PR gdb/11321
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static LONGEST default_xfer_partial (struct target_ops *ops,
75 enum target_object object,
76 const char *annex, gdb_byte *readbuf,
77 const gdb_byte *writebuf,
78 ULONGEST offset, LONGEST len);
79
80 static LONGEST current_xfer_partial (struct target_ops *ops,
81 enum target_object object,
82 const char *annex, gdb_byte *readbuf,
83 const gdb_byte *writebuf,
84 ULONGEST offset, LONGEST len);
85
86 static LONGEST target_xfer_partial (struct target_ops *ops,
87 enum target_object object,
88 const char *annex,
89 void *readbuf, const void *writebuf,
90 ULONGEST offset, LONGEST len);
91
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 ptid_t ptid);
94
95 static void init_dummy_target (void);
96
97 static struct target_ops debug_target;
98
99 static void debug_to_open (char *, int);
100
101 static void debug_to_prepare_to_store (struct regcache *);
102
103 static void debug_to_files_info (struct target_ops *);
104
105 static int debug_to_insert_breakpoint (struct gdbarch *,
106 struct bp_target_info *);
107
108 static int debug_to_remove_breakpoint (struct gdbarch *,
109 struct bp_target_info *);
110
111 static int debug_to_can_use_hw_breakpoint (int, int, int);
112
113 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
114 struct bp_target_info *);
115
116 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
117 struct bp_target_info *);
118
119 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
120
121 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
122
123 static int debug_to_stopped_by_watchpoint (void);
124
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
126
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static void debug_to_terminal_init (void);
133
134 static void debug_to_terminal_inferior (void);
135
136 static void debug_to_terminal_ours_for_output (void);
137
138 static void debug_to_terminal_save_ours (void);
139
140 static void debug_to_terminal_ours (void);
141
142 static void debug_to_terminal_info (char *, int);
143
144 static void debug_to_load (char *, int);
145
146 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
147
148 static int debug_to_can_run (void);
149
150 static void debug_to_notice_signals (ptid_t);
151
152 static void debug_to_stop (ptid_t);
153
154 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
155 wierd and mysterious ways. Putting the variable here lets those
156 wierd and mysterious ways keep building while they are being
157 converted to the inferior inheritance structure. */
158 struct target_ops deprecated_child_ops;
159
160 /* Pointer to array of target architecture structures; the size of the
161 array; the current index into the array; the allocated size of the
162 array. */
163 struct target_ops **target_structs;
164 unsigned target_struct_size;
165 unsigned target_struct_index;
166 unsigned target_struct_allocsize;
167 #define DEFAULT_ALLOCSIZE 10
168
169 /* The initial current target, so that there is always a semi-valid
170 current target. */
171
172 static struct target_ops dummy_target;
173
174 /* Top of target stack. */
175
176 static struct target_ops *target_stack;
177
178 /* The target structure we are currently using to talk to a process
179 or file or whatever "inferior" we have. */
180
181 struct target_ops current_target;
182
183 /* Command list for target. */
184
185 static struct cmd_list_element *targetlist = NULL;
186
187 /* Nonzero if we should trust readonly sections from the
188 executable when reading memory. */
189
190 static int trust_readonly = 0;
191
192 /* Nonzero if we should show true memory content including
193 memory breakpoint inserted by gdb. */
194
195 static int show_memory_breakpoints = 0;
196
197 /* Non-zero if we want to see trace of target level stuff. */
198
199 static int targetdebug = 0;
200 static void
201 show_targetdebug (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
205 }
206
207 static void setup_target_debug (void);
208
209 /* The option sets this. */
210 static int stack_cache_enabled_p_1 = 1;
211 /* And set_stack_cache_enabled_p updates this.
212 The reason for the separation is so that we don't flush the cache for
213 on->on transitions. */
214 static int stack_cache_enabled_p = 1;
215
216 /* This is called *after* the stack-cache has been set.
217 Flush the cache for off->on and on->off transitions.
218 There's no real need to flush the cache for on->off transitions,
219 except cleanliness. */
220
221 static void
222 set_stack_cache_enabled_p (char *args, int from_tty,
223 struct cmd_list_element *c)
224 {
225 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
226 target_dcache_invalidate ();
227
228 stack_cache_enabled_p = stack_cache_enabled_p_1;
229 }
230
231 static void
232 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
236 }
237
238 /* Cache of memory operations, to speed up remote access. */
239 static DCACHE *target_dcache;
240
241 /* Invalidate the target dcache. */
242
243 void
244 target_dcache_invalidate (void)
245 {
246 dcache_invalidate (target_dcache);
247 }
248
249 /* The user just typed 'target' without the name of a target. */
250
251 static void
252 target_command (char *arg, int from_tty)
253 {
254 fputs_filtered ("Argument required (target name). Try `help target'\n",
255 gdb_stdout);
256 }
257
258 /* Default target_has_* methods for process_stratum targets. */
259
260 int
261 default_child_has_all_memory (struct target_ops *ops)
262 {
263 /* If no inferior selected, then we can't read memory here. */
264 if (ptid_equal (inferior_ptid, null_ptid))
265 return 0;
266
267 return 1;
268 }
269
270 int
271 default_child_has_memory (struct target_ops *ops)
272 {
273 /* If no inferior selected, then we can't read memory here. */
274 if (ptid_equal (inferior_ptid, null_ptid))
275 return 0;
276
277 return 1;
278 }
279
280 int
281 default_child_has_stack (struct target_ops *ops)
282 {
283 /* If no inferior selected, there's no stack. */
284 if (ptid_equal (inferior_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290 int
291 default_child_has_registers (struct target_ops *ops)
292 {
293 /* Can't read registers from no inferior. */
294 if (ptid_equal (inferior_ptid, null_ptid))
295 return 0;
296
297 return 1;
298 }
299
300 int
301 default_child_has_execution (struct target_ops *ops)
302 {
303 /* If there's no thread selected, then we can't make it run through
304 hoops. */
305 if (ptid_equal (inferior_ptid, null_ptid))
306 return 0;
307
308 return 1;
309 }
310
311
312 int
313 target_has_all_memory_1 (void)
314 {
315 struct target_ops *t;
316
317 for (t = current_target.beneath; t != NULL; t = t->beneath)
318 if (t->to_has_all_memory (t))
319 return 1;
320
321 return 0;
322 }
323
324 int
325 target_has_memory_1 (void)
326 {
327 struct target_ops *t;
328
329 for (t = current_target.beneath; t != NULL; t = t->beneath)
330 if (t->to_has_memory (t))
331 return 1;
332
333 return 0;
334 }
335
336 int
337 target_has_stack_1 (void)
338 {
339 struct target_ops *t;
340
341 for (t = current_target.beneath; t != NULL; t = t->beneath)
342 if (t->to_has_stack (t))
343 return 1;
344
345 return 0;
346 }
347
348 int
349 target_has_registers_1 (void)
350 {
351 struct target_ops *t;
352
353 for (t = current_target.beneath; t != NULL; t = t->beneath)
354 if (t->to_has_registers (t))
355 return 1;
356
357 return 0;
358 }
359
360 int
361 target_has_execution_1 (void)
362 {
363 struct target_ops *t;
364
365 for (t = current_target.beneath; t != NULL; t = t->beneath)
366 if (t->to_has_execution (t))
367 return 1;
368
369 return 0;
370 }
371
372 /* Add a possible target architecture to the list. */
373
374 void
375 add_target (struct target_ops *t)
376 {
377 /* Provide default values for all "must have" methods. */
378 if (t->to_xfer_partial == NULL)
379 t->to_xfer_partial = default_xfer_partial;
380
381 if (t->to_has_all_memory == NULL)
382 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
383
384 if (t->to_has_memory == NULL)
385 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
386
387 if (t->to_has_stack == NULL)
388 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
389
390 if (t->to_has_registers == NULL)
391 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
392
393 if (t->to_has_execution == NULL)
394 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
395
396 if (!target_structs)
397 {
398 target_struct_allocsize = DEFAULT_ALLOCSIZE;
399 target_structs = (struct target_ops **) xmalloc
400 (target_struct_allocsize * sizeof (*target_structs));
401 }
402 if (target_struct_size >= target_struct_allocsize)
403 {
404 target_struct_allocsize *= 2;
405 target_structs = (struct target_ops **)
406 xrealloc ((char *) target_structs,
407 target_struct_allocsize * sizeof (*target_structs));
408 }
409 target_structs[target_struct_size++] = t;
410
411 if (targetlist == NULL)
412 add_prefix_cmd ("target", class_run, target_command, _("\
413 Connect to a target machine or process.\n\
414 The first argument is the type or protocol of the target machine.\n\
415 Remaining arguments are interpreted by the target protocol. For more\n\
416 information on the arguments for a particular protocol, type\n\
417 `help target ' followed by the protocol name."),
418 &targetlist, "target ", 0, &cmdlist);
419 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
420 }
421
422 /* Stub functions */
423
424 void
425 target_ignore (void)
426 {
427 }
428
429 void
430 target_kill (void)
431 {
432 struct target_ops *t;
433
434 for (t = current_target.beneath; t != NULL; t = t->beneath)
435 if (t->to_kill != NULL)
436 {
437 if (targetdebug)
438 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
439
440 t->to_kill (t);
441 return;
442 }
443
444 noprocess ();
445 }
446
447 void
448 target_load (char *arg, int from_tty)
449 {
450 target_dcache_invalidate ();
451 (*current_target.to_load) (arg, from_tty);
452 }
453
454 void
455 target_create_inferior (char *exec_file, char *args,
456 char **env, int from_tty)
457 {
458 struct target_ops *t;
459 for (t = current_target.beneath; t != NULL; t = t->beneath)
460 {
461 if (t->to_create_inferior != NULL)
462 {
463 t->to_create_inferior (t, exec_file, args, env, from_tty);
464 if (targetdebug)
465 fprintf_unfiltered (gdb_stdlog,
466 "target_create_inferior (%s, %s, xxx, %d)\n",
467 exec_file, args, from_tty);
468 return;
469 }
470 }
471
472 internal_error (__FILE__, __LINE__,
473 "could not find a target to create inferior");
474 }
475
476 void
477 target_terminal_inferior (void)
478 {
479 /* A background resume (``run&'') should leave GDB in control of the
480 terminal. Use target_can_async_p, not target_is_async_p, since at
481 this point the target is not async yet. However, if sync_execution
482 is not set, we know it will become async prior to resume. */
483 if (target_can_async_p () && !sync_execution)
484 return;
485
486 /* If GDB is resuming the inferior in the foreground, install
487 inferior's terminal modes. */
488 (*current_target.to_terminal_inferior) ();
489 }
490
491 static int
492 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
493 struct target_ops *t)
494 {
495 errno = EIO; /* Can't read/write this location */
496 return 0; /* No bytes handled */
497 }
498
499 static void
500 tcomplain (void)
501 {
502 error (_("You can't do that when your target is `%s'"),
503 current_target.to_shortname);
504 }
505
506 void
507 noprocess (void)
508 {
509 error (_("You can't do that without a process to debug."));
510 }
511
512 static int
513 nosymbol (char *name, CORE_ADDR *addrp)
514 {
515 return 1; /* Symbol does not exist in target env */
516 }
517
518 static void
519 default_terminal_info (char *args, int from_tty)
520 {
521 printf_unfiltered (_("No saved terminal information.\n"));
522 }
523
524 /* A default implementation for the to_get_ada_task_ptid target method.
525
526 This function builds the PTID by using both LWP and TID as part of
527 the PTID lwp and tid elements. The pid used is the pid of the
528 inferior_ptid. */
529
530 static ptid_t
531 default_get_ada_task_ptid (long lwp, long tid)
532 {
533 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
534 }
535
536 /* Go through the target stack from top to bottom, copying over zero
537 entries in current_target, then filling in still empty entries. In
538 effect, we are doing class inheritance through the pushed target
539 vectors.
540
541 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
542 is currently implemented, is that it discards any knowledge of
543 which target an inherited method originally belonged to.
544 Consequently, new new target methods should instead explicitly and
545 locally search the target stack for the target that can handle the
546 request. */
547
548 static void
549 update_current_target (void)
550 {
551 struct target_ops *t;
552
553 /* First, reset current's contents. */
554 memset (&current_target, 0, sizeof (current_target));
555
556 #define INHERIT(FIELD, TARGET) \
557 if (!current_target.FIELD) \
558 current_target.FIELD = (TARGET)->FIELD
559
560 for (t = target_stack; t; t = t->beneath)
561 {
562 INHERIT (to_shortname, t);
563 INHERIT (to_longname, t);
564 INHERIT (to_doc, t);
565 /* Do not inherit to_open. */
566 /* Do not inherit to_close. */
567 /* Do not inherit to_attach. */
568 INHERIT (to_post_attach, t);
569 INHERIT (to_attach_no_wait, t);
570 /* Do not inherit to_detach. */
571 /* Do not inherit to_disconnect. */
572 /* Do not inherit to_resume. */
573 /* Do not inherit to_wait. */
574 /* Do not inherit to_fetch_registers. */
575 /* Do not inherit to_store_registers. */
576 INHERIT (to_prepare_to_store, t);
577 INHERIT (deprecated_xfer_memory, t);
578 INHERIT (to_files_info, t);
579 INHERIT (to_insert_breakpoint, t);
580 INHERIT (to_remove_breakpoint, t);
581 INHERIT (to_can_use_hw_breakpoint, t);
582 INHERIT (to_insert_hw_breakpoint, t);
583 INHERIT (to_remove_hw_breakpoint, t);
584 INHERIT (to_insert_watchpoint, t);
585 INHERIT (to_remove_watchpoint, t);
586 INHERIT (to_stopped_data_address, t);
587 INHERIT (to_have_steppable_watchpoint, t);
588 INHERIT (to_have_continuable_watchpoint, t);
589 INHERIT (to_stopped_by_watchpoint, t);
590 INHERIT (to_watchpoint_addr_within_range, t);
591 INHERIT (to_region_ok_for_hw_watchpoint, t);
592 INHERIT (to_terminal_init, t);
593 INHERIT (to_terminal_inferior, t);
594 INHERIT (to_terminal_ours_for_output, t);
595 INHERIT (to_terminal_ours, t);
596 INHERIT (to_terminal_save_ours, t);
597 INHERIT (to_terminal_info, t);
598 /* Do not inherit to_kill. */
599 INHERIT (to_load, t);
600 INHERIT (to_lookup_symbol, t);
601 /* Do no inherit to_create_inferior. */
602 INHERIT (to_post_startup_inferior, t);
603 INHERIT (to_acknowledge_created_inferior, t);
604 INHERIT (to_insert_fork_catchpoint, t);
605 INHERIT (to_remove_fork_catchpoint, t);
606 INHERIT (to_insert_vfork_catchpoint, t);
607 INHERIT (to_remove_vfork_catchpoint, t);
608 /* Do not inherit to_follow_fork. */
609 INHERIT (to_insert_exec_catchpoint, t);
610 INHERIT (to_remove_exec_catchpoint, t);
611 INHERIT (to_set_syscall_catchpoint, t);
612 INHERIT (to_has_exited, t);
613 /* Do not inherit to_mourn_inferiour. */
614 INHERIT (to_can_run, t);
615 INHERIT (to_notice_signals, t);
616 /* Do not inherit to_thread_alive. */
617 /* Do not inherit to_find_new_threads. */
618 /* Do not inherit to_pid_to_str. */
619 INHERIT (to_extra_thread_info, t);
620 INHERIT (to_stop, t);
621 /* Do not inherit to_xfer_partial. */
622 INHERIT (to_rcmd, t);
623 INHERIT (to_pid_to_exec_file, t);
624 INHERIT (to_log_command, t);
625 INHERIT (to_stratum, t);
626 /* Do not inherit to_has_all_memory */
627 /* Do not inherit to_has_memory */
628 /* Do not inherit to_has_stack */
629 /* Do not inherit to_has_registers */
630 /* Do not inherit to_has_execution */
631 INHERIT (to_has_thread_control, t);
632 INHERIT (to_can_async_p, t);
633 INHERIT (to_is_async_p, t);
634 INHERIT (to_async, t);
635 INHERIT (to_async_mask, t);
636 INHERIT (to_find_memory_regions, t);
637 INHERIT (to_make_corefile_notes, t);
638 INHERIT (to_get_bookmark, t);
639 INHERIT (to_goto_bookmark, t);
640 /* Do not inherit to_get_thread_local_address. */
641 INHERIT (to_can_execute_reverse, t);
642 INHERIT (to_thread_architecture, t);
643 /* Do not inherit to_read_description. */
644 INHERIT (to_get_ada_task_ptid, t);
645 /* Do not inherit to_search_memory. */
646 INHERIT (to_supports_multi_process, t);
647 INHERIT (to_trace_init, t);
648 INHERIT (to_download_tracepoint, t);
649 INHERIT (to_download_trace_state_variable, t);
650 INHERIT (to_trace_set_readonly_regions, t);
651 INHERIT (to_trace_start, t);
652 INHERIT (to_get_trace_status, t);
653 INHERIT (to_trace_stop, t);
654 INHERIT (to_trace_find, t);
655 INHERIT (to_get_trace_state_variable_value, t);
656 INHERIT (to_save_trace_data, t);
657 INHERIT (to_upload_tracepoints, t);
658 INHERIT (to_upload_trace_state_variables, t);
659 INHERIT (to_get_raw_trace_data, t);
660 INHERIT (to_set_disconnected_tracing, t);
661 INHERIT (to_magic, t);
662 /* Do not inherit to_memory_map. */
663 /* Do not inherit to_flash_erase. */
664 /* Do not inherit to_flash_done. */
665 }
666 #undef INHERIT
667
668 /* Clean up a target struct so it no longer has any zero pointers in
669 it. Some entries are defaulted to a method that print an error,
670 others are hard-wired to a standard recursive default. */
671
672 #define de_fault(field, value) \
673 if (!current_target.field) \
674 current_target.field = value
675
676 de_fault (to_open,
677 (void (*) (char *, int))
678 tcomplain);
679 de_fault (to_close,
680 (void (*) (int))
681 target_ignore);
682 de_fault (to_post_attach,
683 (void (*) (int))
684 target_ignore);
685 de_fault (to_prepare_to_store,
686 (void (*) (struct regcache *))
687 noprocess);
688 de_fault (deprecated_xfer_memory,
689 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
690 nomemory);
691 de_fault (to_files_info,
692 (void (*) (struct target_ops *))
693 target_ignore);
694 de_fault (to_insert_breakpoint,
695 memory_insert_breakpoint);
696 de_fault (to_remove_breakpoint,
697 memory_remove_breakpoint);
698 de_fault (to_can_use_hw_breakpoint,
699 (int (*) (int, int, int))
700 return_zero);
701 de_fault (to_insert_hw_breakpoint,
702 (int (*) (struct gdbarch *, struct bp_target_info *))
703 return_minus_one);
704 de_fault (to_remove_hw_breakpoint,
705 (int (*) (struct gdbarch *, struct bp_target_info *))
706 return_minus_one);
707 de_fault (to_insert_watchpoint,
708 (int (*) (CORE_ADDR, int, int))
709 return_minus_one);
710 de_fault (to_remove_watchpoint,
711 (int (*) (CORE_ADDR, int, int))
712 return_minus_one);
713 de_fault (to_stopped_by_watchpoint,
714 (int (*) (void))
715 return_zero);
716 de_fault (to_stopped_data_address,
717 (int (*) (struct target_ops *, CORE_ADDR *))
718 return_zero);
719 de_fault (to_watchpoint_addr_within_range,
720 default_watchpoint_addr_within_range);
721 de_fault (to_region_ok_for_hw_watchpoint,
722 default_region_ok_for_hw_watchpoint);
723 de_fault (to_terminal_init,
724 (void (*) (void))
725 target_ignore);
726 de_fault (to_terminal_inferior,
727 (void (*) (void))
728 target_ignore);
729 de_fault (to_terminal_ours_for_output,
730 (void (*) (void))
731 target_ignore);
732 de_fault (to_terminal_ours,
733 (void (*) (void))
734 target_ignore);
735 de_fault (to_terminal_save_ours,
736 (void (*) (void))
737 target_ignore);
738 de_fault (to_terminal_info,
739 default_terminal_info);
740 de_fault (to_load,
741 (void (*) (char *, int))
742 tcomplain);
743 de_fault (to_lookup_symbol,
744 (int (*) (char *, CORE_ADDR *))
745 nosymbol);
746 de_fault (to_post_startup_inferior,
747 (void (*) (ptid_t))
748 target_ignore);
749 de_fault (to_acknowledge_created_inferior,
750 (void (*) (int))
751 target_ignore);
752 de_fault (to_insert_fork_catchpoint,
753 (void (*) (int))
754 tcomplain);
755 de_fault (to_remove_fork_catchpoint,
756 (int (*) (int))
757 tcomplain);
758 de_fault (to_insert_vfork_catchpoint,
759 (void (*) (int))
760 tcomplain);
761 de_fault (to_remove_vfork_catchpoint,
762 (int (*) (int))
763 tcomplain);
764 de_fault (to_insert_exec_catchpoint,
765 (void (*) (int))
766 tcomplain);
767 de_fault (to_remove_exec_catchpoint,
768 (int (*) (int))
769 tcomplain);
770 de_fault (to_set_syscall_catchpoint,
771 (int (*) (int, int, int, int, int *))
772 tcomplain);
773 de_fault (to_has_exited,
774 (int (*) (int, int, int *))
775 return_zero);
776 de_fault (to_can_run,
777 return_zero);
778 de_fault (to_notice_signals,
779 (void (*) (ptid_t))
780 target_ignore);
781 de_fault (to_extra_thread_info,
782 (char *(*) (struct thread_info *))
783 return_zero);
784 de_fault (to_stop,
785 (void (*) (ptid_t))
786 target_ignore);
787 current_target.to_xfer_partial = current_xfer_partial;
788 de_fault (to_rcmd,
789 (void (*) (char *, struct ui_file *))
790 tcomplain);
791 de_fault (to_pid_to_exec_file,
792 (char *(*) (int))
793 return_zero);
794 de_fault (to_async,
795 (void (*) (void (*) (enum inferior_event_type, void*), void*))
796 tcomplain);
797 de_fault (to_async_mask,
798 (int (*) (int))
799 return_one);
800 de_fault (to_thread_architecture,
801 default_thread_architecture);
802 current_target.to_read_description = NULL;
803 de_fault (to_get_ada_task_ptid,
804 (ptid_t (*) (long, long))
805 default_get_ada_task_ptid);
806 de_fault (to_supports_multi_process,
807 (int (*) (void))
808 return_zero);
809 de_fault (to_trace_init,
810 (void (*) (void))
811 tcomplain);
812 de_fault (to_download_tracepoint,
813 (void (*) (struct breakpoint *))
814 tcomplain);
815 de_fault (to_download_trace_state_variable,
816 (void (*) (struct trace_state_variable *))
817 tcomplain);
818 de_fault (to_trace_set_readonly_regions,
819 (void (*) (void))
820 tcomplain);
821 de_fault (to_trace_start,
822 (void (*) (void))
823 tcomplain);
824 de_fault (to_get_trace_status,
825 (int (*) (struct trace_status *))
826 return_minus_one);
827 de_fault (to_trace_stop,
828 (void (*) (void))
829 tcomplain);
830 de_fault (to_trace_find,
831 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
832 return_zero);
833 de_fault (to_get_trace_state_variable_value,
834 (int (*) (int, LONGEST *))
835 return_zero);
836 de_fault (to_save_trace_data,
837 (int (*) (char *))
838 tcomplain);
839 de_fault (to_upload_tracepoints,
840 (int (*) (struct uploaded_tp **))
841 return_zero);
842 de_fault (to_upload_trace_state_variables,
843 (int (*) (struct uploaded_tsv **))
844 return_zero);
845 de_fault (to_get_raw_trace_data,
846 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
847 tcomplain);
848 de_fault (to_set_disconnected_tracing,
849 (void (*) (int))
850 tcomplain);
851 #undef de_fault
852
853 /* Finally, position the target-stack beneath the squashed
854 "current_target". That way code looking for a non-inherited
855 target method can quickly and simply find it. */
856 current_target.beneath = target_stack;
857
858 if (targetdebug)
859 setup_target_debug ();
860 }
861
862 /* Push a new target type into the stack of the existing target accessors,
863 possibly superseding some of the existing accessors.
864
865 Result is zero if the pushed target ended up on top of the stack,
866 nonzero if at least one target is on top of it.
867
868 Rather than allow an empty stack, we always have the dummy target at
869 the bottom stratum, so we can call the function vectors without
870 checking them. */
871
872 int
873 push_target (struct target_ops *t)
874 {
875 struct target_ops **cur;
876
877 /* Check magic number. If wrong, it probably means someone changed
878 the struct definition, but not all the places that initialize one. */
879 if (t->to_magic != OPS_MAGIC)
880 {
881 fprintf_unfiltered (gdb_stderr,
882 "Magic number of %s target struct wrong\n",
883 t->to_shortname);
884 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
885 }
886
887 /* Find the proper stratum to install this target in. */
888 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
889 {
890 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
891 break;
892 }
893
894 /* If there's already targets at this stratum, remove them. */
895 /* FIXME: cagney/2003-10-15: I think this should be popping all
896 targets to CUR, and not just those at this stratum level. */
897 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
898 {
899 /* There's already something at this stratum level. Close it,
900 and un-hook it from the stack. */
901 struct target_ops *tmp = (*cur);
902 (*cur) = (*cur)->beneath;
903 tmp->beneath = NULL;
904 target_close (tmp, 0);
905 }
906
907 /* We have removed all targets in our stratum, now add the new one. */
908 t->beneath = (*cur);
909 (*cur) = t;
910
911 update_current_target ();
912
913 /* Not on top? */
914 return (t != target_stack);
915 }
916
917 /* Remove a target_ops vector from the stack, wherever it may be.
918 Return how many times it was removed (0 or 1). */
919
920 int
921 unpush_target (struct target_ops *t)
922 {
923 struct target_ops **cur;
924 struct target_ops *tmp;
925
926 if (t->to_stratum == dummy_stratum)
927 internal_error (__FILE__, __LINE__,
928 "Attempt to unpush the dummy target");
929
930 /* Look for the specified target. Note that we assume that a target
931 can only occur once in the target stack. */
932
933 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
934 {
935 if ((*cur) == t)
936 break;
937 }
938
939 if ((*cur) == NULL)
940 return 0; /* Didn't find target_ops, quit now */
941
942 /* NOTE: cagney/2003-12-06: In '94 the close call was made
943 unconditional by moving it to before the above check that the
944 target was in the target stack (something about "Change the way
945 pushing and popping of targets work to support target overlays
946 and inheritance"). This doesn't make much sense - only open
947 targets should be closed. */
948 target_close (t, 0);
949
950 /* Unchain the target */
951 tmp = (*cur);
952 (*cur) = (*cur)->beneath;
953 tmp->beneath = NULL;
954
955 update_current_target ();
956
957 return 1;
958 }
959
960 void
961 pop_target (void)
962 {
963 target_close (target_stack, 0); /* Let it clean up */
964 if (unpush_target (target_stack) == 1)
965 return;
966
967 fprintf_unfiltered (gdb_stderr,
968 "pop_target couldn't find target %s\n",
969 current_target.to_shortname);
970 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
971 }
972
973 void
974 pop_all_targets_above (enum strata above_stratum, int quitting)
975 {
976 while ((int) (current_target.to_stratum) > (int) above_stratum)
977 {
978 target_close (target_stack, quitting);
979 if (!unpush_target (target_stack))
980 {
981 fprintf_unfiltered (gdb_stderr,
982 "pop_all_targets couldn't find target %s\n",
983 target_stack->to_shortname);
984 internal_error (__FILE__, __LINE__,
985 _("failed internal consistency check"));
986 break;
987 }
988 }
989 }
990
991 void
992 pop_all_targets (int quitting)
993 {
994 pop_all_targets_above (dummy_stratum, quitting);
995 }
996
997 /* Using the objfile specified in OBJFILE, find the address for the
998 current thread's thread-local storage with offset OFFSET. */
999 CORE_ADDR
1000 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1001 {
1002 volatile CORE_ADDR addr = 0;
1003 struct target_ops *target;
1004
1005 for (target = current_target.beneath;
1006 target != NULL;
1007 target = target->beneath)
1008 {
1009 if (target->to_get_thread_local_address != NULL)
1010 break;
1011 }
1012
1013 if (target != NULL
1014 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1015 {
1016 ptid_t ptid = inferior_ptid;
1017 volatile struct gdb_exception ex;
1018
1019 TRY_CATCH (ex, RETURN_MASK_ALL)
1020 {
1021 CORE_ADDR lm_addr;
1022
1023 /* Fetch the load module address for this objfile. */
1024 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1025 objfile);
1026 /* If it's 0, throw the appropriate exception. */
1027 if (lm_addr == 0)
1028 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1029 _("TLS load module not found"));
1030
1031 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
1032 }
1033 /* If an error occurred, print TLS related messages here. Otherwise,
1034 throw the error to some higher catcher. */
1035 if (ex.reason < 0)
1036 {
1037 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1038
1039 switch (ex.error)
1040 {
1041 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1042 error (_("Cannot find thread-local variables in this thread library."));
1043 break;
1044 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1045 if (objfile_is_library)
1046 error (_("Cannot find shared library `%s' in dynamic"
1047 " linker's load module list"), objfile->name);
1048 else
1049 error (_("Cannot find executable file `%s' in dynamic"
1050 " linker's load module list"), objfile->name);
1051 break;
1052 case TLS_NOT_ALLOCATED_YET_ERROR:
1053 if (objfile_is_library)
1054 error (_("The inferior has not yet allocated storage for"
1055 " thread-local variables in\n"
1056 "the shared library `%s'\n"
1057 "for %s"),
1058 objfile->name, target_pid_to_str (ptid));
1059 else
1060 error (_("The inferior has not yet allocated storage for"
1061 " thread-local variables in\n"
1062 "the executable `%s'\n"
1063 "for %s"),
1064 objfile->name, target_pid_to_str (ptid));
1065 break;
1066 case TLS_GENERIC_ERROR:
1067 if (objfile_is_library)
1068 error (_("Cannot find thread-local storage for %s, "
1069 "shared library %s:\n%s"),
1070 target_pid_to_str (ptid),
1071 objfile->name, ex.message);
1072 else
1073 error (_("Cannot find thread-local storage for %s, "
1074 "executable file %s:\n%s"),
1075 target_pid_to_str (ptid),
1076 objfile->name, ex.message);
1077 break;
1078 default:
1079 throw_exception (ex);
1080 break;
1081 }
1082 }
1083 }
1084 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1085 TLS is an ABI-specific thing. But we don't do that yet. */
1086 else
1087 error (_("Cannot find thread-local variables on this target"));
1088
1089 return addr;
1090 }
1091
1092 #undef MIN
1093 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1094
1095 /* target_read_string -- read a null terminated string, up to LEN bytes,
1096 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1097 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1098 is responsible for freeing it. Return the number of bytes successfully
1099 read. */
1100
1101 int
1102 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1103 {
1104 int tlen, origlen, offset, i;
1105 gdb_byte buf[4];
1106 int errcode = 0;
1107 char *buffer;
1108 int buffer_allocated;
1109 char *bufptr;
1110 unsigned int nbytes_read = 0;
1111
1112 gdb_assert (string);
1113
1114 /* Small for testing. */
1115 buffer_allocated = 4;
1116 buffer = xmalloc (buffer_allocated);
1117 bufptr = buffer;
1118
1119 origlen = len;
1120
1121 while (len > 0)
1122 {
1123 tlen = MIN (len, 4 - (memaddr & 3));
1124 offset = memaddr & 3;
1125
1126 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1127 if (errcode != 0)
1128 {
1129 /* The transfer request might have crossed the boundary to an
1130 unallocated region of memory. Retry the transfer, requesting
1131 a single byte. */
1132 tlen = 1;
1133 offset = 0;
1134 errcode = target_read_memory (memaddr, buf, 1);
1135 if (errcode != 0)
1136 goto done;
1137 }
1138
1139 if (bufptr - buffer + tlen > buffer_allocated)
1140 {
1141 unsigned int bytes;
1142 bytes = bufptr - buffer;
1143 buffer_allocated *= 2;
1144 buffer = xrealloc (buffer, buffer_allocated);
1145 bufptr = buffer + bytes;
1146 }
1147
1148 for (i = 0; i < tlen; i++)
1149 {
1150 *bufptr++ = buf[i + offset];
1151 if (buf[i + offset] == '\000')
1152 {
1153 nbytes_read += i + 1;
1154 goto done;
1155 }
1156 }
1157
1158 memaddr += tlen;
1159 len -= tlen;
1160 nbytes_read += tlen;
1161 }
1162 done:
1163 *string = buffer;
1164 if (errnop != NULL)
1165 *errnop = errcode;
1166 return nbytes_read;
1167 }
1168
1169 struct target_section_table *
1170 target_get_section_table (struct target_ops *target)
1171 {
1172 struct target_ops *t;
1173
1174 if (targetdebug)
1175 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1176
1177 for (t = target; t != NULL; t = t->beneath)
1178 if (t->to_get_section_table != NULL)
1179 return (*t->to_get_section_table) (t);
1180
1181 return NULL;
1182 }
1183
1184 /* Find a section containing ADDR. */
1185
1186 struct target_section *
1187 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1188 {
1189 struct target_section_table *table = target_get_section_table (target);
1190 struct target_section *secp;
1191
1192 if (table == NULL)
1193 return NULL;
1194
1195 for (secp = table->sections; secp < table->sections_end; secp++)
1196 {
1197 if (addr >= secp->addr && addr < secp->endaddr)
1198 return secp;
1199 }
1200 return NULL;
1201 }
1202
1203 /* Perform a partial memory transfer.
1204 For docs see target.h, to_xfer_partial. */
1205
1206 static LONGEST
1207 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1208 void *readbuf, const void *writebuf, ULONGEST memaddr,
1209 LONGEST len)
1210 {
1211 LONGEST res;
1212 int reg_len;
1213 struct mem_region *region;
1214 struct inferior *inf;
1215
1216 /* Zero length requests are ok and require no work. */
1217 if (len == 0)
1218 return 0;
1219
1220 /* For accesses to unmapped overlay sections, read directly from
1221 files. Must do this first, as MEMADDR may need adjustment. */
1222 if (readbuf != NULL && overlay_debugging)
1223 {
1224 struct obj_section *section = find_pc_overlay (memaddr);
1225 if (pc_in_unmapped_range (memaddr, section))
1226 {
1227 struct target_section_table *table
1228 = target_get_section_table (ops);
1229 const char *section_name = section->the_bfd_section->name;
1230 memaddr = overlay_mapped_address (memaddr, section);
1231 return section_table_xfer_memory_partial (readbuf, writebuf,
1232 memaddr, len,
1233 table->sections,
1234 table->sections_end,
1235 section_name);
1236 }
1237 }
1238
1239 /* Try the executable files, if "trust-readonly-sections" is set. */
1240 if (readbuf != NULL && trust_readonly)
1241 {
1242 struct target_section *secp;
1243 struct target_section_table *table;
1244
1245 secp = target_section_by_addr (ops, memaddr);
1246 if (secp != NULL
1247 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1248 & SEC_READONLY))
1249 {
1250 table = target_get_section_table (ops);
1251 return section_table_xfer_memory_partial (readbuf, writebuf,
1252 memaddr, len,
1253 table->sections,
1254 table->sections_end,
1255 NULL);
1256 }
1257 }
1258
1259 /* Try GDB's internal data cache. */
1260 region = lookup_mem_region (memaddr);
1261 /* region->hi == 0 means there's no upper bound. */
1262 if (memaddr + len < region->hi || region->hi == 0)
1263 reg_len = len;
1264 else
1265 reg_len = region->hi - memaddr;
1266
1267 switch (region->attrib.mode)
1268 {
1269 case MEM_RO:
1270 if (writebuf != NULL)
1271 return -1;
1272 break;
1273
1274 case MEM_WO:
1275 if (readbuf != NULL)
1276 return -1;
1277 break;
1278
1279 case MEM_FLASH:
1280 /* We only support writing to flash during "load" for now. */
1281 if (writebuf != NULL)
1282 error (_("Writing to flash memory forbidden in this context"));
1283 break;
1284
1285 case MEM_NONE:
1286 return -1;
1287 }
1288
1289 if (!ptid_equal (inferior_ptid, null_ptid))
1290 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1291 else
1292 inf = NULL;
1293
1294 if (inf != NULL
1295 && (region->attrib.cache
1296 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1297 {
1298 if (readbuf != NULL)
1299 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1300 reg_len, 0);
1301 else
1302 /* FIXME drow/2006-08-09: If we're going to preserve const
1303 correctness dcache_xfer_memory should take readbuf and
1304 writebuf. */
1305 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1306 (void *) writebuf,
1307 reg_len, 1);
1308 if (res <= 0)
1309 return -1;
1310 else
1311 {
1312 if (readbuf && !show_memory_breakpoints)
1313 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1314 return res;
1315 }
1316 }
1317
1318 /* If none of those methods found the memory we wanted, fall back
1319 to a target partial transfer. Normally a single call to
1320 to_xfer_partial is enough; if it doesn't recognize an object
1321 it will call the to_xfer_partial of the next target down.
1322 But for memory this won't do. Memory is the only target
1323 object which can be read from more than one valid target.
1324 A core file, for instance, could have some of memory but
1325 delegate other bits to the target below it. So, we must
1326 manually try all targets. */
1327
1328 do
1329 {
1330 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1331 readbuf, writebuf, memaddr, reg_len);
1332 if (res > 0)
1333 break;
1334
1335 /* We want to continue past core files to executables, but not
1336 past a running target's memory. */
1337 if (ops->to_has_all_memory (ops))
1338 break;
1339
1340 ops = ops->beneath;
1341 }
1342 while (ops != NULL);
1343
1344 if (readbuf && !show_memory_breakpoints)
1345 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1346
1347 /* Make sure the cache gets updated no matter what - if we are writing
1348 to the stack. Even if this write is not tagged as such, we still need
1349 to update the cache. */
1350
1351 if (res > 0
1352 && inf != NULL
1353 && writebuf != NULL
1354 && !region->attrib.cache
1355 && stack_cache_enabled_p
1356 && object != TARGET_OBJECT_STACK_MEMORY)
1357 {
1358 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1359 }
1360
1361 /* If we still haven't got anything, return the last error. We
1362 give up. */
1363 return res;
1364 }
1365
1366 static void
1367 restore_show_memory_breakpoints (void *arg)
1368 {
1369 show_memory_breakpoints = (uintptr_t) arg;
1370 }
1371
1372 struct cleanup *
1373 make_show_memory_breakpoints_cleanup (int show)
1374 {
1375 int current = show_memory_breakpoints;
1376 show_memory_breakpoints = show;
1377
1378 return make_cleanup (restore_show_memory_breakpoints,
1379 (void *) (uintptr_t) current);
1380 }
1381
1382 /* For docs see target.h, to_xfer_partial. */
1383
1384 static LONGEST
1385 target_xfer_partial (struct target_ops *ops,
1386 enum target_object object, const char *annex,
1387 void *readbuf, const void *writebuf,
1388 ULONGEST offset, LONGEST len)
1389 {
1390 LONGEST retval;
1391
1392 gdb_assert (ops->to_xfer_partial != NULL);
1393
1394 /* If this is a memory transfer, let the memory-specific code
1395 have a look at it instead. Memory transfers are more
1396 complicated. */
1397 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1398 retval = memory_xfer_partial (ops, object, readbuf,
1399 writebuf, offset, len);
1400 else
1401 {
1402 enum target_object raw_object = object;
1403
1404 /* If this is a raw memory transfer, request the normal
1405 memory object from other layers. */
1406 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1407 raw_object = TARGET_OBJECT_MEMORY;
1408
1409 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1410 writebuf, offset, len);
1411 }
1412
1413 if (targetdebug)
1414 {
1415 const unsigned char *myaddr = NULL;
1416
1417 fprintf_unfiltered (gdb_stdlog,
1418 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1419 ops->to_shortname,
1420 (int) object,
1421 (annex ? annex : "(null)"),
1422 host_address_to_string (readbuf),
1423 host_address_to_string (writebuf),
1424 core_addr_to_string_nz (offset),
1425 plongest (len), plongest (retval));
1426
1427 if (readbuf)
1428 myaddr = readbuf;
1429 if (writebuf)
1430 myaddr = writebuf;
1431 if (retval > 0 && myaddr != NULL)
1432 {
1433 int i;
1434
1435 fputs_unfiltered (", bytes =", gdb_stdlog);
1436 for (i = 0; i < retval; i++)
1437 {
1438 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1439 {
1440 if (targetdebug < 2 && i > 0)
1441 {
1442 fprintf_unfiltered (gdb_stdlog, " ...");
1443 break;
1444 }
1445 fprintf_unfiltered (gdb_stdlog, "\n");
1446 }
1447
1448 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1449 }
1450 }
1451
1452 fputc_unfiltered ('\n', gdb_stdlog);
1453 }
1454 return retval;
1455 }
1456
1457 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1458 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1459 if any error occurs.
1460
1461 If an error occurs, no guarantee is made about the contents of the data at
1462 MYADDR. In particular, the caller should not depend upon partial reads
1463 filling the buffer with good data. There is no way for the caller to know
1464 how much good data might have been transfered anyway. Callers that can
1465 deal with partial reads should call target_read (which will retry until
1466 it makes no progress, and then return how much was transferred). */
1467
1468 int
1469 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1470 {
1471 /* Dispatch to the topmost target, not the flattened current_target.
1472 Memory accesses check target->to_has_(all_)memory, and the
1473 flattened target doesn't inherit those. */
1474 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1475 myaddr, memaddr, len) == len)
1476 return 0;
1477 else
1478 return EIO;
1479 }
1480
1481 /* Like target_read_memory, but specify explicitly that this is a read from
1482 the target's stack. This may trigger different cache behavior. */
1483
1484 int
1485 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1486 {
1487 /* Dispatch to the topmost target, not the flattened current_target.
1488 Memory accesses check target->to_has_(all_)memory, and the
1489 flattened target doesn't inherit those. */
1490
1491 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1492 myaddr, memaddr, len) == len)
1493 return 0;
1494 else
1495 return EIO;
1496 }
1497
1498 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1499 Returns either 0 for success or an errno value if any error occurs.
1500 If an error occurs, no guarantee is made about how much data got written.
1501 Callers that can deal with partial writes should call target_write. */
1502
1503 int
1504 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1505 {
1506 /* Dispatch to the topmost target, not the flattened current_target.
1507 Memory accesses check target->to_has_(all_)memory, and the
1508 flattened target doesn't inherit those. */
1509 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1510 myaddr, memaddr, len) == len)
1511 return 0;
1512 else
1513 return EIO;
1514 }
1515
1516 /* Fetch the target's memory map. */
1517
1518 VEC(mem_region_s) *
1519 target_memory_map (void)
1520 {
1521 VEC(mem_region_s) *result;
1522 struct mem_region *last_one, *this_one;
1523 int ix;
1524 struct target_ops *t;
1525
1526 if (targetdebug)
1527 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1528
1529 for (t = current_target.beneath; t != NULL; t = t->beneath)
1530 if (t->to_memory_map != NULL)
1531 break;
1532
1533 if (t == NULL)
1534 return NULL;
1535
1536 result = t->to_memory_map (t);
1537 if (result == NULL)
1538 return NULL;
1539
1540 qsort (VEC_address (mem_region_s, result),
1541 VEC_length (mem_region_s, result),
1542 sizeof (struct mem_region), mem_region_cmp);
1543
1544 /* Check that regions do not overlap. Simultaneously assign
1545 a numbering for the "mem" commands to use to refer to
1546 each region. */
1547 last_one = NULL;
1548 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1549 {
1550 this_one->number = ix;
1551
1552 if (last_one && last_one->hi > this_one->lo)
1553 {
1554 warning (_("Overlapping regions in memory map: ignoring"));
1555 VEC_free (mem_region_s, result);
1556 return NULL;
1557 }
1558 last_one = this_one;
1559 }
1560
1561 return result;
1562 }
1563
1564 void
1565 target_flash_erase (ULONGEST address, LONGEST length)
1566 {
1567 struct target_ops *t;
1568
1569 for (t = current_target.beneath; t != NULL; t = t->beneath)
1570 if (t->to_flash_erase != NULL)
1571 {
1572 if (targetdebug)
1573 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1574 hex_string (address), phex (length, 0));
1575 t->to_flash_erase (t, address, length);
1576 return;
1577 }
1578
1579 tcomplain ();
1580 }
1581
1582 void
1583 target_flash_done (void)
1584 {
1585 struct target_ops *t;
1586
1587 for (t = current_target.beneath; t != NULL; t = t->beneath)
1588 if (t->to_flash_done != NULL)
1589 {
1590 if (targetdebug)
1591 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1592 t->to_flash_done (t);
1593 return;
1594 }
1595
1596 tcomplain ();
1597 }
1598
1599 static void
1600 show_trust_readonly (struct ui_file *file, int from_tty,
1601 struct cmd_list_element *c, const char *value)
1602 {
1603 fprintf_filtered (file, _("\
1604 Mode for reading from readonly sections is %s.\n"),
1605 value);
1606 }
1607
1608 /* More generic transfers. */
1609
1610 static LONGEST
1611 default_xfer_partial (struct target_ops *ops, enum target_object object,
1612 const char *annex, gdb_byte *readbuf,
1613 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1614 {
1615 if (object == TARGET_OBJECT_MEMORY
1616 && ops->deprecated_xfer_memory != NULL)
1617 /* If available, fall back to the target's
1618 "deprecated_xfer_memory" method. */
1619 {
1620 int xfered = -1;
1621 errno = 0;
1622 if (writebuf != NULL)
1623 {
1624 void *buffer = xmalloc (len);
1625 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1626 memcpy (buffer, writebuf, len);
1627 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1628 1/*write*/, NULL, ops);
1629 do_cleanups (cleanup);
1630 }
1631 if (readbuf != NULL)
1632 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1633 0/*read*/, NULL, ops);
1634 if (xfered > 0)
1635 return xfered;
1636 else if (xfered == 0 && errno == 0)
1637 /* "deprecated_xfer_memory" uses 0, cross checked against
1638 ERRNO as one indication of an error. */
1639 return 0;
1640 else
1641 return -1;
1642 }
1643 else if (ops->beneath != NULL)
1644 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1645 readbuf, writebuf, offset, len);
1646 else
1647 return -1;
1648 }
1649
1650 /* The xfer_partial handler for the topmost target. Unlike the default,
1651 it does not need to handle memory specially; it just passes all
1652 requests down the stack. */
1653
1654 static LONGEST
1655 current_xfer_partial (struct target_ops *ops, enum target_object object,
1656 const char *annex, gdb_byte *readbuf,
1657 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1658 {
1659 if (ops->beneath != NULL)
1660 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1661 readbuf, writebuf, offset, len);
1662 else
1663 return -1;
1664 }
1665
1666 /* Target vector read/write partial wrapper functions. */
1667
1668 static LONGEST
1669 target_read_partial (struct target_ops *ops,
1670 enum target_object object,
1671 const char *annex, gdb_byte *buf,
1672 ULONGEST offset, LONGEST len)
1673 {
1674 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1675 }
1676
1677 static LONGEST
1678 target_write_partial (struct target_ops *ops,
1679 enum target_object object,
1680 const char *annex, const gdb_byte *buf,
1681 ULONGEST offset, LONGEST len)
1682 {
1683 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1684 }
1685
1686 /* Wrappers to perform the full transfer. */
1687
1688 /* For docs on target_read see target.h. */
1689
1690 LONGEST
1691 target_read (struct target_ops *ops,
1692 enum target_object object,
1693 const char *annex, gdb_byte *buf,
1694 ULONGEST offset, LONGEST len)
1695 {
1696 LONGEST xfered = 0;
1697 while (xfered < len)
1698 {
1699 LONGEST xfer = target_read_partial (ops, object, annex,
1700 (gdb_byte *) buf + xfered,
1701 offset + xfered, len - xfered);
1702 /* Call an observer, notifying them of the xfer progress? */
1703 if (xfer == 0)
1704 return xfered;
1705 if (xfer < 0)
1706 return -1;
1707 xfered += xfer;
1708 QUIT;
1709 }
1710 return len;
1711 }
1712
1713 LONGEST
1714 target_read_until_error (struct target_ops *ops,
1715 enum target_object object,
1716 const char *annex, gdb_byte *buf,
1717 ULONGEST offset, LONGEST len)
1718 {
1719 LONGEST xfered = 0;
1720 while (xfered < len)
1721 {
1722 LONGEST xfer = target_read_partial (ops, object, annex,
1723 (gdb_byte *) buf + xfered,
1724 offset + xfered, len - xfered);
1725 /* Call an observer, notifying them of the xfer progress? */
1726 if (xfer == 0)
1727 return xfered;
1728 if (xfer < 0)
1729 {
1730 /* We've got an error. Try to read in smaller blocks. */
1731 ULONGEST start = offset + xfered;
1732 ULONGEST remaining = len - xfered;
1733 ULONGEST half;
1734
1735 /* If an attempt was made to read a random memory address,
1736 it's likely that the very first byte is not accessible.
1737 Try reading the first byte, to avoid doing log N tries
1738 below. */
1739 xfer = target_read_partial (ops, object, annex,
1740 (gdb_byte *) buf + xfered, start, 1);
1741 if (xfer <= 0)
1742 return xfered;
1743 start += 1;
1744 remaining -= 1;
1745 half = remaining/2;
1746
1747 while (half > 0)
1748 {
1749 xfer = target_read_partial (ops, object, annex,
1750 (gdb_byte *) buf + xfered,
1751 start, half);
1752 if (xfer == 0)
1753 return xfered;
1754 if (xfer < 0)
1755 {
1756 remaining = half;
1757 }
1758 else
1759 {
1760 /* We have successfully read the first half. So, the
1761 error must be in the second half. Adjust start and
1762 remaining to point at the second half. */
1763 xfered += xfer;
1764 start += xfer;
1765 remaining -= xfer;
1766 }
1767 half = remaining/2;
1768 }
1769
1770 return xfered;
1771 }
1772 xfered += xfer;
1773 QUIT;
1774 }
1775 return len;
1776 }
1777
1778 /* An alternative to target_write with progress callbacks. */
1779
1780 LONGEST
1781 target_write_with_progress (struct target_ops *ops,
1782 enum target_object object,
1783 const char *annex, const gdb_byte *buf,
1784 ULONGEST offset, LONGEST len,
1785 void (*progress) (ULONGEST, void *), void *baton)
1786 {
1787 LONGEST xfered = 0;
1788
1789 /* Give the progress callback a chance to set up. */
1790 if (progress)
1791 (*progress) (0, baton);
1792
1793 while (xfered < len)
1794 {
1795 LONGEST xfer = target_write_partial (ops, object, annex,
1796 (gdb_byte *) buf + xfered,
1797 offset + xfered, len - xfered);
1798
1799 if (xfer == 0)
1800 return xfered;
1801 if (xfer < 0)
1802 return -1;
1803
1804 if (progress)
1805 (*progress) (xfer, baton);
1806
1807 xfered += xfer;
1808 QUIT;
1809 }
1810 return len;
1811 }
1812
1813 /* For docs on target_write see target.h. */
1814
1815 LONGEST
1816 target_write (struct target_ops *ops,
1817 enum target_object object,
1818 const char *annex, const gdb_byte *buf,
1819 ULONGEST offset, LONGEST len)
1820 {
1821 return target_write_with_progress (ops, object, annex, buf, offset, len,
1822 NULL, NULL);
1823 }
1824
1825 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1826 the size of the transferred data. PADDING additional bytes are
1827 available in *BUF_P. This is a helper function for
1828 target_read_alloc; see the declaration of that function for more
1829 information. */
1830
1831 static LONGEST
1832 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1833 const char *annex, gdb_byte **buf_p, int padding)
1834 {
1835 size_t buf_alloc, buf_pos;
1836 gdb_byte *buf;
1837 LONGEST n;
1838
1839 /* This function does not have a length parameter; it reads the
1840 entire OBJECT). Also, it doesn't support objects fetched partly
1841 from one target and partly from another (in a different stratum,
1842 e.g. a core file and an executable). Both reasons make it
1843 unsuitable for reading memory. */
1844 gdb_assert (object != TARGET_OBJECT_MEMORY);
1845
1846 /* Start by reading up to 4K at a time. The target will throttle
1847 this number down if necessary. */
1848 buf_alloc = 4096;
1849 buf = xmalloc (buf_alloc);
1850 buf_pos = 0;
1851 while (1)
1852 {
1853 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1854 buf_pos, buf_alloc - buf_pos - padding);
1855 if (n < 0)
1856 {
1857 /* An error occurred. */
1858 xfree (buf);
1859 return -1;
1860 }
1861 else if (n == 0)
1862 {
1863 /* Read all there was. */
1864 if (buf_pos == 0)
1865 xfree (buf);
1866 else
1867 *buf_p = buf;
1868 return buf_pos;
1869 }
1870
1871 buf_pos += n;
1872
1873 /* If the buffer is filling up, expand it. */
1874 if (buf_alloc < buf_pos * 2)
1875 {
1876 buf_alloc *= 2;
1877 buf = xrealloc (buf, buf_alloc);
1878 }
1879
1880 QUIT;
1881 }
1882 }
1883
1884 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1885 the size of the transferred data. See the declaration in "target.h"
1886 function for more information about the return value. */
1887
1888 LONGEST
1889 target_read_alloc (struct target_ops *ops, enum target_object object,
1890 const char *annex, gdb_byte **buf_p)
1891 {
1892 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1893 }
1894
1895 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1896 returned as a string, allocated using xmalloc. If an error occurs
1897 or the transfer is unsupported, NULL is returned. Empty objects
1898 are returned as allocated but empty strings. A warning is issued
1899 if the result contains any embedded NUL bytes. */
1900
1901 char *
1902 target_read_stralloc (struct target_ops *ops, enum target_object object,
1903 const char *annex)
1904 {
1905 gdb_byte *buffer;
1906 LONGEST transferred;
1907
1908 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1909
1910 if (transferred < 0)
1911 return NULL;
1912
1913 if (transferred == 0)
1914 return xstrdup ("");
1915
1916 buffer[transferred] = 0;
1917 if (strlen (buffer) < transferred)
1918 warning (_("target object %d, annex %s, "
1919 "contained unexpected null characters"),
1920 (int) object, annex ? annex : "(none)");
1921
1922 return (char *) buffer;
1923 }
1924
1925 /* Memory transfer methods. */
1926
1927 void
1928 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1929 LONGEST len)
1930 {
1931 /* This method is used to read from an alternate, non-current
1932 target. This read must bypass the overlay support (as symbols
1933 don't match this target), and GDB's internal cache (wrong cache
1934 for this target). */
1935 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1936 != len)
1937 memory_error (EIO, addr);
1938 }
1939
1940 ULONGEST
1941 get_target_memory_unsigned (struct target_ops *ops,
1942 CORE_ADDR addr, int len, enum bfd_endian byte_order)
1943 {
1944 gdb_byte buf[sizeof (ULONGEST)];
1945
1946 gdb_assert (len <= sizeof (buf));
1947 get_target_memory (ops, addr, buf, len);
1948 return extract_unsigned_integer (buf, len, byte_order);
1949 }
1950
1951 static void
1952 target_info (char *args, int from_tty)
1953 {
1954 struct target_ops *t;
1955 int has_all_mem = 0;
1956
1957 if (symfile_objfile != NULL)
1958 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1959
1960 for (t = target_stack; t != NULL; t = t->beneath)
1961 {
1962 if (!(*t->to_has_memory) (t))
1963 continue;
1964
1965 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1966 continue;
1967 if (has_all_mem)
1968 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1969 printf_unfiltered ("%s:\n", t->to_longname);
1970 (t->to_files_info) (t);
1971 has_all_mem = (*t->to_has_all_memory) (t);
1972 }
1973 }
1974
1975 /* This function is called before any new inferior is created, e.g.
1976 by running a program, attaching, or connecting to a target.
1977 It cleans up any state from previous invocations which might
1978 change between runs. This is a subset of what target_preopen
1979 resets (things which might change between targets). */
1980
1981 void
1982 target_pre_inferior (int from_tty)
1983 {
1984 /* Clear out solib state. Otherwise the solib state of the previous
1985 inferior might have survived and is entirely wrong for the new
1986 target. This has been observed on GNU/Linux using glibc 2.3. How
1987 to reproduce:
1988
1989 bash$ ./foo&
1990 [1] 4711
1991 bash$ ./foo&
1992 [1] 4712
1993 bash$ gdb ./foo
1994 [...]
1995 (gdb) attach 4711
1996 (gdb) detach
1997 (gdb) attach 4712
1998 Cannot access memory at address 0xdeadbeef
1999 */
2000
2001 /* In some OSs, the shared library list is the same/global/shared
2002 across inferiors. If code is shared between processes, so are
2003 memory regions and features. */
2004 if (!gdbarch_has_global_solist (target_gdbarch))
2005 {
2006 no_shared_libraries (NULL, from_tty);
2007
2008 invalidate_target_mem_regions ();
2009
2010 target_clear_description ();
2011 }
2012 }
2013
2014 /* Callback for iterate_over_inferiors. Gets rid of the given
2015 inferior. */
2016
2017 static int
2018 dispose_inferior (struct inferior *inf, void *args)
2019 {
2020 struct thread_info *thread;
2021
2022 thread = any_thread_of_process (inf->pid);
2023 if (thread)
2024 {
2025 switch_to_thread (thread->ptid);
2026
2027 /* Core inferiors actually should be detached, not killed. */
2028 if (target_has_execution)
2029 target_kill ();
2030 else
2031 target_detach (NULL, 0);
2032 }
2033
2034 return 0;
2035 }
2036
2037 /* This is to be called by the open routine before it does
2038 anything. */
2039
2040 void
2041 target_preopen (int from_tty)
2042 {
2043 dont_repeat ();
2044
2045 if (have_inferiors ())
2046 {
2047 if (!from_tty
2048 || !have_live_inferiors ()
2049 || query (_("A program is being debugged already. Kill it? ")))
2050 iterate_over_inferiors (dispose_inferior, NULL);
2051 else
2052 error (_("Program not killed."));
2053 }
2054
2055 /* Calling target_kill may remove the target from the stack. But if
2056 it doesn't (which seems like a win for UDI), remove it now. */
2057 /* Leave the exec target, though. The user may be switching from a
2058 live process to a core of the same program. */
2059 pop_all_targets_above (file_stratum, 0);
2060
2061 target_pre_inferior (from_tty);
2062 }
2063
2064 /* Detach a target after doing deferred register stores. */
2065
2066 void
2067 target_detach (char *args, int from_tty)
2068 {
2069 struct target_ops* t;
2070
2071 if (gdbarch_has_global_breakpoints (target_gdbarch))
2072 /* Don't remove global breakpoints here. They're removed on
2073 disconnection from the target. */
2074 ;
2075 else
2076 /* If we're in breakpoints-always-inserted mode, have to remove
2077 them before detaching. */
2078 remove_breakpoints_pid (PIDGET (inferior_ptid));
2079
2080 prepare_for_detach ();
2081
2082 for (t = current_target.beneath; t != NULL; t = t->beneath)
2083 {
2084 if (t->to_detach != NULL)
2085 {
2086 t->to_detach (t, args, from_tty);
2087 if (targetdebug)
2088 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2089 args, from_tty);
2090 return;
2091 }
2092 }
2093
2094 internal_error (__FILE__, __LINE__, "could not find a target to detach");
2095 }
2096
2097 void
2098 target_disconnect (char *args, int from_tty)
2099 {
2100 struct target_ops *t;
2101
2102 /* If we're in breakpoints-always-inserted mode or if breakpoints
2103 are global across processes, we have to remove them before
2104 disconnecting. */
2105 remove_breakpoints ();
2106
2107 for (t = current_target.beneath; t != NULL; t = t->beneath)
2108 if (t->to_disconnect != NULL)
2109 {
2110 if (targetdebug)
2111 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2112 args, from_tty);
2113 t->to_disconnect (t, args, from_tty);
2114 return;
2115 }
2116
2117 tcomplain ();
2118 }
2119
2120 ptid_t
2121 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2122 {
2123 struct target_ops *t;
2124
2125 for (t = current_target.beneath; t != NULL; t = t->beneath)
2126 {
2127 if (t->to_wait != NULL)
2128 {
2129 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2130
2131 if (targetdebug)
2132 {
2133 char *status_string;
2134
2135 status_string = target_waitstatus_to_string (status);
2136 fprintf_unfiltered (gdb_stdlog,
2137 "target_wait (%d, status) = %d, %s\n",
2138 PIDGET (ptid), PIDGET (retval),
2139 status_string);
2140 xfree (status_string);
2141 }
2142
2143 return retval;
2144 }
2145 }
2146
2147 noprocess ();
2148 }
2149
2150 char *
2151 target_pid_to_str (ptid_t ptid)
2152 {
2153 struct target_ops *t;
2154
2155 for (t = current_target.beneath; t != NULL; t = t->beneath)
2156 {
2157 if (t->to_pid_to_str != NULL)
2158 return (*t->to_pid_to_str) (t, ptid);
2159 }
2160
2161 return normal_pid_to_str (ptid);
2162 }
2163
2164 void
2165 target_resume (ptid_t ptid, int step, enum target_signal signal)
2166 {
2167 struct target_ops *t;
2168
2169 target_dcache_invalidate ();
2170
2171 for (t = current_target.beneath; t != NULL; t = t->beneath)
2172 {
2173 if (t->to_resume != NULL)
2174 {
2175 t->to_resume (t, ptid, step, signal);
2176 if (targetdebug)
2177 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2178 PIDGET (ptid),
2179 step ? "step" : "continue",
2180 target_signal_to_name (signal));
2181
2182 set_executing (ptid, 1);
2183 set_running (ptid, 1);
2184 clear_inline_frame_state (ptid);
2185 return;
2186 }
2187 }
2188
2189 noprocess ();
2190 }
2191 /* Look through the list of possible targets for a target that can
2192 follow forks. */
2193
2194 int
2195 target_follow_fork (int follow_child)
2196 {
2197 struct target_ops *t;
2198
2199 for (t = current_target.beneath; t != NULL; t = t->beneath)
2200 {
2201 if (t->to_follow_fork != NULL)
2202 {
2203 int retval = t->to_follow_fork (t, follow_child);
2204 if (targetdebug)
2205 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2206 follow_child, retval);
2207 return retval;
2208 }
2209 }
2210
2211 /* Some target returned a fork event, but did not know how to follow it. */
2212 internal_error (__FILE__, __LINE__,
2213 "could not find a target to follow fork");
2214 }
2215
2216 void
2217 target_mourn_inferior (void)
2218 {
2219 struct target_ops *t;
2220 for (t = current_target.beneath; t != NULL; t = t->beneath)
2221 {
2222 if (t->to_mourn_inferior != NULL)
2223 {
2224 t->to_mourn_inferior (t);
2225 if (targetdebug)
2226 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2227
2228 /* We no longer need to keep handles on any of the object files.
2229 Make sure to release them to avoid unnecessarily locking any
2230 of them while we're not actually debugging. */
2231 bfd_cache_close_all ();
2232
2233 return;
2234 }
2235 }
2236
2237 internal_error (__FILE__, __LINE__,
2238 "could not find a target to follow mourn inferiour");
2239 }
2240
2241 /* Look for a target which can describe architectural features, starting
2242 from TARGET. If we find one, return its description. */
2243
2244 const struct target_desc *
2245 target_read_description (struct target_ops *target)
2246 {
2247 struct target_ops *t;
2248
2249 for (t = target; t != NULL; t = t->beneath)
2250 if (t->to_read_description != NULL)
2251 {
2252 const struct target_desc *tdesc;
2253
2254 tdesc = t->to_read_description (t);
2255 if (tdesc)
2256 return tdesc;
2257 }
2258
2259 return NULL;
2260 }
2261
2262 /* The default implementation of to_search_memory.
2263 This implements a basic search of memory, reading target memory and
2264 performing the search here (as opposed to performing the search in on the
2265 target side with, for example, gdbserver). */
2266
2267 int
2268 simple_search_memory (struct target_ops *ops,
2269 CORE_ADDR start_addr, ULONGEST search_space_len,
2270 const gdb_byte *pattern, ULONGEST pattern_len,
2271 CORE_ADDR *found_addrp)
2272 {
2273 /* NOTE: also defined in find.c testcase. */
2274 #define SEARCH_CHUNK_SIZE 16000
2275 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2276 /* Buffer to hold memory contents for searching. */
2277 gdb_byte *search_buf;
2278 unsigned search_buf_size;
2279 struct cleanup *old_cleanups;
2280
2281 search_buf_size = chunk_size + pattern_len - 1;
2282
2283 /* No point in trying to allocate a buffer larger than the search space. */
2284 if (search_space_len < search_buf_size)
2285 search_buf_size = search_space_len;
2286
2287 search_buf = malloc (search_buf_size);
2288 if (search_buf == NULL)
2289 error (_("Unable to allocate memory to perform the search."));
2290 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2291
2292 /* Prime the search buffer. */
2293
2294 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2295 search_buf, start_addr, search_buf_size) != search_buf_size)
2296 {
2297 warning (_("Unable to access target memory at %s, halting search."),
2298 hex_string (start_addr));
2299 do_cleanups (old_cleanups);
2300 return -1;
2301 }
2302
2303 /* Perform the search.
2304
2305 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2306 When we've scanned N bytes we copy the trailing bytes to the start and
2307 read in another N bytes. */
2308
2309 while (search_space_len >= pattern_len)
2310 {
2311 gdb_byte *found_ptr;
2312 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2313
2314 found_ptr = memmem (search_buf, nr_search_bytes,
2315 pattern, pattern_len);
2316
2317 if (found_ptr != NULL)
2318 {
2319 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2320 *found_addrp = found_addr;
2321 do_cleanups (old_cleanups);
2322 return 1;
2323 }
2324
2325 /* Not found in this chunk, skip to next chunk. */
2326
2327 /* Don't let search_space_len wrap here, it's unsigned. */
2328 if (search_space_len >= chunk_size)
2329 search_space_len -= chunk_size;
2330 else
2331 search_space_len = 0;
2332
2333 if (search_space_len >= pattern_len)
2334 {
2335 unsigned keep_len = search_buf_size - chunk_size;
2336 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2337 int nr_to_read;
2338
2339 /* Copy the trailing part of the previous iteration to the front
2340 of the buffer for the next iteration. */
2341 gdb_assert (keep_len == pattern_len - 1);
2342 memcpy (search_buf, search_buf + chunk_size, keep_len);
2343
2344 nr_to_read = min (search_space_len - keep_len, chunk_size);
2345
2346 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2347 search_buf + keep_len, read_addr,
2348 nr_to_read) != nr_to_read)
2349 {
2350 warning (_("Unable to access target memory at %s, halting search."),
2351 hex_string (read_addr));
2352 do_cleanups (old_cleanups);
2353 return -1;
2354 }
2355
2356 start_addr += chunk_size;
2357 }
2358 }
2359
2360 /* Not found. */
2361
2362 do_cleanups (old_cleanups);
2363 return 0;
2364 }
2365
2366 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2367 sequence of bytes in PATTERN with length PATTERN_LEN.
2368
2369 The result is 1 if found, 0 if not found, and -1 if there was an error
2370 requiring halting of the search (e.g. memory read error).
2371 If the pattern is found the address is recorded in FOUND_ADDRP. */
2372
2373 int
2374 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2375 const gdb_byte *pattern, ULONGEST pattern_len,
2376 CORE_ADDR *found_addrp)
2377 {
2378 struct target_ops *t;
2379 int found;
2380
2381 /* We don't use INHERIT to set current_target.to_search_memory,
2382 so we have to scan the target stack and handle targetdebug
2383 ourselves. */
2384
2385 if (targetdebug)
2386 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2387 hex_string (start_addr));
2388
2389 for (t = current_target.beneath; t != NULL; t = t->beneath)
2390 if (t->to_search_memory != NULL)
2391 break;
2392
2393 if (t != NULL)
2394 {
2395 found = t->to_search_memory (t, start_addr, search_space_len,
2396 pattern, pattern_len, found_addrp);
2397 }
2398 else
2399 {
2400 /* If a special version of to_search_memory isn't available, use the
2401 simple version. */
2402 found = simple_search_memory (current_target.beneath,
2403 start_addr, search_space_len,
2404 pattern, pattern_len, found_addrp);
2405 }
2406
2407 if (targetdebug)
2408 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2409
2410 return found;
2411 }
2412
2413 /* Look through the currently pushed targets. If none of them will
2414 be able to restart the currently running process, issue an error
2415 message. */
2416
2417 void
2418 target_require_runnable (void)
2419 {
2420 struct target_ops *t;
2421
2422 for (t = target_stack; t != NULL; t = t->beneath)
2423 {
2424 /* If this target knows how to create a new program, then
2425 assume we will still be able to after killing the current
2426 one. Either killing and mourning will not pop T, or else
2427 find_default_run_target will find it again. */
2428 if (t->to_create_inferior != NULL)
2429 return;
2430
2431 /* Do not worry about thread_stratum targets that can not
2432 create inferiors. Assume they will be pushed again if
2433 necessary, and continue to the process_stratum. */
2434 if (t->to_stratum == thread_stratum
2435 || t->to_stratum == arch_stratum)
2436 continue;
2437
2438 error (_("\
2439 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2440 t->to_shortname);
2441 }
2442
2443 /* This function is only called if the target is running. In that
2444 case there should have been a process_stratum target and it
2445 should either know how to create inferiors, or not... */
2446 internal_error (__FILE__, __LINE__, "No targets found");
2447 }
2448
2449 /* Look through the list of possible targets for a target that can
2450 execute a run or attach command without any other data. This is
2451 used to locate the default process stratum.
2452
2453 If DO_MESG is not NULL, the result is always valid (error() is
2454 called for errors); else, return NULL on error. */
2455
2456 static struct target_ops *
2457 find_default_run_target (char *do_mesg)
2458 {
2459 struct target_ops **t;
2460 struct target_ops *runable = NULL;
2461 int count;
2462
2463 count = 0;
2464
2465 for (t = target_structs; t < target_structs + target_struct_size;
2466 ++t)
2467 {
2468 if ((*t)->to_can_run && target_can_run (*t))
2469 {
2470 runable = *t;
2471 ++count;
2472 }
2473 }
2474
2475 if (count != 1)
2476 {
2477 if (do_mesg)
2478 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2479 else
2480 return NULL;
2481 }
2482
2483 return runable;
2484 }
2485
2486 void
2487 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2488 {
2489 struct target_ops *t;
2490
2491 t = find_default_run_target ("attach");
2492 (t->to_attach) (t, args, from_tty);
2493 return;
2494 }
2495
2496 void
2497 find_default_create_inferior (struct target_ops *ops,
2498 char *exec_file, char *allargs, char **env,
2499 int from_tty)
2500 {
2501 struct target_ops *t;
2502
2503 t = find_default_run_target ("run");
2504 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2505 return;
2506 }
2507
2508 static int
2509 find_default_can_async_p (void)
2510 {
2511 struct target_ops *t;
2512
2513 /* This may be called before the target is pushed on the stack;
2514 look for the default process stratum. If there's none, gdb isn't
2515 configured with a native debugger, and target remote isn't
2516 connected yet. */
2517 t = find_default_run_target (NULL);
2518 if (t && t->to_can_async_p)
2519 return (t->to_can_async_p) ();
2520 return 0;
2521 }
2522
2523 static int
2524 find_default_is_async_p (void)
2525 {
2526 struct target_ops *t;
2527
2528 /* This may be called before the target is pushed on the stack;
2529 look for the default process stratum. If there's none, gdb isn't
2530 configured with a native debugger, and target remote isn't
2531 connected yet. */
2532 t = find_default_run_target (NULL);
2533 if (t && t->to_is_async_p)
2534 return (t->to_is_async_p) ();
2535 return 0;
2536 }
2537
2538 static int
2539 find_default_supports_non_stop (void)
2540 {
2541 struct target_ops *t;
2542
2543 t = find_default_run_target (NULL);
2544 if (t && t->to_supports_non_stop)
2545 return (t->to_supports_non_stop) ();
2546 return 0;
2547 }
2548
2549 int
2550 target_supports_non_stop (void)
2551 {
2552 struct target_ops *t;
2553 for (t = &current_target; t != NULL; t = t->beneath)
2554 if (t->to_supports_non_stop)
2555 return t->to_supports_non_stop ();
2556
2557 return 0;
2558 }
2559
2560
2561 char *
2562 target_get_osdata (const char *type)
2563 {
2564 char *document;
2565 struct target_ops *t;
2566
2567 /* If we're already connected to something that can get us OS
2568 related data, use it. Otherwise, try using the native
2569 target. */
2570 if (current_target.to_stratum >= process_stratum)
2571 t = current_target.beneath;
2572 else
2573 t = find_default_run_target ("get OS data");
2574
2575 if (!t)
2576 return NULL;
2577
2578 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2579 }
2580
2581 /* Determine the current address space of thread PTID. */
2582
2583 struct address_space *
2584 target_thread_address_space (ptid_t ptid)
2585 {
2586 struct address_space *aspace;
2587 struct inferior *inf;
2588 struct target_ops *t;
2589
2590 for (t = current_target.beneath; t != NULL; t = t->beneath)
2591 {
2592 if (t->to_thread_address_space != NULL)
2593 {
2594 aspace = t->to_thread_address_space (t, ptid);
2595 gdb_assert (aspace);
2596
2597 if (targetdebug)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "target_thread_address_space (%s) = %d\n",
2600 target_pid_to_str (ptid),
2601 address_space_num (aspace));
2602 return aspace;
2603 }
2604 }
2605
2606 /* Fall-back to the "main" address space of the inferior. */
2607 inf = find_inferior_pid (ptid_get_pid (ptid));
2608
2609 if (inf == NULL || inf->aspace == NULL)
2610 internal_error (__FILE__, __LINE__, "\
2611 Can't determine the current address space of thread %s\n",
2612 target_pid_to_str (ptid));
2613
2614 return inf->aspace;
2615 }
2616
2617 static int
2618 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2619 {
2620 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2621 }
2622
2623 static int
2624 default_watchpoint_addr_within_range (struct target_ops *target,
2625 CORE_ADDR addr,
2626 CORE_ADDR start, int length)
2627 {
2628 return addr >= start && addr < start + length;
2629 }
2630
2631 static struct gdbarch *
2632 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2633 {
2634 return target_gdbarch;
2635 }
2636
2637 static int
2638 return_zero (void)
2639 {
2640 return 0;
2641 }
2642
2643 static int
2644 return_one (void)
2645 {
2646 return 1;
2647 }
2648
2649 static int
2650 return_minus_one (void)
2651 {
2652 return -1;
2653 }
2654
2655 /* Find a single runnable target in the stack and return it. If for
2656 some reason there is more than one, return NULL. */
2657
2658 struct target_ops *
2659 find_run_target (void)
2660 {
2661 struct target_ops **t;
2662 struct target_ops *runable = NULL;
2663 int count;
2664
2665 count = 0;
2666
2667 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2668 {
2669 if ((*t)->to_can_run && target_can_run (*t))
2670 {
2671 runable = *t;
2672 ++count;
2673 }
2674 }
2675
2676 return (count == 1 ? runable : NULL);
2677 }
2678
2679 /* Find a single core_stratum target in the list of targets and return it.
2680 If for some reason there is more than one, return NULL. */
2681
2682 struct target_ops *
2683 find_core_target (void)
2684 {
2685 struct target_ops **t;
2686 struct target_ops *runable = NULL;
2687 int count;
2688
2689 count = 0;
2690
2691 for (t = target_structs; t < target_structs + target_struct_size;
2692 ++t)
2693 {
2694 if ((*t)->to_stratum == core_stratum)
2695 {
2696 runable = *t;
2697 ++count;
2698 }
2699 }
2700
2701 return (count == 1 ? runable : NULL);
2702 }
2703
2704 /*
2705 * Find the next target down the stack from the specified target.
2706 */
2707
2708 struct target_ops *
2709 find_target_beneath (struct target_ops *t)
2710 {
2711 return t->beneath;
2712 }
2713
2714 \f
2715 /* The inferior process has died. Long live the inferior! */
2716
2717 void
2718 generic_mourn_inferior (void)
2719 {
2720 ptid_t ptid;
2721
2722 ptid = inferior_ptid;
2723 inferior_ptid = null_ptid;
2724
2725 if (!ptid_equal (ptid, null_ptid))
2726 {
2727 int pid = ptid_get_pid (ptid);
2728 exit_inferior (pid);
2729 }
2730
2731 breakpoint_init_inferior (inf_exited);
2732 registers_changed ();
2733
2734 reopen_exec_file ();
2735 reinit_frame_cache ();
2736
2737 if (deprecated_detach_hook)
2738 deprecated_detach_hook ();
2739 }
2740 \f
2741 /* Helper function for child_wait and the derivatives of child_wait.
2742 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2743 translation of that in OURSTATUS. */
2744 void
2745 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2746 {
2747 if (WIFEXITED (hoststatus))
2748 {
2749 ourstatus->kind = TARGET_WAITKIND_EXITED;
2750 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2751 }
2752 else if (!WIFSTOPPED (hoststatus))
2753 {
2754 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2755 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2756 }
2757 else
2758 {
2759 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2760 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2761 }
2762 }
2763 \f
2764 /* Convert a normal process ID to a string. Returns the string in a
2765 static buffer. */
2766
2767 char *
2768 normal_pid_to_str (ptid_t ptid)
2769 {
2770 static char buf[32];
2771
2772 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2773 return buf;
2774 }
2775
2776 static char *
2777 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2778 {
2779 return normal_pid_to_str (ptid);
2780 }
2781
2782 /* Error-catcher for target_find_memory_regions. */
2783 static int
2784 dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2785 {
2786 error (_("Command not implemented for this target."));
2787 return 0;
2788 }
2789
2790 /* Error-catcher for target_make_corefile_notes. */
2791 static char *
2792 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2793 {
2794 error (_("Command not implemented for this target."));
2795 return NULL;
2796 }
2797
2798 /* Error-catcher for target_get_bookmark. */
2799 static gdb_byte *
2800 dummy_get_bookmark (char *ignore1, int ignore2)
2801 {
2802 tcomplain ();
2803 return NULL;
2804 }
2805
2806 /* Error-catcher for target_goto_bookmark. */
2807 static void
2808 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
2809 {
2810 tcomplain ();
2811 }
2812
2813 /* Set up the handful of non-empty slots needed by the dummy target
2814 vector. */
2815
2816 static void
2817 init_dummy_target (void)
2818 {
2819 dummy_target.to_shortname = "None";
2820 dummy_target.to_longname = "None";
2821 dummy_target.to_doc = "";
2822 dummy_target.to_attach = find_default_attach;
2823 dummy_target.to_detach =
2824 (void (*)(struct target_ops *, char *, int))target_ignore;
2825 dummy_target.to_create_inferior = find_default_create_inferior;
2826 dummy_target.to_can_async_p = find_default_can_async_p;
2827 dummy_target.to_is_async_p = find_default_is_async_p;
2828 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2829 dummy_target.to_pid_to_str = dummy_pid_to_str;
2830 dummy_target.to_stratum = dummy_stratum;
2831 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2832 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2833 dummy_target.to_get_bookmark = dummy_get_bookmark;
2834 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
2835 dummy_target.to_xfer_partial = default_xfer_partial;
2836 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
2837 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
2838 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
2839 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
2840 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
2841 dummy_target.to_magic = OPS_MAGIC;
2842 }
2843 \f
2844 static void
2845 debug_to_open (char *args, int from_tty)
2846 {
2847 debug_target.to_open (args, from_tty);
2848
2849 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2850 }
2851
2852 void
2853 target_close (struct target_ops *targ, int quitting)
2854 {
2855 if (targ->to_xclose != NULL)
2856 targ->to_xclose (targ, quitting);
2857 else if (targ->to_close != NULL)
2858 targ->to_close (quitting);
2859
2860 if (targetdebug)
2861 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2862 }
2863
2864 void
2865 target_attach (char *args, int from_tty)
2866 {
2867 struct target_ops *t;
2868 for (t = current_target.beneath; t != NULL; t = t->beneath)
2869 {
2870 if (t->to_attach != NULL)
2871 {
2872 t->to_attach (t, args, from_tty);
2873 if (targetdebug)
2874 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2875 args, from_tty);
2876 return;
2877 }
2878 }
2879
2880 internal_error (__FILE__, __LINE__,
2881 "could not find a target to attach");
2882 }
2883
2884 int
2885 target_thread_alive (ptid_t ptid)
2886 {
2887 struct target_ops *t;
2888 for (t = current_target.beneath; t != NULL; t = t->beneath)
2889 {
2890 if (t->to_thread_alive != NULL)
2891 {
2892 int retval;
2893
2894 retval = t->to_thread_alive (t, ptid);
2895 if (targetdebug)
2896 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2897 PIDGET (ptid), retval);
2898
2899 return retval;
2900 }
2901 }
2902
2903 return 0;
2904 }
2905
2906 void
2907 target_find_new_threads (void)
2908 {
2909 struct target_ops *t;
2910 for (t = current_target.beneath; t != NULL; t = t->beneath)
2911 {
2912 if (t->to_find_new_threads != NULL)
2913 {
2914 t->to_find_new_threads (t);
2915 if (targetdebug)
2916 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
2917
2918 return;
2919 }
2920 }
2921 }
2922
2923 static void
2924 debug_to_post_attach (int pid)
2925 {
2926 debug_target.to_post_attach (pid);
2927
2928 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2929 }
2930
2931 /* Return a pretty printed form of target_waitstatus.
2932 Space for the result is malloc'd, caller must free. */
2933
2934 char *
2935 target_waitstatus_to_string (const struct target_waitstatus *ws)
2936 {
2937 const char *kind_str = "status->kind = ";
2938
2939 switch (ws->kind)
2940 {
2941 case TARGET_WAITKIND_EXITED:
2942 return xstrprintf ("%sexited, status = %d",
2943 kind_str, ws->value.integer);
2944 case TARGET_WAITKIND_STOPPED:
2945 return xstrprintf ("%sstopped, signal = %s",
2946 kind_str, target_signal_to_name (ws->value.sig));
2947 case TARGET_WAITKIND_SIGNALLED:
2948 return xstrprintf ("%ssignalled, signal = %s",
2949 kind_str, target_signal_to_name (ws->value.sig));
2950 case TARGET_WAITKIND_LOADED:
2951 return xstrprintf ("%sloaded", kind_str);
2952 case TARGET_WAITKIND_FORKED:
2953 return xstrprintf ("%sforked", kind_str);
2954 case TARGET_WAITKIND_VFORKED:
2955 return xstrprintf ("%svforked", kind_str);
2956 case TARGET_WAITKIND_EXECD:
2957 return xstrprintf ("%sexecd", kind_str);
2958 case TARGET_WAITKIND_SYSCALL_ENTRY:
2959 return xstrprintf ("%sentered syscall", kind_str);
2960 case TARGET_WAITKIND_SYSCALL_RETURN:
2961 return xstrprintf ("%sexited syscall", kind_str);
2962 case TARGET_WAITKIND_SPURIOUS:
2963 return xstrprintf ("%sspurious", kind_str);
2964 case TARGET_WAITKIND_IGNORE:
2965 return xstrprintf ("%signore", kind_str);
2966 case TARGET_WAITKIND_NO_HISTORY:
2967 return xstrprintf ("%sno-history", kind_str);
2968 default:
2969 return xstrprintf ("%sunknown???", kind_str);
2970 }
2971 }
2972
2973 static void
2974 debug_print_register (const char * func,
2975 struct regcache *regcache, int regno)
2976 {
2977 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2978 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2979 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2980 && gdbarch_register_name (gdbarch, regno) != NULL
2981 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2982 fprintf_unfiltered (gdb_stdlog, "(%s)",
2983 gdbarch_register_name (gdbarch, regno));
2984 else
2985 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2986 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2987 {
2988 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2989 int i, size = register_size (gdbarch, regno);
2990 unsigned char buf[MAX_REGISTER_SIZE];
2991 regcache_raw_collect (regcache, regno, buf);
2992 fprintf_unfiltered (gdb_stdlog, " = ");
2993 for (i = 0; i < size; i++)
2994 {
2995 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2996 }
2997 if (size <= sizeof (LONGEST))
2998 {
2999 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3000 fprintf_unfiltered (gdb_stdlog, " %s %s",
3001 core_addr_to_string_nz (val), plongest (val));
3002 }
3003 }
3004 fprintf_unfiltered (gdb_stdlog, "\n");
3005 }
3006
3007 void
3008 target_fetch_registers (struct regcache *regcache, int regno)
3009 {
3010 struct target_ops *t;
3011 for (t = current_target.beneath; t != NULL; t = t->beneath)
3012 {
3013 if (t->to_fetch_registers != NULL)
3014 {
3015 t->to_fetch_registers (t, regcache, regno);
3016 if (targetdebug)
3017 debug_print_register ("target_fetch_registers", regcache, regno);
3018 return;
3019 }
3020 }
3021 }
3022
3023 void
3024 target_store_registers (struct regcache *regcache, int regno)
3025 {
3026
3027 struct target_ops *t;
3028 for (t = current_target.beneath; t != NULL; t = t->beneath)
3029 {
3030 if (t->to_store_registers != NULL)
3031 {
3032 t->to_store_registers (t, regcache, regno);
3033 if (targetdebug)
3034 {
3035 debug_print_register ("target_store_registers", regcache, regno);
3036 }
3037 return;
3038 }
3039 }
3040
3041 noprocess ();
3042 }
3043
3044 int
3045 target_core_of_thread (ptid_t ptid)
3046 {
3047 struct target_ops *t;
3048
3049 for (t = current_target.beneath; t != NULL; t = t->beneath)
3050 {
3051 if (t->to_core_of_thread != NULL)
3052 {
3053 int retval = t->to_core_of_thread (t, ptid);
3054 if (targetdebug)
3055 fprintf_unfiltered (gdb_stdlog, "target_core_of_thread (%d) = %d\n",
3056 PIDGET (ptid), retval);
3057 return retval;
3058 }
3059 }
3060
3061 return -1;
3062 }
3063
3064 static void
3065 debug_to_prepare_to_store (struct regcache *regcache)
3066 {
3067 debug_target.to_prepare_to_store (regcache);
3068
3069 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3070 }
3071
3072 static int
3073 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3074 int write, struct mem_attrib *attrib,
3075 struct target_ops *target)
3076 {
3077 int retval;
3078
3079 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3080 attrib, target);
3081
3082 fprintf_unfiltered (gdb_stdlog,
3083 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3084 paddress (target_gdbarch, memaddr), len,
3085 write ? "write" : "read", retval);
3086
3087 if (retval > 0)
3088 {
3089 int i;
3090
3091 fputs_unfiltered (", bytes =", gdb_stdlog);
3092 for (i = 0; i < retval; i++)
3093 {
3094 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3095 {
3096 if (targetdebug < 2 && i > 0)
3097 {
3098 fprintf_unfiltered (gdb_stdlog, " ...");
3099 break;
3100 }
3101 fprintf_unfiltered (gdb_stdlog, "\n");
3102 }
3103
3104 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3105 }
3106 }
3107
3108 fputc_unfiltered ('\n', gdb_stdlog);
3109
3110 return retval;
3111 }
3112
3113 static void
3114 debug_to_files_info (struct target_ops *target)
3115 {
3116 debug_target.to_files_info (target);
3117
3118 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3119 }
3120
3121 static int
3122 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3123 struct bp_target_info *bp_tgt)
3124 {
3125 int retval;
3126
3127 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3128
3129 fprintf_unfiltered (gdb_stdlog,
3130 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
3131 (unsigned long) bp_tgt->placed_address,
3132 (unsigned long) retval);
3133 return retval;
3134 }
3135
3136 static int
3137 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3138 struct bp_target_info *bp_tgt)
3139 {
3140 int retval;
3141
3142 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3143
3144 fprintf_unfiltered (gdb_stdlog,
3145 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
3146 (unsigned long) bp_tgt->placed_address,
3147 (unsigned long) retval);
3148 return retval;
3149 }
3150
3151 static int
3152 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3153 {
3154 int retval;
3155
3156 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3157
3158 fprintf_unfiltered (gdb_stdlog,
3159 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3160 (unsigned long) type,
3161 (unsigned long) cnt,
3162 (unsigned long) from_tty,
3163 (unsigned long) retval);
3164 return retval;
3165 }
3166
3167 static int
3168 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3169 {
3170 CORE_ADDR retval;
3171
3172 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3173
3174 fprintf_unfiltered (gdb_stdlog,
3175 "target_region_ok_for_hw_watchpoint (%ld, %ld) = 0x%lx\n",
3176 (unsigned long) addr,
3177 (unsigned long) len,
3178 (unsigned long) retval);
3179 return retval;
3180 }
3181
3182 static int
3183 debug_to_stopped_by_watchpoint (void)
3184 {
3185 int retval;
3186
3187 retval = debug_target.to_stopped_by_watchpoint ();
3188
3189 fprintf_unfiltered (gdb_stdlog,
3190 "target_stopped_by_watchpoint () = %ld\n",
3191 (unsigned long) retval);
3192 return retval;
3193 }
3194
3195 static int
3196 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3197 {
3198 int retval;
3199
3200 retval = debug_target.to_stopped_data_address (target, addr);
3201
3202 fprintf_unfiltered (gdb_stdlog,
3203 "target_stopped_data_address ([0x%lx]) = %ld\n",
3204 (unsigned long)*addr,
3205 (unsigned long)retval);
3206 return retval;
3207 }
3208
3209 static int
3210 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3211 CORE_ADDR addr,
3212 CORE_ADDR start, int length)
3213 {
3214 int retval;
3215
3216 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3217 start, length);
3218
3219 fprintf_filtered (gdb_stdlog,
3220 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
3221 (unsigned long) addr, (unsigned long) start, length,
3222 retval);
3223 return retval;
3224 }
3225
3226 static int
3227 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3228 struct bp_target_info *bp_tgt)
3229 {
3230 int retval;
3231
3232 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3233
3234 fprintf_unfiltered (gdb_stdlog,
3235 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
3236 (unsigned long) bp_tgt->placed_address,
3237 (unsigned long) retval);
3238 return retval;
3239 }
3240
3241 static int
3242 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3243 struct bp_target_info *bp_tgt)
3244 {
3245 int retval;
3246
3247 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3248
3249 fprintf_unfiltered (gdb_stdlog,
3250 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
3251 (unsigned long) bp_tgt->placed_address,
3252 (unsigned long) retval);
3253 return retval;
3254 }
3255
3256 static int
3257 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
3258 {
3259 int retval;
3260
3261 retval = debug_target.to_insert_watchpoint (addr, len, type);
3262
3263 fprintf_unfiltered (gdb_stdlog,
3264 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
3265 (unsigned long) addr, len, type, (unsigned long) retval);
3266 return retval;
3267 }
3268
3269 static int
3270 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
3271 {
3272 int retval;
3273
3274 retval = debug_target.to_remove_watchpoint (addr, len, type);
3275
3276 fprintf_unfiltered (gdb_stdlog,
3277 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
3278 (unsigned long) addr, len, type, (unsigned long) retval);
3279 return retval;
3280 }
3281
3282 static void
3283 debug_to_terminal_init (void)
3284 {
3285 debug_target.to_terminal_init ();
3286
3287 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3288 }
3289
3290 static void
3291 debug_to_terminal_inferior (void)
3292 {
3293 debug_target.to_terminal_inferior ();
3294
3295 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3296 }
3297
3298 static void
3299 debug_to_terminal_ours_for_output (void)
3300 {
3301 debug_target.to_terminal_ours_for_output ();
3302
3303 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3304 }
3305
3306 static void
3307 debug_to_terminal_ours (void)
3308 {
3309 debug_target.to_terminal_ours ();
3310
3311 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3312 }
3313
3314 static void
3315 debug_to_terminal_save_ours (void)
3316 {
3317 debug_target.to_terminal_save_ours ();
3318
3319 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3320 }
3321
3322 static void
3323 debug_to_terminal_info (char *arg, int from_tty)
3324 {
3325 debug_target.to_terminal_info (arg, from_tty);
3326
3327 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3328 from_tty);
3329 }
3330
3331 static void
3332 debug_to_load (char *args, int from_tty)
3333 {
3334 debug_target.to_load (args, from_tty);
3335
3336 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3337 }
3338
3339 static int
3340 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3341 {
3342 int retval;
3343
3344 retval = debug_target.to_lookup_symbol (name, addrp);
3345
3346 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3347
3348 return retval;
3349 }
3350
3351 static void
3352 debug_to_post_startup_inferior (ptid_t ptid)
3353 {
3354 debug_target.to_post_startup_inferior (ptid);
3355
3356 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3357 PIDGET (ptid));
3358 }
3359
3360 static void
3361 debug_to_acknowledge_created_inferior (int pid)
3362 {
3363 debug_target.to_acknowledge_created_inferior (pid);
3364
3365 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3366 pid);
3367 }
3368
3369 static void
3370 debug_to_insert_fork_catchpoint (int pid)
3371 {
3372 debug_target.to_insert_fork_catchpoint (pid);
3373
3374 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3375 pid);
3376 }
3377
3378 static int
3379 debug_to_remove_fork_catchpoint (int pid)
3380 {
3381 int retval;
3382
3383 retval = debug_target.to_remove_fork_catchpoint (pid);
3384
3385 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3386 pid, retval);
3387
3388 return retval;
3389 }
3390
3391 static void
3392 debug_to_insert_vfork_catchpoint (int pid)
3393 {
3394 debug_target.to_insert_vfork_catchpoint (pid);
3395
3396 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3397 pid);
3398 }
3399
3400 static int
3401 debug_to_remove_vfork_catchpoint (int pid)
3402 {
3403 int retval;
3404
3405 retval = debug_target.to_remove_vfork_catchpoint (pid);
3406
3407 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3408 pid, retval);
3409
3410 return retval;
3411 }
3412
3413 static void
3414 debug_to_insert_exec_catchpoint (int pid)
3415 {
3416 debug_target.to_insert_exec_catchpoint (pid);
3417
3418 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3419 pid);
3420 }
3421
3422 static int
3423 debug_to_remove_exec_catchpoint (int pid)
3424 {
3425 int retval;
3426
3427 retval = debug_target.to_remove_exec_catchpoint (pid);
3428
3429 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3430 pid, retval);
3431
3432 return retval;
3433 }
3434
3435 static int
3436 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3437 {
3438 int has_exited;
3439
3440 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3441
3442 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3443 pid, wait_status, *exit_status, has_exited);
3444
3445 return has_exited;
3446 }
3447
3448 static int
3449 debug_to_can_run (void)
3450 {
3451 int retval;
3452
3453 retval = debug_target.to_can_run ();
3454
3455 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3456
3457 return retval;
3458 }
3459
3460 static void
3461 debug_to_notice_signals (ptid_t ptid)
3462 {
3463 debug_target.to_notice_signals (ptid);
3464
3465 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3466 PIDGET (ptid));
3467 }
3468
3469 static struct gdbarch *
3470 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3471 {
3472 struct gdbarch *retval;
3473
3474 retval = debug_target.to_thread_architecture (ops, ptid);
3475
3476 fprintf_unfiltered (gdb_stdlog, "target_thread_architecture (%s) = %s [%s]\n",
3477 target_pid_to_str (ptid), host_address_to_string (retval),
3478 gdbarch_bfd_arch_info (retval)->printable_name);
3479 return retval;
3480 }
3481
3482 static void
3483 debug_to_stop (ptid_t ptid)
3484 {
3485 debug_target.to_stop (ptid);
3486
3487 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3488 target_pid_to_str (ptid));
3489 }
3490
3491 static void
3492 debug_to_rcmd (char *command,
3493 struct ui_file *outbuf)
3494 {
3495 debug_target.to_rcmd (command, outbuf);
3496 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3497 }
3498
3499 static char *
3500 debug_to_pid_to_exec_file (int pid)
3501 {
3502 char *exec_file;
3503
3504 exec_file = debug_target.to_pid_to_exec_file (pid);
3505
3506 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3507 pid, exec_file);
3508
3509 return exec_file;
3510 }
3511
3512 static void
3513 setup_target_debug (void)
3514 {
3515 memcpy (&debug_target, &current_target, sizeof debug_target);
3516
3517 current_target.to_open = debug_to_open;
3518 current_target.to_post_attach = debug_to_post_attach;
3519 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3520 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3521 current_target.to_files_info = debug_to_files_info;
3522 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3523 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3524 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3525 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3526 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3527 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3528 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3529 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3530 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3531 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3532 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3533 current_target.to_terminal_init = debug_to_terminal_init;
3534 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3535 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3536 current_target.to_terminal_ours = debug_to_terminal_ours;
3537 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3538 current_target.to_terminal_info = debug_to_terminal_info;
3539 current_target.to_load = debug_to_load;
3540 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3541 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3542 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3543 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3544 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3545 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3546 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3547 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3548 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3549 current_target.to_has_exited = debug_to_has_exited;
3550 current_target.to_can_run = debug_to_can_run;
3551 current_target.to_notice_signals = debug_to_notice_signals;
3552 current_target.to_stop = debug_to_stop;
3553 current_target.to_rcmd = debug_to_rcmd;
3554 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3555 current_target.to_thread_architecture = debug_to_thread_architecture;
3556 }
3557 \f
3558
3559 static char targ_desc[] =
3560 "Names of targets and files being debugged.\n\
3561 Shows the entire stack of targets currently in use (including the exec-file,\n\
3562 core-file, and process, if any), as well as the symbol file name.";
3563
3564 static void
3565 do_monitor_command (char *cmd,
3566 int from_tty)
3567 {
3568 if ((current_target.to_rcmd
3569 == (void (*) (char *, struct ui_file *)) tcomplain)
3570 || (current_target.to_rcmd == debug_to_rcmd
3571 && (debug_target.to_rcmd
3572 == (void (*) (char *, struct ui_file *)) tcomplain)))
3573 error (_("\"monitor\" command not supported by this target."));
3574 target_rcmd (cmd, gdb_stdtarg);
3575 }
3576
3577 /* Print the name of each layers of our target stack. */
3578
3579 static void
3580 maintenance_print_target_stack (char *cmd, int from_tty)
3581 {
3582 struct target_ops *t;
3583
3584 printf_filtered (_("The current target stack is:\n"));
3585
3586 for (t = target_stack; t != NULL; t = t->beneath)
3587 {
3588 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3589 }
3590 }
3591
3592 /* Controls if async mode is permitted. */
3593 int target_async_permitted = 0;
3594
3595 /* The set command writes to this variable. If the inferior is
3596 executing, linux_nat_async_permitted is *not* updated. */
3597 static int target_async_permitted_1 = 0;
3598
3599 static void
3600 set_maintenance_target_async_permitted (char *args, int from_tty,
3601 struct cmd_list_element *c)
3602 {
3603 if (have_live_inferiors ())
3604 {
3605 target_async_permitted_1 = target_async_permitted;
3606 error (_("Cannot change this setting while the inferior is running."));
3607 }
3608
3609 target_async_permitted = target_async_permitted_1;
3610 }
3611
3612 static void
3613 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3614 struct cmd_list_element *c,
3615 const char *value)
3616 {
3617 fprintf_filtered (file, _("\
3618 Controlling the inferior in asynchronous mode is %s.\n"), value);
3619 }
3620
3621 void
3622 initialize_targets (void)
3623 {
3624 init_dummy_target ();
3625 push_target (&dummy_target);
3626
3627 add_info ("target", target_info, targ_desc);
3628 add_info ("files", target_info, targ_desc);
3629
3630 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3631 Set target debugging."), _("\
3632 Show target debugging."), _("\
3633 When non-zero, target debugging is enabled. Higher numbers are more\n\
3634 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3635 command."),
3636 NULL,
3637 show_targetdebug,
3638 &setdebuglist, &showdebuglist);
3639
3640 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3641 &trust_readonly, _("\
3642 Set mode for reading from readonly sections."), _("\
3643 Show mode for reading from readonly sections."), _("\
3644 When this mode is on, memory reads from readonly sections (such as .text)\n\
3645 will be read from the object file instead of from the target. This will\n\
3646 result in significant performance improvement for remote targets."),
3647 NULL,
3648 show_trust_readonly,
3649 &setlist, &showlist);
3650
3651 add_com ("monitor", class_obscure, do_monitor_command,
3652 _("Send a command to the remote monitor (remote targets only)."));
3653
3654 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3655 _("Print the name of each layer of the internal target stack."),
3656 &maintenanceprintlist);
3657
3658 add_setshow_boolean_cmd ("target-async", no_class,
3659 &target_async_permitted_1, _("\
3660 Set whether gdb controls the inferior in asynchronous mode."), _("\
3661 Show whether gdb controls the inferior in asynchronous mode."), _("\
3662 Tells gdb whether to control the inferior in asynchronous mode."),
3663 set_maintenance_target_async_permitted,
3664 show_maintenance_target_async_permitted,
3665 &setlist,
3666 &showlist);
3667
3668 add_setshow_boolean_cmd ("stack-cache", class_support,
3669 &stack_cache_enabled_p_1, _("\
3670 Set cache use for stack access."), _("\
3671 Show cache use for stack access."), _("\
3672 When on, use the data cache for all stack access, regardless of any\n\
3673 configured memory regions. This improves remote performance significantly.\n\
3674 By default, caching for stack access is on."),
3675 set_stack_cache_enabled_p,
3676 show_stack_cache_enabled_p,
3677 &setlist, &showlist);
3678
3679 target_dcache = dcache_init ();
3680 }
This page took 0.132876 seconds and 4 git commands to generate.