2bb50e6f6b8ed196e1476870ff9e3b08aeb67589
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include <errno.h>
28 #include "gdb_string.h"
29 #include "target.h"
30 #include "gdbcmd.h"
31 #include "symtab.h"
32 #include "inferior.h"
33 #include "bfd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_wait.h"
37 #include "dcache.h"
38 #include <signal.h>
39 #include "regcache.h"
40 #include "gdb_assert.h"
41 #include "gdbcore.h"
42 #include "exceptions.h"
43 #include "target-descriptions.h"
44
45 static void target_info (char *, int);
46
47 static void maybe_kill_then_attach (char *, int);
48
49 static void kill_or_be_killed (int);
50
51 static void default_terminal_info (char *, int);
52
53 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
54
55 static int nosymbol (char *, CORE_ADDR *);
56
57 static void tcomplain (void) ATTR_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static void nosupport_runtime (void);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_close (int);
100
101 static void debug_to_attach (char *, int);
102
103 static void debug_to_detach (char *, int);
104
105 static void debug_to_resume (ptid_t, int, enum target_signal);
106
107 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
108
109 static void debug_to_fetch_registers (struct regcache *, int);
110
111 static void debug_to_store_registers (struct regcache *, int);
112
113 static void debug_to_prepare_to_store (struct regcache *);
114
115 static void debug_to_files_info (struct target_ops *);
116
117 static int debug_to_insert_breakpoint (struct bp_target_info *);
118
119 static int debug_to_remove_breakpoint (struct bp_target_info *);
120
121 static int debug_to_can_use_hw_breakpoint (int, int, int);
122
123 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
124
125 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
126
127 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
128
129 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
130
131 static int debug_to_stopped_by_watchpoint (void);
132
133 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
134
135 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
136
137 static void debug_to_terminal_init (void);
138
139 static void debug_to_terminal_inferior (void);
140
141 static void debug_to_terminal_ours_for_output (void);
142
143 static void debug_to_terminal_save_ours (void);
144
145 static void debug_to_terminal_ours (void);
146
147 static void debug_to_terminal_info (char *, int);
148
149 static void debug_to_kill (void);
150
151 static void debug_to_load (char *, int);
152
153 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
154
155 static void debug_to_mourn_inferior (void);
156
157 static int debug_to_can_run (void);
158
159 static void debug_to_notice_signals (ptid_t);
160
161 static int debug_to_thread_alive (ptid_t);
162
163 static void debug_to_stop (void);
164
165 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
166 wierd and mysterious ways. Putting the variable here lets those
167 wierd and mysterious ways keep building while they are being
168 converted to the inferior inheritance structure. */
169 struct target_ops deprecated_child_ops;
170
171 /* Pointer to array of target architecture structures; the size of the
172 array; the current index into the array; the allocated size of the
173 array. */
174 struct target_ops **target_structs;
175 unsigned target_struct_size;
176 unsigned target_struct_index;
177 unsigned target_struct_allocsize;
178 #define DEFAULT_ALLOCSIZE 10
179
180 /* The initial current target, so that there is always a semi-valid
181 current target. */
182
183 static struct target_ops dummy_target;
184
185 /* Top of target stack. */
186
187 static struct target_ops *target_stack;
188
189 /* The target structure we are currently using to talk to a process
190 or file or whatever "inferior" we have. */
191
192 struct target_ops current_target;
193
194 /* Command list for target. */
195
196 static struct cmd_list_element *targetlist = NULL;
197
198 /* Nonzero if we are debugging an attached outside process
199 rather than an inferior. */
200
201 int attach_flag;
202
203 /* Nonzero if we should trust readonly sections from the
204 executable when reading memory. */
205
206 static int trust_readonly = 0;
207
208 /* Non-zero if we want to see trace of target level stuff. */
209
210 static int targetdebug = 0;
211 static void
212 show_targetdebug (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
216 }
217
218 static void setup_target_debug (void);
219
220 DCACHE *target_dcache;
221
222 /* The user just typed 'target' without the name of a target. */
223
224 static void
225 target_command (char *arg, int from_tty)
226 {
227 fputs_filtered ("Argument required (target name). Try `help target'\n",
228 gdb_stdout);
229 }
230
231 /* Add a possible target architecture to the list. */
232
233 void
234 add_target (struct target_ops *t)
235 {
236 /* Provide default values for all "must have" methods. */
237 if (t->to_xfer_partial == NULL)
238 t->to_xfer_partial = default_xfer_partial;
239
240 if (!target_structs)
241 {
242 target_struct_allocsize = DEFAULT_ALLOCSIZE;
243 target_structs = (struct target_ops **) xmalloc
244 (target_struct_allocsize * sizeof (*target_structs));
245 }
246 if (target_struct_size >= target_struct_allocsize)
247 {
248 target_struct_allocsize *= 2;
249 target_structs = (struct target_ops **)
250 xrealloc ((char *) target_structs,
251 target_struct_allocsize * sizeof (*target_structs));
252 }
253 target_structs[target_struct_size++] = t;
254
255 if (targetlist == NULL)
256 add_prefix_cmd ("target", class_run, target_command, _("\
257 Connect to a target machine or process.\n\
258 The first argument is the type or protocol of the target machine.\n\
259 Remaining arguments are interpreted by the target protocol. For more\n\
260 information on the arguments for a particular protocol, type\n\
261 `help target ' followed by the protocol name."),
262 &targetlist, "target ", 0, &cmdlist);
263 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
264 }
265
266 /* Stub functions */
267
268 void
269 target_ignore (void)
270 {
271 }
272
273 void
274 target_load (char *arg, int from_tty)
275 {
276 dcache_invalidate (target_dcache);
277 (*current_target.to_load) (arg, from_tty);
278 }
279
280 static int
281 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
282 struct target_ops *t)
283 {
284 errno = EIO; /* Can't read/write this location */
285 return 0; /* No bytes handled */
286 }
287
288 static void
289 tcomplain (void)
290 {
291 error (_("You can't do that when your target is `%s'"),
292 current_target.to_shortname);
293 }
294
295 void
296 noprocess (void)
297 {
298 error (_("You can't do that without a process to debug."));
299 }
300
301 static int
302 nosymbol (char *name, CORE_ADDR *addrp)
303 {
304 return 1; /* Symbol does not exist in target env */
305 }
306
307 static void
308 nosupport_runtime (void)
309 {
310 if (ptid_equal (inferior_ptid, null_ptid))
311 noprocess ();
312 else
313 error (_("No run-time support for this"));
314 }
315
316
317 static void
318 default_terminal_info (char *args, int from_tty)
319 {
320 printf_unfiltered (_("No saved terminal information.\n"));
321 }
322
323 /* This is the default target_create_inferior and target_attach function.
324 If the current target is executing, it asks whether to kill it off.
325 If this function returns without calling error(), it has killed off
326 the target, and the operation should be attempted. */
327
328 static void
329 kill_or_be_killed (int from_tty)
330 {
331 if (target_has_execution)
332 {
333 printf_unfiltered (_("You are already running a program:\n"));
334 target_files_info ();
335 if (query ("Kill it? "))
336 {
337 target_kill ();
338 if (target_has_execution)
339 error (_("Killing the program did not help."));
340 return;
341 }
342 else
343 {
344 error (_("Program not killed."));
345 }
346 }
347 tcomplain ();
348 }
349
350 static void
351 maybe_kill_then_attach (char *args, int from_tty)
352 {
353 kill_or_be_killed (from_tty);
354 target_attach (args, from_tty);
355 }
356
357 static void
358 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
359 int from_tty)
360 {
361 kill_or_be_killed (0);
362 target_create_inferior (exec, args, env, from_tty);
363 }
364
365 /* Go through the target stack from top to bottom, copying over zero
366 entries in current_target, then filling in still empty entries. In
367 effect, we are doing class inheritance through the pushed target
368 vectors.
369
370 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
371 is currently implemented, is that it discards any knowledge of
372 which target an inherited method originally belonged to.
373 Consequently, new new target methods should instead explicitly and
374 locally search the target stack for the target that can handle the
375 request. */
376
377 static void
378 update_current_target (void)
379 {
380 struct target_ops *t;
381
382 /* First, reset current's contents. */
383 memset (&current_target, 0, sizeof (current_target));
384
385 #define INHERIT(FIELD, TARGET) \
386 if (!current_target.FIELD) \
387 current_target.FIELD = (TARGET)->FIELD
388
389 for (t = target_stack; t; t = t->beneath)
390 {
391 INHERIT (to_shortname, t);
392 INHERIT (to_longname, t);
393 INHERIT (to_doc, t);
394 INHERIT (to_open, t);
395 INHERIT (to_close, t);
396 INHERIT (to_attach, t);
397 INHERIT (to_post_attach, t);
398 INHERIT (to_detach, t);
399 /* Do not inherit to_disconnect. */
400 INHERIT (to_resume, t);
401 INHERIT (to_wait, t);
402 INHERIT (to_fetch_registers, t);
403 INHERIT (to_store_registers, t);
404 INHERIT (to_prepare_to_store, t);
405 INHERIT (deprecated_xfer_memory, t);
406 INHERIT (to_files_info, t);
407 INHERIT (to_insert_breakpoint, t);
408 INHERIT (to_remove_breakpoint, t);
409 INHERIT (to_can_use_hw_breakpoint, t);
410 INHERIT (to_insert_hw_breakpoint, t);
411 INHERIT (to_remove_hw_breakpoint, t);
412 INHERIT (to_insert_watchpoint, t);
413 INHERIT (to_remove_watchpoint, t);
414 INHERIT (to_stopped_data_address, t);
415 INHERIT (to_stopped_by_watchpoint, t);
416 INHERIT (to_have_steppable_watchpoint, t);
417 INHERIT (to_have_continuable_watchpoint, t);
418 INHERIT (to_region_ok_for_hw_watchpoint, t);
419 INHERIT (to_terminal_init, t);
420 INHERIT (to_terminal_inferior, t);
421 INHERIT (to_terminal_ours_for_output, t);
422 INHERIT (to_terminal_ours, t);
423 INHERIT (to_terminal_save_ours, t);
424 INHERIT (to_terminal_info, t);
425 INHERIT (to_kill, t);
426 INHERIT (to_load, t);
427 INHERIT (to_lookup_symbol, t);
428 INHERIT (to_create_inferior, t);
429 INHERIT (to_post_startup_inferior, t);
430 INHERIT (to_acknowledge_created_inferior, t);
431 INHERIT (to_insert_fork_catchpoint, t);
432 INHERIT (to_remove_fork_catchpoint, t);
433 INHERIT (to_insert_vfork_catchpoint, t);
434 INHERIT (to_remove_vfork_catchpoint, t);
435 /* Do not inherit to_follow_fork. */
436 INHERIT (to_insert_exec_catchpoint, t);
437 INHERIT (to_remove_exec_catchpoint, t);
438 INHERIT (to_reported_exec_events_per_exec_call, t);
439 INHERIT (to_has_exited, t);
440 INHERIT (to_mourn_inferior, t);
441 INHERIT (to_can_run, t);
442 INHERIT (to_notice_signals, t);
443 INHERIT (to_thread_alive, t);
444 INHERIT (to_find_new_threads, t);
445 INHERIT (to_pid_to_str, t);
446 INHERIT (to_extra_thread_info, t);
447 INHERIT (to_stop, t);
448 /* Do not inherit to_xfer_partial. */
449 INHERIT (to_rcmd, t);
450 INHERIT (to_enable_exception_callback, t);
451 INHERIT (to_get_current_exception_event, t);
452 INHERIT (to_pid_to_exec_file, t);
453 INHERIT (to_stratum, t);
454 INHERIT (to_has_all_memory, t);
455 INHERIT (to_has_memory, t);
456 INHERIT (to_has_stack, t);
457 INHERIT (to_has_registers, t);
458 INHERIT (to_has_execution, t);
459 INHERIT (to_has_thread_control, t);
460 INHERIT (to_sections, t);
461 INHERIT (to_sections_end, t);
462 INHERIT (to_can_async_p, t);
463 INHERIT (to_is_async_p, t);
464 INHERIT (to_async, t);
465 INHERIT (to_async_mask_value, t);
466 INHERIT (to_find_memory_regions, t);
467 INHERIT (to_make_corefile_notes, t);
468 INHERIT (to_get_thread_local_address, t);
469 /* Do not inherit to_read_description. */
470 INHERIT (to_magic, t);
471 /* Do not inherit to_memory_map. */
472 /* Do not inherit to_flash_erase. */
473 /* Do not inherit to_flash_done. */
474 }
475 #undef INHERIT
476
477 /* Clean up a target struct so it no longer has any zero pointers in
478 it. Some entries are defaulted to a method that print an error,
479 others are hard-wired to a standard recursive default. */
480
481 #define de_fault(field, value) \
482 if (!current_target.field) \
483 current_target.field = value
484
485 de_fault (to_open,
486 (void (*) (char *, int))
487 tcomplain);
488 de_fault (to_close,
489 (void (*) (int))
490 target_ignore);
491 de_fault (to_attach,
492 maybe_kill_then_attach);
493 de_fault (to_post_attach,
494 (void (*) (int))
495 target_ignore);
496 de_fault (to_detach,
497 (void (*) (char *, int))
498 target_ignore);
499 de_fault (to_resume,
500 (void (*) (ptid_t, int, enum target_signal))
501 noprocess);
502 de_fault (to_wait,
503 (ptid_t (*) (ptid_t, struct target_waitstatus *))
504 noprocess);
505 de_fault (to_fetch_registers,
506 (void (*) (struct regcache *, int))
507 target_ignore);
508 de_fault (to_store_registers,
509 (void (*) (struct regcache *, int))
510 noprocess);
511 de_fault (to_prepare_to_store,
512 (void (*) (struct regcache *))
513 noprocess);
514 de_fault (deprecated_xfer_memory,
515 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
516 nomemory);
517 de_fault (to_files_info,
518 (void (*) (struct target_ops *))
519 target_ignore);
520 de_fault (to_insert_breakpoint,
521 memory_insert_breakpoint);
522 de_fault (to_remove_breakpoint,
523 memory_remove_breakpoint);
524 de_fault (to_can_use_hw_breakpoint,
525 (int (*) (int, int, int))
526 return_zero);
527 de_fault (to_insert_hw_breakpoint,
528 (int (*) (struct bp_target_info *))
529 return_minus_one);
530 de_fault (to_remove_hw_breakpoint,
531 (int (*) (struct bp_target_info *))
532 return_minus_one);
533 de_fault (to_insert_watchpoint,
534 (int (*) (CORE_ADDR, int, int))
535 return_minus_one);
536 de_fault (to_remove_watchpoint,
537 (int (*) (CORE_ADDR, int, int))
538 return_minus_one);
539 de_fault (to_stopped_by_watchpoint,
540 (int (*) (void))
541 return_zero);
542 de_fault (to_stopped_data_address,
543 (int (*) (struct target_ops *, CORE_ADDR *))
544 return_zero);
545 de_fault (to_region_ok_for_hw_watchpoint,
546 default_region_ok_for_hw_watchpoint);
547 de_fault (to_terminal_init,
548 (void (*) (void))
549 target_ignore);
550 de_fault (to_terminal_inferior,
551 (void (*) (void))
552 target_ignore);
553 de_fault (to_terminal_ours_for_output,
554 (void (*) (void))
555 target_ignore);
556 de_fault (to_terminal_ours,
557 (void (*) (void))
558 target_ignore);
559 de_fault (to_terminal_save_ours,
560 (void (*) (void))
561 target_ignore);
562 de_fault (to_terminal_info,
563 default_terminal_info);
564 de_fault (to_kill,
565 (void (*) (void))
566 noprocess);
567 de_fault (to_load,
568 (void (*) (char *, int))
569 tcomplain);
570 de_fault (to_lookup_symbol,
571 (int (*) (char *, CORE_ADDR *))
572 nosymbol);
573 de_fault (to_create_inferior,
574 maybe_kill_then_create_inferior);
575 de_fault (to_post_startup_inferior,
576 (void (*) (ptid_t))
577 target_ignore);
578 de_fault (to_acknowledge_created_inferior,
579 (void (*) (int))
580 target_ignore);
581 de_fault (to_insert_fork_catchpoint,
582 (void (*) (int))
583 tcomplain);
584 de_fault (to_remove_fork_catchpoint,
585 (int (*) (int))
586 tcomplain);
587 de_fault (to_insert_vfork_catchpoint,
588 (void (*) (int))
589 tcomplain);
590 de_fault (to_remove_vfork_catchpoint,
591 (int (*) (int))
592 tcomplain);
593 de_fault (to_insert_exec_catchpoint,
594 (void (*) (int))
595 tcomplain);
596 de_fault (to_remove_exec_catchpoint,
597 (int (*) (int))
598 tcomplain);
599 de_fault (to_reported_exec_events_per_exec_call,
600 (int (*) (void))
601 return_one);
602 de_fault (to_has_exited,
603 (int (*) (int, int, int *))
604 return_zero);
605 de_fault (to_mourn_inferior,
606 (void (*) (void))
607 noprocess);
608 de_fault (to_can_run,
609 return_zero);
610 de_fault (to_notice_signals,
611 (void (*) (ptid_t))
612 target_ignore);
613 de_fault (to_thread_alive,
614 (int (*) (ptid_t))
615 return_zero);
616 de_fault (to_find_new_threads,
617 (void (*) (void))
618 target_ignore);
619 de_fault (to_extra_thread_info,
620 (char *(*) (struct thread_info *))
621 return_zero);
622 de_fault (to_stop,
623 (void (*) (void))
624 target_ignore);
625 current_target.to_xfer_partial = current_xfer_partial;
626 de_fault (to_rcmd,
627 (void (*) (char *, struct ui_file *))
628 tcomplain);
629 de_fault (to_enable_exception_callback,
630 (struct symtab_and_line * (*) (enum exception_event_kind, int))
631 nosupport_runtime);
632 de_fault (to_get_current_exception_event,
633 (struct exception_event_record * (*) (void))
634 nosupport_runtime);
635 de_fault (to_pid_to_exec_file,
636 (char *(*) (int))
637 return_zero);
638 de_fault (to_can_async_p,
639 (int (*) (void))
640 return_zero);
641 de_fault (to_is_async_p,
642 (int (*) (void))
643 return_zero);
644 de_fault (to_async,
645 (void (*) (void (*) (enum inferior_event_type, void*), void*))
646 tcomplain);
647 current_target.to_read_description = NULL;
648 #undef de_fault
649
650 /* Finally, position the target-stack beneath the squashed
651 "current_target". That way code looking for a non-inherited
652 target method can quickly and simply find it. */
653 current_target.beneath = target_stack;
654 }
655
656 /* Mark OPS as a running target. This reverses the effect
657 of target_mark_exited. */
658
659 void
660 target_mark_running (struct target_ops *ops)
661 {
662 struct target_ops *t;
663
664 for (t = target_stack; t != NULL; t = t->beneath)
665 if (t == ops)
666 break;
667 if (t == NULL)
668 internal_error (__FILE__, __LINE__,
669 "Attempted to mark unpushed target \"%s\" as running",
670 ops->to_shortname);
671
672 ops->to_has_execution = 1;
673 ops->to_has_all_memory = 1;
674 ops->to_has_memory = 1;
675 ops->to_has_stack = 1;
676 ops->to_has_registers = 1;
677
678 update_current_target ();
679 }
680
681 /* Mark OPS as a non-running target. This reverses the effect
682 of target_mark_running. */
683
684 void
685 target_mark_exited (struct target_ops *ops)
686 {
687 struct target_ops *t;
688
689 for (t = target_stack; t != NULL; t = t->beneath)
690 if (t == ops)
691 break;
692 if (t == NULL)
693 internal_error (__FILE__, __LINE__,
694 "Attempted to mark unpushed target \"%s\" as running",
695 ops->to_shortname);
696
697 ops->to_has_execution = 0;
698 ops->to_has_all_memory = 0;
699 ops->to_has_memory = 0;
700 ops->to_has_stack = 0;
701 ops->to_has_registers = 0;
702
703 update_current_target ();
704 }
705
706 /* Push a new target type into the stack of the existing target accessors,
707 possibly superseding some of the existing accessors.
708
709 Result is zero if the pushed target ended up on top of the stack,
710 nonzero if at least one target is on top of it.
711
712 Rather than allow an empty stack, we always have the dummy target at
713 the bottom stratum, so we can call the function vectors without
714 checking them. */
715
716 int
717 push_target (struct target_ops *t)
718 {
719 struct target_ops **cur;
720
721 /* Check magic number. If wrong, it probably means someone changed
722 the struct definition, but not all the places that initialize one. */
723 if (t->to_magic != OPS_MAGIC)
724 {
725 fprintf_unfiltered (gdb_stderr,
726 "Magic number of %s target struct wrong\n",
727 t->to_shortname);
728 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
729 }
730
731 /* Find the proper stratum to install this target in. */
732 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
733 {
734 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
735 break;
736 }
737
738 /* If there's already targets at this stratum, remove them. */
739 /* FIXME: cagney/2003-10-15: I think this should be popping all
740 targets to CUR, and not just those at this stratum level. */
741 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
742 {
743 /* There's already something at this stratum level. Close it,
744 and un-hook it from the stack. */
745 struct target_ops *tmp = (*cur);
746 (*cur) = (*cur)->beneath;
747 tmp->beneath = NULL;
748 target_close (tmp, 0);
749 }
750
751 /* We have removed all targets in our stratum, now add the new one. */
752 t->beneath = (*cur);
753 (*cur) = t;
754
755 update_current_target ();
756
757 if (targetdebug)
758 setup_target_debug ();
759
760 /* Not on top? */
761 return (t != target_stack);
762 }
763
764 /* Remove a target_ops vector from the stack, wherever it may be.
765 Return how many times it was removed (0 or 1). */
766
767 int
768 unpush_target (struct target_ops *t)
769 {
770 struct target_ops **cur;
771 struct target_ops *tmp;
772
773 /* Look for the specified target. Note that we assume that a target
774 can only occur once in the target stack. */
775
776 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
777 {
778 if ((*cur) == t)
779 break;
780 }
781
782 if ((*cur) == NULL)
783 return 0; /* Didn't find target_ops, quit now */
784
785 /* NOTE: cagney/2003-12-06: In '94 the close call was made
786 unconditional by moving it to before the above check that the
787 target was in the target stack (something about "Change the way
788 pushing and popping of targets work to support target overlays
789 and inheritance"). This doesn't make much sense - only open
790 targets should be closed. */
791 target_close (t, 0);
792
793 /* Unchain the target */
794 tmp = (*cur);
795 (*cur) = (*cur)->beneath;
796 tmp->beneath = NULL;
797
798 update_current_target ();
799
800 return 1;
801 }
802
803 void
804 pop_target (void)
805 {
806 target_close (&current_target, 0); /* Let it clean up */
807 if (unpush_target (target_stack) == 1)
808 return;
809
810 fprintf_unfiltered (gdb_stderr,
811 "pop_target couldn't find target %s\n",
812 current_target.to_shortname);
813 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
814 }
815
816 /* Using the objfile specified in BATON, find the address for the
817 current thread's thread-local storage with offset OFFSET. */
818 CORE_ADDR
819 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
820 {
821 volatile CORE_ADDR addr = 0;
822
823 if (target_get_thread_local_address_p ()
824 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
825 {
826 ptid_t ptid = inferior_ptid;
827 volatile struct gdb_exception ex;
828
829 TRY_CATCH (ex, RETURN_MASK_ALL)
830 {
831 CORE_ADDR lm_addr;
832
833 /* Fetch the load module address for this objfile. */
834 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
835 objfile);
836 /* If it's 0, throw the appropriate exception. */
837 if (lm_addr == 0)
838 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
839 _("TLS load module not found"));
840
841 addr = target_get_thread_local_address (ptid, lm_addr, offset);
842 }
843 /* If an error occurred, print TLS related messages here. Otherwise,
844 throw the error to some higher catcher. */
845 if (ex.reason < 0)
846 {
847 int objfile_is_library = (objfile->flags & OBJF_SHARED);
848
849 switch (ex.error)
850 {
851 case TLS_NO_LIBRARY_SUPPORT_ERROR:
852 error (_("Cannot find thread-local variables in this thread library."));
853 break;
854 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
855 if (objfile_is_library)
856 error (_("Cannot find shared library `%s' in dynamic"
857 " linker's load module list"), objfile->name);
858 else
859 error (_("Cannot find executable file `%s' in dynamic"
860 " linker's load module list"), objfile->name);
861 break;
862 case TLS_NOT_ALLOCATED_YET_ERROR:
863 if (objfile_is_library)
864 error (_("The inferior has not yet allocated storage for"
865 " thread-local variables in\n"
866 "the shared library `%s'\n"
867 "for %s"),
868 objfile->name, target_pid_to_str (ptid));
869 else
870 error (_("The inferior has not yet allocated storage for"
871 " thread-local variables in\n"
872 "the executable `%s'\n"
873 "for %s"),
874 objfile->name, target_pid_to_str (ptid));
875 break;
876 case TLS_GENERIC_ERROR:
877 if (objfile_is_library)
878 error (_("Cannot find thread-local storage for %s, "
879 "shared library %s:\n%s"),
880 target_pid_to_str (ptid),
881 objfile->name, ex.message);
882 else
883 error (_("Cannot find thread-local storage for %s, "
884 "executable file %s:\n%s"),
885 target_pid_to_str (ptid),
886 objfile->name, ex.message);
887 break;
888 default:
889 throw_exception (ex);
890 break;
891 }
892 }
893 }
894 /* It wouldn't be wrong here to try a gdbarch method, too; finding
895 TLS is an ABI-specific thing. But we don't do that yet. */
896 else
897 error (_("Cannot find thread-local variables on this target"));
898
899 return addr;
900 }
901
902 #undef MIN
903 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
904
905 /* target_read_string -- read a null terminated string, up to LEN bytes,
906 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
907 Set *STRING to a pointer to malloc'd memory containing the data; the caller
908 is responsible for freeing it. Return the number of bytes successfully
909 read. */
910
911 int
912 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
913 {
914 int tlen, origlen, offset, i;
915 gdb_byte buf[4];
916 int errcode = 0;
917 char *buffer;
918 int buffer_allocated;
919 char *bufptr;
920 unsigned int nbytes_read = 0;
921
922 /* Small for testing. */
923 buffer_allocated = 4;
924 buffer = xmalloc (buffer_allocated);
925 bufptr = buffer;
926
927 origlen = len;
928
929 while (len > 0)
930 {
931 tlen = MIN (len, 4 - (memaddr & 3));
932 offset = memaddr & 3;
933
934 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
935 if (errcode != 0)
936 {
937 /* The transfer request might have crossed the boundary to an
938 unallocated region of memory. Retry the transfer, requesting
939 a single byte. */
940 tlen = 1;
941 offset = 0;
942 errcode = target_read_memory (memaddr, buf, 1);
943 if (errcode != 0)
944 goto done;
945 }
946
947 if (bufptr - buffer + tlen > buffer_allocated)
948 {
949 unsigned int bytes;
950 bytes = bufptr - buffer;
951 buffer_allocated *= 2;
952 buffer = xrealloc (buffer, buffer_allocated);
953 bufptr = buffer + bytes;
954 }
955
956 for (i = 0; i < tlen; i++)
957 {
958 *bufptr++ = buf[i + offset];
959 if (buf[i + offset] == '\000')
960 {
961 nbytes_read += i + 1;
962 goto done;
963 }
964 }
965
966 memaddr += tlen;
967 len -= tlen;
968 nbytes_read += tlen;
969 }
970 done:
971 if (errnop != NULL)
972 *errnop = errcode;
973 if (string != NULL)
974 *string = buffer;
975 return nbytes_read;
976 }
977
978 /* Find a section containing ADDR. */
979 struct section_table *
980 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
981 {
982 struct section_table *secp;
983 for (secp = target->to_sections;
984 secp < target->to_sections_end;
985 secp++)
986 {
987 if (addr >= secp->addr && addr < secp->endaddr)
988 return secp;
989 }
990 return NULL;
991 }
992
993 /* Perform a partial memory transfer. The arguments and return
994 value are just as for target_xfer_partial. */
995
996 static LONGEST
997 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
998 ULONGEST memaddr, LONGEST len)
999 {
1000 LONGEST res;
1001 int reg_len;
1002 struct mem_region *region;
1003
1004 /* Zero length requests are ok and require no work. */
1005 if (len == 0)
1006 return 0;
1007
1008 /* Try the executable file, if "trust-readonly-sections" is set. */
1009 if (readbuf != NULL && trust_readonly)
1010 {
1011 struct section_table *secp;
1012
1013 secp = target_section_by_addr (ops, memaddr);
1014 if (secp != NULL
1015 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1016 & SEC_READONLY))
1017 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1018 }
1019
1020 /* Try GDB's internal data cache. */
1021 region = lookup_mem_region (memaddr);
1022 /* region->hi == 0 means there's no upper bound. */
1023 if (memaddr + len < region->hi || region->hi == 0)
1024 reg_len = len;
1025 else
1026 reg_len = region->hi - memaddr;
1027
1028 switch (region->attrib.mode)
1029 {
1030 case MEM_RO:
1031 if (writebuf != NULL)
1032 return -1;
1033 break;
1034
1035 case MEM_WO:
1036 if (readbuf != NULL)
1037 return -1;
1038 break;
1039
1040 case MEM_FLASH:
1041 /* We only support writing to flash during "load" for now. */
1042 if (writebuf != NULL)
1043 error (_("Writing to flash memory forbidden in this context"));
1044 break;
1045
1046 case MEM_NONE:
1047 return -1;
1048 }
1049
1050 if (region->attrib.cache)
1051 {
1052 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1053 memory request will start back at current_target. */
1054 if (readbuf != NULL)
1055 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1056 reg_len, 0);
1057 else
1058 /* FIXME drow/2006-08-09: If we're going to preserve const
1059 correctness dcache_xfer_memory should take readbuf and
1060 writebuf. */
1061 res = dcache_xfer_memory (target_dcache, memaddr,
1062 (void *) writebuf,
1063 reg_len, 1);
1064 if (res <= 0)
1065 return -1;
1066 else
1067 return res;
1068 }
1069
1070 /* If none of those methods found the memory we wanted, fall back
1071 to a target partial transfer. Normally a single call to
1072 to_xfer_partial is enough; if it doesn't recognize an object
1073 it will call the to_xfer_partial of the next target down.
1074 But for memory this won't do. Memory is the only target
1075 object which can be read from more than one valid target.
1076 A core file, for instance, could have some of memory but
1077 delegate other bits to the target below it. So, we must
1078 manually try all targets. */
1079
1080 do
1081 {
1082 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1083 readbuf, writebuf, memaddr, reg_len);
1084 if (res > 0)
1085 return res;
1086
1087 /* We want to continue past core files to executables, but not
1088 past a running target's memory. */
1089 if (ops->to_has_all_memory)
1090 return res;
1091
1092 ops = ops->beneath;
1093 }
1094 while (ops != NULL);
1095
1096 /* If we still haven't got anything, return the last error. We
1097 give up. */
1098 return res;
1099 }
1100
1101 static LONGEST
1102 target_xfer_partial (struct target_ops *ops,
1103 enum target_object object, const char *annex,
1104 void *readbuf, const void *writebuf,
1105 ULONGEST offset, LONGEST len)
1106 {
1107 LONGEST retval;
1108
1109 gdb_assert (ops->to_xfer_partial != NULL);
1110
1111 /* If this is a memory transfer, let the memory-specific code
1112 have a look at it instead. Memory transfers are more
1113 complicated. */
1114 if (object == TARGET_OBJECT_MEMORY)
1115 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1116 else
1117 {
1118 enum target_object raw_object = object;
1119
1120 /* If this is a raw memory transfer, request the normal
1121 memory object from other layers. */
1122 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1123 raw_object = TARGET_OBJECT_MEMORY;
1124
1125 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1126 writebuf, offset, len);
1127 }
1128
1129 if (targetdebug)
1130 {
1131 const unsigned char *myaddr = NULL;
1132
1133 fprintf_unfiltered (gdb_stdlog,
1134 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1135 ops->to_shortname,
1136 (int) object,
1137 (annex ? annex : "(null)"),
1138 (long) readbuf, (long) writebuf,
1139 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1140
1141 if (readbuf)
1142 myaddr = readbuf;
1143 if (writebuf)
1144 myaddr = writebuf;
1145 if (retval > 0 && myaddr != NULL)
1146 {
1147 int i;
1148
1149 fputs_unfiltered (", bytes =", gdb_stdlog);
1150 for (i = 0; i < retval; i++)
1151 {
1152 if ((((long) &(myaddr[i])) & 0xf) == 0)
1153 {
1154 if (targetdebug < 2 && i > 0)
1155 {
1156 fprintf_unfiltered (gdb_stdlog, " ...");
1157 break;
1158 }
1159 fprintf_unfiltered (gdb_stdlog, "\n");
1160 }
1161
1162 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1163 }
1164 }
1165
1166 fputc_unfiltered ('\n', gdb_stdlog);
1167 }
1168 return retval;
1169 }
1170
1171 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1172 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1173 if any error occurs.
1174
1175 If an error occurs, no guarantee is made about the contents of the data at
1176 MYADDR. In particular, the caller should not depend upon partial reads
1177 filling the buffer with good data. There is no way for the caller to know
1178 how much good data might have been transfered anyway. Callers that can
1179 deal with partial reads should call target_read (which will retry until
1180 it makes no progress, and then return how much was transferred). */
1181
1182 int
1183 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1184 {
1185 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1186 myaddr, memaddr, len) == len)
1187 return 0;
1188 else
1189 return EIO;
1190 }
1191
1192 int
1193 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1194 {
1195 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1196 myaddr, memaddr, len) == len)
1197 return 0;
1198 else
1199 return EIO;
1200 }
1201
1202 /* Fetch the target's memory map. */
1203
1204 VEC(mem_region_s) *
1205 target_memory_map (void)
1206 {
1207 VEC(mem_region_s) *result;
1208 struct mem_region *last_one, *this_one;
1209 int ix;
1210 struct target_ops *t;
1211
1212 if (targetdebug)
1213 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1214
1215 for (t = current_target.beneath; t != NULL; t = t->beneath)
1216 if (t->to_memory_map != NULL)
1217 break;
1218
1219 if (t == NULL)
1220 return NULL;
1221
1222 result = t->to_memory_map (t);
1223 if (result == NULL)
1224 return NULL;
1225
1226 qsort (VEC_address (mem_region_s, result),
1227 VEC_length (mem_region_s, result),
1228 sizeof (struct mem_region), mem_region_cmp);
1229
1230 /* Check that regions do not overlap. Simultaneously assign
1231 a numbering for the "mem" commands to use to refer to
1232 each region. */
1233 last_one = NULL;
1234 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1235 {
1236 this_one->number = ix;
1237
1238 if (last_one && last_one->hi > this_one->lo)
1239 {
1240 warning (_("Overlapping regions in memory map: ignoring"));
1241 VEC_free (mem_region_s, result);
1242 return NULL;
1243 }
1244 last_one = this_one;
1245 }
1246
1247 return result;
1248 }
1249
1250 void
1251 target_flash_erase (ULONGEST address, LONGEST length)
1252 {
1253 struct target_ops *t;
1254
1255 for (t = current_target.beneath; t != NULL; t = t->beneath)
1256 if (t->to_flash_erase != NULL)
1257 {
1258 if (targetdebug)
1259 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1260 paddr (address), phex (length, 0));
1261 t->to_flash_erase (t, address, length);
1262 return;
1263 }
1264
1265 tcomplain ();
1266 }
1267
1268 void
1269 target_flash_done (void)
1270 {
1271 struct target_ops *t;
1272
1273 for (t = current_target.beneath; t != NULL; t = t->beneath)
1274 if (t->to_flash_done != NULL)
1275 {
1276 if (targetdebug)
1277 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1278 t->to_flash_done (t);
1279 return;
1280 }
1281
1282 tcomplain ();
1283 }
1284
1285 #ifndef target_stopped_data_address_p
1286 int
1287 target_stopped_data_address_p (struct target_ops *target)
1288 {
1289 if (target->to_stopped_data_address
1290 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1291 return 0;
1292 if (target->to_stopped_data_address == debug_to_stopped_data_address
1293 && (debug_target.to_stopped_data_address
1294 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1295 return 0;
1296 return 1;
1297 }
1298 #endif
1299
1300 static void
1301 show_trust_readonly (struct ui_file *file, int from_tty,
1302 struct cmd_list_element *c, const char *value)
1303 {
1304 fprintf_filtered (file, _("\
1305 Mode for reading from readonly sections is %s.\n"),
1306 value);
1307 }
1308
1309 /* More generic transfers. */
1310
1311 static LONGEST
1312 default_xfer_partial (struct target_ops *ops, enum target_object object,
1313 const char *annex, gdb_byte *readbuf,
1314 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1315 {
1316 if (object == TARGET_OBJECT_MEMORY
1317 && ops->deprecated_xfer_memory != NULL)
1318 /* If available, fall back to the target's
1319 "deprecated_xfer_memory" method. */
1320 {
1321 int xfered = -1;
1322 errno = 0;
1323 if (writebuf != NULL)
1324 {
1325 void *buffer = xmalloc (len);
1326 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1327 memcpy (buffer, writebuf, len);
1328 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1329 1/*write*/, NULL, ops);
1330 do_cleanups (cleanup);
1331 }
1332 if (readbuf != NULL)
1333 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1334 NULL, ops);
1335 if (xfered > 0)
1336 return xfered;
1337 else if (xfered == 0 && errno == 0)
1338 /* "deprecated_xfer_memory" uses 0, cross checked against
1339 ERRNO as one indication of an error. */
1340 return 0;
1341 else
1342 return -1;
1343 }
1344 else if (ops->beneath != NULL)
1345 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1346 readbuf, writebuf, offset, len);
1347 else
1348 return -1;
1349 }
1350
1351 /* The xfer_partial handler for the topmost target. Unlike the default,
1352 it does not need to handle memory specially; it just passes all
1353 requests down the stack. */
1354
1355 static LONGEST
1356 current_xfer_partial (struct target_ops *ops, enum target_object object,
1357 const char *annex, gdb_byte *readbuf,
1358 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1359 {
1360 if (ops->beneath != NULL)
1361 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1362 readbuf, writebuf, offset, len);
1363 else
1364 return -1;
1365 }
1366
1367 /* Target vector read/write partial wrapper functions.
1368
1369 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1370 (inbuf, outbuf)", instead of separate read/write methods, make life
1371 easier. */
1372
1373 static LONGEST
1374 target_read_partial (struct target_ops *ops,
1375 enum target_object object,
1376 const char *annex, gdb_byte *buf,
1377 ULONGEST offset, LONGEST len)
1378 {
1379 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1380 }
1381
1382 static LONGEST
1383 target_write_partial (struct target_ops *ops,
1384 enum target_object object,
1385 const char *annex, const gdb_byte *buf,
1386 ULONGEST offset, LONGEST len)
1387 {
1388 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1389 }
1390
1391 /* Wrappers to perform the full transfer. */
1392 LONGEST
1393 target_read (struct target_ops *ops,
1394 enum target_object object,
1395 const char *annex, gdb_byte *buf,
1396 ULONGEST offset, LONGEST len)
1397 {
1398 LONGEST xfered = 0;
1399 while (xfered < len)
1400 {
1401 LONGEST xfer = target_read_partial (ops, object, annex,
1402 (gdb_byte *) buf + xfered,
1403 offset + xfered, len - xfered);
1404 /* Call an observer, notifying them of the xfer progress? */
1405 if (xfer == 0)
1406 return xfered;
1407 if (xfer < 0)
1408 return -1;
1409 xfered += xfer;
1410 QUIT;
1411 }
1412 return len;
1413 }
1414
1415 /* An alternative to target_write with progress callbacks. */
1416
1417 LONGEST
1418 target_write_with_progress (struct target_ops *ops,
1419 enum target_object object,
1420 const char *annex, const gdb_byte *buf,
1421 ULONGEST offset, LONGEST len,
1422 void (*progress) (ULONGEST, void *), void *baton)
1423 {
1424 LONGEST xfered = 0;
1425
1426 /* Give the progress callback a chance to set up. */
1427 if (progress)
1428 (*progress) (0, baton);
1429
1430 while (xfered < len)
1431 {
1432 LONGEST xfer = target_write_partial (ops, object, annex,
1433 (gdb_byte *) buf + xfered,
1434 offset + xfered, len - xfered);
1435
1436 if (xfer == 0)
1437 return xfered;
1438 if (xfer < 0)
1439 return -1;
1440
1441 if (progress)
1442 (*progress) (xfer, baton);
1443
1444 xfered += xfer;
1445 QUIT;
1446 }
1447 return len;
1448 }
1449
1450 LONGEST
1451 target_write (struct target_ops *ops,
1452 enum target_object object,
1453 const char *annex, const gdb_byte *buf,
1454 ULONGEST offset, LONGEST len)
1455 {
1456 return target_write_with_progress (ops, object, annex, buf, offset, len,
1457 NULL, NULL);
1458 }
1459
1460 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1461 the size of the transferred data. PADDING additional bytes are
1462 available in *BUF_P. This is a helper function for
1463 target_read_alloc; see the declaration of that function for more
1464 information. */
1465
1466 static LONGEST
1467 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1468 const char *annex, gdb_byte **buf_p, int padding)
1469 {
1470 size_t buf_alloc, buf_pos;
1471 gdb_byte *buf;
1472 LONGEST n;
1473
1474 /* This function does not have a length parameter; it reads the
1475 entire OBJECT). Also, it doesn't support objects fetched partly
1476 from one target and partly from another (in a different stratum,
1477 e.g. a core file and an executable). Both reasons make it
1478 unsuitable for reading memory. */
1479 gdb_assert (object != TARGET_OBJECT_MEMORY);
1480
1481 /* Start by reading up to 4K at a time. The target will throttle
1482 this number down if necessary. */
1483 buf_alloc = 4096;
1484 buf = xmalloc (buf_alloc);
1485 buf_pos = 0;
1486 while (1)
1487 {
1488 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1489 buf_pos, buf_alloc - buf_pos - padding);
1490 if (n < 0)
1491 {
1492 /* An error occurred. */
1493 xfree (buf);
1494 return -1;
1495 }
1496 else if (n == 0)
1497 {
1498 /* Read all there was. */
1499 if (buf_pos == 0)
1500 xfree (buf);
1501 else
1502 *buf_p = buf;
1503 return buf_pos;
1504 }
1505
1506 buf_pos += n;
1507
1508 /* If the buffer is filling up, expand it. */
1509 if (buf_alloc < buf_pos * 2)
1510 {
1511 buf_alloc *= 2;
1512 buf = xrealloc (buf, buf_alloc);
1513 }
1514
1515 QUIT;
1516 }
1517 }
1518
1519 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1520 the size of the transferred data. See the declaration in "target.h"
1521 function for more information about the return value. */
1522
1523 LONGEST
1524 target_read_alloc (struct target_ops *ops, enum target_object object,
1525 const char *annex, gdb_byte **buf_p)
1526 {
1527 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1528 }
1529
1530 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1531 returned as a string, allocated using xmalloc. If an error occurs
1532 or the transfer is unsupported, NULL is returned. Empty objects
1533 are returned as allocated but empty strings. A warning is issued
1534 if the result contains any embedded NUL bytes. */
1535
1536 char *
1537 target_read_stralloc (struct target_ops *ops, enum target_object object,
1538 const char *annex)
1539 {
1540 gdb_byte *buffer;
1541 LONGEST transferred;
1542
1543 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1544
1545 if (transferred < 0)
1546 return NULL;
1547
1548 if (transferred == 0)
1549 return xstrdup ("");
1550
1551 buffer[transferred] = 0;
1552 if (strlen (buffer) < transferred)
1553 warning (_("target object %d, annex %s, "
1554 "contained unexpected null characters"),
1555 (int) object, annex ? annex : "(none)");
1556
1557 return (char *) buffer;
1558 }
1559
1560 /* Memory transfer methods. */
1561
1562 void
1563 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1564 LONGEST len)
1565 {
1566 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1567 != len)
1568 memory_error (EIO, addr);
1569 }
1570
1571 ULONGEST
1572 get_target_memory_unsigned (struct target_ops *ops,
1573 CORE_ADDR addr, int len)
1574 {
1575 gdb_byte buf[sizeof (ULONGEST)];
1576
1577 gdb_assert (len <= sizeof (buf));
1578 get_target_memory (ops, addr, buf, len);
1579 return extract_unsigned_integer (buf, len);
1580 }
1581
1582 static void
1583 target_info (char *args, int from_tty)
1584 {
1585 struct target_ops *t;
1586 int has_all_mem = 0;
1587
1588 if (symfile_objfile != NULL)
1589 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1590
1591 for (t = target_stack; t != NULL; t = t->beneath)
1592 {
1593 if (!t->to_has_memory)
1594 continue;
1595
1596 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1597 continue;
1598 if (has_all_mem)
1599 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1600 printf_unfiltered ("%s:\n", t->to_longname);
1601 (t->to_files_info) (t);
1602 has_all_mem = t->to_has_all_memory;
1603 }
1604 }
1605
1606 /* This function is called before any new inferior is created, e.g.
1607 by running a program, attaching, or connecting to a target.
1608 It cleans up any state from previous invocations which might
1609 change between runs. This is a subset of what target_preopen
1610 resets (things which might change between targets). */
1611
1612 void
1613 target_pre_inferior (int from_tty)
1614 {
1615 invalidate_target_mem_regions ();
1616
1617 target_clear_description ();
1618 }
1619
1620 /* This is to be called by the open routine before it does
1621 anything. */
1622
1623 void
1624 target_preopen (int from_tty)
1625 {
1626 dont_repeat ();
1627
1628 if (target_has_execution)
1629 {
1630 if (!from_tty
1631 || query (_("A program is being debugged already. Kill it? ")))
1632 target_kill ();
1633 else
1634 error (_("Program not killed."));
1635 }
1636
1637 /* Calling target_kill may remove the target from the stack. But if
1638 it doesn't (which seems like a win for UDI), remove it now. */
1639
1640 if (target_has_execution)
1641 pop_target ();
1642
1643 target_pre_inferior (from_tty);
1644 }
1645
1646 /* Detach a target after doing deferred register stores. */
1647
1648 void
1649 target_detach (char *args, int from_tty)
1650 {
1651 (current_target.to_detach) (args, from_tty);
1652 }
1653
1654 void
1655 target_disconnect (char *args, int from_tty)
1656 {
1657 struct target_ops *t;
1658
1659 for (t = current_target.beneath; t != NULL; t = t->beneath)
1660 if (t->to_disconnect != NULL)
1661 {
1662 if (targetdebug)
1663 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1664 args, from_tty);
1665 t->to_disconnect (t, args, from_tty);
1666 return;
1667 }
1668
1669 tcomplain ();
1670 }
1671
1672 int
1673 target_async_mask (int mask)
1674 {
1675 int saved_async_masked_status = target_async_mask_value;
1676 target_async_mask_value = mask;
1677 return saved_async_masked_status;
1678 }
1679
1680 /* Look through the list of possible targets for a target that can
1681 follow forks. */
1682
1683 int
1684 target_follow_fork (int follow_child)
1685 {
1686 struct target_ops *t;
1687
1688 for (t = current_target.beneath; t != NULL; t = t->beneath)
1689 {
1690 if (t->to_follow_fork != NULL)
1691 {
1692 int retval = t->to_follow_fork (t, follow_child);
1693 if (targetdebug)
1694 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1695 follow_child, retval);
1696 return retval;
1697 }
1698 }
1699
1700 /* Some target returned a fork event, but did not know how to follow it. */
1701 internal_error (__FILE__, __LINE__,
1702 "could not find a target to follow fork");
1703 }
1704
1705 /* Look for a target which can describe architectural features, starting
1706 from TARGET. If we find one, return its description. */
1707
1708 const struct target_desc *
1709 target_read_description (struct target_ops *target)
1710 {
1711 struct target_ops *t;
1712
1713 for (t = target; t != NULL; t = t->beneath)
1714 if (t->to_read_description != NULL)
1715 {
1716 const struct target_desc *tdesc;
1717
1718 tdesc = t->to_read_description (t);
1719 if (tdesc)
1720 return tdesc;
1721 }
1722
1723 return NULL;
1724 }
1725
1726 /* Look through the list of possible targets for a target that can
1727 execute a run or attach command without any other data. This is
1728 used to locate the default process stratum.
1729
1730 Result is always valid (error() is called for errors). */
1731
1732 static struct target_ops *
1733 find_default_run_target (char *do_mesg)
1734 {
1735 struct target_ops **t;
1736 struct target_ops *runable = NULL;
1737 int count;
1738
1739 count = 0;
1740
1741 for (t = target_structs; t < target_structs + target_struct_size;
1742 ++t)
1743 {
1744 if ((*t)->to_can_run && target_can_run (*t))
1745 {
1746 runable = *t;
1747 ++count;
1748 }
1749 }
1750
1751 if (count != 1)
1752 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1753
1754 return runable;
1755 }
1756
1757 void
1758 find_default_attach (char *args, int from_tty)
1759 {
1760 struct target_ops *t;
1761
1762 t = find_default_run_target ("attach");
1763 (t->to_attach) (args, from_tty);
1764 return;
1765 }
1766
1767 void
1768 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1769 int from_tty)
1770 {
1771 struct target_ops *t;
1772
1773 t = find_default_run_target ("run");
1774 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1775 return;
1776 }
1777
1778 static int
1779 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1780 {
1781 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1782 }
1783
1784 static int
1785 return_zero (void)
1786 {
1787 return 0;
1788 }
1789
1790 static int
1791 return_one (void)
1792 {
1793 return 1;
1794 }
1795
1796 static int
1797 return_minus_one (void)
1798 {
1799 return -1;
1800 }
1801
1802 /*
1803 * Resize the to_sections pointer. Also make sure that anyone that
1804 * was holding on to an old value of it gets updated.
1805 * Returns the old size.
1806 */
1807
1808 int
1809 target_resize_to_sections (struct target_ops *target, int num_added)
1810 {
1811 struct target_ops **t;
1812 struct section_table *old_value;
1813 int old_count;
1814
1815 old_value = target->to_sections;
1816
1817 if (target->to_sections)
1818 {
1819 old_count = target->to_sections_end - target->to_sections;
1820 target->to_sections = (struct section_table *)
1821 xrealloc ((char *) target->to_sections,
1822 (sizeof (struct section_table)) * (num_added + old_count));
1823 }
1824 else
1825 {
1826 old_count = 0;
1827 target->to_sections = (struct section_table *)
1828 xmalloc ((sizeof (struct section_table)) * num_added);
1829 }
1830 target->to_sections_end = target->to_sections + (num_added + old_count);
1831
1832 /* Check to see if anyone else was pointing to this structure.
1833 If old_value was null, then no one was. */
1834
1835 if (old_value)
1836 {
1837 for (t = target_structs; t < target_structs + target_struct_size;
1838 ++t)
1839 {
1840 if ((*t)->to_sections == old_value)
1841 {
1842 (*t)->to_sections = target->to_sections;
1843 (*t)->to_sections_end = target->to_sections_end;
1844 }
1845 }
1846 /* There is a flattened view of the target stack in current_target,
1847 so its to_sections pointer might also need updating. */
1848 if (current_target.to_sections == old_value)
1849 {
1850 current_target.to_sections = target->to_sections;
1851 current_target.to_sections_end = target->to_sections_end;
1852 }
1853 }
1854
1855 return old_count;
1856
1857 }
1858
1859 /* Remove all target sections taken from ABFD.
1860
1861 Scan the current target stack for targets whose section tables
1862 refer to sections from BFD, and remove those sections. We use this
1863 when we notice that the inferior has unloaded a shared object, for
1864 example. */
1865 void
1866 remove_target_sections (bfd *abfd)
1867 {
1868 struct target_ops **t;
1869
1870 for (t = target_structs; t < target_structs + target_struct_size; t++)
1871 {
1872 struct section_table *src, *dest;
1873
1874 dest = (*t)->to_sections;
1875 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1876 if (src->bfd != abfd)
1877 {
1878 /* Keep this section. */
1879 if (dest < src) *dest = *src;
1880 dest++;
1881 }
1882
1883 /* If we've dropped any sections, resize the section table. */
1884 if (dest < src)
1885 target_resize_to_sections (*t, dest - src);
1886 }
1887 }
1888
1889
1890
1891
1892 /* Find a single runnable target in the stack and return it. If for
1893 some reason there is more than one, return NULL. */
1894
1895 struct target_ops *
1896 find_run_target (void)
1897 {
1898 struct target_ops **t;
1899 struct target_ops *runable = NULL;
1900 int count;
1901
1902 count = 0;
1903
1904 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1905 {
1906 if ((*t)->to_can_run && target_can_run (*t))
1907 {
1908 runable = *t;
1909 ++count;
1910 }
1911 }
1912
1913 return (count == 1 ? runable : NULL);
1914 }
1915
1916 /* Find a single core_stratum target in the list of targets and return it.
1917 If for some reason there is more than one, return NULL. */
1918
1919 struct target_ops *
1920 find_core_target (void)
1921 {
1922 struct target_ops **t;
1923 struct target_ops *runable = NULL;
1924 int count;
1925
1926 count = 0;
1927
1928 for (t = target_structs; t < target_structs + target_struct_size;
1929 ++t)
1930 {
1931 if ((*t)->to_stratum == core_stratum)
1932 {
1933 runable = *t;
1934 ++count;
1935 }
1936 }
1937
1938 return (count == 1 ? runable : NULL);
1939 }
1940
1941 /*
1942 * Find the next target down the stack from the specified target.
1943 */
1944
1945 struct target_ops *
1946 find_target_beneath (struct target_ops *t)
1947 {
1948 return t->beneath;
1949 }
1950
1951 \f
1952 /* The inferior process has died. Long live the inferior! */
1953
1954 void
1955 generic_mourn_inferior (void)
1956 {
1957 extern int show_breakpoint_hit_counts;
1958
1959 inferior_ptid = null_ptid;
1960 attach_flag = 0;
1961 breakpoint_init_inferior (inf_exited);
1962 registers_changed ();
1963
1964 reopen_exec_file ();
1965 reinit_frame_cache ();
1966
1967 /* It is confusing to the user for ignore counts to stick around
1968 from previous runs of the inferior. So clear them. */
1969 /* However, it is more confusing for the ignore counts to disappear when
1970 using hit counts. So don't clear them if we're counting hits. */
1971 if (!show_breakpoint_hit_counts)
1972 breakpoint_clear_ignore_counts ();
1973
1974 if (deprecated_detach_hook)
1975 deprecated_detach_hook ();
1976 }
1977 \f
1978 /* Helper function for child_wait and the derivatives of child_wait.
1979 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1980 translation of that in OURSTATUS. */
1981 void
1982 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1983 {
1984 if (WIFEXITED (hoststatus))
1985 {
1986 ourstatus->kind = TARGET_WAITKIND_EXITED;
1987 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1988 }
1989 else if (!WIFSTOPPED (hoststatus))
1990 {
1991 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1992 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1993 }
1994 else
1995 {
1996 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1997 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1998 }
1999 }
2000 \f
2001 /* Returns zero to leave the inferior alone, one to interrupt it. */
2002 int (*target_activity_function) (void);
2003 int target_activity_fd;
2004 \f
2005 /* Convert a normal process ID to a string. Returns the string in a
2006 static buffer. */
2007
2008 char *
2009 normal_pid_to_str (ptid_t ptid)
2010 {
2011 static char buf[32];
2012
2013 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2014 return buf;
2015 }
2016
2017 /* Error-catcher for target_find_memory_regions */
2018 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2019 {
2020 error (_("No target."));
2021 return 0;
2022 }
2023
2024 /* Error-catcher for target_make_corefile_notes */
2025 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2026 {
2027 error (_("No target."));
2028 return NULL;
2029 }
2030
2031 /* Set up the handful of non-empty slots needed by the dummy target
2032 vector. */
2033
2034 static void
2035 init_dummy_target (void)
2036 {
2037 dummy_target.to_shortname = "None";
2038 dummy_target.to_longname = "None";
2039 dummy_target.to_doc = "";
2040 dummy_target.to_attach = find_default_attach;
2041 dummy_target.to_create_inferior = find_default_create_inferior;
2042 dummy_target.to_pid_to_str = normal_pid_to_str;
2043 dummy_target.to_stratum = dummy_stratum;
2044 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2045 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2046 dummy_target.to_xfer_partial = default_xfer_partial;
2047 dummy_target.to_magic = OPS_MAGIC;
2048 }
2049 \f
2050 static void
2051 debug_to_open (char *args, int from_tty)
2052 {
2053 debug_target.to_open (args, from_tty);
2054
2055 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2056 }
2057
2058 static void
2059 debug_to_close (int quitting)
2060 {
2061 target_close (&debug_target, quitting);
2062 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2063 }
2064
2065 void
2066 target_close (struct target_ops *targ, int quitting)
2067 {
2068 if (targ->to_xclose != NULL)
2069 targ->to_xclose (targ, quitting);
2070 else if (targ->to_close != NULL)
2071 targ->to_close (quitting);
2072 }
2073
2074 static void
2075 debug_to_attach (char *args, int from_tty)
2076 {
2077 debug_target.to_attach (args, from_tty);
2078
2079 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2080 }
2081
2082
2083 static void
2084 debug_to_post_attach (int pid)
2085 {
2086 debug_target.to_post_attach (pid);
2087
2088 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2089 }
2090
2091 static void
2092 debug_to_detach (char *args, int from_tty)
2093 {
2094 debug_target.to_detach (args, from_tty);
2095
2096 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2097 }
2098
2099 static void
2100 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2101 {
2102 debug_target.to_resume (ptid, step, siggnal);
2103
2104 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2105 step ? "step" : "continue",
2106 target_signal_to_name (siggnal));
2107 }
2108
2109 static ptid_t
2110 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2111 {
2112 ptid_t retval;
2113
2114 retval = debug_target.to_wait (ptid, status);
2115
2116 fprintf_unfiltered (gdb_stdlog,
2117 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2118 PIDGET (retval));
2119 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2120 switch (status->kind)
2121 {
2122 case TARGET_WAITKIND_EXITED:
2123 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2124 status->value.integer);
2125 break;
2126 case TARGET_WAITKIND_STOPPED:
2127 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2128 target_signal_to_name (status->value.sig));
2129 break;
2130 case TARGET_WAITKIND_SIGNALLED:
2131 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2132 target_signal_to_name (status->value.sig));
2133 break;
2134 case TARGET_WAITKIND_LOADED:
2135 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2136 break;
2137 case TARGET_WAITKIND_FORKED:
2138 fprintf_unfiltered (gdb_stdlog, "forked\n");
2139 break;
2140 case TARGET_WAITKIND_VFORKED:
2141 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2142 break;
2143 case TARGET_WAITKIND_EXECD:
2144 fprintf_unfiltered (gdb_stdlog, "execd\n");
2145 break;
2146 case TARGET_WAITKIND_SPURIOUS:
2147 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2148 break;
2149 default:
2150 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2151 break;
2152 }
2153
2154 return retval;
2155 }
2156
2157 static void
2158 debug_print_register (const char * func,
2159 struct regcache *regcache, int regno)
2160 {
2161 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2162 if (regno >= 0 && regno < gdbarch_num_regs (current_gdbarch)
2163 + gdbarch_num_pseudo_regs (current_gdbarch)
2164 && gdbarch_register_name (current_gdbarch, regno) != NULL
2165 && gdbarch_register_name (current_gdbarch, regno)[0] != '\0')
2166 fprintf_unfiltered (gdb_stdlog, "(%s)", gdbarch_register_name
2167 (current_gdbarch, regno));
2168 else
2169 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2170 if (regno >= 0)
2171 {
2172 int i, size = register_size (current_gdbarch, regno);
2173 unsigned char buf[MAX_REGISTER_SIZE];
2174 regcache_cooked_read (regcache, regno, buf);
2175 fprintf_unfiltered (gdb_stdlog, " = ");
2176 for (i = 0; i < size; i++)
2177 {
2178 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2179 }
2180 if (size <= sizeof (LONGEST))
2181 {
2182 ULONGEST val = extract_unsigned_integer (buf, size);
2183 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2184 paddr_nz (val), paddr_d (val));
2185 }
2186 }
2187 fprintf_unfiltered (gdb_stdlog, "\n");
2188 }
2189
2190 static void
2191 debug_to_fetch_registers (struct regcache *regcache, int regno)
2192 {
2193 debug_target.to_fetch_registers (regcache, regno);
2194 debug_print_register ("target_fetch_registers", regcache, regno);
2195 }
2196
2197 static void
2198 debug_to_store_registers (struct regcache *regcache, int regno)
2199 {
2200 debug_target.to_store_registers (regcache, regno);
2201 debug_print_register ("target_store_registers", regcache, regno);
2202 fprintf_unfiltered (gdb_stdlog, "\n");
2203 }
2204
2205 static void
2206 debug_to_prepare_to_store (struct regcache *regcache)
2207 {
2208 debug_target.to_prepare_to_store (regcache);
2209
2210 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2211 }
2212
2213 static int
2214 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2215 int write, struct mem_attrib *attrib,
2216 struct target_ops *target)
2217 {
2218 int retval;
2219
2220 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2221 attrib, target);
2222
2223 fprintf_unfiltered (gdb_stdlog,
2224 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2225 (unsigned int) memaddr, /* possable truncate long long */
2226 len, write ? "write" : "read", retval);
2227
2228 if (retval > 0)
2229 {
2230 int i;
2231
2232 fputs_unfiltered (", bytes =", gdb_stdlog);
2233 for (i = 0; i < retval; i++)
2234 {
2235 if ((((long) &(myaddr[i])) & 0xf) == 0)
2236 {
2237 if (targetdebug < 2 && i > 0)
2238 {
2239 fprintf_unfiltered (gdb_stdlog, " ...");
2240 break;
2241 }
2242 fprintf_unfiltered (gdb_stdlog, "\n");
2243 }
2244
2245 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2246 }
2247 }
2248
2249 fputc_unfiltered ('\n', gdb_stdlog);
2250
2251 return retval;
2252 }
2253
2254 static void
2255 debug_to_files_info (struct target_ops *target)
2256 {
2257 debug_target.to_files_info (target);
2258
2259 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2260 }
2261
2262 static int
2263 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2264 {
2265 int retval;
2266
2267 retval = debug_target.to_insert_breakpoint (bp_tgt);
2268
2269 fprintf_unfiltered (gdb_stdlog,
2270 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2271 (unsigned long) bp_tgt->placed_address,
2272 (unsigned long) retval);
2273 return retval;
2274 }
2275
2276 static int
2277 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2278 {
2279 int retval;
2280
2281 retval = debug_target.to_remove_breakpoint (bp_tgt);
2282
2283 fprintf_unfiltered (gdb_stdlog,
2284 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2285 (unsigned long) bp_tgt->placed_address,
2286 (unsigned long) retval);
2287 return retval;
2288 }
2289
2290 static int
2291 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2292 {
2293 int retval;
2294
2295 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2296
2297 fprintf_unfiltered (gdb_stdlog,
2298 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2299 (unsigned long) type,
2300 (unsigned long) cnt,
2301 (unsigned long) from_tty,
2302 (unsigned long) retval);
2303 return retval;
2304 }
2305
2306 static int
2307 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2308 {
2309 CORE_ADDR retval;
2310
2311 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2312
2313 fprintf_unfiltered (gdb_stdlog,
2314 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2315 (unsigned long) addr,
2316 (unsigned long) len,
2317 (unsigned long) retval);
2318 return retval;
2319 }
2320
2321 static int
2322 debug_to_stopped_by_watchpoint (void)
2323 {
2324 int retval;
2325
2326 retval = debug_target.to_stopped_by_watchpoint ();
2327
2328 fprintf_unfiltered (gdb_stdlog,
2329 "STOPPED_BY_WATCHPOINT () = %ld\n",
2330 (unsigned long) retval);
2331 return retval;
2332 }
2333
2334 static int
2335 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2336 {
2337 int retval;
2338
2339 retval = debug_target.to_stopped_data_address (target, addr);
2340
2341 fprintf_unfiltered (gdb_stdlog,
2342 "target_stopped_data_address ([0x%lx]) = %ld\n",
2343 (unsigned long)*addr,
2344 (unsigned long)retval);
2345 return retval;
2346 }
2347
2348 static int
2349 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2350 {
2351 int retval;
2352
2353 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2354
2355 fprintf_unfiltered (gdb_stdlog,
2356 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2357 (unsigned long) bp_tgt->placed_address,
2358 (unsigned long) retval);
2359 return retval;
2360 }
2361
2362 static int
2363 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2364 {
2365 int retval;
2366
2367 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2368
2369 fprintf_unfiltered (gdb_stdlog,
2370 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2371 (unsigned long) bp_tgt->placed_address,
2372 (unsigned long) retval);
2373 return retval;
2374 }
2375
2376 static int
2377 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2378 {
2379 int retval;
2380
2381 retval = debug_target.to_insert_watchpoint (addr, len, type);
2382
2383 fprintf_unfiltered (gdb_stdlog,
2384 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2385 (unsigned long) addr, len, type, (unsigned long) retval);
2386 return retval;
2387 }
2388
2389 static int
2390 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2391 {
2392 int retval;
2393
2394 retval = debug_target.to_remove_watchpoint (addr, len, type);
2395
2396 fprintf_unfiltered (gdb_stdlog,
2397 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2398 (unsigned long) addr, len, type, (unsigned long) retval);
2399 return retval;
2400 }
2401
2402 static void
2403 debug_to_terminal_init (void)
2404 {
2405 debug_target.to_terminal_init ();
2406
2407 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2408 }
2409
2410 static void
2411 debug_to_terminal_inferior (void)
2412 {
2413 debug_target.to_terminal_inferior ();
2414
2415 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2416 }
2417
2418 static void
2419 debug_to_terminal_ours_for_output (void)
2420 {
2421 debug_target.to_terminal_ours_for_output ();
2422
2423 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2424 }
2425
2426 static void
2427 debug_to_terminal_ours (void)
2428 {
2429 debug_target.to_terminal_ours ();
2430
2431 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2432 }
2433
2434 static void
2435 debug_to_terminal_save_ours (void)
2436 {
2437 debug_target.to_terminal_save_ours ();
2438
2439 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2440 }
2441
2442 static void
2443 debug_to_terminal_info (char *arg, int from_tty)
2444 {
2445 debug_target.to_terminal_info (arg, from_tty);
2446
2447 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2448 from_tty);
2449 }
2450
2451 static void
2452 debug_to_kill (void)
2453 {
2454 debug_target.to_kill ();
2455
2456 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2457 }
2458
2459 static void
2460 debug_to_load (char *args, int from_tty)
2461 {
2462 debug_target.to_load (args, from_tty);
2463
2464 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2465 }
2466
2467 static int
2468 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2469 {
2470 int retval;
2471
2472 retval = debug_target.to_lookup_symbol (name, addrp);
2473
2474 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2475
2476 return retval;
2477 }
2478
2479 static void
2480 debug_to_create_inferior (char *exec_file, char *args, char **env,
2481 int from_tty)
2482 {
2483 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2484
2485 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2486 exec_file, args, from_tty);
2487 }
2488
2489 static void
2490 debug_to_post_startup_inferior (ptid_t ptid)
2491 {
2492 debug_target.to_post_startup_inferior (ptid);
2493
2494 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2495 PIDGET (ptid));
2496 }
2497
2498 static void
2499 debug_to_acknowledge_created_inferior (int pid)
2500 {
2501 debug_target.to_acknowledge_created_inferior (pid);
2502
2503 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2504 pid);
2505 }
2506
2507 static void
2508 debug_to_insert_fork_catchpoint (int pid)
2509 {
2510 debug_target.to_insert_fork_catchpoint (pid);
2511
2512 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2513 pid);
2514 }
2515
2516 static int
2517 debug_to_remove_fork_catchpoint (int pid)
2518 {
2519 int retval;
2520
2521 retval = debug_target.to_remove_fork_catchpoint (pid);
2522
2523 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2524 pid, retval);
2525
2526 return retval;
2527 }
2528
2529 static void
2530 debug_to_insert_vfork_catchpoint (int pid)
2531 {
2532 debug_target.to_insert_vfork_catchpoint (pid);
2533
2534 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2535 pid);
2536 }
2537
2538 static int
2539 debug_to_remove_vfork_catchpoint (int pid)
2540 {
2541 int retval;
2542
2543 retval = debug_target.to_remove_vfork_catchpoint (pid);
2544
2545 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2546 pid, retval);
2547
2548 return retval;
2549 }
2550
2551 static void
2552 debug_to_insert_exec_catchpoint (int pid)
2553 {
2554 debug_target.to_insert_exec_catchpoint (pid);
2555
2556 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2557 pid);
2558 }
2559
2560 static int
2561 debug_to_remove_exec_catchpoint (int pid)
2562 {
2563 int retval;
2564
2565 retval = debug_target.to_remove_exec_catchpoint (pid);
2566
2567 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2568 pid, retval);
2569
2570 return retval;
2571 }
2572
2573 static int
2574 debug_to_reported_exec_events_per_exec_call (void)
2575 {
2576 int reported_exec_events;
2577
2578 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2579
2580 fprintf_unfiltered (gdb_stdlog,
2581 "target_reported_exec_events_per_exec_call () = %d\n",
2582 reported_exec_events);
2583
2584 return reported_exec_events;
2585 }
2586
2587 static int
2588 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2589 {
2590 int has_exited;
2591
2592 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2593
2594 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2595 pid, wait_status, *exit_status, has_exited);
2596
2597 return has_exited;
2598 }
2599
2600 static void
2601 debug_to_mourn_inferior (void)
2602 {
2603 debug_target.to_mourn_inferior ();
2604
2605 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2606 }
2607
2608 static int
2609 debug_to_can_run (void)
2610 {
2611 int retval;
2612
2613 retval = debug_target.to_can_run ();
2614
2615 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2616
2617 return retval;
2618 }
2619
2620 static void
2621 debug_to_notice_signals (ptid_t ptid)
2622 {
2623 debug_target.to_notice_signals (ptid);
2624
2625 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2626 PIDGET (ptid));
2627 }
2628
2629 static int
2630 debug_to_thread_alive (ptid_t ptid)
2631 {
2632 int retval;
2633
2634 retval = debug_target.to_thread_alive (ptid);
2635
2636 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2637 PIDGET (ptid), retval);
2638
2639 return retval;
2640 }
2641
2642 static void
2643 debug_to_find_new_threads (void)
2644 {
2645 debug_target.to_find_new_threads ();
2646
2647 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2648 }
2649
2650 static void
2651 debug_to_stop (void)
2652 {
2653 debug_target.to_stop ();
2654
2655 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2656 }
2657
2658 static void
2659 debug_to_rcmd (char *command,
2660 struct ui_file *outbuf)
2661 {
2662 debug_target.to_rcmd (command, outbuf);
2663 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2664 }
2665
2666 static struct symtab_and_line *
2667 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2668 {
2669 struct symtab_and_line *result;
2670 result = debug_target.to_enable_exception_callback (kind, enable);
2671 fprintf_unfiltered (gdb_stdlog,
2672 "target get_exception_callback_sal (%d, %d)\n",
2673 kind, enable);
2674 return result;
2675 }
2676
2677 static struct exception_event_record *
2678 debug_to_get_current_exception_event (void)
2679 {
2680 struct exception_event_record *result;
2681 result = debug_target.to_get_current_exception_event ();
2682 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2683 return result;
2684 }
2685
2686 static char *
2687 debug_to_pid_to_exec_file (int pid)
2688 {
2689 char *exec_file;
2690
2691 exec_file = debug_target.to_pid_to_exec_file (pid);
2692
2693 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2694 pid, exec_file);
2695
2696 return exec_file;
2697 }
2698
2699 static void
2700 setup_target_debug (void)
2701 {
2702 memcpy (&debug_target, &current_target, sizeof debug_target);
2703
2704 current_target.to_open = debug_to_open;
2705 current_target.to_close = debug_to_close;
2706 current_target.to_attach = debug_to_attach;
2707 current_target.to_post_attach = debug_to_post_attach;
2708 current_target.to_detach = debug_to_detach;
2709 current_target.to_resume = debug_to_resume;
2710 current_target.to_wait = debug_to_wait;
2711 current_target.to_fetch_registers = debug_to_fetch_registers;
2712 current_target.to_store_registers = debug_to_store_registers;
2713 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2714 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2715 current_target.to_files_info = debug_to_files_info;
2716 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2717 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2718 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2719 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2720 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2721 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2722 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2723 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2724 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2725 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2726 current_target.to_terminal_init = debug_to_terminal_init;
2727 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2728 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2729 current_target.to_terminal_ours = debug_to_terminal_ours;
2730 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2731 current_target.to_terminal_info = debug_to_terminal_info;
2732 current_target.to_kill = debug_to_kill;
2733 current_target.to_load = debug_to_load;
2734 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2735 current_target.to_create_inferior = debug_to_create_inferior;
2736 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2737 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2738 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2739 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2740 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2741 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2742 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2743 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2744 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2745 current_target.to_has_exited = debug_to_has_exited;
2746 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2747 current_target.to_can_run = debug_to_can_run;
2748 current_target.to_notice_signals = debug_to_notice_signals;
2749 current_target.to_thread_alive = debug_to_thread_alive;
2750 current_target.to_find_new_threads = debug_to_find_new_threads;
2751 current_target.to_stop = debug_to_stop;
2752 current_target.to_rcmd = debug_to_rcmd;
2753 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2754 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2755 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2756 }
2757 \f
2758
2759 static char targ_desc[] =
2760 "Names of targets and files being debugged.\n\
2761 Shows the entire stack of targets currently in use (including the exec-file,\n\
2762 core-file, and process, if any), as well as the symbol file name.";
2763
2764 static void
2765 do_monitor_command (char *cmd,
2766 int from_tty)
2767 {
2768 if ((current_target.to_rcmd
2769 == (void (*) (char *, struct ui_file *)) tcomplain)
2770 || (current_target.to_rcmd == debug_to_rcmd
2771 && (debug_target.to_rcmd
2772 == (void (*) (char *, struct ui_file *)) tcomplain)))
2773 error (_("\"monitor\" command not supported by this target."));
2774 target_rcmd (cmd, gdb_stdtarg);
2775 }
2776
2777 /* Print the name of each layers of our target stack. */
2778
2779 static void
2780 maintenance_print_target_stack (char *cmd, int from_tty)
2781 {
2782 struct target_ops *t;
2783
2784 printf_filtered (_("The current target stack is:\n"));
2785
2786 for (t = target_stack; t != NULL; t = t->beneath)
2787 {
2788 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
2789 }
2790 }
2791
2792 void
2793 initialize_targets (void)
2794 {
2795 init_dummy_target ();
2796 push_target (&dummy_target);
2797
2798 add_info ("target", target_info, targ_desc);
2799 add_info ("files", target_info, targ_desc);
2800
2801 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2802 Set target debugging."), _("\
2803 Show target debugging."), _("\
2804 When non-zero, target debugging is enabled. Higher numbers are more\n\
2805 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2806 command."),
2807 NULL,
2808 show_targetdebug,
2809 &setdebuglist, &showdebuglist);
2810
2811 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2812 &trust_readonly, _("\
2813 Set mode for reading from readonly sections."), _("\
2814 Show mode for reading from readonly sections."), _("\
2815 When this mode is on, memory reads from readonly sections (such as .text)\n\
2816 will be read from the object file instead of from the target. This will\n\
2817 result in significant performance improvement for remote targets."),
2818 NULL,
2819 show_trust_readonly,
2820 &setlist, &showlist);
2821
2822 add_com ("monitor", class_obscure, do_monitor_command,
2823 _("Send a command to the remote monitor (remote targets only)."));
2824
2825 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
2826 _("Print the name of each layer of the internal target stack."),
2827 &maintenanceprintlist);
2828
2829 target_dcache = dcache_init ();
2830 }
This page took 0.140145 seconds and 4 git commands to generate.