1752ddc703f9d8333ae8778abe0c70aa29e7cb89
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_resume (ptid_t, int, enum target_signal);
101
102 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
103
104 static void debug_to_fetch_registers (struct regcache *, int);
105
106 static void debug_to_store_registers (struct regcache *, int);
107
108 static void debug_to_prepare_to_store (struct regcache *);
109
110 static void debug_to_files_info (struct target_ops *);
111
112 static int debug_to_insert_breakpoint (struct bp_target_info *);
113
114 static int debug_to_remove_breakpoint (struct bp_target_info *);
115
116 static int debug_to_can_use_hw_breakpoint (int, int, int);
117
118 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
119
120 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
121
122 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
123
124 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
125
126 static int debug_to_stopped_by_watchpoint (void);
127
128 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
129
130 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
131 CORE_ADDR, CORE_ADDR, int);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_kill (void);
148
149 static void debug_to_load (char *, int);
150
151 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
152
153 static int debug_to_can_run (void);
154
155 static void debug_to_notice_signals (ptid_t);
156
157 static int debug_to_thread_alive (ptid_t);
158
159 static void debug_to_stop (ptid_t);
160
161 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
162 wierd and mysterious ways. Putting the variable here lets those
163 wierd and mysterious ways keep building while they are being
164 converted to the inferior inheritance structure. */
165 struct target_ops deprecated_child_ops;
166
167 /* Pointer to array of target architecture structures; the size of the
168 array; the current index into the array; the allocated size of the
169 array. */
170 struct target_ops **target_structs;
171 unsigned target_struct_size;
172 unsigned target_struct_index;
173 unsigned target_struct_allocsize;
174 #define DEFAULT_ALLOCSIZE 10
175
176 /* The initial current target, so that there is always a semi-valid
177 current target. */
178
179 static struct target_ops dummy_target;
180
181 /* Top of target stack. */
182
183 static struct target_ops *target_stack;
184
185 /* The target structure we are currently using to talk to a process
186 or file or whatever "inferior" we have. */
187
188 struct target_ops current_target;
189
190 /* Command list for target. */
191
192 static struct cmd_list_element *targetlist = NULL;
193
194 /* Nonzero if we should trust readonly sections from the
195 executable when reading memory. */
196
197 static int trust_readonly = 0;
198
199 /* Nonzero if we should show true memory content including
200 memory breakpoint inserted by gdb. */
201
202 static int show_memory_breakpoints = 0;
203
204 /* Non-zero if we want to see trace of target level stuff. */
205
206 static int targetdebug = 0;
207 static void
208 show_targetdebug (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210 {
211 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
212 }
213
214 static void setup_target_debug (void);
215
216 DCACHE *target_dcache;
217
218 /* The user just typed 'target' without the name of a target. */
219
220 static void
221 target_command (char *arg, int from_tty)
222 {
223 fputs_filtered ("Argument required (target name). Try `help target'\n",
224 gdb_stdout);
225 }
226
227 /* Add a possible target architecture to the list. */
228
229 void
230 add_target (struct target_ops *t)
231 {
232 /* Provide default values for all "must have" methods. */
233 if (t->to_xfer_partial == NULL)
234 t->to_xfer_partial = default_xfer_partial;
235
236 if (!target_structs)
237 {
238 target_struct_allocsize = DEFAULT_ALLOCSIZE;
239 target_structs = (struct target_ops **) xmalloc
240 (target_struct_allocsize * sizeof (*target_structs));
241 }
242 if (target_struct_size >= target_struct_allocsize)
243 {
244 target_struct_allocsize *= 2;
245 target_structs = (struct target_ops **)
246 xrealloc ((char *) target_structs,
247 target_struct_allocsize * sizeof (*target_structs));
248 }
249 target_structs[target_struct_size++] = t;
250
251 if (targetlist == NULL)
252 add_prefix_cmd ("target", class_run, target_command, _("\
253 Connect to a target machine or process.\n\
254 The first argument is the type or protocol of the target machine.\n\
255 Remaining arguments are interpreted by the target protocol. For more\n\
256 information on the arguments for a particular protocol, type\n\
257 `help target ' followed by the protocol name."),
258 &targetlist, "target ", 0, &cmdlist);
259 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
260 }
261
262 /* Stub functions */
263
264 void
265 target_ignore (void)
266 {
267 }
268
269 void
270 target_load (char *arg, int from_tty)
271 {
272 dcache_invalidate (target_dcache);
273 (*current_target.to_load) (arg, from_tty);
274 }
275
276 void
277 target_create_inferior (char *exec_file, char *args,
278 char **env, int from_tty)
279 {
280 struct target_ops *t;
281 for (t = current_target.beneath; t != NULL; t = t->beneath)
282 {
283 if (t->to_create_inferior != NULL)
284 {
285 t->to_create_inferior (t, exec_file, args, env, from_tty);
286 if (targetdebug)
287 fprintf_unfiltered (gdb_stdlog,
288 "target_create_inferior (%s, %s, xxx, %d)\n",
289 exec_file, args, from_tty);
290 return;
291 }
292 }
293
294 internal_error (__FILE__, __LINE__,
295 "could not find a target to create inferior");
296 }
297
298
299 static int
300 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
301 struct target_ops *t)
302 {
303 errno = EIO; /* Can't read/write this location */
304 return 0; /* No bytes handled */
305 }
306
307 static void
308 tcomplain (void)
309 {
310 error (_("You can't do that when your target is `%s'"),
311 current_target.to_shortname);
312 }
313
314 void
315 noprocess (void)
316 {
317 error (_("You can't do that without a process to debug."));
318 }
319
320 static int
321 nosymbol (char *name, CORE_ADDR *addrp)
322 {
323 return 1; /* Symbol does not exist in target env */
324 }
325
326 static void
327 nosupport_runtime (void)
328 {
329 if (ptid_equal (inferior_ptid, null_ptid))
330 noprocess ();
331 else
332 error (_("No run-time support for this"));
333 }
334
335
336 static void
337 default_terminal_info (char *args, int from_tty)
338 {
339 printf_unfiltered (_("No saved terminal information.\n"));
340 }
341
342 /* This is the default target_create_inferior and target_attach function.
343 If the current target is executing, it asks whether to kill it off.
344 If this function returns without calling error(), it has killed off
345 the target, and the operation should be attempted. */
346
347 static void
348 kill_or_be_killed (int from_tty)
349 {
350 if (target_has_execution)
351 {
352 printf_unfiltered (_("You are already running a program:\n"));
353 target_files_info ();
354 if (query ("Kill it? "))
355 {
356 target_kill ();
357 if (target_has_execution)
358 error (_("Killing the program did not help."));
359 return;
360 }
361 else
362 {
363 error (_("Program not killed."));
364 }
365 }
366 tcomplain ();
367 }
368
369 /* A default implementation for the to_get_ada_task_ptid target method.
370
371 This function builds the PTID by using both LWP and TID as part of
372 the PTID lwp and tid elements. The pid used is the pid of the
373 inferior_ptid. */
374
375 ptid_t
376 default_get_ada_task_ptid (long lwp, long tid)
377 {
378 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
379 }
380
381 /* Go through the target stack from top to bottom, copying over zero
382 entries in current_target, then filling in still empty entries. In
383 effect, we are doing class inheritance through the pushed target
384 vectors.
385
386 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
387 is currently implemented, is that it discards any knowledge of
388 which target an inherited method originally belonged to.
389 Consequently, new new target methods should instead explicitly and
390 locally search the target stack for the target that can handle the
391 request. */
392
393 static void
394 update_current_target (void)
395 {
396 struct target_ops *t;
397
398 /* First, reset current's contents. */
399 memset (&current_target, 0, sizeof (current_target));
400
401 #define INHERIT(FIELD, TARGET) \
402 if (!current_target.FIELD) \
403 current_target.FIELD = (TARGET)->FIELD
404
405 for (t = target_stack; t; t = t->beneath)
406 {
407 INHERIT (to_shortname, t);
408 INHERIT (to_longname, t);
409 INHERIT (to_doc, t);
410 /* Do not inherit to_open. */
411 /* Do not inherit to_close. */
412 /* Do not inherit to_attach. */
413 INHERIT (to_post_attach, t);
414 INHERIT (to_attach_no_wait, t);
415 /* Do not inherit to_detach. */
416 /* Do not inherit to_disconnect. */
417 INHERIT (to_resume, t);
418 INHERIT (to_wait, t);
419 INHERIT (to_fetch_registers, t);
420 INHERIT (to_store_registers, t);
421 INHERIT (to_prepare_to_store, t);
422 INHERIT (deprecated_xfer_memory, t);
423 INHERIT (to_files_info, t);
424 INHERIT (to_insert_breakpoint, t);
425 INHERIT (to_remove_breakpoint, t);
426 INHERIT (to_can_use_hw_breakpoint, t);
427 INHERIT (to_insert_hw_breakpoint, t);
428 INHERIT (to_remove_hw_breakpoint, t);
429 INHERIT (to_insert_watchpoint, t);
430 INHERIT (to_remove_watchpoint, t);
431 INHERIT (to_stopped_data_address, t);
432 INHERIT (to_have_steppable_watchpoint, t);
433 INHERIT (to_have_continuable_watchpoint, t);
434 INHERIT (to_stopped_by_watchpoint, t);
435 INHERIT (to_watchpoint_addr_within_range, t);
436 INHERIT (to_region_ok_for_hw_watchpoint, t);
437 INHERIT (to_terminal_init, t);
438 INHERIT (to_terminal_inferior, t);
439 INHERIT (to_terminal_ours_for_output, t);
440 INHERIT (to_terminal_ours, t);
441 INHERIT (to_terminal_save_ours, t);
442 INHERIT (to_terminal_info, t);
443 INHERIT (to_kill, t);
444 INHERIT (to_load, t);
445 INHERIT (to_lookup_symbol, t);
446 /* Do no inherit to_create_inferior. */
447 INHERIT (to_post_startup_inferior, t);
448 INHERIT (to_acknowledge_created_inferior, t);
449 INHERIT (to_insert_fork_catchpoint, t);
450 INHERIT (to_remove_fork_catchpoint, t);
451 INHERIT (to_insert_vfork_catchpoint, t);
452 INHERIT (to_remove_vfork_catchpoint, t);
453 /* Do not inherit to_follow_fork. */
454 INHERIT (to_insert_exec_catchpoint, t);
455 INHERIT (to_remove_exec_catchpoint, t);
456 INHERIT (to_has_exited, t);
457 /* Do no inherit to_mourn_inferiour. */
458 INHERIT (to_can_run, t);
459 INHERIT (to_notice_signals, t);
460 INHERIT (to_thread_alive, t);
461 INHERIT (to_find_new_threads, t);
462 INHERIT (to_pid_to_str, t);
463 INHERIT (to_extra_thread_info, t);
464 INHERIT (to_stop, t);
465 /* Do not inherit to_xfer_partial. */
466 INHERIT (to_rcmd, t);
467 INHERIT (to_pid_to_exec_file, t);
468 INHERIT (to_log_command, t);
469 INHERIT (to_stratum, t);
470 INHERIT (to_has_all_memory, t);
471 INHERIT (to_has_memory, t);
472 INHERIT (to_has_stack, t);
473 INHERIT (to_has_registers, t);
474 INHERIT (to_has_execution, t);
475 INHERIT (to_has_thread_control, t);
476 INHERIT (to_sections, t);
477 INHERIT (to_sections_end, t);
478 INHERIT (to_can_async_p, t);
479 INHERIT (to_is_async_p, t);
480 INHERIT (to_async, t);
481 INHERIT (to_async_mask, t);
482 INHERIT (to_find_memory_regions, t);
483 INHERIT (to_make_corefile_notes, t);
484 INHERIT (to_get_thread_local_address, t);
485 INHERIT (to_can_execute_reverse, t);
486 /* Do not inherit to_read_description. */
487 INHERIT (to_get_ada_task_ptid, t);
488 /* Do not inherit to_search_memory. */
489 INHERIT (to_supports_multi_process, t);
490 INHERIT (to_magic, t);
491 /* Do not inherit to_memory_map. */
492 /* Do not inherit to_flash_erase. */
493 /* Do not inherit to_flash_done. */
494 }
495 #undef INHERIT
496
497 /* Clean up a target struct so it no longer has any zero pointers in
498 it. Some entries are defaulted to a method that print an error,
499 others are hard-wired to a standard recursive default. */
500
501 #define de_fault(field, value) \
502 if (!current_target.field) \
503 current_target.field = value
504
505 de_fault (to_open,
506 (void (*) (char *, int))
507 tcomplain);
508 de_fault (to_close,
509 (void (*) (int))
510 target_ignore);
511 de_fault (to_post_attach,
512 (void (*) (int))
513 target_ignore);
514 de_fault (to_resume,
515 (void (*) (ptid_t, int, enum target_signal))
516 noprocess);
517 de_fault (to_wait,
518 (ptid_t (*) (ptid_t, struct target_waitstatus *))
519 noprocess);
520 de_fault (to_fetch_registers,
521 (void (*) (struct regcache *, int))
522 target_ignore);
523 de_fault (to_store_registers,
524 (void (*) (struct regcache *, int))
525 noprocess);
526 de_fault (to_prepare_to_store,
527 (void (*) (struct regcache *))
528 noprocess);
529 de_fault (deprecated_xfer_memory,
530 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
531 nomemory);
532 de_fault (to_files_info,
533 (void (*) (struct target_ops *))
534 target_ignore);
535 de_fault (to_insert_breakpoint,
536 memory_insert_breakpoint);
537 de_fault (to_remove_breakpoint,
538 memory_remove_breakpoint);
539 de_fault (to_can_use_hw_breakpoint,
540 (int (*) (int, int, int))
541 return_zero);
542 de_fault (to_insert_hw_breakpoint,
543 (int (*) (struct bp_target_info *))
544 return_minus_one);
545 de_fault (to_remove_hw_breakpoint,
546 (int (*) (struct bp_target_info *))
547 return_minus_one);
548 de_fault (to_insert_watchpoint,
549 (int (*) (CORE_ADDR, int, int))
550 return_minus_one);
551 de_fault (to_remove_watchpoint,
552 (int (*) (CORE_ADDR, int, int))
553 return_minus_one);
554 de_fault (to_stopped_by_watchpoint,
555 (int (*) (void))
556 return_zero);
557 de_fault (to_stopped_data_address,
558 (int (*) (struct target_ops *, CORE_ADDR *))
559 return_zero);
560 de_fault (to_watchpoint_addr_within_range,
561 default_watchpoint_addr_within_range);
562 de_fault (to_region_ok_for_hw_watchpoint,
563 default_region_ok_for_hw_watchpoint);
564 de_fault (to_terminal_init,
565 (void (*) (void))
566 target_ignore);
567 de_fault (to_terminal_inferior,
568 (void (*) (void))
569 target_ignore);
570 de_fault (to_terminal_ours_for_output,
571 (void (*) (void))
572 target_ignore);
573 de_fault (to_terminal_ours,
574 (void (*) (void))
575 target_ignore);
576 de_fault (to_terminal_save_ours,
577 (void (*) (void))
578 target_ignore);
579 de_fault (to_terminal_info,
580 default_terminal_info);
581 de_fault (to_kill,
582 (void (*) (void))
583 noprocess);
584 de_fault (to_load,
585 (void (*) (char *, int))
586 tcomplain);
587 de_fault (to_lookup_symbol,
588 (int (*) (char *, CORE_ADDR *))
589 nosymbol);
590 de_fault (to_post_startup_inferior,
591 (void (*) (ptid_t))
592 target_ignore);
593 de_fault (to_acknowledge_created_inferior,
594 (void (*) (int))
595 target_ignore);
596 de_fault (to_insert_fork_catchpoint,
597 (void (*) (int))
598 tcomplain);
599 de_fault (to_remove_fork_catchpoint,
600 (int (*) (int))
601 tcomplain);
602 de_fault (to_insert_vfork_catchpoint,
603 (void (*) (int))
604 tcomplain);
605 de_fault (to_remove_vfork_catchpoint,
606 (int (*) (int))
607 tcomplain);
608 de_fault (to_insert_exec_catchpoint,
609 (void (*) (int))
610 tcomplain);
611 de_fault (to_remove_exec_catchpoint,
612 (int (*) (int))
613 tcomplain);
614 de_fault (to_has_exited,
615 (int (*) (int, int, int *))
616 return_zero);
617 de_fault (to_can_run,
618 return_zero);
619 de_fault (to_notice_signals,
620 (void (*) (ptid_t))
621 target_ignore);
622 de_fault (to_thread_alive,
623 (int (*) (ptid_t))
624 return_zero);
625 de_fault (to_find_new_threads,
626 (void (*) (void))
627 target_ignore);
628 de_fault (to_extra_thread_info,
629 (char *(*) (struct thread_info *))
630 return_zero);
631 de_fault (to_stop,
632 (void (*) (ptid_t))
633 target_ignore);
634 current_target.to_xfer_partial = current_xfer_partial;
635 de_fault (to_rcmd,
636 (void (*) (char *, struct ui_file *))
637 tcomplain);
638 de_fault (to_pid_to_exec_file,
639 (char *(*) (int))
640 return_zero);
641 de_fault (to_async,
642 (void (*) (void (*) (enum inferior_event_type, void*), void*))
643 tcomplain);
644 de_fault (to_async_mask,
645 (int (*) (int))
646 return_one);
647 current_target.to_read_description = NULL;
648 de_fault (to_get_ada_task_ptid,
649 (ptid_t (*) (long, long))
650 default_get_ada_task_ptid);
651 de_fault (to_supports_multi_process,
652 (int (*) (void))
653 return_zero);
654 #undef de_fault
655
656 /* Finally, position the target-stack beneath the squashed
657 "current_target". That way code looking for a non-inherited
658 target method can quickly and simply find it. */
659 current_target.beneath = target_stack;
660
661 if (targetdebug)
662 setup_target_debug ();
663 }
664
665 /* Mark OPS as a running target. This reverses the effect
666 of target_mark_exited. */
667
668 void
669 target_mark_running (struct target_ops *ops)
670 {
671 struct target_ops *t;
672
673 for (t = target_stack; t != NULL; t = t->beneath)
674 if (t == ops)
675 break;
676 if (t == NULL)
677 internal_error (__FILE__, __LINE__,
678 "Attempted to mark unpushed target \"%s\" as running",
679 ops->to_shortname);
680
681 ops->to_has_execution = 1;
682 ops->to_has_all_memory = 1;
683 ops->to_has_memory = 1;
684 ops->to_has_stack = 1;
685 ops->to_has_registers = 1;
686
687 update_current_target ();
688 }
689
690 /* Mark OPS as a non-running target. This reverses the effect
691 of target_mark_running. */
692
693 void
694 target_mark_exited (struct target_ops *ops)
695 {
696 struct target_ops *t;
697
698 for (t = target_stack; t != NULL; t = t->beneath)
699 if (t == ops)
700 break;
701 if (t == NULL)
702 internal_error (__FILE__, __LINE__,
703 "Attempted to mark unpushed target \"%s\" as running",
704 ops->to_shortname);
705
706 ops->to_has_execution = 0;
707 ops->to_has_all_memory = 0;
708 ops->to_has_memory = 0;
709 ops->to_has_stack = 0;
710 ops->to_has_registers = 0;
711
712 update_current_target ();
713 }
714
715 /* Push a new target type into the stack of the existing target accessors,
716 possibly superseding some of the existing accessors.
717
718 Result is zero if the pushed target ended up on top of the stack,
719 nonzero if at least one target is on top of it.
720
721 Rather than allow an empty stack, we always have the dummy target at
722 the bottom stratum, so we can call the function vectors without
723 checking them. */
724
725 int
726 push_target (struct target_ops *t)
727 {
728 struct target_ops **cur;
729
730 /* Check magic number. If wrong, it probably means someone changed
731 the struct definition, but not all the places that initialize one. */
732 if (t->to_magic != OPS_MAGIC)
733 {
734 fprintf_unfiltered (gdb_stderr,
735 "Magic number of %s target struct wrong\n",
736 t->to_shortname);
737 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
738 }
739
740 /* Find the proper stratum to install this target in. */
741 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
742 {
743 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
744 break;
745 }
746
747 /* If there's already targets at this stratum, remove them. */
748 /* FIXME: cagney/2003-10-15: I think this should be popping all
749 targets to CUR, and not just those at this stratum level. */
750 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
751 {
752 /* There's already something at this stratum level. Close it,
753 and un-hook it from the stack. */
754 struct target_ops *tmp = (*cur);
755 (*cur) = (*cur)->beneath;
756 tmp->beneath = NULL;
757 target_close (tmp, 0);
758 }
759
760 /* We have removed all targets in our stratum, now add the new one. */
761 t->beneath = (*cur);
762 (*cur) = t;
763
764 update_current_target ();
765
766 /* Not on top? */
767 return (t != target_stack);
768 }
769
770 /* Remove a target_ops vector from the stack, wherever it may be.
771 Return how many times it was removed (0 or 1). */
772
773 int
774 unpush_target (struct target_ops *t)
775 {
776 struct target_ops **cur;
777 struct target_ops *tmp;
778
779 if (t->to_stratum == dummy_stratum)
780 internal_error (__FILE__, __LINE__,
781 "Attempt to unpush the dummy target");
782
783 /* Look for the specified target. Note that we assume that a target
784 can only occur once in the target stack. */
785
786 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
787 {
788 if ((*cur) == t)
789 break;
790 }
791
792 if ((*cur) == NULL)
793 return 0; /* Didn't find target_ops, quit now */
794
795 /* NOTE: cagney/2003-12-06: In '94 the close call was made
796 unconditional by moving it to before the above check that the
797 target was in the target stack (something about "Change the way
798 pushing and popping of targets work to support target overlays
799 and inheritance"). This doesn't make much sense - only open
800 targets should be closed. */
801 target_close (t, 0);
802
803 /* Unchain the target */
804 tmp = (*cur);
805 (*cur) = (*cur)->beneath;
806 tmp->beneath = NULL;
807
808 update_current_target ();
809
810 return 1;
811 }
812
813 void
814 pop_target (void)
815 {
816 target_close (target_stack, 0); /* Let it clean up */
817 if (unpush_target (target_stack) == 1)
818 return;
819
820 fprintf_unfiltered (gdb_stderr,
821 "pop_target couldn't find target %s\n",
822 current_target.to_shortname);
823 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
824 }
825
826 void
827 pop_all_targets_above (enum strata above_stratum, int quitting)
828 {
829 while ((int) (current_target.to_stratum) > (int) above_stratum)
830 {
831 target_close (target_stack, quitting);
832 if (!unpush_target (target_stack))
833 {
834 fprintf_unfiltered (gdb_stderr,
835 "pop_all_targets couldn't find target %s\n",
836 target_stack->to_shortname);
837 internal_error (__FILE__, __LINE__,
838 _("failed internal consistency check"));
839 break;
840 }
841 }
842 }
843
844 void
845 pop_all_targets (int quitting)
846 {
847 pop_all_targets_above (dummy_stratum, quitting);
848 }
849
850 /* Using the objfile specified in OBJFILE, find the address for the
851 current thread's thread-local storage with offset OFFSET. */
852 CORE_ADDR
853 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
854 {
855 volatile CORE_ADDR addr = 0;
856
857 if (target_get_thread_local_address_p ()
858 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
859 {
860 ptid_t ptid = inferior_ptid;
861 volatile struct gdb_exception ex;
862
863 TRY_CATCH (ex, RETURN_MASK_ALL)
864 {
865 CORE_ADDR lm_addr;
866
867 /* Fetch the load module address for this objfile. */
868 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
869 objfile);
870 /* If it's 0, throw the appropriate exception. */
871 if (lm_addr == 0)
872 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
873 _("TLS load module not found"));
874
875 addr = target_get_thread_local_address (ptid, lm_addr, offset);
876 }
877 /* If an error occurred, print TLS related messages here. Otherwise,
878 throw the error to some higher catcher. */
879 if (ex.reason < 0)
880 {
881 int objfile_is_library = (objfile->flags & OBJF_SHARED);
882
883 switch (ex.error)
884 {
885 case TLS_NO_LIBRARY_SUPPORT_ERROR:
886 error (_("Cannot find thread-local variables in this thread library."));
887 break;
888 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
889 if (objfile_is_library)
890 error (_("Cannot find shared library `%s' in dynamic"
891 " linker's load module list"), objfile->name);
892 else
893 error (_("Cannot find executable file `%s' in dynamic"
894 " linker's load module list"), objfile->name);
895 break;
896 case TLS_NOT_ALLOCATED_YET_ERROR:
897 if (objfile_is_library)
898 error (_("The inferior has not yet allocated storage for"
899 " thread-local variables in\n"
900 "the shared library `%s'\n"
901 "for %s"),
902 objfile->name, target_pid_to_str (ptid));
903 else
904 error (_("The inferior has not yet allocated storage for"
905 " thread-local variables in\n"
906 "the executable `%s'\n"
907 "for %s"),
908 objfile->name, target_pid_to_str (ptid));
909 break;
910 case TLS_GENERIC_ERROR:
911 if (objfile_is_library)
912 error (_("Cannot find thread-local storage for %s, "
913 "shared library %s:\n%s"),
914 target_pid_to_str (ptid),
915 objfile->name, ex.message);
916 else
917 error (_("Cannot find thread-local storage for %s, "
918 "executable file %s:\n%s"),
919 target_pid_to_str (ptid),
920 objfile->name, ex.message);
921 break;
922 default:
923 throw_exception (ex);
924 break;
925 }
926 }
927 }
928 /* It wouldn't be wrong here to try a gdbarch method, too; finding
929 TLS is an ABI-specific thing. But we don't do that yet. */
930 else
931 error (_("Cannot find thread-local variables on this target"));
932
933 return addr;
934 }
935
936 #undef MIN
937 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
938
939 /* target_read_string -- read a null terminated string, up to LEN bytes,
940 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
941 Set *STRING to a pointer to malloc'd memory containing the data; the caller
942 is responsible for freeing it. Return the number of bytes successfully
943 read. */
944
945 int
946 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
947 {
948 int tlen, origlen, offset, i;
949 gdb_byte buf[4];
950 int errcode = 0;
951 char *buffer;
952 int buffer_allocated;
953 char *bufptr;
954 unsigned int nbytes_read = 0;
955
956 gdb_assert (string);
957
958 /* Small for testing. */
959 buffer_allocated = 4;
960 buffer = xmalloc (buffer_allocated);
961 bufptr = buffer;
962
963 origlen = len;
964
965 while (len > 0)
966 {
967 tlen = MIN (len, 4 - (memaddr & 3));
968 offset = memaddr & 3;
969
970 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
971 if (errcode != 0)
972 {
973 /* The transfer request might have crossed the boundary to an
974 unallocated region of memory. Retry the transfer, requesting
975 a single byte. */
976 tlen = 1;
977 offset = 0;
978 errcode = target_read_memory (memaddr, buf, 1);
979 if (errcode != 0)
980 goto done;
981 }
982
983 if (bufptr - buffer + tlen > buffer_allocated)
984 {
985 unsigned int bytes;
986 bytes = bufptr - buffer;
987 buffer_allocated *= 2;
988 buffer = xrealloc (buffer, buffer_allocated);
989 bufptr = buffer + bytes;
990 }
991
992 for (i = 0; i < tlen; i++)
993 {
994 *bufptr++ = buf[i + offset];
995 if (buf[i + offset] == '\000')
996 {
997 nbytes_read += i + 1;
998 goto done;
999 }
1000 }
1001
1002 memaddr += tlen;
1003 len -= tlen;
1004 nbytes_read += tlen;
1005 }
1006 done:
1007 *string = buffer;
1008 if (errnop != NULL)
1009 *errnop = errcode;
1010 return nbytes_read;
1011 }
1012
1013 /* Find a section containing ADDR. */
1014 struct section_table *
1015 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1016 {
1017 struct section_table *secp;
1018 for (secp = target->to_sections;
1019 secp < target->to_sections_end;
1020 secp++)
1021 {
1022 if (addr >= secp->addr && addr < secp->endaddr)
1023 return secp;
1024 }
1025 return NULL;
1026 }
1027
1028 /* Perform a partial memory transfer. The arguments and return
1029 value are just as for target_xfer_partial. */
1030
1031 static LONGEST
1032 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1033 ULONGEST memaddr, LONGEST len)
1034 {
1035 LONGEST res;
1036 int reg_len;
1037 struct mem_region *region;
1038
1039 /* Zero length requests are ok and require no work. */
1040 if (len == 0)
1041 return 0;
1042
1043 /* Try the executable file, if "trust-readonly-sections" is set. */
1044 if (readbuf != NULL && trust_readonly)
1045 {
1046 struct section_table *secp;
1047
1048 secp = target_section_by_addr (ops, memaddr);
1049 if (secp != NULL
1050 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1051 & SEC_READONLY))
1052 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1053 }
1054
1055 /* Likewise for accesses to unmapped overlay sections. */
1056 if (readbuf != NULL && overlay_debugging)
1057 {
1058 struct obj_section *section = find_pc_overlay (memaddr);
1059 if (pc_in_unmapped_range (memaddr, section))
1060 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1061 }
1062
1063 /* Try GDB's internal data cache. */
1064 region = lookup_mem_region (memaddr);
1065 /* region->hi == 0 means there's no upper bound. */
1066 if (memaddr + len < region->hi || region->hi == 0)
1067 reg_len = len;
1068 else
1069 reg_len = region->hi - memaddr;
1070
1071 switch (region->attrib.mode)
1072 {
1073 case MEM_RO:
1074 if (writebuf != NULL)
1075 return -1;
1076 break;
1077
1078 case MEM_WO:
1079 if (readbuf != NULL)
1080 return -1;
1081 break;
1082
1083 case MEM_FLASH:
1084 /* We only support writing to flash during "load" for now. */
1085 if (writebuf != NULL)
1086 error (_("Writing to flash memory forbidden in this context"));
1087 break;
1088
1089 case MEM_NONE:
1090 return -1;
1091 }
1092
1093 if (region->attrib.cache)
1094 {
1095 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1096 memory request will start back at current_target. */
1097 if (readbuf != NULL)
1098 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1099 reg_len, 0);
1100 else
1101 /* FIXME drow/2006-08-09: If we're going to preserve const
1102 correctness dcache_xfer_memory should take readbuf and
1103 writebuf. */
1104 res = dcache_xfer_memory (target_dcache, memaddr,
1105 (void *) writebuf,
1106 reg_len, 1);
1107 if (res <= 0)
1108 return -1;
1109 else
1110 {
1111 if (readbuf && !show_memory_breakpoints)
1112 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1113 return res;
1114 }
1115 }
1116
1117 /* If none of those methods found the memory we wanted, fall back
1118 to a target partial transfer. Normally a single call to
1119 to_xfer_partial is enough; if it doesn't recognize an object
1120 it will call the to_xfer_partial of the next target down.
1121 But for memory this won't do. Memory is the only target
1122 object which can be read from more than one valid target.
1123 A core file, for instance, could have some of memory but
1124 delegate other bits to the target below it. So, we must
1125 manually try all targets. */
1126
1127 do
1128 {
1129 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1130 readbuf, writebuf, memaddr, reg_len);
1131 if (res > 0)
1132 break;
1133
1134 /* We want to continue past core files to executables, but not
1135 past a running target's memory. */
1136 if (ops->to_has_all_memory)
1137 break;
1138
1139 ops = ops->beneath;
1140 }
1141 while (ops != NULL);
1142
1143 if (readbuf && !show_memory_breakpoints)
1144 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1145
1146 /* If we still haven't got anything, return the last error. We
1147 give up. */
1148 return res;
1149 }
1150
1151 static void
1152 restore_show_memory_breakpoints (void *arg)
1153 {
1154 show_memory_breakpoints = (uintptr_t) arg;
1155 }
1156
1157 struct cleanup *
1158 make_show_memory_breakpoints_cleanup (int show)
1159 {
1160 int current = show_memory_breakpoints;
1161 show_memory_breakpoints = show;
1162
1163 return make_cleanup (restore_show_memory_breakpoints,
1164 (void *) (uintptr_t) current);
1165 }
1166
1167 static LONGEST
1168 target_xfer_partial (struct target_ops *ops,
1169 enum target_object object, const char *annex,
1170 void *readbuf, const void *writebuf,
1171 ULONGEST offset, LONGEST len)
1172 {
1173 LONGEST retval;
1174
1175 gdb_assert (ops->to_xfer_partial != NULL);
1176
1177 /* If this is a memory transfer, let the memory-specific code
1178 have a look at it instead. Memory transfers are more
1179 complicated. */
1180 if (object == TARGET_OBJECT_MEMORY)
1181 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1182 else
1183 {
1184 enum target_object raw_object = object;
1185
1186 /* If this is a raw memory transfer, request the normal
1187 memory object from other layers. */
1188 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1189 raw_object = TARGET_OBJECT_MEMORY;
1190
1191 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1192 writebuf, offset, len);
1193 }
1194
1195 if (targetdebug)
1196 {
1197 const unsigned char *myaddr = NULL;
1198
1199 fprintf_unfiltered (gdb_stdlog,
1200 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1201 ops->to_shortname,
1202 (int) object,
1203 (annex ? annex : "(null)"),
1204 host_address_to_string (readbuf),
1205 host_address_to_string (writebuf),
1206 core_addr_to_string_nz (offset),
1207 plongest (len), plongest (retval));
1208
1209 if (readbuf)
1210 myaddr = readbuf;
1211 if (writebuf)
1212 myaddr = writebuf;
1213 if (retval > 0 && myaddr != NULL)
1214 {
1215 int i;
1216
1217 fputs_unfiltered (", bytes =", gdb_stdlog);
1218 for (i = 0; i < retval; i++)
1219 {
1220 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1221 {
1222 if (targetdebug < 2 && i > 0)
1223 {
1224 fprintf_unfiltered (gdb_stdlog, " ...");
1225 break;
1226 }
1227 fprintf_unfiltered (gdb_stdlog, "\n");
1228 }
1229
1230 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1231 }
1232 }
1233
1234 fputc_unfiltered ('\n', gdb_stdlog);
1235 }
1236 return retval;
1237 }
1238
1239 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1240 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1241 if any error occurs.
1242
1243 If an error occurs, no guarantee is made about the contents of the data at
1244 MYADDR. In particular, the caller should not depend upon partial reads
1245 filling the buffer with good data. There is no way for the caller to know
1246 how much good data might have been transfered anyway. Callers that can
1247 deal with partial reads should call target_read (which will retry until
1248 it makes no progress, and then return how much was transferred). */
1249
1250 int
1251 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1252 {
1253 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1254 myaddr, memaddr, len) == len)
1255 return 0;
1256 else
1257 return EIO;
1258 }
1259
1260 int
1261 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1262 {
1263 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1264 myaddr, memaddr, len) == len)
1265 return 0;
1266 else
1267 return EIO;
1268 }
1269
1270 /* Fetch the target's memory map. */
1271
1272 VEC(mem_region_s) *
1273 target_memory_map (void)
1274 {
1275 VEC(mem_region_s) *result;
1276 struct mem_region *last_one, *this_one;
1277 int ix;
1278 struct target_ops *t;
1279
1280 if (targetdebug)
1281 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1282
1283 for (t = current_target.beneath; t != NULL; t = t->beneath)
1284 if (t->to_memory_map != NULL)
1285 break;
1286
1287 if (t == NULL)
1288 return NULL;
1289
1290 result = t->to_memory_map (t);
1291 if (result == NULL)
1292 return NULL;
1293
1294 qsort (VEC_address (mem_region_s, result),
1295 VEC_length (mem_region_s, result),
1296 sizeof (struct mem_region), mem_region_cmp);
1297
1298 /* Check that regions do not overlap. Simultaneously assign
1299 a numbering for the "mem" commands to use to refer to
1300 each region. */
1301 last_one = NULL;
1302 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1303 {
1304 this_one->number = ix;
1305
1306 if (last_one && last_one->hi > this_one->lo)
1307 {
1308 warning (_("Overlapping regions in memory map: ignoring"));
1309 VEC_free (mem_region_s, result);
1310 return NULL;
1311 }
1312 last_one = this_one;
1313 }
1314
1315 return result;
1316 }
1317
1318 void
1319 target_flash_erase (ULONGEST address, LONGEST length)
1320 {
1321 struct target_ops *t;
1322
1323 for (t = current_target.beneath; t != NULL; t = t->beneath)
1324 if (t->to_flash_erase != NULL)
1325 {
1326 if (targetdebug)
1327 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1328 paddr (address), phex (length, 0));
1329 t->to_flash_erase (t, address, length);
1330 return;
1331 }
1332
1333 tcomplain ();
1334 }
1335
1336 void
1337 target_flash_done (void)
1338 {
1339 struct target_ops *t;
1340
1341 for (t = current_target.beneath; t != NULL; t = t->beneath)
1342 if (t->to_flash_done != NULL)
1343 {
1344 if (targetdebug)
1345 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1346 t->to_flash_done (t);
1347 return;
1348 }
1349
1350 tcomplain ();
1351 }
1352
1353 static void
1354 show_trust_readonly (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356 {
1357 fprintf_filtered (file, _("\
1358 Mode for reading from readonly sections is %s.\n"),
1359 value);
1360 }
1361
1362 /* More generic transfers. */
1363
1364 static LONGEST
1365 default_xfer_partial (struct target_ops *ops, enum target_object object,
1366 const char *annex, gdb_byte *readbuf,
1367 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1368 {
1369 if (object == TARGET_OBJECT_MEMORY
1370 && ops->deprecated_xfer_memory != NULL)
1371 /* If available, fall back to the target's
1372 "deprecated_xfer_memory" method. */
1373 {
1374 int xfered = -1;
1375 errno = 0;
1376 if (writebuf != NULL)
1377 {
1378 void *buffer = xmalloc (len);
1379 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1380 memcpy (buffer, writebuf, len);
1381 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1382 1/*write*/, NULL, ops);
1383 do_cleanups (cleanup);
1384 }
1385 if (readbuf != NULL)
1386 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1387 0/*read*/, NULL, ops);
1388 if (xfered > 0)
1389 return xfered;
1390 else if (xfered == 0 && errno == 0)
1391 /* "deprecated_xfer_memory" uses 0, cross checked against
1392 ERRNO as one indication of an error. */
1393 return 0;
1394 else
1395 return -1;
1396 }
1397 else if (ops->beneath != NULL)
1398 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1399 readbuf, writebuf, offset, len);
1400 else
1401 return -1;
1402 }
1403
1404 /* The xfer_partial handler for the topmost target. Unlike the default,
1405 it does not need to handle memory specially; it just passes all
1406 requests down the stack. */
1407
1408 static LONGEST
1409 current_xfer_partial (struct target_ops *ops, enum target_object object,
1410 const char *annex, gdb_byte *readbuf,
1411 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1412 {
1413 if (ops->beneath != NULL)
1414 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1415 readbuf, writebuf, offset, len);
1416 else
1417 return -1;
1418 }
1419
1420 /* Target vector read/write partial wrapper functions.
1421
1422 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1423 (inbuf, outbuf)", instead of separate read/write methods, make life
1424 easier. */
1425
1426 static LONGEST
1427 target_read_partial (struct target_ops *ops,
1428 enum target_object object,
1429 const char *annex, gdb_byte *buf,
1430 ULONGEST offset, LONGEST len)
1431 {
1432 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1433 }
1434
1435 static LONGEST
1436 target_write_partial (struct target_ops *ops,
1437 enum target_object object,
1438 const char *annex, const gdb_byte *buf,
1439 ULONGEST offset, LONGEST len)
1440 {
1441 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1442 }
1443
1444 /* Wrappers to perform the full transfer. */
1445 LONGEST
1446 target_read (struct target_ops *ops,
1447 enum target_object object,
1448 const char *annex, gdb_byte *buf,
1449 ULONGEST offset, LONGEST len)
1450 {
1451 LONGEST xfered = 0;
1452 while (xfered < len)
1453 {
1454 LONGEST xfer = target_read_partial (ops, object, annex,
1455 (gdb_byte *) buf + xfered,
1456 offset + xfered, len - xfered);
1457 /* Call an observer, notifying them of the xfer progress? */
1458 if (xfer == 0)
1459 return xfered;
1460 if (xfer < 0)
1461 return -1;
1462 xfered += xfer;
1463 QUIT;
1464 }
1465 return len;
1466 }
1467
1468 LONGEST
1469 target_read_until_error (struct target_ops *ops,
1470 enum target_object object,
1471 const char *annex, gdb_byte *buf,
1472 ULONGEST offset, LONGEST len)
1473 {
1474 LONGEST xfered = 0;
1475 while (xfered < len)
1476 {
1477 LONGEST xfer = target_read_partial (ops, object, annex,
1478 (gdb_byte *) buf + xfered,
1479 offset + xfered, len - xfered);
1480 /* Call an observer, notifying them of the xfer progress? */
1481 if (xfer == 0)
1482 return xfered;
1483 if (xfer < 0)
1484 {
1485 /* We've got an error. Try to read in smaller blocks. */
1486 ULONGEST start = offset + xfered;
1487 ULONGEST remaining = len - xfered;
1488 ULONGEST half;
1489
1490 /* If an attempt was made to read a random memory address,
1491 it's likely that the very first byte is not accessible.
1492 Try reading the first byte, to avoid doing log N tries
1493 below. */
1494 xfer = target_read_partial (ops, object, annex,
1495 (gdb_byte *) buf + xfered, start, 1);
1496 if (xfer <= 0)
1497 return xfered;
1498 start += 1;
1499 remaining -= 1;
1500 half = remaining/2;
1501
1502 while (half > 0)
1503 {
1504 xfer = target_read_partial (ops, object, annex,
1505 (gdb_byte *) buf + xfered,
1506 start, half);
1507 if (xfer == 0)
1508 return xfered;
1509 if (xfer < 0)
1510 {
1511 remaining = half;
1512 }
1513 else
1514 {
1515 /* We have successfully read the first half. So, the
1516 error must be in the second half. Adjust start and
1517 remaining to point at the second half. */
1518 xfered += xfer;
1519 start += xfer;
1520 remaining -= xfer;
1521 }
1522 half = remaining/2;
1523 }
1524
1525 return xfered;
1526 }
1527 xfered += xfer;
1528 QUIT;
1529 }
1530 return len;
1531 }
1532
1533
1534 /* An alternative to target_write with progress callbacks. */
1535
1536 LONGEST
1537 target_write_with_progress (struct target_ops *ops,
1538 enum target_object object,
1539 const char *annex, const gdb_byte *buf,
1540 ULONGEST offset, LONGEST len,
1541 void (*progress) (ULONGEST, void *), void *baton)
1542 {
1543 LONGEST xfered = 0;
1544
1545 /* Give the progress callback a chance to set up. */
1546 if (progress)
1547 (*progress) (0, baton);
1548
1549 while (xfered < len)
1550 {
1551 LONGEST xfer = target_write_partial (ops, object, annex,
1552 (gdb_byte *) buf + xfered,
1553 offset + xfered, len - xfered);
1554
1555 if (xfer == 0)
1556 return xfered;
1557 if (xfer < 0)
1558 return -1;
1559
1560 if (progress)
1561 (*progress) (xfer, baton);
1562
1563 xfered += xfer;
1564 QUIT;
1565 }
1566 return len;
1567 }
1568
1569 LONGEST
1570 target_write (struct target_ops *ops,
1571 enum target_object object,
1572 const char *annex, const gdb_byte *buf,
1573 ULONGEST offset, LONGEST len)
1574 {
1575 return target_write_with_progress (ops, object, annex, buf, offset, len,
1576 NULL, NULL);
1577 }
1578
1579 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1580 the size of the transferred data. PADDING additional bytes are
1581 available in *BUF_P. This is a helper function for
1582 target_read_alloc; see the declaration of that function for more
1583 information. */
1584
1585 static LONGEST
1586 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1587 const char *annex, gdb_byte **buf_p, int padding)
1588 {
1589 size_t buf_alloc, buf_pos;
1590 gdb_byte *buf;
1591 LONGEST n;
1592
1593 /* This function does not have a length parameter; it reads the
1594 entire OBJECT). Also, it doesn't support objects fetched partly
1595 from one target and partly from another (in a different stratum,
1596 e.g. a core file and an executable). Both reasons make it
1597 unsuitable for reading memory. */
1598 gdb_assert (object != TARGET_OBJECT_MEMORY);
1599
1600 /* Start by reading up to 4K at a time. The target will throttle
1601 this number down if necessary. */
1602 buf_alloc = 4096;
1603 buf = xmalloc (buf_alloc);
1604 buf_pos = 0;
1605 while (1)
1606 {
1607 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1608 buf_pos, buf_alloc - buf_pos - padding);
1609 if (n < 0)
1610 {
1611 /* An error occurred. */
1612 xfree (buf);
1613 return -1;
1614 }
1615 else if (n == 0)
1616 {
1617 /* Read all there was. */
1618 if (buf_pos == 0)
1619 xfree (buf);
1620 else
1621 *buf_p = buf;
1622 return buf_pos;
1623 }
1624
1625 buf_pos += n;
1626
1627 /* If the buffer is filling up, expand it. */
1628 if (buf_alloc < buf_pos * 2)
1629 {
1630 buf_alloc *= 2;
1631 buf = xrealloc (buf, buf_alloc);
1632 }
1633
1634 QUIT;
1635 }
1636 }
1637
1638 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1639 the size of the transferred data. See the declaration in "target.h"
1640 function for more information about the return value. */
1641
1642 LONGEST
1643 target_read_alloc (struct target_ops *ops, enum target_object object,
1644 const char *annex, gdb_byte **buf_p)
1645 {
1646 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1647 }
1648
1649 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1650 returned as a string, allocated using xmalloc. If an error occurs
1651 or the transfer is unsupported, NULL is returned. Empty objects
1652 are returned as allocated but empty strings. A warning is issued
1653 if the result contains any embedded NUL bytes. */
1654
1655 char *
1656 target_read_stralloc (struct target_ops *ops, enum target_object object,
1657 const char *annex)
1658 {
1659 gdb_byte *buffer;
1660 LONGEST transferred;
1661
1662 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1663
1664 if (transferred < 0)
1665 return NULL;
1666
1667 if (transferred == 0)
1668 return xstrdup ("");
1669
1670 buffer[transferred] = 0;
1671 if (strlen (buffer) < transferred)
1672 warning (_("target object %d, annex %s, "
1673 "contained unexpected null characters"),
1674 (int) object, annex ? annex : "(none)");
1675
1676 return (char *) buffer;
1677 }
1678
1679 /* Memory transfer methods. */
1680
1681 void
1682 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1683 LONGEST len)
1684 {
1685 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1686 != len)
1687 memory_error (EIO, addr);
1688 }
1689
1690 ULONGEST
1691 get_target_memory_unsigned (struct target_ops *ops,
1692 CORE_ADDR addr, int len)
1693 {
1694 gdb_byte buf[sizeof (ULONGEST)];
1695
1696 gdb_assert (len <= sizeof (buf));
1697 get_target_memory (ops, addr, buf, len);
1698 return extract_unsigned_integer (buf, len);
1699 }
1700
1701 static void
1702 target_info (char *args, int from_tty)
1703 {
1704 struct target_ops *t;
1705 int has_all_mem = 0;
1706
1707 if (symfile_objfile != NULL)
1708 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1709
1710 for (t = target_stack; t != NULL; t = t->beneath)
1711 {
1712 if (!t->to_has_memory)
1713 continue;
1714
1715 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1716 continue;
1717 if (has_all_mem)
1718 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1719 printf_unfiltered ("%s:\n", t->to_longname);
1720 (t->to_files_info) (t);
1721 has_all_mem = t->to_has_all_memory;
1722 }
1723 }
1724
1725 /* This function is called before any new inferior is created, e.g.
1726 by running a program, attaching, or connecting to a target.
1727 It cleans up any state from previous invocations which might
1728 change between runs. This is a subset of what target_preopen
1729 resets (things which might change between targets). */
1730
1731 void
1732 target_pre_inferior (int from_tty)
1733 {
1734 /* Clear out solib state. Otherwise the solib state of the previous
1735 inferior might have survived and is entirely wrong for the new
1736 target. This has been observed on GNU/Linux using glibc 2.3. How
1737 to reproduce:
1738
1739 bash$ ./foo&
1740 [1] 4711
1741 bash$ ./foo&
1742 [1] 4712
1743 bash$ gdb ./foo
1744 [...]
1745 (gdb) attach 4711
1746 (gdb) detach
1747 (gdb) attach 4712
1748 Cannot access memory at address 0xdeadbeef
1749 */
1750
1751 /* In some OSs, the shared library list is the same/global/shared
1752 across inferiors. If code is shared between processes, so are
1753 memory regions and features. */
1754 if (!gdbarch_has_global_solist (target_gdbarch))
1755 {
1756 no_shared_libraries (NULL, from_tty);
1757
1758 invalidate_target_mem_regions ();
1759
1760 target_clear_description ();
1761 }
1762 }
1763
1764 /* This is to be called by the open routine before it does
1765 anything. */
1766
1767 void
1768 target_preopen (int from_tty)
1769 {
1770 dont_repeat ();
1771
1772 if (target_has_execution)
1773 {
1774 if (!from_tty
1775 || query (_("A program is being debugged already. Kill it? ")))
1776 target_kill ();
1777 else
1778 error (_("Program not killed."));
1779 }
1780
1781 /* Calling target_kill may remove the target from the stack. But if
1782 it doesn't (which seems like a win for UDI), remove it now. */
1783 /* Leave the exec target, though. The user may be switching from a
1784 live process to a core of the same program. */
1785 pop_all_targets_above (file_stratum, 0);
1786
1787 target_pre_inferior (from_tty);
1788 }
1789
1790 /* Detach a target after doing deferred register stores. */
1791
1792 void
1793 target_detach (char *args, int from_tty)
1794 {
1795 struct target_ops* t;
1796
1797 if (gdbarch_has_global_solist (target_gdbarch))
1798 /* Don't remove global breakpoints here. They're removed on
1799 disconnection from the target. */
1800 ;
1801 else
1802 /* If we're in breakpoints-always-inserted mode, have to remove
1803 them before detaching. */
1804 remove_breakpoints ();
1805
1806 for (t = current_target.beneath; t != NULL; t = t->beneath)
1807 {
1808 if (t->to_detach != NULL)
1809 {
1810 t->to_detach (t, args, from_tty);
1811 if (targetdebug)
1812 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
1813 args, from_tty);
1814 return;
1815 }
1816 }
1817
1818 internal_error (__FILE__, __LINE__, "could not find a target to detach");
1819 }
1820
1821 void
1822 target_disconnect (char *args, int from_tty)
1823 {
1824 struct target_ops *t;
1825
1826 /* If we're in breakpoints-always-inserted mode or if breakpoints
1827 are global across processes, we have to remove them before
1828 disconnecting. */
1829 remove_breakpoints ();
1830
1831 for (t = current_target.beneath; t != NULL; t = t->beneath)
1832 if (t->to_disconnect != NULL)
1833 {
1834 if (targetdebug)
1835 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1836 args, from_tty);
1837 t->to_disconnect (t, args, from_tty);
1838 return;
1839 }
1840
1841 tcomplain ();
1842 }
1843
1844 void
1845 target_resume (ptid_t ptid, int step, enum target_signal signal)
1846 {
1847 dcache_invalidate (target_dcache);
1848 (*current_target.to_resume) (ptid, step, signal);
1849 set_executing (ptid, 1);
1850 set_running (ptid, 1);
1851 }
1852 /* Look through the list of possible targets for a target that can
1853 follow forks. */
1854
1855 int
1856 target_follow_fork (int follow_child)
1857 {
1858 struct target_ops *t;
1859
1860 for (t = current_target.beneath; t != NULL; t = t->beneath)
1861 {
1862 if (t->to_follow_fork != NULL)
1863 {
1864 int retval = t->to_follow_fork (t, follow_child);
1865 if (targetdebug)
1866 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1867 follow_child, retval);
1868 return retval;
1869 }
1870 }
1871
1872 /* Some target returned a fork event, but did not know how to follow it. */
1873 internal_error (__FILE__, __LINE__,
1874 "could not find a target to follow fork");
1875 }
1876
1877 void
1878 target_mourn_inferior (void)
1879 {
1880 struct target_ops *t;
1881 for (t = current_target.beneath; t != NULL; t = t->beneath)
1882 {
1883 if (t->to_mourn_inferior != NULL)
1884 {
1885 t->to_mourn_inferior (t);
1886 if (targetdebug)
1887 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
1888 return;
1889 }
1890 }
1891
1892 internal_error (__FILE__, __LINE__,
1893 "could not find a target to follow mourn inferiour");
1894 }
1895
1896 /* Look for a target which can describe architectural features, starting
1897 from TARGET. If we find one, return its description. */
1898
1899 const struct target_desc *
1900 target_read_description (struct target_ops *target)
1901 {
1902 struct target_ops *t;
1903
1904 for (t = target; t != NULL; t = t->beneath)
1905 if (t->to_read_description != NULL)
1906 {
1907 const struct target_desc *tdesc;
1908
1909 tdesc = t->to_read_description (t);
1910 if (tdesc)
1911 return tdesc;
1912 }
1913
1914 return NULL;
1915 }
1916
1917 /* The default implementation of to_search_memory.
1918 This implements a basic search of memory, reading target memory and
1919 performing the search here (as opposed to performing the search in on the
1920 target side with, for example, gdbserver). */
1921
1922 int
1923 simple_search_memory (struct target_ops *ops,
1924 CORE_ADDR start_addr, ULONGEST search_space_len,
1925 const gdb_byte *pattern, ULONGEST pattern_len,
1926 CORE_ADDR *found_addrp)
1927 {
1928 /* NOTE: also defined in find.c testcase. */
1929 #define SEARCH_CHUNK_SIZE 16000
1930 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1931 /* Buffer to hold memory contents for searching. */
1932 gdb_byte *search_buf;
1933 unsigned search_buf_size;
1934 struct cleanup *old_cleanups;
1935
1936 search_buf_size = chunk_size + pattern_len - 1;
1937
1938 /* No point in trying to allocate a buffer larger than the search space. */
1939 if (search_space_len < search_buf_size)
1940 search_buf_size = search_space_len;
1941
1942 search_buf = malloc (search_buf_size);
1943 if (search_buf == NULL)
1944 error (_("Unable to allocate memory to perform the search."));
1945 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1946
1947 /* Prime the search buffer. */
1948
1949 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1950 search_buf, start_addr, search_buf_size) != search_buf_size)
1951 {
1952 warning (_("Unable to access target memory at %s, halting search."),
1953 hex_string (start_addr));
1954 do_cleanups (old_cleanups);
1955 return -1;
1956 }
1957
1958 /* Perform the search.
1959
1960 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1961 When we've scanned N bytes we copy the trailing bytes to the start and
1962 read in another N bytes. */
1963
1964 while (search_space_len >= pattern_len)
1965 {
1966 gdb_byte *found_ptr;
1967 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1968
1969 found_ptr = memmem (search_buf, nr_search_bytes,
1970 pattern, pattern_len);
1971
1972 if (found_ptr != NULL)
1973 {
1974 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1975 *found_addrp = found_addr;
1976 do_cleanups (old_cleanups);
1977 return 1;
1978 }
1979
1980 /* Not found in this chunk, skip to next chunk. */
1981
1982 /* Don't let search_space_len wrap here, it's unsigned. */
1983 if (search_space_len >= chunk_size)
1984 search_space_len -= chunk_size;
1985 else
1986 search_space_len = 0;
1987
1988 if (search_space_len >= pattern_len)
1989 {
1990 unsigned keep_len = search_buf_size - chunk_size;
1991 CORE_ADDR read_addr = start_addr + keep_len;
1992 int nr_to_read;
1993
1994 /* Copy the trailing part of the previous iteration to the front
1995 of the buffer for the next iteration. */
1996 gdb_assert (keep_len == pattern_len - 1);
1997 memcpy (search_buf, search_buf + chunk_size, keep_len);
1998
1999 nr_to_read = min (search_space_len - keep_len, chunk_size);
2000
2001 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2002 search_buf + keep_len, read_addr,
2003 nr_to_read) != nr_to_read)
2004 {
2005 warning (_("Unable to access target memory at %s, halting search."),
2006 hex_string (read_addr));
2007 do_cleanups (old_cleanups);
2008 return -1;
2009 }
2010
2011 start_addr += chunk_size;
2012 }
2013 }
2014
2015 /* Not found. */
2016
2017 do_cleanups (old_cleanups);
2018 return 0;
2019 }
2020
2021 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2022 sequence of bytes in PATTERN with length PATTERN_LEN.
2023
2024 The result is 1 if found, 0 if not found, and -1 if there was an error
2025 requiring halting of the search (e.g. memory read error).
2026 If the pattern is found the address is recorded in FOUND_ADDRP. */
2027
2028 int
2029 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2030 const gdb_byte *pattern, ULONGEST pattern_len,
2031 CORE_ADDR *found_addrp)
2032 {
2033 struct target_ops *t;
2034 int found;
2035
2036 /* We don't use INHERIT to set current_target.to_search_memory,
2037 so we have to scan the target stack and handle targetdebug
2038 ourselves. */
2039
2040 if (targetdebug)
2041 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2042 hex_string (start_addr));
2043
2044 for (t = current_target.beneath; t != NULL; t = t->beneath)
2045 if (t->to_search_memory != NULL)
2046 break;
2047
2048 if (t != NULL)
2049 {
2050 found = t->to_search_memory (t, start_addr, search_space_len,
2051 pattern, pattern_len, found_addrp);
2052 }
2053 else
2054 {
2055 /* If a special version of to_search_memory isn't available, use the
2056 simple version. */
2057 found = simple_search_memory (&current_target,
2058 start_addr, search_space_len,
2059 pattern, pattern_len, found_addrp);
2060 }
2061
2062 if (targetdebug)
2063 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2064
2065 return found;
2066 }
2067
2068 /* Look through the currently pushed targets. If none of them will
2069 be able to restart the currently running process, issue an error
2070 message. */
2071
2072 void
2073 target_require_runnable (void)
2074 {
2075 struct target_ops *t;
2076
2077 for (t = target_stack; t != NULL; t = t->beneath)
2078 {
2079 /* If this target knows how to create a new program, then
2080 assume we will still be able to after killing the current
2081 one. Either killing and mourning will not pop T, or else
2082 find_default_run_target will find it again. */
2083 if (t->to_create_inferior != NULL)
2084 return;
2085
2086 /* Do not worry about thread_stratum targets that can not
2087 create inferiors. Assume they will be pushed again if
2088 necessary, and continue to the process_stratum. */
2089 if (t->to_stratum == thread_stratum)
2090 continue;
2091
2092 error (_("\
2093 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2094 t->to_shortname);
2095 }
2096
2097 /* This function is only called if the target is running. In that
2098 case there should have been a process_stratum target and it
2099 should either know how to create inferiors, or not... */
2100 internal_error (__FILE__, __LINE__, "No targets found");
2101 }
2102
2103 /* Look through the list of possible targets for a target that can
2104 execute a run or attach command without any other data. This is
2105 used to locate the default process stratum.
2106
2107 If DO_MESG is not NULL, the result is always valid (error() is
2108 called for errors); else, return NULL on error. */
2109
2110 static struct target_ops *
2111 find_default_run_target (char *do_mesg)
2112 {
2113 struct target_ops **t;
2114 struct target_ops *runable = NULL;
2115 int count;
2116
2117 count = 0;
2118
2119 for (t = target_structs; t < target_structs + target_struct_size;
2120 ++t)
2121 {
2122 if ((*t)->to_can_run && target_can_run (*t))
2123 {
2124 runable = *t;
2125 ++count;
2126 }
2127 }
2128
2129 if (count != 1)
2130 {
2131 if (do_mesg)
2132 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2133 else
2134 return NULL;
2135 }
2136
2137 return runable;
2138 }
2139
2140 void
2141 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2142 {
2143 struct target_ops *t;
2144
2145 t = find_default_run_target ("attach");
2146 (t->to_attach) (t, args, from_tty);
2147 return;
2148 }
2149
2150 void
2151 find_default_create_inferior (struct target_ops *ops,
2152 char *exec_file, char *allargs, char **env,
2153 int from_tty)
2154 {
2155 struct target_ops *t;
2156
2157 t = find_default_run_target ("run");
2158 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2159 return;
2160 }
2161
2162 int
2163 find_default_can_async_p (void)
2164 {
2165 struct target_ops *t;
2166
2167 /* This may be called before the target is pushed on the stack;
2168 look for the default process stratum. If there's none, gdb isn't
2169 configured with a native debugger, and target remote isn't
2170 connected yet. */
2171 t = find_default_run_target (NULL);
2172 if (t && t->to_can_async_p)
2173 return (t->to_can_async_p) ();
2174 return 0;
2175 }
2176
2177 int
2178 find_default_is_async_p (void)
2179 {
2180 struct target_ops *t;
2181
2182 /* This may be called before the target is pushed on the stack;
2183 look for the default process stratum. If there's none, gdb isn't
2184 configured with a native debugger, and target remote isn't
2185 connected yet. */
2186 t = find_default_run_target (NULL);
2187 if (t && t->to_is_async_p)
2188 return (t->to_is_async_p) ();
2189 return 0;
2190 }
2191
2192 int
2193 find_default_supports_non_stop (void)
2194 {
2195 struct target_ops *t;
2196
2197 t = find_default_run_target (NULL);
2198 if (t && t->to_supports_non_stop)
2199 return (t->to_supports_non_stop) ();
2200 return 0;
2201 }
2202
2203 int
2204 target_supports_non_stop ()
2205 {
2206 struct target_ops *t;
2207 for (t = &current_target; t != NULL; t = t->beneath)
2208 if (t->to_supports_non_stop)
2209 return t->to_supports_non_stop ();
2210
2211 return 0;
2212 }
2213
2214
2215 char *
2216 target_get_osdata (const char *type)
2217 {
2218 char *document;
2219 struct target_ops *t;
2220
2221 /* If we're already connected to something that can get us OS
2222 related data, use it. Otherwise, try using the native
2223 target. */
2224 if (current_target.to_stratum >= process_stratum)
2225 t = current_target.beneath;
2226 else
2227 t = find_default_run_target ("get OS data");
2228
2229 if (!t)
2230 return NULL;
2231
2232 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2233 }
2234
2235 static int
2236 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2237 {
2238 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2239 }
2240
2241 static int
2242 default_watchpoint_addr_within_range (struct target_ops *target,
2243 CORE_ADDR addr,
2244 CORE_ADDR start, int length)
2245 {
2246 return addr >= start && addr < start + length;
2247 }
2248
2249 static int
2250 return_zero (void)
2251 {
2252 return 0;
2253 }
2254
2255 static int
2256 return_one (void)
2257 {
2258 return 1;
2259 }
2260
2261 static int
2262 return_minus_one (void)
2263 {
2264 return -1;
2265 }
2266
2267 /*
2268 * Resize the to_sections pointer. Also make sure that anyone that
2269 * was holding on to an old value of it gets updated.
2270 * Returns the old size.
2271 */
2272
2273 int
2274 target_resize_to_sections (struct target_ops *target, int num_added)
2275 {
2276 struct target_ops **t;
2277 struct section_table *old_value;
2278 int old_count;
2279
2280 old_value = target->to_sections;
2281
2282 if (target->to_sections)
2283 {
2284 old_count = target->to_sections_end - target->to_sections;
2285 target->to_sections = (struct section_table *)
2286 xrealloc ((char *) target->to_sections,
2287 (sizeof (struct section_table)) * (num_added + old_count));
2288 }
2289 else
2290 {
2291 old_count = 0;
2292 target->to_sections = (struct section_table *)
2293 xmalloc ((sizeof (struct section_table)) * num_added);
2294 }
2295 target->to_sections_end = target->to_sections + (num_added + old_count);
2296
2297 /* Check to see if anyone else was pointing to this structure.
2298 If old_value was null, then no one was. */
2299
2300 if (old_value)
2301 {
2302 for (t = target_structs; t < target_structs + target_struct_size;
2303 ++t)
2304 {
2305 if ((*t)->to_sections == old_value)
2306 {
2307 (*t)->to_sections = target->to_sections;
2308 (*t)->to_sections_end = target->to_sections_end;
2309 }
2310 }
2311 /* There is a flattened view of the target stack in current_target,
2312 so its to_sections pointer might also need updating. */
2313 if (current_target.to_sections == old_value)
2314 {
2315 current_target.to_sections = target->to_sections;
2316 current_target.to_sections_end = target->to_sections_end;
2317 }
2318 }
2319
2320 return old_count;
2321
2322 }
2323
2324 /* Remove all target sections taken from ABFD.
2325
2326 Scan the current target stack for targets whose section tables
2327 refer to sections from BFD, and remove those sections. We use this
2328 when we notice that the inferior has unloaded a shared object, for
2329 example. */
2330 void
2331 remove_target_sections (bfd *abfd)
2332 {
2333 struct target_ops **t;
2334
2335 for (t = target_structs; t < target_structs + target_struct_size; t++)
2336 {
2337 struct section_table *src, *dest;
2338
2339 dest = (*t)->to_sections;
2340 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2341 if (src->bfd != abfd)
2342 {
2343 /* Keep this section. */
2344 if (dest < src) *dest = *src;
2345 dest++;
2346 }
2347
2348 /* If we've dropped any sections, resize the section table. */
2349 if (dest < src)
2350 target_resize_to_sections (*t, dest - src);
2351 }
2352 }
2353
2354
2355
2356
2357 /* Find a single runnable target in the stack and return it. If for
2358 some reason there is more than one, return NULL. */
2359
2360 struct target_ops *
2361 find_run_target (void)
2362 {
2363 struct target_ops **t;
2364 struct target_ops *runable = NULL;
2365 int count;
2366
2367 count = 0;
2368
2369 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2370 {
2371 if ((*t)->to_can_run && target_can_run (*t))
2372 {
2373 runable = *t;
2374 ++count;
2375 }
2376 }
2377
2378 return (count == 1 ? runable : NULL);
2379 }
2380
2381 /* Find a single core_stratum target in the list of targets and return it.
2382 If for some reason there is more than one, return NULL. */
2383
2384 struct target_ops *
2385 find_core_target (void)
2386 {
2387 struct target_ops **t;
2388 struct target_ops *runable = NULL;
2389 int count;
2390
2391 count = 0;
2392
2393 for (t = target_structs; t < target_structs + target_struct_size;
2394 ++t)
2395 {
2396 if ((*t)->to_stratum == core_stratum)
2397 {
2398 runable = *t;
2399 ++count;
2400 }
2401 }
2402
2403 return (count == 1 ? runable : NULL);
2404 }
2405
2406 /*
2407 * Find the next target down the stack from the specified target.
2408 */
2409
2410 struct target_ops *
2411 find_target_beneath (struct target_ops *t)
2412 {
2413 return t->beneath;
2414 }
2415
2416 \f
2417 /* The inferior process has died. Long live the inferior! */
2418
2419 void
2420 generic_mourn_inferior (void)
2421 {
2422 ptid_t ptid;
2423
2424 ptid = inferior_ptid;
2425 inferior_ptid = null_ptid;
2426
2427 if (!ptid_equal (ptid, null_ptid))
2428 {
2429 int pid = ptid_get_pid (ptid);
2430 delete_inferior (pid);
2431 }
2432
2433 breakpoint_init_inferior (inf_exited);
2434 registers_changed ();
2435
2436 reopen_exec_file ();
2437 reinit_frame_cache ();
2438
2439 if (deprecated_detach_hook)
2440 deprecated_detach_hook ();
2441 }
2442 \f
2443 /* Helper function for child_wait and the derivatives of child_wait.
2444 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2445 translation of that in OURSTATUS. */
2446 void
2447 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2448 {
2449 if (WIFEXITED (hoststatus))
2450 {
2451 ourstatus->kind = TARGET_WAITKIND_EXITED;
2452 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2453 }
2454 else if (!WIFSTOPPED (hoststatus))
2455 {
2456 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2457 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2458 }
2459 else
2460 {
2461 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2462 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2463 }
2464 }
2465 \f
2466 /* Convert a normal process ID to a string. Returns the string in a
2467 static buffer. */
2468
2469 char *
2470 normal_pid_to_str (ptid_t ptid)
2471 {
2472 static char buf[32];
2473
2474 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2475 return buf;
2476 }
2477
2478 /* Error-catcher for target_find_memory_regions */
2479 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2480 {
2481 error (_("No target."));
2482 return 0;
2483 }
2484
2485 /* Error-catcher for target_make_corefile_notes */
2486 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2487 {
2488 error (_("No target."));
2489 return NULL;
2490 }
2491
2492 /* Set up the handful of non-empty slots needed by the dummy target
2493 vector. */
2494
2495 static void
2496 init_dummy_target (void)
2497 {
2498 dummy_target.to_shortname = "None";
2499 dummy_target.to_longname = "None";
2500 dummy_target.to_doc = "";
2501 dummy_target.to_attach = find_default_attach;
2502 dummy_target.to_detach =
2503 (void (*)(struct target_ops *, char *, int))target_ignore;
2504 dummy_target.to_create_inferior = find_default_create_inferior;
2505 dummy_target.to_can_async_p = find_default_can_async_p;
2506 dummy_target.to_is_async_p = find_default_is_async_p;
2507 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2508 dummy_target.to_pid_to_str = normal_pid_to_str;
2509 dummy_target.to_stratum = dummy_stratum;
2510 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2511 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2512 dummy_target.to_xfer_partial = default_xfer_partial;
2513 dummy_target.to_magic = OPS_MAGIC;
2514 }
2515 \f
2516 static void
2517 debug_to_open (char *args, int from_tty)
2518 {
2519 debug_target.to_open (args, from_tty);
2520
2521 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2522 }
2523
2524 void
2525 target_close (struct target_ops *targ, int quitting)
2526 {
2527 if (targ->to_xclose != NULL)
2528 targ->to_xclose (targ, quitting);
2529 else if (targ->to_close != NULL)
2530 targ->to_close (quitting);
2531
2532 if (targetdebug)
2533 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2534 }
2535
2536 void
2537 target_attach (char *args, int from_tty)
2538 {
2539 struct target_ops *t;
2540 for (t = current_target.beneath; t != NULL; t = t->beneath)
2541 {
2542 if (t->to_attach != NULL)
2543 {
2544 t->to_attach (t, args, from_tty);
2545 if (targetdebug)
2546 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2547 args, from_tty);
2548 return;
2549 }
2550 }
2551
2552 internal_error (__FILE__, __LINE__,
2553 "could not find a target to attach");
2554 }
2555
2556 static void
2557 debug_to_post_attach (int pid)
2558 {
2559 debug_target.to_post_attach (pid);
2560
2561 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2562 }
2563
2564 static void
2565 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2566 {
2567 debug_target.to_resume (ptid, step, siggnal);
2568
2569 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2570 step ? "step" : "continue",
2571 target_signal_to_name (siggnal));
2572 }
2573
2574 /* Return a pretty printed form of target_waitstatus.
2575 Space for the result is malloc'd, caller must free. */
2576
2577 char *
2578 target_waitstatus_to_string (const struct target_waitstatus *ws)
2579 {
2580 const char *kind_str = "status->kind = ";
2581
2582 switch (ws->kind)
2583 {
2584 case TARGET_WAITKIND_EXITED:
2585 return xstrprintf ("%sexited, status = %d",
2586 kind_str, ws->value.integer);
2587 case TARGET_WAITKIND_STOPPED:
2588 return xstrprintf ("%sstopped, signal = %s",
2589 kind_str, target_signal_to_name (ws->value.sig));
2590 case TARGET_WAITKIND_SIGNALLED:
2591 return xstrprintf ("%ssignalled, signal = %s",
2592 kind_str, target_signal_to_name (ws->value.sig));
2593 case TARGET_WAITKIND_LOADED:
2594 return xstrprintf ("%sloaded", kind_str);
2595 case TARGET_WAITKIND_FORKED:
2596 return xstrprintf ("%sforked", kind_str);
2597 case TARGET_WAITKIND_VFORKED:
2598 return xstrprintf ("%svforked", kind_str);
2599 case TARGET_WAITKIND_EXECD:
2600 return xstrprintf ("%sexecd", kind_str);
2601 case TARGET_WAITKIND_SYSCALL_ENTRY:
2602 return xstrprintf ("%ssyscall-entry", kind_str);
2603 case TARGET_WAITKIND_SYSCALL_RETURN:
2604 return xstrprintf ("%ssyscall-return", kind_str);
2605 case TARGET_WAITKIND_SPURIOUS:
2606 return xstrprintf ("%sspurious", kind_str);
2607 case TARGET_WAITKIND_IGNORE:
2608 return xstrprintf ("%signore", kind_str);
2609 case TARGET_WAITKIND_NO_HISTORY:
2610 return xstrprintf ("%sno-history", kind_str);
2611 default:
2612 return xstrprintf ("%sunknown???", kind_str);
2613 }
2614 }
2615
2616 static ptid_t
2617 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2618 {
2619 ptid_t retval;
2620 char *status_string;
2621
2622 retval = debug_target.to_wait (ptid, status);
2623
2624 fprintf_unfiltered (gdb_stdlog,
2625 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2626 PIDGET (retval));
2627
2628 status_string = target_waitstatus_to_string (status);
2629 fprintf_unfiltered (gdb_stdlog, "%s\n", status_string);
2630 xfree (status_string);
2631
2632 return retval;
2633 }
2634
2635 static void
2636 debug_print_register (const char * func,
2637 struct regcache *regcache, int regno)
2638 {
2639 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2640 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2641 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2642 && gdbarch_register_name (gdbarch, regno) != NULL
2643 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2644 fprintf_unfiltered (gdb_stdlog, "(%s)",
2645 gdbarch_register_name (gdbarch, regno));
2646 else
2647 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2648 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2649 {
2650 int i, size = register_size (gdbarch, regno);
2651 unsigned char buf[MAX_REGISTER_SIZE];
2652 regcache_raw_collect (regcache, regno, buf);
2653 fprintf_unfiltered (gdb_stdlog, " = ");
2654 for (i = 0; i < size; i++)
2655 {
2656 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2657 }
2658 if (size <= sizeof (LONGEST))
2659 {
2660 ULONGEST val = extract_unsigned_integer (buf, size);
2661 fprintf_unfiltered (gdb_stdlog, " %s %s",
2662 core_addr_to_string_nz (val), plongest (val));
2663 }
2664 }
2665 fprintf_unfiltered (gdb_stdlog, "\n");
2666 }
2667
2668 static void
2669 debug_to_fetch_registers (struct regcache *regcache, int regno)
2670 {
2671 debug_target.to_fetch_registers (regcache, regno);
2672 debug_print_register ("target_fetch_registers", regcache, regno);
2673 }
2674
2675 static void
2676 debug_to_store_registers (struct regcache *regcache, int regno)
2677 {
2678 debug_target.to_store_registers (regcache, regno);
2679 debug_print_register ("target_store_registers", regcache, regno);
2680 fprintf_unfiltered (gdb_stdlog, "\n");
2681 }
2682
2683 static void
2684 debug_to_prepare_to_store (struct regcache *regcache)
2685 {
2686 debug_target.to_prepare_to_store (regcache);
2687
2688 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2689 }
2690
2691 static int
2692 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2693 int write, struct mem_attrib *attrib,
2694 struct target_ops *target)
2695 {
2696 int retval;
2697
2698 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2699 attrib, target);
2700
2701 fprintf_unfiltered (gdb_stdlog,
2702 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
2703 paddress (memaddr), len, write ? "write" : "read",
2704 retval);
2705
2706 if (retval > 0)
2707 {
2708 int i;
2709
2710 fputs_unfiltered (", bytes =", gdb_stdlog);
2711 for (i = 0; i < retval; i++)
2712 {
2713 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
2714 {
2715 if (targetdebug < 2 && i > 0)
2716 {
2717 fprintf_unfiltered (gdb_stdlog, " ...");
2718 break;
2719 }
2720 fprintf_unfiltered (gdb_stdlog, "\n");
2721 }
2722
2723 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2724 }
2725 }
2726
2727 fputc_unfiltered ('\n', gdb_stdlog);
2728
2729 return retval;
2730 }
2731
2732 static void
2733 debug_to_files_info (struct target_ops *target)
2734 {
2735 debug_target.to_files_info (target);
2736
2737 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2738 }
2739
2740 static int
2741 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2742 {
2743 int retval;
2744
2745 retval = debug_target.to_insert_breakpoint (bp_tgt);
2746
2747 fprintf_unfiltered (gdb_stdlog,
2748 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2749 (unsigned long) bp_tgt->placed_address,
2750 (unsigned long) retval);
2751 return retval;
2752 }
2753
2754 static int
2755 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2756 {
2757 int retval;
2758
2759 retval = debug_target.to_remove_breakpoint (bp_tgt);
2760
2761 fprintf_unfiltered (gdb_stdlog,
2762 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2763 (unsigned long) bp_tgt->placed_address,
2764 (unsigned long) retval);
2765 return retval;
2766 }
2767
2768 static int
2769 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2770 {
2771 int retval;
2772
2773 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2774
2775 fprintf_unfiltered (gdb_stdlog,
2776 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2777 (unsigned long) type,
2778 (unsigned long) cnt,
2779 (unsigned long) from_tty,
2780 (unsigned long) retval);
2781 return retval;
2782 }
2783
2784 static int
2785 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2786 {
2787 CORE_ADDR retval;
2788
2789 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2790
2791 fprintf_unfiltered (gdb_stdlog,
2792 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2793 (unsigned long) addr,
2794 (unsigned long) len,
2795 (unsigned long) retval);
2796 return retval;
2797 }
2798
2799 static int
2800 debug_to_stopped_by_watchpoint (void)
2801 {
2802 int retval;
2803
2804 retval = debug_target.to_stopped_by_watchpoint ();
2805
2806 fprintf_unfiltered (gdb_stdlog,
2807 "STOPPED_BY_WATCHPOINT () = %ld\n",
2808 (unsigned long) retval);
2809 return retval;
2810 }
2811
2812 static int
2813 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2814 {
2815 int retval;
2816
2817 retval = debug_target.to_stopped_data_address (target, addr);
2818
2819 fprintf_unfiltered (gdb_stdlog,
2820 "target_stopped_data_address ([0x%lx]) = %ld\n",
2821 (unsigned long)*addr,
2822 (unsigned long)retval);
2823 return retval;
2824 }
2825
2826 static int
2827 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2828 CORE_ADDR addr,
2829 CORE_ADDR start, int length)
2830 {
2831 int retval;
2832
2833 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2834 start, length);
2835
2836 fprintf_filtered (gdb_stdlog,
2837 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2838 (unsigned long) addr, (unsigned long) start, length,
2839 retval);
2840 return retval;
2841 }
2842
2843 static int
2844 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2845 {
2846 int retval;
2847
2848 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2849
2850 fprintf_unfiltered (gdb_stdlog,
2851 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2852 (unsigned long) bp_tgt->placed_address,
2853 (unsigned long) retval);
2854 return retval;
2855 }
2856
2857 static int
2858 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2859 {
2860 int retval;
2861
2862 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2863
2864 fprintf_unfiltered (gdb_stdlog,
2865 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2866 (unsigned long) bp_tgt->placed_address,
2867 (unsigned long) retval);
2868 return retval;
2869 }
2870
2871 static int
2872 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2873 {
2874 int retval;
2875
2876 retval = debug_target.to_insert_watchpoint (addr, len, type);
2877
2878 fprintf_unfiltered (gdb_stdlog,
2879 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2880 (unsigned long) addr, len, type, (unsigned long) retval);
2881 return retval;
2882 }
2883
2884 static int
2885 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2886 {
2887 int retval;
2888
2889 retval = debug_target.to_remove_watchpoint (addr, len, type);
2890
2891 fprintf_unfiltered (gdb_stdlog,
2892 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2893 (unsigned long) addr, len, type, (unsigned long) retval);
2894 return retval;
2895 }
2896
2897 static void
2898 debug_to_terminal_init (void)
2899 {
2900 debug_target.to_terminal_init ();
2901
2902 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2903 }
2904
2905 static void
2906 debug_to_terminal_inferior (void)
2907 {
2908 debug_target.to_terminal_inferior ();
2909
2910 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2911 }
2912
2913 static void
2914 debug_to_terminal_ours_for_output (void)
2915 {
2916 debug_target.to_terminal_ours_for_output ();
2917
2918 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2919 }
2920
2921 static void
2922 debug_to_terminal_ours (void)
2923 {
2924 debug_target.to_terminal_ours ();
2925
2926 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2927 }
2928
2929 static void
2930 debug_to_terminal_save_ours (void)
2931 {
2932 debug_target.to_terminal_save_ours ();
2933
2934 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2935 }
2936
2937 static void
2938 debug_to_terminal_info (char *arg, int from_tty)
2939 {
2940 debug_target.to_terminal_info (arg, from_tty);
2941
2942 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2943 from_tty);
2944 }
2945
2946 static void
2947 debug_to_kill (void)
2948 {
2949 debug_target.to_kill ();
2950
2951 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2952 }
2953
2954 static void
2955 debug_to_load (char *args, int from_tty)
2956 {
2957 debug_target.to_load (args, from_tty);
2958
2959 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2960 }
2961
2962 static int
2963 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2964 {
2965 int retval;
2966
2967 retval = debug_target.to_lookup_symbol (name, addrp);
2968
2969 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2970
2971 return retval;
2972 }
2973
2974 static void
2975 debug_to_post_startup_inferior (ptid_t ptid)
2976 {
2977 debug_target.to_post_startup_inferior (ptid);
2978
2979 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2980 PIDGET (ptid));
2981 }
2982
2983 static void
2984 debug_to_acknowledge_created_inferior (int pid)
2985 {
2986 debug_target.to_acknowledge_created_inferior (pid);
2987
2988 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2989 pid);
2990 }
2991
2992 static void
2993 debug_to_insert_fork_catchpoint (int pid)
2994 {
2995 debug_target.to_insert_fork_catchpoint (pid);
2996
2997 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2998 pid);
2999 }
3000
3001 static int
3002 debug_to_remove_fork_catchpoint (int pid)
3003 {
3004 int retval;
3005
3006 retval = debug_target.to_remove_fork_catchpoint (pid);
3007
3008 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3009 pid, retval);
3010
3011 return retval;
3012 }
3013
3014 static void
3015 debug_to_insert_vfork_catchpoint (int pid)
3016 {
3017 debug_target.to_insert_vfork_catchpoint (pid);
3018
3019 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3020 pid);
3021 }
3022
3023 static int
3024 debug_to_remove_vfork_catchpoint (int pid)
3025 {
3026 int retval;
3027
3028 retval = debug_target.to_remove_vfork_catchpoint (pid);
3029
3030 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3031 pid, retval);
3032
3033 return retval;
3034 }
3035
3036 static void
3037 debug_to_insert_exec_catchpoint (int pid)
3038 {
3039 debug_target.to_insert_exec_catchpoint (pid);
3040
3041 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3042 pid);
3043 }
3044
3045 static int
3046 debug_to_remove_exec_catchpoint (int pid)
3047 {
3048 int retval;
3049
3050 retval = debug_target.to_remove_exec_catchpoint (pid);
3051
3052 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3053 pid, retval);
3054
3055 return retval;
3056 }
3057
3058 static int
3059 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3060 {
3061 int has_exited;
3062
3063 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3064
3065 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3066 pid, wait_status, *exit_status, has_exited);
3067
3068 return has_exited;
3069 }
3070
3071 static int
3072 debug_to_can_run (void)
3073 {
3074 int retval;
3075
3076 retval = debug_target.to_can_run ();
3077
3078 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3079
3080 return retval;
3081 }
3082
3083 static void
3084 debug_to_notice_signals (ptid_t ptid)
3085 {
3086 debug_target.to_notice_signals (ptid);
3087
3088 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3089 PIDGET (ptid));
3090 }
3091
3092 static int
3093 debug_to_thread_alive (ptid_t ptid)
3094 {
3095 int retval;
3096
3097 retval = debug_target.to_thread_alive (ptid);
3098
3099 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3100 PIDGET (ptid), retval);
3101
3102 return retval;
3103 }
3104
3105 static void
3106 debug_to_find_new_threads (void)
3107 {
3108 debug_target.to_find_new_threads ();
3109
3110 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
3111 }
3112
3113 static void
3114 debug_to_stop (ptid_t ptid)
3115 {
3116 debug_target.to_stop (ptid);
3117
3118 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3119 target_pid_to_str (ptid));
3120 }
3121
3122 static void
3123 debug_to_rcmd (char *command,
3124 struct ui_file *outbuf)
3125 {
3126 debug_target.to_rcmd (command, outbuf);
3127 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3128 }
3129
3130 static char *
3131 debug_to_pid_to_exec_file (int pid)
3132 {
3133 char *exec_file;
3134
3135 exec_file = debug_target.to_pid_to_exec_file (pid);
3136
3137 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3138 pid, exec_file);
3139
3140 return exec_file;
3141 }
3142
3143 static void
3144 setup_target_debug (void)
3145 {
3146 memcpy (&debug_target, &current_target, sizeof debug_target);
3147
3148 current_target.to_open = debug_to_open;
3149 current_target.to_post_attach = debug_to_post_attach;
3150 current_target.to_resume = debug_to_resume;
3151 current_target.to_wait = debug_to_wait;
3152 current_target.to_fetch_registers = debug_to_fetch_registers;
3153 current_target.to_store_registers = debug_to_store_registers;
3154 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3155 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3156 current_target.to_files_info = debug_to_files_info;
3157 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3158 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3159 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3160 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3161 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3162 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3163 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3164 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3165 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3166 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3167 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3168 current_target.to_terminal_init = debug_to_terminal_init;
3169 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3170 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3171 current_target.to_terminal_ours = debug_to_terminal_ours;
3172 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3173 current_target.to_terminal_info = debug_to_terminal_info;
3174 current_target.to_kill = debug_to_kill;
3175 current_target.to_load = debug_to_load;
3176 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3177 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3178 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3179 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3180 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3181 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3182 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3183 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3184 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3185 current_target.to_has_exited = debug_to_has_exited;
3186 current_target.to_can_run = debug_to_can_run;
3187 current_target.to_notice_signals = debug_to_notice_signals;
3188 current_target.to_thread_alive = debug_to_thread_alive;
3189 current_target.to_find_new_threads = debug_to_find_new_threads;
3190 current_target.to_stop = debug_to_stop;
3191 current_target.to_rcmd = debug_to_rcmd;
3192 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3193 }
3194 \f
3195
3196 static char targ_desc[] =
3197 "Names of targets and files being debugged.\n\
3198 Shows the entire stack of targets currently in use (including the exec-file,\n\
3199 core-file, and process, if any), as well as the symbol file name.";
3200
3201 static void
3202 do_monitor_command (char *cmd,
3203 int from_tty)
3204 {
3205 if ((current_target.to_rcmd
3206 == (void (*) (char *, struct ui_file *)) tcomplain)
3207 || (current_target.to_rcmd == debug_to_rcmd
3208 && (debug_target.to_rcmd
3209 == (void (*) (char *, struct ui_file *)) tcomplain)))
3210 error (_("\"monitor\" command not supported by this target."));
3211 target_rcmd (cmd, gdb_stdtarg);
3212 }
3213
3214 /* Print the name of each layers of our target stack. */
3215
3216 static void
3217 maintenance_print_target_stack (char *cmd, int from_tty)
3218 {
3219 struct target_ops *t;
3220
3221 printf_filtered (_("The current target stack is:\n"));
3222
3223 for (t = target_stack; t != NULL; t = t->beneath)
3224 {
3225 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3226 }
3227 }
3228
3229 /* Controls if async mode is permitted. */
3230 int target_async_permitted = 0;
3231
3232 /* The set command writes to this variable. If the inferior is
3233 executing, linux_nat_async_permitted is *not* updated. */
3234 static int target_async_permitted_1 = 0;
3235
3236 static void
3237 set_maintenance_target_async_permitted (char *args, int from_tty,
3238 struct cmd_list_element *c)
3239 {
3240 if (target_has_execution)
3241 {
3242 target_async_permitted_1 = target_async_permitted;
3243 error (_("Cannot change this setting while the inferior is running."));
3244 }
3245
3246 target_async_permitted = target_async_permitted_1;
3247 }
3248
3249 static void
3250 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3251 struct cmd_list_element *c,
3252 const char *value)
3253 {
3254 fprintf_filtered (file, _("\
3255 Controlling the inferior in asynchronous mode is %s.\n"), value);
3256 }
3257
3258 void
3259 initialize_targets (void)
3260 {
3261 init_dummy_target ();
3262 push_target (&dummy_target);
3263
3264 add_info ("target", target_info, targ_desc);
3265 add_info ("files", target_info, targ_desc);
3266
3267 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3268 Set target debugging."), _("\
3269 Show target debugging."), _("\
3270 When non-zero, target debugging is enabled. Higher numbers are more\n\
3271 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3272 command."),
3273 NULL,
3274 show_targetdebug,
3275 &setdebuglist, &showdebuglist);
3276
3277 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3278 &trust_readonly, _("\
3279 Set mode for reading from readonly sections."), _("\
3280 Show mode for reading from readonly sections."), _("\
3281 When this mode is on, memory reads from readonly sections (such as .text)\n\
3282 will be read from the object file instead of from the target. This will\n\
3283 result in significant performance improvement for remote targets."),
3284 NULL,
3285 show_trust_readonly,
3286 &setlist, &showlist);
3287
3288 add_com ("monitor", class_obscure, do_monitor_command,
3289 _("Send a command to the remote monitor (remote targets only)."));
3290
3291 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3292 _("Print the name of each layer of the internal target stack."),
3293 &maintenanceprintlist);
3294
3295 add_setshow_boolean_cmd ("target-async", no_class,
3296 &target_async_permitted_1, _("\
3297 Set whether gdb controls the inferior in asynchronous mode."), _("\
3298 Show whether gdb controls the inferior in asynchronous mode."), _("\
3299 Tells gdb whether to control the inferior in asynchronous mode."),
3300 set_maintenance_target_async_permitted,
3301 show_maintenance_target_async_permitted,
3302 &setlist,
3303 &showlist);
3304
3305 target_dcache = dcache_init ();
3306 }
This page took 0.095992 seconds and 4 git commands to generate.