t;
3005
3006 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3007 {
3008 if (t->to_fileio_readlink != NULL)
3009 {
3010 char *ret = t->to_fileio_readlink (t, inf, filename,
3011 target_errno);
3012
3013 if (targetdebug)
3014 fprintf_unfiltered (gdb_stdlog,
3015 "target_fileio_readlink (%d,%s)"
3016 " = %s (%d)\n",
3017 inf == NULL ? 0 : inf->num,
3018 filename, ret? ret : "(nil)",
3019 ret? 0 : *target_errno);
3020 return ret;
3021 }
3022 }
3023
3024 *target_errno = FILEIO_ENOSYS;
3025 return NULL;
3026 }
3027
3028 static void
3029 target_fileio_close_cleanup (void *opaque)
3030 {
3031 int fd = *(int *) opaque;
3032 int target_errno;
3033
3034 target_fileio_close (fd, &target_errno);
3035 }
3036
3037 /* Read target file FILENAME, in the filesystem as seen by INF. If
3038 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3039 remote targets, the remote stub). Store the result in *BUF_P and
3040 return the size of the transferred data. PADDING additional bytes
3041 are available in *BUF_P. This is a helper function for
3042 target_fileio_read_alloc; see the declaration of that function for
3043 more information. */
3044
3045 static LONGEST
3046 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3047 gdb_byte **buf_p, int padding)
3048 {
3049 struct cleanup *close_cleanup;
3050 size_t buf_alloc, buf_pos;
3051 gdb_byte *buf;
3052 LONGEST n;
3053 int fd;
3054 int target_errno;
3055
3056 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3057 &target_errno);
3058 if (fd == -1)
3059 return -1;
3060
3061 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3062
3063 /* Start by reading up to 4K at a time. The target will throttle
3064 this number down if necessary. */
3065 buf_alloc = 4096;
3066 buf = (gdb_byte *) xmalloc (buf_alloc);
3067 buf_pos = 0;
3068 while (1)
3069 {
3070 n = target_fileio_pread (fd, &buf[buf_pos],
3071 buf_alloc - buf_pos - padding, buf_pos,
3072 &target_errno);
3073 if (n < 0)
3074 {
3075 /* An error occurred. */
3076 do_cleanups (close_cleanup);
3077 xfree (buf);
3078 return -1;
3079 }
3080 else if (n == 0)
3081 {
3082 /* Read all there was. */
3083 do_cleanups (close_cleanup);
3084 if (buf_pos == 0)
3085 xfree (buf);
3086 else
3087 *buf_p = buf;
3088 return buf_pos;
3089 }
3090
3091 buf_pos += n;
3092
3093 /* If the buffer is filling up, expand it. */
3094 if (buf_alloc < buf_pos * 2)
3095 {
3096 buf_alloc *= 2;
3097 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3098 }
3099
3100 QUIT;
3101 }
3102 }
3103
3104 /* See target.h. */
3105
3106 LONGEST
3107 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3108 gdb_byte **buf_p)
3109 {
3110 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3111 }
3112
3113 /* See target.h. */
3114
3115 char *
3116 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3117 {
3118 gdb_byte *buffer;
3119 char *bufstr;
3120 LONGEST i, transferred;
3121
3122 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3123 bufstr = (char *) buffer;
3124
3125 if (transferred < 0)
3126 return NULL;
3127
3128 if (transferred == 0)
3129 return xstrdup ("");
3130
3131 bufstr[transferred] = 0;
3132
3133 /* Check for embedded NUL bytes; but allow trailing NULs. */
3134 for (i = strlen (bufstr); i < transferred; i++)
3135 if (bufstr[i] != 0)
3136 {
3137 warning (_("target file %s "
3138 "contained unexpected null characters"),
3139 filename);
3140 break;
3141 }
3142
3143 return bufstr;
3144 }
3145
3146
3147 static int
3148 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3149 CORE_ADDR addr, int len)
3150 {
3151 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3152 }
3153
3154 static int
3155 default_watchpoint_addr_within_range (struct target_ops *target,
3156 CORE_ADDR addr,
3157 CORE_ADDR start, int length)
3158 {
3159 return addr >= start && addr < start + length;
3160 }
3161
3162 static struct gdbarch *
3163 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3164 {
3165 return target_gdbarch ();
3166 }
3167
3168 static int
3169 return_zero (struct target_ops *ignore)
3170 {
3171 return 0;
3172 }
3173
3174 static int
3175 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3176 {
3177 return 0;
3178 }
3179
3180 /*
3181 * Find the next target down the stack from the specified target.
3182 */
3183
3184 struct target_ops *
3185 find_target_beneath (struct target_ops *t)
3186 {
3187 return t->beneath;
3188 }
3189
3190 /* See target.h. */
3191
3192 struct target_ops *
3193 find_target_at (enum strata stratum)
3194 {
3195 struct target_ops *t;
3196
3197 for (t = current_target.beneath; t != NULL; t = t->beneath)
3198 if (t->to_stratum == stratum)
3199 return t;
3200
3201 return NULL;
3202 }
3203
3204 \f
3205 /* The inferior process has died. Long live the inferior! */
3206
3207 void
3208 generic_mourn_inferior (void)
3209 {
3210 ptid_t ptid;
3211
3212 ptid = inferior_ptid;
3213 inferior_ptid = null_ptid;
3214
3215 /* Mark breakpoints uninserted in case something tries to delete a
3216 breakpoint while we delete the inferior's threads (which would
3217 fail, since the inferior is long gone). */
3218 mark_breakpoints_out ();
3219
3220 if (!ptid_equal (ptid, null_ptid))
3221 {
3222 int pid = ptid_get_pid (ptid);
3223 exit_inferior (pid);
3224 }
3225
3226 /* Note this wipes step-resume breakpoints, so needs to be done
3227 after exit_inferior, which ends up referencing the step-resume
3228 breakpoints through clear_thread_inferior_resources. */
3229 breakpoint_init_inferior (inf_exited);
3230
3231 registers_changed ();
3232
3233 reopen_exec_file ();
3234 reinit_frame_cache ();
3235
3236 if (deprecated_detach_hook)
3237 deprecated_detach_hook ();
3238 }
3239 \f
3240 /* Convert a normal process ID to a string. Returns the string in a
3241 static buffer. */
3242
3243 char *
3244 normal_pid_to_str (ptid_t ptid)
3245 {
3246 static char buf[32];
3247
3248 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3249 return buf;
3250 }
3251
3252 static char *
3253 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3254 {
3255 return normal_pid_to_str (ptid);
3256 }
3257
3258 /* Error-catcher for target_find_memory_regions. */
3259 static int
3260 dummy_find_memory_regions (struct target_ops *self,
3261 find_memory_region_ftype ignore1, void *ignore2)
3262 {
3263 error (_("Command not implemented for this target."));
3264 return 0;
3265 }
3266
3267 /* Error-catcher for target_make_corefile_notes. */
3268 static char *
3269 dummy_make_corefile_notes (struct target_ops *self,
3270 bfd *ignore1, int *ignore2)
3271 {
3272 error (_("Command not implemented for this target."));
3273 return NULL;
3274 }
3275
3276 /* Set up the handful of non-empty slots needed by the dummy target
3277 vector. */
3278
3279 static void
3280 init_dummy_target (void)
3281 {
3282 dummy_target.to_shortname = "None";
3283 dummy_target.to_longname = "None";
3284 dummy_target.to_doc = "";
3285 dummy_target.to_supports_disable_randomization
3286 = find_default_supports_disable_randomization;
3287 dummy_target.to_stratum = dummy_stratum;
3288 dummy_target.to_has_all_memory = return_zero;
3289 dummy_target.to_has_memory = return_zero;
3290 dummy_target.to_has_stack = return_zero;
3291 dummy_target.to_has_registers = return_zero;
3292 dummy_target.to_has_execution = return_zero_has_execution;
3293 dummy_target.to_magic = OPS_MAGIC;
3294
3295 install_dummy_methods (&dummy_target);
3296 }
3297 \f
3298
3299 void
3300 target_close (struct target_ops *targ)
3301 {
3302 gdb_assert (!target_is_pushed (targ));
3303
3304 if (targ->to_xclose != NULL)
3305 targ->to_xclose (targ);
3306 else if (targ->to_close != NULL)
3307 targ->to_close (targ);
3308
3309 if (targetdebug)
3310 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3311 }
3312
3313 int
3314 target_thread_alive (ptid_t ptid)
3315 {
3316 return current_target.to_thread_alive (&current_target, ptid);
3317 }
3318
3319 void
3320 target_update_thread_list (void)
3321 {
3322 current_target.to_update_thread_list (&current_target);
3323 }
3324
3325 void
3326 target_stop (ptid_t ptid)
3327 {
3328 if (!may_stop)
3329 {
3330 warning (_("May not interrupt or stop the target, ignoring attempt"));
3331 return;
3332 }
3333
3334 (*current_target.to_stop) (&current_target, ptid);
3335 }
3336
3337 void
3338 target_interrupt (ptid_t ptid)
3339 {
3340 if (!may_stop)
3341 {
3342 warning (_("May not interrupt or stop the target, ignoring attempt"));
3343 return;
3344 }
3345
3346 (*current_target.to_interrupt) (&current_target, ptid);
3347 }
3348
3349 /* See target.h. */
3350
3351 void
3352 target_check_pending_interrupt (void)
3353 {
3354 (*current_target.to_check_pending_interrupt) (&current_target);
3355 }
3356
3357 /* See target/target.h. */
3358
3359 void
3360 target_stop_and_wait (ptid_t ptid)
3361 {
3362 struct target_waitstatus status;
3363 int was_non_stop = non_stop;
3364
3365 non_stop = 1;
3366 target_stop (ptid);
3367
3368 memset (&status, 0, sizeof (status));
3369 target_wait (ptid, &status, 0);
3370
3371 non_stop = was_non_stop;
3372 }
3373
3374 /* See target/target.h. */
3375
3376 void
3377 target_continue_no_signal (ptid_t ptid)
3378 {
3379 target_resume (ptid, 0, GDB_SIGNAL_0);
3380 }
3381
3382 /* Concatenate ELEM to LIST, a comma separate list, and return the
3383 result. The LIST incoming argument is released. */
3384
3385 static char *
3386 str_comma_list_concat_elem (char *list, const char *elem)
3387 {
3388 if (list == NULL)
3389 return xstrdup (elem);
3390 else
3391 return reconcat (list, list, ", ", elem, (char *) NULL);
3392 }
3393
3394 /* Helper for target_options_to_string. If OPT is present in
3395 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3396 Returns the new resulting string. OPT is removed from
3397 TARGET_OPTIONS. */
3398
3399 static char *
3400 do_option (int *target_options, char *ret,
3401 int opt, char *opt_str)
3402 {
3403 if ((*target_options & opt) != 0)
3404 {
3405 ret = str_comma_list_concat_elem (ret, opt_str);
3406 *target_options &= ~opt;
3407 }
3408
3409 return ret;
3410 }
3411
3412 char *
3413 target_options_to_string (int target_options)
3414 {
3415 char *ret = NULL;
3416
3417 #define DO_TARG_OPTION(OPT) \
3418 ret = do_option (&target_options, ret, OPT, #OPT)
3419
3420 DO_TARG_OPTION (TARGET_WNOHANG);
3421
3422 if (target_options != 0)
3423 ret = str_comma_list_concat_elem (ret, "unknown???");
3424
3425 if (ret == NULL)
3426 ret = xstrdup ("");
3427 return ret;
3428 }
3429
3430 static void
3431 debug_print_register (const char * func,
3432 struct regcache *regcache, int regno)
3433 {
3434 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3435
3436 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3437 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3438 && gdbarch_register_name (gdbarch, regno) != NULL
3439 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3440 fprintf_unfiltered (gdb_stdlog, "(%s)",
3441 gdbarch_register_name (gdbarch, regno));
3442 else
3443 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3444 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3445 {
3446 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3447 int i, size = register_size (gdbarch, regno);
3448 gdb_byte buf[MAX_REGISTER_SIZE];
3449
3450 regcache_raw_collect (regcache, regno, buf);
3451 fprintf_unfiltered (gdb_stdlog, " = ");
3452 for (i = 0; i < size; i++)
3453 {
3454 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3455 }
3456 if (size <= sizeof (LONGEST))
3457 {
3458 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3459
3460 fprintf_unfiltered (gdb_stdlog, " %s %s",
3461 core_addr_to_string_nz (val), plongest (val));
3462 }
3463 }
3464 fprintf_unfiltered (gdb_stdlog, "\n");
3465 }
3466
3467 void
3468 target_fetch_registers (struct regcache *regcache, int regno)
3469 {
3470 current_target.to_fetch_registers (&current_target, regcache, regno);
3471 if (targetdebug)
3472 debug_print_register ("target_fetch_registers", regcache, regno);
3473 }
3474
3475 void
3476 target_store_registers (struct regcache *regcache, int regno)
3477 {
3478 struct target_ops *t;
3479
3480 if (!may_write_registers)
3481 error (_("Writing to registers is not allowed (regno %d)"), regno);
3482
3483 current_target.to_store_registers (&current_target, regcache, regno);
3484 if (targetdebug)
3485 {
3486 debug_print_register ("target_store_registers", regcache, regno);
3487 }
3488 }
3489
3490 int
3491 target_core_of_thread (ptid_t ptid)
3492 {
3493 return current_target.to_core_of_thread (&current_target, ptid);
3494 }
3495
3496 int
3497 simple_verify_memory (struct target_ops *ops,
3498 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3499 {
3500 LONGEST total_xfered = 0;
3501
3502 while (total_xfered < size)
3503 {
3504 ULONGEST xfered_len;
3505 enum target_xfer_status status;
3506 gdb_byte buf[1024];
3507 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3508
3509 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3510 buf, NULL, lma + total_xfered, howmuch,
3511 &xfered_len);
3512 if (status == TARGET_XFER_OK
3513 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3514 {
3515 total_xfered += xfered_len;
3516 QUIT;
3517 }
3518 else
3519 return 0;
3520 }
3521 return 1;
3522 }
3523
3524 /* Default implementation of memory verification. */
3525
3526 static int
3527 default_verify_memory (struct target_ops *self,
3528 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3529 {
3530 /* Start over from the top of the target stack. */
3531 return simple_verify_memory (current_target.beneath,
3532 data, memaddr, size);
3533 }
3534
3535 int
3536 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3537 {
3538 return current_target.to_verify_memory (&current_target,
3539 data, memaddr, size);
3540 }
3541
3542 /* The documentation for this function is in its prototype declaration in
3543 target.h. */
3544
3545 int
3546 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3547 enum target_hw_bp_type rw)
3548 {
3549 return current_target.to_insert_mask_watchpoint (&current_target,
3550 addr, mask, rw);
3551 }
3552
3553 /* The documentation for this function is in its prototype declaration in
3554 target.h. */
3555
3556 int
3557 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3558 enum target_hw_bp_type rw)
3559 {
3560 return current_target.to_remove_mask_watchpoint (&current_target,
3561 addr, mask, rw);
3562 }
3563
3564 /* The documentation for this function is in its prototype declaration
3565 in target.h. */
3566
3567 int
3568 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3569 {
3570 return current_target.to_masked_watch_num_registers (&current_target,
3571 addr, mask);
3572 }
3573
3574 /* The documentation for this function is in its prototype declaration
3575 in target.h. */
3576
3577 int
3578 target_ranged_break_num_registers (void)
3579 {
3580 return current_target.to_ranged_break_num_registers (&current_target);
3581 }
3582
3583 /* See target.h. */
3584
3585 int
3586 target_supports_btrace (enum btrace_format format)
3587 {
3588 return current_target.to_supports_btrace (&current_target, format);
3589 }
3590
3591 /* See target.h. */
3592
3593 struct btrace_target_info *
3594 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3595 {
3596 return current_target.to_enable_btrace (&current_target, ptid, conf);
3597 }
3598
3599 /* See target.h. */
3600
3601 void
3602 target_disable_btrace (struct btrace_target_info *btinfo)
3603 {
3604 current_target.to_disable_btrace (&current_target, btinfo);
3605 }
3606
3607 /* See target.h. */
3608
3609 void
3610 target_teardown_btrace (struct btrace_target_info *btinfo)
3611 {
3612 current_target.to_teardown_btrace (&current_target, btinfo);
3613 }
3614
3615 /* See target.h. */
3616
3617 enum btrace_error
3618 target_read_btrace (struct btrace_data *btrace,
3619 struct btrace_target_info *btinfo,
3620 enum btrace_read_type type)
3621 {
3622 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3623 }
3624
3625 /* See target.h. */
3626
3627 const struct btrace_config *
3628 target_btrace_conf (const struct btrace_target_info *btinfo)
3629 {
3630 return current_target.to_btrace_conf (&current_target, btinfo);
3631 }
3632
3633 /* See target.h. */
3634
3635 void
3636 target_stop_recording (void)
3637 {
3638 current_target.to_stop_recording (&current_target);
3639 }
3640
3641 /* See target.h. */
3642
3643 void
3644 target_save_record (const char *filename)
3645 {
3646 current_target.to_save_record (&current_target, filename);
3647 }
3648
3649 /* See target.h. */
3650
3651 int
3652 target_supports_delete_record (void)
3653 {
3654 struct target_ops *t;
3655
3656 for (t = current_target.beneath; t != NULL; t = t->beneath)
3657 if (t->to_delete_record != delegate_delete_record
3658 && t->to_delete_record != tdefault_delete_record)
3659 return 1;
3660
3661 return 0;
3662 }
3663
3664 /* See target.h. */
3665
3666 void
3667 target_delete_record (void)
3668 {
3669 current_target.to_delete_record (&current_target);
3670 }
3671
3672 /* See target.h. */
3673
3674 int
3675 target_record_is_replaying (ptid_t ptid)
3676 {
3677 return current_target.to_record_is_replaying (&current_target, ptid);
3678 }
3679
3680 /* See target.h. */
3681
3682 int
3683 target_record_will_replay (ptid_t ptid, int dir)
3684 {
3685 return current_target.to_record_will_replay (&current_target, ptid, dir);
3686 }
3687
3688 /* See target.h. */
3689
3690 void
3691 target_record_stop_replaying (void)
3692 {
3693 current_target.to_record_stop_replaying (&current_target);
3694 }
3695
3696 /* See target.h. */
3697
3698 void
3699 target_goto_record_begin (void)
3700 {
3701 current_target.to_goto_record_begin (&current_target);
3702 }
3703
3704 /* See target.h. */
3705
3706 void
3707 target_goto_record_end (void)
3708 {
3709 current_target.to_goto_record_end (&current_target);
3710 }
3711
3712 /* See target.h. */
3713
3714 void
3715 target_goto_record (ULONGEST insn)
3716 {
3717 current_target.to_goto_record (&current_target, insn);
3718 }
3719
3720 /* See target.h. */
3721
3722 void
3723 target_insn_history (int size, int flags)
3724 {
3725 current_target.to_insn_history (&current_target, size, flags);
3726 }
3727
3728 /* See target.h. */
3729
3730 void
3731 target_insn_history_from (ULONGEST from, int size, int flags)
3732 {
3733 current_target.to_insn_history_from (&current_target, from, size, flags);
3734 }
3735
3736 /* See target.h. */
3737
3738 void
3739 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3740 {
3741 current_target.to_insn_history_range (&current_target, begin, end, flags);
3742 }
3743
3744 /* See target.h. */
3745
3746 void
3747 target_call_history (int size, int flags)
3748 {
3749 current_target.to_call_history (&current_target, size, flags);
3750 }
3751
3752 /* See target.h. */
3753
3754 void
3755 target_call_history_from (ULONGEST begin, int size, int flags)
3756 {
3757 current_target.to_call_history_from (&current_target, begin, size, flags);
3758 }
3759
3760 /* See target.h. */
3761
3762 void
3763 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3764 {
3765 current_target.to_call_history_range (&current_target, begin, end, flags);
3766 }
3767
3768 /* See target.h. */
3769
3770 const struct frame_unwind *
3771 target_get_unwinder (void)
3772 {
3773 return current_target.to_get_unwinder (&current_target);
3774 }
3775
3776 /* See target.h. */
3777
3778 const struct frame_unwind *
3779 target_get_tailcall_unwinder (void)
3780 {
3781 return current_target.to_get_tailcall_unwinder (&current_target);
3782 }
3783
3784 /* See target.h. */
3785
3786 void
3787 target_prepare_to_generate_core (void)
3788 {
3789 current_target.to_prepare_to_generate_core (&current_target);
3790 }
3791
3792 /* See target.h. */
3793
3794 void
3795 target_done_generating_core (void)
3796 {
3797 current_target.to_done_generating_core (&current_target);
3798 }
3799
3800 static void
3801 setup_target_debug (void)
3802 {
3803 memcpy (&debug_target, &current_target, sizeof debug_target);
3804
3805 init_debug_target (&current_target);
3806 }
3807 \f
3808
3809 static char targ_desc[] =
3810 "Names of targets and files being debugged.\nShows the entire \
3811 stack of targets currently in use (including the exec-file,\n\
3812 core-file, and process, if any), as well as the symbol file name.";
3813
3814 static void
3815 default_rcmd (struct target_ops *self, const char *command,
3816 struct ui_file *output)
3817 {
3818 error (_("\"monitor\" command not supported by this target."));
3819 }
3820
3821 static void
3822 do_monitor_command (char *cmd,
3823 int from_tty)
3824 {
3825 target_rcmd (cmd, gdb_stdtarg);
3826 }
3827
3828 /* Print the name of each layers of our target stack. */
3829
3830 static void
3831 maintenance_print_target_stack (char *cmd, int from_tty)
3832 {
3833 struct target_ops *t;
3834
3835 printf_filtered (_("The current target stack is:\n"));
3836
3837 for (t = target_stack; t != NULL; t = t->beneath)
3838 {
3839 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3840 }
3841 }
3842
3843 /* See target.h. */
3844
3845 void
3846 target_async (int enable)
3847 {
3848 infrun_async (enable);
3849 current_target.to_async (&current_target, enable);
3850 }
3851
3852 /* Controls if targets can report that they can/are async. This is
3853 just for maintainers to use when debugging gdb. */
3854 int target_async_permitted = 1;
3855
3856 /* The set command writes to this variable. If the inferior is
3857 executing, target_async_permitted is *not* updated. */
3858 static int target_async_permitted_1 = 1;
3859
3860 static void
3861 maint_set_target_async_command (char *args, int from_tty,
3862 struct cmd_list_element *c)
3863 {
3864 if (have_live_inferiors ())
3865 {
3866 target_async_permitted_1 = target_async_permitted;
3867 error (_("Cannot change this setting while the inferior is running."));
3868 }
3869
3870 target_async_permitted = target_async_permitted_1;
3871 }
3872
3873 static void
3874 maint_show_target_async_command (struct ui_file *file, int from_tty,
3875 struct cmd_list_element *c,
3876 const char *value)
3877 {
3878 fprintf_filtered (file,
3879 _("Controlling the inferior in "
3880 "asynchronous mode is %s.\n"), value);
3881 }
3882
3883 /* Return true if the target operates in non-stop mode even with "set
3884 non-stop off". */
3885
3886 static int
3887 target_always_non_stop_p (void)
3888 {
3889 return current_target.to_always_non_stop_p (&current_target);
3890 }
3891
3892 /* See target.h. */
3893
3894 int
3895 target_is_non_stop_p (void)
3896 {
3897 return (non_stop
3898 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3899 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3900 && target_always_non_stop_p ()));
3901 }
3902
3903 /* Controls if targets can report that they always run in non-stop
3904 mode. This is just for maintainers to use when debugging gdb. */
3905 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3906
3907 /* The set command writes to this variable. If the inferior is
3908 executing, target_non_stop_enabled is *not* updated. */
3909 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3910
3911 /* Implementation of "maint set target-non-stop". */
3912
3913 static void
3914 maint_set_target_non_stop_command (char *args, int from_tty,
3915 struct cmd_list_element *c)
3916 {
3917 if (have_live_inferiors ())
3918 {
3919 target_non_stop_enabled_1 = target_non_stop_enabled;
3920 error (_("Cannot change this setting while the inferior is running."));
3921 }
3922
3923 target_non_stop_enabled = target_non_stop_enabled_1;
3924 }
3925
3926 /* Implementation of "maint show target-non-stop". */
3927
3928 static void
3929 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3930 struct cmd_list_element *c,
3931 const char *value)
3932 {
3933 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3934 fprintf_filtered (file,
3935 _("Whether the target is always in non-stop mode "
3936 "is %s (currently %s).\n"), value,
3937 target_always_non_stop_p () ? "on" : "off");
3938 else
3939 fprintf_filtered (file,
3940 _("Whether the target is always in non-stop mode "
3941 "is %s.\n"), value);
3942 }
3943
3944 /* Temporary copies of permission settings. */
3945
3946 static int may_write_registers_1 = 1;
3947 static int may_write_memory_1 = 1;
3948 static int may_insert_breakpoints_1 = 1;
3949 static int may_insert_tracepoints_1 = 1;
3950 static int may_insert_fast_tracepoints_1 = 1;
3951 static int may_stop_1 = 1;
3952
3953 /* Make the user-set values match the real values again. */
3954
3955 void
3956 update_target_permissions (void)
3957 {
3958 may_write_registers_1 = may_write_registers;
3959 may_write_memory_1 = may_write_memory;
3960 may_insert_breakpoints_1 = may_insert_breakpoints;
3961 may_insert_tracepoints_1 = may_insert_tracepoints;
3962 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3963 may_stop_1 = may_stop;
3964 }
3965
3966 /* The one function handles (most of) the permission flags in the same
3967 way. */
3968
3969 static void
3970 set_target_permissions (char *args, int from_tty,
3971 struct cmd_list_element *c)
3972 {
3973 if (target_has_execution)
3974 {
3975 update_target_permissions ();
3976 error (_("Cannot change this setting while the inferior is running."));
3977 }
3978
3979 /* Make the real values match the user-changed values. */
3980 may_write_registers = may_write_registers_1;
3981 may_insert_breakpoints = may_insert_breakpoints_1;
3982 may_insert_tracepoints = may_insert_tracepoints_1;
3983 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3984 may_stop = may_stop_1;
3985 update_observer_mode ();
3986 }
3987
3988 /* Set memory write permission independently of observer mode. */
3989
3990 static void
3991 set_write_memory_permission (char *args, int from_tty,
3992 struct cmd_list_element *c)
3993 {
3994 /* Make the real values match the user-changed values. */
3995 may_write_memory = may_write_memory_1;
3996 update_observer_mode ();
3997 }
3998
3999
4000 void
4001 initialize_targets (void)
4002 {
4003 init_dummy_target ();
4004 push_target (&dummy_target);
4005
4006 add_info ("target", target_info, targ_desc);
4007 add_info ("files", target_info, targ_desc);
4008
4009 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4010 Set target debugging."), _("\
4011 Show target debugging."), _("\
4012 When non-zero, target debugging is enabled. Higher numbers are more\n\
4013 verbose."),
4014 set_targetdebug,
4015 show_targetdebug,
4016 &setdebuglist, &showdebuglist);
4017
4018 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4019 &trust_readonly, _("\
4020 Set mode for reading from readonly sections."), _("\
4021 Show mode for reading from readonly sections."), _("\
4022 When this mode is on, memory reads from readonly sections (such as .text)\n\
4023 will be read from the object file instead of from the target. This will\n\
4024 result in significant performance improvement for remote targets."),
4025 NULL,
4026 show_trust_readonly,
4027 &setlist, &showlist);
4028
4029 add_com ("monitor", class_obscure, do_monitor_command,
4030 _("Send a command to the remote monitor (remote targets only)."));
4031
4032 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4033 _("Print the name of each layer of the internal target stack."),
4034 &maintenanceprintlist);
4035
4036 add_setshow_boolean_cmd ("target-async", no_class,
4037 &target_async_permitted_1, _("\
4038 Set whether gdb controls the inferior in asynchronous mode."), _("\
4039 Show whether gdb controls the inferior in asynchronous mode."), _("\
4040 Tells gdb whether to control the inferior in asynchronous mode."),
4041 maint_set_target_async_command,
4042 maint_show_target_async_command,
4043 &maintenance_set_cmdlist,
4044 &maintenance_show_cmdlist);
4045
4046 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4047 &target_non_stop_enabled_1, _("\
4048 Set whether gdb always controls the inferior in non-stop mode."), _("\
4049 Show whether gdb always controls the inferior in non-stop mode."), _("\
4050 Tells gdb whether to control the inferior in non-stop mode."),
4051 maint_set_target_non_stop_command,
4052 maint_show_target_non_stop_command,
4053 &maintenance_set_cmdlist,
4054 &maintenance_show_cmdlist);
4055
4056 add_setshow_boolean_cmd ("may-write-registers", class_support,
4057 &may_write_registers_1, _("\
4058 Set permission to write into registers."), _("\
4059 Show permission to write into registers."), _("\
4060 When this permission is on, GDB may write into the target's registers.\n\
4061 Otherwise, any sort of write attempt will result in an error."),
4062 set_target_permissions, NULL,
4063 &setlist, &showlist);
4064
4065 add_setshow_boolean_cmd ("may-write-memory", class_support,
4066 &may_write_memory_1, _("\
4067 Set permission to write into target memory."), _("\
4068 Show permission to write into target memory."), _("\
4069 When this permission is on, GDB may write into the target's memory.\n\
4070 Otherwise, any sort of write attempt will result in an error."),
4071 set_write_memory_permission, NULL,
4072 &setlist, &showlist);
4073
4074 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4075 &may_insert_breakpoints_1, _("\
4076 Set permission to insert breakpoints in the target."), _("\
4077 Show permission to insert breakpoints in the target."), _("\
4078 When this permission is on, GDB may insert breakpoints in the program.\n\
4079 Otherwise, any sort of insertion attempt will result in an error."),
4080 set_target_permissions, NULL,
4081 &setlist, &showlist);
4082
4083 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4084 &may_insert_tracepoints_1, _("\
4085 Set permission to insert tracepoints in the target."), _("\
4086 Show permission to insert tracepoints in the target."), _("\
4087 When this permission is on, GDB may insert tracepoints in the program.\n\
4088 Otherwise, any sort of insertion attempt will result in an error."),
4089 set_target_permissions, NULL,
4090 &setlist, &showlist);
4091
4092 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4093 &may_insert_fast_tracepoints_1, _("\
4094 Set permission to insert fast tracepoints in the target."), _("\
4095 Show permission to insert fast tracepoints in the target."), _("\
4096 When this permission is on, GDB may insert fast tracepoints.\n\
4097 Otherwise, any sort of insertion attempt will result in an error."),
4098 set_target_permissions, NULL,
4099 &setlist, &showlist);
4100
4101 add_setshow_boolean_cmd ("may-interrupt", class_support,
4102 &may_stop_1, _("\
4103 Set permission to interrupt or signal the target."), _("\
4104 Show permission to interrupt or signal the target."), _("\
4105 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4106 Otherwise, any attempt to interrupt or stop will be ignored."),
4107 set_target_permissions, NULL,
4108 &setlist, &showlist);
4109
4110 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4111 &auto_connect_native_target, _("\
4112 Set whether GDB may automatically connect to the native target."), _("\
4113 Show whether GDB may automatically connect to the native target."), _("\
4114 When on, and GDB is not connected to a target yet, GDB\n\
4115 attempts \"run\" and other commands with the native target."),
4116 NULL, show_auto_connect_native_target,
4117 &setlist, &showlist);
4118 }
This page took 0.111063 seconds and 4 git commands to generate.